
Spring Web Flow Reference Guide
Keith Donald
Erwin Vervaet
Jeremy Grelle
Scott Andrews

Rossen Stoyanchev

Version 2.0.9
Published

Copies of this document may be made for your own use and for distribution to others, provided that you do not
charge any fee for such copies and further provided that each copy contains this Copyright Notice, whether
distributed in print or electronically.

Table of Contents
Preface ... vii
1. Introduction ... 1

1.1. What this guide covers ... 1
1.2. What Web Flow requires to run ... 1
1.3. Where to get support .. 1
1.4. Where to follow development .. 1
1.5. How to access Web Flow artifacts from Maven Central 1
1.6. How to access Web Flow artifacts from the SpringSource Bundle Repository 2
1.7. How to access nightly builds ... 4

2. Defining Flows .. 7
2.1. Introduction .. 7
2.2. What is a flow? .. 7
2.3. What is the makeup of a typical flow? ... 8
2.4. How are flows authored? ... 8
2.5. Essential language elements .. 9
2.6. Actions ... 10
2.7. Input/Output Mapping ... 12
2.8. Variables .. 14
2.9. Calling subflows .. 14

3. Expression Language (EL) ... 17
3.1. Introduction .. 17
3.2. Supported EL implementations .. 17
3.3. EL portability ... 17
3.4. EL usage ... 17
3.5. Special EL variables .. 19
3.6. Scope searching algorithm ... 21

4. Rendering views .. 23
4.1. Introduction .. 23
4.2. Defining view states ... 23
4.3. Specifying view identifiers .. 23
4.4. View scope ... 24
4.5. Executing render actions .. 25
4.6. Binding to a model ... 25
4.7. Performing type conversion ... 26
4.8. Suppressing binding ... 27
4.9. Specifying bindings explicitly ... 27
4.10. Validating a model ... 28
4.11. Suppressing validation ... 30
4.12. Executing view transitions ... 31
4.13. Working with messages ... 32
4.14. Displaying popups ... 34
4.15. View backtracking ... 34

5. Executing actions .. 35
5.1. Introduction .. 35

Version 2.0.9 iii

5.2. Defining action states ... 35
5.3. Defining decision states ... 35
5.4. Action outcome event mappings .. 36
5.5. Action implementations ... 36
5.6. Action exceptions ... 37
5.7. Other Action execution examples .. 38

6. Flow Managed Persistence ... 43
6.1. Introduction .. 43
6.2. FlowScoped PersistenceContext .. 43

7. Securing Flows .. 45
7.1. Introduction .. 45
7.2. How do I secure a flow? .. 45
7.3. The secured element .. 45
7.4. The SecurityFlowExecutionListener ... 46
7.5. Configuring Spring Security .. 47

8. Flow Inheritance ... 49
8.1. Introduction .. 49
8.2. Is flow inheritance like Java inheritance? .. 49
8.3. Types of Flow Inheritance ... 49
8.4. Abstract flows .. 50
8.5. Inheritance Algorithm .. 50

9. System Setup ... 53
9.1. Introduction .. 53
9.2. webflow-config.xsd ... 53
9.3. Basic system configuration .. 53
9.4. flow-registry options .. 54
9.5. flow-executor options .. 57

10. Spring MVC Integration ... 59
10.1. Introduction .. 59
10.2. Configuring web.xml ... 59
10.3. Dispatching to flows .. 59
10.4. Implementing custom FlowHandlers ... 60
10.5. View Resolution ... 63
10.6. Signaling an event from a View ... 63

11. Spring JavaScript Quick Reference .. 65
11.1. Introduction .. 65
11.2. Serving Javascript Resources ... 65
11.3. Including Spring Javascript in a Page .. 65
11.4. Spring Javascript Decorations .. 66
11.5. Handling Ajax Requests .. 67

12. JSF Integration .. 71
12.1. Introduction .. 71
12.2. Spring-centric Integration Approach ... 71
12.3. Configuring web.xml ... 72
12.4. Configuring Web Flow to render JSF views .. 73
12.5. Configuring faces-config.xml .. 74
12.6. Replacing the JSF Managed Bean Facility .. 74
12.7. Handling JSF Events With Spring Web Flow ... 76
12.8. Enhancing The User Experience With Rich Web Forms 80

iv Spring Web Flow

12.9. Third-Party Component Library Integration .. 81
13. Portlet Integration ... 85

13.1. Introduction .. 85
13.2. Configuring web.xml and portlet.xml .. 85
13.3. Configuring Spring .. 85
13.4. Portlet Views .. 87
13.5. Portlet Modes and Window States ... 87
13.6. Issues in a Portlet Environment ... 88

14. Testing flows ... 89
14.1. Introduction .. 89
14.2. Extending AbstractXmlFlowExecutionTests ... 89
14.3. Specifying the path to the flow to test ... 89
14.4. Registering flow dependencies .. 89
14.5. Testing flow startup ... 90
14.6. Testing flow event handling ... 90
14.7. Mocking a subflow .. 90

15. Upgrading from 1.0 ... 93
15.1. Introduction .. 93
15.2. Flow Definition Language ... 93
15.3. Web Flow Configuration ... 94
15.4. New Web Flow Concepts .. 96

A. Flow Definition Language 1.0 to 2.0 Mappings .. 99

Version 2.0.9 v

vi Spring Web Flow

Preface
Many web applications require the same sequence of steps to execute in different contexts. Often
these sequences are merely components of a larger task the user is trying to accomplish. Such a
reusable sequence is called a flow.

Consider a typical shopping cart application. User registration, login, and cart checkout are all
examples of flows that can be invoked from several places in this type of application.

Spring Web Flow is the module of Spring for implementing flows. The Web Flow engine plugs
into the Spring Web MVC platform and provides declarative flow definition language. This
reference guide shows you how to use and extend Spring Web Flow.

Preface vii

Version 2.0.9 vii

viii Spring Web Flow

viii Preface

1. Introduction

1.1. What this guide covers

This guide covers all aspects of Spring Web Flow. It covers implementing flows in end-user
applications and working with the feature set. It also covers extending the framework and the
overall architectural model.

1.2. What Web Flow requires to run

Java 1.4 or higher

Spring 2.5.6 or higher

1.3. Where to get support

Professional from-the-source support on Spring Web Flow is available from SpringSource, the
company behind Spring, and Ervacon, operated by Web Flow project co-founder Erwin Vervaet

1.4. Where to follow development

You can help make Web Flow best serve the needs of the Spring community by interacting with
developers at the Spring Community Forums.

Report bugs and influence the Web Flow project roadmap using the Spring Issue Tracker.

Subscribe to the Spring Community Portal for the latest Spring news and announcements.

Visit the Web Flow Project Home for more resources on the project.

1.5. How to access Web Flow artifacts from Maven
Central

Each jar in the Web Flow distribution is available in the Maven Central Repository. This allows
you to easily integrate Web Flow into your application if you are already using Maven as the
build system for your web development project.

To access Web Flow jars from Maven Central, declare the following dependencies in your pom:

Introduction 1

Version 2.0.9 1

http://www.springsource.com
http://www.ervacon.com
http://forum.springframework.org
http://jira.springframework.org
http://www.springframework.org
http://www.springframework.org/webflow
http://repo1.maven.org/maven2/

<dependency>
<groupId>org.springframework.webflow</groupId>
<artifactId>spring-binding</artifactId>
<version>2.0.9.RELEASE</version>

</dependency>

<dependency>
<groupId>org.springframework.webflow</groupId>
<artifactId>spring-js</artifactId>
<version>2.0.9.RELEASE</version>

</dependency>

<dependency>
<groupId>org.springframework.webflow</groupId>
<artifactId>spring-webflow</artifactId>
<version>2.0.9.RELEASE</version>

</dependency>

And if using JavaServerFaces:

<dependency>
<groupId>org.springframework.webflow</groupId>
<artifactId>spring-faces</artifactId>
<version>2.0.9.RELEASE</version>

</dependency>

1.6. How to access Web Flow artifacts from the
SpringSource Bundle Repository

Each jar in the Web Flow distribution is also available in the SpringSource Enterprise Bundle
Repository. Use this repository when you wish to run Spring Web Flow in an OSGi environment
such as the SpringSource dm Server. All jars obtained from the SpringSource Bundle Repository
are OSGi-ready.

Accessing Web Flow bundles with Maven

To access bundles using Maven, add the following repositories to your Maven pom:

<repository>
<id>com.springsource.repository.bundles.release</id>
<name>SpringSource Enterprise Bundle Repository - SpringSource Releases</name>
<url>http://repository.springsource.com/maven/bundles/release</url>

</repository>

<repository>
<id>com.springsource.repository.bundles.external</id>
<name>SpringSource Enterprise Bundle Repository - External Releases</name>
<url>http://repository.springsource.com/maven/bundles/external</url>

</repository>

Then declare the following dependencies:

<dependency>
<groupId>org.springframework.webflow</groupId>
<artifactId>org.springframework.binding</artifactId>
<version>2.0.9.RELEASE</version>

</dependency>

<dependency>

2 Spring Web Flow

2 Introduction

http://www.springsource.com/repository
http://www.springsource.com/repository
http://www.springsource.com/products/dmserver

<groupId>org.springframework.webflow</groupId>
<artifactId>org.springframework.js</artifactId>
<version>2.0.9.RELEASE</version>

</dependency>

<dependency>
<groupId>org.springframework.webflow</groupId>
<artifactId>org.springframework.webflow</artifactId>
<version>2.0.9.RELEASE</version>

</dependency>

And if using JavaServerFaces:

<dependency>
<groupId>org.springframework.webflow</groupId>
<artifactId>org.springframework.faces</artifactId>
<version>2.0.9.RELEASE</version>

</dependency>

Note the Web Flow artifacts in the SpringSource Bundle Repository are indexed under different
ids because their transitive dependencies are different than the Maven Central artifacts. The
difference is the transitive jars such as commons-logging have been patched by SpringSource to
add the metadata required to make them OSGi-compatible.

Accessing Web Flow bundles with Ivy

To access bundles using Ivy, add the following repositories to your Ivy config:

<url name="com.springsource.repository.bundles.release">
<ivy pattern="http://repository.springsource.com/ivy/bundles/release/

[organisation]/[module]/[revision]/[artifact]-[revision].[ext]" />
<artifact pattern="http://repository.springsource.com/ivy/bundles/release/

[organisation]/[module]/[revision]/[artifact]-[revision].[ext]" />
</url>

<url name="com.springsource.repository.bundles.external">
<ivy pattern="http://repository.springsource.com/ivy/bundles/external/

[organisation]/[module]/[revision]/[artifact]-[revision].[ext]" />
<artifact pattern="http://repository.springsource.com/ivy/bundles/external/

[organisation]/[module]/[revision]/[artifact]-[revision].[ext]" />
</url>

Then declare the following dependencies:

<dependency org="org.springframework.webflow" name="org.springframework.binding"
rev="2.0.9.RELEASE" conf="compile->runtime" />

<dependency org="org.springframework.webflow" name="org.springframework.js"
rev="2.0.9.RELEASE" conf="compile->runtime" />

<dependency org="org.springframework.webflow" name="org.springframework.webflow"
rev="2.0.9.RELEASE" conf="compile->runtime" />

And if using JavaServerFaces:

<dependency org="org.springframework.webflow" name="org.springframework.faces"
rev="2.0.9.RELEASE" conf="compile->runtime" />

Accessing the dm Server Web Flow library

Introduction 3

Version 2.0.9 3

A dm Server library for Web Flow is also available if you are deploying to a dm Server
environment. Import this library in your MANIFEST.mf to automatically import all Web Flow
bundles. To access the library, add the following repository:

<repository>
<id>com.springsource.repository.libraries.release</id>
<name>SpringSource Enterprise Bundle Repository - SpringSource Library Releases</name>
<url>http://repository.springsource.com/maven/libraries/release</url>

</repository>

And declare the following dependency:

<dependency>
<groupId>org.springframework.webflow</groupId>
<artifactId>org.springframework.webflow-library</artifactId>
<type>libd</type>
<version>2.0.9.RELEASE</version>

</dependency>

1.7. How to access nightly builds

Nightly snapshots of Web Flow development branches are available using Maven, and
distribution zips are also available for download. These snapshot builds are useful for testing out
fixes you depend on in advance of the next release, and provide a convenient way for you to
provide feedback about whether a fix meets your needs.

If using Maven, you may obtain snapshots from either the SpringSource-managed Maven
Central-compatible repository or the SpringSource Enterprise Bundle Repository. Use the Maven
Central-compatible snapshot repository when your project obtains its other open source
dependencies from Maven Central. Use the Spring Source Enterprise Bundle Snapshot
Repository when you wish to run Web Flow in an OSGi environment.

Accessing snapshots from the Maven-central compatible
repository

Add the following repository your pom:

<repository>
<id>org.springsource.maven.snapshot</id>
<name>SpringSource Maven Central-compatible Snapshot Repository</name>
<url>http://maven.springframework.org/snapshot</url>

</repository>

Then declare the following dependencies:

<dependency>
<groupId>org.springframework.webflow</groupId>
<artifactId>spring-binding</artifactId>
<version>x.y.z.BUILD-SNAPSHOT</version>

</dependency>

<dependency>
<groupId>org.springframework.webflow</groupId>

4 Spring Web Flow

4 Introduction

http://s3browse.com/explore/maven.springframework.org/snapshot/org/springframework/webflow
http://s3browse.com/explore/maven.springframework.org/snapshot/org/springframework/webflow
http://s3browse.com/explore/repository.springsource.com/maven/bundles/snapshot/org/springframework/webflow
http://s3browse.com/explore/repository.springsource.com/maven/bundles/snapshot/org/springframework/webflow

<artifactId>spring-js</artifactId>
<version>x.y.z.BUILD-SNAPSHOT</version>

</dependency>

<dependency>
<groupId>org.springframework.webflow</groupId>
<artifactId>spring-webflow</artifactId>
<version>x.y.z.BUILD-SNAPSHOT</version>

</dependency>

And if using JavaServerFaces:

<dependency>
<groupId>org.springframework.webflow</groupId>
<artifactId>spring-faces</artifactId>
<version>x.y.z.BUILD-SNAPSHOT</version>

</dependency>

Accessing snapshots from the SpringSource Enterprise Bundle
Repository

Add the following repository your pom:

<repository>
<id>com.springsource.repository.bundles.snapshot</id>
<name>SpringSource Enterprise Bundle Snapshot Repository</name>
<url>http://repository.springsource.com/maven/bundles/snapshot</url>

</repository>

Then declare the following dependencies:

<dependency>
<groupId>org.springframework.webflow</groupId>
<artifactId>org.springframework.binding</artifactId>
<version>x.y.z.BUILD-SNAPSHOT</version>

</dependency>

<dependency>
<groupId>org.springframework.webflow</groupId>
<artifactId>org.springframework.js</artifactId>
<version>x.y.z.BUILD-SNAPSHOT</version>

</dependency>

<dependency>
<groupId>org.springframework.webflow</groupId>
<artifactId>org.springframework.webflow</artifactId>
<version>x.y.z.BUILD-SNAPSHOT</version>

</dependency>

And if using JavaServerFaces:

<dependency>
<groupId>org.springframework.webflow</groupId>
<artifactId>org.springframework.faces</artifactId>
<version>x.y.z.BUILD-SNAPSHOT</version>

</dependency>

Accessing snapshot distribution archives

Get the snapshot zip with the most recent CI build number from the Web Flow snapshot

Introduction 5

Version 2.0.9 5

download area.

6 Spring Web Flow

6 Introduction

http://static.springframework.org/downloads/nightly/snapshot-download.php?project=SWF

2. Defining Flows

2.1. Introduction

This chapter begins the Users Section. It shows how to implement flows using the flow
definition language. By the end of this chapter you should have a good understanding of
language constructs, and be capable of authoring a flow definition.

2.2. What is a flow?

A flow encapsulates a reusable sequence of steps that can execute in different contexts. Below is
a Garrett Information Architecture diagram illustrating a reference to a flow that encapsulates the
steps of a hotel booking process:

Defining Flows 7

Version 2.0.9 7

http://www.jjg.net/ia/visvocab/

Site Map illustrating a reference to a flow

2.3. What is the makeup of a typical flow?

In Spring Web Flow, a flow consists of a series of steps called "states". Entering a state typically
results in a view being displayed to the user. On that view, user events occur that are handled by
the state. These events can trigger transitions to other states which result in view navigations.

The example below shows the structure of the book hotel flow referenced in the previous
diagram:

Flow diagram

2.4. How are flows authored?

Flows are authored by web application developers using a simple XML-based flow definition
language. The next steps of this guide will walk you through the elements of this language.

8 Spring Web Flow

8 Defining Flows

2.5. Essential language elements

flow

Every flow begins with the following root element:

<?xml version="1.0" encoding="UTF-8"?>
<flow xmlns="http://www.springframework.org/schema/webflow"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.springframework.org/schema/webflow

http://www.springframework.org/schema/webflow/spring-webflow-2.0.xsd">

</flow>

All states of the flow are defined within this element. The first state defined becomes the flow's
starting point.

view-state

Use the view-state element to define a step of the flow that renders a view:

<view-state id="enterBookingDetails" />

By convention, a view-state maps its id to a view template in the directory where the flow is
located. For example, the state above might render
/WEB-INF/hotels/booking/enterBookingDetails.xhtml if the flow itself was
located in the /WEB-INF/hotels/booking directory.

transition

Use the transition element to handle events that occur within a state:

<view-state id="enterBookingDetails">
<transition on="submit" to="reviewBooking" />

</view-state>

These transitions drive view navigations.

end-state

Use the end-state element to define a flow outcome:

<end-state id="bookingCancelled" />

Defining Flows 9

Version 2.0.9 9

When a flow transitions to a end-state it terminates and the outcome is returned.

Checkpoint: Essential language elements

With the three elements view-state, transition, and end-state, you can quickly
express your view navigation logic. Teams often do this before adding flow behaviors so they
can focus on developing the user interface of the application with end users first. Below is a
sample flow that implements its view navigation logic using these elements:

<flow xmlns="http://www.springframework.org/schema/webflow"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.springframework.org/schema/webflow

http://www.springframework.org/schema/webflow/spring-webflow-2.0.xsd">

<view-state id="enterBookingDetails">
<transition on="submit" to="reviewBooking" />

</view-state>

<view-state id="reviewBooking">
<transition on="confirm" to="bookingConfirmed" />
<transition on="revise" to="enterBookingDetails" />
<transition on="cancel" to="bookingCancelled" />

</view-state>

<end-state id="bookingConfirmed" />

<end-state id="bookingCancelled" />

</flow>

2.6. Actions

Most flows need to express more than just view navigation logic. Typically they also need to
invoke business services of the application or other actions.

Within a flow, there are several points where you can execute actions. These points are:

• On flow start

• On state entry

• On view render

• On transition execution

• On state exit

• On flow end

Actions are defined using a concise expression language. Spring Web Flow uses the Unified EL
by default. The next few sections will cover the essential language elements for defining actions.

evaluate

10 Spring Web Flow

10 Defining Flows

The action element you will use most often is the evaluate element. Use the evaluate
element to evaluate an expression at a point within your flow. With this single tag you can
invoke methods on Spring beans or any other flow variable. For example:

<evaluate expression="entityManager.persist(booking)" />

Assigning an evaluate result

If the expression returns a value, that value can be saved in the flow's data model called
flowScope:

<evaluate expression="bookingService.findHotels(searchCriteria)" result="flowScope.hotels" />

Converting an evaluate result

If the expression returns a value that may need to be converted, specify the desired type using the
result-type attribute:

<evaluate expression="bookingService.findHotels(searchCriteria)" result="flowScope.hotels"
result-type="dataModel"/>

Checkpoint: flow actions

Now review the sample booking flow with actions added:

<flow xmlns="http://www.springframework.org/schema/webflow"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.springframework.org/schema/webflow

http://www.springframework.org/schema/webflow/spring-webflow-2.0.xsd">

<input name="hotelId" />

<on-start>
<evaluate expression="bookingService.createBooking(hotelId, currentUser.name)"

result="flowScope.booking" />
</on-start>

<view-state id="enterBookingDetails">
<transition on="submit" to="reviewBooking" />

</view-state>

<view-state id="reviewBooking">
<transition on="confirm" to="bookingConfirmed" />
<transition on="revise" to="enterBookingDetails" />
<transition on="cancel" to="bookingCancelled" />

</view-state>

<end-state id="bookingConfirmed" />

<end-state id="bookingCancelled" />

</flow>

This flow now creates a Booking object in flow scope when it starts. The id of the hotel to book
is obtained from a flow input attribute.

Defining Flows 11

Version 2.0.9 11

2.7. Input/Output Mapping

Each flow has a well-defined input/output contract. Flows can be passed input attributes when
they start, and can return output attributes when they end. In this respect, calling a flow is
conceptually similar to calling a method with the following signature:

FlowOutcome flowId(Map<String, Object> inputAttributes);

... where a FlowOutcome has the following signature:

public interface FlowOutcome {
public String getName();
public Map<String, Object> getOutputAttributes();

}

input

Use the input element to declare a flow input attribute:

<input name="hotelId" />

Input values are saved in flow scope under the name of the attribute. For example, the input
above would be saved under the name hotelId.

Declaring an input type

Use the type attribute to declare the input attribute's type:

<input name="hotelId" type="long" />

If an input value does not match the declared type, a type conversion will be attempted.

Assigning an input value

Use the value attribute to specify an expression to assign the input value to:

<input name="hotelId" value="flowScope.myParameterObject.hotelId" />

If the expression's value type can be determined, that metadata will be used for type coersion if
no type attribute is specified.

Marking an input as required

12 Spring Web Flow

12 Defining Flows

Use the required attribute to enforce the input is not null or empty:

<input name="hotelId" type="long" value="flowScope.hotelId" required="true" />

output

Use the output element to declare a flow output attribute. Output attributes are declared within
end-states that represent specific flow outcomes.

<end-state id="bookingConfirmed">
<output name="bookingId" />

</end-state>

Output values are obtained from flow scope under the name of the attribute. For example, the
output above would be assigned the value of the bookingId variable.

Specifying the source of an output value

Use the value attribute to denote a specific output value expression:

<output name="confirmationNumber" value="booking.confirmationNumber" />

Checkpoint: input/output mapping

Now review the sample booking flow with input/output mapping:

<flow xmlns="http://www.springframework.org/schema/webflow"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.springframework.org/schema/webflow

http://www.springframework.org/schema/webflow/spring-webflow-2.0.xsd">

<input name="hotelId" />

<on-start>
<evaluate expression="bookingService.createBooking(hotelId, currentUser.name)"

result="flowScope.booking" />
</on-start>

<view-state id="enterBookingDetails">
<transition on="submit" to="reviewBooking" />

</view-state>

<view-state id="reviewBooking">
<transition on="confirm" to="bookingConfirmed" />
<transition on="revise" to="enterBookingDetails" />
<transition on="cancel" to="bookingCancelled" />

</view-state>

<end-state id="bookingConfirmed" >
<output name="bookingId" value="booking.id"/>

</end-state>

<end-state id="bookingCancelled" />

</flow>

The flow now accepts a hotelId input attribute and returns a bookingId output attribute

Defining Flows 13

Version 2.0.9 13

when a new booking is confirmed.

2.8. Variables

A flow may declare one or more instance variables. These variables are allocated when the flow
starts. Any @Autowired transient references the variable holds are also rewired when the flow
resumes.

var

Use the var element to declare a flow variable:

<var name="searchCriteria" class="com.mycompany.myapp.hotels.search.SearchCriteria"/>

Make sure your variable's class implements java.io.Serializable, as the instance state
is saved between flow requests.

2.9. Calling subflows

A flow may call another flow as a subflow. The flow will wait until the subflow returns, then
respond to the subflow outcome.

subflow-state

Use the subflow-state element to call another flow as a subflow:

<subflow-state id="addGuest" subflow="createGuest">
<transition on="guestCreated" to="reviewBooking">

<evaluate expression="booking.guests.add(currentEvent.attributes.guest)" />
</transition>
<transition on="creationCancelled" to="reviewBooking" />

</subflow-state>

The above example calls the createGuest flow, then waits for it to return. When the flow
returns with a guestCreated outcome, the new guest is added to the booking's guest list.

Passing a subflow input

Use the input element to pass input to the subflow:

<subflow-state id="addGuest" subflow="createGuest">
<input name="booking" />
<transition to="reviewBooking" />

</subflow-state>

14 Spring Web Flow

14 Defining Flows

Mapping subflow output

Simply refer to a subflow output attribute by its name within a outcome transition:

<transition on="guestCreated" to="reviewBooking">
<evaluate expression="booking.guests.add(currentEvent.attributes.guest)" />

</transition>

In the above example, guest is the name of an output attribute returned by the
guestCreated outcome.

Checkpoint: calling subflows

Now review the sample booking flow calling a subflow:

<flow xmlns="http://www.springframework.org/schema/webflow"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.springframework.org/schema/webflow

http://www.springframework.org/schema/webflow/spring-webflow-2.0.xsd">

<input name="hotelId" />

<on-start>
<evaluate expression="bookingService.createBooking(hotelId, currentUser.name)"

result="flowScope.booking" />
</on-start>

<view-state id="enterBookingDetails">
<transition on="submit" to="reviewBooking" />

</view-state>

<view-state id="reviewBooking">
<transition on="addGuest" to="addGuest" />
<transition on="confirm" to="bookingConfirmed" />
<transition on="revise" to="enterBookingDetails" />
<transition on="cancel" to="bookingCancelled" />

</view-state>

<subflow-state id="addGuest" subflow="createGuest">
<transition on="guestCreated" to="reviewBooking">

<evaluate expression="booking.guests.add(currentEvent.attributes.guest)" />
</transition>
<transition on="creationCancelled" to="reviewBooking" />

</subflow-state>

<end-state id="bookingConfirmed" >
<output name="bookingId" value="booking.id" />

</end-state>

<end-state id="bookingCancelled" />

</flow>

The flow now calls a createGuest subflow to add a new guest to the guest list.

Defining Flows 15

Version 2.0.9 15

16 Spring Web Flow

16 Defining Flows

3. Expression Language (EL)

3.1. Introduction

Web Flow uses EL to access its data model and invoke actions. This chapter will familiarize you
with the EL syntax, and special EL variables you can reference from your flow definition.

3.2. Supported EL implementations

Unified EL

Web Flow attempts to use the Unified EL by default. jboss-el is currently the default EL
implementation. When found in your classpath along with the el-api, it will be used
automatically. You can find the JBoss EL jar in the SpringSource Bundle Repository.

Note
The el-api dependency is typically provided by your web container. Tomcat 6
includes it, for example.

OGNL

OGNL is the other EL supported by Web Flow 2. OGNL is the EL most familiar to Web Flow
version 1.0 users. To use ognl, simply include ognl in your classpath instead of jboss-el.
Please refer to the OGNL language guide for specifics on its EL syntax.

3.3. EL portability

In general, you will find the Unified EL and OGNL have a very similar syntax. For basic
variable resolution, property access, and method invocation the syntax is identical. We
recommend adhering to Unified EL syntax whenever possible, and only relying on proprietary
EL features when needed.

3.4. EL usage

EL is used for many things within a flow, including:

1. Accessing data provided by the client, such as flow input attributes and request parameters.

Expression Language (EL) 17

Version 2.0.9 17

http://en.wikipedia.org/wiki/Unified_Expression_Language
http://www.springsource.com/repository/app/bundle/detail?name=com.springsource.org.jboss.el
http://www.ognl.org
http://www.ognl.org/2.6.9/Documentation/html/LanguageGuide/index.html

2. Accessing internal data structures such as flowScope.

3. Invoking methods on Spring beans.

4. Resolving constructs such as state transition criteria, subflow ids, and view names.

Views rendered by flows typically access flow data structures using EL as well.

Expression types

There are basically two types of expressions in Web Flow.

Standard eval expressions

The first, and most common, type of expression, is the standard eval expression. Such
expressions are dynamically evaluated by the EL and should not be enclosed in delimiters like
${} or #{}. For example:

<evaluate expression="searchCriteria.nextPage()" />

The expression above is a standard expression that invokes the nextPage method on the
searchCriteria variable when evaluated. Attempting to enclose this expression in special
eval delimiters like ${} or #{} will result in an IllegalArgumentException.

Note
We view use of special eval delimiters as redundant in this context, as the only
acceptable value for the expression attribute is a single eval expression string.

Template expressions

The second type of expression is a "template" expression. Such expressions allow a mixing of
literal text with one or more eval blocks. Each eval block is explictly delimited with the ${}
delimiters. For example:

<view-state id="error" view="error-${externalContext.locale}.xhtml" />

The expression above is a template expression. The result of evaluation will be a string that
concatenates the literal text error- with the result of evaluating
externalContext.locale. As you can see, explicit delimiters are necessary here to
demarcate eval blocks within the template.

See the Web Flow XML schema for a complete listing of the XML attributes that accept
standard expressions and template expressions.

18 Spring Web Flow

18 Expression Language (EL)

3.5. Special EL variables

There are several implicit variables you may reference from within a flow. These variables are
discussed in this section.

flowScope

Use flowScope to assign a flow variable. Flow scope gets allocated when a flow starts and
destroyed when the flow ends. With the default implementation, any objects stored in flow scope
need to be Serializable.

<evaluate expression="searchService.findHotel(hotelId)" result="flowScope.hotel" />

viewScope

Use viewScope to assign a view variable. View scope gets allocated when a view-state
enters and destroyed when the state exits. View scope is only referenceable from within a
view-state. With the default implementation, any objects stored in view scope need to be
Serializable.

<on-render>
<evaluate expression="searchService.findHotels(searchCriteria)" result="viewScope.hotels"

result-type="dataModel" />
</on-render>

requestScope

Use requestScope to assign a request variable. Request scope gets allocated when a flow is
called and destroyed when the flow returns.

<set name="requestScope.hotelId" value="requestParameters.id" type="long" />

flashScope

Use flashScope to assign a flash variable. Flash scope gets allocated when a flow starts,
cleared after every view render, and destroyed when the flow ends. With the default
implementation, any objects stored in flash scope need to be Serializable.

<set name="flashScope.statusMessage" value="'Booking confirmed'" />

conversationScope

Expression Language (EL) 19

Version 2.0.9 19

Use conversationScope to assign a conversation variable. Conversation scope gets
allocated when a top-level flow starts and destroyed when the top-level flow ends. Conversation
scope is shared by a top-level flow and all of its subflows. With the default implementation,
conversation scoped objects are stored in the HTTP session and should generally be Serializable
to account for typical session replication.

<evaluate expression="searchService.findHotel(hotelId)" result="conversationScope.hotel" />

requestParameters

Use requestParameters to access a client request parameter:

<set name="requestScope.hotelId" value="requestParameters.id" type="long" />

currentEvent

Use currentEvent to access attributes of the current Event:

<evaluate expression="booking.guests.add(currentEvent.attributes.guest)" />

currentUser

Use currentUser to access the authenticated Principal:

<evaluate expression="bookingService.createBooking(hotelId, currentUser.name)"
result="flowScope.booking" />

messageContext

Use messageContext to access a context for retrieving and creating flow execution
messages, including error and success messages. See the MessageContext Javadocs for more
information.

<evaluate expression="bookingValidator.validate(booking, messageContext)" />

resourceBundle

Use resourceBundle to access a message resource.

<set name="flashScope.successMessage" value="resourceBundle.successMessage" />

20 Spring Web Flow

20 Expression Language (EL)

flowRequestContext

Use flowRequestContext to access the RequestContext API, which is a representation
of the current flow request. See the API Javadocs for more information.

flowExecutionContext

Use flowExecutionContext to access the FlowExecutionContext API, which is a
representation of the current flow state. See the API Javadocs for more information.

flowExecutionUrl

Use flowExecutionUrl to access the context-relative URI for the current flow execution
view-state.

externalContext

Use externalContext to access the client environment, including user session attributes.
See the ExternalContext API JavaDocs for more information.

<evaluate expression="searchService.suggestHotels(externalContext.sessionMap.userProfile)"
result="viewScope.hotels" />

3.6. Scope searching algorithm

When assigning a variable in one of the flow scopes, referencing that scope is required. For
example:

<set name="requestScope.hotelId" value="requestParameters.id" type="long" />

When simply accessing a variable in one of the scopes, referencing the scope is optional. For
example:

<evaluate expression="entityManager.persist(booking)" />

If no scope is specified, like in the use of booking above, a scope searching algorithm will be
employed. The algorithm will look in request, flash, view, flow, and conversation scope for the
variable. If no such variable is found, an EvaluationException will be thrown.

Expression Language (EL) 21

Version 2.0.9 21

22 Spring Web Flow

22 Expression Language (EL)

4. Rendering views

4.1. Introduction

This chapter shows you how to use the view-state element to render views within a flow.

4.2. Defining view states

Use the view-state element to define a step of the flow that renders a view and waits for a
user event to resume:

<view-state id="enterBookingDetails">
<transition on="submit" to="reviewBooking" />

</view-state>

By convention, a view-state maps its id to a view template in the directory where the flow is
located. For example, the state above might render
/WEB-INF/hotels/booking/enterBookingDetails.xhtml if the flow itself was
located in the /WEB-INF/hotels/booking directory.

Below is a sample directory structure showing views and other resources like message bundles
co-located with their flow definition:

Flow Packaging

4.3. Specifying view identifiers

Rendering views 23

Version 2.0.9 23

Use the view attribute to specify the id of the view to render explicitly.

Flow relative view ids

The view id may be a relative path to view resource in the flow's working directory:

<view-state id="enterBookingDetails" view="bookingDetails.xhtml">

Absolute view ids

The view id may be a absolute path to a view resource in the webapp root directory:

<view-state id="enterBookingDetails" view="/WEB-INF/hotels/booking/bookingDetails.xhtml">

Logical view ids

With some view frameworks, such as Spring MVC's view framework, the view id may also be a
logical identifier resolved by the framework:

<view-state id="enterBookingDetails" view="bookingDetails">

See the Spring MVC integration section for more information on how to integrate with the MVC
ViewResolver infrastructure.

4.4. View scope

A view-state allocates a new viewScope when it enters. This scope may be referenced within
the view-state to assign variables that should live for the duration of the state. This scope is
useful for manipulating objects over a series of requests from the same view, often Ajax
requests. A view-state destroys its viewScope when it exits.

Allocating view variables

Use the var tag to declare a view variable. Like a flow variable, any @Autowired references
are automatically restored when the view state resumes.

<var name="searchCriteria" class="com.mycompany.myapp.hotels.SearchCriteria" />

Assigning a viewScope variable

24 Spring Web Flow

24 Rendering views

Use the on-render tag to assign a variable from an action result before the view renders:

<on-render>
<evaluate expression="bookingService.findHotels(searchCriteria)" result="viewScope.hotels" />

</on-render>

Manipulating objects in view scope

Objects in view scope are often manipulated over a series of requests from the same view. The
following example pages through a search results list. The list is updated in view scope before
each render. Asynchronous event handlers modify the current data page, then request
re-rendering of the search results fragment.

<view-state id="searchResults">
<on-render>

<evaluate expression="bookingService.findHotels(searchCriteria)"
result="viewScope.hotels" />

</on-render>
<transition on="next">

<evaluate expression="searchCriteria.nextPage()" />
<render fragments="searchResultsFragment" />

</transition>
<transition on="previous">

<evaluate expression="searchCriteria.previousPage()" />
<render fragments="searchResultsFragment" />

</transition>
</view-state>

4.5. Executing render actions

Use the on-render element to execute one or more actions before view rendering. Render
actions are executed on the initial render as well as any subsequent refreshes, including any
partial re-renderings of the view.

<on-render>
<evaluate expression="bookingService.findHotels(searchCriteria)" result="viewScope.hotels" />

</on-render>

4.6. Binding to a model

Use the model attribute to declare a model object the view binds to. This attribute is typically
used in conjunction with views that render data controls, such as forms. It enables form data
binding and validation behaviors to be driven from metadata on your model object.

The following example declares an enterBookingDetails state manipulates the booking
model:

<view-state id="enterBookingDetails" model="booking">

Rendering views 25

Version 2.0.9 25

The model may be an object in any accessible scope, such as flowScope or viewScope.
Specifying a model triggers the following behavior when a view event occurs:

1. View-to-model binding. On view postback, user input values are bound to model object
properties for you.

2. Model validation. After binding, if the model object requires validation that validation logic
will be invoked.

For a flow event to be generated that can drive a view state transition, model binding must
complete successfully. If model binding fails, the view is re-rendered to allow the user to revise
their edits.

4.7. Performing type conversion

When a model binding occurs during view postback, the binding system will attempt to convert
the input value to the type of the target model property if necessary. Default Converters are
registered for common types such as Numbers, primitives, enums, and Dates and are applied
automatically. Users also have the ability to register their own converters for user-defined types,
and to override the default Converters.

Implementing a Converter

To implement your own Converter, implement the
org.springframework.binding.convert.converters.TwoWayConverter
interface. A convenient StringToObject base class has been provided to simplify the
implementation of this interface for converters that convert from a user input String to a
user-defined Object and back. Simply extend from this class and override these two methods:

protected abstract Object toObject(String string, Class targetClass) throws Exception;

protected abstract String toString(Object object) throws Exception;

toObject(String, Class) should convert from the input string to your object's type, and
toString(Object) should do the reverse.

The following example shows a Converter that converts from String to a MonetaryAmount for
working with currency values:

public class StringToMonetaryAmount extends StringToObject {

public StringToMonetaryAmount() {
super(MonetaryAmount.class);

}

@Override
protected Object toObject(String string, Class targetClass) {

return MonetaryAmount.valueOf(string);
}

@Override
protected String toString(Object object) {

26 Spring Web Flow

26 Rendering views

MonetaryAmount amount = (MonetaryAmount) object;
return amount.toString();

}
}

Review the pre-built converters in the
org.springframework.binding.convert.converters package to see more
examples of Converter implementations.

Registering a Converter

To install your own Converter or override any of the default Converters, extend from
org.springframework.binding.convert.service.DefaultConversionService
and override the addDefaultConverters() method. Use the
addConverter(Converter) method to register the primary Converter to use to convert
between two types, such as a String and a MonetaryAmount. Optionally use the
addConverter(String, Converter) method to register alternate converters for the
same type pair; for example, to support formatting a java.util.Date as a String in several
different ways.

Each alternate Converter is indexed by a unique converterId that can be referenced when
configuring a model binding. When no converter id is referenced explicitly by a binding, the
primary Converter between the two types is always used.

The ConversionService is the object Web Flow consults at runtime to lookup conversion
executors to convert from one type to another. There is generally one ConversionService per
application. See the System Setup section for documentation on how to configure an extended
ConversionService implementation that registers custom Converters to apply application-wide.
Also consult the Convert API documentation for more information.

4.8. Suppressing binding

Use the bind attribute to suppress model binding and validation for particular view events. The
following example suppresses binding when the cancel event occurs:

<view-state id="enterBookingDetails" model="booking">
<transition on="proceed" to="reviewBooking">
<transition on="cancel" to="bookingCancelled" bind="false" />

</view-state>

4.9. Specifying bindings explicitly

Use the binder element to configure the exact set of model bindings usable by the view. This
is particularly useful in a Spring MVC environment for restricting the set of "allowed fields" per
view.

<view-state id="enterBookingDetails" model="booking">

Rendering views 27

Version 2.0.9 27

<binder>
<binding property="creditCard" />
<binding property="creditCardName" />
<binding property="creditCardExpiryMonth" />
<binding property="creditCardExpiryYear" />

</binder>
<transition on="proceed" to="reviewBooking" />
<transition on="cancel" to="cancel" bind="false" />

</view-state>

If the binder element is not specified, all public properties of the model are eligible for binding
by the view. With the binder element specified, only the explicitly configured bindings are
allowed.

Each binding may also apply a converter to format the model property value for display in a
custom manner. If no converter is specified, the default converter for the model property's type
will be used.

<view-state id="enterBookingDetails" model="booking">
<binder>

<binding property="checkinDate" converter="shortDate" />
<binding property="checkoutDate" converter="shortDate" />
<binding property="creditCard" />
<binding property="creditCardName" />
<binding property="creditCardExpiryMonth" />
<binding property="creditCardExpiryYear" />

</binder>
<transition on="proceed" to="reviewBooking" />
<transition on="cancel" to="cancel" bind="false" />

</view-state>

In the example above, the shortDate converter is bound to the checkinDate and
checkoutDate properties. Custom converters may be registered with the application's
ConversionService.

Each binding may also apply a required check that will generate a validation error if the user
provided value is null on form postback:

<view-state id="enterBookingDetails" model="booking">
<binder>

<binding property="checkinDate" converter="shortDate" required="true" />
<binding property="checkoutDate" converter="shortDate" required="true" />
<binding property="creditCard" required="true" />
<binding property="creditCardName" required="true" />
<binding property="creditCardExpiryMonth" required="true" />
<binding property="creditCardExpiryYear" required="true" />

</binder>
<transition on="proceed" to="reviewBooking">
<transition on="cancel" to="bookingCancelled" bind="false" />

</view-state>

In the example above, all of the bindings are required. If one or more blank input values are
bound, validation errors will be generated and the view will re-render with those errors.

4.10. Validating a model

Model validation is driven by constraints specified against a model object. Web Flow supports
enforcing such constraints programatically.

28 Spring Web Flow

28 Rendering views

Programmatic validation

There are two ways to perform model validation programatically. The first is to implement
validation logic in your model object. The second is to implement an external Validator.
Both ways provide you with a ValidationContext to record error messages and access
information about the current user.

Implementing a model validate method

Defining validation logic in your model object is the simplest way to validate its state. Once such
logic is structured according to Web Flow conventions, Web Flow will automatically invoke that
logic during the view-state postback lifecycle. Web Flow conventions have you structure model
validation logic by view-state, allowing you to easily validate the subset of model properties that
are editable on that view. To do this, simply create a public method with the name
validate${state}, where ${state} is the id of your view-state where you want
validation to run. For example:

public class Booking {
private Date checkinDate;
private Date checkoutDate;
...

public void validateEnterBookingDetails(ValidationContext context) {
MessageContext messages = context.getMessageContext();
if (checkinDate.before(today())) {

messages.addMessage(new MessageBuilder().error().source("checkinDate").
defaultText("Check in date must be a future date").build());

} else if (!checkinDate.before(checkoutDate)) {
messages.addMessage(new MessageBuilder().error().source("checkoutDate").

defaultText("Check out date must be later than check in date").build());
}

}
}

In the example above, when a transition is triggered in a enterBookingDetails view-state
that is editing a Booking model, Web Flow will invoke the
validateEnterBookingDetails(ValidationContext) method automatically
unless validation has been suppressed for that transition. An example of such a view-state is
shown below:

<view-state id="enterBookingDetails" model="booking">
<transition on="proceed" to="reviewBooking">

</view-state>

Any number of validation methods are defined. Generally, a flow edits a model over a series of
views. In that case, a validate method would be defined for each view-state where validation
needs to run.

Implementing a Validator

The second way is to define a separate object, called a Validator, which validates your model
object. To do this, first create a class whose name has the pattern ${model}Validator, where

Rendering views 29

Version 2.0.9 29

${model} is the capitialized form of the model expression, such as booking. Then define a
public method with the name validate${state}, where ${state} is the id of your
view-state, such as enterBookingDetails. The class should then be deployed as a Spring
bean. Any number of validation methods can be defined. For example:

@Component
public class BookingValidator {

public void validateEnterBookingDetails(Booking booking, ValidationContext context) {
MessageContext messages = context.getMessageContext();
if (booking.getCheckinDate().before(today())) {

messages.addMessage(new MessageBuilder().error().source("checkinDate").
defaultText("Check in date must be a future date").build());

} else if (!booking.getCheckinDate().before(booking.getCheckoutDate())) {
messages.addMessage(new MessageBuilder().error().source("checkoutDate").

defaultText("Check out date must be later than check in date").build());
}

}
}

In the example above, when a transition is triggered in a enterBookingDetails view-state
that is editing a Booking model, Web Flow will invoke the
validateEnterBookingDetails(Booking, ValidationContext) method
automatically unless validation has been suppressed for that transition.

A Validator can also accept a Spring MVC Errors object, which is required for invoking
existing Spring Validators.

Validators must be registered as Spring beans employing the naming convention
${model}Validator to be detected and invoked automatically. In the example above,
Spring 2.5 classpath-scanning would detect the @Component and automatically register it as a
bean with the name bookingValidator. Then, anytime the booking model needs to be
validated, this bookingValidator instance would be invoked for you.

ValidationContext

A ValidationContext allows you to obtain a MessageContext to record messages during
validation. It also exposes information about the current user, such as the signaled userEvent
and the current user's Principal identity. This information can be used to customize
validation logic based on what button or link was activated in the UI, or who is authenticated.
See the API Javadocs for ValidationContext for more information.

4.11. Suppressing validation

Use the validate attribute to suppress model validation for particular view events:

<view-state id="chooseAmenities" model="booking">
<transition on="proceed" to="reviewBooking">
<transition on="back" to="enterBookingDetails" validate="false" />

</view-state>

In this example, data binding will still occur on back but validation will be suppressed.

30 Spring Web Flow

30 Rendering views

4.12. Executing view transitions

Define one or more transition elements to handle user events that may occur on the view. A
transition may take the user to another view, or it may simply execute an action and re-render the
current view. A transition may also request the rendering of parts of a view called "fragments"
when handling an Ajax event. Finally, "global" transitions that are shared across all views may
also be defined.

Implementing view transitions is illustrated in the following sections.

Transition actions

A view-state transition can execute one or more actions before executing. These actions may
return an error result to prevent the transition from exiting the current view-state. If an error
result occurs, the view will re-render and should display an appropriate message to the user.

If the transition action invokes a plain Java method, the invoked method may return false to
prevent the transition from executing. This technique can be used to handle exceptions thrown by
service-layer methods. The example below invokes an action that calls a service and handles an
exceptional situation:

<transition on="submit" to="bookingConfirmed">
<evaluate expression="bookingAction.makeBooking(booking, messageContext)" />

</transition>

public class BookingAction {
public boolean makeBooking(Booking booking, MessageContext context) {

try {
bookingService.make(booking);
return true;

} catch (RoomNotAvailableException e) {
context.addMessage(new MessageBuilder().error().

.defaultText("No room is available at this hotel").build());
return false;

}
}

}

Note

When there is more than one action defined on a transition, if one returns an error
result the remaining actions in the set will not be executed. If you need to ensure one
transition action's result cannot impact the execution of another, define a single
transition action that invokes a method that encapsulates all the action logic.

Global transitions

Use the flow's global-transitions element to create transitions that apply across all
views. Global-transitions are often used to handle global menu links that are part of the layout.

Rendering views 31

Version 2.0.9 31

<global-transitions>
<transition on="login" to="login" />
<transition on="logout" to="logout" />

</global-transitions>

Event handlers

From a view-state, transitions without targets can also be defined. Such transitions are called
"event handlers":

<transition on="event">
<!-- Handle event -->

</transition>

These event handlers do not change the state of the flow. They simply execute their actions and
re-render the current view or one or more fragments of the current view.

Rendering fragments

Use the render element within a transition to request partial re-rendering of the current view
after handling the event:

<transition on="next">
<evaluate expression="searchCriteria.nextPage()" />
<render fragments="searchResultsFragment" />

</transition>

The fragments attribute should reference the id(s) of the view element(s) you wish to re-render.
Specify multiple elements to re-render by separating them with a comma delimiter.

Such partial rendering is often used with events signaled by Ajax to update a specific zone of the
view.

4.13. Working with messages

Spring Web Flow's MessageContext is an API for recording messages during the course of
flow executions. Plain text messages can be added to the context, as well as internationalized
messages resolved by a Spring MessageSource. Messages are renderable by views and
automatically survive flow execution redirects. Three distinct message severities are provided:
info, warning, and error. In addition, a convenient MessageBuilder exists for fluently
constructing messages.

Adding plain text messages

MessageContext context = ...
MessageBuilder builder = new MessageBuilder();

32 Spring Web Flow

32 Rendering views

context.addMessage(builder.error().source("checkinDate")
.defaultText("Check in date must be a future date").build());

context.addMessage(builder.warn().source("smoking")
.defaultText("Smoking is bad for your health").build());

context.addMessage(builder.info()
.defaultText("We have processed your reservation - thank you and enjoy your stay").build());

Adding internationalized messages

MessageContext context = ...
MessageBuilder builder = new MessageBuilder();
context.addMessage(builder.error().source("checkinDate").code("checkinDate.notFuture").build());
context.addMessage(builder.warn().source("smoking").code("notHealthy")

.resolvableArg("smoking").build());
context.addMessage(builder.info().code("reservationConfirmation").build());

Using message bundles

Internationalized messages are defined in message bundles accessed by a Spring
MessageSource. To create a flow-specific message bundle, simply define
messages.properties file(s) in your flow's directory. Create a default
messages.properties file and a .properties file for each additional Locale you need to
support.

#messages.properties
checkinDate=Check in date must be a future date
notHealthy={0} is bad for your health
reservationConfirmation=We have processed your reservation - thank you and enjoy your stay

From within a view or a flow, you may also access message resources using the
resourceBundle EL variable:

<h:outputText value="#{resourceBundle.reservationConfirmation}" />

Understanding system generated messages

There are several places where Web Flow itself will generate messages to display to the user.
One important place this occurs is during view-to-model data binding. When a binding error
occurs, such as a type conversion error, Web Flow will map that error to a message retrieved
from your resource bundle automatically. To lookup the message to display, Web Flow tries
resource keys that contain the binding error code and target property name.

As an example, consider a binding to a checkinDate property of a Booking object. Suppose
the user typed in a alphabetic string. In this case, a type conversion error will be raised. Web
Flow will map the 'typeMismatch' error code to a message by first querying your resource bundle
for a message with the following key:

booking.checkinDate.typeMismatch

Rendering views 33

Version 2.0.9 33

The first part of the key is the model class's short name. The second part of the key is the
property name. The third part is the error code. This allows for the lookup of a unique message to
display to the user when a binding fails on a model property. Such a message might say:

booking.checkinDate.typeMismatch=The check in date must be in the format yyyy-mm-dd.

If no such resource key can be found of that form, a more generic key will be tried. This key is
simply the error code. The field name of the property is provided as a message argument.

typeMismatch=The {0} field is of the wrong type.

4.14. Displaying popups

Use the popup attribute to render a view in a modal popup dialog:

<view-state id="changeSearchCriteria" view="enterSearchCriteria.xhtml" popup="true">

When using Web Flow with the Spring Javascript, no client side code is necessary for the popup
to display. Web Flow will send a response to the client requesting a redirect to the view from a
popup, and the client will honor the request.

4.15. View backtracking

By default, when you exit a view state and transition to a new view state, you can go back to the
previous state using the browser back button. These view state history policies are configurable
on a per-transition basis by using the history attribute.

Discarding history

Set the history attribute to discard to prevent backtracking to a view:

<transition on="cancel" to="bookingCancelled" history="discard">

Invalidating history

Set the history attribute to invalidate to prevent backtracking to a view as well all
previously displayed views:

<transition on="confirm" to="bookingConfirmed" history="invalidate">

34 Spring Web Flow

34 Rendering views

5. Executing actions

5.1. Introduction

This chapter shows you how to use the action-state element to control the execution of an
action at a point within a flow. It will also show how to use the decision-state element to
make a flow routing decision. Finally, several examples of invoking actions from the various
points possible within a flow will be discussed.

5.2. Defining action states

Use the action-state element when you wish to invoke an action, then transition to another
state based on the action's outcome:

<action-state id="moreAnswersNeeded">
<evaluate expression="interview.moreAnswersNeeded()" />
<transition on="yes" to="answerQuestions" />
<transition on="no" to="finish" />

</action-state>

The full example below illustrates a interview flow that uses the action-state above to determine
if more answers are needed to complete the interview:

<flow xmlns="http://www.springframework.org/schema/webflow"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.springframework.org/schema/webflow

http://www.springframework.org/schema/webflow/spring-webflow-2.0.xsd">

<on-start>
<evaluate expression="interviewFactory.createInterview()" result="flowScope.interview" />

</on-start>

<view-state id="answerQuestions" model="questionSet">
<on-entry>

<evaluate expression="interview.getNextQuestionSet()" result="viewScope.questionSet" />
</on-entry>
<transition on="submitAnswers" to="moreAnswersNeeded">

<evaluate expression="interview.recordAnswers(questionSet)" />
</transition>

</view-state>

<action-state id="moreAnswersNeeded">
<evaluate expression="interview.moreAnswersNeeded()" />
<transition on="yes" to="answerQuestions" />
<transition on="no" to="finish" />

</action-state>

<end-state id="finish" />

</flow>

5.3. Defining decision states

Use the decision-state element as an alternative to the action-state to make a routing
decision using a convenient if/else syntax. The example below shows the

Executing actions 35

Version 2.0.9 35

moreAnswersNeeded state above now implemented as a decision state instead of an
action-state:

<decision-state id="moreAnswersNeeded">
<if test="interview.moreAnswersNeeded()" then="answerQuestions" else="finish" />

</decision-state>

5.4. Action outcome event mappings

Actions often invoke methods on plain Java objects. When called from action-states and
decision-states, these method return values can be used to drive state transitions. Since
transitions are triggered by events, a method return value must first be mapped to an Event
object. The following table describes how common return value types are mapped to Event
objects:

Table 5.1. Action method return value to event id mappings

Method return type Mapped Event identifier expression

java.lang.String the String value

java.lang.Boolean yes (for true), no (for false)

java.lang.Enum the Enum name

any other type success

This is illustrated in the example action state below, which invokes a method that returns a
boolean value:

<action-state id="moreAnswersNeeded">
<evaluate expression="interview.moreAnswersNeeded()" />
<transition on="yes" to="answerQuestions" />
<transition on="no" to="finish" />

</action-state>

5.5. Action implementations

While writing action code as POJO logic is the most common, there are several other action
implementation options. Sometimes you need to write action code that needs access to the flow
context. You can always invoke a POJO and pass it the flowRequestContext as an EL variable.
Alternatively, you may implement the Action interface or extend from the MultiAction
base class. These options provide stronger type safety when you have a natural coupling between
your action code and Spring Web Flow APIs. Examples of each of these approaches are shown
below.

36 Spring Web Flow

36 Executing actions

Invoking a POJO action

<evaluate expression="pojoAction.method(flowRequestContext)" />

public class PojoAction {
public String method(RequestContext context) {

...
}

}

Invoking a custom Action implementation

<evaluate expression="customAction" />

public class CustomAction implements Action {
public Event execute(RequestContext context) {

...
}

}

Invoking a MultiAction implementation

<evaluate expression="multiAction.actionMethod1" />

public class CustomMultiAction extends MultiAction {
public Event actionMethod1(RequestContext context) {

...
}

public Event actionMethod2(RequestContext context) {
...

}

...
}

5.6. Action exceptions

Actions often invoke services that encapsulate complex business logic. These services may
throw business exceptions that the action code should handle.

Handling a business exception with a POJO action

The following example invokes an action that catches a business exception, adds a error message
to the context, and returns a result event identifier. The result is treated as a flow event which the

Executing actions 37

Version 2.0.9 37

calling flow can then respond to.

<evaluate expression="bookingAction.makeBooking(booking, flowRequestContext)" />

public class BookingAction {
public String makeBooking(Booking booking, RequestContext context) {

try {
BookingConfirmation confirmation = bookingService.make(booking);
context.getFlowScope().put("confirmation", confirmation);
return "success";

} catch (RoomNotAvailableException e) {
context.addMessage(new MessageBuilder().error().

.defaultText("No room is available at this hotel").build());
return "error";

}
}

}

Handling a business exception with a MultiAction

The following example is functionally equivlant to the last, but implemented as a MultiAction
instead of a POJO action. The MultiAction requires its action methods to be of the signature
Event ${methodName}(RequestContext), providing stronger type safety, while a
POJO action allows for more freedom.

<evaluate expression="bookingAction.makeBooking" />

public class BookingAction extends MultiAction {
public Event makeBooking(RequestContext context) {

try {
Booking booking = (Booking) context.getFlowScope().get("booking");
BookingConfirmation confirmation = bookingService.make(booking);
context.getFlowScope().put("confirmation", confirmation);
return success();

} catch (RoomNotAvailableException e) {
context.getMessageContext().addMessage(new MessageBuilder().error().

.defaultText("No room is available at this hotel").build());
return error();

}
}

}

5.7. Other Action execution examples

on-start

The following example shows an action that creates a new Booking object by invoking a method
on a service:

<flow xmlns="http://www.springframework.org/schema/webflow"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.springframework.org/schema/webflow

http://www.springframework.org/schema/webflow/spring-webflow-2.0.xsd">

<input name="hotelId" />

38 Spring Web Flow

38 Executing actions

<on-start>
<evaluate expression="bookingService.createBooking(hotelId, currentUser.name)"

result="flowScope.booking" />
</on-start>

</flow>

on-entry

The following example shows a state entry action that sets the special fragments variable that
causes the view-state to render a partial fragment of its view:

<view-state id="changeSearchCriteria" view="enterSearchCriteria.xhtml" popup="true">
<on-entry>

<render fragments="hotelSearchForm" />
</on-entry>

</view-state>

on-exit

The following example shows a state exit action that releases a lock on a record being edited:

<view-state id="editOrder">
<on-entry>

<evaluate expression="orderService.selectForUpdate(orderId, currentUser)"
result="viewScope.order" />

</on-entry>
<transition on="save" to="finish">

<evaluate expression="orderService.update(order, currentUser)" />
</transition>
<on-exit>

<evaluate expression="orderService.releaseLock(order, currentUser)" />
</on-exit>

</view-state>

on-end

The following example shows the equivalent object locking behavior using flow start and end
actions:

<flow xmlns="http://www.springframework.org/schema/webflow"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.springframework.org/schema/webflow

http://www.springframework.org/schema/webflow/spring-webflow-2.0.xsd">

<input name="orderId" />

<on-start>
<evaluate expression="orderService.selectForUpdate(orderId, currentUser)"

result="flowScope.order" />
</on-start>

<view-state id="editOrder">
<transition on="save" to="finish">

<evaluate expression="orderService.update(order, currentUser)" />
</transition>

</view-state>

<on-end>
<evaluate expression="orderService.releaseLock(order, currentUser)" />

</on-end>

</flow>

Executing actions 39

Version 2.0.9 39

on-render

The following example shows a render action that loads a list of hotels to display before the view
is rendered:

<view-state id="reviewHotels">
<on-render>

<evaluate expression="bookingService.findHotels(searchCriteria)"
result="viewScope.hotels" result-type="dataModel" />

</on-render>
<transition on="select" to="reviewHotel">

<set name="flowScope.hotel" value="hotels.selectedRow" />
</transition>

</view-state>

on-transition

The following example shows a transition action adds a subflow outcome event attribute to a
collection:

<subflow-state id="addGuest" subflow="createGuest">
<transition on="guestCreated" to="reviewBooking">

<evaluate expression="booking.guestList.add(currentEvent.attributes.newGuest)" />
</transition>

</subfow-state>

Named actions

The following example shows how to execute a chain of actions in an action-state. The name of
each action becomes a qualifier for the action's result event.

<action-state id="doTwoThings">
<evaluate expression="service.thingOne()">

<attribute name="name" value="thingOne" />
</evaluate>
<evaluate expression="service.thingTwo()">

<attribute name="name" value="thingTwo" />
</evaluate>
<transition on="thingTwo.success" to="showResults" />

</action-state>

In this example, the flow will transition to showResults when thingTwo completes
successfully.

Streaming actions

Sometimes an Action needs to stream a custom response back to the client. An example might be
a flow that renders a PDF document when handling a print event. This can be achieved by having
the action stream the content then record "Response Complete" status on the ExternalContext.
The responseComplete flag tells the pausing view-state not to render the response because
another object has taken care of it.

40 Spring Web Flow

40 Executing actions

<view-state id="reviewItinerary">
<transition on="print">

<evaluate expression="printBoardingPassAction" />
</transition>

</view-state>

public class PrintBoardingPassAction extends AbstractAction {
public Event doExecute(RequestContext context) {

// stream PDF content here...
// - Access HttpServletResponse by calling context.getExternalContext().getNativeResponse();
// - Mark response complete by calling context.getExternalContext().recordResponseComplete();
return success();

}
}

In this example, when the print event is raised the flow will call the printBoardingPassAction.
The action will render the PDF then mark the response as complete.

Handling File Uploads

Another common task is to use Web Flow to handle multipart file uploads in combination with
Spring MVC's MultipartResolver. Once the resolver is set up correctly as described here
and the submitting HTML form is configured with enctype="multipart/form-data",
you can easily handle the file upload in a transition action. Given a form such as:

<form:form modelAttribute="fileUploadHandler" enctype="multipart/form-data">
Select file: <input type="file" name="file"/>
<input type="submit" name="_eventId_upload" value="Upload" />

</form:form>

and a backing object for handling the upload such as:

package org.springframework.webflow.samples.booking;

import org.springframework.web.multipart.MultipartFile;

public class FileUploadHandler {

private transient MultipartFile file;

public void processFile() {
//Do something with the MultipartFile here

}

public void setFile(MultipartFile file) {
this.file = file;

}
}

you can process the upload using a transition action as in the following example:

<view-state id="uploadFile" model="uploadFileHandler">
<var name="fileUploadHandler" class="org.springframework.webflow.samples.booking.FileUploadHandler" />
<transition on="upload" to="finish" >

<evaluate expression="fileUploadHandler.processFile()"/>
</transition>
<transition on="cancel" to="finish" bind="false"/>

</view-state>

Executing actions 41

Version 2.0.9 41

http://static.springsource.org/spring/docs/2.5.x/reference/mvc.html#mvc-multipart

The MultipartFile will be bound to the FileUploadHandler bean as part of the normal
form binding process so that it will be available to process during the execution of the transition
action.

42 Spring Web Flow

42 Executing actions

6. Flow Managed Persistence

6.1. Introduction

Most applications access data in some way. Many modify data shared by multiple users and
therefore require transactional data access properties. They often transform relational data sets
into domain objects to support application processing. Web Flow offers "flow managed
persistence" where a flow can create, commit, and close a object persistence context for you.
Web Flow integrates both Hibernate and JPA object persistence technologies.

Apart from flow-managed persistence, there is the pattern of fully encapsulating
PersistenceContext management within the service layer of your application. In that case, the
web layer does not get involved with persistence, instead it works entirely with detached objects
that are passed to and returned by your service layer. This chapter will focus on the
flow-managed persistence, exploring how and when to use this feature.

6.2. FlowScoped PersistenceContext

This pattern creates a PersistenceContext in flowScope on flow startup, uses that
context for data access during the course of flow execution, and commits changes made to
persistent entities at the end. This pattern provides isolation of intermediate edits by only
committing changes to the database at the end of flow execution. This pattern is often used in
conjunction with an optimistic locking strategy to protect the integrity of data modified in
parallel by multiple users. To support saving and restarting the progress of a flow over an
extended period of time, a durable store for flow state must be used. If a save and restart
capability is not required, standard HTTP session-based storage of flow state is sufficient. In that
case, session expiration or termination before commit could potentially result in changes being
lost.

To use the FlowScoped PersistenceContext pattern, first mark your flow as a
persistence-context:

<?xml version="1.0" encoding="UTF-8"?>
<flow xmlns="http://www.springframework.org/schema/webflow"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.springframework.org/schema/webflow

http://www.springframework.org/schema/webflow/spring-webflow-2.0.xsd">

<persistence-context />

</flow>

Then configure the correct FlowExecutionListener to apply this pattern to your flow. If
using Hibernate, register the HibernateFlowExecutionListener. If using JPA, register
the JpaFlowExecutionListener.

<webflow:flow-executor id="flowExecutor" flow-registry="flowRegistry">
<webflow:flow-execution-listeners>

<webflow:listener ref="jpaFlowExecutionListener" />

Flow Managed Persistence 43

Version 2.0.9 43

</webflow:flow-execution-listeners>
</webflow:flow-executor>

<bean id="jpaFlowExecutionListener"
class="org.springframework.webflow.persistence.JpaFlowExecutionListener">

<constructor-arg ref="entityManagerFactory" />
<constructor-arg ref="transactionManager" />

</bean>

To trigger a commit at the end, annotate your end-state with the commit attribute:

<end-state id="bookingConfirmed" commit="true" />

That is it. When your flow starts, the listener will handle allocating a new EntityManager in
flowScope. Reference this EntityManager at anytime from within your flow by using the
special persistenceContext variable. In addition, any data access that occurs using a
Spring managed data access object will use this EntityManager automatically. Such data access
operations should always execute non transactionally or in read-only transactions to maintain
isolation of intermediate edits.

44 Spring Web Flow

44 Flow Managed Persistence

7. Securing Flows

7.1. Introduction

Security is an important concept for any application. End users should not be able to access any
portion of a site simply by guessing the URL. Areas of a site that are sensitive must ensure that
only authorized requests are processed. Spring Security is a proven security platform that can
integrate with your application at multiple levels. This section will focus on securing flow
execution.

7.2. How do I secure a flow?

Securing flow execution is a three step process:

• Configure Spring Security with authentication and authorization rules

• Annotate the flow definition with the secured element to define the security rules

• Add the SecurityFlowExecutionListener to process the security rules.

Each of these steps must be completed or else flow security rules will not be applied.

7.3. The secured element

The secured element designates that its containing element should apply the authorization check
before fully entering. This may not occur more then once per stage of the flow execution that is
secured.

Three phases of flow execution can be secured: flows, states and transitions. In each case the
syntax for the secured element is identical. The secured element is located inside the element it is
securing. For example, to secure a state the secured element occurs directly inside that state:

<view-state id="secured-view">
<secured attributes="ROLE_USER" />
...

</view-state>

Security attributes

The attributes attribute is a comma separated list of Spring Security authorization
attributes. Often, these are specific security roles. The attributes are compared against the user's
granted attributes by a Spring Security access decision manager.

Securing Flows 45

Version 2.0.9 45

<secured attributes="ROLE_USER" />

By default, a role based access decision manager is used to determine if the user is allowed
access. This will need to be overridden if your application is not using authorization roles.

Matching type

There are two types of matching available: any and all. Any, allows access if at least one of
the required security attributes is granted to the user. All, allows access only if each of the
required security attributes are granted to the user.

<secured attributes="ROLE_USER, ROLE_ANONYMOUS" match="any" />

This attribute is optional. If not defined, the default value is any.

The match attribute will only be respected if the default access decision manager is used.

7.4. The SecurityFlowExecutionListener

Defining security rules in the flow by themselves will not protect the flow execution. A
SecurityFlowExecutionListener must also be defined in the webflow configuration
and applied to the flow executor.

<webflow:flow-executor id="flowExecutor" flow-registry="flowRegistry">
<webflow:flow-execution-listeners>

<webflow:listener ref="securityFlowExecutionListener" />
</webflow:flow-execution-listeners>

</webflow:flow-executor>

<bean id="securityFlowExecutionListener"
class="org.springframework.webflow.security.SecurityFlowExecutionListener" />

If access is denied to a portion of the application an AccessDeniedException will be
thrown. This exception will later be caught by Spring Security and used to prompt the user to
authenticate. It is important that this exception be allowed to travel up the execution stack
uninhibited, otherwise the end user may not be prompted to authenticate.

Custom Access Decision Managers

If your application is using authorities that are not role based, you will need to configure a
custom AccessDecisionManager. You can override the default decision manager by
setting the accessDecisionManager property on the security listener. Please consult the
Spring Security reference documentation to learn more about decision managers.

<bean id="securityFlowExecutionListener"
class="org.springframework.webflow.security.SecurityFlowExecutionListener">

<property name="accessDecisionManager" ref="myCustomAccessDecisionManager" />

46 Spring Web Flow

46 Securing Flows

http://static.springframework.org/spring-security/site/reference.html

</bean>

7.5. Configuring Spring Security

Spring Security has robust configuration options available. As every application and
environment has its own security requirements, the Spring Security reference documentation is
the best place to learn the available options.

Both the booking-faces and booking-mvc sample applications are configured to use
Spring Security. Configuration is needed at both the Spring and web.xml levels.

Spring configuration

The Spring configuration defines http specifics (such as protected URLs and login/logout
mechanics) and the authentication-provider. For the sample applications, a local
authentication provider is configured.

<security:http auto-config="true">
<security:form-login login-page="/spring/login"

login-processing-url="/spring/loginProcess"
default-target-url="/spring/main"
authentication-failure-url="/spring/login?login_error=1" />

<security:logout logout-url="/spring/logout" logout-success-url="/spring/logout-success" />
</security:http>

<security:authentication-provider>
<security:password-encoder hash="md5" />
<security:user-service>

<security:user name="keith" password="417c7382b16c395bc25b5da1398cf076"
authorities="ROLE_USER,ROLE_SUPERVISOR" />

<security:user name="erwin" password="12430911a8af075c6f41c6976af22b09"
authorities="ROLE_USER,ROLE_SUPERVISOR" />

<security:user name="jeremy" password="57c6cbff0d421449be820763f03139eb"
authorities="ROLE_USER" />

<security:user name="scott" password="942f2339bf50796de535a384f0d1af3e"
authorities="ROLE_USER" />

</security:user-service>
</security:authentication-provider>

web.xml Configuration

In the web.xml file, a filter is defined to intercept all requests. This filter will listen for
login/logout requests and process them accordingly. It will also catch
AccesDeniedExceptions and redirect the user to the login page.

<filter>
<filter-name>springSecurityFilterChain</filter-name>
<filter-class>org.springframework.web.filter.DelegatingFilterProxy</filter-class>

</filter>

<filter-mapping>
<filter-name>springSecurityFilterChain</filter-name>
<url-pattern>/*</url-pattern>

</filter-mapping>

Securing Flows 47

Version 2.0.9 47

http://static.springframework.org/spring-security/site/reference.html

48 Spring Web Flow

48 Securing Flows

8. Flow Inheritance

8.1. Introduction

Flow inheritance allows one flow to inherit the configuration of another flow. Inheritance can
occur at both the flow and state levels. A common use case is for a parent flow to define global
transitions and exception handlers, then each child flow can inherit those settings.

In order for a parent flow to be found, it must be added to the flow-registry just like any
other flow.

8.2. Is flow inheritance like Java inheritance?

Flow inheritance is similar to Java inheritance in that elements defined in a parent are exposed
via the child, however, there are key differences.

A child flow cannot override an element from a parent flow. Similar elements between the parent
and child flows will be merged. Unique elements in the parent flow will be added to the child.

A child flow can inherit from multiple parent flows. Java inheritance is limited to a single class.

8.3. Types of Flow Inheritance

Flow level inheritance

Flow level inheritance is defined by the parent attribute on the flow element. The attribute
contains a comma separated list of flow identifiers to inherit from. The child flow will inherit
from each parent in the order it is listed adding elements and content to the resulting flow. The
resulting flow from the first merge will be considered the child in the second merge, and so on.

<flow parent="common-transitions, common-states">

State level inheritance

State level inheritance is similar to flow level inheritance, except only one state inherits from the
parent, instead of the entire flow.

Unlike flow inheritance, only a single parent is allowed. Additionally, the identifier of the flow
state to inherit from must also be defined. The identifiers for the flow and the state within that
flow are separated by a #.

Flow Inheritance 49

Version 2.0.9 49

The parent and child states must be of the same type. For instance a view-state cannot inherit
from an end-state, only another view-state.

<view-state id="child-state" parent="parent-flow#parent-view-state">

8.4. Abstract flows

Often parent flows are not designed to be executed directly. In order to protect these flows from
running, they can be marked as abstract. If an abstract flow attempts to run, a
FlowBuilderException will be thrown.

<flow abstract="true">

8.5. Inheritance Algorithm

When a child flow inherits from it's parent, essentially what happens is that the parent and child
are merged together to create a new flow. There are rules for every element in the Web Flow
definition language that govern how that particular element is merged.

There are two types of elements: mergeable and non-mergeable. Mergeable elements will always
attempt to merge together if the elements are similar. Non-mergeable elements in a parent or
child flow will always be contained in the resulting flow intact. They will not be modified as part
of the merge process.

Note
Paths to external resources in the parent flow should be absolute. Relative paths will
break when the two flows are merged unless the parent and child flow are in the same
directory. Once merged, all relative paths in the parent flow will become relative to
the child flow.

Mergeable Elements

If the elements are of the same type and their keyed attribute are identical, the content of the
parent element will be merged with the child element. The merge algorithm will continue to
merge each sub-element of the merging parent and child. Otherwise the parent element is added
as a new element to the child.

In most cases, elements from a parent flow that are added will be added after elements in the
child flow. Exceptions to this rule include action elements (evaluate, render and set) which will
be added at the beginning. This allows for the results of parent actions to be used by child
actions.

50 Spring Web Flow

50 Flow Inheritance

Mergeable elements are:

• action-state: id

• attribute: name

• decision-state: id

• end-state: id

• flow: always merges

• if: test

• on-end: always merges

• on-entry: always merges

• on-exit: always merges

• on-render: always merges

• on-start: always merges

• input: name

• output: name

• secured: attributes

• subflow-state: id

• transition: on and on-exception

• view-state: id

Non-mergeable Elements

Non-mergeable elements are:

• bean-import

• evaluate

• exception-handler

• persistence-context

• render

Flow Inheritance 51

Version 2.0.9 51

• set

• var

52 Spring Web Flow

52 Flow Inheritance

9. System Setup

9.1. Introduction

This chapter shows you how to setup the Web Flow system for use in any web environment.

9.2. webflow-config.xsd

Web Flow provides a Spring schema that allows you to configure the system. To use this
schema, include it in one of your infrastructure-layer beans files:

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:webflow="http://www.springframework.org/schema/webflow-config"
xsi:schemaLocation="

http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans-2.5.xsd
http://www.springframework.org/schema/webflow-config
http://www.springframework.org/schema/webflow-config/spring-webflow-config-2.0.xsd">

<!-- Setup Web Flow here -->

</beans>

9.3. Basic system configuration

The next section shows the minimal configuration required to set up the Web Flow system in
your application.

FlowRegistry

Register your flows in a FlowRegistry:

<webflow:flow-registry id="flowRegistry">
<webflow:flow-location path="/WEB-INF/flows/booking/booking.xml" />

</webflow:flow-registry>

FlowExecutor

Deploy a FlowExecutor, the central service for executing flows:

<webflow:flow-executor id="flowExecutor" />

See the Spring MVC and Spring Faces sections of this guide on how to integrate the Web Flow

System Setup 53

Version 2.0.9 53

system with the MVC and JSF environment, respectively.

9.4. flow-registry options

This section explores flow-registry configuration options.

Specifying flow locations

Use the location element to specify paths to flow definitions to register. By default, flows
will be assigned registry identifiers equal to their filenames minus the file extension, unless a
registry bath path is defined.

<webflow:flow-location path="/WEB-INF/flows/booking/booking.xml" />

Assigning custom flow identifiers

Specify an id to assign a custom registry identifier to a flow:

<webflow:flow-location path="/WEB-INF/flows/booking/booking.xml" id="bookHotel" />

Assigning flow meta-attributes

Use the flow-definition-attributes element to assign custom meta-attributes to a
registered flow:

<webflow:flow-location path="/WEB-INF/flows/booking/booking.xml">
<flow-definition-attributes>

<attribute name="caption" value="Books a hotel" />
</flow-definition-attributes>

</webflow:flow-location>

Registering flows using a location pattern

Use the flow-location-patterns element to register flows that match a specific resource
location pattern:

<webflow:flow-location-pattern value="/WEB-INF/flows/**/*-flow.xml" />

Flow location base path

54 Spring Web Flow

54 System Setup

Use the base-path attribute to define a base location for all flows in the application. All flow
locations are then relative to the base path. The base path can be a resource path such as
'/WEB-INF' or a location on the classpath like
'classpath:org/springframework/webflow/samples'.

<webflow:flow-registry id="flowRegistry" base-path="/WEB-INF">
<webflow:flow-location path="/hotels/booking/booking.xml" />

</webflow:flow-registry>

With a base path defined, the algorithm that assigns flow identifiers changes slightly. Flows will
now be assigned registry identifiers equal to the the path segment between their base path and
file name. For example, if a flow definition is located at
'/WEB-INF/hotels/booking/booking-flow.xml' and the base path is '/WEB-INF' the remaining
path to this flow is 'hotels/booking' which becomes the flow id.

Directory per flow definition

Recall it is a best practice to package each flow definition in a unique directory. This
improves modularity, allowing dependent resources to be packaged with the flow
definition. It also prevents two flows from having the same identifiers when using the
convention.

If no base path is not specified or if the flow definition is directly on the base path, flow id
assignment from the filename (minus the extension) is used. For example, if a flow definition file
is 'booking.xml', the flow identifier is simply 'booking'.

Location patterns are particularly powerful when combined with a registry base path. Instead of
the flow identifiers becoming '*-flow', they will be based on the directory path. For example:

<webflow:flow-registry id="flowRegistry" base-path="/WEB-INF">
<webflow:flow-location-pattern value="/**/*-flow.xml" />

</webflow:flow-registry>

In the above example, suppose you had flows located in /user/login,
/user/registration, /hotels/booking, and /flights/booking directories
within WEB-INF, you'd end up with flow ids of user/login, user/registration,
hotels/booking, and flights/booking, respectively.

Configuring FlowRegistry hierarchies

Use the parent attribute to link two flow registries together in a hierarchy. When the child
registry is queried, if it cannot find the requested flow it will delegate to its parent.

<!-- my-system-config.xml -->
<webflow:flow-registry id="flowRegistry" parent="sharedFlowRegistry">

<webflow:flow-location path="/WEB-INF/flows/booking/booking.xml" />
</webflow:flow-registry>

<!-- shared-config.xml -->
<webflow:flow-registry id="sharedFlowRegistry">

System Setup 55

Version 2.0.9 55

<!-- Global flows shared by several applications -->
</webflow:flow-registry>

Configuring custom FlowBuilder services

Use the flow-builder-services attribute to customize the services and settings used to
build flows in a flow-registry. If no flow-builder-services tag is specified, the default service
implementations are used. When the tag is defined, you only need to reference the services you
want to customize.

<webflow:flow-registry id="flowRegistry" flow-builder-services="flowBuilderServices">
<webflow:flow-location path="/WEB-INF/flows/booking/booking.xml" />

</webflow:flow-registry>

<webflow:flow-builder-services id="flowBuilderServices" />

The configurable services are the conversion-service, expression-parser, and
view-factory-creator. These services are configured by referencing custom beans you
define. For example:

<webflow:flow-builder-services id="flowBuilderServices"
conversion-service="conversionService"
expression-parser="expressionParser"
view-factory-creator="viewFactoryCreator" />

<bean id="conversionService" class="..." />
<bean id="expressionParser" class="..." />
<bean id="viewFactoryCreator" class="..." />

conversion-service

Use the conversion-service attribute to customize the ConversionService used by
the Web Flow system. Converters are used to convert from one type to another when required
during flow execution. The default ConversionService registers converters for your basic object
types such as numbers, classes, and enums.

expression-parser

Use the expression-parser attribute to customize the ExpressionParser used by the
Web Flow system. The default ExpressionParser uses the Unified EL if available on the
classpath, otherwise OGNL is used.

view-factory-creator

Use the view-factory-creator attribute to customize the ViewFactoryCreator used
by the Web Flow system. The default ViewFactoryCreator produces Spring MVC ViewFactories
capable of rendering JSP, Velocity, and Freemarker views.

The configurable settings are development. These settings are global configuration attributes
that can be applied during the flow construction process.

56 Spring Web Flow

56 System Setup

development

Set this to true to switch on flow development mode. Development mode switches on
hot-reloading of flow definition changes, including changes to dependent flow resources such as
message bundles.

9.5. flow-executor options

This section explores flow-executor configuration options.

Attaching flow execution listeners

Use the flow-execution-listeners element to register listeners that observe the
lifecycle of flow executions:

<flow-execution-listeners>
<listener ref="securityListener"/>
<listener ref="persistenceListener"/>

</flow-execution-listeners>

You may also configure a listener to observe only certain flows:

<listener ref="securityListener" criteria="securedFlow1,securedFlow2"/>

Tuning FlowExecution persistence

Use the flow-execution-repository element to tune flow execution persistence
settings:

<flow-execution-repository max-executions="5" max-execution-snapshots="30" />

max-executions

Tune the max-executions attribute to place a cap on the number of flow executions that can
be created per user session.

max-execution-snapshots

Tune the max-execution-snapshots attribute to place a cap on the number of history
snapshots that can be taken per flow execution. To disable snapshotting, set this value to 0. To
enable an unlimited number of snapshots, set this value to -1.

System Setup 57

Version 2.0.9 57

58 Spring Web Flow

58 System Setup

10. Spring MVC Integration

10.1. Introduction

This chapter shows how to integrate Web Flow into a Spring MVC web application. The
booking-mvc sample application is a good reference for Spring MVC with Web Flow. This
application is a simplified travel site that allows users to search for and book hotel rooms.

10.2. Configuring web.xml

The first step to using Spring MVC is to configure the DispatcherServlet in web.xml.
You typically do this once per web application.

The example below maps all requests that begin with /spring/ to the DispatcherServlet. An
init-param is used to provide the contextConfigLocation. This is the configuration
file for the web application.

<servlet>
<servlet-name>Spring MVC Dispatcher Servlet</servlet-name>
<servlet-class>org.springframework.web.servlet.DispatcherServlet</servlet-class>
<init-param>

<param-name>contextConfigLocation</param-name>
<param-value>/WEB-INF/web-application-config.xml</param-value>

</init-param>
</servlet>

<servlet-mapping>
<servlet-name>Spring MVC Dispatcher Servlet</servlet-name>
<url-pattern>/spring/*</url-pattern>

</servlet-mapping>

10.3. Dispatching to flows

The DispatcherServlet maps requests for application resources to handlers. A flow is one
type of handler.

Registering the FlowHandlerAdapter

The first step to dispatching requests to flows is to enable flow handling within Spring MVC. To
this, install the FlowHandlerAdapter:

<!-- Enables FlowHandler URL mapping -->
<bean class="org.springframework.webflow.mvc.servlet.FlowHandlerAdapter">

<property name="flowExecutor" ref="flowExecutor" />
</bean>

Spring MVC Integration 59

Version 2.0.9 59

Defining flow mappings

Once flow handling is enabled, the next step is to map specific application resources to your
flows. The simplest way to do this is to define a FlowHandlerMapping:

<!-- Maps request paths to flows in the flowRegistry;
e.g. a path of /hotels/booking looks for a flow with id "hotels/booking" -->

<bean class="org.springframework.webflow.mvc.servlet.FlowHandlerMapping">
<property name="flowRegistry" ref="flowRegistry"/>
<property name="order" value="0"/>

</bean>

Configuring this mapping allows the Dispatcher to map application resource paths to flows in a
flow registry. For example, accessing the resource path /hotels/booking would result in a
registry query for the flow with id hotels/booking. If a flow is found with that id, that flow
will handle the request. If no flow is found, the next handler mapping in the Dispatcher's ordered
chain will be queried or a "noHandlerFound" response will be returned.

Flow handling workflow

When a valid flow mapping is found, the FlowHandlerAdapter figures out whether to start
a new execution of that flow or resume an existing execution based on information present the
HTTP request. There are a number of defaults related to starting and resuming flow executions
the adapter employs:

• HTTP request parameters are made available in the input map of all starting flow executions.

• When a flow execution ends without sending a final response, the default handler will attempt
to start a new execution in the same request.

• Unhandled exceptions are propagated to the Dispatcher unless the exception is a
NoSuchFlowExecutionException. The default handler will attempt to recover from a
NoSuchFlowExecutionException by starting over a new execution.

Consult the API documentation for FlowHandlerAdapter for more information. You may
override these defaults by subclassing or by implementing your own FlowHandler, discussed in
the next section.

10.4. Implementing custom FlowHandlers

FlowHandler is the extension point that can be used to customize how flows are executed in a
HTTP servlet environment. A FlowHandler is used by the FlowHandlerAdapter and is
responsible for:

• Returning the id of a flow definition to execute

60 Spring Web Flow

60 Spring MVC Integration

• Creating the input to pass new executions of that flow as they are started

• Handling outcomes returned by executions of that flow as they end

• Handling any exceptions thrown by executions of that flow as they occur

These responsibilities are illustrated in the definition of the
org.springframework.mvc.servlet.FlowHandler interface:

public interface FlowHandler {

public String getFlowId();

public MutableAttributeMap createExecutionInputMap(HttpServletRequest request);

public String handleExecutionOutcome(FlowExecutionOutcome outcome,
HttpServletRequest request, HttpServletResponse response);

public String handleException(FlowException e,
HttpServletRequest request, HttpServletResponse response);

}

To implement a FlowHandler, subclass AbstractFlowHandler. All these operations are
optional, and if not implemented the defaults will apply. You only need to override the methods
that you need. Specifically:

• Override getFlowId(HttpServletRequest) when the id of your flow cannot be
directly derived from the HTTP request. By default, the id of the flow to execute is derived
from the pathInfo portion of the request URI. For example,
http://localhost/app/hotels/booking?hotelId=1 results in a flow id of
hotels/booking by default.

• Override createExecutionInputMap(HttpServletRequest) when you need
fine-grained control over extracting flow input parameters from the HttpServletRequest. By
default, all request parameters are treated as flow input parameters.

• Override handleExecutionOutcome when you need to handle specific flow execution
outcomes in a custom manner. The default behavior sends a redirect to the ended flow's URL
to restart a new execution of the flow.

• Override handleException when you need fine-grained control over unhandled flow
exceptions. The default behavior attempts to restart the flow when a client attempts to access
an ended or expired flow execution. Any other exception is rethrown to the Spring MVC
ExceptionResolver infrastructure by default.

Example FlowHandler

A common interaction pattern between Spring MVC And Web Flow is for a Flow to redirect to a
@Controller when it ends. FlowHandlers allow this to be done without coupling the flow
definition itself with a specific controller URL. An example FlowHandler that redirects to a
Spring MVC Controller is shown below:

Spring MVC Integration 61

Version 2.0.9 61

public class BookingFlowHandler extends AbstractFlowHandler {
public String handleExecutionOutcome(FlowExecutionOutcome outcome,

HttpServletRequest request, HttpServletResponse response) {
if (outcome.getId().equals("bookingConfirmed")) {

return "/booking/show?bookingId=" + outcome.getOutput().get("bookingId");
} else {

return "/hotels/index";
}

}
}

Since this handler only needs to handle flow execution outcomes in a custom manner, nothing
else is overridden. The bookingConfirmed outcome will result in a redirect to show the new
booking. Any other outcome will redirect back to the hotels index page.

Deploying a custom FlowHandler

To install a custom FlowHandler, simply deploy it as a bean. The bean name must match the id
of the flow the handler should apply to.

<bean name="hotels/booking" class="org.springframework.webflow.samples.booking.BookingFlowHandler" />

With this configuration, accessing the resource /hotels/booking will launch the
hotels/booking flow using the custom BookingFlowHandler. When the booking flow ends,
the FlowHandler will process the flow execution outcome and redirect to the appropriate
controller.

FlowHandler Redirects

A FlowHandler handling a FlowExecutionOutcome or FlowException returns a String to
indicate the resource to redirect to after handling. In the previous example, the
BookingFlowHandler redirects to the booking/show resource URI for
bookingConfirmed outcomes, and the hotels/index resource URI for all other
outcomes.

By default, returned resource locations are relative to the current servlet mapping. This allows
for a flow handler to redirect to other Controllers in the application using relative paths. In
addition, explicit redirect prefixes are supported for cases where more control is needed.

The explicit redirect prefixes supported are:

• servletRelative: - redirect to a resource relative to the current servlet

• contextRelative: - redirect to a resource relative to the current web application context
path

• serverRelative: - redirect to a resource relative to the server root

• http:// or https:// - redirect to a fully-qualified resource URI

62 Spring Web Flow

62 Spring MVC Integration

These same redirect prefixes are also supported within a flow definition when using the
externalRedirect: directive in conjunction with a view-state or end-state; for example,
view="externalRedirect:http://springframework.org"

10.5. View Resolution

Web Flow 2 maps selected view identifiers to files located within the flow's working directory
unless otherwise specified. For existing Spring MVC + Web Flow applications, an external
ViewResolver is likely already handling this mapping for you. Therefore, to continue using
that resolver and to avoid having to change how your existing flow views are packaged,
configure Web Flow as follows:

<webflow:flow-registry id="flowRegistry" flow-builder-services="flowBuilderServices">
<webflow:location path="/WEB-INF/hotels/booking/booking.xml" />

</webflow:flow-registry>

<webflow:flow-builder-services id="flowBuilderServices" view-factory-creator="mvcViewFactoryCreator"/>

<bean id="mvcViewFactoryCreator" class="org.springframework.webflow.mvc.builder.MvcViewFactoryCreator">
<property name="viewResolvers" ref="myExistingViewResolverToUseForFlows"/>

</bean>

The MvcViewFactoryCreator is the factory that allows you to configure how the Spring MVC
view system is used inside Spring Web Flow. Use it to configure existing ViewResolvers, as
well as other services such as a custom MessageCodesResolver. You may also enable data
binding use Spring MVC's native BeanWrapper by setting the useSpringBinding flag to
true. This is an alternative to using OGNL or the Unified EL for view-to-model data binding. See
the JavaDoc API of this class for more information.

10.6. Signaling an event from a View

When a flow enters a view-state it pauses, redirects the user to its execution URL, and waits for a
user event to resume. Events are generally signaled by activating buttons, links, or other user
interface commands. How events are decoded server-side is specific to the view technology in
use. This section shows how to trigger events from HTML-based views generated by templating
engines such as JSP, Velocity, or Freemarker.

Using a named HTML button to signal an event

The example below shows two buttons on the same form that signal proceed and cancel
events when clicked, respectively.

<input type="submit" name="_eventId_proceed" value="Proceed" />
<input type="submit" name="_eventId_cancel" value="Cancel" />

When a button is pressed Web Flow finds a request parameter name beginning with
eventId and treats the remaining substring as the event id. So in this example, submitting

Spring MVC Integration 63

Version 2.0.9 63

_eventId_proceed becomes proceed. This style should be considered when there are
several different events that can be signaled from the same form.

Using a hidden HTML form parameter to signal an event

The example below shows a form that signals the proceed event when submitted:

<input type="submit" value="Proceed" />
<input type="hidden" name="_eventId" value="proceed" />

Here, Web Flow simply detects the special _eventId parameter and uses its value as the event
id. This style should only be considered when there is one event that can be signaled on the form.

Using a HTML link to signal an event

The example below shows a link that signals the cancel event when activated:

Cancel

Firing an event results in a HTTP request being sent back to the server. On the server-side, the
flow handles decoding the event from within its current view-state. How this decoding process
works is specific to the view implementation. Recall a Spring MVC view implementation simply
looks for a request parameter named _eventId. If no _eventId parameter is found, the view
will look for a parameter that starts with _eventId_ and will use the remaining substring as
the event id. If neither cases exist, no flow event is triggered.

64 Spring Web Flow

64 Spring MVC Integration

11. Spring JavaScript Quick Reference

11.1. Introduction

Spring Javascript (spring-js) is a lightweight abstraction over common JavaScript toolkits such as
Dojo. It aims to provide a common client-side programming model for progressively enhancing a
web page with rich widget behavior and Ajax remoting.

Use of the Spring JS API is demonstrated in the the Spring MVC + Web Flow version of the
Spring Travel reference application. In addition, the JSF components provided as part of the
Spring Faces library build on Spring.js.

11.2. Serving Javascript Resources

Spring JS provides a generic ResourceServlet to serve web resources such as JavaScript
and CSS files from jar files, as well as the webapp root directory. This servlet provides a
convenient way to serve Spring.js files to your pages. To deploy this servlet, declare the
following in web.xml:

<!-- Serves static resource content from .jar files such as spring-js.jar -->
<servlet>

<servlet-name>Resource Servlet</servlet-name>
<servlet-class>org.springframework.js.resource.ResourceServlet</servlet-class>

</servlet>

<!-- Map all /resources requests to the Resource Servlet for handling -->
<servlet-mapping>

<servlet-name>Resource Servlet</servlet-name>
<url-pattern>/resources/*</url-pattern>

</servlet-mapping>

11.3. Including Spring Javascript in a Page

Spring JS is designed such that an implementation of its API can be built for any of the popular
Javascript toolkits. The initial implementation of Spring.js builds on the Dojo toolkit.

Using Spring Javascript in a page requires including the underlying toolkit as normal, the
Spring.js base interface file, and the Spring-(library implementation).js file
for the underlying toolkit. As an example, the following includes obtain the Dojo implementation
of Spring.js using the ResourceServlet:

<script type="text/javascript" src="<c:url value="/resources/dojo/dojo.js" />"> </script>
<script type="text/javascript" src="<c:url value="/resources/spring/Spring.js" />"> </script>
<script type="text/javascript" src="<c:url value="/resources/spring/Spring-Dojo.js" />"> </script>

When using the widget system of an underlying library, typically you must also include some

Spring JavaScript Quick
Reference

65

Version 2.0.9 65

CSS resources to obtain the desired look and feel. For the booking-mvc reference application,
Dojo's tundra.css is included:

<link type="text/css" rel="stylesheet" href="<c:url value="/resources/dijit/themes/tundra/tundra.css" />" />

11.4. Spring Javascript Decorations

A central concept in Spring Javascript is the notion of applying decorations to existing DOM
nodes. This technique is used to progressively enhance a web page such that the page will still be
functional in a less capable browser. The addDecoration method is used to apply
decorations.

The following example illustrates enhancing a Spring MVC <form:input> tag with rich
suggestion behavior:

<form:input id="searchString" path="searchString"/>
<script type="text/javascript">

Spring.addDecoration(new Spring.ElementDecoration({
elementId: "searchString",
widgetType: "dijit.form.ValidationTextBox",
widgetAttrs: { promptMessage : "Search hotels by name, address, city, or zip." }}));

</script>

The ElementDecoration is used to apply rich widget behavior to an existing DOM node.
This decoration type does not aim to completely hide the underlying toolkit, so the toolkit's
native widget type and attributes are used directly. This approach allows you to use a common
decoration model to integrate any widget from the underlying toolkit in a consistent manner. See
the booking-mvc reference application for more examples of applying decorations to do
things from suggestions to client-side validation.

When using the ElementDecoration to apply widgets that have rich validation behavior, a
common need is to prevent the form from being submitted to the server until validation passes.
This can be done with the ValidateAllDecoration:

<input type="submit" id="proceed" name="_eventId_proceed" value="Proceed" />
<script type="text/javascript">

Spring.addDecoration(new Spring.ValidateAllDecoration({ elementId:'proceed', event:'onclick' }));
</script>

This decorates the "Proceed" button with a special onclick event handler that fires the client side
validators and does not allow the form to submit until they pass successfully.

An AjaxEventDecoration applies a client-side event listener that fires a remote Ajax
request to the server. It also auto-registers a callback function to link in the response:

Previous
<script type="text/javascript">

Spring.addDecoration(new Spring.AjaxEventDecoration({
elementId: "prevLink",
event: "onclick",
params: { fragments: "body" }

}));

66 Spring Web Flow

66
Spring JavaScript Quick

Reference

</script>

This decorates the onclick event of the "Previous Results" link with an Ajax call, passing along a
special parameter that specifies the fragment to be re-rendered in the response. Note that this link
would still be fully functional if Javascript was unavailable in the client. (See the section on
Handling Ajax Requests for details on how this request is handled on the server.)

It is also possible to apply more than one decoration to an element. The following example
shows a button being decorated with Ajax and validate-all submit suppression:

<input type="submit" id="proceed" name="_eventId_proceed" value="Proceed" />
<script type="text/javascript">

Spring.addDecoration(new Spring.ValidateAllDecoration({elementId:'proceed', event:'onclick'}));
Spring.addDecoration(new Spring.AjaxEventDecoration({elementId:'proceed', event:'onclick',formId:'booking', params:{fragments:'messages'}}));

</script>

It is also possible to apply a decoration to multiple elements in a single statement using Dojo's
query API. The following example decorates a set of checkbox elements as Dojo Checkbox
widgets:

<div id="amenities">
<form:checkbox path="amenities" value="OCEAN_VIEW" label="Ocean View" />
<form:checkbox path="amenities" value="LATE_CHECKOUT" label="Late Checkout" />
<form:checkbox path="amenities" value="MINIBAR" label="Minibar" />
<script type="text/javascript">

dojo.query("#amenities input[type='checkbox']").forEach(function(element) {
Spring.addDecoration(new Spring.ElementDecoration({

elementId: element.id,
widgetType : "dijit.form.CheckBox",
widgetAttrs : { checked : element.checked }

}));
});

</script>
</div>

11.5. Handling Ajax Requests

Spring Javascript's client-side Ajax response handling is built upon the notion of receiving
"fragments" back from the server. These fragments are just standard HTML that is meant to
replace portions of the existing page. The key piece needed on the server is a way to determine
which pieces of a full response need to be pulled out for partial rendering.

In order to be able to render partial fragments of a full response, the full response must be built
using a templating technology that allows the use of composition for constructing the response,
and for the member parts of the composition to be referenced and rendered individually. Spring
Javascript provides some simple Spring MVC extensions that make use of Tiles to achieve this.
The same technique could theoretically be used with any templating system supporting
composition.

Spring Javascript's Ajax remoting functionality is built upon the notion that the core handling
code for an Ajax request should not differ from a standard browser request, thus no special
knowledge of an Ajax request is needed directly in the code and the same hanlder can be used for
both styles of request.

Spring JavaScript Quick
Reference

67

Version 2.0.9 67

Providing a Library-Specific AjaxHandler

The key interface for integrating various Ajax libraries with the Ajax-aware behavior of Web
Flow (such as not redirecting for a partial page update) is
org.springframework.js.AjaxHandler. A SpringJavascriptAjaxHandler is
configured by default that is able to detect an Ajax request submitted via the Spring JS
client-side API and can respond appropriately in the case where a redirect is required. In order to
integrate a different Ajax library (be it a pure JavaScript library, or a higher-level abstraction
such as an Ajax-capable JSF component library), a custom AjaxHandler can be injected into
the FlowHandlerAdapter or FlowController.

Handling Ajax Requests with Spring MVC Controllers

In order to handle Ajax requests with Spring MVC controllers, all that is needed is the
configuration of the provided Spring MVC extensions in your Spring application context for
rendering the partial response (note that these extensions require the use of Tiles for templating):

<bean id="tilesViewResolver" class="org.springframework.js.ajax.AjaxUrlBasedViewResolver">
<property name="viewClass" value="org.springframework.webflow.mvc.view.FlowAjaxTilesView"/>

</bean>

This configures the AjaxUrlBasedViewResolver which in turn interprets Ajax requests
and creates FlowAjaxTilesView objects to handle rendering of the appropriate fragments.
Note that FlowAjaxTilesView is capable of handling the rendering for both Web Flow and
pure Spring MVC requests. The fragments correspond to individual attributes of a Tiles view
definition. For example, take the following Tiles view definition:

<definition name="hotels/index" extends="standardLayout">
<put-attribute name="body" value="index.body" />

</definition>

<definition name="index.body" template="/WEB-INF/hotels/index.jsp">
<put-attribute name="hotelSearchForm" value="/WEB-INF/hotels/hotelSearchForm.jsp" />
<put-attribute name="bookingsTable" value="/WEB-INF/hotels/bookingsTable.jsp" />

</definition>

An Ajax request could specify the "body", "hotelSearchForm" or "bookingsTable" to be rendered
as fragments in the request.

Handling Ajax Requests with Spring MVC + Spring Web Flow

Spring Web Flow handles the optional rendering of fragments directly in the flow definition
language through use of the render element. The benefit of this approach is that the selection
of fragments is completely decoupled from client-side code, such that no special parameters need
to be passed with the request the way they currently must be with the pure Spring MVC
controller approach. For example, if you wanted to render the "hotelSearchForm" fragment from
the previous example Tiles view into a rich Javascript popup:

68 Spring Web Flow

68
Spring JavaScript Quick

Reference

<view-state id="changeSearchCriteria" view="enterSearchCriteria.xhtml" popup="true">
<on-entry>

<render fragments="hotelSearchForm" />
</on-entry>
<transition on="search" to="reviewHotels">

<evaluate expression="searchCriteria.resetPage()"/>
</transition>

</view-state>

Spring JavaScript Quick
Reference

69

Version 2.0.9 69

70 Spring Web Flow

70
Spring JavaScript Quick

Reference

12. JSF Integration

12.1. Introduction

Spring Faces is Spring's JSF integration module that simplifies using JSF with Spring. It lets you
use the JSF UI Component Model with Spring MVC and Spring Web Flow controllers.

Spring Faces also includes a small Facelets component library that provides Ajax and client-side
validation capabilities. This component library builds on Spring Javascript, a Javascript
abstraction framework that integrates Dojo as the underlying UI toolkit.

12.2. Spring-centric Integration Approach

Spring Faces combines the strengths of JSF, its UI component model, with the strengths of
Spring, its controller and configuration model. This brings you all the strengths of JSF without
any of the weaknesses.

Spring Faces provides a powerful supplement to a number of the standard JSF facilities,
including:

1. managed bean facility

2. scope management

3. event handling

4. navigation rules

5. easy modularization and packaging of views

6. cleaner URLs

7. model-level validation

8. client-side validation and UI enhancement

9. Ajax partial page updates and full navigation

10.progressive enhancement and graceful degradation
Using these features will significantly reduce the amount of configuration required in
faces-config.xml while providing a cleaner separation between the view and controller layer and
better modularization of your application's functional responsibilities. These use of these features
are outlined in the sections to follow. As the majority of these features build on the flow
definition language of Spring Web Flow, it is assumed that you have an understanding of the
foundations presented in Defining Flows .

JSF Integration 71

Version 2.0.9 71

12.3. Configuring web.xml

The first step to using Spring Faces is to route requests to the DispatcherServlet in the
web.xml file. In this example, we map all URLs that begin with /spring/ to the servlet. The
servlet needs to be configured. An init-param is used in the servlet to pass the
contextConfigLocation . This is the location of the Spring configuration for your
application.

<servlet>
<servlet-name>Spring MVC Dispatcher Servlet</servlet-name>
<servlet-class>org.springframework.web.servlet.DispatcherServlet</servlet-class>
<init-param>

<param-name>contextConfigLocation</param-name>
<param-value>/WEB-INF/web-application-config.xml</param-value>

</init-param>
<load-on-startup>1</load-on-startup>

</servlet>

<servlet-mapping>
<servlet-name>Spring MVC Dispatcher Servlet</servlet-name>
<url-pattern>/spring/*</url-pattern>

</servlet-mapping>

In order for JSF to bootstrap correctly, the FacesServlet must be configured in web.xml as
it normally would even though you generally will not need to route requests through it at all
when using Spring Faces.

<!-- Just here so the JSF implementation can initialize, *not* used at runtime -->
<servlet>

<servlet-name>Faces Servlet</servlet-name>
<servlet-class>javax.faces.webapp.FacesServlet</servlet-class>
<load-on-startup>1</load-on-startup>

</servlet>

<!-- Just here so the JSF implementation can initialize -->
<servlet-mapping>

<servlet-name>Faces Servlet</servlet-name>
<url-pattern>*.faces</url-pattern>

</servlet-mapping>

When using the Spring Faces components, you also need to configure the Spring JavaScript
ResourceServlet so that CSS and JavaScript resources may be output correctly by the
components. This servlet must be mapped to /resources/* in order for the URL's rendered by the
components to function correctly.

<!-- Serves static resource content from .jar files such as spring-faces.jar -->
<servlet>

<servlet-name>Resource Servlet</servlet-name>
<servlet-class>org.springframework.js.resource.ResourceServlet</servlet-class>
<load-on-startup>0</load-on-startup>

</servlet>

<!-- Map all /resources requests to the Resource Servlet for handling -->
<servlet-mapping>

<servlet-name>Resource Servlet</servlet-name>
<url-pattern>/resources/*</url-pattern>

</servlet-mapping>

The Spring Faces components require the use of Facelets instead of JSP, so the typical Facelets
configuration must be added as well when using these components.

72 Spring Web Flow

72 JSF Integration

!-- Use JSF view templates saved as *.xhtml, for use with Facelets -->
<context-param>

<param-name>javax.faces.DEFAULT_SUFFIX</param-name>
<param-value>.xhtml</param-value>

</context-param>

For optimal page-loading performance, the Spring Faces component library includes a few
special components: includeStyles and includeScripts. These components will
eagerly load the neccessary CSS stylesheets and JavaScript files at the position they are placed in
your JSF view template. In accordance with the recommendations of the Yahoo Performance
Guildlines, these two tags should be placed in the head section of any page that uses the Spring
Faces components. For example:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<f:view xmlns="http://www.w3.org/1999/xhtml"

xmlns:ui="http://java.sun.com/jsf/facelets"
xmlns:f="http://java.sun.com/jsf/core"

xmlns:c="http://java.sun.com/jstl/core"
xmlns:sf="http://www.springframework.org/tags/faces"
contentType="text/html" encoding="UTF-8">

<html>
<head>

<meta http-equiv="Content-Type" content="text/html; charset=UTF-8" />
<title>Spring Faces: Hotel Booking Sample Application</title>

<sf:includeStyles />
<sf:includeScripts />

<ui:insert name="headIncludes"/>
</head>
...
</html>
</f:view>

This shows the opening of a typical Facelets XHTML layout template that uses these
components to force the loading of the needed CSS and JavaScript resources at the ideal
position.

The includeStyles component includes the necessary resources for the Dojo widget theme.
By default, it includes the resources for the "tundra" theme. An alternate theme may be selected
by setting the optional "theme" and "themePath" attributes on the includeStyles
component. For example:

<sf:includeStyles themePath="/styles/" theme="foobar"/>

will try to load a CSS stylesheet at "/styles/foobar/foobar.css" using the Spring JavaScript
ResourceServlet.

12.4. Configuring Web Flow to render JSF views

The next step is to configure Web Flow to render JSF views. To do this, in your Spring Web
Flow configuration include the faces namespace and link in the faces
flow-builder-services :

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

JSF Integration 73

Version 2.0.9 73

xmlns:webflow="http://www.springframework.org/schema/webflow-config"
xmlns:faces="http://www.springframework.org/schema/faces"
xsi:schemaLocation="

http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans-2.5.xsd
http://www.springframework.org/schema/webflow-config
http://www.springframework.org/schema/webflow-config/spring-webflow-config-2.0.xsd
http://www.springframework.org/schema/faces
http://www.springframework.org/schema/faces/spring-faces-2.0.xsd">

<!-- Executes flows: the central entry point into the Spring Web Flow system -->
<webflow:flow-executor id="flowExecutor" />

<!-- The registry of executable flow definitions -->
<webflow:flow-registry id="flowRegistry" flow-builder-services="facesFlowBuilderServices" base-path="/WEB-INF">

<webflow:flow-location-pattern value="**/*-flow.xml" />
</webflow:flow-registry>

<!-- Configures the Spring Web Flow JSF integration -->
<faces:flow-builder-services id="facesFlowBuilderServices" />

</beans>

The faces:flow-builder-services tag also configures several other defaults
appropriate for a JSF environment. Specifically, the Unified EL is configured as the default
Expression Language.

See the swf-booking-faces reference application in the distribution for a complete working
example.

12.5. Configuring faces-config.xml

The only configuration needed in faces-config.xml is specific to the use of Facelets. If
you are using JSP and not using the Spring Faces components, you do not need to add anything
specific to Spring Faces to your faces-config.xml

<faces-config>
<application>

<!-- Enables Facelets -->
<view-handler>com.sun.facelets.FaceletViewHandler</view-handler>

</application>
</faces-config>

12.6. Replacing the JSF Managed Bean Facility

Spring Faces allows you to completely replace the JSF managed bean facility with a combination
of flow-managed variables and Spring managed beans. It gives you a good deal more control
over the lifecycle of your managed objects with well-defined hooks for initialization and
execution of your domain model. Additionally, since you are presumably already using Spring
for your business layer, it reduces the conceptual overhead of having to maintain two different
managed bean models.

In doing pure JSF development, you will quickly find that request scope is not long-lived enough
for storing conversational model objects that drive complex event-driven views. The only
available option is to begin putting things into session scope, with the extra burden of needing to
clean the objects up before progressing to another view or functional area of the application.

74 Spring Web Flow

74 JSF Integration

What is really needed is a managed scope that is somewhere between request and session scope.
Fortunately web flow provides such extended facilities.

Using Flow Variables

The easiest and most natural way to declare and manage the model is through the use of flow
variables . You can declare these variables at the beginning of the flow:

<var name="searchCriteria" class="com.mycompany.myapp.hotels.search.SearchCriteria"/>

and then reference this variable in one of the flow's JSF view templates through EL:

<h:inputText id="searchString" value="#{searchCriteria.searchString}"/>

Note that you do not need to prefix the variable with its scope when referencing it from the
template (though you can do so if you need to be more specific). As with standard JSF beans, all
available scopes will be searched for a matching variable, so you could change the scope of the
variable in your flow definition without having to modify the EL expressions that reference it.

You can also define view instance variables that are scoped to the current view and get cleaned
up automatically upon transitioning to another view. This is quite useful with JSF as views are
often constructed to handle multiple in-page events across many requests before transitioning to
another view.

To define a view instance variable, you can use the var element inside a view-state
definition:

<view-state id="enterSearchCriteria">
<var name="searchCriteria" class="com.mycompany.myapp.hotels.search.SearchCriteria"/>

</view-state>

Using Scoped Spring Beans

Though defining autowired flow instance variables provides nice modularization and readability,
occasions may arise where you want to utilize the other capabilities of the Spring container such
as AOP. In these cases, you can define a bean in your Spring ApplicationContext and give it a
specific web flow scope:

<bean id="searchCriteria" class="com.mycompany.myapp.hotels.search.SearchCriteria" scope="flow"/>

The major difference with this approach is that the bean will not be fully initialized until it is first
accessed via an EL expression. This sort of lazy instantiation via EL is quite similar to how JSF
managed beans are typically allocated.

JSF Integration 75

Version 2.0.9 75

Manipulating The Model

The need to initialize the model before view rendering (such as by loading persistent entities
from a database) is quite common, but JSF by itself does not provide any convenient hooks for
such initialization. The flow definition language provides a natural facility for this through its
Actions . Spring Faces provides some extra conveniences for converting the outcome of an
action into a JSF-specific data structure. For example:

<on-render>
<evaluate expression="bookingService.findBookings(currentUser.name)"

result="viewScope.bookings" result-type="dataModel" />
</on-render>

This will take the result of the bookingService.findBookings method an wrap it in a
custom JSF DataModel so that the list can be used in a standard JSF DataTable component:

<h:dataTable id="bookings" styleClass="summary" value="#{bookings}" var="booking"
rendered="#{bookings.rowCount > 0}">

<h:column>
<f:facet name="header">Name</f:facet>
#{booking.hotel.name}

</h:column>
<h:column>
<f:facet name="header">Confirmation number</f:facet>

#{booking.id}
</h:column>

<h:column>
<f:facet name="header">Action</f:facet>
<h:commandLink id="cancel" value="Cancel" action="cancelBooking" />

</h:column>
</h:dataTable>

The custom DataModel provides some extra conveniences such as being serializable for storage
beyond request scope and access to the currently selected row in EL expressions. For example,
on postback from a view where the action event was fired by a component within a DataTable,
you can take action on the selected row's model instance:

<transition on="cancelBooking">
<evaluate expression="bookingService.cancelBooking(bookings.selectedRow)" />

</transition>

12.7. Handling JSF Events With Spring Web Flow

Spring Web Flow allows you to handle JSF action events in a decoupled way, requiring no direct
dependencies in your Java code on JSF API's. In fact, these events can often be handled
completely in the flow definiton language without requiring any custom Java action code at all.
This allows for a more agile development process since the artifacts being manipulated in wiring
up events (JSF view templates and SWF flow definitions) are instantly refreshable without
requiring a build and re-deploy of the whole application.

Handling JSF In-page Action Events

76 Spring Web Flow

76 JSF Integration

A simple but common case in JSF is the need to signal an event that causes manipulation of the
model in some way and then redisplays the same view to reflect the changed state of the model.
The flow definition language has special support for this in the transition element.

A good example of this is a table of paged list results. Suppose you want to be able to load and
display only a portion of a large result list, and allow the user to page through the results. The
initial view-state definition to load and display the list would be:

<view-state id="reviewHotels">
<on-render>

<evaluate expression="bookingService.findHotels(searchCriteria)"
result="viewScope.hotels" result-type="dataModel" />

</on-render>
</view-state>

You construct a JSF DataTable that displays the current hotels list, and then place a "More
Results" link below the table:

<h:commandLink id="nextPageLink" value="More Results" action="next"/>

This commandLink signals a "next" event from its action attribute. You can then handle the
event by adding to the view-state definition:

<view-state id="reviewHotels">
<on-render>

<evaluate expression="bookingService.findHotels(searchCriteria)"
result="viewScope.hotels" result-type="dataModel" />

</on-render>
<transition on="next">

<evaluate expression="searchCriteria.nextPage()" />
</transition>

</view-state>

Here you handle the "next" event by incrementing the page count on the searchCriteria instance.
The on-render action is then called again with the updated criteria, which causes the next
page of results to be loaded into the DataModel. The same view is re-rendered since there was no
to attribute on the transition element, and the changes in the model are reflected in the
view.

Handling JSF Action Events

The next logical level beyond in-page events are events that require navigation to another view,
with some manipulation of the model along the way. Achieving this with pure JSF would require
adding a navigation rule to faces-config.xml and likely some intermediary Java code in a JSF
managed bean (both tasks requiring a re-deploy). With the flow defintion language, you can
handle such a case concisely in one place in a quite similar way to how in-page events are
handled.

Continuing on with our use case of manipulating a paged list of results, suppose we want each
row in the displayed DataTable to contain a link to a detail page for that row instance. You can
add a column to the table containing the following commandLink component:

JSF Integration 77

Version 2.0.9 77

<h:commandLink id="viewHotelLink" value="View Hotel" action="select"/>

This raises the "select" event which you can then handle by adding another transition
element to the existing view-state :

<view-state id="reviewHotels">
<on-render>

<evaluate expression="bookingService.findHotels(searchCriteria)"
result="viewScope.hotels" result-type="dataModel" />

</on-render>
<transition on="next">

<evaluate expression="searchCriteria.nextPage()" />
</transition>
<transition on="select" to="reviewHotel">

<set name="flowScope.hotel" value="hotels.selectedRow" />
</transition>

</view-state>

Here the "select" event is handled by pushing the currently selected hotel instance from the
DataTable into flow scope, so that it may be referenced by the "reviewHotel" view-state .

Performing Model Validation

JSF provides useful facilities for validating input at field-level before changes are applied to the
model, but when you need to then perform more complex validation at the model-level after the
updates have been applied, you are generally left with having to add more custom code to your
JSF action methods in the managed bean. Validation of this sort is something that is generally a
responsibility of the domain model itself, but it is difficult to get any error messages propagated
back to the view without introducing an undesirable dependency on the JSF API in your domain
layer.

With Spring Faces, you can utilize the generic and low-level MessageContext in your
business code and any messages added there will then be available to the FacesContext at
render time.

For example, suppose you have a view where the user enters the necessary details to complete a
hotel booking, and you need to ensure the Check In and Check Out dates adhere to a given set of
business rules. You can invoke such model-level validation from a transition element:

<view-state id="enterBookingDetails">
<transition on="proceed" to="reviewBooking">

<evaluate expression="booking.validateEnterBookingDetails(messageContext)" />
</transition>

</view-state>

Here the "proceed" event is handled by invoking a model-level validation method on the booking
instance, passing the generic MessageContext instance so that messages may be recorded.
The messages can then be displayed along with any other JSF messages with the h:messages
component,

Handling Ajax Events

78 Spring Web Flow

78 JSF Integration

Spring Faces provides some special UICommand components that go beyond the standard JSF
components by adding the ability to do Ajax-based partial view updates. These components
degrade gracefully so that the flow will still be fully functional by falling back to full page
refreshes if a user with a less capable browser views the page.

Note
Though the core JSF support in Spring Faces is JSF 1.1-compatible, the Spring Faces
Ajax components require JSF 1.2.

Revisiting the earlier example with the paged table, you can change the "More Results" link to
use an Ajax request by replacing the standard commandButton with the Spring Faces version
(note that the Spring Faces command components use Ajax by default, but they can alternately
be forced to use a normal form submit by setting ajaxEnabled="false" on the component):

<sf:commandLink id="nextPageLink" value="More Results" action="next" />

This event is handled just as in the non-Ajax case with the transition element, but now you
will add a special render action that specifies which portions of the component tree need to be
re-rendered:

<view-state id="reviewHotels">
<on-render>

<evaluate expression="bookingService.findHotels(searchCriteria)"
result="viewScope.hotels" result-type="dataModel" />

</on-render>
<transition on="next">

<evaluate expression="searchCriteria.nextPage()" />
<render fragments="hotels:searchResultsFragment" />

</transition>
</view-state>

The fragments="hotels:searchResultsFragment" is an instruction that will be
interpreted at render time, such that only the component with the JSF clientId
"hotels:searchResultsFragment" will be rendered and returned to the client. This fragment will
then be automatically replaced in the page. The fragments attribute can be a
comma-delimited list of ids, with each id representing the root node of a subtree (meaning the
root node and all of its children) to be rendered. If the "next" event is fired in a non-Ajax request
(i.e., if JavaScript is disabled on the client), the render action will be ignored and the full page
will be rendered as normal.

In addition to the Spring Faces commandLink component, there is a corresponding
commandButton component with the same functionality. There is also a special ajaxEvent
component that will raise a JSF action even in response to any client-side DOM event. See the
Spring Faces tag library docs for full details.

An additional built-in feature when using the Spring Faces Ajax components is the ability to
have the response rendered inside a rich modal popup widget by setting popup="true" on a
view-state .

<view-state id="changeSearchCriteria" view="enterSearchCriteria.xhtml" popup="true">
<on-entry>

JSF Integration 79

Version 2.0.9 79

<render fragments="hotelSearchFragment" />
</on-entry>
<transition on="search" to="reviewHotels">

<evaluate expression="searchCriteria.resetPage()"/>
</transition>

</view-state>

If the "changeSearchCriteria" view-state is reached as the result of an Ajax-request, the
result will be rendered into a rich popup. If JavaScript is unavailable, the request will be
processed with a full browser refresh, and the "changeSearchCriteria" view will be rendered as
normal.

12.8. Enhancing The User Experience With Rich Web
Forms

JSF and Web Flow combine to provide an extensive server-side validation model for your web
application, but excessive roundtrips to the server to execute this validation and return error
messages can be a tedious experience for your users. Spring Faces provides a number of
client-side rich validation controls that can enhance the user experience by applying simple
validations that give immediate feedback. Some simple examples are illustrated below. See the
Spring Faces taglib docs for a complete tag reference.

Validating a Text Field

Simple client-side text validation can be applied with the clientTextValidator
component:

<sf:clientTextValidator required="true">
<h:inputText id="creditCardName" value="#{booking.creditCardName}" required="true"/>

</sf:clientTextValidator>

This will apply client-side required validation to the child inputText component, giving the
user a clear indicator if the field is left blank.

Validating a Numeric Field

Simple client-side numeric validation can be applied with the clientNumberValidator
component:

<sf:clientTextValidator required="true" regExp="[0-9]{16}"
invalidMessage="A 16-digit credit card number is required.">

<h:inputText id="creditCard" value="#{booking.creditCard}" required="true"/>
</sf:clientTextValidator>

This will apply client-side validation to the child inputText component, giving the user a
clear indicator if the field is left blank, is not numeric, or does not match the given regular
expression.

80 Spring Web Flow

80 JSF Integration

Validating a Date Field

Simple client-side date validation with a rich calendar popup can be applied with the
clientDateValidator component:

<sf:clientDateValidator required="true" >
<h:inputText id="checkinDate" value="#{booking.checkinDate}" required="true">

<f:convertDateTime pattern="yyyy-MM-dd" timeZone="EST"/>
</h:inputText>

</sf:clientDateValidator>

This will apply client-side validation to the child inputText component, giving the user a
clear indicator if the field is left blank or is not a valid date.

Preventing an Invalid Form Submission

The validateAllOnClick component can be used to intercept the "onclick" event of a child
component and suppress the event if all client-side validations do not pass.

<sf:validateAllOnClick>
<sf:commandButton id="proceed" action="proceed" processIds="*" value="Proceed"/>

</sf:validateAllOnClick>

This will prevent the form from being submitted when the user clicks the "proceed" button if the
form is invalid. When the validations are executed, the user is given clear and immediate
indicators of the problems that need to be corrected.

12.9. Third-Party Component Library Integration

Spring Faces strives to be compatible with any third-party JSF component library. By honoring
all of the standard semantics of the JSF specification within the SWF-driven JSF lifecycle,
third-party libraries in general should "just work". The main thing to remember is that
configuration in web.xml will change slightly since Spring Faces requests are not routed through
the standard FacesServlet. Typically, anything that is traditionally mapped to the FacesServlet
should be mapped to the Spring DispatcherServlet instead. (You can also map to both if for
example you are migrating a legacy JSF application page-by-page.) In some cases, a deeper level
of integration can be achieved by configuring special flow services that are "aware" of a
particular component library, and these will be noted in the examples to follow.

Rich Faces Integration

To use the Rich Faces component library with Spring Faces, the following filter configuration is
needed in web.xml (in addition to the typical Spring Faces configuration):

<filter>
<display-name>RichFaces Filter</display-name>

JSF Integration 81

Version 2.0.9 81

<filter-name>richfaces</filter-name>
<filter-class>org.ajax4jsf.Filter</filter-class>

</filter>

<filter-mapping>
<filter-name>richfaces</filter-name>
<servlet-name>Spring Web MVC Dispatcher Servlet</servlet-name>
<dispatcher>REQUEST</dispatcher>
<dispatcher>FORWARD</dispatcher>
<dispatcher>INCLUDE</dispatcher>

</filter-mapping>

For deeper integration (including the ability to have a view with combined use of the Spring
Faces Ajax components and Rich Faces Ajax components), configure the RichFacesAjaxHandler
on your FlowController:

<bean id="flowController" class="org.springframework.webflow.mvc.servlet.FlowController">
<property name="flowExecutor" ref="flowExecutor" />
<property name="ajaxHandler">

<bean class="org.springframework.faces.richfaces.RichFacesAjaxHandler"/>
</property>

</bean>

RichFaces Ajax components can be used in conjunction with the render tag to render partial
fragments on an Ajax request. Instead of embedding the ids of the components to be re-rendered
directly in the view template (as you traditionally do with Rich Faces), you can bind the
reRender attribute of a RichFaces Ajax component to a special flowRenderFragments
EL variable. For example, in your view template you can have a fragment that you would
potentially like to re-render in response to a particular event:

<h:form id="hotels">
<a4j:outputPanel id="searchResultsFragment">

<h:outputText id="noHotelsText" value="No Hotels Found" rendered="#{hotels.rowCount == 0}"/>
<h:dataTable id="hotels" styleClass="summary" value="#{hotels}" var="hotel" rendered="#{hotels.rowCount > 0}">

<h:column>
<f:facet name="header">Name</f:facet>
#{hotel.name}

</h:column>
<h:column>

<f:facet name="header">Address</f:facet>
#{hotel.address}

</h:column>
</h:dataTable>

</a4j:outputPanel>
</h:form>

then a RichFaces Ajax commandLink to fire the event:

<a4j:commandLink id="nextPageLink" value="More Results" action="next" reRender="#{flowRenderFragments}" />

and then in your flow definition a transition to handle the event:

<transition on="next">
<evaluate expression="searchCriteria.nextPage()" />
<render fragments="hotels:searchResultsFragment" />

</transition>

Apache MyFaces Trinidad Integration

82 Spring Web Flow

82 JSF Integration

The Apache MyFaces Trinidad library has been tested with the Spring Faces integration and
proven to fit in nicely. Deeper integration to allow the Trinidad components and Spring Faces
components to play well together has not yet been attempted, but Trinidad provides a pretty
thorough solution on its own when used in conjunction with the Spring Faces integration layer.

NOTE - An AjaxHandler implementation for Trinidad is not currently provided
out-of-the-box with Spring Faces. In order to fully integrate with Trinidad's PPR functionality, a
custom implementation should be provided. An community-provided partial example can be
found here: SWF-1160

Typical Trinidad + Spring Faces configuration is as follows in web.xml (in addition to the
typical Spring Faces configuration):

<context-param>
<param-name>javax.faces.STATE_SAVING_METHOD</param-name>
<param-value>server</param-value>

</context-param>

<context-param>
<param-name>

org.apache.myfaces.trinidad.CHANGE_PERSISTENCE
</param-name>
<param-value>session</param-value>

</context-param>

<context-param>
<param-name>

org.apache.myfaces.trinidad.ENABLE_QUIRKS_MODE
</param-name>
<param-value>false</param-value>

</context-param>

<filter>
<filter-name>Trinidad Filter</filter-name>
<filter-class>

org.apache.myfaces.trinidad.webapp.TrinidadFilter
</filter-class>

</filter>

<filter-mapping>
<filter-name>Trinidad Filter</filter-name>
<servlet-name>Spring MVC Dispatcher Servlet</servlet-name>

</filter-mapping>

<servlet>
<servlet-name>Trinidad Resource Servlet</servlet-name>
<servlet-class>

org.apache.myfaces.trinidad.webapp.ResourceServlet
</servlet-class>

</servlet>

<servlet-mapping>
<servlet-name>resources</servlet-name>
<url-pattern>/adf/*</url-pattern>

</servlet-mapping>

JSF Integration 83

Version 2.0.9 83

http://jira.springsource.org/browse/SWF-1160

84 Spring Web Flow

84 JSF Integration

13. Portlet Integration

13.1. Introduction

This chapter shows how to use Web Flow in a Portlet environment. Web Flow has full support
for JSR-168 portlets. The booking-portlet-mvc sample application is a good reference for
using Web Flow within a portlet. This application is a simplified travel site that allows users to
search for and book hotel rooms.

13.2. Configuring web.xml and portlet.xml

The configuration for a portlet depends on the portlet container used. The sample applications,
included with Web Flow, are both configured to use Apache Pluto, the JSR-168 reference
implementation.

In general, the configuration requires adding a servlet mapping in the web.xml file to dispatch
request to the portlet container.

<servlet>
<servlet-name>swf-booking-mvc</servlet-name>
<servlet-class>org.apache.pluto.core.PortletServlet</servlet-class>
<init-param>

<param-name>portlet-name</param-name>
<param-value>swf-booking-mvc</param-value>

</init-param>
<load-on-startup>1</load-on-startup>

</servlet>

<servlet-mapping>
<servlet-name>swf-booking-mvc</servlet-name>
<url-pattern>/PlutoInvoker/swf-booking-mvc</url-pattern>

</servlet-mapping>

The portlet.xml configuration is a standard portlet configuration. The portlet-class
needs to be set along with a pair of init-params. Setting the expiration-cache to 0 is
recommended to force Web Flow to always render a fresh view.

<portlet>
...
<portlet-class>org.springframework.web.portlet.DispatcherPortlet</portlet-class>
<init-param>

<name>contextConfigLocation</name>
<value>/WEB-INF/web-application-config.xml</value>

</init-param>
<init-param>

<name>viewRendererUrl</name>
<value>/WEB-INF/servlet/view</value>

</init-param>
<expiration-cache>0</expiration-cache>
...

</portlet>

13.3. Configuring Spring

Portlet Integration 85

Version 2.0.9 85

http://portals.apache.org/pluto/

Flow Handlers

The only supported mechanism for bridging a portlet request to Web Flow is a FlowHandler.
The PortletFlowController used in Web Flow 1.0 is no longer supported.

The flow handler, similar to the servlet flow handler, provides hooks that can:

• select the flow to execute

• pass input parameters to the flow on initialization

• handle the flow execution outcome

• handle exceptions

The AbstractFlowHandler class is an implementation of FlowHandler that provides
default implementations for these hooks.

In a portlet environment the targeted flow id can not be inferred from the URL and must be
defined explicitly in the handler.

public class ViewFlowHandler extends AbstractFlowHandler {
public String getFlowId() {

return "view";
}

}

Handler Mappings

Spring Portlet MVC provides a rich set of methods to map portlet requests. Complete
documentation is available in the Spring Reference Documentation.

The booking-portlet-mvc sample application uses a PortletModeHandlerMapping
to map portlet requests. The sample application only supports view mode, but support for other
portlet modes is available. Other modes can be added and point to the same flow as view mode,
or any other flow.

<bean id="portletModeHandlerMapping"
class="org.springframework.web.portlet.handler.PortletModeHandlerMapping">

<property name="portletModeMap">
<map>

<entry key="view">
<bean class="org.springframework.webflow.samples.booking.ViewFlowHandler" />

</entry>
</map>

</property>
</bean>

Flow Handler Adapter

86 Spring Web Flow

86 Portlet Integration

http://static.springframework.org/spring/docs/2.5.x/reference/portlet.html#portlet-handlermapping

A FlowHandlerAdapter converts the handler mappings to the flow handlers. The flow
executor is required as a constructor argument.

<bean id="flowHandlerAdapter"
class="org.springframework.webflow.mvc.portlet.FlowHandlerAdapter">

<constructor-arg ref="flowExecutor" />
</bean>

13.4. Portlet Views

In order to facilitate view rendering, a ViewRendererServlet must be added to the
web.xml file. This servlet is not invoked directly, but it used by Web Flow to render views in a
portlet environment.

<servlet>
<servlet-name>ViewRendererServlet</servlet-name>
<servlet-class>org.springframework.web.servlet.ViewRendererServlet</servlet-class>

</servlet>

<servlet-mapping>
<servlet-name>ViewRendererServlet</servlet-name>
<url-pattern>/WEB-INF/servlet/view</url-pattern>

</servlet-mapping>

13.5. Portlet Modes and Window States

Window State

The Portlet API defined three window states: normal, minimized and maximized. The portlet
implementation must decide what to render for each of these window states. Web Flow exposes
the string value of the window state under portletWindowState via the request map on the
external context.

requestContext.getExternalContext().getRequestMap().get("portletWindowState");

externalContext.requestMap.portletWindowState

Portlet Mode

The Portlet API defined three portlet modes: view, edit and help. The portlet implementation
must decide what to render for each of these modes. Web Flow exposes the string value of the
portlet mode under portletMode via the request map on the external context.

requestContext.getExternalContext().getRequestMap().get("portletMode");

Portlet Integration 87

Version 2.0.9 87

externalContext.requestMap.portletMode

13.6. Issues in a Portlet Environment

Redirects

The Portlet API only allows redirects to be requested from an action request. Because views are
rendered on the render request, views and view-states cannot trigger a redirect.

The externalRedirect: view prefix is a convenience for Servlet based flows. An
IllegalStateException is thrown if a redirect is requested from a render request.

end-state redirects can be achieved by implementing
FlowHandler.handleExecutionOutcome. This callback provides the
ActionResponse object which supports redirects.

Switching Portlet Modes

The portlet container passes the execution key from the previous flow when switching to a new
mode. Even if the mode is mapped to a different FlowHandler the flow execution will resume
the previous execution. You may switch the mode programatically in your FlowHandler after
ending a flow in an ActionRequest.

One way to start a new flow is to create a URL targeting the mode without the execution key.

Portlets and JSF

Web Flow supports JSF as the view technology for a portlet. However, a jsf-portlet bridge
(JSR-301) must be provided. At the time of this writing, no feature complete jsf-portlet bridge
exists. Some of the existing bridge implementations may appear to work, however, side effect
may occur.

JSF portlets are considered experimental at this time.

88 Spring Web Flow

88 Portlet Integration

14. Testing flows

14.1. Introduction

This chapter shows you how to test flows.

14.2. Extending AbstractXmlFlowExecutionTests

To test the execution of a XML-based flow definition, extend
AbstractXmlFlowExecutionTests:

public class BookingFlowExecutionTests extends AbstractXmlFlowExecutionTests {

}

14.3. Specifying the path to the flow to test

At a minimum, you must override
getResource(FlowDefinitionResourceFactory) to return the path to the flow you
wish to test:

@Override
protected FlowDefinitionResource getResource(FlowDefinitionResourceFactory resourceFactory) {

return resourceFactory.createFileResource("src/main/webapp/WEB-INF/hotels/booking/booking.xml");
}

14.4. Registering flow dependencies

If your flow has dependencies on externally managed services, also override
configureFlowBuilderContext(MockFlowBuilderContext) to register stubs or
mocks of those services:

@Override
protected void configureFlowBuilderContext(MockFlowBuilderContext builderContext) {

builderContext.registerBean("bookingService", new StubBookingService());
}

If your flow extends from another flow, or has states that extend other states, also override
getModelResources(FlowDefinitionResourceFactory) to return the path to the
parent flows.

@Override
protected FlowDefinitionResource[] getModelResources(FlowDefinitionResourceFactory resourceFactory) {

Testing flows 89

Version 2.0.9 89

return new FlowDefinitionResource[] {
resourceFactory.createFileResource("src/main/webapp/WEB-INF/common/common.xml")

};
}

14.5. Testing flow startup

Have your first test exercise the startup of your flow:

public void testStartBookingFlow() {

Booking booking = createTestBooking();

MutableAttributeMap input = new LocalAttributeMap();
input.put("hotelId", "1");
MockExternalContext context = new MockExternalContext();
context.setCurrentUser("keith");
startFlow(input, context);

assertCurrentStateEquals("enterBookingDetails");
assertTrue(getRequiredFlowAttribute("booking") instanceof Booking);

}

Assertions generally verify the flow is in the correct state you expect.

14.6. Testing flow event handling

Define additional tests to exercise flow event handling behavior. You goal should be to exercise
all paths through the flow. You can use the convenient setCurrentState(String)
method to jump to the flow state where you wish to begin your test.

public void testEnterBookingDetails_Proceed() {

setCurrentState("enterBookingDetails");

getFlowScope().put("booking", createTestBooking());

MockExternalContext context = new MockExternalContext();
context.setEventId("proceed");
resumeFlow(context);

assertCurrentStateEquals("reviewBooking");
}

14.7. Mocking a subflow

To test calling a subflow, register a mock implementation of the subflow that asserts input was
passed in correctly and returns the correct outcome for your test scenario.

public void testBookHotel() {

setCurrentState("reviewHotel");

Hotel hotel = new Hotel();
hotel.setId(1L);
hotel.setName("Jameson Inn");
getFlowScope().put("hotel", hotel);

90 Spring Web Flow

90 Testing flows

getFlowDefinitionRegistry().registerFlowDefinition(createMockBookingSubflow());

MockExternalContext context = new MockExternalContext();
context.setEventId("book");
resumeFlow(context);

// verify flow ends on 'bookingConfirmed'
assertFlowExecutionEnded();
assertFlowExecutionOutcomeEquals("finish");

}

public Flow createMockBookingSubflow() {
Flow mockBookingFlow = new Flow("booking");
mockBookingFlow.setInputMapper(new Mapper() {

public MappingResults map(Object source, Object target) {
// assert that 1L was passed in as input
assertEquals(1L, ((AttributeMap) source).get("hotelId"));
return null;

}
});
// immediately return the bookingConfirmed outcome so the caller can respond
new EndState(mockBookingFlow, "bookingConfirmed");
return mockBookingFlow;

}

Testing flows 91

Version 2.0.9 91

92 Spring Web Flow

92 Testing flows

15. Upgrading from 1.0

15.1. Introduction

This chapter shows you how to upgrade existing Web Flow 1 application to Web Flow 2.

15.2. Flow Definition Language

The core concepts behind the flow definition language have not changed between Web Flow 1
and 2. However, some of the element and attribute names have changed. These changes allow for
the language to be both more concise and expressive. A complete list of mapping changes is
available as an appendix.

Flow Definition Updater Tool

An automated tool is available to aid in the conversion of existing 1.x flows to the new 2.x style.
The tool will convert all the old tag names to their new equivalents, if needed. While the tool will
make a best effort attempt at conversion, there is not a one-to-one mapping for all version 1
concepts. If the tool was unable to convert a portion of the flow, it will be marked with a
WARNING comment in the resulting flow.

The conversion tool requires spring-webflow.jar, spring-core.jar and an XSLT 1.0 engine. Saxon
6.5.5 is recommended.

The tool can be run from the command line with the following command. Required libraries
must be available on the classpath. The source must be a single flow to convert. The resulting
converted flow will be sent to standard output.

java org.springframework.webflow.upgrade.WebFlowUpgrader flow-to-upgrade.xml

Flow Definition Updater Tool Warnings

argument parameter-type no longer supported

Bean actions have been deprecated in favor of EL based evaluate expressions. The EL
expression is able to accept method parameters directly, so there is no longer a need for the
argument tag. A side effect of this change is that method arguments must be of the correct type
before invoking the action.

inline-flow is no longer supported

Inline flows are no longer supported. The contents of the inline flow must be moved into a new

Upgrading from 1.0 93

Version 2.0.9 93

http://saxon.sourceforge.net/
http://saxon.sourceforge.net/

top-level flow. The inline flow's content has been converted for your convenience.

mapping target-collection is no longer supported

Output mappings can no longer add an item to a collection. Only assignment is supported.

var bean is no longer supported

The var bean attribute is no longer needed. All spring beans can be resolved via EL.

var scope is no longer supported

The var element will place all variable into flow scope. Conversation scope was previously
allowed.

EL Expressions

EL expressions are used heavily throughout the flow definition language. Many of the attributes
that appear to be plain text are actually interpreted as EL. The standard EL delimiters (either ${}
or #{}) are not necessary and will often cause an exception if they are included.

EL delimiters should be removed where necessary by the updater tool.

15.3. Web Flow Configuration

In Web Flow 1 there were two options available for configuring Web Flow, one using standard
spring bean XML and the other using the webflow-config-1.0 schema. The schema
configuration option simplifies the configuration process by keeping long internal class names
hidden and enabling contextual auto-complete. The schema configuration option is the only way
to configure Web Flow 2.

Web Flow Bean Configuration

The FactoryBean bean XML configuration method used in Web Flow 1 is no longer
supported. The schema configuration method should be used instead. In particular beans defining
FlowExecutorFactoryBean and XmlFlowRegistryFactoryBean should be
updated. Continue reading Web Flow Schema Configuration for details.

Web Flow Schema Configuration

The webflow-config configuration schema has also changed slightly from version 1 to 2.
The simplest way to update your application is modify the version of the schema to 2.0 then fix
any errors in a schema aware XML editor. The most common change is add 'flow-' to the

94 Spring Web Flow

94 Upgrading from 1.0

beginning of the elements defined by the schema.

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:webflow="http://www.springframework.org/schema/webflow-config"
xsi:schemaLocation="

http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans-2.5.xsd
http://www.springframework.org/schema/webflow-config
http://www.springframework.org/schema/webflow-config/spring-webflow-config-2.0.xsd">

flow-executor

The flow executor is the core Web Flow configuration element. This element replaces previous
FlowExecutorFactoryBean bean definitions.

<webflow:flow-executor id="flowExecutor" />

flow-execution-listeners

Flow execution listeners are also defined in the flow executor. Listeners are defined using
standard bean definitions and added by reference.

<webflow:flow-executor id="flowExecutor" flow-registry="flowRegistry">
<webflow:flow-execution-listeners>

<webflow:listener ref="securityFlowExecutionListener"/>
</webflow:flow-execution-listeners>

</webflow:flow-executor>

<bean id="securityFlowExecutionListener"
class="org.springframework.webflow.security.SecurityFlowExecutionListener" />

flow-registry

The flow-registry contains a set of flow-locations. Every flow definition used by
Web Flow must be added to the registry. This element replaces previous
XmlFlowRegistryFactoryBean bean definitions.

<webflow:flow-registry id="flowRegistry">
<webflow:flow-location path="/WEB-INF/hotels/booking/booking.xml" />

</webflow:flow-registry>

Flow Controller

The package name for flow controllers has changed from
org.springframework.webflow.executor.mvc.FlowController and is now
org.springframework.webflow.mvc.servlet.FlowController for Servlet
MVC requests. The portlet flow controller
org.springframework.webflow.executor.mvc.PortletFlowController has
been replaced by a flow handler adapter available at
org.springframework.webflow.mvc.portlet.FlowHandlerAdapter. They

Upgrading from 1.0 95

Version 2.0.9 95

will need to be updated in the bean definitions.

Flow URL Handler

The default URL handler has changed in Web Flow 2. The flow identifier is now derived from
the URL rather then passed explicitly. In order to maintain comparability with existing views and
URL structures a WebFlow1FlowUrlHandler is available.

<bean name="/pos.htm" class="org.springframework.webflow.mvc.servlet.FlowController">
<property name="flowExecutor" ref="flowExecutor" />
<property name="flowUrlHandler">

<bean class="org.springframework.webflow.context.servlet.WebFlow1FlowUrlHandler" />
</property>

</bean>

View Resolution

Web Flow 2 by default will both select and render views. View were previously selected by Web
Flow 1 and then rendered by an external view resolver.

In order for version 1 flows to work in Web Flow 2 the default view resolver must be overridden.
A common use case is to use Apache Tiles for view resolution. The following configuration will
replace the default view resolver with a Tiles view resolver. The tilesViewResolver in this
example can be replaced with any other view resolver.

<webflow:flow-registry id="flowRegistry" flow-builder-services="flowBuilderServices">
<web:flow-location path="..." />

...
</webflow:flow-registry>

<webflow:flow-builder-services id="flowBuilderServices"
view-factory-creator="viewFactoryCreator"/>

<bean id="viewFactoryCreator" class="org.springframework.webflow.mvc.builder.MvcViewFactoryCreator">
<property name="viewResolvers" ref="tilesViewResolver" />

</bean>

<bean id="tilesViewResolver" class="org.springframework.web.servlet.view.UrlBasedViewResolver">
<property name="viewClass" value="org.springframework.web.servlet.view.tiles.TilesJstlView" />

</bean>

<bean class="org.springframework.web.servlet.view.tiles.TilesConfigurer">
<property name="definitions" value="/WEB-INF/tiles-def.xml" />

</bean>

15.4. New Web Flow Concepts

Automatic Model Binding

Web Flow 1 required Spring MVC based flows to manually call FormAction methods,
notably: setupForm, bindAndValidate to process form views. Web Flow 2 now provides
automatic model setup and binding using the model attribute for view-states. Please see the
Binding to a Model section for details.

96 Spring Web Flow

96 Upgrading from 1.0

http://tiles.apache.org/

OGNL vs EL

Web Flow 1 used OGNL exclusively for expressions within the flow definitions. Web Flow 2
adds support for Unified EL. United EL is used when it is available, OGNL will continue to be
used when a Unified EL implementation is not available. Please see the Expression Language
chapter for details.

Flash Scope

Flash scope in Web Flow 1 lived across the current request and into the next request. This was
conceptually similar to Web Flow 2's view scope concept, but the semantics were not as well
defined. In Web Flow 2, flash scope is cleared after every view render. This makes flashScope
semantics in Web Flow consistent with other web frameworks.

Spring Faces

Web Flow 2 offers significantly improved integration with JavaServerFaces. Please see the JSF
Integration chapter for details.

External Redirects

External redirects in Web Flow 1 were always considered context relative. In Web Flow 2, if the
redirect URL begins with a slash, it is considered servlet-relative instead of context-relative.
URLs without a leading slash are still context relative.

Upgrading from 1.0 97

Version 2.0.9 97

98 Spring Web Flow

98 Upgrading from 1.0

Appendix A. Flow Definition Language
1.0 to 2.0 Mappings
The flow definition language has changed since the 1.0 release. This is a listing of the language
elements in the 1.0 release, and how they map to elements in the 2.0 release. While most of the
changes are semantic, there are a few structural changes. Please see the upgrade guide for more
details about changes between Web Flow 1.0 and 2.0.

Table A.1. Mappings

SWF 1.0 SWF 2.0 Comments

action * use <evaluate />

bean *

name *

method *

action-state action-state

id id

* parent

argument * use <evaluate expression="func(arg1, arg2,
...)"/>

expression

parameter-type

attribute attribute

name name

type type

value value

attribute-mapper * input and output elements can be in flows
or subflows directly

bean * now subflow-attribute-mapper attribute on
subflow-state

bean-action * use <evaluate />

bean *

name *

method *

SWF 1.0 SWF 2.0 Comments

decision-state decision-state

id id

* parent

end-actions on-end

end-state end-state

id id

view view

* parent

* commit

entry-actions on-entry

evaluate-action evaluate

expression expression

name * use <evaluate ...> <attribute name=”name”
value="..." /> </evaluate>

* result

* result-type

evaluation-result * use <evaluate result="..." />

name *

scope *

exception-handler exception-handler

bean bean

exit-actions on-exit

flow flow

* start-state

* parent

* abstract

global-transitions global-transitions

if if

test test

then then

SWF 1.0 SWF 2.0 Comments

else else

import bean-import

resource resource

inline-flow * convert to new top-level flow

id *

input-attribute input

name name

scope * prefix name with scope <input
name="flowScope.foo" />

required required

* type

* value

input-mapper * inputs can be in flows and subflows
directly

mapping input or output

source name or value name when in flow element, value when in
subflow-state element

target name or value value when in flow element, name when in
subflow-state element

target-collection * no longer supported

from * detected automatically

to type

required required

method-argument * use <evaluate expression="func(arg1, arg2,
...)"/>

method-result * use <evaluate result="..." />

name *

scope *

output-attribute output

name name

scope * prefix name with scope <output
name="flowScope.foo" />

SWF 1.0 SWF 2.0 Comments

required required

* type

* value

output-mapper * output can be in flows and subflows
directly

render-actions on-render

set set

attribute name

scope * prefix name with scope <set
name="flowScope.foo" />

value value

name * use <set ...> <attribute name=”name”
value="..." /> </set>

* type

start-actions on-start

start-state * now <flow start-state="...">, or defaults to
the first state in the flow

idref *

subflow-state subflow-state

id id

flow subflow

* parent

* subflow-attribute-mapper

transition transition

on on

on-exception on-exception

to to

* bind

value value

var var

name name

SWF 1.0 SWF 2.0 Comments

class class

scope * always flow scope

bean * all Spring beans can be resolved with EL

view-state view-state

id id

view view

* parent

* redirect

* popup

* model

* history

* persistence-context

* render

* fragments

* secured

* attributes

* match

	Spring Web Flow Reference Guide
	Table of Contents
	Preface
	1. Introduction
	1.1. What this guide covers
	1.2. What Web Flow requires to run
	1.3. Where to get support
	1.4. Where to follow development
	1.5. How to access Web Flow artifacts from Maven Central
	1.6. How to access Web Flow artifacts from the SpringSource Bundle Repository
	Accessing Web Flow bundles with Maven
	Accessing Web Flow bundles with Ivy
	Accessing the dm Server Web Flow library

	1.7. How to access nightly builds
	Accessing snapshots from the Maven-central compatible repository
	Accessing snapshots from the SpringSource Enterprise Bundle Repository
	Accessing snapshot distribution archives

	2. Defining Flows
	2.1. Introduction
	2.2. What is a flow?
	2.3. What is the makeup of a typical flow?
	2.4. How are flows authored?
	2.5. Essential language elements
	flow
	view-state
	transition
	end-state
	Checkpoint: Essential language elements

	2.6. Actions
	evaluate
	Assigning an evaluate result
	Converting an evaluate result

	Checkpoint: flow actions

	2.7. Input/Output Mapping
	input
	Declaring an input type
	Assigning an input value
	Marking an input as required

	output
	Specifying the source of an output value

	Checkpoint: input/output mapping

	2.8. Variables
	var

	2.9. Calling subflows
	subflow-state
	Passing a subflow input
	Mapping subflow output

	Checkpoint: calling subflows

	3. Expression Language (EL)
	3.1. Introduction
	3.2. Supported EL implementations
	Unified EL
	OGNL

	3.3. EL portability
	3.4. EL usage
	Expression types
	Standard eval expressions
	Template expressions

	3.5. Special EL variables
	flowScope
	viewScope
	requestScope
	flashScope
	conversationScope
	requestParameters
	currentEvent
	currentUser
	messageContext
	resourceBundle
	flowRequestContext
	flowExecutionContext
	flowExecutionUrl
	externalContext

	3.6. Scope searching algorithm

	4. Rendering views
	4.1. Introduction
	4.2. Defining view states
	4.3. Specifying view identifiers
	Flow relative view ids
	Absolute view ids
	Logical view ids

	4.4. View scope
	Allocating view variables
	Assigning a viewScope variable
	Manipulating objects in view scope

	4.5. Executing render actions
	4.6. Binding to a model
	4.7. Performing type conversion
	Implementing a Converter
	Registering a Converter

	4.8. Suppressing binding
	4.9. Specifying bindings explicitly
	4.10. Validating a model
	Programmatic validation
	Implementing a model validate method
	Implementing a Validator

	ValidationContext

	4.11. Suppressing validation
	4.12. Executing view transitions
	Transition actions
	Global transitions
	Event handlers
	Rendering fragments

	4.13. Working with messages
	Adding plain text messages
	Adding internationalized messages
	Using message bundles
	Understanding system generated messages

	4.14. Displaying popups
	4.15. View backtracking
	Discarding history
	Invalidating history

	5. Executing actions
	5.1. Introduction
	5.2. Defining action states
	5.3. Defining decision states
	5.4. Action outcome event mappings
	5.5. Action implementations
	Invoking a POJO action
	Invoking a custom Action implementation
	Invoking a MultiAction implementation

	5.6. Action exceptions
	Handling a business exception with a POJO action
	Handling a business exception with a MultiAction

	5.7. Other Action execution examples
	on-start
	on-entry
	on-exit
	on-end
	on-render
	on-transition
	Named actions
	Streaming actions
	Handling File Uploads

	6. Flow Managed Persistence
	6.1. Introduction
	6.2. FlowScoped PersistenceContext

	7. Securing Flows
	7.1. Introduction
	7.2. How do I secure a flow?
	7.3. The secured element
	Security attributes
	Matching type

	7.4. The SecurityFlowExecutionListener
	Custom Access Decision Managers

	7.5. Configuring Spring Security
	Spring configuration
	web.xml Configuration

	8. Flow Inheritance
	8.1. Introduction
	8.2. Is flow inheritance like Java inheritance?
	8.3. Types of Flow Inheritance
	Flow level inheritance
	State level inheritance

	8.4. Abstract flows
	8.5. Inheritance Algorithm
	Mergeable Elements
	Non-mergeable Elements

	9. System Setup
	9.1. Introduction
	9.2. webflow-config.xsd
	9.3. Basic system configuration
	FlowRegistry
	FlowExecutor

	9.4. flow-registry options
	Specifying flow locations
	Assigning custom flow identifiers
	Assigning flow meta-attributes
	Registering flows using a location pattern
	Flow location base path
	Configuring FlowRegistry hierarchies
	Configuring custom FlowBuilder services
	conversion-service
	expression-parser
	view-factory-creator
	development

	9.5. flow-executor options
	Attaching flow execution listeners
	Tuning FlowExecution persistence
	max-executions
	max-execution-snapshots

	10. Spring MVC Integration
	10.1. Introduction
	10.2. Configuring web.xml
	10.3. Dispatching to flows
	Registering the FlowHandlerAdapter
	Defining flow mappings
	Flow handling workflow

	10.4. Implementing custom FlowHandlers
	Example FlowHandler
	Deploying a custom FlowHandler
	FlowHandler Redirects

	10.5. View Resolution
	10.6. Signaling an event from a View
	Using a named HTML button to signal an event
	Using a hidden HTML form parameter to signal an event
	Using a HTML link to signal an event

	11. Spring JavaScript Quick Reference
	11.1. Introduction
	11.2. Serving Javascript Resources
	11.3. Including Spring Javascript in a Page
	11.4. Spring Javascript Decorations
	11.5. Handling Ajax Requests
	Providing a Library-Specific AjaxHandler
	Handling Ajax Requests with Spring MVC Controllers
	Handling Ajax Requests with Spring MVC + Spring Web Flow

	12. JSF Integration
	12.1. Introduction
	12.2. Spring-centric Integration Approach
	12.3. Configuring web.xml
	12.4. Configuring Web Flow to render JSF views
	12.5. Configuring faces-config.xml
	12.6. Replacing the JSF Managed Bean Facility
	Using Flow Variables
	Using Scoped Spring Beans
	Manipulating The Model

	12.7. Handling JSF Events With Spring Web Flow
	Handling JSF In-page Action Events
	Handling JSF Action Events
	Performing Model Validation
	Handling Ajax Events

	12.8. Enhancing The User Experience With Rich Web Forms
	Validating a Text Field
	Validating a Numeric Field
	Validating a Date Field
	Preventing an Invalid Form Submission

	12.9. Third-Party Component Library Integration
	Rich Faces Integration
	Apache MyFaces Trinidad Integration

	13. Portlet Integration
	13.1. Introduction
	13.2. Configuring web.xml and portlet.xml
	13.3. Configuring Spring
	Flow Handlers
	Handler Mappings
	Flow Handler Adapter

	13.4. Portlet Views
	13.5. Portlet Modes and Window States
	Window State
	Portlet Mode

	13.6. Issues in a Portlet Environment
	Redirects
	Switching Portlet Modes
	Portlets and JSF

	14. Testing flows
	14.1. Introduction
	14.2. Extending AbstractXmlFlowExecutionTests
	14.3. Specifying the path to the flow to test
	14.4. Registering flow dependencies
	14.5. Testing flow startup
	14.6. Testing flow event handling
	14.7. Mocking a subflow

	15. Upgrading from 1.0
	15.1. Introduction
	15.2. Flow Definition Language
	Flow Definition Updater Tool
	Flow Definition Updater Tool Warnings
	argument parameter-type no longer supported
	inline-flow is no longer supported
	mapping target-collection is no longer supported
	var bean is no longer supported
	var scope is no longer supported

	EL Expressions

	15.3. Web Flow Configuration
	Web Flow Bean Configuration
	Web Flow Schema Configuration
	flow-executor
	flow-execution-listeners
	flow-registry

	Flow Controller
	Flow URL Handler
	View Resolution

	15.4. New Web Flow Concepts
	Automatic Model Binding
	OGNL vs EL
	Flash Scope
	Spring Faces
	External Redirects

	Appendix A. Flow Definition Language 1.0 to 2.0 Mappings

