PostgreSQL 10beta4 Documentation

The PostgreSQL Global Development Group

PostgreSQL 10beta4 Documentation
The PostgreSQL Global Development Group
Copyright © 1996-2017 The PostgreSQL Global Development Group

Legal Notice
PostgreSQL is Copyright © 1996-2017 by the PostgreSQL Global Development Group.
Postgres95 is Copyright © 1994-5 by the Regents of the University of California.

Permission to use, copy, modify, and distribute this software and its documentation for any purpose, without fee, and without a written
agreement is hereby granted, provided that the above copyright notice and this paragraph and the following two paragraphs appear in al copies.

IN NO EVENT SHALL THE UNIVERSITY OF CALIFORNIA BE LIABLE TO ANY PARTY FOR DIRECT, INDIRECT, SPECIAL,
INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING LOST PROFITS, ARISING OUT OF THE USE OF THIS SOFTWARE
AND ITS DOCUMENTATION, EVEN IF THE UNIVERSITY OF CALIFORNIA HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

THEUNIVERSITY OF CALIFORNIA SPECIFICALLY DISCLAIMSANY WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE SOFTWARE PROVIDED
HEREUNDER IS ON AN “AS-IS’ BASIS, AND THE UNIVERSITY OF CALIFORNIA HAS NO OBLIGATIONS TO PROVIDE
MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR MODIFICATIONS.

Table of Contents

PrEFACE .. e XXXV
1. What 1S POSIGrE@SQL? ... ettt XXXV
2. A Brief History Of POSIGrESQL .. .ccvvuiiiiiiiiieeiiii et XXXV

2.1. The Berkeley POSTGRES ProjeCtc..uuviviiiiiieiiiiiiecciiieeece e XXXVi
2.2, POSIOrESOS ... XXXVi
2.3, POSIOrESQL ..t XXXVil
3. CONVENTIONS ...ttt ettt ettt e et e e et e e e e e e e na s XXXVil
4. Further INfOrmationcoouuiiiiiii e XXXVil
5. Bug Reporting GUIEIINESuiiiiiiieieii e XXXVili
5.1, 1dentifying BUGSccevvneiiiiiieiiii ettt XXXVili
5.2. WHEt t0 REDPOIT ...ttt e XXXIX
5.3. WHere t0 REPOI BUGSccevvieiiiiiieeeiii ettt ettt x|
O N0 1o = TSP UP PP PPPPPTR PPN 1
L GEtING SEAEAveneeeei et 3
I 10 =] = (o EO ST SOP PP UPPPTTRUPPPIN 3
1.2. Architectural FUNDamMENtalSccouvuiiiiiiiee e 3
1.3. Creating @ Dal@haseoceevuiiiiii e 4
1.4, ACCESSING 8 DaADESEccvvneiiiii e 5
2. The SQL LBNGUBGEeevueeeeiiiieeeee ettt et e e e e 7
2.1 INEFOQUCTION ..ttt et e et e e 7
2.2, CONCEPLS ..eveeiet ettt ettt ettt 7
2.3. Creating aNew Talleoovunii e 7
2.4. Populating @ Table With ROWSccoiiiiiiiiiiieii e 8
25, QUEYING A TaADIE ...eiii e e 9
2.6. J0iNS BEWEEN TabIES ..ooviiiiiii e 10
2.7. AQOregate FUNCLIONScuuuneiiiii ettt e e e e 12
2.8 UPELES ...t 14
2.9, DEBLIONSeeiieieeeeie e 14
3. AGVANCED FEAIUMNESc.vei ettt ettt et e e s 16
130 B [L oo (8 1o o EO PP TOP PP 16
B2, VIBINS ettt 16
3.3 FOrEIgN KEBYS ..ot 16
B4 THANSACHIONS ...eeiti et ettt ettt ettt e e e e e e et e eene 17
3.5, WINAOW FUNCHIONSuiiiiii et 19
3.6, INNEITEANCE ...t e 21
7. CONCIUSION ..ttt et e e et eeena e 23
[1. The SQL LBNQUAJE ... eeeitieeeeite ettt ettt et e et e et e e e e et eeenaa s 24
4. SQL SYNEBX +evteeeetiee ettt e ettt e et e et et et e et e et e e e e e e e e aean 31
A1, LeXiCal SHUCKUMEcevveeieii ettt eaeas 31
4.2, ValUE EXPIrESSIONS ... eeieiieeeeiti e ettt ettt e et e e e 39
4.3. CaliNg FUNCLIONS ...ttt 52
5. Data DEFINITION ...ceeviiiiii e et et e 55
5.1 TADIE BASICS vt 55
5.2. DEFAUIT VAIUBS ...t 56
5.3, CONSITAINTS ..ttt ettt et e e e e e e 57
5.4, SysStemM COIUMNS ...ttt 64
5.5. MOdifying TableScoiiiiieii e 65
5.6, PrIVIIEOES ... e 67
5.7. ROW SeCUrity POIICIES ...ccevuniiiiii e 68
5.8, SCREMAS ... 74
5.9, INNEITTANCE ... e e e 78
5.10. Table Partitioningccuuuiiiiiiieiiii e 81
511, FOrEIGN DB ... cieeei ettt 1
5.12. Other Datahase ODJECESccevuiiiiiiii et 92
5.13. DependenCy TraCKingooeeeuuuieieiiieeeeii e 92

PostgreSQL 10betad4 Documentation

6. Data ManipUIAtioncouuiiiiiiiiii e e e e e e e e e e e e e ee 94
6.1, INSEMtING DAluuiiiii i 94
(S U1 o = (] oo DT - LN 95
(SR D= I i1 oo D - U 96
6.4. Returning Data From Modified ROWScooiviiiiiiii e, 96

2 8 = = 98
8 T O = 4T T PP 98
7.2. Tahl@ EXPIrESSIONScvviiiiiii e e e et e e e e e e e e et e e e e e eanaeeas 98
7.3, SEIECE LISIS 1iiiiiiieiiiii ettt 112
7.4. CombiNiNG QUETESc.uuiiiiiieiiie e e e e e e e e e e e e aaaas 113
7.5. SOMING ROWS ...t e e e e e e e e e e ees 114
T76. LIM T and OFFSET ..oovniiiiiiiiieeiiie e e e et e eeeai e 115
T.7. VALUES LISES ittt e et e e s 115
7.8. W TH Queries (Common Table EXPreSSioNS)cc.uvevvnieiiiieeiiieeiiieeeieeeinns 116

S T DT = T Y/ o1 PP 122
8.1 NUMEIIC TYPES . tttiitiiee i ettt et et e e e e e e e e e e e e et e e et e e ean e eaes 123
8.2, MONEAY Ty DS ittt ittt 128
LI @ o= = Tot (= G Y/ o= PPN 129
8.4. BiNary Dafa TYPES c.uuuiiiieiii e et et e e e e e e e e e e e e e eeaens 131
8.5, DaAE/TIME TYPES civtuiiiieiii et et et e e e e e e e e et e et e et eeaanas 132
S = T To = g N Y/ o 142
8.7. ENUMEIAEd TYPES oovuiiiiieiii et ettt e e e e e e e e e e e e aans 143
8.8. GEOMELNIC TYPES ... civtneiiieiiii e et e et e e e e e e e e e e e e e e e et e et e e aaeeaens 144
8.9. NEtWOrK AdAreSS TYPES ..ovuueiiieiii i eeiiee et e e e e e e e e e e e e e e e aneees 146
8.10. Bit SIHNG TYPES .nniiveieii ettt et e e e e e e e e e eees 149
8.11. TeXt SEACH TYPES . oeen ittt e e 150
B.12. UUID TYPE - ieiitiieeeiit ettt ettt ettt e e et e e e et e e e eaanaeeees 152
ST Q1 R 1Y/ o= PP 153
ST N S @ N Y/ o=~ ST 155
S I N = Y P 161
8.16. COMPOSITE TYPES vvuteiitneeiieeei e eie e e e e et e e et e e et e e et e et e e et e e e aaeeeaneeeen 170
8.17. RANGE TYPES ..ttt 176
8.18. Object 1dentifier TYPES ..vuuiiiii e e e e 182
8.19. PO SN TYPE oot 183
8.20. PSEUO-TYPES ... citteiii i ei et e et e e e e e e e e e e e e e e et e et 183

9. FUNCLIONS @N0 OPEIAIOIS ... cvvueiiiieieiee e ee e e e e e e e e e e e e et e et e et e e e eeens 186
1< I oo [or= B @ o= = (] £ 186
9.2. Comparison FUNctions and OPEratorsvevvuneeiineeiiiieeiieeeie e e e eeens 186
9.3. Mathematical Functions and OPEratorscccuveevieeiiieeiieeeiiee e eeaeeeens 189
9.4. String FUNCtions and OPEratorsSccuueeriieiiieeiiiee e e e e e eeaneeeees 192
9.5. Binary String Functions and OPEratorscccuuvevieeiiieeiineeiieeeeieeeaneeeens 206
9.6. Bit String Functions and OPEratorsuvveeuuieeriieeiiieeeieeeneeeeeeaneeaens 208
A = 1 (= ¢ TN\ (o 11 o P 209
9.8. Data Type Formatting FUNCLIONSccoviiiiiiiiin e 224
9.9. Date/Time Functions and OPEratorsc..oveveueeeiieiiiieeiie e e e eeaeeeees 230
9.10. Enum SUpPOrt FUNCLIONSccuuiiiiieeiiecee e e e e e e 243
9.11. Geometric FUNCtions and OPEratorsSceevvuieeiiieeiieeiii e e e e e eaanaes 243
9.12. Network Address Functions and OPEratorseeevuvevuiieeiiieeiiiieeiieeeaneens 248
9.13. Text Search Functions and OPEratorscoovvvveiiieeiiiieeiieeeeieeeei e eieeeen 250
9.14. XML FUNCLIONSeiiiii ettt e et e e e e e e 255
9.15. JSON Functions and OPEratorscuueeeuuieiiiieeiieeeiieeeiee e e eee e e e eannas 268
9.16. Sequence Manipulation FUNCLIONScoovviiiiiiiieiiiieceee e 276
9.17. Conditional EXPreSSIONSuueviviiiiieiiieeeieee e ee e e e e s e e e e 279
9.18. Array FUNCtions and OPEratorsScc.ueeuueeiinierieeriiieeiee e eaieeeaneeeens 281
9.19. Range FUNctions and OPEratorscc.uveivieeiieeiii e e e e e e e eaen 284
9.20. Aggregate FUNCLIONScuuiiii e e e e 286
9.21. WINAOW FUNCLIONSuuieeiiiii e e e e 294
9.22. SUDQUENY EXPrESSIONS ...vuuciiiieeiieiiieeet e e et e e e e e eeat e e et e e st e e e e eaneenen 296

PostgreSQL 10betad4 Documentation

9.23. Row and Array COMPAIiSONSevuuieiiieeiiieeeieesteesieeestneeatneeeteesanaaees 298

9.24. Set RetUrNing FUNCLIONSuiiii i e e e 301

9.25. System Information FUNCLIONSccovuiiiiiiiiiiiec e 304

9.26. System Administration FUNCLIONScouuiiiiiieiieeii e 319

9.27. Trigger FUNCHIONS .. .ouuiii et e e e e e e e et eeaaeees 336

9.28. Event Trigger FUNCLIONScouuiiiii e e e e 336

O Y oL o017/ = o] o PN 340
FO. 1. OVEIVIBIW Luueiiiii ettt e e et s e e et s e e e et a e e e et aeeeeatnaeaeees 340

J0.2. OPEIAIONS ittt ittt 341

10.3. FUNCLIONS ...ttt e et e e e et e e e e et e e e eetaaeeeee 345

O R 1 oI (o] - o = 347

10.5. UNI ON, CASE, and Related CONSIIUCESuuveviiiiieiiiiieeceiie e 348

10.6. SELECT OUtput COIUMNScovviciiiiecii e e e e e e e 349

T o (== USSP 351
00 O 1 oo 0 1o ISP 351
2 1 o L= G Y/ o === 352

11.3. MUItiCOIUMN INAEXES .. .ceveiiieeiei e 354

11.4. Indexes and ORDER BYcicvuiiiiiiiiiiieiiiii ettt e s 355

11.5. Combining MUltiple INAEXESoviinieiieeie e 355

12.6. UNIQUE INAEXES ...vneeeeeei et e e e e e e e e e e e e 356

11.7. INAEXES ON EXPrESSIONS ...vuivvieeiiiieii e eie e e e e e e e e e e e e et e e eaneesanees 356

11.8. Partial INAEXES .. .cevvviiieiiiii e eaens 357
11.9. Operator Classes and Operator Familiesc.cooevviviiiiieiii e, 359
11.10. Indexes and CollationSoevvueiiieiiiiiii e 361
1211, INAEX-ONIY SCANS ...cvviiiiinieii e e e e e e e anas 361
11.12. Examining INdeX USAQgEuviuniiiiieiii e e e e e e e e 363

N T L = A= o 365
2 O 1 1 oo (0 1o SO SUPPTTRSPP 365
12.2. TablesS @and INAEXEScoevviiiiiiii e 369

12.3. Controlling TexXt SEarchccuviiiiiiiii e 371

12.4. AddItional FEAIUMESuuiiiiiii e 377

D25, PaISErS .. ettt ettt ettt ettt 382

12.6. DICHONAITES ..vuieeiii ettt e e et e et e e e e e e ra e 383

12.7. Configuration EXamMPIEcouiiiiiiiiii e 392

12.8. Testing and Debugging Text SEarchcooovviveiiiiiiii e, 394

12.9. GIN and GiST INAEX TYPES ..evvuneiiiiiiieiiiiiee et e et e et e e e e eaenes 398
2250 O T 1= o ST o) oo o 399
2 T R 1] = o) PP 402

13. ConCUrrenCy CONLIOlccee e e r e e e e e aaas 403
G35 I 1 11 oo [0 1o PP 403

13.2. Transaction ISOIAONccvuvnieiiiii e e 403

13.3. EXPlICIt LOCKING «.cvvvteiiieei e e e e e e e e e e e e eeen 409

13.4. Data Consistency Checks at the Application Levelcccccocoviviiiiinnn. 414

T O (V= PP 415

13.6. Locking and INAEXESvvvniei e 416

14, P OIMANCE TIPS coivniiiieii ettt e e e e e e e e e e e e e et e e et e et e e aa e eens 417
14.1. USING EXPLAIL N Looi e 417

14.2. Statistics Used by the Planner ... 428

14.3. Controlling the Planner with Explicit JO N ClauseScc.oeevvvieviinieennnnnns 432

14.4. Populating @ Databasecc.ueiinieiiiieeie e e e e e e 433

14.5. NON-DUrable SEttiNGScvvvniiiieeii e e e e e e 436

15, Parallel QUETY ...ouniiiiii e e 437
15.1. How Parallel QUEry WOrKScovviiiiii e 437

15.2. When Can Parallel Query Be USed?ocuvviiiiiiiiiiiiiiiecee e 438

15.3. Parallel PIanscocovuniiiiiiie et 439

15.4. Parallel SEfEtYooveeeiiieiiis e 440

RIS o V7= g AN 41T o T (= (o o SO 442
16. Installation from SOUrCE COUEuuiiiiiii e 448

PostgreSQL 10betad4 Documentation

T S o g Y= £ o] o PP 448
16.2. REQUITEIMENES ..uuiii e e e e e e e e e e e e e e e et e e aaeeeanas 448
16.3. GELtNG ThE SOUICEciiiciii e e e e e 450
16.4. InStallation ProCeAUMEivieeiiiee e 450
16.5. Post-INstallation SEIUPc.ueiveicii e 461
16.6. Supported Platformsoiiiiiiiii e 462
16.7. Platform-specific NOESccvuiiii e e 463
17. Installation from Source Code 0N WINAOWSoveiiiiiiieiiiiiie e 470
17.1. Building with Visual C++ or the Microsoft Windows SDK 470
18. Server Setup and OPEratioNocvuueiiiierii e e e e e 476
18.1. The PostgreSQL USEr ACCOUNLcvuuiiieiiieeeieeeiee e e e et e e e e eaaeeaens 476
18.2. Creating a Datahase CIUSLEYoivvniiiiiiciie e 476
18.3. Starting the Database SErVErccouviiiiii e 478
18.4. Managing Kernel RESOUICEScovviiii i e e e e e e 481
18.5. Shutting DOWN the SEIVErcovuiiiiii e 490
18.6. Upgrading a POStgreSQL CIUSLErcccvueiiieiiiieeii e ee e e e 490
18.7. Preventing Server SPOOfiNgueierieiiiieii e e e e e 493
18.8. ENCryptioN OPtiONSccvuiiiiiieii e e e e e e e e eaas 493
18.9. Secure TCP/IP Connections with SSLccoviiiiiiiiiiieceeee e, 495
18.10. Secure TCP/IP Connections with SSH Tunnelsccovvvvvviiniiiiiinneeenn, 497
18.11. Registering Event Log on WINAOWSc..cveiiiieiiiieiii e eeeeaeees 498
19. Server ConfigUIAtioniiiiieii e e e e e 499
19.1. SEtting ParamMeterSivvi e e 499
19.2. Fil@ LOCAIIONS ...uueeeieie et ettt e et e et e e et a e e eeaaneeeees 502
19.3. Connections and AUtNENtICALTIONviiiiiiieiie e 503
19.4. Resource CoNSUMPLIONovuieiii e e e e e e e e e e e e e e et e e e eanas 508
19.5. WrIt€ ANEAH LOQ ..vviviiiii e 515
RS S = o) 1 o o 520
19.7. QUENY Planningccouniiiii i 525
19.8. Error Reporting and LOGGiNGcvuuvernieeiieeiieeiieeeiieeeieeeaeesinneeenneeennnas 530
19.9. RUN-TIME SEALISHICS ..oevevvieeeeii e e s 540
19.10. AUtOMALIC VACUUMINGivvneiieeiiii et e e e e e e e e e e e e et e e eteeeaneees 541
19.11. Client Connection DEfALISocvevuiieiiiiiii e 543
19.12. LOCK MaNagemeNtoviinieiiieeiieeieee e e e e e et e e e e e e e e st e e et eeaneens 551
19.13. Version and Platform Compatibilitycccoeeiiiiiiiiiiiiiiicin e, 552
e e o T P | o 554
19.15. Presat OPLiONS ...ccvuiiii i eiiiieeei e e e et e et e e e e e e e e e e e et e e et e e e eaans 554
19.16. CUStOMIZEA OPLIONSivviieieei e e e eaa s 556
19.17. DEVEIOPEr OPLIONSvuuiiiieiiiieiiii e e e e e e e e e e e e e e e eaeans 556
19.18. SN0t OPLIONS . .cvvueei e e e e e e e e e e e e e e e e e e e aaaaes 559
20. Client AUtNENLICALIONuueieiiis e e e e e 560
20.1. The pg_hba. conf Fileccooiiiiiii e, 560
20.2. USEr NAIME MBS ..ottt et 567
20.3. Authentication MethOSviiiiiiiiiii e 568
20.4. Authentication Problemsviiiiiiiiieiiie e 577
21, DAtahase ROIESciveiiiee e 578
21.1. Datahase ROIESeiiiiiiee et 578
21.2. ROIE ALIDULES ... e e eees 579
21.3. ROIE MEMDBErSNIP . ovecii e e 580
21.4. Dropping ROIES 581
21.5. DEfAUIT ROIES ...t e e e e e e e 582
21.6. Function and Trigger SECUNMLYcvvvuieiiiieiiii e e e ee e e e e e 583
22. Managing Databaseseiviiiiiie e 584
P T O Y= a1 T PP 584
22.2. Creating @ Databasecccuuieiiieiii e 584
22.3. Template Databasesoevvniiiiiiccie e 585
22.4. Database COonfigurationc..eeiuiiieiieeii e e e e e e e eaes 586
22.5. Destroying a DatabhaSecccvuiiiiiiiiiie e 587

Vi

PostgreSQL 10betad4 Documentation

22.6. TADIESPACES .. .cvvveeii e 587

P T oo 2 1o T 590
PG T I o oz LIS o] oo o AP 590

23.2. Coll@tion SUPPOITcveieeiee e e e e e e e e e et e et e e aaeeeens 592

23.3. CharaCter Set SUPPOIciii e e e e e e e e e e aes 596

24. Routine Database MaintenanCe TasKSuveeiiiiiieeriiiiiee e et e e 603
24.1. ROULINE VACUUMING ..uuiiitieii e e eee e et e e e e e e e e et s e s e e et e e et e e eaneeenns 603

24.2. ROULINE REINAEXING ©..cvvueiiiieiii e e e e e e e e e e e e e eaens 610

24.3. Log File MaNteNanCeuueeeueiiii e e e e e e e e e e e eaes 611

25. BaCKUP N0 RESLOTEiieiieii et e e e e e e e e e eanas 613
25. 1. SOL DUIMIP .ottitiiieeeie ettt e e e e e et e s e e e e e e et e s e e e e e e e aeaaan e e eeaeaeannes 613

25.2. File System Level Backupc..oevviiiiiiiiiiiicce e 616

25.3. Continuous Archiving and Point-in-Time Recovery (PITR)cccvveenn.. 617

26. High Availability, Load Balancing, and Replicationcccoovevieiiiiieiiineiinnens 628
26.1. Comparison of Different SOIUtiONScccuiviiiiieiiii e 628

26.2. Log-Shipping Standby SErVErScccvuiiiiiieiii e 631

26.3. FOVEN ..o 640
26.4. Alternative Method for Log Shippingcccvveviiiieiiieeii e, 641

26.5. HOt StANADY ..vvvviiieeiiiiiiiiee e e e e e e e e e e a e e e aaaae 642

27. RecOVErY CONfIQUIAiONcouuiii i e e e e e e e e e e e e e e aae e 650
27.1. Archive RECOVENY SELINGS ...uovvvniiiie e e 650

27.2. Recovery Target SEtNGSu.evvvneeiiieiiii e e e e e e e e e e e e eaans 651

27.3. Standby Server SELNGS ...vuiiv e 652

28. Monitoring Datahase ACHIVITYccvuiiiiieii e e 654
28.1. Standard UnNiX TOOIS ..euvuuieeiiiiie it 654

28.2. The Statistics COHECIONuiiiiiii e 655

28.3. VIEeWING LOCKS .. .couiiiiiiiic e 685

28.4. Progress REPOMINGvvvnieiii e e e e e e e e e e e e s e e e e aaeees 685

28.5. DYNAMIC TIaCiNG ..vuueiiieiiiieeiiieeie e e e e e e e e e e e e e e e e s e e e e e aaeeanns 687

29. MOoNItoring DiSK USAQE .. .cvuuiiiiiiiii i et e e e e e e e 697
29.1. Determining DiSK USAQEuuiiviiiiiiieiii e e e e e e e et e e e 697

29.2. Disk FUIl FaIlUIccceeieiiii e e e e aaaaes 698

30. Reliahility and the Write-AhEad LOguvvvvieiiiicii e e 699
O = = T] 1 Y SSPPTRRN 699

30.2. Write-Ahead Logging (WAL) ...oouiiiiii e 701

30.3. ASynchronous COMMITuieiunieiiiieei e e e e e e e e e eaaeens 701

30.4. WAL Configurationccuueeiuuieiiieeiiee e eese e e ee e e e e e e st e e ean e eeees 702

30.5. WAL INEEIMEIS ..ttt e e et e e e e e et e e eees 705

G I oo o= I = 3= o] o= [o KOS 707
B . o o= 1o o USSR 707

G IS U 1= v] o1 Lo o P 708

G G I 0o 1T £ UPP 709

G I (== e o LS 709

315, ATChITECIUIE ...t 710

13 ST 1 o g (o oo [710

S o) YRR 711

31.8. Configuration SEINGSuocvunieiiieiiie e e e e e e e e 711

31.9. QUICK SEIUD ... eeeeeeeieii et e e e e e e e e 711

A B L= | (== o T 1= = 713
32.1. RUNNING the TESES ...iviciii e e e e e e e 713

K == B Y 1 1 o) o S 716

32.3. Variant Comparison FilEScoouiiiiiiiiii e 718

K I o == £ UUPST 719

32.5. Test Coverage EXaminaionc.uvveiuneeiiieiiie e e e e e e e eaaeeeeen 719

IV, Clent INEEIACES ...vuiiiie e a s 720
33, 1HBPG = C LIBrary ..ooveei i 725
33.1. Database Connection Control FUNCLIONSccccviiiiiiiiiieiii e, 725

33.2. ConNeCtion StatUS FUNCLIONSuuuieiiiiiieeeiii e e e 737

vii

PostgreSQL 10betad4 Documentation

33.3. Command EXeCUtion FUNCLIONSooeviiuiieeiiiiieeeeiie e 742
33.4. Asynchronous Command ProCESSINGcuuvvirieiiieeiiieeeiieeeiieeeineeaieeaanens 757
33.5. Retrieving Query Results ROW-BY-ROWccccoieiiiiiiiiiiii e, 761
33.6. Canceling QUENES IN ProgresSuevvuneeiiiieeiieeeieeee e e ee et e e e e e aens 762
33.7. The Fast-Path Interfacecoovuiiiiiiiiii e 763
33.8. Asynchronous NOEIfiCatioNcc.uviiiiiiiii e, 764
33.9. Functions Associated with the COPY Commandccccvveevviiiineeeiiinnennns 764
33.10. CONLIOl FUNCHIONS .. vteeiiiii et e et e e e e et e e e et e e e eaan e eeene 768
33.11. Miscellaneous FUNCLIONSuuiiiiiiiiee e e 770
33.12. NOLICE PrOCESSING ©.uevvtueeeineeiieeei e eie e e e e et e e e e e e e e et e e et e e et e eaneeaens 773
33.13. EVENE SYSIOIM .ouuiiiiiii e e 774
33.14. Environment VariableSovviiiiiiiiiiii e 780
33.15. The Password FIleooeuuiiiiii e e e 782
33.16. The Connection Service Fileoviiiiiiiiiiii e 782
33.17. LDAP Lookup of Connection Parametersccoceuveviiieeiiieeiinieeieeeineens 782
3318, SSL SUPPOIT . .eeei ittt 783
33.19. Behavior in Threaded Programscoceuieiiiieeiin e cn e 787
33.20. Building [ibpg Programsccuiiiiii i 788
33.21. EXaMPIE PrOgramSciiiieiiiieeiii e e e e e e e e e e e e e e e e e e eaes 789
7/ I (o[-l @) o[ox P 799
172 50 I g1 1o [0 o ' o PP 799
34.2. Implementation FEAIUIESocvuuiiiii e e 799
34.3. ClENt INtEITACES . .oevvvi et eees 799
34.4. Server-Side FUNCLIONSuuiiiiiiii e e et e e e eees 803
34.5. EXAMPIE Programcouuiiiii e e e e e e e e e e e 804
35. ECPG - Embedded SQL iNC ..ouvuiiiiiii et 810
L T I =T o o= o | 810
35.2. Managing Database CONNECLIONSoeivuiiiiiieiiieeiie e e e e e e e e 810
35.3. Running SQL COMMANGSccvuuiiiiiieiiiie e e e e e e e eaens 813
35.4. UsSing HOSt VariableScovuiiiiici e 815
35.5. DYNAMIC SQL ..oeviiieiiiiie et 828
35.6. POLYPES LIbrary ..o..uceeeiiii i 830
35.7. USING DESCIIPLOr ATEBScivvieeiieiiiie e e e e e e e e e e et e e e eaa e eaes 843
35.8. Error Handlingccvueiiiiiiii e e e e e 855
35.9. PreproCessor DITECHIVESu.iiii i e e e e e e e e e e 861
35.10. Processing Embedded SQL Programscc.uveevieiiiiieiiieeeiiieeiineeeieeeann 863
35.11. Library FUNCLIONScuuiiiiieii e e e 864
35.12. Large ObJECESivuciiiieiii et 865
35.13. CH+ APPHCALIONS ...cevveiii e e e 866
35.14. Embedded SQL ComMManScouuiiiiieiiiieeii e e e e e 870
35.15. Informix Compatibility MOdecoeeiiiiiiiii e, 891
LI S 101 1= 11 =P RTN 905
36. The INformation SChEMAuiiiiiii e 908
36.1. The SChEMA ... e 908
36.2. DAIA TYPES .eueeeeeii ettt ettt e et e e e e e 908
36.3.informati on_schema_catal og namecccoccceveiiiiiiieee e, 909
36.4.adm ni strable role _authorizationscccoeeiiiiiiiiiin e, 909
36.5. applicabl @ rol €S .o 909
36.6. At 11T DUL ES oot 910
36.7. Char @Ct I _SEL S it e 913
36.8. check_constraint_routine_usageccoocceeveviiieiiiieciin e, 914
36.9. CheCK_CONSErai NES .oiiiiiiii e 914
36.10. COI 1 @t T ONS 1oviieiiiii e 915
36.11.col l ati on_character_set _applicabilityccccooriiiiniinninannn. 915
36.12. COl UM_dOMBI N_USAQE ..eievniiiiiieiiiee e e e e e e e e e ea e 916
36.13. COl UNM_OPL i ONS ooviiiiii e e e 916
36.14. COl UMM_Pri Vil €0ES ooiiiiiiii e 916
36.15. COl UNM_UAL _USAQE .uiiiiiieiii i e e e e et e e e e 917

viii

PostgreSQL 10betad4 Documentation

36.16. COl UNMMIS Lot e et e e e 918
36.17.constrai Nt _COl UNM_USAQE ...uuiiivniiiiiieiiie e eei e e e e e eaaee s 922
36.18. constrai nt_tabl @ USAgec.cceuviiiiiiiiiii e 923
36.19. data_type priVvil €0€sS .o 923
36.20. dOMBI N_CONSE T A NE'S 1ouiiiiiiiiii e e e 924
36.21. dOMBI N_UAL _USAQE .iiiviiiiii e e e e e e e e e e e 924
1 o220 s (o] 11 U o K-S PSPPI 925
36.23. €l EIMENE L Y PES i 928
36.24. enabl €d_r 0l €S ..o 930
36.25. forei gn_data_ wrapper_Opti ONScoocviiiiiiiiiiii e 930
36.26. fOrei gn_dat @ W apPPer'S .oiiiiiiiiii e 931
36.27.forei gn_Server_OpPti ONS ..oiiiiiiiiiiiii e 931
36.28. f OF €I gN_SBI VI S 1otiiiiiieiii e e e et e e e e e e e e et e et e e ees 931
36.20.foreign_tabl e Options ...ccooiiiiiiiiii i 932
36.30. forei gn_tabl €S ..o 932
36.3L. KEY_COl UM _USAQE ..iiiviiiiii i e e e e et e e e e et e et eeaaee e 933
36.32. PAI AIMBL B S ittt 934
36.33. referential _constrainNtsccoooiiiiiiiiii i 936
36.34. 10l €_COl UM _grant's ..cocouiiiiiiii e 937
36.35. 10l € routinNe_grants ...cooiiiiiiiiie e 937
36.36.r0l e _table grantsoocooiiiiiiiii 938
36.37. 10l €_UAL _grant'S ..oiiiiiiiiiii e e 939
36.38. 10l €_USAQE _grant S ..iiiiiiiiiii e 939
36.39. roUt i NE_Pri Vil BOES coiiii i 940
36.40. T OUL T MBS oiiiiiiiieeeii et e e e et e e et e e e eaa s 940
36.41. SCREMAL @ ooivvviii i 945
36.42. SEUUEBINCES ouiiiiiniiiiie et e e e e e e e e e e e e e e e e e e 946
36.43. SOl T AL UM @S ivniii i 947
36.44.sql _inmplenmentation_ info ..o 948
36.45. SOl | @NQUAGES ..ucivniiiiii e 948
36.46. SOl _PACKAGES ovviiii i 949
36.47. SOl PAIt S ciiiiiiii i 949
36.48. SOl ST ZI N weriiiiiiii e 950
36.49.sql _Si Zi NG _Profil es i 950
36.50.tabl @ CONStrai NES ..o e 950
36.5L. tabl € Pri Vil 0ES . 951
36.52. 1 ADI €S euiiiiii 952
36.53. T FANST OF ITB ..o e 953
36.54. triggered _update Col UMMS ...ocoiiiiiiiiii e 953
TSIt ST o e [0 =] = 954
36.56. Ut _Pri Vil €0ES oo 955
36.57. USAQE_Pri Vil BOES .o 956
36.58. user _defined tYPeS .o 957
36.59. user _mappi NG_OPLi ONS ..iiiiii e 958
36.60. USEI IMBPPI NUS wuuiiitieiiieeiii e i e e e e e e e e e e e e e e e st e e e eanaeeeen 959
36.61. Vi EW _COl UMMN_USAQE .ivvniiiiiciiii e e e e e e e e 959
36.62. Vi EBW I OUL i NE_USAQE t.vueieiieiii et eeeeee e e e e e e e e e e e e e eeen 960
36.63. Vi eW tabl € _USAQE .iovvviiiii e 960
B0.04. Vi BWS oouiiieiiiiii e et e et 961
AV = A= . (0o = 0 1411 Vo PPN 962
7. EXIENAING SQL ...eeviieiiii e 967
37.1. How Extensibility WOrksSc.ooiiiiiiiiiiii e 967
37.2. The PostgreSQL TYPE SYSIEM ...vuviiiiiciie e e e 967
37.3. User-defined FUNCLIONSccuuiiiiiii e 969
37.4. Query Language (SQL) FUNCLIONScccvuiiiiiieiii e e e e e 969
37.5. FUNction OVerloadingooeeeuiiiiiiiiiie e 983
37.6. Function Volatility Categoriesuuveiiiieiiiieiiiieee et eeie e e e e 984
37.7. Procedural Language FUNCLIONSc..eviiieiiieei e ee e e e 986

PostgreSQL 10betad4 Documentation

37.8. INternal FUNCLIONSuuiiiiiiii e 986
37.9. C-Language FUNCLIONSoivuniiiiie e e e e e 986
37.10. User-defined AQQregaesocvvuiiiiii e e 1007
37.11. USer-defined TYPES ..u.ivun it e e e e 1013
37.12. User-defined OPEratorsccvuuieiiiieeiiieeiiieeei e e e e e e e e e e e ennes 1017
37.13. Operator Optimization INfOrmMationccceceuiieiiiieiiii e, 1018
37.14. Interfacing EXtensSions TO INAEXEScvvvnieiiiiiii e 1022
37.15. Packaging Related Objects into an EXteNsioncccoeevvieviiieeiineennnn. 1034
37.16. Extension Building INfrastruCturecocooveeiiiiiiiiecie e, 1041
G T I o o = N 1044
38.1. Overview of Trigger BEhaviorcccceviviiiiiiiiii e, 1044
38.2. Visibility of Data ChangeSvvevuiiiiiieiii e e e 1046
38.3. Writing Trigger FUNCLIONS IN Coviiiiiiiicci e 1047
38.4. A Complete Trigger EXamplecoovuneiiiiiiiii e 1049
L T Vo A N T o [~ £ 1053
39.1. Overview of Event Trigger BEhaViorcoocvvieiiiiiiiiecie e, 1053
39.2. Event Trigger FIring MalriXcccuuieiieeiiiieiii e e 1054
39.3. Writing Event Trigger FUNCtionsSin Ccooooiiiiii i 1058
39.4. A Complete Event Trigger EXamplecooviviiiiiiiiii e, 1059
39.5. A Table Rewrite Event Trigger EXampleooeviiiiiiiiiiieciiiieceeeiiees 1060
40. The RUIE SYSLEIM .. .eeiiieeeee et e e et eeeeaa e eeeees 1062
40.1. ThE QUENY TIEE .uuniiiiieii e ettt e e e e e e e et e e e e aaeees 1062
40.2. Views and the RUIE SYSEMcovniiiii e 1064
40.3. MAeriaiZed VIBWS ... it e e 1070
40.4. Rules on | NSERT, UPDATE, and DELETEcccviiiiviiiinieiiiieeceii, 1073
40.5. RUIES aNd PrIVIIEES .. .covneii e 1083
40.6. Rules and Command SEALUSc.uuieiiiiiiieeiiiiieeecen e e 1085
40.7. RUIES VErSUS TIIQOEN'S c.vueiiieeiiiieiiiieeeee e e e e eae e et eeeeteeete e et e eaaeeaanaaes 1085
41, Procedural LanQUABOESuevuunieiieeiiiieeiie e e eeesteeeae e st e et e e st e estnaeeaaeaanaens 1088
41.1. Installing Procedural LangUagESccuevviieiiieiiiieciineee e ee e e 1088
42. PL/pgSQL - SQL Procedural LangUagecccuuvviinieiiieeiiii e e eee e e e 1091
A I @Y= VPSPPSR 1091
42.2. Structure of PL/PGSQLivveieiie e 1092
42.3. DECIArAHONS ...t 1094
O e d o (=== 0] 1 1099
42.5. BASIC SEALEIMENESuiiieiiiieeieii ettt et e e e e e e e eaeens 1099
42.6. CONLTOl SITUCLUMNES ...t e e e e e eeaanns 1107
A O 1 o = T PP UP TP 1120
42.8. Errors ant MESSAgESvuuevvreiiieiiiiee e e ee e e e e e e e e e et e et e e e e aanaes 1125
42.9. Trigger PrOCEAUIESuiiiiieii e e e e 1127
42.10. PL/pgSQL Under the HoOdccouiiiiiiiiiiici e, 1135
42.11. Tips for Developing in PL/PGSQLuovvvniiiiiciieece e, 1138
42.12. Porting from Oracle PL/SQLccovuiiiiiieiiieeee e 1141
43. PL/Tcl - Tcl Procedural LanQUagEcceuueiiiieiiiieeiii e e e e e e e eaaee e 1151
T I @Y= VPSPPSR 1151
43.2. PL/Tcl Functions and Argumentsccuuveviieeiineeiiiieeiieeeieeeei e eeaeeeens 1151
43.3. Data Values in PLITCl ..oooeeiiic e 1153
43.4. Globa Datain PLITCl ..ouuuiiiiiii e 1153
43.5. Database AcCeSS From PL/TCl ...uvviiiiiiiiii e 1154
43.6. Trigger Procedures in PLITCl ..o 1156
43.7. Event Trigger Procedures in PLITCl ...uoovviiiiiiice e 1158
43.8. Error Handling in PL/TCl ...ccvniiiii e 1158
43.9. Explicit Subtransactions in PL/TClcooviiiiiiiiie e 1159
43.10. PL/Tcl CONfigUIationcceuuieiiiieeieeeeie e e e e e e e e e e e e e e e e eenen 1160
43.11. Tcl Procedure NEMESviiiiiiieeiiii e e et e e e e 1160
44, PL/Perl - Perl Procedural Languageoevvueeiiieeii e eeieeee e e e e e e e e 1162
44.1. PL/Perl Functions and ArguMENESccuuieiiiieeiiieeeiieeeee e e eaineeaieens 1162
44.2. Data Values in PLIPErl ..o 1166

PostgreSQL 10betad4 Documentation

A4.3. BUIE-IN FUNCHIONS ...coeviiecc e 1166

44.4. Globa Values in PLIPENooiiiiiiccei e 1170

44.5. Trusted and Untrusted PL/Per|oviiiiiiiiiiiiiiiieee e 1171

Y T o I = 4 I I T o L= 1172
A4.7. PLIPerl EVENt TIIQOEIS . ivvveiiiieiiii e e e e e e e e et e e e et e e e eens 1174
44.8. PL/Perl Under the HOOooviiiiiiiiiii e 1174

45. PL/Python - Python Procedural Languagec.oovevvieiiieiiiieciieeeeeee e 1176
45.1. Python 2 vS. PYthOn 3 ... 1176

45.2. PL/PYythOn FUNCHIONScvviiiici e 1177

A5.3. DAA VAIUBSuiiiiiii et 1178

45.4, SNaNG Dalal .. .ccvuiiiiieiiii e 1183

45.5. Anonymous Code BIOCKSovvuiieiiiieii e e 1183

45.6. Trigger FUNCHIONScivviiii e e e e aaa s 1184

A5.7. DAADASE ACCESSvunieieiiii e et e et e e e et e e et e e e eaaan 1184

45.8. EXplicit SUDLraNSaCioNSooivuiieiiiee e e 1188

45.9. Utility FUNCHIONSuiiiiiciii e e e e e 1190
45.10. Environment VariableScooivuiiiiiiiiiii e 1191

46. Server Programming INtErfaceooouviiiiiii e 1192
46.1. INterface FUNCLIONScovviieeiii et e et e e e ea e eees 1192

46.2. Interface SUPPOrt FUNCLIONScvvveiii e e e e 1226

46.3. Memory Managementc.vvuviuieiiiiiie e 1234

46.4. Visibility of Data Changesccuuviiiiiiiiiiiiii e 1244

4B.5. EXAMPIES ...iiniiiiii e 1244

47. Background WOTKEr PrOCESSEScccuuiiiieiiiietiiee e et e e e e e et e et e e e aanas 1248
48. LogiCal DECOUING ...vuuiiiieiiiieii e e et e e e e e e e e e e et e e et e e et e e aaaees 1251
48.1. Logical Decoding EXampPleScouviiiiiiiiiiicii e 1251

48.2. Logical Decoding CONCEPLSuuevvueeiieeiiieiiieeei e e e e e e e e e eaaeees 1253

48.3. Streaming Replication Protocol Interfacecccoveviiiiiiiiiiiiiiiineceeeenn, 1255

48.4. Logical Decoding SQL INtErfaceccuuveiiiiiiiiiieii e 1255
48.5. System Catalogs Related to Logical Decodingcoocvvveevveiiieiinnennnnn. 1255

48.6. Logical Decoding OUtpUt PIUGINSccvuiiiieiieeii e eei e e 1255

48.7. Logical Decoding OULPUL WIHLEISucvvieiiiiiciie e 1259

48.8. Synchronous Replication Support for Logical Decodingccocevvneennnn. 1259

49. Replication Progress TraCkingoevuuieiiiieiiiieeie e e e e e e e e e s e saneens 1260
VL REFEIBNCE ... ettt et ettt e e e e e 1261
S @ I o 410170 1266
A B RT ittt 1270
ALTER AGGREGATE ...ttt ettt e et e eeeaanns 1271
ALTER COLLATION .ttt e e e e e et e e e es 1273
ALTER CONVERSIONoiiiiiiiiiiieeiiii ettt e et e e 1275
ALTER DATABASE ..o 1276
ALTER DEFAULT PRIVILEGESccoiiiiiiiiii e 1278
ALTER DOMAIN L. e et e e 1281
ALTER EVENT TRIGGERcccuuiiiiiiiiiieeiii e 1284
ALTER EXTENSION ...uuiiiiiiiieiiiii ettt eeneas 1285
ALTER FOREIGN DATA WRAPPERcccuiiiiiiiiiieiiiin e 1288
ALTER FOREIGN TABLE ...cootiiiiiii e 1290
ALTER FUNCTION L.uiiiiiii ettt e e e e 1295
ALTER GROUP ..ottt e e et e eeenens 1299
ALTER INDEX ..ottt e et e et e e e e 1301
ALTER LANGUAGE ...ttt 1303
ALTER LARGE OBUJECT ...ouuiiiiiiiiieiiiinie et e et e et e et e e et e e e ean e 1304
ALTER MATERIALIZED VIEWccooiiiiiiiiiie et 1305
ALTER OPERATOR ..ottt e e eeeea e e eees 1307
ALTER OPERATOR CLASS ...ttt ettt e e 1309
ALTER OPERATOR FAMILY oottt 1310
ALTER POLICY oiiiiiiiii ettt e e 1314
ALTER PUBLICATION ..ottt 1316

Xi

PostgreSQL 10betad4 Documentation

ALTER ROLE ..ot 1318
ALTER RULE ... 1322
ALTER SCHEMA ..o 1323
ALTER SEQUENCE ..o 1324
ALTER SERVERcoiiiii e 1327
ALTER STATISTICS ... 1329
ALTER SUBSCRIPTIONcoiiiiiiiiiiiiiie e 1330
ALTER SYSTEM ..o 1332
ALTER TABLE ..o 1334
ALTER TABLESPACE ... 1348
ALTER TEXT SEARCH CONFIGURATIONoiiviiiiiiiiiiineineii e, 1350
ALTER TEXT SEARCH DICTIONARY ..ot 1352
ALTER TEXT SEARCH PARSERcociiiiiiiiii e, 1354
ALTER TEXT SEARCH TEMPLATE ...t 1355
ALTER TRIGGER ..o 1356
ALTER TYPE ..o 1358
ALTER USER ..o 1361
ALTER USER MAPPING ..ot 1362
ALTER VIEW .o 1363
ANALYZE ..o 1365
BEGIN ..o 1367
CHECKPOINT .t 1369
L O SE . 1370
CLUSTER ..o 1371
COMMENT Lo 1373
COMMIT e 1377
COMMIT PREPAREDcooviiiiiiiiiic e 1378
GO Y 1379
CREATE ACCESS METHODccuiiiiiiiiiiiciii e 1389
CREATE AGGREGATE ...t 1390
CREATE CAST o 1397
CREATE COLLATION L..iiiiiiiiiiiiii e 1401
CREATE CONVERSION ..ottt 1403
CREATE DATABASE ..o 1405
CREATE DOMAIN ..ot 1408
CREATE EVENT TRIGGERooiviiiiiiii e 1411
CREATE EXTENSIONooiiiiiiii e 1413
CREATE FOREIGN DATA WRAPPERccoooiii 1415
CREATE FOREIGN TABLE ..o 1417
CREATE FUNCTION ..ottt 1421
CREATE GROUP ..ottt 1429
CREATE INDEX ...t 1430
CREATE LANGUAGE ... 1436
CREATE MATERIALIZED VIEW ... 1439
CREATE OPERATOR ...ttt 1441
CREATE OPERATOR CLASS ...t 1444
CREATE OPERATOR FAMILY .o 1447
CREATE POLICY ..ot 1448
CREATE PUBLICATION ...ttt 1452
CREATE ROLE ...ooiiiii e 1454
CREATE RULE ..o 1459
CREATE SCHEMA ..o 1462
CREATE SEQUENCEciiiiiiiiiii e 1465
CREATE SERVER ...t 1469
CREATE STATISTICS ...t 1471
CREATE SUBSCRIPTIONouiiiiiiiii e 1473
CREATE TABLE ..o 1476
CREATE TABLE AS ... 1494

Xii

PostgreSQL 10betad4 Documentation

CREATE TABLESPACEoiiiiii e 1497
CREATE TEXT SEARCH CONFIGURATIONcooiiiiiiiiiiiiie e, 1499
CREATE TEXT SEARCH DICTIONARYooiiiiiiiiiiiiiie e 1500
CREATE TEXT SEARCH PARSER ...t 1502
CREATE TEXT SEARCH TEMPLATE ..., 1504
CREATE TRANSFORM ..ottt 1505
CREATE TRIGGERociiiiiiiii e 1507
CREATE TYPE ..o 1513
CREATE USER ...coiiiiii e 1522
CREATE USER MAPPING ..ot 1523
CREATE VIEW Lo 1525
DEALLOCATE ..o 1530
DECLARE ..o 1531
DELETE . o 1534
DISCARD ..ot 1537
DO e 1538
DROP ACCESS METHODcoiiiiiiiiiiiiieiici e 1540
DROP AGGREGATE ...t 1541
DROP CAST oo 1543
DROP COLLATION .ottt 1544
DROP CONVERSIONouiiiiiiiiiiiiiiii e 1545
DROP DATABASE ..o 1546
DROP DOMAIN .ot 1547
DROP EVENT TRIGGERcciiviiiiiiii e 1548
DROP EXTENSION ...couiiiiiiiiic e 1549
DROP FOREIGN DATA WRAPPERccociiiiiii e, 1550
DROP FOREIGN TABLEooiiiii e 1551
DROP FUNCTION ..ottt 1552
DROP GROUP ...ttt 1554
DROP INDEX ..ottt 1555
DROP LANGUAGE ... oot 1557
DROP MATERIALIZED VIEW ... 1558
DROP OPERATOR ...ttt 1559
DROP OPERATOR CLASS ..o 1561
DROP OPERATOR FAMILY oo 1563
DROP OWNEDoiiiiiiiiiiiiii e 1565
DROP POLICY ..ttt 1566
DROP PUBLICATION ..ottt 1567
DROP ROLE ..ot 1568
DROP RULE ..ot 1569
DROP SCHEMA ... 1570
DROP SEQUENCEcoiiiiiiiii e 1571
DROP SERVER ...t 1572
DROP STATISTICS ... 1573
DROP SUBSCRIPTION ..ottt 1574
DROP TABLE ... 1575
DROP TABLESPACE ..o 1576
DROP TEXT SEARCH CONFIGURATIONooiviiiiiiiiiiiiiiic e 1577
DROP TEXT SEARCH DICTIONARY ...couiiiiiiiiiiie 1578
DROP TEXT SEARCH PARSER ..ot 1579
DROP TEXT SEARCH TEMPLATE ..., 1580
DROP TRANSFORM ...ttt 1581
DROP TRIGGERouiiiiiiiiiii e 1582
DROP TYPE ..o 1583
DROP USER ..ottt 1584
DROP USER MAPPINGouiiiiiiii e 1585
DROP VIEW .o 1586
END o 1587

Xiii

PostgreSQL 10betad4 Documentation

) O U N I PP 1588
EXPLAIN Lo e 1589
FET CH e 1594
GRAIN T et 1598
IMPORT FOREIGN SCHEMA ...t 1605
IN S E R T ettt et e 1607
1S I PP 1614
LOADD it 1616
L O K ittt et e e aaae 1617
MOV E oottt aaans 1620
N[O 1 1 PP 1622
PREPAREottt 1625
PREPARE TRANSACTION ...ttt e et e et e e 1628
REASSIGN OWNEDuiiiiiiiiieiiiiie ettt et e et eeenenns 1630
REFRESH MATERIALIZED VIEW ...c.ouiiiiiiiien e 1631
REINDEX ... ittt e e e e e e e e et e e e e e 1633
RELEASE SAVEPOINT ..ottt e s 1636
RESE T .ttt 1637
REVOKE ..ottt e e 1638
@ I I ¥ L 1 TSP 1642
ROLLBACK PREPAREDcuiiiiiiiiiiiiiiie ettt e e e eeenns 1643
ROLLBACK TO SAVEPOINT ...ttt e e 1644
SAVEPOINT Lottt e e e e e e e e e aa s 1646
SECURITY LABEL ..ot 1648
SE L T it 1651
SELECT INTO ittt et e et e e et e e e ennns 1671
SE T e e 1673
SET CONSTRAINTS ..ottt e e e e e eeaes 1676
S I (O PP 1677
SET SESSION AUTHORIZATION ...uuiiiiiiiiieeeiii e 1679
SET TRANSACTION ..ttt et e et e eeeni e eaes 1681
SHOW e 1684
START TRANSACTION ..oouiiiiiiiiieee e e s 1686
TRUNCATE ..ottt e e e e e e e e ara s 1687
UNLISTEN L.t e et e e et e e e ena s 1689
L N I PSP 1690
VACUUM L. e ettt e et e e et e e e eat e aeens 1695
VALUES ..o e e e e et e aan 1698
I1. PostgreSQL Client APPlICAIONSuuiiiiieeiii e e e e e 1701
CIUSLEIAD ..o e 1702
(o= 1= 0| o 1PN 1705
(0= (S T PP 1708
01 0] 0o | o S 1712
(01 0] 11 P 1715
1< 0: oo PP PRPRPR 1718
PG _DESEDACKUD ... 1720
0701070 o TN 1727
o100) T 1739
o700 L0 o TP 1742
PO AUMPAIL ..o 1754
[T TS (== |V N 1760
[T T = o= AV L=V 1762
[oTo T (= o1/ oo o= N 1766
1o (== (0] (PP PPRPPPIPRN 1770
01 o | RN 1779
=T 070 1= | o TP 1816
(2= e U 1H 0 o o PSP 1819
[11. PostgreSQL Server APPlICaLiONScvuuiiiiiieeii e e e e e eeaaes 1823

Xiv

PostgreSQL 10betad4 Documentation

TNTEAD e e 1824
PY_arChiVECIEANUD i 1828
[oTo T w0 a1 101 [=1 - NN 1830
oo N | S 1831
Lo T = = A1 | 1836
o To T (=111 o P 1839
10 T (=S)Y 1841
o To T === A (142 Vo 1842
o100 oo =" [TP 1846
o102z Lo L1 4o o 1853
105 0 === PPN 1855
POSIMIBSEE ...ttt 1862
RV I 1 1= 0= PSP 1863
50. Overview of PoStgreSQL INtENElScovuiviiiiiiecc e e e 1869
50.1. The Path Of @ QUETNYiiiniiiici e e 1869
50.2. How Connections are Establishedccooovviiiiiiiiiiiiiicc e 1869
50.3. ThE Parser StAgE ...uuivvneiiii e et e e e e e e e eens 1870
50.4. The PostgreSQL RUIE SYStEMcuvuiiiiiiiiieeeiiie e 1871
50.5. Planner/OptiMiZErccuuiiiiiieii e e e aaa s 1871
S O = o U (o TP 1873
Y ISV 1< 0 (IO - [0 o 1874
oY I @Y= V= 1 SRR 1874
51,2, PO _A0GI €A & it 1875
LY G T o T o - 1o PP 1878
LY I o To = 11 £ 0] o PP 1878
LY I o To = 101 0] S o o PP 1879
B5L.6. pg_at trdef oo 1880
BL7.pg_attribut @ oo 1880
B5L.8. PO _AUL NI d oo 1883
51.9. pg_aut h_mMBNDErS .. 1884
D100, PO CaAS T ittt 1885
BLAL PO Cl @SS it 1886
LY I 2 o To T o2 o1 I - Y o 1 o] N 1890
Loy I RS o To T X o] 1 11 A - Y I o | PN 1891
Loy I S o To T X o] 0 A VZ=Y G =Y I o PN 1893
51.15. pg_dat @DaSe ..ccvuiiiiiiiii 1894
51.16. pg_db rol e SettinNg .coociiiiiiiiii e 1896
51.17. pg_defaul t _acl ..o 1896
Lo I S 0 o To o =Y 11 o (o RPN 1897
Lo I K T o To e (=YY of g I o) A 0 o [P 1898
LY 2O o To T = 0 16 o PP 1899
Loy W2 O o To TR =A V=1 o | A A o Lo [1899
51.22. PG _EXE ENST ON civiniiiiiiii et e e e e 1900
51.23. pg_foreign_data W apper ...cccccooeiiiiiiiiieeii e e 1901
51.24. PG _fOr €I N _SEI VeI ittt e 1901
51.25. pg foreign tabl @ .o 1902
Y 2 T o To T T o 1= G 1902
B5L.27. PO i NNEI T 1S i e 1905
oy W2 S I o To T VI S] Y2 TP 1905
LY 2 I o To TR - Y [1V = Vo = PN 1906
51.30. pg_l argeobj Ct ... 1907
51.31. pg_l argeobject_netadataccoeeeiviiiiiiiiiiiii e 1908
51,32, PO _NAIMBSPACE ouiiiiitiie e 1908
51.33. PO _OPCl @SS wuniiiiiiiiii i 1909
5134, PO _OPEI AL OF ouieiiiiiiiie e 1909
51.35. PG _OPf ami [Y oo 1910
51.36. pg_partitioned tabl eccooiiiiiiiiii 1911
51.37. pg _Pltenpl at @ oo 1912

XV

PostgreSQL 10betad4 Documentation

51.38. PO POl i CY crrtiiiiiie e 1913
LY IRC 1 o To T o] (o 1o R PP 1913
51.40. pg_Publ i Cati ON oo 1917
51.41. pg_publicati on_rel . 1918
LY I o To T - U 1[0 =T PP 1918
51.43.pg_replicati on_Ori gi N .o 1919
Y IV o To T =N I O = N 1919
51.45. pg_secl abel ... 1920
Y LG oo T =To [UT=] o [o] =P PRSPPI 1921
51.47. pg_ShAepend ..o 1921
51.48. pg_ShAeSCri PtiON i 1922
51.49. pg_shsecl abel ... 1923
51.50. PO ST AT ST C civrieiiiiiiii i 1923
5151 PG St ati STiC_ Xt i 1925
51.52. PG _SUDBSCIi PLI ON covniiiii e 1926
51.53. pg_SUbSCription_rel . 1927
51.54. pg tabl ESPACE ..civiiiii e 1927
5155, PG transSt OF M. 1928
Y I T o To T O I [1= N 1928
BL.57. PG tS _CONT I G ciriiiiiiiii e 1930
51.58. pg tS _CONFi g IMBP ooiiiiiii e 1931
51.59. PO 1S i Cl orriiiiiiii e 1931
5160, POl S PaI ST ittt 1932
5161 PG tS tEMPl At @ corvriii i 1932
LY 2 o o T VA o 1 PP 1933
51.63. PG _USEI IMAPPI NQ tovniiiiiieiiiie e e e e e e e e e e e e et e e eaeeaanees 1939
51.64. SYSIEM VIBWS ...t eeieii ettt e e et e e e et e e e era e eees 1940
51.65. pg_avail abl €_ext enNSi ONS ...cccciiiiiiiiiiii e 1941
51.66. pg_avai |l abl e_ext ensi on_Versi onsc.ccccceeeeviiieiiineennneennn, 1941
Y YA o To T o2 o 1 1 o PN 1942
LY LGS A oo T o1 U1 g o] g T PRSPPI 1942
51.69. PG fil € SEttiNGS ciiiiiiiii i 1943
L MO o To T o | o 1 U1 o R PP 1944
51.71. pg_hba file rul @S . 1944
Y 7 o To T T 4 Lo 123 €= 1 N 1945
BL73. PO | OCKS oot 1945
oY 0 o To T .- VA = PN 1948
B5L75. PG _POI I Cl 8BS it 1949
51.76. pg_prepared_Stat EMBNEScooiiiiiiiiiiiic e 1949
51.77. pg_prepar €d_XaCl S ..ociiiiiiiiiiiiiii e 1950
51.78. pg_publication_tabl scccooiiiiiiiiii 1951
51.79.pg_replication_origin_statuscccooeeiiiiiiiiiiiin i, 1951
51.80. pg_replicati on_SIotS .cooiiiiiiiii i 1951
LY I o To o == TN 1953
Y IS v o To T G V1 =TT 1954
51.83. pg_SeCl @bel S .ooniiiiii 1954
5184, PO _SEOUEBNCES ouiiiiiiiie e 1955
YIS T o To TR =) A A [PN 1956
51.86. P _SHAUOWuiiiiiei e 1958
DL 87, PO ST AL S ittt 1959
51.88. PO 1 @bl €S irriiiii i 1961
51.89. pg_timezone _abbrevs ... 1962
51.90. PG _ti MBZONE NAIMES ..ivuiiiiieiiii e e e e e e e e e e e e e e e eanes 1962
LY e O o To R U= = PP 1962
Y22 o To IRV EST=1 N 1Y o] o L o 1T 1963
Y e o To T4 1= 1. SN 1964
52. Frontend/Backend ProtOCOIvveiiiuiiiiiiii i 1965
521, OVEIVIBIW ...ttt e et e ettt e ettt e e e et e e e et s e e e et n e e e et aeeeesenaeaeees 1965

XVi

PostgreSQL 10betad4 Documentation

52.2. MESSAE FIOW ...vviiiiiiii e 1966
52.3. SASL AULNENTICAIONiiiiviieieei e e e 1977
52.4. Streaming Replication ProtoColccccevieiiiieiiiieiiiieeee e eeee e 1978
52.5. Logical Streaming Replication Protocolccoooeviiiiiiiiiniiecee, 1985
52.6. MESSAgE Dala TYPBS ..vuiviiiiiieiie et 1986
52.7. MESSA0E FOIMMELS . .vuiviiiie et 1986
52.8. Error and Notice Message FieldSc.ooeviiiiiiiiiiii e 2003
52.9. Logical Replication Message FOrMAELSccevuveiinieiiiieeiiieeiiiieeiieeeaneens 2004
52.10. Summary of Changes since Protocol 2.0ccoveviiiiiiiiiiiiiiecieeeies 2008
53. PostgreSQL Coding CONVENLIONScc.uuiiiiiieiiieiiieeiie e e e e e et e e e e e eaanees 2010
LG T I o 4 0= 1] o P 2010
53.2. Reporting Errors Within the Servercooovvviiiii i 2010
53.3. Error Message Style GUIEcc.vviviiiiiii e 2013
53.4. Miscellaneous Coding CONVENLIONSccvvuiiiiieiiiiciineeee e e eaaes 2017
54, Native Language SUPPOITuuiiiieiiie e e eiee e e e s e e s e e s e e e e st e e et e esanaees 2019
54.1. FOr the TranSalorveiieiiieeiiii et e e 2019
54.2. FOr the Programimercociuuiiiii e e e e e e 2021
55. Writing A Procedural Language Handlercoovviiieiiiiiin e, 2024
56. Writing A Foreign Data WIapPErcoouiiiiiiiii e e e e e e 2027
56.1. Foreign Data Wrapper FUNCHIONSccovviiiiiiiiii e e 2027
56.2. Foreign Data Wrapper Callback ROULINESoevviiiiiiiiciiiecce e, 2027
56.3. Foreign Data Wrapper Helper FUNCLionSccooveviiiiiiin e 2039
56.4. Foreign Data Wrapper Query Planningcccocevveiiiiieineciin e 2040
56.5. Row Locking in Foreign Data WIrapperSoevvveeveiieeiieeiiieeeieeeaieeeaenns 2042
57. Writing A Table Sampling Methodccoooiiiiiiiii e 2044
57.1. Sampling Method Support FUNCLIONScccuveiiieiiiiece e, 2044
58. Writing A Custom SCan ProvViderocouiiiiiiiiiii e 2047
58.1. Creating Custom Scan Pathscccccvviiiiiiiiii e 2047
58.2. Creating Custom SCan PlanSoviiiiiiiiiiciie e e 2048
58.3. EXECULING CUSLOM SCANSuivviiiiiiieiieeciee e e e e e e e e e et e e e e eees 2049
59. GENELIC QUETY OPLIMIZEN ..ovuiiiii i e e e e e e e e e e eaaaeees 2051
59.1. Query Handling as a Complex Optimization Problemc..cceeeeenn. 2051
59.2. GENELiC AlQOMItMSive i 2051
59.3. Genetic Query Optimization (GEQO) in PostgreSQLcccevvvvvvvievinnnnn. 2052
59.4. FUrther REAAINGevviiiii e e 2053
60. Index Access Method Interface Definitioncooeiiiiiiiiiiiiii e, 2055
60.1. Basic APl Structure for INAeXeScccuvviiiiiiiieeii e 2055
60.2. Index Access Method FUNCLIONSooovvveiiiiiiicc e, 2057
60.3. INAEX SCANNING ...evvneieiieeiiee e e e e e e e e e e et e e e eeaen 2062
60.4. Index Locking Considerationsovevuiieiiieeiiieecii e e e eae e 2063
60.5. Index Uniqueness ChECKSocvuuiiiiiiii e 2064
60.6. Index Cost EStimation FUNCHIONSuuieiiiiiieiiiiiie e 2066
B1. GENENIC WAL RECOMS ... ieeiiieeiiiii ettt e e e et e e e e e e 2069
B2. GIST INAEXES ... ittt et eeeaaan s 2071
7228 W 1 oo (8o [o o RSP 2071
62.2. BUilt-iN Operator ClasseScvuuiiiiii e 2071
62.3. EXENSIDIILY ooeeeeeeii e 2072
62.4. IMPIEMENTBEIONvuiiii e e e e e e e e e et eeaaeees 2080
B2.5. EXBMPIES ..eeeiii ettt 2081
B3, SP-GIST INUEXES ... et e e e e e e e s 2082
L2C 300 1 0o (8o [o o SRR 2082
63.2. BUilt-in Operator ClasseSccvuuiiiiiieeii e 2082
63.3. EXENSIDIILY ooeeeenieeei e 2082
63.4. IMPIEMENTBEION .. .evuiii i e e e e e e e e eaaeees 2090
B35, EXBMPIES ..t 2091
B4. GIN TNAEXES ... e e e e e et e e e e e 2092
o7 I 1 oo (8o 1o o SRR 2092
64.2. BUilt-in Operator ClasseScvuuiiiiiieeii e 2092

XVii

PostgreSQL 10betad4 Documentation

64.3. EXENSIDIILY ooeeeeieeei e 2092

64.4. IMPIEMENTBEIONvuiiii e e e e e e e e e e e e e e e eaaeees 2095

64.5. GIN TipS and THICKS ..uuuiiii i e e e e e e e eeas 2096

7 N I I 1] = o) PP 2097

B4.7. EXBMPIES ..ttt 2097

B5. BRIN INUEXES ...ttt e e e e e 2098
L0 g1 oo (8o 1o o ST 2098
65.2. BUilt-in Operator ClasseScvuviiiiii e e e 2098

65.3. EXENSIDIITY ooeeeenieeii e 2099

66. Databhase PhySICal SIOragecvvvniiiii e e e 2103
66.1. Database FIle LayOutcccouuieiiiiiiii e e e 2103

B6.2. TOAST ettt ettt ettt et e e et e et e e et e e et a et aae 2105

66.3. Free SPace Mapcvuiiiiiie e 2108

66.4. VISIDIlIY MaD ...oieeiieiei e 2108

66.5. The INitidization FOrKcooeiiiiiiiiiii e 2108

66.6. Datahase Page LayOulcocuuiiiiiieiiieci e e 2109

67. BKI Backend INtErfacecocuuuiiiiiii i 2112
67.1. BKI File FOMMAELuuiiiiiiiiiee i 2112

67.2. BKI COMMENGScovviiiieiiiiieeee e e s 2112
67.3. Structure of the Bootstrap BKI Filecooiiiiiiiiiiie e, 2113

B7.4. EXBMPIE .. e 2114

68. How the Planner USES SEatiStICSvvvuneiiiiiie i 2115
68.1. Row EStimation EXamMPIEScuviiiiieiiiiiiiee e 2115

68.2. Multivariate Statistics EXamplesc.ooevviiiiiiiiiiii e 2120

68.3. Planner Statistics and SECUNLYcc.veviiieiiiiieii e 2122

RV L TN o) = o [=S 2123
A. POSIOreSOQL Error COUESuuiiiieiiiiei e ee e e e e e e e e e e e e e e et e e eaaaeees 2146
B. Dat€/Time SUPPOITiiiieii et e e e e e e e e e e e e e e et e e e e et e e et e eaanaees 2154
B.1. Date/Time Input INterpretationeevviieeiiieii e 2154

B.2. Date/Time K&y WOrAScovviiiiiiiii e 2155

B.3. Date/Time Configuration Fil€Scoevviiiiiiiiii e, 2156

B.4. HIiStory Of UNItSociiiiiiiiiii s e e 2157

C. SOL KEY WOIAS ... cevuciiiieiie et e e e e e e e e e e e e et e e e eanees 2159
D. SQL CONfOIMMANCEcetiiie e e e e e e e e e et e eaeeanns 2181
D.1. SUPPOIEd FEAUINESccvvuiiii e e e e e e e e e e 2182

D.2. UNSUPPOrtEd FEAIUIESuuiiiieeii e eee e e e e e e e 2197

E. REEASE NOES ...oevviieiiii e e e e et e e et e e eeraaeaaes 2211
E.L REEESE 10 ..t e 2211

E.2. REEASE 9.6.5 .ouiiiiiiiii e 2225

E.3. REEASE 9.6.4 ..ovviiiiiiii it 2227

B4 REIEESE 9.6.3 .. oiiiiiiiiiii it 2232

ED. REIEESE 9.6.2 .ovuiiiiiiiii et 2237

E.B. REIEASE 9.6.1 .ovuiiiiiiiiiii e e 2242

E.7. REEESE 9.6 ..o 2245

E.8. REIEASE 9.5.9 .oiiiiiiiiiii i 2263

E.O. REIEASE 9.5.8 ..ouiiiiiiii i 2265

E.10. REEASE 0.5.7 ouiiieiiii e e e e 2270

E.1L REEASE 9.5.6 covviiiiiiiiiiiei et e e e 2274

E.12. REEASE 9.5.5 coiiiiiiiii i 2278

E. 13 REEASE 9.5.4 .oniiiiii i e e 2282

E. 14 REEASE 9.5.3 .oi it e 2286

E.15. REEASE 9.5.2 coviiiiiiii i e e 2288

E.16. REIEASE 9.5.1 ..iiiiiiii i e 2291

E.L17. REEASE 9.5 ..ot 2292

E.18. REIEASE 9.4.14 ... 2306

E.19. REEASE 9.4.13 ..o 2307

E.20. REIEASE 9.4.12 ..ot e 2312

E.2L REEESE 9.4. 11 ..ot 2315

XViii

PostgreSQL 10betad4 Documentation

E.22.
E.23.
E.24.
E.25.
E.26.
E.27.
E.28.
E.29.
E.30.
E.31.
E.32.
E.33.
E.34.
E.35.
E.36.
E.37.
E.38.
E.39.
E.40.
E.41.
E.42.
E.43.
E.44.
E.45.
E.46.
E.47.
E.48.
E.49.
E.50.
E.51.
E.52.
E.53.
E.54.
E.55.
E.56.
E.57.
E.58.
E.59.
E.60.
E.61.
E.62.
E.63.
E.64.
E.65.
E.66.
E.67.
E.68.
E.69.
E.70.
E.71.
E.72.
E.73.
E.74.
E.75.
E.76.
E.77.
E.78.
E.79.

REIEESE 9.4.10 ..eviii et 2319
REIEBSE 9.4.9 ..o 2322
REIEBSE 9.4.8 ... 2326
REIEBSE 0.4.7 ..o 2327
REIEASE 9.4.6 ...ovviii e 2329
REIEBSE 9.4.5 ..o 2333
REIEBSE 9.4.4 ... 2338
REIEBSE 9.4.3 ..o 2339
REIEBSE 9.4.2 .o 2340
REIEBSE 9.4.1 ..o 2345
REIEBSE 9.4 ... 2348
REIEESE 9.3.19 .o 2363
REIEESE 9.3.18 ... 2364
REIEESE 9.3.17 .o 2368
REIEASE 9.3.16 ...vviiieeeiieeeete e 2371
REIEESE 9.3.15 .o 2374
REIEESE 9.3.14 ... 2376
REIEESE 9.3.13 ..o 2379
REIEESE 9.3.12 ..o 2381
REIEESE 9.3.11 ..oeiiii i 2382
REIEASE 9.3.10 vt 2386
REIEBSE 9.3.9 ..o 2390
REIEBSE 9.3.8 ..o 2391
REIEBSE 9.3.7 .o 2392
REIEASE 9.3.6 ...vveiiii et 2396
REIEASE 9.3.5 ..o 2404
REIEBSE 9.3.4 ..o 2408
REIEBSE 9.3.3 ..o 2410
REIEBSE 9.3.2 .o 2416
REIEASE 9.3.1 .o 2419
REIEBSE 9.3 ... 2420
REIEBSE 9.2.23 ..o 2432
REIEBSE 9.2.22 ..o 2433
REIEESE 9.2.21 ..o 2436
REIEESE 9.2.20 ...veiiii et 2439
REIEESE 9.2.19 ..o 2442
REIEASE 9.2.18 ... 2443
REIEESE 9.2.17 .ot 2446
REIEASE 9.2.16 ..ottt 2447
REIEASE 9.2.15 ... 2448
REIEESE 9.2.14 ..o 2452
REIEBSE 9.2.13 ... 2456
REIEESE 9.2.12 ..o 2456
REIEESE 9.2.11 ..oveiiii et 2457
REIEASE 9.2.10 ..oviii et 2461
REIEBSE 9.2.9 ..o 2467
REIEBSE 9.2.8 ... 2470
REIEBSE 9.2.7 ..o 2472
REIEASE 9.2.6 ..evviii e 2476
REIEBSE 9.2.5 ..o 2478
REIEBSE 9.2.4 ... 2481
REIEBSE 9.2.3 ..o 2483
REIEBSE 9.2.2 .o 2486
REIEASE 9.2.1 ..o 2491
REIEBSE 9.2 ... 2492
REIEESE 9.1.24 ..o 2509
REIEBSE 9.1.23 ..o 2510
REIEESE 9.1.22 ..o 2513

XiX

PostgreSQL 10betad4 Documentation

E.80. REIEASE 9.1.21 ...t 2514
E.8L. REIEASE 9.1.20 ...ttt ettt 2515
E.82. REIEASE 9.1.19 ...ttt 2518
E.83. REIEASE Q.1.18 ... 2522
E.84. REIEASE 9.1.17 ...ttt 2522
E.85. REIEASE 9.1.16 ...ttt 2523
E.86. REIEASE 9.1.15 ...t 2527
E.87. REIEASE 9.1.14 ... 2532
E.88. REIEASE 9.1.103 ...ttt 2535
E.89. REIEASE 9.1.102 ...t 2536
E.90. REIEASE Q.1.11 ...ttt 2540
E.9L. RElE3SE 9.1.10 ...ttt 2542
E.92. REIEASE 9.1.9 ..ooiiiiiiiiii e 2544
E.93. REIEASE 9.1.8 ...t 2546
E.94. REIEASE 9.1.7 ..ottt 2548
E.95. REIEASE 9. 1.6 ..ottt 2551
E.96. REIEASE 9.1.5 ..ot 2552
E.97. REIEESE 9.1 4 ..o 2555
E.98. REIEASE 9.1.3 ..ot 2558
E.99. REIEASE 9.1.2 ..o 2563
E.100. REIEASE 9.1.1 ..ottt 2567
E.10L REEASE 0.1 ...ttt 2567
E.102. RElEaSe 9.0.23t 2584
E.103. REIE3S2 9.0.22ot 2587
E.104. REIE3SE 9.0.21 ...t 2587
E.105. REIE3SE 9.0.20ciiiiiiiiiiiii et 2588
E.106. REIE3SE 9.0.19ottt 2501
E.107. Rel@aS2 9.0.18t 2596
E.108. REIEASE 9.0.17eeiiiiiiiiiie ettt 2599
E.109. REIEASE 9.0.16cciiiiiiiiiiiii et 2600
E.110. REl@3S2 9.0.15 ... oottt 2603
E.111. REl@3S2 9.0.14 ... 2605
E.112. Rel@ase 9.0.13 ...ttt 2607
E.113. REl@3S2 9.0.12 ... 2609
E.114. REl@3S2 9.0.11 ... 2610
E.115. REl@3S2 9.0.10ciiiiiiiiiiiie ettt 2613
E.116. RElE3S2 9.0.9 ... 2614
E.117. RElE3S2 9.0.8 ..ot 2616
E.118. REEASE 9.0.7 ...ttt 2618
E.119. REIEASE 9.0.6 ...ttt 2622
E.120. REIE3SE 9.0.5 ...t 2624
E.121. REEASE 9.0.4 ..ot 2628
E.122. RElE3S2 9.0.3 ...t 2630
E.123. REIEASE 9.0.2 ...t 2631
E.124. REEASE 9.0.1 ...t 2634
E.125. REEASE 9.0 ..iiiiiiiiiii et 2635
E.126. REIEASE 8.4.22 ... 2655
E.127. REEASE 8.4.21 ...t 2657
E.128. REIEASE 8.4.20 ... ittt 2658
E.129. REEASE 8.4.19 ...ttt 2661
E.130. REEASE 8418 ...t 2663
E.131. REEASE 8417 ...t 2664
E.132. REEASE 8416 ...ttt 2665
E.133. REEASE 8415 ...t 2667
E.134. REEASE 8414 ... 2669
E.135. REEASE 8.4.13 ... 2670
E.136. REIEASE 8.4.12 ... 2671
E.137. REEASE 8411 ...t 2673

XX

PostgreSQL 10betad4 Documentation

E.138.
E.139.
E.140.
E.141.
E.142.
E.143.
E.144.
E.145.
E.146.
E.147.
E.148.
E.149.
E.150.
E.151.
E.152.
E.153.
E.154.
E.155.
E.156.
E.157.
E.158.
E.159.
E.160.
E.161.
E.162.
E.163.
E.164.
E.165.
E.166.
E.167.
E.168.
E.169.
E.170.
E.171.
E.172.
E.173.
E.174.
E.175.
E.176.
E.177.
E.178.
E.179.
E.180.
E.181.
E.182.
E.183.
E.184.
E.185.
E.186.
E.187.
E.188.
E.189.
E.190.
E.191.
E.192.
E.193.
E.194.
E.195.

REIEASE 8.4.10 ... 2676
REIEASE 8.4.9 ... 2678
REIEASE 8.4.8 ... 2681
REIEASE .47 ... 2683
REIEASE 8.4.6 ... 2684
REIEASE B.4.5 ..o 2686
REIEASE 844 ... 2689
REIEASE 8.4.3 ... e 2691
REIEASE 8.4.2 ... 2694
REIEASE 841 ... 2697
REIEESE 8.4 ... 2699
REIEASE 8.3.23 ... 2719
REIEASE 8.3.22 ... 2720
REIEASE 8.3.21 ... 2722
REIEASE 8.3.20 ... 2723
REIEASE 8.3.19 ... 2724
REIEASE 8.3.18 ... 2726
REIEASE 8.3.17 .. 2728
REIEASE 8.3.16 ... 2730
REIEASE 8.3.15 ... 2732
REIEASE 8.3.14 ... 2733
REIEASE 8.3.13 ... e 2734
REIEASE 8.3.12 ... 2736
REIEASE 8.3.11 ...ueiiieiiiiee e 2738
REIEASE 8.3.10 ...t 2740
REIEASE 8.3.9 ... e 2742
REIEASE 8.3.8 ... e 2744
REIEASE 8.3.7 ...t 2745
REIEASE 8.3.6 ... ettt 2747
REIEASE 8.3.5 ..o 2749
REIEASE 8.3.4 ... 2751
REIEASE 8.3.3 ... i 2753
REIEASE 8.3.2 ... 2753
REIEASE 8.3.1 ...t e 2756
REIEASE 8.3 ... 2757
REIEASE 8.2.23 ... e 2773
REIEASE 8.2.22 ... 2775
REIEASE B.2.21 ... 2777
REIEASE 8.2.20 ... 2777
REIEASE 8.2.19 ... 2778
REIEASE B.2.18 ... 2780
REIEASE B.2.17 ... 2782
REIEASE B.2.16 ... 2783
REIEASE B.2.15 ... 2785
REIEASE B.2.14 ... 2787
REIEASE B.2.13 ... 2788
REIEASE 8.2.12 ... 2789
REIEASE B.2.11 ... 2790
REIEASE 8.2.10 ... 2791
REIEASE 8.2.9 ... 2793
REIEASE 8.2.8 ... i 2793
REIEASE 8.2.7 ... 2795
REIEASE 8.2.6 ... 2796
REIEASE 8.2.5 ... 2798
REIEASE 8.2.4 ... 2799
REIEASE 8.2.3 ... i 2800
REIEASE 8.2.2 ... e 2801
REIEASE 8.2.1 ... 2802

XXi

PostgreSQL 10betad4 Documentation

E.196.
E.197.
E.198.
E.199.
E.200.
E.201.
E.202.
E.203.
E.204.
E.205.
E.206.
E.207.
E.208.
E.2009.
E.210.
E.211.
E.212.
E.213.
E.214.
E.215.
E.216.
E.217.
E.218.
E.219.
E.220.
E.221.
E.222.
E.223.
E.224.
E.225.
E.226.
E.227.
E.228.
E.229.
E.230.
E.231.
E.232.
E.233.
E.234.
E.235.
E.236.
E.237.
E.238.
E.239.
E.240.
E.241.
E.242.
E.243.
E.244.
E.245.
E.246.
E.247.
E.248.
E.249.
E.250.
E.251.
E.252.
E.253.

REIEASE 8.2 ... 2802
REIEASE 8.1.23 ... e 2817
REIEASE B.1.22 ... 2818
REIEASE B.1L.21 ...eiiiiiiiiiee e 2820
REIEASE 8.1.20 ...t 2821
REIEASE 8.1.19 ...t 2822
REIEASE B.1L.A8 ... 2823
REIEASE B.L.A7 .. 2824
REIEASE B.1L.16 ...ttt 2825
REIEASE B.1L.15 ...t 2826
REIEASE .11 ... 2827
REIEASE 8. 1L.A3 ... 2828
REIEASE 8.1.12 ... 2829
REIEASE . 1L.11 ...t 2830
REIEASE 8.1.10 ...t 2832
REIEASE 8.1.9 ... e 2833
REIEASE 8.1.8 ...ttt 2833
REIEASE 8.1.7 ..o 2833
REIEASE 8.1.6 ...t 2834
REIEASE 8.1.5 ...t e 2835
REIEASE .14 ... e 2836
REIEASE 8. 1.3 ... et 2838
REIEASE 8.1.2 ... 2839
REIEASE 8. 1.1 ...unii et 2840
REIEASE 8.1 ... 2841
REIEASE B.0.26 ... 2855
REIEASE B.0.25 ... 2856
REIEESE 8.0.24 ... 2858
REIEASE 8.0.23 ... 2859
REIEASE 8.0.22 ... 2860
REIEASE B.0.21 ... 2861
REIEASE 8.0.20 ... 2861
REIEASE 8.0.19 ... 2862
REIEASE B.0.18 ...t 2863
REIEASE B.0.17 ... 2864
REIEASE B.0.16 ...t 2864
REIEASE B.0.15 ...t 2866
REIEASE 8.0.14 ... 2867
REIEASE 8.0.13 ... 2868
REIEASE 8.0.12 ... 2868
REIEASE 8.0.11 ... 2868
REIEASE 8.0.10 ... 2869
REIEESE 8.0.9 ... e 2870
REIEASE 8.0.8 ... 2870
REIEASE 8.0.7 ... 2871
REIEASE 8.0.6 ...t 2872
REIEASE 8.0.5 ...t 2873
REIEASE 8.0.4 ... 2874
REIEESE 8.0.3 ... 2876
REIEASE 8.0.2 ... e 2877
REIEASE 8.0.1 ... 2879
REIEESE 8.0 ... 2880
REIEASE 7.4.30 ... 2894
REIEASE 7.4.29 ... 2895
REIEASE 7.4.28 ... 2896
REIEASE T.4.27 ..o 2897
REIEASE 7.4.26 ... 2898
REIEASE 7.4.25 ..o 2899

XXii

PostgreSQL 10betad4 Documentation

E.254.
E.255.
E.256.
E.257.
E.258.
E.259.
E.260.
E.261.
E.262.
E.263.
E.264.
E.265.
E.266.
E.267.
E.268.
E.2609.
E.270.
E.271.
E.272.
E.273.
E.274.
E.275.
E.276.
E.277.
E.278.
E.279.
E.280.
E.281.
E.282.
E.283.
E.284.
E.285.
E.286.
E.287.
E.288.
E.289.
E.290.
E.291.
E.292.
E.293.
E.294.
E.295.
E.296.
E.297.
E.298.
E.290.
E.300.
E.301.
E.302.
E.303.
E.304.
E.305.
E.306.
E.307.
E.308.
E.3009.
E.310.
E.311.

REIEASE T.4.24 ... 2900
REIEASE 7.4.23 ..o 2900
REIEASE 7.4.22 ... 2901
REIEASE 7.4.21 ... 2901
REIEASE 7.4.20 ... 2902
REIEASE 7.4.19 ..o 2903
REIEASE 7418 ... 2904
REIEASE 7407 ..o 2904
REIEASE 7416 ... 2905
REIEASE 7415 ..o 2905
REIEASE 7404 ... 2906
REIEASE 7413 ..o 2906
REIEASE 7402 ..o 2907
REIEASE 7411 ..o 2908
REIEASE 7.4.00 ... 2909
REIEASE 7.4.9 ..o e 2909
REIEASE 7.4.8 ..o 2910
REIEASE 7.4.7 ..o 2912
REIEASE 7.4.6 ... e 2913
REIEASE 7.4.5 ..o 2914
REIEASE 744 ..o 2914
REIEASE 7.4.3 ..o e 2915
REIEASE 7.4.2 ..o 2916
REIEASE 741 ..o e 2918
REIEESE 7.4 ..o 2919
REIEASE 7.3.21 ..o 2934
REIEASE 7.3.20 ... 2935
REIEASE 7.3.19 ..o 2935
REIEASE 7.3.18 ... 2936
REIEASE 7.3.17 oo 2936
REIEASE 7.3.16 ... 2937
REIEASE 7.3.15 ..o 2937
REIEASE 7.3.04 ..o 2938
REIEASE 7.3.13 ..o 2938
REIEASE 7.3.12 ..o 2939
REIEASE 7.3.11 ..o 2940
REIEASE 7.3.10 ..eeiiiieeeiieee e 2940
REIEASE 7.3.9 ..o e 2942
REIEASE 7.3.8 ... e 2942
REIEASE 7.3.7 oo 2943
REIEASE 7.3.6 ... 2943
REIEASE 7.3.5 ..o 2944
REIEASE 7.3.4 ..o 2945
REIEASE 7.3.3 ..o 2945
REIEASE 7.3.2 .o e 2948
REIEASE 7.3.1 ..o 2949
REIEESE 7.3 .. e 2950
REIEASE 7.2.8 ... 2961
REIEASE 7.2.7 ..o 2962
REIEASE 7.2.6 ... e 2962
REIEASE 7.2.5 ..o 2963
REIEASE 7.2.4 ..o 2964
REIEASE 7.2.3 ..o 2964
REIEASE 7.2.2 ..o 2964
REIEASE 7.2.1 ..o 2965
REIEESE 7.2 ..o 2966
REIEASE 7.1.3 ..o 2976
REIEASE 7.1.2 ..o 2976

XXiii

PostgreSQL 10betad4 Documentation

E.312. REEASE 7.0.1 .ouioiiiiii et e 2976
E.313. REEASE 7.1 .. et 2977
E.314. REEASE 7.0.3 ...ttt 2981
E.315. REEASE 7.0.2 ..ot 2982
E.316. REEASE 7.0.1 ... e 2982
E.3L7. REIEASE 7.0 ..t 2983
E.318. REEASE B.5.3 ... ittt 2991
E.319. REEASE B.5.2iiiiii e 2991
E.320. REEASE B.5.1iiiiiieeiiiii et 2992
E.321. REEASE B.5 .. oot 2992
E.322. REEASE B.4.2 ...t 2997
E.323. REEASE B.4.1 ...t 2997
E.324. REIEASE B.4 ...t 2998
E.325. REIEASE B.3.2 ...t 3003
E.326. REIEASE B.3.1iiiiiiiiiiiiii et 3003
E.327. REIEASE B.3 ...t 3004
E.328. REEASE B.2.1iiiiiieiiiiii et 3009
E.329. REIEASE B.2 .. eeiiieiiiii et 3010
E.330. REEASE B.1.1iiiiiieiiiiii et 3013
E.331. REEASE B.1 ...oieeiieieiii et 3013
E.332. REEASE B.0 . .ceeiiiiiiiii et 3015
E.333. REEASE 1.09 ...coviiiiiiii e 3018
E.334. REEASE 1.02 ...coviiiiiii it 3018
E.335. REEASE L.0L ..ceviiiiiiii et 3019
E.336. REIEASE 1.0 . .oiiiiiiiiiii et 3022
E.337. Postgreso5 Rel€ase 0.03uiiiiiiiiieiiiiie et e e 3023
E.338. Postgreso5 Rel€aSe 0.02uuiiiiiiiiieiiiiiie e e et e e 3026
E.339. Postgreso5 Rel€ase 0.01uuiiiiiiiiieiiiiie e e et e e e eeens 3027
F. Additional Supplied MOAUIESccuuiiiiiii e 3028
F.L adminpackcovneiiiiii e 3029
F.2. @MCNECK ..t 3030
F.3. @UEN_AEIAY ..neeeeeiieee e 3032
O 0| (o T = o] =1 o N 3033
FLB. BIOOM Lo e 3035
FLB. DB GiN oo 3038
A o 1 (==Y o [3038
F.8. ChKPASS ...vi it 3040
R I o) (=4 PP 3040
FLL0. CUDE .. e 3043
FL 22, dBIINK Lo 3048
22 o [R | PP 3077
I o T A 6/ PN 3077
F.14. €arthdiStanCevveeiii e 3079
L LS 11 = o PP 3081
F.16. fUZZYSIIMALCH ..o 3083
I A 0 o = PP 3085
S T 17 o o 3091
L T - - Y 3092
0 1= o ST 3095
2 T o ST SUPPPTRPPN 3099
L | == PP 3100
A T 070 (= 1 41 o)< vt P 3106
F.24. passWOrdChECKcciuiiii e 3113
F.25. pg bUFfEIrCace .. cove e 3113
FL26. POCIYPLO Lottt 3115
[A oo [=== 0= 0= 1 7= o 3125
FL28. PO_PIEWEAITI ..ot 3127
F.29. POrOWIOCKS ...uiiiceii e e e e e e e e e e ee 3127

XXiV

PostgreSQL 10betad4 Documentation

F.30. pO_stal StatBMENTSuiiiie e 3129

oo (0o TN 3133

2 oo [1 (0 [0 3137

F.33. PO_VISIDIHILY ©oeeeeii e 3142

F.34. POSIOrES FOW ..ovvniiiiiii e 3143

LT o PP 3148

[TS oo o | 3151

R A o ST 3159

F.38. SSIINTO ittt 3161

F.39. taDIEFUNC ... 3163

2O I [o S SPP 3172

N (== o =0 o] oo [P 3173

F.A2. 1SN SYSIEIM TOWS ..ttt e e aneen 3174

F.A3. tSM_SYSIEM TIME .oeniiiii e e e e 3174

FLA4. UNBCCENT ...ttt e e e ees 3175

LI U TH T 01 o ISP 3177

LI 41 1 PP 3178

G. Additional SUpPlied Programscouuiiiiiiieii e 3183
G.1. Client APPlICALIONScvve i eaaes 3183

G.2. Server ApPlICALIONScvvi i 3189

L T (= g = I (0= o £ 3194
H.L CHeNt INtErfaCESoiiivii e 3194

H.2. AdMINIStration TOOISuuuiiiiiiiiieiiiii e 3194

H.3. Procedural LanQUAagEScuueeiuniiiiieiiie e e e e e e e e e e e 3194

H.A, EXEENSIONS c.ttiiiiiii ettt e et e et e e et e e et e e e e eaa e 3195

I. The Source Code REPOSITOIYccuuiiiiiieiiieei e e e e e e e e e e e e e e e aae e 3196
[.1. Getting The SOUrCe VIa Gitccvuuiiiiiicii e e 3196

I B o o100 01| - 1o PP 3197
J. L DOCBOOK ...ttt 3197

B o] B <SP 3197

J.3. Building The Documentationccoeeiiiiiiiiieiiie e 3201

J.4. Documentation AULNOIINGoovuiieiiiieei e 3202

J5. SEYIE GUITE ...evviiiiii e 3203

N N 001/ 0 PP 3205
(23] o] oo r="o] /0P 3211
g0 1= PP 3213

XXV

List of Figures

9.1. XSLT Stylesheet for Converting SQL/XML Output to HTMLoveiiiiiiiiiiiieeeceiin,

59.1. Structured Diagram of a Genetic Algorithm

XXVi

List of Tables

4.1. BaCkslash ESCAPE SEOUENCESciieriieeieiieeeeeti e ettt e ettt e et et e ettt e e e b e e enea s 33
4.2. Operator Precedence (highest tO TOWESE)couuuuiiiiiiiiiiii e 39
I DT r= R Y o= T PSPPI 122
8.2, INUMENIC TYPIES ..ttt ettt ettt et e e et e et e et et e e e e aba s 123
8.3, MONELAIY TIPS ..ottt ettt ettt et e e e 128
8.4, CAIACLES TYPES ..ottt ettt ettt ettt e e et et e e e 129
8.5. SpeCial CharaCler TYPESuuu ittt ettt ettt e e et e r e e e e ennans 130
8.6. BINAIY Daa TYPESvueeiiiti ettt ettt ettt e et et e e e e eaaas 131
8.7. byt ea Literal ESCAPEd OCLELSuuiiiiiiiieeiiii ettt e e e e 132
8.8. byt ea Output ESCAPEd OCLELSciieeiieiiiii ettt enees 132
8.9. DAE/TIME TYPES ..ttt e ettt et e e et ettt e e e et e e e eaa s 133
8.10. DB INPUL ..ottt ettt et e e e 134
8. L1, THME INPUL .ttt ettt e ettt e et e e et e e et e e e e et e e e e eaa s 135
8.12. TiME ZONE INPUL ...ttt ettt ettt ettt ettt et e e et e e e b e e era s 135
8.13. Special Date/TIME INPUEScoeviieieiiieee et e s 137
8.14. Date/TIime OULPUL SEYIESot 137
8.15. Date Order CONVENTIONSu.eieerteeeiii et eeti et e e et e e et e e e e e e eana e eeneas 138
8.16. 1SO 8601 Interval Unit ADDreviationSc..uuiiiiiiiiiiiii e 140
8.L7. INEIVEl INPUL ...t ettt e et e e 141
8.18. Interval Output Style EXaMPIEScouuiiiiiiieeee e 141
8.19. BOOIEAN DaLA TYPE ... eeeeei ettt ettt ettt ettt ettt e e e e 142
8.20. GEOMELNIC TS .. ettt e ettt ettt ettt e e ettt e ettt e ettt e e et et e e e eeaaaeeees 144
8.21. NEtWOrK AQArESS TYPES ... eeeeiiieeeetie ettt ettt e e et e e e e e e 147
8.22. ci dr Type INPut EXAMPIEScciiiiiiiii e 147
8.23. JSON primitive types and corresponding POstgreSQL tYPESccvvuveviriinieiiiiiieeeeiinee, 156
8.24. ODJeCt IdeNtifier TYPES ...t 182
8.25. PSEUTO-TYPES ...ttt ettt et 184
9.1. COMPATSON OPEIAIOIS ...e.vueeeiti ettt e et ettt e et et et e et r e e e et e e e e et e e e eaea s 186
9.2. COMPATISON PraEdiCALESuuueiiiie ettt et e e e e e e e 187
9.3. COomMPAriSON FUNCLIONS ...ttt et e 189
9.4. MathematiCal OPEIALOrSceeueieieeii ettt ettt e e e e e b 189
9.5. MathematiCal FUNCHIONSccuuiiiiiii et e e e 190
9.6. RANAOM FUNCLIONSceeitieieiie ettt ettt et e et e e 192
9.7. TrigONOMELNIC FUNCLIONSeeeiit ettt ettt et e e e neens 192
9.8. SQL String FUNCLiONS 8Nd OPEIELOISu.eiiiiiieeeeiii ettt e et e et e e e e e e e e eens 193
9.9. Other StNG FUNCLIONScouuiiiiiii et et e e e eanans 194
9.10. BUIt-IN CONVEISIONScevtieiiiii ettt ettt ettt et e et e e enai e e ennens 201
9.11. SQL Binary String FUNCtions and OPEratorscccuuueeeirinieeieiieeeeeiie e e eeeies 207
9.12. Other Binary String FUNCLIONSuuuiiiiiiiieiii et 207
9.13. Bit SING OPEIEIOISvvueeeetie ettt ettt ettt e et e ettt e e et e e e eaa s 209
9.14. Regular EXpression MatCh OPEraOrScuuuueieeuieiiiii it e e e e e eeeees 212
9.15. Regular EXPression ATOIMSuu ittt e et e e et e e e eab e e eeeta e eeenns 216
9.16. Regular EXpression QUENTITIENSuuuiieiii et 216
9.17. Regular EXpression CONSIIAINTSeiiirieeiiii et e et 217
9.18. Regular Expression Character-entry ESCapESccvvvunieiiiiiieeiiiie e 219
9.19. Regular Expression Class-shorthand ESCaPESc.uuviiiiiiiieiiiiieeeci e 219
9.20. Regular Expression Constraint ESCAPESuuiiiiiiiieiiiii e 220
9.21. Regular Expression Back REFEIENCESccuuuiiiiiiiicie e 220
9.22. ARE Embedded-0ption LEErSuiiiiiiieiei e 221
9.23. FOrMatting FUNCLIONSccuuuiiiiiii ettt et e et e e e e e ena e eeees 224
9.24. Template Patterns for Date/Time FOrmattingcc.uuveeiiiiiiiiiiiiiieeecie e 225
9.25. Template Pattern Modifiers for Date/Time FOrmattingcccuvvveviiiinneieiiinneeenennnn. 227
9.26. Template Patterns for NUMeric FOrmattingc..uoveiiiiiiiiiiiiiiieeeii e 228
9.27. Template Pattern Modifiers for Numeric FOrmattingccoeuvviveiiiinieiiiiiieeeeiineees 229
9.28. 1 0_Char EXAMPIESuuiiiiiiii e 229

XXVii

PostgreSQL 10betad4 Documentation

A R DT (= A N1 1O o= = (0] £ T 231
9.30. Date/TIME FUNCHIONS ...cevviiiei ittt e e et e e et e e et e e e e aaa s 232
9.3L AT TIME ZONE VATAMES ..euueiiiiiieeiiiiiee et e et e et e e et e e e et e e e et eeeeaen s 240
9.32. ENUM SUPPOIt FUNCHIONSiieiiiiicii e e e e e e e e e e et e e e e aaa s 243
0.33. GEOMELIIC OPEIALONS . .evuueiiieeiti e et e et et e e e et e e et e e e e et e e et e e et e e st e eaa e eanneaaens 244
9.34. GEOMELNIC FUNCHIONS ...ttt ettt e et e e e e e et e e et eeeeaa e 245
9.35. Geometric Type Conversion FUNCLIONSoovvuiriiiiii e e e 246
9.36. Ci dr and i NEt OPEIEIOISvveiiiiiieeie e e ee e e e et e e e e e e e e et e e et e e e e e aanaaees 248
9.37.Cidr and i Net FUNCHIONSuiiiiiiii i e s 249
9.38. MBCAAAr FUNCHIONS ..evvieiiiii et e e e e e 250
9.39. MBCAAAr 8 FUNCHIONS . ..uiiiiii ettt e et et e e e et e e e e ae e 250
9.40. Text SEArCh OPEralOrSuuiiieeii e et e et e e e e e e e e et e e et e e et e e et e e s e eanaees 250
9.41. TexXt SEACH FUNCHIONSueiieii ettt e et e e et e e et e e e e aanaeas 251
9.42. Text Search Debugging FUNCLIONSiiiiiiiiic e 254
9.43.) S0N aNd | SOND OPEIAIOISccvuiiiii it e ee e et e e e e e e e e e e e e e aaaes 269
9.44. Additional | SOND OPEIAOrSuuiiiiiieiiie et e e e e e e e e e e aa e 269
9.45. JSON Creation FUNCLIONScoiuviieiiii e e et e e et e e e et e e e eet e e e eaan e eeenes 271
9.46. JSON Processing FUNCLIONSciuuuiiiiieiiii e eiiee e e e e e e e e e e e e e et e e e e eanaeeeen 272
9.47. SEQUENCE FUNCLIONSuuiiiieii et e e e et e e e e e e e e et e e et e e et e e aaeeaenas 277
.48, ATTAY OPEIEIONS ..ttt ettt e e et et e e et e e 281
9.49. ArTay FUNCHIONSuuiiiiicii et e e e e e e et e e e et e e e e ean s 282
O0.50. RANGE OPBIALOIS . ..euiiiitiee ettt e s e e e e e e anas 285
9.51. RANGE FUNCLIONSiiiiiii e e e e e e e e e e et e e e eanaas 286
9.52. General-Purpose Aggregate FUNCHIONScouuieiiiieiii e e e e e 287
9.53. Aggregate FUNCLIONS TOF SEAtiStICScvvuiviiieii i e 289
9.54. Ordered-Set AgQregate FUNCLIONSiiiiiieii e e e e e e e e e e eaas 291
9.55. Hypothetical-Set Aggregate FUNCLIONSccovuiiiiiieiiiii e e e 292
9.56. GroupiNg OPEIatiONSuuiiieueiiieiiee et e e e e e e e et e et e e et e e st e e et eeat e eatneeeaaaetnaes 293
9.57. General-Purpose Window FUNCLIONSocouuiiiiiiii e e 294
9.58. Series Generating FUNCHIONSccuuiiiii e e e e e e e e e e e e e e ees 301
9.59. Subscript Generating FUNCLIONSccuuiiiiiiiiii e e e e e e e eees 302
9.60. Session INformation FUNCHIONSiiiiiiiiei e 304
9.61. Access Privilege INquiry FUNCLIONSoiiiiiiii e e 307
9.62. Schema Visibility INQUINY FUNCLIONScovuiiiiiic e e 310
9.63. System Catalog Information FUNCLIONScccuiiiiiiiiiiiciie e e e e e 310
9.64. IndexX ColUMN PrOPEITIESu.iiii e e e et e e e e e e e e e e e aanas 313
9.65. INAEX PrOPEITIESiiti it e e e e e e e e e e e e e e e e ee 314
9.66. Index Access Method PropeErtiesviiiieii e 314
9.67. Object Information and Addressing FUNCHIONSccooviiiiiiieiiiiccin e e 315
9.68. Comment INformation FUNCLIONScovvuiieiiiiieeei e 316
9.69. Transaction IDS and SNaPShOLScvvvniiiiiei e 316
9.70. SNaPSNOt COMPONENES .. .evuueieieeeieeei e et e et e et e e et e e st e e et e et e eeta e e et e e etn e eanneeennnas 317
9.71. Committed transaction iNfOrMALIONcovviiiiiiiii e e 318
9.72. CONtrol Data FUNCHIONSueiieiie ettt e e e et e e e e e e eaa e e eeaenns 318
9.73. pg_control _checkpoi nt ColuMNSccoeiiiiiiiiiiiiii e, 318
9.74. pg_control _SYySt @MCOIUMNSiiiiiiiiiieii e e e e 319
9.75. pg_control _iNit COolUMNSccouiiiiii e e 319
9.76. pg_control _recovery COlUMNSccooviiiiiiiieii e 319
9.77. Configuration Settings FUNCLIONSciiiiiiiiii e e 320
9.78. Server SIgnaling FUNCLIONSovuiiiiiee e e e e e e aaaes 320
9.79. Backup Control FUNCLIONSuiiiiieii e e e e e e e e e e eaens 321
9.80. Recovery Information FUNCHIONScocvuiiiiiiii e e e e e e e e eaa e 323
9.81. Recovery Control FUNCHIONScciuuiiiiecie e e e e e e e e e e eaae e 324
9.82. Snapshot Synchronization FUNCHIONSc.uuiiiiiciiie e ee e e e e 325
9.83. Replication SQL FUNCHIONSc.uuiiiiieiii e e e e e e e e e e e e e e eees 326
9.84. Database Object Size FUNCLIONSiiiiiiii e 329
9.85. Database Object Location FUNCLIONScouuiiiiieii e e e e e e 331
9.86. Collation Management FUNCLIONScoouiiiiiieii e e e e e 331

XXVili

PostgreSQL 10betad4 Documentation

9.87. Index MaintenancCe FUNCHIONSooiiiiiieiiiii et eees 332
9.88. GeneriC File ACCESS FUNCLIONSccuviiiiiiiie et e e e e e e s 332
9.89. AdVISOry LOCK FUNCHIONSuuiiieiii e e e e e e e e e e e e e st e e e e e e e eeen 334
9.90. Table ReWNIte INFOMMELIONccvevt i e e e et e eeeetenaeeees 338
12.1. Default Parser's TOKEN TYPES c.uuuiuueiiiieiie e e e e e e e e e e e e e e e e et e e aa e aanns 382
13.1. Transaction ISOlation LEVEISc.uuuiiiiiiiieeiii et et e e e e e e e 404
13.2. Conflicting LOCK MOESuuiiiiiiiii e e e e e e e 411
13.3. Conflicting ROW-IEVEl LOCKSciviiiiiii e 412
18.1. System V IPC PalramEtarsSvuiieiieiiie ettt eas 4381
18.2. SSL SerVEr FIlE USAQE «.uvuiiiiiiieiiiii ettt ettt e et eeeaa s 496
19.1. MesSsage SEVErity LEVEIS ...ouiii i 534
19.2. ShOrt OptioN KEY ...oveeiiiiici e e e e e e e e e e 559
201, DEFAUIT ROIES ...ttt e et e et a e e e et e e e eataaeeaees 582
23.1. PoStgreSQL Charalter SELScuuuiiiiieiii e e e e e e e e e e e et e e e e eeees 597
23.2. Client/Server Character Set CONVEISIONSc.uuuieiiiiieeeeiiineeeeiise e et eeeiin e eeainns 600
26.1. High Availability, Load Balancing, and Replication Feature Matrixccooeevvnnennnnn. 630
28.1. DYNAMIC StAISHCS VIBWS . oovniiiceii et e e e et e e e e e s e e e e eeees 656
28.2. Collected SEAISHCS VIBWSveeeeieieiiii ettt e et e et e et e e e ena s 657
283.pg_Stat _aCti Vity VIBW oo e e e 658
28.4. Wait_eVENE DESCIHPLION . .uuiii i e e e e e e e e e e e e e ees 662
285.pg_stat _replicati ON VIBW ..o 671
28.6. pg_stat_Wal reCei VEI VIiBW ...iiiiiiciiii i 674
28.7.pg_stat _SUDSCription VIieW ...cocoeiiiiiiiiie e 675
28.8. PO St At _SSI ViBW coouiiiiiii e 675
28.9. pg_stat _arChi VEI VIBW ..o e 676
28.10. pg_Stat _bgWrit €5 VIieW .oouiiiiiiii e e e e 677
28.11. pg_stat_dat abase VIieWc.ooiiiiiiiiii e 677
28.12. pg_stat _database_confliCts VIEWcccoeeiiiiiiiiiiiiii e, 679
28.13. pg_stat_all _tabl @S VIeW ..o 679
28.14. pg_stat _all i NdeXES VIBW ... e 680
28.15.pg_statio_all _tabl €S VIEW ..o 681
28.16. pg_statio_all 1 NAdeXES VIBW ..cccuiiiiiiiiiie e 682
28.17.pg_stati o _all _SeqUENCES VIBW ...ccccuuiiiiii i 682
28.18. pg_stat_user _fUuNCti ONS VIBWcocovviiiiiiicii e 682
28.19. Additional StatistiCS FUNCHIONSvuuiiiiiiieiiei et e e 683
28.20. Per-Backend Statistics FUNCHIONSuiiiiiiiieicii e e e 684
28.21. pg_stat _progress _VAaCUUMVIBWcc.uviiiieiiiieeiiieeeii e e e e e e e e e eaens 685
28.22. VACUUM PRhESES ... ittt e e e e e et e e e et e e eenanns 686
28.23. BUIlt-iN DTTaCe PrODES .. .cceviieeeii et 688
28.24. Defined Types Used in Probe Parametersoceviviiiiiiciii e 694
33.1. SSL MOOE DESCIIPLIONSievieiiieeei e e e e e e e e e e e e e e e e e e et e e et e e eanaees 785
33.2. Libpg/Client SSL FilE@ USAQE ... cvvuiiiiieiiie e et e e et e et e e e aae e 786
34.1. SQL-oriented Large ObjECt FUNCLIONScovviiiiiieii e e e e e e 803
35.1. Mapping Between PostgreSQL Data Typesand C Variable Typesccocevvvvvvvevinnnnnn. 817
35.2. Valid Input Formats for PGTYPESdat € from ascccoccceveviiiiiiiiicin e, 834
35.3. Vdid Input Formats for PGTYPESdat € fnt_asCccooevviviiiiiiiiiieceecece e, 836
35.4. Valid Input Formats for rdef mtdat €cociviiiiiiii i, 836
35.5. Valid Input Formats for PGTYPESt i mest anp_from asccccoevevvieeviinieiineennnnn, 837
36.1.i nformati on_schema_catal og_ name Columns............ccoooeviieiiineiinnccieeeenn, 909
36.2. admi ni strabl e _rol e_authori zati ons Columns.............ccoeevviiiiiiiccinneennnn. 909
36.3. applicabl e rol €s ColumMNSooiiiiiiiiiii e 909
36.4. At ri DUt €S COIUMNS ..euuiiiiiii e eeeees 910
36.5. charact er _Set'sS COlUMNSiiiiiiiiii e e e r e e e e e aaas 913
36.6. check _constraint_routine_usage Columns..........ccceeviiiiiieiiiieiiineciieeennnn, 914
36.7. check_constrai Nt'S ColUMNScooiuiiiiiii e e aens 915
36.8. COl 1 @t i ONS COIUMNSuuiiiiiiiiee e e e e eeees 915
36.9.col l ation_character_set _applicability Coumns.............c..coevernnnnn. 915
36.10. col uim_domai N_usSage COlUMNSoeiiiieiiicce e e e e e 916

XXiX

PostgreSQL 10betad4 Documentation

36.11. col UMM_opt i ONS COIUMNS .. .cvuuiiiii i e e e e e e e eaen 916
36.12. col um_pri vil €ges ColUMNScciiiiiiiiiiiec e e 917
36.13. col umMm_udt _uSage COlUMNScuuuiiii e e e e e aens 917
36.14. COl UMMS COIUMNSeeitiieeeii ettt et e et e e et e e et s e e e aaa e e eenens 918
36.15. constrai nt _col unm_usage ColuMNScoevviiiiiiiieiiiiecii e e e 922
36.16. constrai nt _tabl e _usage ColumNSccoeeviiiiiiiiieiii e e 923
36.17.data_type privileges CoumMNS........ccooeiiiiiiiiiiiiii e 923
36.18. domai n_constrai Nts ColUMNScooiiiiiiiiii e 924
36.19. domai N_udt _USaQge COIUMNScuuuiiii e e e e e aens 924
36.20. dOMBI NS COIUMINSeeiiiieieii e et e et e e et e e e et neeeaaan e e eeeeens 925
36.21. el erment _t yPeS COIUMNSciviiiie e e e e e eees 928
36.22. enabl €d_r 0l €S COIUMNSuuiiiii e e 930
36.23. forei gn_data_ wrapper_opti ons ColUMNScoceeuieviiiiiiiiieiiieeciineeeeeaies 930
36.24.foreign_data_wappers ColUMNSccoocouiiiiiiiiiiii e 931
36.25. forei gn_server_opti ons ColUMNScccouuieiiiiiiiiiieiii e e 931
36.26. forei gn_servers COlUMNSc.iiiiiiiiiie e e e e 932
36.27.foreign_table options ColuUMNScc.ccuiiiiiiiii e 932
36.28. forei gn_tabl €S ColUMNScouuiiiiiiiiii e 933
36.29. key_col umm_usage COlUMNSoeiiiieiiii e e e e e aens 933
36.30. par anBt €S COIUMNSceuuiiii e e e e e e e e e e e e e eaens 934
36.3Lreferential _constraints ColUmMNS.........cccooceiiiiiiieiiiieiii e 936
36.32.rol e_col um_grants ColUMNSoeeiiiiiiiiiiii e 937
36.33.r0l e _routine_grants ColUMNScccouuiiiiiieiiiiiiii e e 937
36.34.rol e _table grants ColUMNSc.coeiiiiiiiiiiiiii e 938
36.35.r0l e_udt _grants COlUMNSc.uoiiiiiiiiiii e e e e 939
36.36.rol e_usage _grants ColUMNSc.uoeiiiiiiiiiieiii e e e e 939
36.37.routine_privileges ColUmMNScooeiuiiiiiiiiiii e 940
36.38. T OUL i NES COIUMNS ...eeviiieiiiii et e et e et e et e e e et e e e et e e e eaan e eeeeens 941
36.39. SCheMBLt @ COIUMNSuuiiiiiiiie et e e e e e e e e e eaa e e eenees 946
36.40. SEQUENCES COIUMNSuuiiii e e e e e e e e e e e e e e eanas 946
36.41. sql _features COlUMNSc.uiiiiiiiiii e e 947
36.42. sql _inplementation_info ColumMNS.........cccooeiiiiiiiieiii e 948
36.43. sql _| anguages COIUMNSieiiiieii e e e e e eaes 948
36.44. sql _packages COlUMNSoiiiiiiiiii e e e 949
36.45. SOl _Parts COIUMNScoiiiiiii e e e e e e e eaaas 949
36.46. SOl _Si Zi NG COIUMNSciiiicii e e e e e e e e e aens 950
36.47.sql _si zing profiles ColumNScc.ccuoiiiiiiiiiiiiiii e 950
36.48.tabl e _constrai Nts COlUMNScccuiiiiiiiiiiii e 951
36.49.tabl e privileges ColUMNSccocouieiiiiiiiii e 951
36.50. t @bl €S COIUMNScieiiiiii e e eeaaens 952
36.51. t ranST Or MB COIUMMNSuiiiiiiie e et e et e eeeaa e e eeees 953
36.52. triggered _update_col ums ColUMNScoevviiiiiiiiiii e 953
36.53. t 11 GOEI'S COIUMNS .. .evuniiii i e et e e e e e e e e e e e et e e et e e et e e aneeaanes 954
36.54. udt _pri Vil eges COolUMNSccouuiiiiiiiiii e e e e e e e e 956
36.55. usage _pri Vil eges ColUMNSoeiiieiiiiiiie e 956
36.56. user _defined _types ColUMNSoeeiiiiiiiiiciii e 957
36.57. user _mappi Ng_0opti oNs COlUMNSccoviiiiiiiiiii e 958
36.58. user _mBpPi NQS COIUMNSuuieiiieci e e e e e e e e eees 959
36.59. vi ew_col umm_usage ColUMNScccueiiiiiiiiie e e e e e 959
36.60. vi ew _routine_usage COlUMNSoeviiiiiiiii e 960
36.61. vi ew t abl e _usage ColUmNScoouiiiiiiiiiiii e 960
36.62. Vi WS COIUMIMS ...uueiiiiii ettt e e e et e e et e e e e et e e e eaan e e eenenns 961
37.1. Equivalent C Types for Built-in SQL TYPESccuuiiiiieiiiiieii e ee e e 989
A S (= TS 1 - (= o [P 1023
37.3. HaSh SHalEOIES ... eeiieeiiii et e e e et et e e e e e e e e aa s e e e e e e e eanne 1023
37.4. GIST Two-Dimensional “R-treg” StrategieSoeivuieiiiiieiiieeiiiiecin e e e 1023
37.5. SP-GiST POINt SIrAtEJIES ...vvvvuiieeeiieeitiiiie s e e e eee et s e e e e e e e aeatrn e e e e e reaataa e aeeaees 1024
37.6. GIN AITAY SHTAEgIES ...vuuiiiiieii i eeie e e e et e e e e e e e e e e e et e et e e st e e et s e eaneaanaees 1024

XXX

PostgreSQL 10betad4 Documentation

37.7. BRIN MinNMaX SIralEOIES .. cevuueiiieiiiieiieeeie et e et e e e e e e e e e e e e e e et e e et eeanas 1024
37.8. B-tree SUPPOIt FUNCHIONSouuiii e e e e e e e e e e e aaaas 1025
37.9. Hash SUPPOrt FUNCHIONSccuuiiiiicii e e e e e e e e eaaas 1025
37.10. GiST SUPPOIt FUNCLIONSiiviciii e e e e e e e e e e e e e e e et eean e eaen 1025
37.11. SP-GiST SUPPOIt FUNCHIONS ... cevuiiiiieiieee e e e e e e e e e e e e aaaas 1026
37.12. GIN SUPPOIt FUNCLIONSiitciiiiee e e e e e e et e e et e e e e eens 1026
37.13. BRIN SUPPOIt FUNCLIONS ... cuuiiiiiiiii e e ee e e e e e e e e e et e e et e e e eeaens 1027
39.1. Event Trigger Support by Command Tagccevveiiiiieiiieeiie e e e e 1054
42.1. Available DIiagnoSstiCS ItEMSiiviiiiie e e e e e e 1105
42.2. Error DIiagnoStiCS ITBIMS . ..uuiiii i e e e e et e e aas 1118
240. AULOMALIC VariaDlES ... 1733
241, PYENCH FUNCLIONSiiii e e e e e e e e e e e e aens 1734
511, SYStEM CalAlOgS ... vvvueiiieiii e ee e et e e e e e e e e e e e e e e et e e et e e et e e e e e aaaaa 1874
51.2. pg_aggregat @ COlUMNScouuiiiiiieiii e e e e e e e e e e e e e et eeaaaees 1876
Loy G T o o TR =1 4 1] 1070 TP 1878
51.4. pg_anmDP COIUMNS ... e e e e e e e et e e e eaas 1878
51.5. pg_anpPr OC COlUMNScuuuiiiiieiiii e e et e e e e e e e e e e e e e st e e e e e ean e eaen 1879
51.6. pg_attrdef COolUMNSco.iiiiiiii e e e 1880
51.7.pg_attribut @ ColUMNScocouiiiiii i e 1881
51.8. pg_aut hi d COlUMNScciiiiiiiie e e e e e e e e e 1883
51.9. pg_aut h_menbers ColUMNSc.iiiiiiiiii e e e 1884
51.10. Pg_CASt COIUMNS ...ttt e e e e e st e e e e e e eaens 1885
51.11. PG _Cl @SS COlUMNS .. .cevuiii e e e e e e e e e e e e e e aaas 1886
51.12. pg_col 1 ati on COlUMNScouuiiiiiiii e e 1890
51.13. pg_constrai Nt COUMNSuiiiiiiiiie e e e e e eens 1891
51.14. pg_CONVETr Si ON COIUMNScovtiiiiiieii et e e e e e e e e e e e e e aens 1893
51.15. pg_dat abase COolUMNSco.uiiiiiiiiiii e e e 1894
51.16. pg _db _role_setting ColUmMNSccoceuiiiiiiiiiii i e 1896
51.17. pg_defaul t _acl ColUMNScciiiiiiiiii i e 1896
51.18. pg_depend COlUMNSccuiiiiiieiiie e e e e e e e e e eaes 1897
51.19. pg_descCri ption COlUMNSccouuuiiiiiiii e e e e e e eeas 1898
51.20. PG_ENUMECOIUMINSuiiiteiie e e e e e e e e e e e e e e e et e e st e et eeaaeeeens 1899
51.21. pg_event _trigger COolUMNSccooiiiiiiiiiei e e e e e 1899
51.22. pg_ext ensi 0N COIUMNScoouiiiiiiiii e e e e e 1900
51.23. pg_foreign_data wapper ColUmMNScccooeuiiiiiiiiiiiiieiii e e 1901
51.24. pg_forei gn_server COolUMNSccooiiiiiiiiiiieiii e e e 1902
51.25. pg _foreign_tabl @ ColUumMNSc.coouiiiiiiiiiii e 1902
51.26. Pg_i NAEX COIUMNS .. .cuuuiiieiii e e e e e e e e e e e e et e et e e aan e eeas 1903
51.27. pg_ i NhEritS COlUMNSc.uiiiiiiii e e e e e e e e e e een 1905
51.28. pg_ i Nit _Privs COUMNSciiiiiiieei e e e e e aeas 1906
51.29. pg_| anguage COlUMNScouuuiiiieeiii e e e e e e e e e e et e e e e aaeaees 1906
51.30. pg_| ar geobj €Ct COlUMNScocuuiiiiiiii e e 1908
51.31. pg_l argeobj ect _netadat a ColumNScocovuiiiiiiiiiiiiiiie e 1908
51.32. pg_NanmESPaCe COIUMNScouuiiiiieiii e e e e e e e 1908
51.33. PG_0PCI @SS COIUMNSciiiiciiii i e e e e e e e e eaes 1909
51.34. pg_oper at Or COlUMNSciiiiiii e e e e e e e e e e e e et e e e eaneeeen 1910
51.35. pg_opfam |y COlUMNSociiiiiiiieei e e e e e e e e een 1911
51.36. pg_partitioned tabl @ ColUMNSccooiiiiiiiiiii e 1911
51.37. pg_pltenpl at @ ColUMNSiiiiiiii e 1912
51.38. Pg_POI i CY COIUMNSouiiiiiiiiii e e e e e e e e e aes 1913
LY G T o To N o] e T2 @] ¥4 T 0 =P 1914
51.40. pg_publicati on COolUMNScccuiiiiiiiiii e e eeas 1918
51.41. pg_publication_rel ColumnS.......cccociiiiiiii i 1918
51.42. Pg_range COlUMNSuuiiiiiiiiiie et e e e e e e e e e e e et e e et e st e et e e eaneeeeas 1918
51.43.pg_replication_originColumnscccocouiiiiiiiiiiiiiiii e 1919
51.44. PG reWr it € COIUMNSuiiiiicii e e e e e e e e eaa e eees 1919
51.45. pg_secl abel ColUMNScouuiiiiiiiii e e 1920
51.46. pg_SeqUENCE COUMNScuuiiiiii i e e e e e e e e e e e e e e e e e et e e e eaneeees 1921

XXXIi

PostgreSQL 10betad4 Documentation

51.47. pg_shdepend ColUMNSco.uiiiiiiiiiiii e e e e een 1921
51.48. pg_shdescri pti on ColUMNSccouuiiiiiiiiii e e 1923
51.49. pg_shsecl abel Columnscc.oiiiiiiiiii e 1923
51.50. pg_stati StiC COUMNScouuiiiiiii e e 1924
51.51. pg_statistic_ext ColUMNSccoeiiiiiiiiiiiii e e 1925
51.52. pg_subscri pti on COlUMNSoiiiiiiiiii e e 1926
51.53. pg_subscription_rel ColumNSc.cccoeiiiiiiiiiiiiiii e 1927
51.54. pg_tabl espace COlUMNSccouiiiiiiieii e e 1928
51.55. pg_transf or MCOIUMNScoouiiiiiii e 1928
51.56. pg_tri gger COIUMNScouuiiiii e e e e e e e e e e e eees 1929
51.57. pg ts _confi g COlUMNSccouuiiiiiiii e e 1930
51.58. pg_ts_confi g _mBp COlUMNSociiiiiiiiiiii e e e e 1931
51.59. pg t'S_di Ct COIUMNSiiiiiiiii e e e e e e e e e 1931
51.60. pg_ts_parser COIUMNScoiiiiiiiii e e e e e e 1932
51.61. pg ts tenpl at @ ColUMNSccccuiiiiiiiiii e e 1932
51.62. PG _tYPE COIUMNS ...uuiiiiciii e e e et e e e e e e aens 1933
YIS V] o Tox- A =To [o] YA ©C0 o == N 1939
51.64. pg_user _mappi NG COIUMNSoiiiiiiiii e e e 1939
5165, SYSEIM VIBWS .. ittt e ettt e e et s e e e et r e e e eatnneeeeatnneaeees 1940
51.66. pg_avai | abl e_ext ensi ons ColUMNSccoovviiiiiiiiiiiiicci e 1941
51.67. pg_avai | abl e_extensi on_versi ons ColumnScccoeeevieeiiiieiiineeenneennn. 1941
51.68. pg_CONFi g COIUMNSuiiiiiiii e e e e e 1942
51.69. PG _CUISOI'S COIUMNS ..uuiiiiiciii e e e e e e e e e e e et eeaa e eees 1942
51.70. pg _fil e _settings ColUMNScccociuuiiiiiiiiiii e e 1943
Loy 4 o To o [o 10 o @] 1 40 F= PP 1944
51.72. pg_hba file rul es ColumnScccccouiiiiiiiiiiii e 1944
51.73. Pg_1 NAEXES COIUMNSiiiiiiiiii e e e e e e e e e e e e eaes 1945
51.74. PG | OCKS COIUMNS .. .couiiiiiiiii e e e e e e e e e e et e et e e aa e eeas 1945
51.75. pg_MBAt Vi WS COIUMNScutiiiiieiii e e e e e e e e e e e e et e e e e aneeeeen 1948
51.76. Pg_POI i Ci €S COlUMNSccvuiiiiieiii e e e e e e e e e e e e e e e eeen 1949
51.77. pg_prepared_stat ement's ColUMNScccouieiiiiiiiiiiiiii e 1950
51.78. pg_prepared _Xact s COlUMNSc.ooiiiiiiiiiiieiii e e e e 1950
51.79. pg_publication_tabl es Columnscc.cciiiiiiiiiiii i 1951
51.80.pg_replication_origin_status ColUmNS.........cccoeeviiiiiiiiieiiiieiiineeieeeenn, 1951
51.81.pg replication_slots ColUMNSc.ooviiiiiiiiiieiie e 1952
51.82. PG I 0l €S COlUMNS .. .cuuuiiii i e e e e e e e e e et e e et e et e e aa e eeas 1953
51.83. PG _F Ul €S COlUMNS .. .cuvniiiiieiii e e e e e e e e e e et e et e e aa e eeas 1954
51.84. pg_secl abel s COlUMNSc.oiiiiiiiii e 1954
51.85. pg_Sequences COIUMNScc.iiiiiiiiiii e e e e e aens 1955
51.86. pg_SettiNGS COIUMNScouiiiiiiiii e e e e e e e e e e e e e een 1956
51.87. pg_Shadow COlUMNScoiiiiiiii e e 1958
51.88. PG St At'S COlUMNS .. .covuiiiieiiii e e e e e e e e e e e e et e aa e eeas 1959
51.89. pg_tabl €5 COlUMNSccouiiiiiiiii e e 1961
51.90. pg_ti mezone_abbrevs ColUMNScc.oiiiiiiiiiii i e e 1962
51.91. pg_timezone _Nanmes COlUMNSccuiiiiiiiiiii e e e e 1962
51.92. PG _USEI COIUMNSuiiiiciie e e e e e e e e e e e e st e et e e e eeaens 1963
51.93. pg_user _nmappi NGS COlUMNSoiiii e e e e 1963
51.94. PG Vi €WS COIUMNScuvuiiiiiiiie e e e et e e e e e e e e e et e e et e e e et e e saneeeeas 1964
62.1. BUilt-iN GIST OPErator ClaSSESuuiiiuniiiiieiiiiie e ee e e e e e e e e e e e e et e e aanaaes 2071
63.1. BUilt-in SP-GIST OpErator ClaSSESuiciuuiiiieeiiieeiiiee et e esieeeeie e s e e e e saaeeanaes 2082
64.1. BUilt-iN GIN OPErator ClaSSEScuuiiiiiieiiieiiiie et e e e e e e e e e e e e e et eeaneens 2092
65.1. Built-in BRIN Operator ClaSSeSciuuuiiiiiieiiiieiiiieeiii e e e e e s e s e e e e et esaneeens 2099
65.2. Procedure and Support Numbers for Minmax Operator ClassesSooevvvvevinieeinnnnnn. 2101
65.3. Procedure and Support Numbers for Inclusion Operator Classescc.ceevvvevvinennnnn. 2101
66.1. CONENES OF PCDATA ...ttt ittt e e e et e e e ea e e e et e e e et s e eeaeens 2103
L e === I Yo | PP 2109
66.3. PageHeaderData LayOULc.uiiiiiiiiiiiii e e e e e e e e e e e e e eanes 2109
66.4. HeapTupleHeaderData LayOULcoceuniiiiieiiii e e e e e e e e e e 2110

XXXii

PostgreSQL 10betad4 Documentation

A.L POSIOreSQL Error COUESuuiiiiieiiii e et ee et e e e e e e e e e e e e e e e e e eaes 2146
230 Vo 0 11 I = 0 1= PSPPSR 2155
B.2. Day Of the Week NAMEScciiiiiii e e e 2155
B.3. Date/Time Field MOGIfIErS ...ccouuiiiiiiii e 2155
C.L. SOL KEBY WOIASieiiiii et e e et e e e e e e e et e e et e e et e e et e e et e eeanaes 2159
F.1 adm NPacK FUNCHIONS ..o e e e e e e e e e een 3029
F.2. Deprecated adm Npack FUNCHIONSccoviiiiiicii e 3029
F.3. Cube External REPreSentationsSccuuieiiiiiiii e ee e e e e e e e e e e e e e aens 3043
[0 oL @ o= = o] ¢ TP 3043
F.5. CUDE FUNCLIONS ... ittt et e e et e e et e e e e et n e e e eatnneaeees 3045
F.6. Cube-based Earthdistance FUNCLIONSccuuuiiiiiiiiieeii et 3079
F.7. Point-based EarthdiStance OPEraforsccuuiviinieiie e e e e e e e e e e eaens 3080
[T TSY o T @ o= = o) £ P 3086
F.O. NSt Or @ FUNCHONS ..oiiiieeei e e 3087
FA0. intarray FUNCHONScouuiiiiici e e e e e e e e e e et e eeaneeees 3093
L I oL = L = | VA @ o= = o) = 3093
L Y T B T = W Y/ o= PP 3095
T Y o I ¥ o LRI 3097
L I O YT @ o= (o) £ PP 3101
F.AS. T 11868 FUNCHONS ..ot e et e e 3102
F.16. pg_buffercache Columnsccoooiiiiiiiii i e 3114
F.17. Supported Algorithms fOr Crypt () oeeeeeeiieii e e 3116
F.18. Iteration Counts fOr CrYPL () covrieiiiiiiiie e e s 3117
F.19. Hash AlQOrithm SPEEASiveiii e e 3117
F.20. Summary of Functionality with and without OpenSSLcccoovvvieiiiinciiie e, 3124
F.21. pgr oW 0cks OUPUL COIUMNSccvuiiiii e e e e e aens 3128
F.22. pg _stat_statenments COlUMNScoooiiiiiiiii e 3129
F.23. pgstatt upl @ OUtPUt COIUMNSc.uuiiiiieiii e e e e e e e e eaas 3134
F.24. pgst at t upl e_appr ox Output ColUMNSccuuiiiiiiiiiii e e e 3137
F.25. PGt FgMEUNCHONS .. couuiiiicci e e e e e e e e e e e e e e eanees 3138
F.26. PO_t I OMOPEIEIOISvuiiiie et aaas 3139
F.27. seg External REPreSentationsSccuuiiiiiiiiii e e e e e e e e 3149
F.28. Examples of Valid SEQ INPULo.uuiiiiiiii e e e e 3149
F.29. SO GiST OPErAONS . .evueiineiiteeeii ettt e eie e et e e e e et e e et e e et e e st s e et e ean e eateesnneeeens 3150
(GO~ oo o | I 19 Tox o) 3158
F.31. t abl €f UNC FUNCHONSccuiiiiiiii e e 3163
F.32. CONNECE DY Palrameterscoouiiiiiiii e e e 3170
F.33. FUNCtioNS fOr UUID GENEIAON ... ccevvviieeiiiiieeeiii e et s e e et eeeeii e e eeai e e eeriaeeees 3177
F.34. Functions Returning UUID CONStANESccuueiiiieiiiiieiiieeiii e e eeiee et ee e e eaneeeaen 3178
TSI U 0 1 g PP 3179
F.36. xpat h_t abl @ ParameterScccuiiiiiiiiiii e 3180
H.1. Externally Maintained Client INterfacescc.oeiviiiiiiiiiii e 3194
H.2. Externally Maintained Procedural LangUagescoevuuieiiieiiiiieiieec e e 3195

XXXl

List of Examples

8.1. USING the CharaCter TYPES ... eiieiii ittt ettt e et e e et e e e et eeeees 130
8.2. USING the DOOI €8N TYPE ... 142
8.3. USING the Bit SIHNG TYPES ... eeeiiieieii ettt et et e e e eaeens 149
10.1. Factorial Operator TYPe RESOIULIONc.uuiiiiiiiieeiiii et 342
10.2. String Concatenation Operator Type RESOIULIONveeeiiiiiiiiiiieeiiii e 343
10.3. Absolute-Vaue and Negation Operator Type ReSOIULIONcccuvuveiiiiinieiiiiieeeeiinn, 343
10.4. Array Inclusion Operator Type RESOIULIONveiiiiiieiiiiieeiiii e 344
10.5. Custom Operator 0N @ DOmMaiN TYPEueiiiiiieiiiiii e 344
10.6. Rounding Function Argument Type ReSOIULIONcoeiviviiiiiiiiiiieeciie e 346
10.7. Substring FUNction TYpe RESOIULIONiiiiiiiiiiiiiie e 346
10.8. char act er Storage TYPE CONVEISIONcceeuuneiiiiiieeeiti e eeetia e e eetia e e eetin e eeeriaeeees 348
10.9. Type Resolution with Underspecified Typesin a Unionooveveeviiieiiiiinieeiiiineeees 349
10.10. Type Resolution in @ SImple UNioncoooiiiiiiiiiic e 349
10.11. Type Resolution in @ Transposed UNIONccouvuuiiiiiiiieiiiii et e e 349
11.1. Setting up a Partial Index to Exclude Common ValUEScc.ovviiiiiiiiiiiiiiieeiiiieees 357
11.2. Setting up a Partial Index to Exclude Uninteresting Valuescocvevivieiiinneeiinnnnnn. 358
11.3. Setting up a Partial Unique INAEXcoouuiiiiiiiieiii e 359
20.1. Example pg_hba. conf ENtriEsiiiiiiiiii e 565
20.2. An Example pg_i dent . conf Fileoooiiiiiii 568
33.1. libpg EXample Program Lu oottt 789
33.2. libpg EXample Program 2ooiiiiieieii et 791
33.3. libpg Example Program 3ou. e 794
34.1. Large Objects with libpg Example Programooceeuiiieieiiiieeiieeeeei e 804
35.1. Example SQLDA PrOQraMcieiieieeeiie ettt ettt e et e e e e 852
35.2. ECPG Program Accessing Large ODJECESuuuiiiiiiiieeiiii et 865
41.1. Manua Installation of PLIPENTcoiiiiiiii e 1089
42.1. Quoting Vaues [N DYNamiC QUETTESccuuuuieiiiiieeiiii et e eeeni e 1103
42.2. Exceptions With UPDATE/I NSERTiiiiiiiiieiiiii ettt 1117
42.3. A PL/PgSQL Trigger PrOCEOUIEiieiiieee ettt 1129
42.4. A PL/pgSQL Trigger Procedure FOr AUitingcouuuieiiiiiieiiiiieceii e 1130
42.5. A PL/pgSQL View Trigger Procedure FOr AUAItiNgcuuveeieiiinieiiiineeieieeeeeiinnn, 1131
42.6. A PL/pgSQL Trigger Procedure For Maintaining A Summary Tableccoevunnee.. 1132
42.7. A PL/pgSQL Event Trigger PrOCEAUIEccuuunieiiiiiieieiie e 1135
42.8. Porting a Simple Function from PL/SQL t0 PL/PGSQLuuiiiiiiieiiiiiieeciieeeeeiee 1141
42.9. Porting a Function that Creates Another Function from PL/SQL to PL/pgSQL 1142
42.10. Porting a Procedure With String Manipulation and OUT Parameters from PL/SQL to

[0TSO RSO PPTPTTRR 1144
42.11. Porting a Procedure from PL/SQL to PL/PGSQLvviiiiiiiiieiiiie e 1145
F.1. Create a Foreign Table for POSIgreSQL CSV LOGS ... civvvvneeiiiiieeeeiiieeeeiieeeeeiiaeeees 3082

XXXIV

Preface

This book is the official documentation of PostgreSQL. It has been written by the PostgreSQL
developersand other volunteersin parallel to the devel opment of the PostgreSQL software. It describes
all the functionality that the current version of PostgreSQL officially supports.

To makethelarge amount of information about PostgreSQL manageabl e, thisbook has been organized
in several parts. Each part istargeted at adifferent class of users, or at usersin different stages of their
PostgreSQL experience:

e Part | isaninformal introduction for new users.

 Part 1l documentsthe SQL query language environment, including datatypes and functions, aswell
as user-level performance tuning. Every PostgreSQL user should read this.

 Part 111 describestheinstallation and administration of the server. Everyone who runs a PostgreSQL
server, beit for private use or for others, should read this part.

 Part IV describes the programming interfaces for PostgreSQL client programs.

» Part V contains information for advanced users about the extensibility capabilities of the server.
Topics include user-defined data types and functions.

» Part VI contains reference information about SQL commands, client and server programs. This part
supports the other parts with structured information sorted by command or program.

» Part VII contains assorted information that might be of use to PostgreSQL developers.

1. What is PostgreSQL?

PostgreSQL is an object-relational database management system (ORDBMS) based on POSTGRES,
Version 4.2, developed at the University of California at Berkeley Computer Science Department.
POSTGRES pioneered many concepts that only became available in some commercial database
systems much later.

PostgreSQL is an open-source descendant of this original Berkeley code. It supports a large part of
the SQL standard and offers many modern features:

» complex queries

« foreign keys

* triggers

 updatable views

* transactional integrity

» multiversion concurrency control

Also, PostgreSQL can be extended by the user in many ways, for example by adding new

o datatypes

* functions

* operators
 aggregate functions
* index methods
 procedural languages

And because of the liberal license, PostgreSQL can be used, modified, and distributed by anyone free
of charge for any purpose, beit private, commercial, or academic.

2. A Brief History of PostgreSQL

L hitp://dio.cs.berkel ey.edu/postgres.htm

XXXV

http://db.cs.berkeley.edu/postgres.html
http://db.cs.berkeley.edu/postgres.html
http://db.cs.berkeley.edu/postgres.html

Preface

The object-relational database management system now known as PostgreSQL is derived from the
POSTGRES package written at the University of California at Berkeley. With over two decades
of development behind it, PostgreSQL is now the most advanced open-source database available
anywhere.

2.1. The Berkeley POSTGRES Project

The POSTGRES project, led by Professor Michael Stonebraker, was sponsored by the Defense
Advanced Research Projects Agency (DARPA), the Army Research Office (ARO), the National
Science Foundation (NSF), and ESL, Inc. The implementation of POSTGRES began in 1986. The
initial concepts for the system were presented in [ston86], and the definition of the initial data model
appeared in [rowe87]. The design of the rule system at that time was described in [ston87a]. The
rational e and architecture of the storage manager were detailed in [ston87b].

POSTGRES has undergone several major releases since then. The first “demoware” system became
operational in 1987 and was shown at the 1988 ACM-SIGMOD Conference. Version 1, described in
[ston90a], was released to afew external usersin June 1989. In response to a critique of thefirst rule
system ([ston89]), the rule system was redesigned ([ston90b]), and Version 2 was released in June
1990 with the new rule system. Version 3 appeared in 1991 and added support for multiple storage
managers, an improved query executor, and a rewritten rule system. For the most part, subsegquent
releases until Postgres95 (see bel ow) focused on portability and reliability.

POST GRES has been used to implement many different research and production applications. These
include: afinancial data analysis system, a jet engine performance monitoring package, an asteroid
tracking database, a medical information database, and severa geographic information systems.
POSTGRES has also been used as an educational tool at severa universities. Finally, Illustra
Information Technologies (later merged into Informix?, which is now owned by IBM3) picked up
the code and commercialized it. In late 1992, POSTGRES became the primary data manager for the
Sequoia 2000 scientific computing project®,

The size of the external user community nearly doubled during 1993. It became increasingly obvious
that maintenance of the prototype code and support was taking up large amounts of time that should
have been devoted to database research. In an effort to reduce this support burden, the Berkeley
POSTGRES project officially ended with Version 4.2.

2.2. Postgres95

In 1994, Andrew Y u and Jolly Chen added an SQL language interpreter to POSTGRES. Under anew
name, Postgres95 was subsequently released to the web to find its own way in the world as an open-
source descendant of the original POSTGRES Berkeley code.

Postgres95 code was completely ANSI C and trimmed in size by 25%. Many internal changes
improved performance and maintainability. Postgres95 release 1.0.x ran about 30-50% faster on the
Wisconsin Benchmark compared to POSTGRES, Version 4.2. Apart from bug fixes, the following
were the major enhancements:

* The query language PostQUEL was replaced with SQL (implemented in the server). (Interface
library libpg was named after PostQUEL .) Subqueries were not supported until PostgreSQL (see
below), but they could be imitated in Postgres95 with user-defined SQL functions. Aggregate
functions were re-implemented. Support for the GROUP BY query clause was a so added.

* A new program (psqgl) was provided for interactive SQL queries, which used GNU Readline. This
largely superseded the old monitor program.

* A new front-end library, | i bpgt cl , supported Tcl-based clients. A sample shell, pgt cl sh,
provided new Tcl commands to interface Tcl programs with the Postgres95 server.

2 http:/Awww.informix.com/
3 http://www.ibm.com/
4 http://meteora.ucsd.edu/s2k/s2k_home.html

XXXVi

http://www.informix.com/
http://www.ibm.com/
http://meteora.ucsd.edu/s2k/s2k_home.html
http://www.informix.com/
http://www.ibm.com/
http://meteora.ucsd.edu/s2k/s2k_home.html

Preface

» The large-object interface was overhauled. The inversion large objects were the only mechanism
for storing large objects. (The inversion file system was removed.)

» Theinstance-level rule system was removed. Rules were still available as rewrite rules.

» A short tutorial introducing regular SQL features as well as those of Postgres95 was distributed
with the source code

* GNU make (instead of BSD make) was used for the build. Also, Postgres95 could be compiled with
an unpatched GCC (data alignment of doubles was fixed).

2.3. PostgreSQL

By 1996, it became clear that the name “ Postgres95” would not stand the test of time. We chose anew
name, PostgreSQL, to reflect the relationship between the original POSTGRES and the more recent
versions with SQL capability. At the same time, we set the version numbering to start at 6.0, putting
the numbers back into the sequence originally begun by the Berkeley POSTGRES project.

Many people continue to refer to PostgreSQL as “Postgres’ (now rarely in all capital letters) because
of tradition or because it is easier to pronounce. This usage is widely accepted as a nickname or alias.

The emphasis during development of Postgresd5 was on identifying and understanding existing
problems in the server code. With PostgreSQL, the emphasis has shifted to augmenting features and
capabilities, although work continuesin all areas.

Details about what has happened in PostgreSQL since then can be found in Appendix E.

3. Conventions

Thefollowing conventionsare used in the synopsis of acommand: brackets([and]) indicate optional
parts. (In the synopsis of a Tcl command, question marks (?) are used instead, as is usual in Tcl.)
Braces({ and}) and vertical lines(|) indicate that you must choose one dternative. Dots(. . .) mean
that the preceding element can be repeated.

Where it enhances the clarity, SQL commands are preceded by the prompt =>, and shell commands
are preceded by the prompt $. Normally, prompts are not shown, though.

An administrator is generally a person who is in charge of installing and running the server. A user
could be anyone who is using, or wants to use, any part of the PostgreSQL system. These terms
should not be interpreted too narrowly; this book does not have fixed presumptions about system
administration procedures.

4. Further Information

Besides the documentation, that is, this book, there are other resources about PostgreSQL :
Wiki

The PostgreSQL wiki® contains the project's FAQ® (Frequently Asked Questions) list, TODO’
list, and detailed information about many more topics.

Web Site

The PostgreSQL web site® carries details on the | atest release and other information to make your
work or play with PostgreSQL more productive.

5 https://wiki.postgresql.org

5 https://wiki.postgresql.org/wiki/Frequently Asked Questions
7 https://wiki.postgresgl.org/wiki/Todo

8 https://www.postgresgl.org

XXXVil

https://wiki.postgresql.org
https://wiki.postgresql.org/wiki/Frequently_Asked_Questions
https://wiki.postgresql.org/wiki/Todo
https://www.postgresql.org
https://wiki.postgresql.org
https://wiki.postgresql.org/wiki/Frequently_Asked_Questions
https://wiki.postgresql.org/wiki/Todo
https://www.postgresql.org

Preface

Mailing Lists

The mailing lists are a good place to have your questions answered, to share experiences with
other users, and to contact the developers. Consult the PostgreSQL web site for details.

Y ourself!

PostgreSQL is an open-source project. As such, it depends on the user community for ongoing
support. As you begin to use PostgreSQL, you will rely on others for help, either through the
documentation or through the mailing lists. Consider contributing your knowledge back. Read
the mailing lists and answer questions. If you learn something which is not in the documentation,
write it up and contribute it. If you add features to the code, contribute them.

5. Bug Reporting Guidelines

When you find abug in PostgreSQL we want to hear about it. Y our bug reports play an important part
in making PostgreSQL more reliable because even the utmost care cannot guarantee that every part
of PostgreSQL will work on every platform under every circumstance.

The following suggestions are intended to assist you in forming bug reports that can be handled in an
effective fashion. No oneis required to follow them but doing so tends to be to everyone's advantage.

We cannot promiseto fix every bug right away. If the bug is obvious, critical, or affectsalot of users,
chances are good that someone will 1ook into it. It could also happen that we tell you to update to
a newer version to see if the bug happens there. Or we might decide that the bug cannot be fixed
before some major rewrite we might be planning isdone. Or perhapsit issimply too hard and there are
more important things on the agenda. If you need help immediately, consider obtaining a commercial
support contract.

5.1. Identifying Bugs

Before you report a bug, please read and re-read the documentation to verify that you can realy do
whatever it isyou are trying. If it is not clear from the documentation whether you can do something
or not, please report that too; it is a bug in the documentation. If it turns out that a program does
something different from what the documentation says, that is a bug. That might include, but is not
limited to, the following circumstances:

» A program terminates with afatal signal or an operating system error message that would point to
a problem in the program. (A counterexample might be a “disk full” message, since you have to
fix that yourself.)

» A program produces the wrong output for any given input.
» A program refuses to accept valid input (as defined in the documentation).

A program acceptsinvalid input without a notice or error message. But keep in mind that your idea
of invalid input might be our idea of an extension or compatibility with traditional practice.

» PostgreSQL failsto compile, build, or install according to the instructions on supported platforms.
Here “program” refers to any executable, not only the backend process.

Being slow or resource-hogging is not necessarily a bug. Read the documentation or ask on one of
the mailing lists for help in tuning your applications. Failing to comply to the SQL standard is not
necessarily a bug either, unless compliance for the specific feature is explicitly claimed.

Before you continue, check on the TODO list and in the FAQ to see if your bug is aready known.
If you cannot decode the information on the TODO list, report your problem. The least we cando is
make the TODO list clearer.

XXXViii

Preface

5.2. What to Report

The most important thing to remember about bug reporting is to state all the facts and only facts. Do
not speculate what you think went wrong, what “it seemed to do”, or which part of the program has a
fault. If you are not familiar with the implementation you would probably guess wrong and not help
us a bit. And even if you are, educated explanations are a great supplement to but no substitute for
facts. If we are going to fix the bug we still have to see it happen for ourselves first. Reporting the
bare facts is relatively straightforward (you can probably copy and paste them from the screen) but
all too often important details are left out because someone thought it does not matter or the report
would be understood anyway.

The following items should be contained in every bug report:

» Theexact sequence of stepsfrom program start-up necessary to reproduce the problem. This should
be self-contained; it is not enough to send in a bare SELECT statement without the preceding
CREATE TABLE and | NSERT statements, if the output should depend on the data in the tables.
We do not have the time to reverse-engineer your database schema, and if we are supposed to make
up our own data we would probably miss the problem.

The best format for atest case for SQL-related problems is afile that can be run through the psgl
frontend that shows the problem. (Be sure to not have anything inyour ~/ . psql r ¢ start-up file))
An easy way to createthisfileisto use pg_dump to dump out the table declarations and data needed
to set the scene, then add the problem query. You are encouraged to minimize the size of your
example, but thisis not absolutely necessary. If the bug is reproducible, we will find it either way.

If your application uses some other client interface, such as PHP, then please try to isolate the
offending queries. We will probably not set up aweb server to reproduce your problem. In any case
remember to provide the exact input files; do not guess that the problem happens for “large files’
or “midsize databases’, etc. since thisinformation istoo inexact to be of use.

» Theoutput you got. Please do not say that it “didn't work” or “crashed”. If thereisan error message,
show it, even if you do not understand it. If the program terminates with an operating system error,
say which. If nothing at all happens, say so. Even if the result of your test case is a program crash
or otherwise obvious it might not happen on our platform. The easiest thing is to copy the output
from the terminal, if possible.

Note

If you are reporting an error message, please obtain the most verbose form
of the message. In psql, say \set VERBOSI TY verbose beforehand. If
you are extracting the message from the server log, set the run-time parameter
log_error_verbosity to ver bose so that al details are logged.

Note

In case of fatal errors, the error message reported by the client might not contain all
theinformation available. Please also |ook at thelog output of the database server. I
you do not keep your server'slog output, thiswould be agood timeto start doing so.

» The output you expected is very important to state. If you just write “This command gives me that
output.” or “Thisis not what | expected.”, we might run it ourselves, scan the output, and think it
looks OK and is exactly what we expected. We should not have to spend the time to decode the
exact semantics behind your commands. Especialy refrain from merely saying that “This is not
what SQL says/Oracle does.” Digging out the correct behavior from SQL is not a fun undertaking,

XXXiX

Preface

nor do we al know how all the other relational databases out there behave. (If your problem is a
program crash, you can obviously omit thisitem.)

» Any command line options and other start-up options, including any relevant environment variables
or configuration files that you changed from the default. Again, please provide exact information.
If you are using a prepackaged distribution that starts the database server at boot time, you should
try to find out how that is done.

» Anything you did at al differently from the installation instructions.

» ThePostgreSQL version. Y ou canrunthecommand SELECT ver si on() ; tofindouttheversion
of the server you are connected to. Most executable programs also support a- - ver si on option;
at least postgres --version and psql --version should work. If the function or the
options do not exist then your version is more than old enough to warrant an upgrade. If you run a
prepackaged version, such as RPMs, say so, including any subversion the package might have. If
you are talking about a Git snapshot, mention that, including the commit hash.

If your versionisolder than 10betad wewill almost certainly tell you to upgrade. Therearemany bug
fixes and improvementsin each new release, so it is quite possible that a bug you have encountered
in an older release of PostgreSQL has already been fixed. We can only provide limited support
for sites using older releases of PostgreSQL ; if you require more than we can provide, consider
acquiring acommercial support contract.

 Platform information. This includes the kernel name and version, C library, processor, memory
information, and so on. In most cases it is sufficient to report the vendor and version, but do not
assume everyone knowswhat exactly “ Debian” contains or that everyone runsoni386s. If you have
installation problems then information about the toolchain on your machine (compiler, make, and
S0 on) is also necessary.

Do not be afraid if your bug report becomes rather lengthy. That is afact of life. It is better to report
everything the first time than us having to squeeze the facts out of you. On the other hand, if your
input files are huge, it isfair to ask first whether somebody isinterested in looking into it. Hereis an
article” that outlines some more ti ps on reporting bugs.

Do not spend all your time to figure out which changes in the input make the problem go away. This
will probably not help solving it. If it turns out that the bug cannot be fixed right away, you will still
have timeto find and share your work-around. Also, once again, do not waste your time guessing why
the bug exists. We will find that out soon enough.

When writing a bug report, please avoid confusing terminology. The software package in total is
called “PostgreSQL ", sometimes“ Postgres” for short. If you are specifically talking about the backend
process, mention that, do not just say “PostgreSQL crashes’. A crash of a single backend process
is quite different from crash of the parent “postgres’ process; please don't say “the server crashed”
when you mean a single backend process went down, nor vice versa. Also, client programs such asthe
interactive frontend “psgl” are completely separate from the backend. Please try to be specific about
whether the problem is on the client or server side.

5.3. Where to Report Bugs

In general, send bug reports to the bug report mailing list at <pgsql - bugs @ost gr esql . or g>.
You are requested to use a descriptive subject for your email message, perhaps parts of the error
message.

Another method is to fill in the bug report web-form available at the project's web site'©. Entering a
bug report thisway causesit to be mailed to the <pgsql - bugs @ost gr esql . or g> mailing list.

9 http://www.chiark.greenend.org.uk/~sgtatham/bugs.htm
10 https:/iwww. postgresal.org/

x|

http://www.chiark.greenend.org.uk/~sgtatham/bugs.html
https://www.postgresql.org/
http://www.chiark.greenend.org.uk/~sgtatham/bugs.html
https://www.postgresql.org/

Preface

If your bug report has security implications and you'd prefer that it not become immediately visible
in public archives, don't send it to pgsql - bugs. Security issues can be reported privately to
<security@ostgresql.org>.

Do not send bug reportsto any of theuser mailing lists, suchas<pgsql - sql @ost gr esql . or g>
or <pgsql - gener al @ost gresql . or g>. Thesemailing lists are for answering user questions,
and their subscribers normally do not wish to receive bug reports. Moreimportantly, they are unlikely
to fix them.

Also, pleasse do not send reports to the developers mailing list
<pgsql - hacker s@ost gresql . org>. This list is for discussing the development of
PostgreSQL , and it would be nice if we could keep the bug reports separate. We might choose to take
up adiscussion about your bug report on pgsql - hacker s, if the problem needs more review.

If you have a problem with the documentation, the best place to report it is the documentation mailing
list <pgsql - docs@ost gr esql . or g>. Please be specific about what part of the documentation
you are unhappy with.

If your bug is a portability problem on a non-supported platform, send mail to
<pgsql - hacker s@ost gresql . or g>, so we (and you) can work on porting PostgreSQL to
your platform.

Note

Dueto the unfortunate amount of spam going around, al of the above email addresses
are closed mailing lists. That is, you need to be subscribed to a list to be allowed to
post on it. (You need not be subscribed to use the bug-report web form, however.) If
you would like to send mail but do not want to receive list traffic, you can subscribe
and set your subscription option to nomai | . For more information send mail to
<maj or dono@ost gr esql . or g> with the singleword hel p in the body of the

message.

xli

Part I. Tutorial

Welcome to the PostgreSQL Tutorial. The following few chapters are intended to give a simple introduction to
PostgreSQL, relational database concepts, and the SQL |anguage to those who are new to any one of these aspects.
We only assume some general knowledge about how to use computers. No particular Unix or programming
experienceisrequired. Thispart is mainly intended to give you some hands-on experience with important aspects
of the PostgreSQL system. It makes no attempt to be a complete or thorough treatment of the topicsit covers.

After you have worked through this tutorial you might want to move on to reading Part Il to gain a more formal
knowledge of the SQL language, or Part 1V for information about devel oping applications for PostgreSQL . Those
who set up and manage their own server should also read Part 1.

Table of Contents

L. GEIING SEAMEAeeieeie ettt ettt 3
0 T 1 = = = 1o o [P 3
1.2. Architectural FUNDamENtalSc.oiviiniii i 3
1.3. Creating @ Datahasecccuuuiiiiii e 4
1.4, ACCESSING 8 DAIANESE ..ottt 5
2. The SQL LBNGUBGE ...ccevn ittt e et et e et e e e eae s 7
b2 I 1 11 (0o (U (o 1 o I PP 7
A O 04 /= o = PP PT PP 7
2.3. Creating @aNew Table ...o.uuiiii e 7
2.4. Populating @ Table With ROWScoouuiiiiiii e 8
25, QUENYING A TADIE ... 9
2.6. J0INS BEIWEEN TaADIES ...uiviiiie i 10
2.7. AQOregate FUNCLIONSccuuuieiiiii ettt ettt e e et eeeaaa s 12
2.8 UPUELES ...ttt 14
2.9, DEIBHIONSviieiee et e aaaaas 14
I Y0 (V7= o= s (1 = 16
G I 111 (oo (U o 1 o [PPSR 16
I VAT = YRS USPRPRP 16
3.3 FOrEIgN KBYS ..ttt 16
I I =01 o o 1 17
3.5, WINAOW FUNCLIONScviiviiiiii e ans 19
I ST 101015 g1 7= ot PSP 21
G I o o Tox 11 Lo o T 23

Chapter 1. Getting Started

1.1. Installation

Before you can use PostgreSQL you need to install it, of course. It is possible that PostgreSQL is
already installed at your site, either because it was included in your operating system distribution
or because the system administrator already installed it. If that is the case, you should obtain
information from the operating system documentation or your system administrator about how to
access PostgreSQL.

If you are not sure whether PostgreSQL is already available or whether you can use it for your
experimentation then you can install it yourself. Doing so is not hard and it can be a good exercise.
PostgreSQL can be installed by any unprivileged user; no superuser (root) accessis required.

If you are installing PostgreSQL yourself, then refer to Chapter 16 for instructions on installation,
and return to this guide when the installation is complete. Be sure to follow closely the section about
setting up the appropriate environment variabl es.

If your site administrator has not set things up in the default way, you might have some more work to
do. For example, if the database server machine is aremote machine, you will need to set the PGHOST
environment variable to the name of the database server machine. The environment variable PGPORT
might also have to be set. The bottom line is this: if you try to start an application program and it
complains that it cannot connect to the database, you should consult your site administrator or, if
that is you, the documentation to make sure that your environment is properly set up. If you did not
understand the preceding paragraph then read the next section.

1.2. Architectural Fundamentals

Before we proceed, you should understand the basic PostgreSQL system architecture. Understanding
how the parts of PostgreSQL interact will make this chapter somewhat clearer.

In database jargon, PostgreSQL uses a client/server model. A PostgreSQL session consists of the
following cooperating processes (programs):

A server process, which manages the database files, accepts connections to the database from client
applications, and performs database actions on behalf of the clients. The database server program
iscaled post gres.

e The user's client (frontend) application that wants to perform database operations. Client
applications can be very diverse in nature: a client could be a text-oriented tool, a graphical
application, aweb server that accesses the database to display web pages, or a specialized database
maintenance tool. Some client applications are supplied with the PostgreSQL distribution; most are
developed by users.

Asistypical of client/server applications, the client and the server can be on different hosts. In that
case they communicate over a TCP/IP network connection. Y ou should keep this in mind, because
the filesthat can be accessed on a client machine might not be accessible (or might only be accessible
using adifferent file name) on the database server machine.

The PostgreSQL server can handle multiple concurrent connections from clients. To achieve this
it starts (“forks”) a new process for each connection. From that point on, the client and the new
server process communicate without intervention by theoriginal post gr es process. Thus, the master
server process is always running, waiting for client connections, whereas client and associated server
processes come and go. (All of thisis of course invisible to the user. We only mention it here for
completeness.)

Getting Started

1.3. Creating a Database

Thefirst test to see whether you can access the database server isto try to create adatabase. A running
PostgreSQL server can manage many databases. Typically, aseparate databaseisused for each project
or for each user.

Possibly, your site administrator has already created a database for your use. In that case you can omit
this step and skip ahead to the next section.

To create a new database, in this example named mydb, you use the following command:
$ createdb nydb

If this produces no response then this step was successful and you can skip over the remainder of
this section.

If you see a message similar to:
creat edb: command not found

then PostgreSQL was not installed properly. Either it was not installed at al or your shell's search path
was not set to includeit. Try calling the command with an absolute path instead:

$ /usr/local/pgsqgl/bin/createdb nmydb

The path at your site might be different. Contact your site administrator or check the installation
instructions to correct the situation.

Another response could be this:

createdb: could not connect to database postgres: could not connect
to server: No such file or directory

Is the server running locally and accepting

connections on Unix domain socket "/tnp/.s.PGSQ.5432"?

This means that the server was not started, or it was not started where cr eat edb expected it. Again,
check the installation instructions or consult the administrator.

Another response could be this:

createdb: could not connect to database postgres: FATAL: role
"j oe" does not exi st

where your own login name is mentioned. This will happen if the administrator has not created a
PostgreSQL user account for you. (PostgreSQL user accounts are distinct from operating system user
accounts.) If you are the administrator, see Chapter 21 for help creating accounts. You will need to
become the operating system user under which PostgreSQL was installed (usualy post gr es) to
create the first user account. It could also be that you were assigned a PostgreSQL user name that is
different from your operating system user name; in that case you need to use the - U switch or set the
PGUSER environment variable to specify your PostgreSQL user name.

If you have a user account but it does not have the privileges required to create a database, you will
see the following:

creat edb: database creation failed: ERROR pernission denied to
creat e dat abase

Not every user has authorization to create new databases. If PostgreSQL refuses to create databases
for you then the site administrator needs to grant you permission to create databases. Consult your

Getting Started

site administrator if this occurs. If you installed PostgreSQL yourself then you should log in for the
purposes of thistutorial under the user account that you started the server as. !

You can aso create databases with other names. PostgreSQL allows you to create any number of
databases at a given site. Database names must have an aphabetic first character and are limited to
63 bytes in length. A convenient choice is to create a database with the same name as your current
user name. Many tools assume that database name as the default, so it can save you some typing. To
create that database, smply type:

$ createdb

If you do not want to use your database anymore you can removeit. For example, if you are the owner
(creator) of the database ny db, you can destroy it using the following command:

$ dropdb mydb

(For this command, the database name does not default to the user account name. Y ou always need to
specify it.) Thisaction physically removesall files associated with the database and cannot be undone,
so this should only be done with a great deal of forethought.

More about cr eat edb and dr opdb can be found in createdb and dropdb respectively.

1.4. Accessing a Database

Once you have created a database, you can accessit by:

* Running the PostgreSQL interactive terminal program, called psgl, which alows you to
interactively enter, edit, and execute SQL commands.

» Using an existing graphical frontend tool like pgAdmin or an office suite with ODBC or JDBC
support to create and manipulate a database. These possibilities are not covered in this tutorial.

» Writing a custom application, using one of the severa available language bindings. These
possibilities are discussed further in Part V.

Y ou probably want to start up psql to try the examples in this tutorial. It can be activated for the
ny db database by typing the command:

$ psql nydb

If you do not supply the database name then it will default to your user account name. Y ou aready
discovered this schemein the previous section using cr eat edb.

Inpsql , youwill be greeted with the following message:

psql (10bet a4)
Type "hel p" for help.

mydb=>
Thelast line could also be:
nydb=#

That would mean you are a database superuser, which is most likely the case if you installed the
PostgreSQL instance yourself. Being a superuser means that you are not subject to access controls.
For the purposes of thistutorial that is not important.

1 As an explanation for why this works: PostgreSQL user names are separate from operating system user accounts. When you connect to a
database, you can choose what PostgreSQL user name to connect as; if you don't, it will default to the same name as your current operating
system account. Asit happens, there will always be a PostgreSQL user account that has the same name as the operating system user that started
the server, and it also happens that that user always has permission to create databases. Instead of logging in as that user you can also specify
the - U option everywhere to select a PostgreSQL user name to connect as.

Getting Started

If you encounter problems starting psql then go back to the previous section. The diagnostics of
creat edb and psql aresimilar, and if the former worked the latter should work as well.

Thelast line printed out by psql isthe prompt, and it indicatesthat psql islistening to you and that
you can type SQL queries into awork space maintained by psql . Try out these commands:

nmydb=> SELECT version();
version

Post greSQ. 10bet a4 on x86_64-pc-I|inux-gnu, conpiled by gcc (Debian
4.9.2-10) 4.9.2, 64-bit

(1 row)

nmydb=> SELECT current_date;
dat e

2016- 01- 07
(1 row)

nmydb=> SELECT 2 + 2;
?col um?

(1 row)

Thepsqgl program hasanumber of internal commands that are not SQL commands. They begin with
the backslash character, “\ ”. For example, you can get help on the syntax of various PostgreSQL SQL
commands by typing:

nydb=> \ h
To get out of psql , type:
nydb=> \q

and psql will quit and return you to your command shell. (For more internal commands, type\ ? at
the psql prompt.) The full capabilities of psql are documented in psql. In this tutorial we will not
use these features explicitly, but you can use them yourself when it is helpful.

Chapter 2. The SQL Language

2.1. Introduction

This chapter provides an overview of how to use SQL to perform simple operations. This tutorial is
only intended to give you an introduction and is in no way a complete tutorial on SQL. Numerous
books have been written on SQL, including [melt93] and [date97]. Y ou should be aware that some
PostgreSQL language features are extensions to the standard.

In the examples that follow, we assume that you have created a database named mydb, as described
in the previous chapter, and have been able to start psql.

Examples in this manual can also be found in the PostgreSQL source distribution in the directory
src/tutorial/.(Binary distributions of PostgreSQL might not compile these files.) To use those
files, first change to that directory and run make:

$cd/src/tutorial
$ make

This creates the scripts and compiles the C files containing user-defined functions and types. Then,
to start the tutorial, do the following:

$cd..../tutorial
$ psql -s nydb

nydb=> \i basi cs. sql

The\ i command readsin commandsfrom the specified file. psql 's- s option putsyouin single step
mode which pauses before sending each statement to the server. The commands used in this section
areinthefilebasi cs. sql .

2.2. Concepts

2.3.

PostgreSQL isarelational database management system (RDBMS). That meansit is a system for
managing data stored in relations. Relation is essentially a mathematical term for table. The notion
of storing data in tables is so commonplace today that it might seem inherently obvious, but there
are a number of other ways of organizing databases. Files and directories on Unix-like operating
systems form an example of a hierarchical database. A more modern development is the object-
oriented database.

Each table is a named collection of rows. Each row of a given table has the same set of named
columns, and each column is of a specific datatype. Whereas columns have afixed order in each row,
it isimportant to remember that SQL does not guarantee the order of the rows within the table in any
way (although they can be explicitly sorted for display).

Tables are grouped into databases, and a collection of databases managed by a single PostgreSQL
server instance constitutes a database cluster.

Creating a New Table

Y ou can create a new table by specifying the table name, along with all column names and their types:

CREATE TABLE weat her (
city var char (80),
tenmp_lo int, -- low tenperature

The SQL Language

t enmp_hi int, -- high tenperature
prcp real, -- precipitation
dat e date

)

You can enter this into psql with the line breaks. psql will recognize that the command is not
terminated until the semicolon.

White space (i.e., spaces, tabs, and newlines) can be used freely in SQL commands. That means
you can type the command aligned differently than above, or even all on one line. Two dashes (“- -
") introduce comments. Whatever follows them is ignored up to the end of the line. SQL is case
insensitive about key words and identifiers, except when identifiers are double-quoted to preserve the
case (not done above).

var char (80) specifies a data type that can store arbitrary character strings up to 80 characters
inlength. i nt isthe normal integer type. r eal isatype for storing single precision floating-point
numbers. dat e should be self-explanatory. (Y es, the column of typedat e isalso named dat e. This
might be convenient or confusing — you choose.)

PostgreSQL supports the standard SQL typesi nt, snal I i nt, real, doubl e precision,
char (N),varchar(N),date, tinme,tinestanp, andi nt erval, aswell as other types of
genera utility and arich set of geometric types. PostgreSQL can be customized with an arbitrary
number of user-defined data types. Consequently, type names are not key words in the syntax, except
where required to support special casesin the SQL standard.

The second example will store cities and their associated geographical location:

CREATE TABLE cities (
nane var char (80),
| ocation poi nt

)
Thepoi nt typeisan example of a PostgreSQL -specific data type.

Finally, it should be mentioned that if you don't need atable any longer or want to recreateit differently
you can remove it using the following command:

DROP TABLE t abl enane;

2.4. Populating a Table With Rows

The | NSERT statement is used to populate a table with rows:

| NSERT | NTO weat her VALUES (' San Francisco', 46, 50, 0.25,
'1994-11-27");

Notethat all datatypes use rather obviousinput formats. Constantsthat are not simple numeric values
usually must be surrounded by single quotes ('), asin the example. The dat e typeisactualy quite
flexiblein what it accepts, but for this tutorial we will stick to the unambiguous format shown here.
Thepoi nt type requires a coordinate pair as input, as shown here:

I NSERT I NTO cities VALUES (' San Francisco', '(-194.0, 53.0)');

The syntax used so far requiresyou to remember the order of the columns. An alternative syntax allows
you to list the columns explicitly:

| NSERT | NTO weat her (city, tenp_lo, tenp_hi, prcp, date)
VALUES (' San Francisco', 43, 57, 0.0, '1994-11-29");

The SQL Language

You can list the columns in a different order if you wish or even omit some columns, e.g., if the
precipitation is unknown;

| NSERT | NTO weat her (date, city, tenp_hi, tenp_|lo)
VALUES (' 1994-11-29', 'Hayward', 54, 37);

Many developers consider explicitly listing the columns better style than relying on the order
implicitly.

Please enter al the commands shown above so you have some data to work with in the following
sections.

You could also have used COPY to load large amounts of data from flat-text files. Thisis usually
faster because the COPY command is optimized for this application while allowing lessflexibility than
| NSERT. An example would be:

COPY weat her FROM '/ hone/ user/ weat her.txt';

where the file name for the source file must be available on the machine running the backend process,
not the client, since the backend process reads the file directly. Y ou can read more about the COPY
command in COPY.

2.5. Querying a Table

To retrieve datafrom atable, thetableis queried. An SQL SELECT statement is used to do this. The
statement is divided into a select list (the part that lists the columns to be returned), a table list (the
part that lists the tables from which to retrieve the data), and an optional qualification (the part that
specifies any restrictions). For example, to retrieve all the rows of tableweat her , type:

SELECT * FROM weat her;
Here* isashorthand for “all columns’. * So the same result would be had with:

SELECT city, tenp_lo, tenmp_hi, prcp, date FROM weat her;

The output should be:

city | temp_lo | tenp_hi | prcp | dat e
--------------- T T T L e
San Franci sco | 46 | 50 | 0.25 | 1994-11-27
San Franci sco | 43 | 57 | 0 | 1994-11-29
Haywar d | 37 | 54 | | 1994-11-29
(3 rows)

Y ou can write expressions, not just simple column references, in the select list. For example, you can
do:

SELECT city, (tenp_hi+tenp lo)/2 AS tenp_avg, date FROM weat her;

This should give:

city | tenmp_avg | date
_______________ e
San Franci sco | 48 | 1994-11- 27
San Franci sco | 50 | 1994-11-29
Haywar d | 45 | 1994-11-29
(3 rows)

L \While SELECT * isuseful for off-the-cuff queries, it is widely considered bad style in production code, since adding a column to the table
would change the results.

The SQL Language

Notice how the AS clause is used to relabel the output column. (The AS clauseis optional.)

A query can be “qualified” by adding a WHERE clause that specifies which rows are wanted. The
WHERE clause contains a Boolean (truth value) expression, and only rows for which the Boolean
expression is true are returned. The usual Boolean operators (AND, OR, and NOT) are allowed in the
qualification. For example, the following retrieves the weather of San Francisco on rainy days:

SELECT * FROM weat her
WHERE city = 'San Franci sco' AND prcp > 0.0;

Resullt:

city | temp_lo | tenp_hi | prcp | dat e
--------------- T T L e
San Francisco | 46 | 50 | 0.25 | 1994-11-27
(1 row)

Y ou can request that the results of a query be returned in sorted order:

SELECT * FROM weat her
ORDER BY city;

city | temp_lo | tenp_hi | prcp | dat e
--------------- T T L g
Haywar d | 37 | 54 | | 1994-11-29
San Franci sco | 43 | 57 | 0 | 1994-11-29
San Franci sco | 46 | 50 | 0.25 | 1994-11-27

In this example, the sort order isn't fully specified, and so you might get the San Francisco rows in
either order. But you'd always get the results shown above if you do:

SELECT * FROM weat her
ORDER BY city, tenp_lo;

Y ou can request that duplicate rows be removed from the result of a query:

SELECT DI STINCT city
FROM weat her ;

Haywar d
San Franci sco
(2 rows)

Here again, theresult row ordering might vary. Y ou can ensure consistent results by using DI STI NCT
and ORDER BY together: 2

SELECT DI STINCT city
FROM weat her
ORDER BY city;

2.6. Joins Between Tables

Thus far, our queries have only accessed one table at a time. Queries can access multiple tables at
once, or access the same tablein such away that multiple rows of the table are being processed at the
sametime. A query that accesses multiple rows of the same or different tables at onetimeiscalled a

2 |n some database systems, including older versions of PostgreSQL, the implementation of DI STI NCT automatically orders the rows and
so ORDER BY is unnecessary. But this is not required by the SQL standard, and current PostgreSQL does not guarantee that DI STI NCT
causes the rows to be ordered.

10

The SQL Language

join query. As an example, say you wish to list al the weather records together with the location of
the associated city. To do that, we need to compare the ci t y column of each row of the weat her

table with the nanme column of all rowsintheci t i es table, and select the pairs of rows where these
values match.

Note

This is only a conceptual model. The join is usually performed in a more efficient
manner than actually comparing each possible pair of rows, but thisisinvisible to the
user.

This would be accomplished by the following query:

SELECT *
FROM weat her, cities
WHERE city = nane;

city | temp_lo | tenp_hi | prcp | dat e | nane
| location
--------------- T T T L L g
oo - S
San Franci sco | 46 | 50 | 0.25 | 1994-11-27 | San
Francisco | (-194, 53)
San Franci sco | 43 | 57 | 0 | 1994-11-29 | San
Francisco | (-194, 53)
(2 rows)

Observe two things about the result set:

» Thereis no result row for the city of Hayward. This is because there is no matching entry in the
ci ti es table for Hayward, so the join ignores the unmatched rows in the weat her table. We
will see shortly how this can be fixed.

» There are two columns containing the city name. Thisis correct because the lists of columns from
theweat her andci ti es tables are concatenated. In practice this is undesirable, though, so you
will probably want to list the output columns explicitly rather than using * :

SELECT city, tenp_lo, temp_hi, prcp, date, |ocation
FROM weat her, cities
VWHERE city = nane;

Exercise: Attempt to determine the semantics of this query when the WHERE clause is omitted.

Since the columns all had different names, the parser automatically found which table they belong
to. If there were duplicate column names in the two tables you'd need to qualify the column names
to show which one you meant, asin:

SELECT weather.city, weather.tenp_l o, weather.tenp_hi,
weat her. prcp, weather.date, cities.location
FROM weat her, cities
WHERE cities. name = weather.city;

It iswidely considered good style to qualify all column namesin ajoin query, so that the query won't
fail if aduplicate column nameis later added to one of the tables.

Join queries of the kind seen thus far can aso be written in this alternative form:

SELECT *
FROM weat her INNER JO N cities ON (weather.city = cities. nanme);

11

The SQL Language

This syntax is not as commonly used as the one above, but we show it here to help you understand
the following topics.

Now we will figure out how we can get the Hayward records back in. What we want the query to do

isto scan theweat her table and for each row to find the matching ci t i es row(s). If no matching
row is found we want some “empty values’ to be substituted for the ci t i es table's columns. This
kind of query is called an outer join. (The joins we have seen so far are inner joins.) The command
looks like this:

SELECT *
FROM weat her LEFT QUTER JO N cities ON (weather.city
cities.nane);

city | tenp_lo | tenmp_hi | prcp | dat e | nane
| location
--------------- T T T gy
Fom e e e e o e oo - S
Haywar d | 37 | 54 | | 1994-11-29 |
|
San Francisco | 46 | 50 | 0.25 | 1994-11-27 | San
Franci sco | (-194,53)
San Francisco | 43 | 57 | 0 | 1994-11-29 | San
Franci sco | (-194,53)
(3 rows)

This query is called aleft outer join because the table mentioned on the left of the join operator will
have each of its rows in the output at least once, whereas the table on the right will only have those
rows output that match some row of the left table. When outputting aleft-table row for which thereis
no right-table match, empty (null) values are substituted for the right-table columns.

Exercises Thereare aso right outer joins and full outer joins. Try to find out what those do.

We can aso join atable against itself. Thisis caled a self join. As an example, suppose we wish
to find all the weather records that are in the temperature range of other weather records. So we
need to comparethet enp_| o andt enp_hi columns of each weat her row tothet enp_| o and
t emp_hi columns of all other weat her rows. We can do this with the following query:

SELECT WL.city, WiL.tenp_lo AS |l ow, WL.tenp_hi AS hi gh,
W.city, W2.tenp_lo AS low, W2.tenp_hi AS high
FROM weat her WL, weat her W2
WHERE WL.tenp_lo < W2.tenp_lo
AND WL. tenmp_hi > W2.tenp_hi;

city | low | high | city | low | high
--------------- T T I, gy
San Francisco | 43 | 57 | San Francisco | 46 | 50
Haywar d | 37 | 54 | San Francisco | 46 | 50
(2 rows)

Here we have relabel ed the weather table as WL and W2 to be able to distinguish the left and right side
of thejoin. You can also use these kinds of aliasesin other queriesto save some typing, e.g.:

SELECT *
FROM weat her w, cities ¢
VWHERE w. city = c. naneg;

Y ou will encounter this style of abbreviating quite frequently.

2.7. Aggregate Functions

12

The SQL Language

Like most other relational database products, PostgreSQL supports aggregate functions. An aggregate
function computes a single result from multiple input rows. For example, there are aggregates to
compute the count , sum avg (average), max (maximum) and ni n (minimum) over a set of rows.

As an example, we can find the highest low-temperature reading anywhere with:

SELECT nmax(tenp_l o) FROM weat her;

If we wanted to know what city (or cities) that reading occurred in, we might try:
SELECT city FROM weat her WHERE tenp_| o = max(tenp_l 0); VRONG

but this will not work since the aggregate max cannot be used in the WHERE clause. (This restriction
exists because the WHERE clause determines which rowswill be included in the aggregate cal cul ation;
so obviously it hasto be eval uated before aggregate functions are computed.) However, asis often the
case the query can be restated to accomplish the desired result, here by using a subquery:

SELECT city FROM weat her
WHERE tenp | o = (SELECT max(tenp_l o) FROM weat her);

San Franci sco

(1 row

This is OK because the subquery is an independent computation that computes its own aggregate
separately from what is happening in the outer query.

Aggregates are also very useful in combination with GROUP BY clauses. For example, we can get
the maximum low temperature observed in each city with:

SELECT city, max(tenp_l o)
FROM weat her
GROUP BY city;

city | max
_______________ [I,
Haywar d | 37
San Francisco | 46
(2 rows)

which givesusone output row per city. Each aggregate result iscomputed over thetable rows matching
that city. We can filter these grouped rows using HAVI NG

SELECT city, max(tenp_l o)
FROM weat her
GROUP BY city
HAVI NG max(tenp_|l o) < 40;

city | max
_________ .
Hayward | 37
(1 row

which gives us the same results for only the cities that have all t enp_| o values below 40. Finally,
if we only care about cities whose names begin with “S”, we might do:

13

The SQL Language

SELECT city, max(tenp_| o)
FROM weat her
VWHERE city LIKE ' S% --
GROUP BY city
HAVI NG max(tenp_l o) < 40;

The LI KE operator does pattern matching and is explained in Section 9.7.

It is important to understand the interaction between aggregates and SQL's WHERE and HAVI NG
clauses. The fundamental difference between WHERE and HAVI NG is this: WHERE selects input
rows before groups and aggregates are computed (thus, it controls which rows go into the aggregate
computation), whereas HAVI NG sel ects group rows after groups and aggregates are computed. Thus,
the WHERE clause must not contain aggregate functions; it makes no sense to try to use an aggregate
to determine which rows will be inputs to the aggregates. On the other hand, the HAVI NG clause
always contains aggregate functions. (Strictly speaking, you are allowed to write a HAVI NG clause
that doesn't use aggregates, but it's seldom useful. The same condition could be used more efficiently
at the WHERE stage.)

In the previous example, we can apply the city name restriction in WHERE, sinceit needs no aggregate.
This is more efficient than adding the restriction to HAVI NG, because we avoid doing the grouping
and aggregate calculations for al rows that fail the WHERE check.

2.8. Updates

You can update existing rows using the UPDATE command. Suppose you discover the temperature
readings are all off by 2 degrees after November 28. Y ou can correct the data as follows:

UPDATE weat her
SET tenmp_hi = tenp_hi - 2, tenp_lo =tenp_lo - 2
VWHERE date > '1994-11-28';

Look at the new state of the data:

SELECT * FROM weat her;

city | tenp_lo | tenmp_hi | prcp | dat e
--------------- T T T gy
San Francisco | 46 | 50 | 0.25 | 1994-11-27
San Francisco | 41 | 55 | 0 | 1994-11-29
Haywar d | 35 | 52 | | 1994-11-29
(3 rows)

2.9. Deletions

Rows can be removed from atable using the DEL ETE command. Suppose you are ho longer interested
in the weather of Hayward. Then you can do the following to delete those rows from the table:

DELETE FROM weat her WHERE city = 'Hayward';
All weather records belonging to Hayward are removed.

SELECT * FROM weat her;

city | tenp_lo | tenmp_hi | prcp | dat e
--------------- T T T gy
San Francisco | 46 | 50 | 0.25 | 1994-11-27
San Francisco | 41 | 55 | 0 | 1994-11-29
(2 rows)

14

The SQL Language

One should be wary of statements of the form
DELETE FROM t abl enane;

Without a qualification, DELETE will remove all rows from the given table, leaving it empty. The
system will not request confirmation before doing this!

15

Chapter 3. Advanced Features

3.1. Introduction

In the previous chapter we have covered the basics of using SQL to store and access your data in
PostgreSQL . We will now discuss some more advanced features of SQL that simplify management
and prevent loss or corruption of your data. Finally, we will look at some PostgreSQL extensions.

This chapter will on occasion refer to examples found in Chapter 2 to change or improve them, so
it will be useful to have read that chapter. Some examples from this chapter can also be found in
advanced. sql inthetutoria directory. Thisfile also contains some sample datato load, which is
not repeated here. (Refer to Section 2.1 for how to use thefile.)

3.2. Views

Refer back to the queriesin Section 2.6. Suppose the combined listing of weather records and city
location is of particular interest to your application, but you do not want to type the query each time
you need it. Y ou can create a view over the query, which gives aname to the query that you can refer
to like an ordinary table:

CREATE VI EW nyvi ew AS
SELECT city, tenp_lo, tenp_hi, prcp, date, |ocation
FROM weat her, cities
WHERE city = nane;

SELECT * FROM nyvi ew,

Making liberal use of views is a key aspect of good SQL database design. Views allow you to
encapsul ate the details of the structure of your tables, which might change asyour application evolves,
behind consistent interfaces.

Views can be used in almost any place areal table can be used. Building views upon other views is
not uncommon.

3.3. Foreign Keys

Recall theweat her andci ti es tablesfrom Chapter 2. Consider the following problem: Y ou want
to make sure that no one can insert rows in the weat her table that do not have a matching entry
intheci ti es table. Thisis called maintaining the referential integrity of your data. In simplistic
database systems this would be implemented (if at al) by first looking at theci t i es table to check
if amatching record exists, and then inserting or rejecting the new weat her records. This approach
has a number of problems and is very inconvenient, so PostgreSQL can do this for you.

The new declaration of the tables would look like this:
CREATE TABLE cities (
city varchar (80) primary key,

| ocation point

)

CREATE TABLE weat her (

city varchar (80) references cities(city),
tenmp_lo int,

t enp_hi int,

prcp real,

16

Advanced Features

dat e dat e

)
Now try inserting an invalid record:
| NSERT | NTO weat her VALUES (' Berkel ey', 45, 53, 0.0, '1994-11-28");

ERROR: insert or update on table "weather" viol ates foreign key
constraint "weather city fkey"
DETAIL: Key (city)=(Berkeley) is not present in table "cities".

Thebehavior of foreign keys can befinely tuned to your application. Wewill not go beyond thissimple
example in this tutorial, but just refer you to Chapter 5 for more information. Making correct use of
foreign keys will definitely improve the quality of your database applications, so you are strongly
encouraged to learn about them.

3.4. Transactions

Transactions are afundamental concept of all database systems. The essential point of atransactionis
that it bundles multiple steps into a single, al-or-nothing operation. The intermediate states between
the steps are not visible to other concurrent transactions, and if some failure occurs that prevents the
transaction from completing, then none of the steps affect the database at al.

For example, consider abank database that contains balancesfor various customer accounts, aswell as
total deposit balancesfor branches. Suppose that we want to record apayment of $100.00 from Alice's
account to Bob's account. Simplifying outrageously, the SQL commands for this might ook like:

UPDATE accounts SET bal ance = bal ance - 100. 00

VWHERE nanme = 'Alice';
UPDATE branches SET bal ance = bal ance - 100. 00

WHERE nane = (SELECT branch_name FROM accounts WHERE nane
"Alice');
UPDATE accounts SET bal ance = bal ance + 100. 00

VWHERE nanme = ' Bob';
UPDATE branches SET bal ance = bal ance + 100. 00

WHERE nane = (SELECT branch_nanme FROM accounts WHERE nane
' Bob') ;

The details of these commands are not important here; the important point is that there are several
separate updates involved to accomplish this rather simple operation. Our bank's officers will want to
be assured that either all these updates happen, or none of them happen. It would certainly not do for
asystem failure to result in Bob receiving $100.00 that was not debited from Alice. Nor would Alice
long remain a happy customer if she was debited without Bob being credited. We need a guarantee
that if something goes wrong partway through the operation, none of the steps executed so far will
take effect. Grouping the updates into a transaction gives usthis guarantee. A transactionissaid to be
atomic: from the point of view of other transactions, it either happens completely or not at all.

We also want a guarantee that once a transaction is completed and acknowledged by the database
system, it has indeed been permanently recorded and won't be lost even if a crash ensues shortly
thereafter. For example, if we are recording acash withdrawal by Bob, we do not want any chance that
the debit to his account will disappear in acrash just after he walks out the bank door. A transactional
database guarantees that all the updates made by a transaction are logged in permanent storage (i.e.,
on disk) before the transaction is reported complete.

Another important property of transactional databases is closely related to the notion of atomic
updates: when multiple transactions are running concurrently, each one should not be able to see the
incomplete changes made by others. For example, if one transaction is busy totalling all the branch
balances, it would not do for it to include the debit from Alice's branch but not the credit to Bob's
branch, nor vice versa. So transactions must be all-or-nothing not only in terms of their permanent

17

Advanced Features

effect on the database, but also in terms of their visibility as they happen. The updates made so far by
an open transaction are invisible to other transactions until the transaction completes, whereupon all
the updates become visible simultaneously.

In PostgreSQL, a transaction is set up by surrounding the SQL commands of the transaction with
BEGQ Nand COMM T commands. So our banking transaction would actually look like:

BEG N;

UPDATE accounts SET bal ance = bal ance - 100. 00
VWHERE nane = 'Alice';

-- etc etc

COW T,

If, partway through the transaction, we decide we do not want to commit (perhapswe just noticed that
Alice's balance went negative), we can issue the command ROLLBACK instead of COMM T, and all
our updates so far will be canceled.

PostgreSQL actually treats every SQL statement as being executed within atransaction. If you do not
issue a BEG N command, then each individual statement has an implicit BEG N and (if successful)
COWM T wrapped around it. A group of statements surrounded by BEG Nand COVM T is sometimes
called atransaction block.

Note

Someclient librariesissue BEG Nand COMM T commands automatically, so that you
might get the effect of transaction blocks without asking. Check the documentation
for the interface you are using.

It's possible to control the statements in a transaction in a more granular fashion through the use of
savepoints. Savepoints allow you to selectively discard parts of the transaction, while committing the
rest. After defining a savepoint with SAVEPQO NT, you can if needed roll back to the savepoint with
ROLLBACK TO. All the transaction's database changes between defining the savepoint and rolling
back to it are discarded, but changes earlier than the savepoint are kept.

After rolling back to a savepoint, it continues to be defined, so you can roll back to it several times.
Conversely, if you are sure you won't need to roll back to a particular savepoint again, it can be
released, so the system can free some resources. Keep in mind that either releasing or rolling back to
a savepoint will automatically release all savepoints that were defined after it.

All this is happening within the transaction block, so none of it is visible to other database sessions.
When and if you commit the transaction block, the committed actions become visible asaunit to other
sessions, while the rolled-back actions never become visible at all.

Remembering the bank database, suppose we debit $100.00 from Alice's account, and credit Bob's
account, only to find later that we should have credited Wally's account. We could do it using
savepoints like this:

BEG N,

UPDATE accounts SET bal ance
VWHERE nane = 'Alice';

SAVEPQO NT ny_savepoi nt;

UPDATE accounts SET bal ance
VWHERE nane = ' Bob';

-- oops ... forget that and use Wally's account

ROLLBACK TO ny_savepoi nt;

UPDATE accounts SET bal ance = bal ance + 100. 00
WHERE nane = 'Vally';

bal ance - 100. 00

bal ance + 100. 00

18

Advanced Features

COW T;

Thisexample s, of course, oversimplified, but there's alot of control possible in a transaction block
through the use of savepoints. Moreover, ROLLBACK TO s the only way to regain control of a
transaction block that was put in aborted state by the system due to an error, short of rolling it back
completely and starting again.

3.5. Window Functions

A window function performs a calculation across a set of table rows that are somehow related to the
current row. Thisis comparable to the type of calculation that can be done with an aggregate function.
However, window functions do not cause rows to become grouped into a single output row like non-
window aggregate calls would. Instead, the rows retain their separate identities. Behind the scenes,
the window function is able to access more than just the current row of the query result.

Here is an example that shows how to compare each employee's salary with the average salary in his
or her department:

SELECT depnane, enpno, salary, avg(salary) OVER (PARTI TI ON BY
depnanme) FROM enpsal ary;

depnanme | enpno | salary | avg
----------- TR
devel op | 11 | 5200 | 5020. 0000000000000000
devel op | 7| 4200 | 5020. 0000000000000000
devel op | 9 | 4500 | 5020. 0000000000000000
devel op | 8 | 6000 | 5020. 0000000000000000
devel op | 10 | 5200 | 5020. 0000000000000000
personnel | 5 3500 | 3700. 0000000000000000
personnel | 2 3900 | 3700. 0000000000000000
sal es | 3 4800 | 4866.6666666666666667
sal es | 1] 5000 | 4866.6666666666666667
sal es | 4 | 4800 | 4866.6666666666666667
(10 rows)

Thefirst three output columns come directly from the table enpsal ar y, and there is one output row
for each row in the table. The fourth column represents an average taken across all the table rows
that have the same depnane value as the current row. (This actually is the same function as the
non-window avg aggregate, but the OVER clause causes it to be treated as a window function and
computed across the window frame.)

A window function call aways contains an OVER clause directly following the window function's
name and argument(s). This is what syntactically distinguishes it from a normal function or non-
window aggregate. The OVER clause determines exactly how the rows of the query are split up for
processing by the window function. The PARTI Tl ON BY clause within OVER divides the rows into
groups, or partitions, that share the same values of the PARTI TI ON BY expression(s). For each row,
the window function is computed across the rows that fall into the same partition as the current row.

Y ou can aso control the order in which rows are processed by window functions using ORDER BY
within OVER. (The window ORDER BY does not even have to match the order in which the rows are
output.) Hereis an example:

SELECT depnane, enpno, salary,
rank() OVER (PARTI TI ON BY depnane ORDER BY sal ary DESC)
FROM enpsal ary;

depnanme | enpno | salary | rank

devel op | 8 | 6000 | 1

19

Advanced Features

devel op | 10 | 5200 | 2
devel op | 11 | 5200 | 2
devel op | 9 | 4500 | 4
devel op | 7 | 4200 | 5
per sonnel | 2| 3900 | 1
per sonnel | 5] 3500 | 2
sal es | 1| 5000 | 1
sal es | 4 | 4800 | 2
sal es | 3| 4800 | 2
(10 rows)

As shown here, the r ank function produces a numerical rank for each distinct ORDER BY valuein
the current row's partition, using the order defined by the ORDER BY clause. r ank needs no explicit
parameter, because its behavior is entirely determined by the OVER clause.

The rows considered by a window function are those of the “virtual table” produced by the query's
FROMclause asfiltered by its WHERE, GROUP BY, and HAVI NG clauses if any. For example, arow
removed because it does not meet the WHERE condition is not seen by any window function. A query
can contain multiple window functions that slice up the data in different ways using different OVER
clauses, but they all act on the same collection of rows defined by this virtual table.

We already saw that ORDER BY can be omitted if the ordering of rows is not important. It is also
possible to omit PARTI TI ON BY, in which case there is asingle partition containing al rows.

There is another important concept associated with window functions: for each row, there is a set of
rows within its partition called its window frame. Some window functions act only on the rows of the
window frame, rather than of the whole partition. By default, if ORDER BY is supplied then the frame
consists of all rowsfrom the start of the partition up through the current row, plus any following rows
that are equal to the current row according to the ORDER BY clause. When ORDER BY is omitted the
default frame consists of all rows in the partition. * Here is an example using sum

SELECT sal ary, sun{salary) OVER () FROM enpsal ary;

salary | sum

________ S,
5200 | 47100
5000 | 47100
3500 | 47100
4800 | 47100
3900 | 47100
4200 | 47100
4500 | 47100
4800 | 47100
6000 | 47100
5200 | 47100

(10 rows)

Above, sincethereisno ORDER BY inthe OVER clause, thewindow frameisthe same asthe partition,
which for lack of PARTI TI ON BY is the whole table; in other words each sum is taken over the
whole table and so we get the same result for each output row. But if we add an ORDER BY clause,
we get very different results:

SELECT sal ary, sun{salary) OVER (ORDER BY sal ary) FROM enpsal ary;

salary | sum
________ .
3500 | 3500
3900 | 7400

! There are options to define the window frame in other ways, but this tutorial does not cover them. See Section 4.2.8 for details.

20

Advanced Features

4200 | 11600
4500 | 16100
4800 | 25700
4800 | 25700
5000 | 30700
5200 | 41100
5200 | 41100
6000 | 47100
(10 rows)

Herethe sumistaken fromthefirst (lowest) salary up through the current one, including any duplicates
of the current one (notice the results for the duplicated salaries).

Window functions are permitted only in the SELECT list and the ORDER BY clause of the query.
They are forbidden elsewhere, such asin GROUP BY, HAVI NG and WHERE clauses. Thisis because
they logically execute after the processing of those clauses. Also, window functions execute after
non-window aggregate functions. This means it is valid to include an aggregate function call in the
arguments of awindow function, but not vice versa.

If there is a need to filter or group rows after the window calculations are performed, you can use a
sub-select. For example:

SELECT depnane, enpno, salary, enroll_date
FROM

(SELECT depnane, enpno, salary, enroll _date,

rank() OVER (PARTI TI ON BY depnane ORDER BY sal ary DESC,
enpno) AS pos
FROM enpsal ary

) AS ss

WHERE pos < 3;

The above query only shows the rows from the inner query having r ank lessthan 3.

When a query involves multiple window functions, it is possible to write out each one with a separate
OVER clause, but this is duplicative and error-prone if the same windowing behavior is wanted for
severa functions. Instead, each windowing behavior can be named in a W NDOWclause and then
referenced in OVER. For example:

SELECT sun{sal ary) OVER w, avg(salary) OVER w
FROM enpsal ary
W NDOW w AS (PARTI TI ON BY depnanme ORDER BY sal ary DESC);

More details about window functions can be found in Section 4.2.8, Section 9.21, Section 7.2.5, and
the SELECT reference page.

3.6. Inheritance

Inheritance is a concept from object-oriented databases. It opens up interesting new possibilities of
database design.

Let's create two tables: A tableci ti es and atable capi t al s. Naturaly, capitals are also cities,
S0 you want some way to show the capitals implicitly when you list all cities. If you're realy clever
you might invent some scheme like this;

CREATE TABLE capitals (

nane text,

popul ati on real,

altitude int, -- (in ft)
state char (2)

21

Advanced Features

)
CREATE TABLE non_capitals (
name t ext,
popul ati on real,
altitude i nt -- (in ft)
)

CREATE VIEWcities AS
SELECT nane, popul ation, altitude FROM capitals
UNI ON
SELECT nane, popul ation, altitude FROM non_capitals;

This works OK as far as querying goes, but it gets ugly when you need to update severa rows, for
onething.

A better solution isthis:

CREATE TABLE cities (
nane t ext,
popul ati on real,
altitude i nt -- (in ft)

)

CREATE TABLE capitals (
state char (2)
) INHERI TS (cities);

In this case, a row of capit al s inherits al columns (name, popul ation, and al titude)
from its parent, ci ti es. The type of the column nane ist ext, a native PostgreSQL type for
variable length character strings. State capitals have an extra column, st at e, that shows their state.
In PostgreSQL, a table can inherit from zero or more other tables.

For example, the following query finds the names of al cities, including state capitals, that are located
at an altitude over 500 feet:

SELECT nane, altitude
FROM ci ti es
VWHERE al titude > 500;

which returns;

nane | altitude
___________ .
Las Vegas | 2174
Mari posa | 1953
Madi son | 845
(3 rows)

On the other hand, the following query finds all the cities that are not state capitals and are situated
at an altitude over 500 feet:

SELECT nane, altitude
FROM ONLY cities
VWHERE al ti tude > 500;

name | altitude
___________ .
Las Vegas | 2174
Mari posa | 1953

22

Advanced Features

(2 rows)

Herethe ONLY beforeci t i es indicatesthat the query should berun over only theci t i es table, and
not tables below ci t i es in the inheritance hierarchy. Many of the commands that we have aready
discussed — SELECT, UPDATE, and DELETE — support this ONLY notation.

Note

Although inheritance is frequently useful, it has not been integrated with unique
constraints or foreign keys, which limitsits usefulness. See Section 5.9 for more detail .

3.7. Conclusion

PostgreSQL has many features not touched upon in thistutorial introduction, which has been oriented
toward newer users of SQL. These features are discussed in more detail in the remainder of this book.

If you feel you need more introductory material, please visit the PostgreSQL web site? for links to
more resources.

2 https://www.postgresgl.org

23

https://www.postgresql.org
https://www.postgresql.org

Part Il. The SQL Language

This part describes the use of the SQL language in PostgreSQL . We start with describing the general syntax of
SQL, then explain how to create the structures to hold data, how to popul ate the database, and how to query it. The
middle part lists the available data types and functions for use in SQL commands. The rest treats several aspects
that are important for tuning a database for optimal performance.

Theinformation in this part is arranged so that a novice user can follow it start to end to gain afull understanding
of the topics without having to refer forward too many times. The chapters are intended to be self-contained, so
that advanced users can read the chapters individually asthey choose. The information in this part is presented in
a narrative fashion in topical units. Readers looking for a complete description of a particular command should
see Part V1.

Readers of this part should know how to connect to a PostgreSQL database and issue SQL commands. Readers
that are unfamiliar with these issues are encouraged to read Part | first. SQL commands aretypically entered using
the PostgreSQL interactive terminal psgl, but other programs that have similar functionality can be used as well.

Table of Contents

A, SQL SYNEBX +.tueeeeeti ettt ettt e e et e e ettt ettt et e e e et e et e e e e e e e e eabn e eene 31
A1, LeXiCal SIUCTUME ...ttt ettt e e 31
4.1.1. Identifiers and Ky WOIASuieiiiiiieiiiiiieceei et 31
.02, CONSLANESeeree ettt ettt 33
40,3, OPEIELOISeieeeeei ettt ettt et 37
4.1.4. SPECial CharaCler'S ... oceeeei ettt et 37
.05, COMMENES ...eetiieiti ettt ettt e e et e e e e e e e eaa s 38
4.1.6. OPErator PrECEOBNCEcceiti ettt ettt e e e eeees 38

4.2, VAlUE EXPIESSIONSceiitieetiiti ettt e ettt e ettt e et e ettt e e et e et eab e e eennaaaaees 39
4.2.1. ColUMN REFEIEINCEScovviieiiii e 40
4.2.2. POSItiONal PalraMELErSuiiiiiiiieieii et 40
4.2.3. SUDSCIIPES ettt ettt e 41
424, Field SEIECHON ...t 41
4.2.5. OPErator INVOCAHONScevuueiiitiieieiii ettt e e e eenees 42
4.2.6. FUNCHON CallS .. .ceiiiiiiiiii e 42
4.2.7. AQOregate EXPIESSIONScccuuuieiiitiieeiiti e ee ettt e et e ettt eeeeti e e eeaiaeeees 42
4.2.8. Window FUNCLION CallSuiiiiiiiieiiiie e 44
4.2.9. TYPR CaASLS ..cvtiiiieeet et 46
4.2.10. Collation EXPreESSIONSocieueeeieiiieee ettt 47
4.2.11. SCAlAr SUDQUENTESeeeeieieei ettt 47
4.2.12. Array CONSIIUCLOISccvuiieieieie ettt et e e e e 48
4.2.13. ROW CONSITUCTONS ...eeuiieieiei et ettt e e e 49
4.2.14. Expression Evaluation RUIEScoouviiiiiiiii e 51

4.3, CalliNg FUNCLIONS ...ttt e e e 52
4.3.1. Using Positional NOEHIONccceuuuieiiiiiieeiii et 52
4.3.2. Using Named NOLAIONuuiiiiiiiiiieiiii e e e 53
4.3.3. USINg MiXed NOLALIONuuiiiiiiiieiiiii e 53

5. Dat@ DEFINITION ..ottt et e aaas 55
5.1 TADIE BASICS ..ttt ettt 55
5.2, DEFAUIT VAIUBS ...t 56
5.3, CONSITAINTS ..ttt ettt e et e et e e e e e 57
5.3.1. Check CONSIIAINTScevuueiiiiiiee ettt e e e e et e e eeri e e e 57
5.3.2. NO-NUIT CONSIFAINES ...ceveieieiie et 58
5.3.3. UNIQUE CONSITAINESeevtieieiiie ettt 59
534, PrIMAIY KEYS ...ttt 60
5.3.5. FOrEIgN KEBYS ...t 61
5.3.6. EXCIUSION CONSITAINTScevvieiiiiiieeiei ettt et e e e 63

5.4, SYySteM COIUMNS ...ttt e et e e e et e e eat e eees 64
5.5. MOAIfyiNg TabIES ...t 65
55.1. AddiNg @ COIUMNoouuiiiiiii e 65
5.5.2. ReMOVING @ COIUMN ...coouiiiiiiii ettt 66
5.5.3. AddiNg @ CONSIFAINTccevvuiiiiiiiee e 66
5.5.4. RemMOVING @ CONSIIAINTccevuiieiiiiieee ittt 66
5.5.5. Changing a Column's Default Valueccovvviiieiiiiiiieiiii e 67
5.5.6. Changing a Column'S Data TYPEc.uuuieiiiiiiieiiiii e 67
55.7. Renaming @ COIUMINcoouiiiiiiiii e 67
55.8. RENaMINg @ TaDI€ceeviiiiiii e 67

5.6, PrIVIIEOES ...t 67
5.7. ROW SeCUrity POIICIESuuiiiiii e 68
5.8, SCREMAS ... 74
5.8.1. Creating @ SCNEMAccouuiieiiiii e 74
5.8.2. The PUBIIC SChemMacoooviiii e 75
5.8.3. The Schema Search Pathooooiiiiiiiii e 75
5.8.4. Schemas and PrivilEgESooiiiiiiiiiii e 76
5.8.5. The System Catalog SChEMa.cccvvuiiiiiiiieeie e 77

25

The SQL Language

5.8.6. USAQE PalerNSviiiiii et 77
5.8.7. POrabIlITYuieiiiiiiee i 77

L [10T g1 = (ot TSRS 78
N O = P 80

5.10. Table Partitioningoceuuiiiiieiiiie e e e e e e e e e e aaas 8l
B5.10. 1. OVEIVIEIW .ottt ettt e e ettt e e e et e e e e et neeeeebe s e eaeatnneeaees 81
5.10.2. Declarative Partitioningccocuuiiiiiiiiiiicii e e 82
5.10.3. Implementation Using INeritanCeccooevieeiiiiiii e 85
5.10.4. Partitioning and Constraint EXCIUSIONcooeviiiiiiiiiiiec e, 90

LI o (= o | B I - L 91
5.12. Other Datahase ODJECESivvniiii i e e e e e 92
5.13. DePENdENCY TraCKiNgcvuueiinieiiieeie e e e e e e e e e e e e e e e e et e e eaeeeenas 92
SR BT = 1Y =T o 10 = 1 o 94
Lo 1= g To [- v PPN 94
(SR U] oo = (] oo D - LN 95
(SRCI D= I (] oo - v U 96
6.4. Returning Data From Modified ROWScoiiiiiiiiiiiii e 96
2O 8 = = 98
45 T O = 4= 1 P 98
7.2, TADIE EXPIrESSIONSeviiiii ettt e e e e e e e e e e e e et e e aanas 98
7.2.1. ThE FROMCIBUSE ...ccvviiiiiiii ettt et e et e e e e e eaaa e eees 98
7.2.2. TREVWHERE ClalSE ...ccvviieiiiiiieeeeeie ettt 106
7.2.3. The GROUP BY and HAVI NG ClaUSESoevvvvieeeiiiiieeeeiiiieeeeiia e e e 107
7.2.4. GROUPI NG SETS, CUBE, and ROLLUPcoiiiiiiiiiiiii e 109
7.2.5. Window FUNCEION ProCESSINGccvuiiiieiiiiecii e e e e e e 111

SRS = < ox B I £ PR 112
7.3. 1. SEECE-LiSt ItOMS coevviieiieii e 112
7.3.2. COlUMN LADEIS ..oeviieiiii et 112
7.3.3. DESTINCT it e e e et eeeaanns 113

7.4. CombBINING QUEES .. .cuuieiii i e et e e e e e e e e e e e et e et e e aaa e eeas 113
7.5, SOMING ROWS ..ot e e e e e e e e e eaens 114
T76. LIM T N OFFSET ..oviiiiiiiiieeei et et e e e e e et e e eees 115
TV A/ O S R I £ PSP 115
7.8. W TH Queries (Common Table EXPreSSions)cvevuueeeuiieeiiieiiieeeiiesiineesneenenns 116
7.8.1L SELECT INW TH .ot 116
7.8.2. Data-Modifying Statements in W THocoiiiiii i, 120

S T D= = T Y/ 0 P 122
300 O N[0 0= o Y = 123
e I R 1 011 o = Y/ o1 PPN 124
8.1.2. Arbitrary Precision NUMDBErSc.oooiiiiiiiiii e 124
8.1.3. Floating-POINt TYPES ..ovviiiiiieeii e e e e e 126

8. LA SEIA TYPES ittt 127

e I o g1 = 1Y o< T PPN 128
G I O == ot (= G Y/ o= P 129
8.4. BINAry Dala TYPES ..uuciiiieii ettt et e e e e e e e e e e et e eaen 131
8.4.1. byt €a HEX FOIMauiiiiiiiii i e 131
8.4.2. byt ea ESCape FOrMALccvvuiiiiiieii e 131

LR = (=l T2 1T Y/ o= P 132
8.5.1. Date/TimeE INPULevvneiiii e e e e e e e e e eaneees 134
8.5.2. DAE/TIME OULPULueieiiieeeeiiie et et e e et e e et e e e eat e e e eaan e eeeenns 137
8.5.3. TIME ZONES ...ttt e et aaens 138
8.5.4. Interval INPULcovtiiii e e 139
8.5.5. INTEIVAl OULPULuvieiiiii e e e 141

S = T To = Y/ o= P 142
A 1000 = =0 I Y/ o= 143
8.7.1. Declaration of Enumerated TYPESccuuiviiiiiii e 143
A @ (o[41 o PN 143
B.7.3. TYPE SAFELY eevveieeeeie ettt 144

26

The SQL Language

8.7.4. Implementation DELalSc..veiiiiiiii e 144

R CTc o0 0= (o Y o1 144
B.8.L. POINES ...uiiiiii ettt 145
882, LINES ittt 145
8.8.3. LiNE SEgMENLS ... cevuiiiii i e 145
8.8, BOXES ...ttt ettt ettt 145
B.8.5. PalNS ...t 146
8.8.6. POIYQONS .. .oviiii e 146
B.8.7. CICIES ittt 146

8.9. NEtWOIK AdOreSS TYPES ..evuiiiiieiiiieeie ettt e e e e e e e e e e e e e e eeaaas 146
S I R T 1= PP 147
S o3 i | PP 147
e e A I 1= VA o3 o | PP 148
8.9.4, MBCAUAN iitiiiiiii et 148
8.9.5. MACAUAN 8 .ouiiiiiiii e 148

8.10. Bit SIHNG TYPES . iittiiiie et e e e e e e e e e e e e e e e an s 149
8.11. TeXt SEArCh TYPES v it e 150
00 0 O A= VT o3 A o TP 150

I 2 A=Y o [6T P 151

ST 2 U1 1 T I/ o USRS 152
ST Q1 I 1Y/ o= PP 153
8.13.1. Creating XML ValUESoiiiiiieiiiiii e 153
8.13.2. Encoding Handlingoovuiiiiiiiiii e 154
8.13.3. AcCeSSING XML ValUEScvvniiiii e 154

ST N S O N Y/ o=~ P 155
8.14.1. JSON Input and OULPUE SYNEAXueeveeiiiieiiiieeie e e e e e e 156
8.14.2. Designing JSON documents effectivelyooevvveiiiiiiiiiiiii e, 157
8.14.3.] sonb Containment and EXIStENCEccvvviiiiiiiiiii e 157
8.14.4. | SOND INUEXING ..uvviiiiiee e e e 159
8L, AT A S ettt ittt 161
8.15.1. Declaration Of Array TYPES ...cuvuiiiiieiiieeeie e e e e e e e e e eanees 161
8.15.2. Array ValUB INPULcovviiii e 162
8.15.3. ACCESSING ATTAYS .vueeuteeiieeeiiie et e ettt e et e e e e e st e e e ae e e e e st e e st e eanaeenes 163
8.15.4. MOAITYING ATTAYS ...uieiieii ettt e e e e e e e e e ees 165
8.15.5. SEarChiNG IN ATTAYS «.ouu it e e e eens 168
8.15.6. Array Input and OULPUL SYNEAXceevneveinieeiieeeiiieeiieee e eee e eaaeeeens 169

8.16. COMPOSITE TYPES ..vvuiiineeii ettt ettt e et e et e et e et e e et e e et e e et e eanaeeateesanaeetnaes 170
8.16.1. Declaration of COmMPOSItE TYPES ...cvvvniiiiieiei e e e e e e e 170
8.16.2. Constructing Composite ValUEScceuviiiiiiiiiiieiiii e e 171
8.16.3. AccessiNg COMPOSIEE TYPES ...vvvueiiiieiiieiiie e e e e e e et e e e e e aanas 172
8.16.4. Modifying COmMPOSItE TYPEScvvvieiiiieiiiiieeiee e e e e e e 173
8.16.5. Using Composite TYPeS iN QUENESccuuieiineeiiiieeiii e e e e e e e 173
8.16.6. Composite Type Input and Output SYNtaxcceeevvveerieiiieeiiieeiineennn. 175

8.7, RANGE TYPES .ottt ittt 176
8.17.1. BUIIt-IN RANGE TYPES ..uiitiiii et e e e e e e aens 176
8.17.2. EXAMPIES ... et 177
8.17.3. Inclusive and EXCIUSIVE BOUNGSoveiiiiiiieiiiiineeciie e 177
8.17.4. Infinite (Unbounded) RaNGESocvvviiiiiiiii e 177
8.17.5. Range INPUL/OULPULcovniiieeii e e e e e e e e eens 178
8.17.6. CoNSIrUCtiNg RANGESuuiiiieeii e e e e e e e e e 179
8.17.7. DISCrete RANGE TYPES .. vvvneiii it eeie e et e e e e e e e e et e e e eaans 179
8.17.8. Defining New RaNGE TYPEScvvviiiii e e e e 179
8.17.9. INAEXING ...vniii i e 180
8.17.10. ConstraintS 0N RANGESu.ivvnieiiieiie e e e e e e e e et e eaeeees 181

8.18. ObjeCt 1AENtifIEr TYPES c.vuiiii e e e aaaas 182
T T oo [£ o 1 1Y 1= 2P 183
ST s =0 (o 0l N o1 183
LI 0 0 Tex i [0 g 5= 0 o @ o= = 0 TP 186

27

The SQL Language

1S I oo o= I @ o= = (o) £ S 186
9.2. Comparison FUNCtions and OPEratOrSveevueeeiieiiieeeiie e e e e eiee e e eaneenes 186
9.3. Mathematical FuNnctions and OPEratorSueveiieiiiieeiii e e e e ea e 189
9.4. String FUNCioNS and OPEIAtOrScvvuieiiiieeiieeeieeeie e e e e e e e e e eaneens 192
1S T o o 11 PRSP PTR PPN 204
9.5. Binary String FUNctions and OPEratorsSccuuveeruieiiineeiiieeeiiee e eeiieraineesnnens 206
9.6. Bit String FUNCtions and OPEratorsuuveiuiieiiiieeiiieeee e e e e e e e e e 208
A = (= 1 T\ (11 o P 209
S O I PP 210
9.7.2. SIM LAR TORegular EXPreSSIONScvvuuieiiiieeieeiiiieeeiieesineesineeaneens 211
9.7.3. POSIX ReguIar EXPreSSIONSuuuiiiueiiiieiiiieeiieeeiiesieeeaeeeaieesaneesens 211
9.8. Data Type Formatting FUNCLIONSccovuiiiii i e e e 224
9.9. Date/Time FUNCtions and OPEratorSc.uveiuuieeiiieiiiiee e e ee e e e e e e eees 230
9.9.1. EXTRACT, dat € _Part ..ciiiiiiiiiiiiiii e e e e 236
0.9.2. At @ LT UNC .iiiiiii e e 239
9.9.3. AT TIME ZONE ...ttt ettt e et e 240
9.9.4, CUITENt DA/ TIME ...cvvnieiiiii et e et e e e 241
9.9.5. Delaying EXECULIONiiviieiiie e e e e e e e e e e e e e e e eees 242
9.10. ENUM SUPPOIt FUNCLIONSivticiiiecii et e e e e e e e e e e aens 243
9.11. Geometric FUNCtioNS and OPEratOrScvvuneiiiieiieeeiiee e e e e e ee e e aneeeens 243
9.12. Network Address Functions and OPEratorsScc.uveeuuieiiiieeiieeeiieeeiiieeaieeaenns 248
9.13. Text Search FUNCioNS anNd OPEratOrSueevvuieiiieiiii e eeeiee e e e e e eaees 250
.14, XML FUNCLIONS ... eiieiiieee ettt e e et e e et e e e e et e e e e et e 255
9.14.1. Producing XML CONENEccuiiiiieiieeiii e e ee e e e e e e eaen 256
9.14.2. XML PrediCatesuuueeiiiiieeeii ettt e et e e e e 260
9.14.3. ProcessiNg XML ...uuuiiiiiiiiiiii et 261
9.14.4. Mapping TableSto XMLccvuuiiiiiiiii e e 265
9.15. JSON FUNCLiONS aNd OPEraIOrScvvvieiiieeiiieeeiieeeie e e e e e e e e e e e e et e e e eeens 268
9.16. Sequence Manipulation FUNCLIONSooviiiiiiiiiii e 276
9.17. Conditional EXPreSSIONSuuviiuuiiiieiiiee e e e e e e e e e e e e e eaens 279
O.17. 1. CASE ...t 279
N A O O I S P 280
0 2 U I PP 281
9.17.4. GREATEST and LEAST ..ottt 281
9.18. Array FUNCtioNS and OPEIralOrScccuuieiiuieiiiieeiiie e e e e e e e e et e e e eeenes 281
9.19. Range FUNCLioNSs and OPEratorSceuueiiiieeiiieeiieeeeeeae e et e e e e st e e et eeaneens 284
9.20. AQQregate FUNCLIONSccue i e e e e e e e e eaes 286
9.21. WINAOW FUNCHIONS .. .vuieiiiii ettt et e et e e e et e e e eatnneeeees 294
9.22. SUDQUENY EXPrESSIONS . .cvuueiiiiiiiiieeiieee et e e e e e e et e e e e et e e et e e st e eanaeeanaas 296
S T S S T PP 296
0.22.2. I N ettt 296
9.22.3. NOT | N Lot e e e 297
9.22.4. ANY/ISOMEuiiiiiiiiieeeee ettt et e e et s e et e e e e e eaaen 297
0.22.5. ALL ottt 298
9.22.6. SINGIE-TOW COMPANISON ...vvuieteeeieeeieesiee e e e e e eat e e et e e et e e eeaneenes 298
9.23. Row and Array COMPAISONSceuueeiiieeiieeeiiieeeieeeteestse et esaneeetreeanaeennnns 298
0,23, L. I N ettt 298
9.23.2. NOT | N Lot e e e e e 299
SRS A NN 7AST0 1Y Sl - - 1Y) PP 299
9.23.4. ALL (BITAY) +eevtnieeiiiiiee et e e ettt e e ettt e e et e e et e e ettt a e e e et e e e eai e aae 299
9.23.5. Row Constructor COMPAariSONceeeuueerinieriiieriiieesiiee e esieeeaneeannnes 300
9.23.6. Composite Type COMPAiSONcevueeiiieeiiieeiieeeiiee e e e e e eaneeaenns 300
9.24. Set RetUrNiNg FUNCHIONSc.uuiiiieci e e e e eens 301
9.25. System Information FUNCLIONScocuuiiiiiieiii e 304
9.26. System Administration FUNCHIONSccuuiiiiiieiiii e e e e 319
9.26.1. Configuration SettingS FUNCLIONSccviviiiieiiieecie e, 319
9.26.2. Server SIgnaling FUNCLIONSoovuiiiiiiicce e e e 320
9.26.3. Backup Control FUNCHIONSiiiiiieiiieci e 321

28

The SQL Language

9.26.4. Recovery Control FUNCLIONSocovveiiiiiiiii e 323
9.26.5. Snapshot Synchronization FUNCLIONSc.oveviieiiiieiieee e, 325
9.26.6. RePlication FUNCLIONScvuuieiiiiei e ee e e e e e e e e e eees 325
9.26.7. Database Object Management FUNCLIONScc.oeevvieiiiniciii e, 329
9.26.8. Index Maintenance FUNCLIONSoveviuiiieieiin e e e eeeenns 332
9.26.9. Generic File ACCESS FUNCHIONSiiiiiiiieiiiii e 332
9.26.10. Advisory LOCK FUNCLIONSccuuiiiieeii e e 334

S I o o = Gl U o (o) P 336
9.28. Event Trigger FUNCLIONSco.uiiiiii i e e e e e ea e 336
9.28.1. Capturing Changes at Command Endccocoiiiiiiiiiiiniiinicieeeees 336
9.28.2. Processing Objects Dropped by a DDL Commandccocevvvviiinnennnnnns 337
9.28.3. Handling a Table ReWrite EVENtccoviiiieiiii e, 338

O Y/ oL @0 517/ = T o P 340
FO. L. OVEIVIBIW ©uueieiiiie ettt e e ettt e e e et e e e e et e e e e ett e e e eett e e e aetaaeeeees 340
B0.2, O AIONS ittt ettt ettt e 341
L0 R g o] 0 LSRR 345
O R NI (o] = o =S 347
10.5. UNI ON, CASE, and Related CONSITUCESuvieviiiiieiiiiie e 348
10.6. SELECT OULPUL COIUMNSciveieiii i e e e e e e e e e e e eaeees 349
T o (== PSP 351
00 O oo (0 1o TSP 351
2 1 o L= G Y/ o === P 352
11.3. MUItICOIUMN INAEXESeeeveiiee ettt eeeaeen 354
11.4. Indexes and ORDER BY ...cicuuiiiiiiiiiiiiiiiin et e e e et e e 355
11.5. Combining MUItiple INAEXESciiiiiiii e 355
12.6. UNIQUE INAEXESuieiieii et e e e e e e e e e e e e e e e eaens 356
11.7. INAEXES ON EXPrESSIONSuiiiiieiiieeei e e e e e e e e e e e e e e e et e et e e e e eens 356
11.8. Partial INOEXES .. eeevviieieeii et e et e e e e e e aaens 357
11.9. Operator Classes and Operator Famili€Soovvviiieiiiieiiiiiiie e, 359
11.10. Indexes and COl@tiONSuieiiiiiiiee e 361
12,11, INAEX-ONIY SCANS ...cvuiiiiiieii e e e e e e e e e e e e et e et e e e e aens 361
11.12. EXamining INAeX USAQEuucvvunieiiiiiii e e e e e e e e e e e e e 363
12, FUIL TEXE SEAICH .o 365
2 O 1 oo (0 1o USSP 365
12.1.1. What 1S @ DOCUMENE? ..euueiiiii e et e e 366
12.1.2. Basic Text MatChingooeviiiiiiii e 366
12.1.3. CONfiQUIBLIONS .. .vuuiiiieeii e e e e e e e e e e e e e e e e e e eeans 368

12.2. TahleS @A INOEXES .. .vvvveieeeiii ettt e e 369
12.2.1. Searching @ Table ...couvnii e 369
12.2.2. Creating INAEXES ... cvvueiii it e e e e e e e aes 370

12.3. Controlling TeXt SEarChcccoviiii i 371
12.3.1. ParSiNg DOCUMENESuiiiiieiii e e e e e e e e e e e e et e e e e eens 371
12.3.2. ParSiNG QUETTES .. .cvuiiiiiciii ettt e e e e e e e e e e e ees 372
12.3.3. Ranking Search RESUILSiiiiiiiii e 373
12.3.4. Highlighting RESUILSccvviiiiiicei e 375

12,4, AdAItioNal FEAIUMESvuiieeeii et e e 377
12.4.1. Manipulating DOCUMENESuiiiiiieiieeii e e e e e e e e e e 377
12.4.2. Manipulating QUENIESccuueiiiieei e e e e s 377
12.4.3. Triggers for Automatic Updatesceevuieiiiieiiiieiiii e eeaeeeae 380
12.4.4. Gathering Document StatiStiCS ...ovuvvvneiiieiii e e 381

T o T PP 382
T B T Lo g = = PP 383
12.6.1. SOP WOIAS .. ccvnciiiieii et e e e e e e e et e e et e e aanaees 384
12.6.2. SIMPIE DICHIONAIY .vuuiiiiieeii e e e e e e aaees 385
12.6.3. SYNONYM DICHIONANYuuiiiiieeiiieiiie e e e e e e e e e e eaaas 386
12.6.4. TheSaUrus DiCtONANYcccuuieiiiiiiii e e e e e 388
12.6.5. ISPEI DICHONAIY ...cvvniiiiiieiie e e e e e e e 390
12.6.6. SNOWDaEll DICHIONAIYcvvviiiiicei e e aens 392

29

The SQL Language

12.7. Configuration EXaMPIEcouuniii e 392
12.8. Testing and Debugging Text Searchccocoviiiiiiiiii e, 394
12.8.1. Configuration TESLNGcvvueiiiieiiii e e e e e e e e e e eanas 394
12.8.2. ParSer TESHNG .ovvvvvvveineieeeieeeieiiies s e e e eeeeeateis s e e e e e eeaaaatn e e e eeeeeeannennnns 396
RGN B Tox i [0) 4 7= VA = (Vo [P 397

12.9. GIN and GiST INAEX TYPES ..vvvvvveniieeeeietieiiiiieeeeereeertiasssaeeeeeasainnnaaeeaeeananns 398
2250 O T 1= o [T o) oo o 399
2 T T 1] = o) PP 402
13. ConCUIrENCY CONLION ...uuiit it e e e e e e e e et e et e e et e e et eeaneeaaeeees 403
30O 1 oo (0 1o TSP 403
13.2. TransaCtion I1SOIAHONccuvuieiiii e e e 403
13.2.1. Read Committed ISOlation LEVE!uovviiiiiiiiiiiiiiiecce e 404
13.2.2. Repeatable Read 1s0lation LEVElcccovviiiiiiiiiii e, 406
13.2.3. Serializable [S0lation LEVE!oovevuiiiiiiiis e 406

I CTC I (o[T I o Vo PN 409
13.3.1. TaDIETEVE LOCKS ... cveiiiieiieii et 409
13.3.2. ROW-IEVE LOCKSciieeiieiiis ettt 411
13.3.3. Pagelevel LOCKSccvviiiiici e 412
13.3.4. DEAAIOCKS ... eieeeeiieiei ettt e e e e e e e e et e e e e e anaaa 412
13.3.5. AQVISONY LOCKS ...uuiiiiiiii e e e e e e e e e e eeens 413

13.4. Data Consistency Checks at the Application Levelcocooiveiiiiiiiiiiieecee, 414
13.4.1. Enforcing Consistency With Serializable Transactionsc.cc.uueeeen. 414
13.4.2. Enforcing Consistency With Explicit Blocking Lockscccoeeevvnnnn. 415

ST 0 Y= PP 415
13.6. LOcKiNg and INAEXESu.iveniiii e e e e e e e 416
I (o0 7= 10T T = 417
14.2. USING EXPLAIL N Looiiiiiiiii oot e e s e e e e e e e et e e e e e e aaeennnnes 417
I (o Y Y I AV 27 T o 417
14.2.2. EXPLAI N ANALYZEcoviiiiiiiee e e e e e 423
I O £ 427

14.2. Statistics Used by the Plannercooiiiiiiii e 428
14.2.1. SINgle-Column StaiStiCS . .ovvueeiiiiiii e e 428
I A = 00 (= S - S (oSSR 429

14.3. Controlling the Planner with Explicit JO N ClaUSEScccuveiviieiiiieeiiiicciieeeiees 432
14.4. Populating @ Databaseoevuniiiiieiie e 433
14.4.1. Disable AULOCOMIMILvuuiiiiiii e e e e e e eaenns 433
14.4.2. USE COPY ooiiiiiieeeieieette e et e e et e st e e e e e e et e e e e e e e e e aaaa e neaeeaaeeannees 434
14.4.3. REMOVE INAEXES ...cevvviieeeiii ettt e 434
14.4.4. Remove Foreign Key CONSITaiNtScccvuviiiieiiiieiiiieeieeineeeieeeaneeenns 434
14.4.5. Increase mai Nt enance_WOr K _IMBM.......ccciieiiiieiiiinei e, 434
14.4.6. Increase MAX_Wal _Si Z€ ..iiiiiiiiii 435
14.4.7. Disable WAL Archival and Streaming Replicationcccoccovveinnn. 435
14.4.8. RuN ANALYZE AFtErWardScovvvuvuiiiiiieeeeeeiiiiiiin s e e e eeseesiiinseaeeeeannns 435
14.4.9. Some Notes AbOUt PG AUMPovniiii i 435

14.5. NON-DUrable SEtlNGSvuveeiiiiieiiie e e e e e e e aaa s 436
15, Parallel QUENY ...uueieeeiieietiie ettt e e e e e et e e e e e e et et e e e e e e et e et aaaaeaaaaaes 437
15.1. How Parallel QUENY WOTKSoiiiiiiii i 437
15.2. When Can Parallel Query Be USed?covvviiiiiiieiiiiiiiiee e e e 438
15.3. Parallel PLanScocvueiiiiii e e 439
15.3.1. Parallel SCaNSccvvviiiiieeeeeeieee et e e e 439
15.3.2. Parallel JOINSccvvvviiieieiiiieiie e e e 439
15.3.3. Parallel AQOregationoovuuiiiiiiiii e 440
15.3.4. Parallel Plan TIPS ..ucuuiiiiii et e e e e e e aens 440

15.4. Parallel SafEYoiieeieeeeiiiiie e 440
15.4.1. Parallel Labeling for Functions and Aggregatesooovvvvevvveiiinieeinennnnn. 441

30

Chapter 4. SQL Syntax

This chapter describes the syntax of SQL. It forms the foundation for understanding the following
chapters which will go into detail about how SQL commands are applied to define and modify data.

We aso advise users who are already familiar with SQL to read this chapter carefully because it
contains several rules and concepts that are implemented inconsistently among SQL databases or that
are specific to PostgreSQL.

4.1. Lexical Structure

4.1.1.

SQL input consists of a sequence of commands. A command is composed of a sequence of tokens,
terminated by asemicolon (“;”). Theend of theinput stream al so terminates acommand. Which tokens
are valid depends on the syntax of the particular command.

A token can beakey word, anidentifier, aquoted identifier, aliteral (or constant), or aspecial character
symbol. Tokens are normally separated by whitespace (space, tab, newline), but need not be if there
isno ambiguity (which is generally only the case if aspecia character is adjacent to some other token

type).
For example, the following is (syntactically) valid SQL input:

SELECT * FROM MY_TABLE;
UPDATE MY_TABLE SET A = 5;
| NSERT | NTO MY_TABLE VALUES (3, 'hi there');

This is a sequence of three commands, one per line (although this is not required; more than one
command can be on aline, and commands can usefully be split across lines).

Additionally, comments can occur in SQL input. They are not tokens, they are effectively equivalent
to whitespace.

The SQL syntax is not very consistent regarding what tokens identify commands and which are
operands or parameters. Thefirst few tokensare generally the command name, so in the above example
wewould usually speak of a“ SELECT”, an“UPDATE”, and an“INSERT” command. But for instance
the UPDATE command alwaysrequires a SET token to appear in a certain position, and this particul ar
variation of | NSERT also requires a VALUES in order to be complete. The precise syntax rules for
each command are described in Part V1.

Identifiers and Key Words

Tokens such as SELECT, UPDATE, or VALUES in the example above are examples of key words,
that is, words that have a fixed meaning in the SQL language. The tokens MY_TABLE and A are
examples of identifiers. They identify names of tables, columns, or other database objects, depending
on the command they are used in. Therefore they are sometimes simply called “names’. Key words
and identifiers have the same lexical structure, meaning that one cannot know whether a token is an
identifier or a key word without knowing the language. A complete list of key words can be found
in Appendix C.

SQL identifiers and key words must begin with a letter (a-z, but also letters with diacritical marks
and non-L atin letters) or an underscore (_). Subsequent charactersin an identifier or key word can be
letters, underscores, digits(0-9), or dollar signs($). Notethat dollar signsare not allowed inidentifiers
according to the letter of the SQL standard, so their use might render applications less portable. The
SQL standard will not define a key word that contains digits or starts or ends with an underscore, so
identifiers of this form are safe against possible conflict with future extensions of the standard.

The system uses no more than NAMEDATAL EN-1 bytes of an identifier; longer names can be written
in commands, but they will be truncated. By default, NAMEDATALEN is 64 so the maximum identifier

31

SQL Syntax

lengthis63 bytes. If thislimitisproblematic, it can beraised by changing the NAMEDATAL EN constant
insrc/include/ pg _config_nmanual . h.

Key words and unquoted identifiers are case insensitive. Therefore:

UPDATE MY_TABLE SET A = 5;
can equivalently be written as:
uPDaTE ny_TabLE SeT a = 5;

A convention often used is to write key wordsin upper case and names in lower case, e.g.:
UPDATE ny_table SET a = 5;

There is a second kind of identifier: the delimited identifier or quoted identifier. It is formed by
enclosing an arbitrary sequence of characters in double-quotes ("). A delimited identifier is aways
an identifier, never a key word. So " sel ect " could be used to refer to a column or table named
“select”, whereas an unquoted sel ect would be taken as a key word and would therefore provoke
a parse error when used where a table or column name is expected. The example can be written with
guoted identifierslike this:

UPDATE "ny_table" SET "a" = 5;

Quoted identifiers can contain any character, except the character with code zero. (To include adouble
guote, write two double quotes.) This allows constructing table or column names that would otherwise
not be possible, such as ones containing spaces or ampersands. The length limitation still applies.

A variant of quoted identifiers allows including escaped Unicode characters identified by their code
points. Thisvariant startswith U& (upper or lower case U followed by ampersand) immediately before
the opening double quote, without any spaces in between, for example U&" f 00" . (Note that this
creates an ambiguity with the operator &. Use spaces around the operator to avoid this problem.) Inside
the quotes, Unicode characters can be specified in escaped form by writing a backslash followed by
the four-digit hexadecimal code point number or aternatively a backslash followed by a plus sign
followed by a six-digit hexadecimal code point number. For example, the identifier " dat a" could
be written as

U&" d\ 0061t \ +000061"
The following less trivial example writes the Russian word “slon” (elephant) in Cyrillic letters:
U&"\ 0441\ 043B\ 043E\ 043D"

If adifferent escape character than backslash is desired, it can be specified using the UESCAPE clause
after the string, for example:

U&"d! 0061t ! +000061" UESCAPE ' !

The escape character can be any single character other than ahexadecimal digit, the plussign, asingle
guote, a double quote, or a whitespace character. Note that the escape character is written in single
guotes, not double quotes.

To include the escape character in the identifier literally, write it twice.

The Unicode escape syntax works only when the server encoding is UTF8. When other server
encodings are used, only code pointsin the ASCII range (up to\ 007F) can be specified. Both the 4-
digit and the 6-digit form can be used to specify UTF-16 surrogate pairs to compose characters with
code points larger than U+FFFF, although the availability of the 6-digit form technically makes this
unnecessary. (Surrogate pairs are not stored directly, but combined into asingle code point that isthen
encoded in UTF-8.)

32

SQL Syntax

Quoting anidentifier also makesit case-sensitive, whereas unquoted names are alwaysfolded to lower
case. For example, theidentifiers FOO, f 0o, and" f 00" are considered the same by PostgreSQL, but
"Foo" and" FOO' aredifferent from these three and each other. (The folding of unquoted namesto
lower case in PostgreSQL is incompatible with the SQL standard, which says that unquoted names
should be folded to upper case. Thus, f 0o should be equivalent to " FOO' not " f 00" according to
the standard. If you want to write portable applications you are advised to always quote a particular
name or never quoteit.)

4.1.2. Constants

There are three kinds of implicitly-typed constants in PostgreSQL: strings, bit strings, and numbers.
Constants can also be specified with explicit types, which can enable more accurate representation and
more efficient handling by the system. These alternatives are discussed in the following subsections.

4.1.2.1. String Constants

A string constant in SQL is an arbitrary sequence of characters bounded by single quotes ('), for
example' This is a string'.Toinclude asingle-quote character within a string constant,
write two adjacent single quotes, e.g.,' Di anne' ' s hor se' . Note that thisis not the same as a
double-quote character (").

Two string constants that are only separated by whitespace with at |east one newline are concatenated
and effectively treated as if the string had been written as one constant. For example:

SELECT ' f o0’
"bar';

is equivalent to:

SELECT ' f oobar';

but:

SELECT ' f o0’ "bar';

isnot valid syntax. (This dlightly bizarre behavior is specified by SQL; PostgreSQL is following the
standard.)

4.1.2.2. String Constants with C-style Escapes

PostgreSQL also accepts “escape” string constants, which are an extension to the SQL standard.
An escape string constant is specified by writing the letter E (upper or lower case) just before the
opening single quote, e.g., E' f 0o’ . (When continuing an escape string constant across lines, write
E only before the first opening quote.) Within an escape string, a backslash character (\) begins a
C-like backslash escape sequence, in which the combination of backslash and following character(s)
represent a special byte value, as shownin Table 4.1.

Table 4.1. Backslash Escape Sequences

Backslash Escape Sequence Interpretation

\b backspace

\ f form feed

\n newline

\r carriage return

\ t tab
\o,\00,\000(0=0-7) octal byte value
\xh,\'xhh (h=0-9,A-F) hexadecimal byte value

33

SQL Syntax

Backslash Escape Sequence I nter pretation
\uxxxx, | UXxxxxxxx (x =0-9,A-F) 16 or 32-bit hexadecimal Unicode character value

Any other character following a backslash is taken literally. Thus, to include a backslash character,
write two backslashes (\ \). Also, a single quote can be included in an escape string by writing\ ',
in addition to the normal way of ' ' .

It is your responsibility that the byte sequences you create, especially when using the octal or
hexadecimal escapes, compose valid charactersin the server character set encoding. When the server
encoding is UTF-8, then the Unicode escapes or the alternative Unicode escape syntax, explained in
Section 4.1.2.3, should be used instead. (The aternative would be doing the UTF-8 encoding by hand
and writing out the bytes, which would be very cumbersome.)

The Unicode escape syntax works fully only when the server encoding is UTF8. When other server
encodings are used, only code points in the ASCII range (up to \ u0O07F) can be specified. Both the
4-digit and the 8-digit form can be used to specify UTF-16 surrogate pairs to compose characters
with code points larger than U+FFFF, although the availability of the 8-digit form technically makes
this unnecessary. (When surrogate pairs are used when the server encoding is UTF8, they are first
combined into a single code point that is then encoded in UTF-8.)

Caution

If the configuration parameter standard_conforming_stringsisof f , then PostgreSQL
recoghizes backs ash escapesin both regular and escape string constants. However, as
of PostgreSQL 9.1, the default is on, meaning that backslash escapes are recognized
only in escape string constants. This behavior is more standards-compliant, but might
break applicationswhich rely on the historical behavior, where backslash escapeswere
alwaysrecognized. Asaworkaround, you can set this parameter to of f , but it is better
to migrate away from using backslash escapes. If you need to use a backslash escape
to represent a specia character, write the string constant with an E.

In addition to st andar d_conf or m ng_stri ngs, the configuration parameters
escape_string_warning and backslash_quote govern treatment of backslashesin string
constants.

The character with the code zero cannot be in a string constant.

4.1.2.3. String Constants with Unicode Escapes

PostgreSQL also supports another type of escape syntax for strings that allows specifying arbitrary
Unicode characters by code point. A Unicode escape string constant starts with U& (upper or lower
case letter U followed by ampersand) immediately before the opening quote, without any spaces in
between, for example U&' f 00" . (Note that this creates an ambiguity with the operator & Use spaces
around the operator to avoid this problem.) Inside the quotes, Unicode characters can be specified
in escaped form by writing a backslash followed by the four-digit hexadecimal code point number
or alternatively a backslash followed by a plus sign followed by a six-digit hexadecimal code point
number. For example, the string' dat a' could be written as

U&' d\ 0061t \ +000061'
Thefollowing less trivial example writes the Russian word “slon” (elephant) in Cyrillic letters:
U&' \ 0441\ 043B\ 043E\ 043D

If adifferent escape character than backslash is desired, it can be specified using the UESCAPE clause
after the string, for example:

U&' d! 0061t ! +000061" UESCAPE ' !

34

SQL Syntax

The escape character can be any single character other than ahexadecimal digit, the plussign, asingle
guote, a double quote, or awhitespace character.

The Unicode escape syntax works only when the server encoding is UTF8. When other server
encodings are used, only code points in the ASCII range (up to \ 007F) can be specified. Both the
4-digit and the 6-digit form can be used to specify UTF-16 surrogate pairs to compose characters
with code points larger than U+FFFF, although the availability of the 6-digit form technically makes
this unnecessary. (When surrogate pairs are used when the server encoding is UTF8, they are first
combined into a single code point that is then encoded in UTF-8.)

Also, the Unicode escape syntax for string constants only works when the configuration parameter
standard_conforming_stringsisturned on. Thisis because otherwise this syntax could confuse clients
that parse the SQL statements to the point that it could lead to SQL injections and similar security
issues. If the parameter is set to off, this syntax will be rejected with an error message.

To include the escape character in the string literally, writeit twice.

4.1.2.4. Dollar-quoted String Constants

While the standard syntax for specifying string constants is usually convenient, it can be difficult to
understand when the desired string contains many single quotes or backslashes, since each of those
must be doubled. To allow more readable queries in such situations, PostgreSQL provides another
way, called “dollar quoting”, to write string constants. A dollar-quoted string constant consists of a
dollar sign ($), an optional “tag” of zero or more characters, another dollar sign, an arbitrary sequence
of characters that makes up the string content, adollar sign, the same tag that began this dollar quote,
and adollar sign. For example, here are two different waysto specify the string “ Dianne's horse” using
dollar quoting:

$$Di anne' s horse$$
$SonmeTag$Di anne' s hor se$SoneTag$

Notice that inside the dollar-quoted string, single quotes can be used without needing to be escaped.
Indeed, no charactersinside adollar-quoted string are ever escaped: the string content isalwayswritten
literally. Backslashes are not special, and neither are dollar signs, unless they are part of a sequence
matching the opening tag.

It is possible to nest dollar-quoted string constants by choosing different tags at each nesting level.
Thisis most commonly used in writing function definitions. For example:

$f uncti on$
BEG N
RETURN ($1 ~ g[\t\r\n\v\\]q);
END;
$f uncti on$

Here, the sequence g[\ t\ r\ n\ vi \] g represents a dollar-quoted literal string [\ t\r\n\v
\'\], which will be recognized when the function body is executed by PostgreSQL. But since the
sequence does not match the outer dollar quoting delimiter $f unct i on$, it is just some more
characters within the constant so far as the outer string is concerned.

Thetag, if any, of adollar-quoted string follows the same rules as an unquoted identifier, except that it
cannot contain adollar sign. Tags are case sensitive, so $t ag$St ri ng cont ent $t ag$ iscorrect,
but STAGSSt ri ng cont ent $t ag$ isnot.

A dollar-quoted string that follows a keyword or identifier must be separated from it by whitespace;
otherwise the dollar quoting delimiter would be taken as part of the preceding identifier.

Dollar quoting is not part of the SQL standard, but it is often a more convenient way to write
complicated string literals than the standard-compliant single quote syntax. It is particularly useful
when representing string constants inside other constants, as is often needed in procedural function

35

SQL Syntax

definitions. With single-quote syntax, each backslash in the above example would have to be written
asfour backsl ashes, which would be reduced to two backslashesin parsing the original string constant,
and then to one when the inner string constant is re-parsed during function execution.

4.1.2.5. Bit-string Constants

Bit-string constants look like regular string constants with a B (upper or lower case) immediately
before the opening quote (no intervening whitespace), e.qg., B 1001' . The only characters alowed
within bit-string constants are 0 and 1.

Alternatively, bit-string constants can be specified in hexadecimal notation, using a leading X (upper
or lower case), e.qg., X' 1FF' . Thisnotationisequivalent to abit-string constant with four binary digits
for each hexadecimal digit.

Both forms of bit-string constant can be continued across lines in the same way as regular string
constants. Dollar quoting cannot be used in a hit-string constant.

4.1.2.6. Numeric Constants
Numeric constants are accepted in these general forms:

digits
digits.[digits][e[+-]digits]
[digits].digits[e[+-]digits]
digitse[+-]digits

wheredi gi t s isoneor moredecimal digits(0through 9). Atleast onedigit must be beforeor after the
decimal point, if oneisused. At least one digit must follow the exponent marker (e), if oneis present.
There cannot be any spaces or other characters embedded in the constant. Note that any leading plus
or minus sign is not actually considered part of the constant; it is an operator applied to the constant.

These are some examples of valid numeric constants:

42

35

4,

.001

5e2
1.925e-3

A numeric constant that contains neither adecimal point nor an exponent isinitially presumed to be
typei nt eger if itsvaluefitsintypei nt eger (32 bits); otherwiseitispresumedto betypebi gi nt
if its value fitsin type bi gi nt (64 bits); otherwise it is taken to be type nuner i c. Constants that
contain decimal points and/or exponents are always initially presumed to be type nuner i c.

The initially assigned data type of a numeric constant is just a starting point for the type resolution
algorithms. In most cases the constant will be automatically coerced to the most appropriate type
depending on context. When necessary, you can force a numeric value to be interpreted as a specific
data type by casting it. For example, you can force a numeric value to be treated as type r eal
(f 1 oat 4) by writing:

REAL '1.23" -- string style
1.23:: REAL -- PostgreSQ (historical) style

These are actually just specia cases of the general casting notations discussed next.

4.1.2.7. Constants of Other Types

A constant of an arbitrary type can be entered using any one of the following notations:

type 'string'

36

SQL Syntax

4.1.3.

4.1.4.

"string' ::type
CAST ("string' AS type)

The string constant'stext is passed to theinput conversion routine for thetype calledt ype. Theresult
is aconstant of the indicated type. The explicit type cast can be omitted if there is no ambiguity asto
the type the constant must be (for example, when it is assigned directly to a table column), in which
caseit is automatically coerced.

The string constant can be written using either regular SQL notation or dollar-quoting.
It is also possible to specify atype coercion using a function-like syntax:

typenane ('string')

but not al type names can be used in this way; see Section 4.2.9 for details.

The: :, CAST(), and function-call syntaxes can also be used to specify run-time type conversions
of arbitrary expressions, as discussed in Section 4.2.9. To avoid syntactic ambiguity, the t ype
"string' syntax canonly beusedto specify thetype of asimpleliteral constant. Another restriction
onthet ype ' string' syntaxisthatitdoesnotwork for array types; use: : or CAST() to specify
the type of an array constant.

The CAST() syntax conformsto SQL. Thetype 'string' syntax is a generdization of the
standard: SQL specifiesthis syntax only for afew data types, but PostgreSQL allowsit for al types.
The syntax with : : ishistorical PostgreSQL usage, asis the function-call syntax.

Operators

An operator name is a sequence of up to NAMEDATALEN-1 (63 by default) characters from the
following list:

+-F<>=~1 @#B & | ?
There are afew restrictions on operator names, however:

e -- and/* cannot appear anywhere in an operator name, since they will be taken as the start of
acomment.

» A multiple-character operator name cannot end in + or -, unless the name also contains at least
one of these characters:

~1@#%"& | ?

For example, @ isan alowed operator name, but * - is not. This restriction allows PostgreSQL to
parse SQL-compliant queries without requiring spaces between tokens.

When working with non-SQL -standard operator names, you will usualy need to separate adjacent
operatorswith spacesto avoid ambiguity. For example, if you have defined aleft unary operator named
@ you cannot write X* @; you must write X* @Y to ensure that PostgreSQL reads it as two operator
names not one.

Special Characters

Some characters that are not alphanumeric have a special meaning that is different from being an
operator. Details on the usage can be found at the location where the respective syntax element
is described. This section only exists to advise the existence and summarize the purposes of these
characters.

* A dollar sign ($) followed by digits is used to represent a positional parameter in the body of
a function definition or a prepared statement. In other contexts the dollar sign can be part of an
identifier or a dollar-quoted string constant.

37

SQL Syntax

4.1.5.

4.1.6.

 Parentheses (()) have their usual meaning to group expressions and enforce precedence. In some
cases parentheses are required as part of the fixed syntax of a particular SQL command.

» Brackets ([]) are used to select the elements of an array. See Section 8.15 for more information
on arrays.

» Commas (,) are used in some syntactical constructs to separate the elements of alist.

» The semicolon (;) terminates an SQL command. It cannot appear anywhere within a command,
except within a string constant or quoted identifier.

* Thecolon (:) is used to select “slices” from arrays. (See Section 8.15.) In certain SQL dialects
(such as Embedded SQL), the colon is used to prefix variable names.

» Theasterisk (*) isused in some contexts to denote all the fields of atable row or composite value.
It also has a special meaning when used as the argument of an aggregate function, namely that the
aggregate does not require any explicit parameter.

» Theperiod (.) isused in numeric constants, and to separate schema, table, and column names.

Comments

A comment is a sequence of characters beginning with double dashes and extending to the end of
theline, eg.:

-- This is a standard SQ. conment
Alternatively, C-style block comments can be used:

/* multiline coment
* with nesting: /* nested block coment */
*/

where the comment begins with / * and extends to the matching occurrence of */ . These block
comments nest, as specified in the SQL standard but unlike C, so that one can comment out larger
blocks of code that might contain existing block comments.

A comment isremoved from theinput stream before further syntax analysisand is effectively replaced
by whitespace.

Operator Precedence

Table 4.2 shows the precedence and associativity of the operators in PostgreSQL. Most operators
have the same precedence and are left-associative. The precedence and associativity of the operators
is hard-wired into the parser.

Y ou will sometimes need to add parentheses when using combinations of binary and unary operators.
For instance:

SELECT 5! - 6;
will be parsed as:
SELECT 5! (- 6);

because the parser has no idea— until it istoo late — that ! is defined as a postfix operator, not an
infix one. To get the desired behavior in this case, you must write:

SELECT (5 !) - 6;

38

SQL Syntax

Thisisthe price one pays for extensibility.

Table 4.2. Operator Precedence (highest to lowest)

Operator/Element Associativity Description
left table/column name separator
left PostgreSQL -style typecast

[1] left array element selection

+ - right unary plus, unary minus

A left exponentiation

*| % left multiplication, division, modulo

+ - left addition, subtraction

(any other operator) left al other native and user-defined

operators

SI'M LAR

BETWEEN I N LI KE |LIKE

range containment, set
membership, string matching

<>=<=>=<>

comparison operators

I ST SNULL NOTNULL

IS TRUE, IS FALSE IS
NULL, I S DI STI NCT FROM
etc

NOT right logical negation
AND left logical conjunction
R left logical disjunction

Note that the operator precedence rules a so apply to user-defined operators that have the same names
asthe built-in operators mentioned above. For example, if you definea” +" operator for some custom
datatypeit will have the same precedence as the built-in “+" operator, no matter what yours does.

When a schema-qualified operator name is used in the OPERATOR syntax, as for examplein:

SELECT 3 OPERATOR(pg_catal og. +) 4;

the OPERATOR construct is taken to have the default precedence shown in Table 4.2 for “any other
operator”. Thisistrue no matter which specific operator appears inside OPERATOR() .

Note

PostgreSQL versions before 9.5 used dightly different operator precedence rules. In
particular, <= >= and <> used to be treated as generic operators; | S tests used to
have higher priority; and NOT BETWEEN and related constructs acted inconsistently,
being taken in some cases as having the precedence of NOT rather than BETWEEN.
These rules were changed for better compliance with the SQL standard and to reduce
confusion from inconsistent treatment of logically equivalent constructs. In most
cases, these changes will result in no behavioral change, or perhaps in “no such
operator” failures which can be resolved by adding parentheses. However there are
corner cases in which a query might change behavior without any parsing error
being reported. If you are concerned about whether these changes have silently
broken something, you can test your application with the configuration parameter
operator_precedence_warning turned on to see if any warnings are logged.

4.2. Value Expressions

39

SQL Syntax

4.2.1.

4.2.2.

Vaueexpressionsare used in avariety of contexts, such asin thetarget list of the SELECT command,
asnew column valuesin| NSERT or UPDATE, or in search conditionsin anumber of commands. The
result of a value expression is sometimes called a scalar, to distinguish it from the result of atable
expression (which isatable). Value expressions are therefore also called scalar expressions (or even
simply expressions). The expression syntax allowsthe cal cul ation of values from primitive partsusing
arithmetic, logical, set, and other operations.

A value expression is one of the following:
» A constant or litera value

» A column reference

A positional parameter reference, in the body of afunction definition or prepared statement

A subscripted expression

» A field selection expression
» An operator invocation

* A function call

» An aggregate expression

» A window function call

» A typecast

* A collation expression

» A scalar subquery

* An array constructor

* A row constructor

» Another value expression in parentheses (used to group subexpressions and override precedence)

In addition to this list, there are a number of constructs that can be classified as an expression but do
not follow any general syntax rules. These generally have the semantics of a function or operator and
are explained in the appropriate location in Chapter 9. An exampleisthel S NULL clause.

We have already discussed constants in Section 4.1.2. The following sections discuss the remaining
options.

Column References

A column can be referenced in the form:
correl ati on. col umnane

correl at i on isthe name of atable (possibly qualified with a schemaname), or an aliasfor atable
defined by means of a FROMclause. The correlation name and separating dot can be omitted if the
column name is unique across all the tables being used in the current query. (See also Chapter 7.)

Positional Parameters

A positional parameter reference is used to indicate a value that is supplied externally to an SQL
statement. Parameters are used in SQL function definitions and in prepared queries. Some client
libraries also support specifying data values separately from the SQL command string, in which case
parameters are used to refer to the out-of-line data values. The form of a parameter referenceis:

40

SQL Syntax

4.2.3.

4.2.4.

$nunber
For example, consider the definition of afunction, dept , as:

CREATE FUNCTI ON dept (text) RETURNS dept
AS $$ SELECT * FROM dept WHERE nanme = $1 $$
LANGUAGE SQ.;

Herethe $1 references the value of the first function argument whenever the function isinvoked.

Subscripts

If an expression yields a value of an array type, then a specific element of the array value can be
extracted by writing

expressi on[subscri pt]
or multiple adjacent elements (an “array dice”) can be extracted by writing
expression[| ower _subscri pt: upper_subscri pt]

(Here, the brackets[] are meant to appear literally.) Each subscri pt isitself an expression,
which must yield an integer value.

In general the array expr essi on must be parenthesized, but the parentheses can be omitted when
the expression to be subscripted is just a column reference or positional parameter. Also, multiple
subscripts can be concatenated when the original array is multidimensional. For example:

nyt abl e. arraycol um| 4]

nyt abl e. two_d_col umm[17] [34]
$1[10: 42]
(arrayfunction(a,b))[42]

The parentheses in the last example are required. See Section 8.15 for more about arrays.

Field Selection

If an expression yields a value of a composite type (row type), then a specific field of the row can
be extracted by writing

expression. fiel dnane

In general therow expr essi on must be parenthesized, but the parentheses can be omitted when the
expression to be selected from is just atable reference or positiona parameter. For example:

nyt abl e. mycol um
$1. sonecol um
(rowfunction(a,b)).col 3

(Thus, a qualified column reference is actually just a special case of the field selection syntax.) An
important special caseis extracting afield from atable column that is of a composite type:

(compositecol). sonefield
(mmyt abl e. conposi tecol). sonefield

The parentheses are required here to show that conposi t ecol isacolumn name not atable name,
or that myt abl e isatable name not a schemaname in the second case.

Y ou can ask for all fields of a composite value by writing . *:

(conpositecol).*

41

SQL Syntax

4.2.5.

4.2.6.

4.2.7.

This notation behaves differently depending on context; see Section 8.16.5 for details.

Operator Invocations

There are three possible syntaxes for an operator invocation:

expr essi on oper at or expr essi on (binary infix operator)
oper at or expr essi on (unary prefix operator)
expr essi on oper at or (unary postfix operator)

wheretheoper at or tokenfollowsthe syntax rules of Section 4.1.3, or isone of the key words AND,
OR, and NOT, or isaqualified operator name in the form:

OPERATOR(schemma. oper at or nane)

Which particular operators exist and whether they are unary or binary depends on what operators have
been defined by the system or the user. Chapter 9 describes the built-in operators.

Function Calls

The syntax for a function call is the name of a function (possibly qualified with a schema name),
followed by its argument list enclosed in parentheses:

function_nane ([expression [, expression ...]])

For example, the following computes the square root of 2:

sqrt(2)

Thelist of built-in functionsisin Chapter 9. Other functions can be added by the user.

The arguments can optionally have names attached. See Section 4.3 for details.

Note

A function that takes a single argument of composite type can optionally be called
using field-selection syntax, and conversely field selection can be written in functional
style. That is, thenotationscol (t abl e) andt abl e. col areinterchangeable. This
behavior is not SQL-standard but is provided in PostgreSQL because it allows use of
functions to emulate “computed fields’. For more information see Section 8.16.5.

Aggregate Expressions

An aggregate expression represents the application of an aggregate function across the rows selected
by aquery. An aggregate function reduces multiple inputsto a single output value, such asthe sum or
average of the inputs. The syntax of an aggregate expression is one of the following:

aggregate _nane (expression [, ...] [order_by clause]) [FILTER
(WHERE filter _clause)]

aggregate _nane (ALL expression [, ...] [order_by clause])

[FILTER (WHERE filter_clause)]

aggregate_nane (DI STINCT expression [, ...] [order_by clause])

[FILTER (WHERE filter_clause)]
aggregate nane (*) [FILTER (WHERE filter _clause)]
aggregate nane ([expression [, ...]]) WTH N GROUP
(order_by clause) [FILTER (WHERE filter_clause)]

42

SQL Syntax

whereaggr egat e_nane isapreviously defined aggregate (possibly qualified with aschemaname)
and expr essi on is any value expression that does not itself contain an aggregate expression or
a window function call. The optional order _by cl ause andfilter_cl ause are described
below.

The first form of aggregate expression invokes the aggregate once for each input row. The second
form is the same as the first, since ALL is the default. The third form invokes the aggregate once for
each distinct value of the expression (or distinct set of values, for multiple expressions) found in the
input rows. The fourth form invokes the aggregate once for each input row; since no particular input
valueis specified, it is generaly only useful for the count (*) aggregate function. The last formiis
used with ordered-set aggregate functions, which are described below.

Most aggregate functions ignore null inputs, so that rows in which one or more of the expression(s)
yield null are discarded. This can be assumed to be true, unless otherwise specified, for al built-in

aggregates.

For example, count (*) yields the total number of input rows; count (f 1) yields the number of
input rowsinwhichf 1 isnon-null, sincecount ignoresnulls; andcount (di sti nct f1) yields
the number of distinct non-null valuesof f 1.

Ordinarily, the input rows are fed to the aggregate function in an unspecified order. In many cases
this does not matter; for example, mi n produces the same result no matter what order it receives the
inputs in. However, some aggregate functions (such as array_agg and st ri ng_agg) produce
results that depend on the ordering of the input rows. When using such an aggregate, the optional
order by cl ause can be used to specify the desired ordering. The or der _by_cl ause has
the same syntax as for a query-level ORDER BY clause, as described in Section 7.5, except that its
expressionsare awaysjust expressions and cannot be output-column names or numbers. For example:

SELECT array_agg(a ORDER BY b DESC) FROMt abl e;

When dealing with multiple-argument aggregate functions, note that the ORDER BY clause goes after
all the aggregate arguments. For example, write this:

SELECT string _agg(a, ',' ORDER BY a) FROMtabl e;
not this:
SELECT string agg(a ORDER BY a, ',') FROMtable; -- incorrect

The latter is syntactically valid, but it represents a call of a single-argument aggregate function with
two ORDER BY keys (the second one being rather useless since it's a constant).

If DI STI NCT isspecifiedinadditiontoanor der _by_cl ause, thenall the ORDER BY expressions
must match regular arguments of the aggregate; that is, you cannot sort on an expression that is not
included in the DI STI NCT list.

Note

The ability to specify both DI STI NCT and ORDER BY in an aggregate function is
a PostgreSQL extension.

Placing ORDER BY within the aggregate's regular argument list, as described so far, is used
when ordering the input rows for general-purpose and statistical aggregates, for which ordering is
optional. There is a subclass of aggregate functions called ordered-set aggregates for which an
order by cl ause isrequired, usually because the aggregate's computation is only sensible in
terms of a specific ordering of itsinput rows. Typical examples of ordered-set aggregatesinclude rank
and percentile calculations. For an ordered-set aggregate, the or der _by _cl ause iswritten inside
WTH N GROUP (...), asshown inthefina syntax aternative above. The expressions in the
order by _cl ause are evaluated once per input row just like regular aggregate arguments, sorted

43

SQL Syntax

4.2.8.

aspertheor der by cl ause'srequirements, and fed to the aggregate function asinput arguments.
(Thisis unlike the case for anon-W THI N GROUP or der _by_cl ause, which is not treated as
argument(s) to the aggregate function.) The argument expressions preceding W THI N GROUP, if
any, are caled direct arguments to distinguish them from the aggregated arguments listed in the
order by cl ause. Unlikeregular aggregate arguments, direct arguments are evaluated only once
per aggregate call, not once per input row. This means that they can contain variables only if those
variables are grouped by GROUP BY; thisrestriction is the same as if the direct arguments were not
inside an aggregate expression at all. Direct arguments are typically used for things like percentile
fractions, which only make sense as a single value per aggregation calculation. The direct argument
list can be empty; in this case, writejust () not (*) . (PostgreSQL will actually accept either spelling,
but only the first way conforms to the SQL standard.)

An example of an ordered-set aggregate call is:

SELECT percentile_cont(0.5) WTH N GROUP (ORDER BY incone) FROM
househol ds;
percentil e_cont

which obtains the 50th percentile, or median, value of thei nconme columnfromtablehousehol ds.
Here, 0. 5 isadirect argument; it would make no sensefor the percentile fraction to beavauevarying
across rows.

If FI LTER s specified, then only the input rows for which thef i | t er _cl ause evaluates to true
are fed to the aggregate function; other rows are discarded. For example:

SELECT

count (*) AS unfiltered,

count (*) FILTER (WHERE i < 5) AS filtered
FROM generate_series(1,10) AS s(i);
unfiltered | filtered

(1 row

The predefined aggregate functions are described in Section 9.20. Other aggregate functions can be
added by the user.

An aggregate expression can only appear in the result list or HAVI NGclause of a SELECT command.
It isforbidden in other clauses, such as WHERE, because those clauses are logically evaluated before
the results of aggregates are formed.

When an aggregate expression appears in a subquery (see Section 4.2.11 and Section 9.22),
the aggregate is normally evaluated over the rows of the subquery. But an exception occurs if
the aggregate's arguments (and fi | t er _cl ause if any) contain only outer-level variables: the
aggregate then belongs to the nearest such outer level, and is evaluated over the rows of that query.
The aggregate expression as awhole is then an outer reference for the subquery it appearsin, and acts
as a constant over any one evaluation of that subquery. The restriction about appearing only in the
result list or HAVI NG clause applies with respect to the query level that the aggregate belongs to.

Window Function Calls

A window function call represents the application of an aggregate-like function over some portion of
the rows selected by a query. Unlike non-window aggregate calls, thisis not tied to grouping of the
selected rows into a single output row — each row remains separate in the query output. However the
window function has access to all the rows that would be part of the current row's group according
to the grouping specification (PARTI TI ON BY list) of the window function call. The syntax of a
window function call is one of the following:

44

SQL Syntax

function_nane ([expression [, expression ...]]) [FILTER
(WHERE filter_clause)] OVER wi ndow_nane
function_nane ([expression [, expression ...]]) [FILTER

(WHERE filter_clause)] OVER (wi ndow definition)
function_nane (*) [FILTER (WHERE filter_cl ause)]
OVER wi ndow_nane
function_nane (*) [FILTER (WHERE filter_clause)] OVER
(wi ndow definition)

wherewi ndow_def i ni ti on hasthe syntax

[existing_w ndow nane]

[PARTITION BY expression [, ...]]
[ORDER BY expression [ASC | DESC | USING operator] [NULLS
{ FIRST | LAST} 1 [, -.-11

[frame_cl ause]
and the optional f r ame_cl ause can be one of

{ RANGE | ROAN5 } franme_start
{ RANGE | ROA5 } BETWEEN frane_start AND frane_end

wherefranme_start andfranme_end can be one of

UNBOUNDED PRECEDI NG
val ue PRECEDI NG
CURRENT ROW

val ue FOLLOW NG
UNBOUNDED FOLLOW NG

Here, expr essi on represents any value expression that does not itself contain window function
cals.

wi ndow_narre isareferenceto anamed window specification defined in the query's W NDOWcl ause.
Alternatively, afull Wi ndow_def i ni ti on can be given within parentheses, using the same syntax
asfor defining anamed window inthe W NDOWCclause; seethe SEL ECT reference pagefor details. It's
worth pointing out that OVER wnarre is not exactly equivalent to OVER (wname .. .);thelatter
implies copying and modifying the window definition, and will be rejected if the referenced window
specification includes a frame clause.

The PARTI TI ON BY clause groups the rows of the query into partitions, which are processed
separately by the window function. PARTI TI ON BY works similarly to a query-level GROUP BY
clause, except that its expressions are always just expressions and cannot be output-column names or
numbers. Without PARTI Tl ON BY, al rows produced by the query are treated as a single partition.
The ORDER BY clause determines the order in which the rows of a partition are processed by the
window function. It works similarly to a query-level ORDER BY clause, but likewise cannot use
output-column names or numbers. Without ORDER BY, rows are processed in an unspecified order.

Thef rame_cl ause specifiesthe set of rows constituting the window frame, which isasubset of the
current partition, for those window functions that act on the frame instead of the whole partition. The
frame can be specified in either RANGE or ROAS mode; in either case, it runsfromthef r ane_st art
tothef rame_end. If f rane_end isomitted, it defaults to CURRENT ROW

Afranme_start of UNBOUNDED PRECEDI NG means that the frame starts with the first row of
the partition, and similarly af r anme_end of UNBOUNDED FOLLOW NG means that the frame ends
with the last row of the partition.

In RANGE mode, af r ane_st art of CURRENT ROWmeans the frame starts with the current row's
first peer row (arow that ORDER BY considers equivalent to the current row), whileaf r anme_end
of CURRENT ROWmeans the frame ends with the last equivalent ORDER BY peer. In ROAS mode,
CURRENT ROWSsimply means the current row.

45

SQL Syntax

4.2.9.

Theval ue PRECEDI NGandval ue FOLLOW NGcases are currently only allowed in ROAS mode.
They indicate that the frame starts or endsthe specified number of rows before or after the current row.
val ue must be an integer expression not containing any variables, aggregate functions, or window
functions. The value must not be null or negative; but it can be zero, which just selectsthe current row.

The default framing option is RANGE UNBOUNDED PRECEDI NG, which is the same as RANGE
BETWEEN UNBOUNDED PRECEDI NG AND CURRENT ROW With ORDER BY, thissetsthe frame
to be all rows from the partition start up through the current row's last ORDER BY peer. Without
ORDER BY, all rows of the partition are included in the window frame, since all rows become peers
of the current row.

Restrictions are that f rane_st art cannot be UNBOUNDED FOLLOW NG, f r ane_end cannot
be UNBOUNDED PRECEDI NG, and the f r ane_end choice cannot appear earlier in the above list
thanthef rame_st art choice— for example RANGE BETWEEN CURRENT ROW AND val ue
PRECEDI NGis not allowed.

If FI LTER s specified, then only the input rows for which thefi | t er _cl ause evaluatesto true
are fed to the window function; other rows are discarded. Only window functions that are aggregates
accept aFl LTER clause.

The built-in window functions are described in Table 9.57. Other window functions can be added by
the user. Also, any built-in or user-defined general-purpose or statistical aggregate can be used as a
window function. (Ordered-set and hypothetical-set aggregates cannot presently be used as window
functions.)

Thesyntaxesusing * are used for calling parameter-less aggregate functions as window functions, for
examplecount (*) OVER (PARTI TI ON BY x ORDER BY y) . Theasterisk (*) iscustomarily
not used for window-specific functions. Window-specific functions do not allow DI STI NCT or
ORDER BY to be used within the function argument list.

Window function calls are permitted only in the SELECT list and the ORDER BY clause of the query.

Moreinformation about window functions can befound in Section 3.5, Section 9.21, and Section 7.2.5.

Type Casts

A type cast specifies a conversion from one data type to another. PostgreSQL accepts two equivalent
syntaxes for type casts:

CAST (expression AS type)
expression: :type

The CAST syntax conforms to SQL ; the syntax with : : ishistorical PostgreSQL usage.

When acast is applied to avalue expression of aknown type, it represents arun-time type conversion.
The cast will succeed only if a suitable type conversion operation has been defined. Notice that this
is subtly different from the use of casts with constants, as shown in Section 4.1.2.7. A cast applied
to an unadorned string literal represents the initial assignment of a type to a literal constant value,
and so it will succeed for any type (if the contents of the string literal are acceptable input syntax for
the data type).

An explicit type cast can usually be omitted if there is no ambiguity as to the type that a value
expression must produce (for example, when it is assigned to a table column); the system will
automatically apply atype cast in such cases. However, automatic casting is only done for casts that
aremarked “ OK to apply implicitly” in the system catalogs. Other casts must be invoked with explicit
casting syntax. This restriction is intended to prevent surprising conversions from being applied
silently.

It isalso possible to specify atype cast using afunction-like syntax:

46

SQL Syntax

typenane (expression)

However, this only works for types whose names are also valid as function names. For example,
doubl e precision cannot be used this way, but the equivalent f| oat 8 can. Also, the
namesi nterval,tinme, andti nest anp can only be used in this fashion if they are double-
quoted, because of syntactic conflicts. Therefore, the use of the function-like cast syntax leads to
inconsistencies and should probably be avoided.

Note

The function-like syntax isin fact just a function call. When one of the two standard
cast syntaxesis used to do arun-time conversion, it will internally invoke aregistered
function to perform the conversion. By convention, these conversion functions have
the same name astheir output type, and thusthe “function-like syntax” is nothing more
than a direct invocation of the underlying conversion function. Obviously, thisis not
something that a portable application should rely on. For further details see CREATE
CAST.

4.2.10. Collation Expressions

The COLLATE clause overrides the collation of an expression. It is appended to the expression it
appliesto:

expr COLLATE collation

wherecol | at i on isapossibly schema-qualified identifier. The COLLATE clause bindstighter than
operators; parentheses can be used when necessary.

If no collation is explicitly specified, the database system either derives a collation from the columns
involvedinthe expression, or it defaultsto the default collation of the databaseif no columnisinvolved
in the expression.

The two common uses of the COLLATE clause are overriding the sort order in an ORDER BY clause,
for example:

SELECT a, b, ¢ FROMthl WHERE ... ORDER BY a COLLATE "C';
and overriding the collation of afunction or operator call that haslocal e-sensitive results, for example:
SELECT * FROMtbl WHERE a > 'foo' COLLATE "C';

Note that in the latter case the COLLATE clause is attached to an input argument of the operator we
wish to affect. It doesn't matter which argument of the operator or function call the COLLATE clauseis
attached to, because the collation that is applied by the operator or function is derived by considering
all arguments, and an explicit COLLATE clause will override the collations of all other arguments.
(Attaching non-matching COLLATE clauses to more than one argument, however, is an error. For
more details see Section 23.2.) Thus, this gives the same result as the previous example:

SELECT * FROM tbl WHERE a COLLATE "C' > 'foo0';
But thisisan error:
SELECT * FROMtbl WHERE (a > 'foo') COLLATE "C';

because it attempts to apply a collation to the result of the > operator, which is of the non-collatable
datatypebool ean.

4.2.11. Scalar Subqueries

47

SQL Syntax

A scalar subquery isan ordinary SELECT query in parentheses that returns exactly one row with one
column. (See Chapter 7 for information about writing queries.) The SELECT query is executed and
the single returned value is used in the surrounding value expression. It is an error to use a query that
returns more than one row or more than one column as a scalar subquery. (But if, during a particular
execution, the subquery returns no rows, there is no error; the scalar result is taken to be null.) The
subquery can refer to variables from the surrounding query, which will act as constants during any
one evaluation of the subquery. See also Section 9.22 for other expressions involving subqueries.

For example, the following finds the largest city population in each state:

SELECT nane, (SELECT max(pop) FROM cities WHERE cities.state =
st at es. nane)
FROM st at es;

4.2.12. Array Constructors

Anarray constructor isan expression that buildsan array value using valuesfor itsmember el ements. A
simple array constructor consists of the key word ARRAY, aleft square bracket [, alist of expressions
(separated by commas) for the array element values, and finally aright square bracket | . For example:

SELECT ARRAY[1, 2, 3+4];
array

By default, the array element type is the common type of the member expressions, determined using
the samerulesasfor UNI ONor CASE constructs (see Section 10.5). Y ou can overridethisby explicitly
casting the array constructor to the desired type, for example:

SELECT ARRAY[1,2,22.7]::integer[];
array

This has the same effect as casting each expression to the array element type individually. For more
on casting, see Section 4.2.9.

Multidimensional array values can be built by nesting array constructors. In theinner constructors, the
key word ARRAY can be omitted. For example, these produce the same result:

SELECT ARRAY[ARRAY[1, 2], ARRAY[3,4]];
array
{{1,2},{3,4}}
(1 row

SELECT ARRAY[[1,2],[3,4]1];
array

{{1,2},{3,4}}

(1 row

Since multidimensional arrays must be rectangular, inner constructors at the same level must produce
sub-arrays of identical dimensions. Any cast applied to the outer ARRAY constructor propagates
automatically to al the inner constructors.

Multidimensional array constructor elements can be anything yielding an array of the proper kind, not
only asub-ARRAY construct. For example:

48

SQL Syntax

CREATE TABLE arr(f1 int[], f2 int[]);
I NSERT | NTO arr VALUES (ARRAY[[1,2],[3,4]], ARRAY[[5,6],[7,8]1);

SELECT ARRAY[f1, f2, '{{9,10},{11,12}}'::int[]] FROM arr;
array

{{{1,2},{3,4}},{{5,6},{7,8}},{{9, 10}, {11, 12} }}

(1 row

Y ou can construct an empty array, but since it's impossible to have an array with no type, you must
explicitly cast your empty array to the desired type. For example:

SELECT ARRAY[]::integer[];
array

{}
(1 row

Itisalso possibleto construct an array from theresults of asubquery. Inthisform, thearray constructor
is written with the key word ARRAY followed by a parenthesized (not bracketed) subquery. For
example:

SELECT ARRAY(SELECT oi d FROM pg_proc WHERE pronanme LIKE 'bytea%);
array

{2011, 1954, 1948, 1952, 1951, 1244, 1950, 2005, 1949, 1953, 2006, 31, 2412, 2413}
(1 row)

SELECT ARRAY(SELECT ARRAY[i, i*2] FROM generate_series(1,5) AS
a(i));

{{1,2},{2,4},{3,6},{4,8}, {5, 10}}
(1 row)

The subquery must return a single column. If the subquery's output column is of a non-array type,
the resulting one-dimensional array will have an element for each row in the subquery result, with an
element type matching that of the subquery's output column. If the subquery's output column is of an
array type, the result will be an array of the same type but one higher dimension; in this case all the
subquery rows must yield arrays of identical dimensionality, else the result would not be rectangular.

The subscripts of an array value built with ARRAY aways begin with one. For more information about
arrays, see Section 8.15.

4.2.13. Row Constructors

A row constructor isan expression that buildsarow value (also called acomposite value) using values
for its member fields. A row constructor consists of the key word ROW a left parenthesis, zero or
more expressions (separated by commas) for the row field values, and finally aright parenthesis. For
example:

SELECT RON1,2.5,'"this is a test');
The key word ROWis optional when there is more than one expression in the list.

A row constructor can include the syntax r owval ue. *, which will be expanded to a list of the
elements of the row value, just as occurswhen the . * syntax isused at the top level of a SELECT list
(see Section 8.16.5). For example, if tablet hascolumnsf 1 and f 2, these are the same:

49

SQL Syntax

SELECT ROWNt.*, 42) FROM t;
SELECT ROWNt.f1, t.f2, 42) FROMt;

Note

Before PostgreSQL 8.2, the . * syntax was not expanded in row constructors, so that
writing RON(t . *, 42) created a two-field row whose first field was another row
value. The new behavior isusually more useful. If you need the old behavior of nested
row values, write the inner row value without . * , for instance RON t, 42).

By default, the value created by a ROWexpression is of an anonymous record type. If necessary, it can
be cast to a named composite type — either the row type of atable, or acomposite type created with
CREATE TYPE AS. An explicit cast might be needed to avoid ambiguity. For example:

CREATE TABLE nytable(fl1 int, f2 float, f3 text);

CREATE FUNCTI ON get f 1(nyt abl e) RETURNS int AS ' SELECT $1.f1'
LANGUAGE SQL;

-- No cast needed since only one getfl() exists
SELECT getf1(ROWN1,2.5,'this is a test'));
getfl

CREATE TYPE nmyrowtype AS (fl1 int, f2 text, f3 numeric);

CREATE FUNCTI ON getf1(nyrowtype) RETURNS int AS ' SELECT $1.f1'
LANGUACGE SQL;

-- Now we need a cast to indicate which function to call:
SELECT getf1(RON1,2.5,'this is a test'));
ERROR: function getfl(record) is not unique

SELECT getf1(RON1,2.5,'this is a test')::nytable);
getfl

SELECT getf1(CAST(ROW11,'this is a test',2.5) AS nyrowtype));
getfl

11
(1 row)

Row constructors can be used to build composite valuesto be stored in acomposite-type table column,
or to be passed to a function that accepts a composite parameter. Also, it is possible to compare two
row valuesor test arow with | S NULL or I S NOT NULL, for example:

SELECT RON1,2.5,'this is a test') = RON1, 3, 'not the sane');
SELECT RONtable.*) IS NULL FROMtable; -- detect all-null rows

For more detail see Section 9.23. Row constructors can also be used in connection with subqueries,
as discussed in Section 9.22.

50

SQL Syntax

4.2.14. Expression Evaluation Rules

The order of evaluation of subexpressions is not defined. In particular, the inputs of an operator or
function are not necessarily evaluated left-to-right or in any other fixed order.

Furthermore, if the result of an expression can be determined by evaluating only some parts of it, then
other subexpressions might not be evaluated at all. For instance, if one wrote:

SELECT true OR sonefunc();
then somef unc() would (probably) not be called at all. The same would be the case if one wrote:
SELECT sonefunc() OR true;

Note that thisis not the same as the left-to-right “short-circuiting” of Boolean operators that is found
in some programming languages.

As aconsequence, it is unwise to use functions with side effects as part of complex expressions. It is
particularly dangerousto rely on side effects or eval uation order in WHERE and HAVI NGclauses, since
those clauses are extensively reprocessed as part of devel oping an execution plan. Boolean expressions
(ANDYOR/NOT combinations) in those clauses can be reorganized in any manner alowed by the laws
of Boolean algebra.

When it is essential to force evaluation order, a CASE construct (see Section 9.17) can be used. For
example, thisis an untrustworthy way of trying to avoid division by zero in a WHERE clause:

SELECT ... WHERE x > 0 AND y/x > 1.5;
But thisis safe:
SELECT ... WHERE CASE WHEN x > 0 THEN y/x > 1.5 ELSE fal se END;

A CASE construct used in this fashion will defeat optimization attempts, so it should only be done
when necessary. (In this particular example, it would be better to sidestep the problem by writing y
> 1.5*x instead.)

CASE is not a cure-all for such issues, however. One limitation of the technique illustrated above is
that it does not prevent early evaluation of constant subexpressions. As described in Section 37.6,
functions and operators marked | MMUTABLE can be evaluated when the query is planned rather than
when it is executed. Thus for example

SELECT CASE WHEN x > O THEN x ELSE 1/0 END FROM t ab;

is likely to result in a division-by-zero failure due to the planner trying to simplify the constant
subexpression, evenif every row inthetablehasx > 0 so that the EL SE arm would never be entered
at runtime.

While that particular example might seem silly, related cases that don't obviously involve constants
can occur in queries executed within functions, since the values of function arguments and local
variables can beinserted into queries as constants for planning purposes. Within PL/pgSQL functions,
for example, using an | F-THEN-EL SE statement to protect a risky computation is much safer than
just nesting it in a CASE expression.

Another limitation of the same kind is that a CASE cannot prevent evaluation of an aggregate
expression contained within it, because aggregate expressions are computed before other expressions
in a SELECT list or HAVI NG clause are considered. For example, the following query can cause a
division-by-zero error despite seemingly having protected against it:

SELECT CASE WHEN mi n(enpl oyees) > 0
THEN avg(expenses / enpl oyees)
END
FROM depart nment s;

51

SQL Syntax

Them n() andavg() aggregates are computed concurrently over all the input rows, so if any row
has enpl oyees equal to zero, the division-by-zero error will occur before there is any opportunity
to test the result of m n() . Instead, use a WHERE or FI LTER clause to prevent problematic input
rows from reaching an aggregate function in the first place.

4.3. Calling Functions

4.3.1.

PostgreSQL allows functionsthat have named parametersto be called using either positional or named
notation. Named notation is especially useful for functions that have a large number of parameters,
since it makes the associations between parameters and actual arguments more explicit and reliable.
In positional notation, a function call is written with its argument values in the same order as they
are defined in the function declaration. In named notation, the arguments are matched to the function
parameters by name and can be written in any order.

In either notation, parameters that have default values given in the function declaration need not be
written in the call at all. But this is particularly useful in named notation, since any combination of
parameters can be omitted; while in positional notation parameters can only be omitted from right
to left.

PostgreSQL al so supports mixed notation, which combines positional and named notation. Inthiscase,
positional parameters are written first and named parameters appear after them.

The following examples will illustrate the usage of all three notations, using the following function
definition:

CREATE FUNCTI ON concat | ower _or _upper(a text, b text, uppercase
bool ean DEFAULT fal se)
RETURNS t ext
AS
$$
SELECT CASE
WHEN $3 THEN UPPER($1 || ' ' || $2)
ELSE LONER(S$1 || " " || $2)
END;
$$
LANGUAGE SQL | MMUTABLE STRI CT;

Function concat _| ower _or _upper hastwo mandatory parameters, a and b. Additionally there
is one optional parameter upper case which defaults to f al se. The a and b inputs will be
concatenated, and forced to either upper or lower case depending on the upper case parameter.
The remaining details of this function definition are not important here (see Chapter 37 for more
information).

Using Positional Notation

Positional notation is the traditional mechanism for passing arguments to functions in PostgreSQL.
Anexampleis:

SELECT concat | ower _or_upper('Hello', "Wrld, true);
concat _| ower _or _upper

HELLO WORLD
(1 row)

All argumentsare specified in order. Theresult isupper casesinceupper case isspecifiedast r ue.
Another exampleis:

SELECT concat | ower _or_upper (' Hello', '"Wrld');

52

SQL Syntax

4.3.2.

4.3.3.

concat _| ower _or _upper

hell o world

(1 row

Here, the upper case parameter is omitted, so it receives its default value of f al se, resulting in
lower case output. In positional notation, arguments can be omitted from right to left so long as they
have defaults.

Using Named Notation

In named notation, each argument's name is specified using => to separate it from the argument
expression. For example:

SELECT concat _| ower _or_upper(a => "Hello', b => "Wrld);
concat _| ower _or _upper

hell o world

(1 row

Again, the argument upper case was omitted so it is set to f al se implicitly. One advantage of
using named notation is that the arguments may be specified in any order, for example:

SELECT concat _| ower _or_upper(a => "Hello', b => "Wrld' , uppercase
=> true);
concat _| ower _or _upper

HELLO WORLD
(1 row

SELECT concat _| ower _or_upper(a => "Hell o', uppercase => true, b =>
"World');
concat _| ower _or _upper

HELLO WORLD
(1 row

An older syntax based on ":=" is supported for backward compatibility:

SELECT concat | ower _or_upper(a := "Hello', uppercase := true, b :=
"World');
concat _| ower _or _upper

HELLO WORLD
(1 row

Using Mixed Notation

The mixed notation combines positional and named notation. However, as already mentioned, named
arguments cannot precede positional arguments. For example:

SELECT concat | ower _or_upper('Hello', 'Wrld', uppercase => true);
concat _| ower _or _upper

HELLO WORLD
(1 row)

In the above query, the arguments a and b are specified positionally, whileupper case is specified
by name. In thisexample, that adds little except documentation. With amore complex function having

53

SQL Syntax

numerous parametersthat have default val ues, named or mixed notation can save agreat deal of writing
and reduce chances for error.

Note

Named and mixed call notations currently cannot be used when calling an aggregate
function (but they do work when an aggregate function is used as awindow function).

Chapter 5. Data Definition

This chapter covers how one creates the database structures that will hold one's data. In a relational
database, the raw datais stored in tables, so the majority of this chapter is devoted to explaining how
tables are created and modified and what features are available to control what data is stored in the
tables. Subsequently, we discuss how tables can be organized into schemas, and how privileges can
be assigned to tables. Finally, we will briefly look at other features that affect the data storage, such
as inheritance, table partitioning, views, functions, and triggers.

5.1. Table Basics

A tablein arelational database is much like a table on paper: It consists of rows and columns. The
number and order of the columnsisfixed, and each column hasaname. The number of rowsisvariable
— it reflects how much data is stored at a given moment. SQL does not make any guarantees about
the order of the rowsin atable. When a table is read, the rows will appear in an unspecified order,
unless sorting is explicitly requested. Thisis covered in Chapter 7. Furthermore, SQL does not assign
unique identifiersto rows, so it is possible to have several completely identical rows in atable. This
is a consequence of the mathematical model that underlies SQL but is usually not desirable. Later in
this chapter we will see how to deal with thisissue.

Each column has adatatype. The datatype constrainsthe set of possible valuesthat can be assigned to
acolumn and assigns semanticsto the data stored in the column so that it can be used for computations.
For instance, a column declared to be of a numerical type will not accept arbitrary text strings, and
the data stored in such a column can be used for mathematical computations. By contrast, a column
declared to be of a character string type will accept almost any kind of data but it does not lend itself
to mathematical calculations, although other operations such as string concatenation are available.

PostgreSQL includes a sizable set of built-in data types that fit many applications. Users can also
define their own data types. Most built-in data types have obvious names and semantics, so we defer
adetailed explanation to Chapter 8. Some of the frequently used datatypes arei nt eger for whole
numbers, nuner i ¢ for possibly fractional numbers, t ext for character strings, dat e for dates,
t i me for time-of-day values, and t i mest anp for values containing both date and time.

To create atable, you use the aptly named CREATE TABLE command. In this command you specify
at least a name for the new table, the names of the columns and the data type of each column. For
example:

CREATE TABLE ny _first_table (
first_colum text,
second_col um i nt eger

)

This creates a table named nmy_fi r st _t abl e with two columns. The first column is named
first_col um and has adatatype of t ext ; the second column has the name second_col um
and the type i nt eger. The table and column names follow the identifier syntax explained in
Section 4.1.1. The type names are usually also identifiers, but there are some exceptions. Note that the
column list is comma-separated and surrounded by parentheses.

Of course, the previous example was heavily contrived. Normally, you would give names to your
tables and columns that convey what kind of datathey store. So let'slook at amore realistic example:

CREATE TABLE products (
product _no i nteger,
name text,
price numeric

)

55

Data Definition

(Thenurer i ¢ type can store fractional components, as would be typical of monetary amounts.)

Tip

When you create many interrelated tables it is wise to choose a consistent haming
pattern for the tables and columns. For instance, there is a choice of using singular or
plural nouns for table names, both of which are favored by some theorist or other.

There is a limit on how many columns a table can contain. Depending on the column types, it is
between 250 and 1600. However, defining a table with anywhere near this many columns is highly
unusual and often a questionable design.

If you no longer need atable, you can remove it using the DROP TABLE command. For example:

DROP TABLE mny_first_table;
DROP TABLE products;

Attempting to drop atable that does not exist isan error. Nevertheless, itiscommonin SQL script files
to unconditionally try to drop each table before creating it, ignoring any error messages, so that the
script works whether or not the table exists. (If you like, you can usethe DROP TABLE | F EXI STS
variant to avoid the error messages, but thisis not standard SQL..)

If you need to modify atable that already exists, see Section 5.5 later in this chapter.

With the tools discussed so far you can create fully functional tables. The remainder of this chapter is
concerned with adding featuresto the tabl e definition to ensure dataintegrity, security, or convenience.
If you are eager to fill your tables with data now you can skip ahead to Chapter 6 and read the rest
of this chapter later.

5.2. Default Values

A column can be assigned a default value. When a new row is created and no values are specified
for some of the columns, those columns will be filled with their respective default values. A data
manipulation command can also request explicitly that a column be set to its default value, without
having to know what that valueis. (Details about data manipulation commands are in Chapter 6.)

If no default valueis declared explicitly, the default valueisthe null value. This usually makes sense
because a null value can be considered to represent unknown data.

In atable definition, default values are listed after the column data type. For example:

CREATE TABLE products (
product _no i nteger,
name text,
price nuneric DEFAULT 9.99

)

The default value can be an expression, which will be evaluated whenever the default valueisinserted
(not when the tableis created). A common exampleisfor at i nest anp column to have adefault of
CURRENT _TI MESTAMP, so that it gets set to the time of row insertion. Another common exampleis
generating a“serial number” for each row. In PostgreSQL thisis typically done by something like:

CREATE TABLE products (
product no i nteger DEFAULT nextval (' products_product _no_seq'),

)

56

Data Definition

wherethenext val () function supplies successive valuesfrom asequence object (see Section 9.16).
This arrangement is sufficiently common that there's a specia shorthand for it:

CREATE TABLE products (
product _no SERI AL,

)
The SERI AL shorthand is discussed further in Section 8.1.4.

5.3. Constraints

5.3.1.

Data types are a way to limit the kind of data that can be stored in a table. For many applications,
however, the constraint they provide istoo coarse. For example, a column containing a product price
should probably only accept positive values. But there is no standard data type that accepts only
positive numbers. Another issue isthat you might want to constrain column data with respect to other
columns or rows. For example, in a table containing product information, there should be only one
row for each product number.

To that end, SQL allows you to define constraints on columns and tables. Constraints give you as
much control over the data in your tables as you wish. If a user attempts to store data in a column
that would violate a constraint, an error israised. This applies even if the value came from the default
value definition.

Check Constraints

A check constraint is the most generic constraint type. It allows you to specify that the value in
a certain column must satisfy a Boolean (truth-value) expression. For instance, to require positive
product prices, you could use:

CREATE TABLE products (
product _no i nteger,
name text,
price numeric CHECK (price > 0)

)

As you see, the constraint definition comes after the data type, just like default value definitions.
Default values and constraints can be listed in any order. A check constraint consists of the key word
CHECK followed by an expression in parentheses. The check constraint expression should involve the
column thus constrained, otherwise the constraint would not make too much sense.

Y ou can also give the constraint a separate name. This clarifies error messages and allowsyou to refer
to the constraint when you need to change it. The syntax is:

CREATE TABLE products (
product _no i nteger,
name text,
price numeri c CONSTRAI NT positive_price CHECK (price > 0)

)

So, to specify anamed constraint, use the key word CONSTRAI NT followed by an identifier followed
by the constraint definition. (If you don't specify a constraint name in this way, the system chooses
anamefor you.)

A check constraint can also refer to several columns. Say you store a regular price and a discounted
price, and you want to ensure that the discounted price is lower than the regular price:

CREATE TABLE products (

57

Data Definition

product _no i nteger,

name text,

price nuneric CHECK (price > 0),

di scounted_price nunmeric CHECK (discounted_price > 0),
CHECK (price > discounted_price)

)

The first two constraints should ook familiar. The third one uses a new syntax. It is not attached to a
particular column, instead it appears as a separate item in the commarseparated column list. Column
definitions and these constraint definitions can be listed in mixed order.

We say that the first two constraints are column constraints, whereas the third one is atable constraint
becauseit iswritten separately from any one column definition. Column constraints can al so bewritten
astable constraints, whilethereverseisnot necessarily possible, since acolumn constraint is supposed
to refer to only the column it is attached to. (PostgreSQL doesn't enforce that rule, but you should
follow it if you want your table definitions to work with other database systems.) The above example
could a'so be written as:

CREATE TABLE products (
product _no i nteger,
name text,
price nuneric,
CHECK (price > 0),
di scounted_price numeric,
CHECK (di scounted _price > 0),
CHECK (price > discounted price)

)
or even.

CREATE TABLE products (
product _no i nteger,
name text,
price numeric CHECK (price > 0),
di scounted_price numeric,
CHECK (di scounted_price > 0 AND price > discounted_price)
);
It's a matter of taste.
Names can be assigned to table constraints in the same way as column constraints:

CREATE TABLE products (
product _no i nteger,
name text,
price nuneric,
CHECK (price > 0),
di scounted _price nuneric,
CHECK (di scounted price > 0),
CONSTRAI NT val i d_di scount CHECK (price > discounted price)

)

It should be noted that a check constraint is satisfied if the check expression evaluates to true or the
null value. Since most expressions will evaluate to the null value if any operand is null, they will not
prevent null values in the constrained columns. To ensure that a column does not contain null values,
the not-null constraint described in the next section can be used.

5.3.2. Not-Null Constraints

58

Data Definition

5.3.3.

A not-null constraint simply specifiesthat acolumn must not assumethe null value. A syntax example:

CREATE TABLE products (
product _no i nteger NOT NULL,
name text NOT NULL,
price nuneric

)

A not-null constraint is always written as a column constraint. A not-null constraint is functionally
equivalent to creating a check constraint CHECK (col um_name 1S NOT NULL), but in
PostgreSQL creating an explicit not-null constraint is more efficient. The drawback is that you cannot
give explicit names to not-null constraints created this way.

Of course, a column can have more than one constraint. Just write the constraints one after another:

CREATE TABLE products (
product _no i nteger NOT NULL,
name text NOT NULL,
price numeric NOT NULL CHECK (price > 0)

)
The order doesn't matter. It does not necessarily determine in which order the constraints are checked.

The NOT NULL constraint has an inverse: the NULL constraint. This does not mean that the column
must be null, which would surely be useless. Instead, this simply selects the default behavior that the
column might be null. The NULL constraint is not present in the SQL standard and should not be used
in portable applications. (It was only added to PostgreSQL to be compatible with some other database
systems.) Some users, however, likeit because it makes it easy to toggle the constraint in ascript file.
For example, you could start with:

CREATE TABLE products (
product _no integer NULL,
name text NULL,
price nuneric NULL

);
and then insert the NOT key word where desired.

Tip

In most database designs the majority of columns should be marked not null.

Unique Constraints

Unique constraints ensure that the data contained in acolumn, or agroup of columns, is unique among
all therowsin the table. The syntax is:

CREATE TABLE products (
product _no integer UN QUE
name text,
price nuneric

)
when written as a column constraint, and:

CREATE TABLE products (
product _no i nteger,
name text,

59

Data Definition

5.3.4.

price nuneric,
UNI QUE (product _no)

)
when written as atable constraint.

To define a unique constraint for a group of columns, write it as a table constraint with the column
names separated by commas:

CREATE TABLE exampl e (

a integer,
b integer,
c integer,
UNI QUE (a, c)

)

This specifiesthat the combination of valuesin theindicated columnsis unique acrossthe wholetable,
though any one of the columns need not be (and ordinarily isn't) unique.

Y ou can assign your own name for a unique constraint, in the usual way:

CREATE TABLE products (
product _no i nteger CONSTRAINT rust be different UN QUE
name text,
price nuneric

)

Adding a unique constraint will automatically create a unique B-tree index on the column or group of
columns listed in the constraint. A uniqueness restriction covering only some rows cannot be written
asaunique constraint, but it is possible to enforce such arestriction by creating a unique partial index.

In general, aunique constraint isviolated if thereis more than one row in the table where the val ues of
all of the columnsincluded in the constraint are equal. However, two null values are never considered
equal in this comparison. That means even in the presence of a unique constraint it is possible to
store duplicate rows that contain anull valuein at least one of the constrained columns. This behavior
conformsto the SQL standard, but we have heard that other SQL databases might not follow thisrule.
So be careful when devel oping applications that are intended to be portable.

Primary Keys

A primary key constraint indicates that a column, or group of columns, can be used as a unique
identifier for rows in the table. This requires that the values be both unique and not null. So, the
following two table definitions accept the same data:

CREATE TABLE products (
product _no i nteger UN QUE NOT NULL
name text,
price nuneric

)

CREATE TABLE products (
product _no integer PRI MARY KEY,
name text,
price nunmeric

)
Primary keys can span more than one column; the syntax is similar to unique constraints:

CREATE TABLE exanpl e (

60

Data Definition

5.3.5.

a integer,
b integer,
c integer,

PRI MARY KEY (a, c)
)

Adding a primary key will automatically create a unique B-tree index on the column or group of
columns listed in the primary key, and will force the column(s) to be marked NOT NULL.

A tablecan have at most one primary key. (There can beany number of unique and not-null constraints,
which are functionally almost the same thing, but only one can be identified as the primary key.)
Relational database theory dictatesthat every table must have aprimary key. Thisruleis not enforced
by PostgreSQL, but it is usually best to follow it.

Primary keys are useful both for documentation purposes and for client applications. For example, a
GUI application that allows modifying row values probably needs to know the primary key of atable
to be able to identify rows uniquely. There are also various ways in which the database system makes
use of aprimary key if one has been declared; for example, the primary key defines the default target
column(s) for foreign keys referencing itstable.

Foreign Keys

A foreign key constraint specifies that the valuesin a column (or agroup of columns) must match the
values appearing in some row of another table. We say this maintainsthe referential integrity between
two related tables.

Say you have the product table that we have used several times already:

CREATE TABLE products (
product _no integer PRI MARY KEY,
name text,
price nuneric

)

Let's also assume you have atable storing orders of those products. We want to ensure that the orders
table only contains orders of products that actually exist. So we define aforeign key constraint in the
orders table that references the products table:

CREATE TABLE orders (
order _id integer PRI MARY KEY,
product _no i nteger REFERENCES products (product_no),
guantity integer

)

Now it is impossible to create orders with non-NULL pr oduct no entries that do not appear in
the products table.

We say that in this situation the orders table is the referencing table and the products table is the
referenced table. Similarly, there are referencing and referenced columns.

Y ou can also shorten the above command to:

CREATE TABLE orders (
order _id integer PRI MARY KEY,
product _no i nteger REFERENCES products,
guantity integer

)

because in absence of a column list the primary key of the referenced table is used as the referenced
column(s).

61

Data Definition

A foreign key can also constrain and reference agroup of columns. Asusual, it then needsto bewritten
in table constraint form. Here is a contrived syntax example:

CREATE TABLE t1 (

a integer PRI MARY KEY,

b integer,

c integer,

FOREI GN KEY (b, c) REFERENCES other_table (cl, c2)
)

Of course, the number and type of the constrained columns need to match the number and type of
the referenced columns.

Y ou can assign your own name for aforeign key constraint, in the usual way.

A table can have more than one foreign key constraint. This is used to implement many-to-many
relationships between tables. Say you have tables about products and orders, but now you want to
allow one order to contain possibly many products (which the structure above did not allow). You
could use this table structure:

CREATE TABLE products (
product _no integer PRI MARY KEY,
name text,
price nuneric

)

CREATE TABLE orders (
order _id integer PRI MARY KEY,
shi ppi ng_addr ess text,

)

CREATE TABLE order_itens (
product _no i nteger REFERENCES products,
order_id integer REFERENCES orders,
qgquantity integer,
PRI MARY KEY (product_no, order _id)

)

Notice that the primary key overlaps with the foreign keysin the last table.

We know that the foreign keys disallow creation of ordersthat do not relate to any products. But what
if aproduct is removed after an order is created that references it? SQL allows you to handle that as
well. Intuitively, we have afew options:

» Disallow deleting a referenced product
* Delete the orders aswell
e Something else?

To illustrate this, let's implement the following policy on the many-to-many relationship example
above: when someone wants to remove a product that is still referenced by an order (via
order _i t ens), wedisallow it. If someone removes an order, the order items are removed as well:

CREATE TABLE products (
product _no integer PRI MARY KEY,
name text,
price numeric

)

62

Data Definition

5.3.6.

CREATE TABLE orders (
order _id integer PRI MARY KEY,
shi ppi ng_addr ess text,

)

CREATE TABLE order _itenms (
product _no i nteger REFERENCES products ON DELETE RESTRI CT,
order _id integer REFERENCES orders ON DELETE CASCADE,
guantity integer,
PRI MARY KEY (product_no, order_id)

)

Restricting and cascading del etes are the two most common options. RESTRI CT prevents deletion of
areferenced row. NO ACTI ON means that if any referencing rows still exist when the constraint is
checked, an error israised; thisis the default behavior if you do not specify anything. (The essential
difference between these two choicesisthat NO ACTI ON allows the check to be deferred until later
in the transaction, whereas RESTRI CT does not.) CASCADE specifies that when a referenced row is
deleted, row(s) referencing it should be automatically deleted as well. There are two other options:
SET NULL and SET DEFAULT. These cause the referencing column(s) in the referencing row(s) to
be set to nulls or their default values, respectively, when the referenced row is deleted. Note that these
do not excuse you from abserving any constraints. For example, if an action specifiesSET DEFAULT
but the default value would not satisfy the foreign key constraint, the operation will fail.

Analogousto ON DELETE thereisaso ON UPDATE which isinvoked when areferenced columnis
changed (updated). The possible actions are the same. In this case, CASCADE means that the updated
values of the referenced column(s) should be copied into the referencing row(s).

Normally, a referencing row need not satisfy the foreign key constraint if any of its referencing
columnsare null. If MATCH FULL isadded to the foreign key declaration, areferencing row escapes
satisfying the constraint only if all its referencing columns are null (so a mix of null and non-null
valuesisguaranteed to fail aMATCH FULL constraint). If you don't want referencing rowsto be able
to avoid satisfying the foreign key constraint, declare the referencing column(s) as NOT NULL.

A foreign key must reference columns that either are a primary key or form a unique constraint. This
meansthat the referenced columns alwayshave anindex (the one underlying the primary key or unique
constraint); so checks on whether a referencing row has a match will be efficient. Since a DELETE
of arow from the referenced table or an UPDATE of a referenced column will require a scan of the
referencing table for rows matching the old value, it is often a good idea to index the referencing
columns too. Because this is not always needed, and there are many choices available on how to
index, declaration of aforeign key constraint does not automatically create an index on thereferencing
columns.

Moreinformation about updating and deleting dataisin Chapter 6. Also see the description of foreign
key constraint syntax in the reference documentation for CREATE TABLE.

Exclusion Constraints

Exclusion constraintsensurethat if any two rowsare compared on the specified columnsor expressions
using the specified operators, at |east one of these operator comparisons will return false or null. The
syntax is:

CREATE TABLE circles (
c circle,
EXCLUDE USI NG gist (¢ WTH &&)

)
See also CREATE TABLE ... CONSTRAINT ... EXCLUDE for details.

63

Data Definition

Adding an exclusion constraint will automatically create anindex of the type specifiedin the constraint
declaration.

5.4. System Columns

Every table has severa system columns that are implicitly defined by the system. Therefore, these
names cannot be used as names of user-defined columns. (Note that these restrictions are separate from
whether the nameisakey word or not; quoting anamewill not allow you to escape these restrictions.)
Y ou do not really need to be concerned about these columns; just know they exist.

oid

The object identifier (object ID) of arow. This column is only present if the table was created
using W TH QO DS, or if the default_with_oids configuration variable was set at the time. This
column is of type oi d (same name as the column); see Section 8.18 for more information about
the type.

t abl eoi d

The OID of thetable containing thisrow. Thiscolumnis particularly handy for queriesthat select
frominheritance hierarchies (see Section 5.9), sincewithout it, it's difficult to tell which individual
table arow came from. The t abl eoi d can be joined against the oi d column of pg_cl ass
to obtain the table name.

Xxm n

Theidentity (transaction D) of theinserting transaction for thisrow version. (A row versionisan
individual state of arow; each update of arow createsanew row version for the samelogical row.)

cmn
The command identifier (starting at zero) within the inserting transaction.
Xmax

Theidentity (transaction D) of the deleting transaction, or zero for an undeleted row version. It
is possible for this column to be nonzero in avisible row version. That usually indicates that the
deleting transaction hasn't committed yet, or that an attempted del etion was rolled back.

cnmax
The command identifier within the deleting transaction, or zero.
ctid

The physical location of the row version within its table. Note that although the cti d can be
used to locate the row version very quickly, arow'sct i d will change if it is updated or moved
by VACUUM FULL. Thereforect i d is useless as along-term row identifier. The OID, or even
better a user-defined serial number, should be used to identify logical rows.

OlDsare 32-bit quantities and are assigned from a single cluster-wide counter. In alarge or long-lived
database, it is possible for the counter to wrap around. Hence, it is bad practice to assume that OIDs
are unique, unless you take steps to ensure that this is the case. If you need to identify the rows in
atable, using a sequence generator is strongly recommended. However, OIDs can be used as well,
provided that afew additional precautions are taken:

A unique constraint should be created on the OID column of each table for which the OID will be
used to identify rows. When such aunique constraint (or unique index) exists, the system takes care
not to generate an OID matching an already-existing row. (Of course, this is only possible if the

64

Data Definition

table contains fewer than 2% (4 billion) rows, and in practice the table size had better be much less

than that, or performance might suffer.)

» OIDs should never be assumed to be unique across tables; use the combination of t abl eoi d and
row OID if you need a database-wide identifier.

» Of course, the tables in question must be created W TH O DS. As of PostgreSQL 8.1, W THOUT
O DS isthe default.

Transaction identifiers are also 32-bit quantities. In along-lived database it is possible for transaction
IDs to wrap around. This is not a fatal problem given appropriate maintenance procedures; see
Chapter 24 for details. It is unwise, however, to depend on the uniqueness of transaction IDs over the
long term (more than one billion transactions).

Command identifiers are also 32-bit quantities. This creates a hard limit of 2% (4 billion) SQL
commandswithin asingletransaction. In practice thislimit is not a problem — notethat thelimitison
the number of SQL commands, not the number of rows processed. Also, only commandsthat actually
modify the database contents will consume a command identifier.

5.5. Modifying Tables

5.5.1.

When you create atable and you realize that you made amistake, or the requirements of the application
change, you can drop the table and create it again. But thisis not a convenient option if the table is
already filled with data, or if thetableisreferenced by other database objects (for instance aforeign key
constraint). Therefore PostgreSQL provides afamily of commands to make modifications to existing
tables. Note that thisis conceptually distinct from altering the data contained in the table: herewe are
interested in altering the definition, or structure, of the table.

You can:

» Add columns

* Remove columns

» Add constraints

* Remove congstraints

» Change default values

» Change column data types
* Rename columns

* Renametables

All these actions are performed using the ALTER TABLE command, whose reference page contains
details beyond those given here.

Adding a Column

To add a column, use acommand like:
ALTER TABLE products ADD COLUWN descri ption text;

The new column isinitialy filled with whatever default value is given (null if you don't specify a
DEFAULT clause).

Y ou can also define constraints on the column at the same time, using the usual syntax:

ALTER TABLE products ADD COLUMWN description text CHECK (description

< '');
Infact all the optionsthat can be applied to acolumn descriptionin CREATE TABLE can be used here.
Keep in mind however that the default value must satisfy the given constraints, or the ADD will fail.
Alternatively, you can add constraints | ater (see below) after you'vefilled inthe new column correctly.

65

Data Definition

5.5.2.

5.5.3.

5.5.4.

Tip

Adding a column with a default requires updating each row of the table (to store the
new column value). However, if no default is specified, PostgreSQL is able to avoid
the physical update. So if you intend to fill the column with mostly nondefault values,
it's best to add the column with no default, insert the correct values using UPDATE,
and then add any desired default as described below.

Removing a Column

To remove a column, use acommand like:
ALTER TABLE products DROP COLUWN descri ption;

Whatever datawasin the column disappears. Table constraintsinvolving the column are dropped, too.
However, if the column is referenced by a foreign key constraint of another table, PostgreSQL will
not silently drop that constraint. Y ou can authorize dropping everything that depends on the column
by adding CASCADE:

ALTER TABLE products DROP COLUW descri pti on CASCADE;

See Section 5.13 for a description of the general mechanism behind this,

Adding a Constraint

To add a constraint, the table constraint syntax is used. For example:

ALTER TABLE products ADD CHECK (name <> '');

ALTER TABLE products ADD CONSTRAI NT some_name UNI QUE (product _no);

ALTER TABLE products ADD FOREI GN KEY (product _group_id) REFERENCES
product _groups;

To add anot-null constraint, which cannot be written as a table constraint, use this syntax:
ALTER TABLE products ALTER COLUWN product _no SET NOT NULL;

The constraint will be checked immediately, so the table data must satisfy the constraint before it can
be added.

Removing a Constraint

To removeaconstraint you need to know itsname. If you gaveit anamethen that's easy. Otherwisethe
system assigned a generated name, which you need to find out. The psgl command\ d t abl enane
can be helpful here; other interfaces might also provide a way to inspect table details. Then the
command is:

ALTER TABLE products DROP CONSTRAI NT sone_nane;

(If you are dealing with a generated constraint name like $2, don't forget that you'll need to double-
quoteit to makeit avalid identifier.)

Aswith dropping acolumn, you need to add CASCADE if you want to drop a constraint that something
else depends on. An example is that a foreign key constraint depends on a unique or primary key
constraint on the referenced column(s).

This works the same for all constraint types except not-null constraints. To drop anot null constraint
use:

66

Data Definition

5.5.5.

5.5.6.

5.5.7.

5.5.8.

ALTER TABLE products ALTER COLUWN product_no DROP NOT NULL;

(Recall that not-null constraints do not have names.)

Changing a Column's Default Value

To set anew default for a column, use acommand like:
ALTER TABLE products ALTER COLUWN price SET DEFAULT 7.77;

Notethat thisdoesn't affect any existing rowsinthetable, it just changesthe default for futurel NSERT
commands.

To remove any default value, use:
ALTER TABLE products ALTER COLUWN price DROP DEFAULT;

This is effectively the same as setting the default to null. As a consequence, it is not an error to drop
a default where one hadn't been defined, because the default isimplicitly the null value.

Changing a Column's Data Type

To convert acolumn to a different data type, use acommand like:
ALTER TABLE products ALTER COLUWN price TYPE nuneric(10, 2);

This will succeed only if each existing entry in the column can be converted to the new type by an
implicit cast. If amore complex conversion is needed, you can add a USI NG clause that specifies how
to compute the new values from the old.

PostgreSQL will attempt to convert the column's default value (if any) to the new type, as well as
any constraints that involve the column. But these conversions might fail, or might produce surprising
results. It's often best to drop any constraints on the column before altering its type, and then add back
suitably modified constraints afterwards.

Renaming a Column

To rename a column:;

ALTER TABLE products RENAME COLUWN product _no TO product numnber;

Renaming a Table

To rename atable:

ALTER TABLE products RENAME TO it ens;

5.6. Privileges

When an object is created, it is assigned an owner. The owner is normally the role that executed the
creation statement. For most kinds of objects, the initial state is that only the owner (or a superuser)
can do anything with the object. To allow other rolesto useiit, privileges must be granted.

There are different kinds of privileges: SELECT, | NSERT, UPDATE, DELETE, TRUNCATE,
REFERENCES, TRl GGER, CREATE, CONNECT, TEMPCRARY, EXECUTE, and USAGE. The
privileges applicable to a particular object vary depending on the object's type (table, function, etc).
For complete information on the different types of privileges supported by PostgreSQL, refer to the
GRANT reference page. The following sections and chapterswill also show you how those privileges
are used.

67

Data Definition

Theright to modify or destroy an object is always the privilege of the owner only.

An object can be assigned to a new owner with an ALTER command of the appropriate kind for the
object, eg. ALTER TABLE. Superusers can always do this; ordinary roles can only do it if they are
both the current owner of the object (or a member of the owning role) and a member of the new
owning role.

To assign privileges, the GRANT command is used. For example, if j oe is an existing role, and
account s isan existing table, the privilege to update the table can be granted with:

GRANT UPDATE ON accounts TO j oe;
Writing ALL in place of a specific privilege grants al privileges that are relevant for the object type.

The specia “role’ name PUBLI C can be used to grant a privilege to every role on the system. Also,
“group” roles can be set up to help manage privileges when there are many users of a database —
for details see Chapter 21.

To revoke aprivilege, use the fittingly named REVOKE command:
REVOKE ALL ON accounts FROM PUBLI C,

The special privileges of the object owner (i.e., the right to do DROP, GRANT, REVCKE, etc.) are
alwaysimplicit in being the owner, and cannot be granted or revoked. But the object owner can choose
to revoke their own ordinary privileges, for example to make atable read-only for themselves as well
as others.

Ordinarily, only the object's owner (or a superuser) can grant or revoke privileges on an object.
However, it is possible to grant a privilege “with grant option”, which gives the recipient the right to
grantitin turn to others. If the grant option is subsequently revoked then all who received the privilege
from that recipient (directly or through a chain of grants) will lose the privilege. For details see the
GRANT and REVOKE reference pages.

5.7. Row Security Policies

In addition to the SQL-standard privilege system available through GRANT, tables can have row
security policies that restrict, on a per-user basis, which rows can be returned by normal queries or
inserted, updated, or deleted by data modification commands. Thisfeatureisal so known as Row-Level
Security. By default, tables do not have any policies, so that if a user has access privileges to atable
according to the SQL privilege system, all rowswithinit areequally availablefor querying or updating.

When row security is enabled on a table (with ALTER TABLE ... ENABLE ROW LEVEL
SECURITY), all normal accessto the table for selecting rows or modifying rows must be allowed by
arow security policy. (However, the table's owner istypically not subject to row security policies.) If
no policy exists for the table, a default-deny policy is used, meaning that no rows are visible or can
be modified. Operations that apply to the whole table, such as TRUNCATE and REFERENCES, are
not subject to row security.

Row security policies can be specific to commands, or to roles, or to both. A policy can be specified
to apply to ALL commands, or to SELECT, | NSERT, UPDATE, or DELETE. Multiple roles can be
assigned to a given policy, and normal role membership and inheritance rules apply.

To specify which rows are visible or modifiable according to a policy, an expression is required that
returns a Boolean result. This expression will be evaluated for each row prior to any conditions or
functions coming from the user's query. (The only exceptionsto thisruleare | eakpr oof functions,
which are guaranteed to not leak information; the optimizer may choose to apply such functions ahead
of the row-security check.) Rowsfor which the expression doesnot returnt r ue will not be processed.
Separate expressions may be specified to provide independent control over the rowswhich arevisible
and the rows which are allowed to be modified. Policy expressions are run as part of the query and

68

Data Definition

with the privileges of the user running the query, although security-definer functions can be used to
access data not available to the calling user.

Superusers and roles with the BYPASSRLS attribute always bypass the row security system when
accessing atable. Table ownersnormally bypass row security aswell, though atable owner can choose
to be subject to row security with ALTER TABLE ... FORCE ROW LEVEL SECURITY.

Enabling and disabling row security, as well as adding policies to atable, is aways the privilege of
the table owner only.

Policies are created using the CREATE POLICY command, atered using the ALTER POLICY
command, and dropped using the DROP POLICY command. To enable and disable row security for
agiven table, usethe ALTER TABLE command.

Each policy has aname and multiple policies can be defined for atable. As policies are table-specific,
each policy for atable must have a unique name. Different tables may have policies with the same
name.

When multiple policies apply to a given query, they are combined using either OR (for permissive
policies, which are the default) or using AND (for restrictive policies). Thisissimilar to therule that a
given role has the privileges of al roles that they are amember of. Permissive vs. restrictive policies
are discussed further below.

Asasimple example, hereishow to create apolicy ontheaccount relation to allow only members
of the manager s role to access rows, and only rows of their accounts:

CREATE TABLE accounts (nmanager text, conpany text, contact_emil
text);

ALTER TABLE accounts ENABLE ROW LEVEL SECURITY,

CREATE POLI CY account _managers ON accounts TO nmanagers
USI NG (manager = current_user);

If no roleis specified, or the special user name PUBLI Cisused, then the policy appliesto al userson
the system. To allow all usersto accesstheir own row inauser s table, asimple policy can be used:

CREATE POLI CY user _policy ON users
USI NG (user_name = current_user);

To use a different policy for rows that are being added to the table compared to those rows that are
visible, the W TH CHECK clause can be used. This policy would alow all usersto view all rowsin
theuser s table, but only modify their own:

CREATE PQOLI CY user _policy ON users
USI NG (true)
W TH CHECK (user_name = current_user);

Row security can also be disabled with the ALTER TABLE command. Disabling row security does
not remove any policies that are defined on the table; they are simply ignored. Then al rows in the
table are visible and modifiable, subject to the standard SQL privileges system.

Below is a larger example of how this feature can be used in production environments. The table
passwd emulates a Unix password file:

-- Sinple passwd-file based exanpl e
CREATE TABLE passwd (

user _nane text UNI QUE NOT NULL,
pwhash t ext,
ui d int PR MARY KEY,

69

Data Definition

gid int NOT NULL,
real nane text NOT NULL,
hone_phone t ext,
extra_info t ext,
home_dir text NOT NULL,
shel | t ext NOT NULL
)
CREATE ROLE adnmin; -- Admnistrator
CREATE ROLE bob; -- Normal user
CREATE ROLE alice; -- Normal user

-- Popul ate the table
| NSERT | NTO passwd VALUES
(*admn','xxx',0,0," Adm n',"'111-222-3333"' ,null,"'/root',"'/bin/
dash');
| NSERT | NTO passwd VALUES
("bob','xxx"',1,1,"Bob',"' 123-456-7890', null,"'/honme/bob',"/bin/
zsh');
| NSERT | NTO passwd VALUES
("alice',"xxx"',2,1,"Alice','098-765-4321" ,null,'/hone/alice' "'/
bi n/ zsh');

-- Be sure to enable row | evel security on the table
ALTER TABLE passwd ENABLE ROW LEVEL SECURI TY;

-- Create policies
-- Adm nistrator can see all rows and add any rows
CREATE PCLI CY admin_all ON passwd TO admin USING (true) WTH CHECK
(true);
-- Nornmal users can view all rows
CREATE POLI CY al | _view ON passwd FOR SELECT USI NG (true);
-- Normal users can update their own records, but
-- limt which shells a normal user is allowed to set
CREATE PCLI CY user _nmod ON passwd FOR UPDATE
USI NG (current _user = user_nane)
W TH CHECK (
current _user = user_nanme AND
shell IN ('/bin/bash','/bin/sh','/bin/dash','/bin/zsh',"'/bin/
tcsh')

)

-- Allow admin all normal rights
GRANT SELECT, | NSERT, UPDATE, DELETE ON passwd TO admi n;
-- Users only get select access on public col ums
GRANT SELECT
(user_name, uid, gid, real_name, honme_phone, extra_info,
hone_dir, shell)
ON passwd TO public;
-- Allow users to update certain col ums
GRANT UPDATE
(pwhash, real name, home_phone, extra_info, shell)
ON passwd TO public;

Aswith any security settings, it'simportant to test and ensure that the system is behaving as expected.
Using the example above, this demonstrates that the permission system is working properly.

-- admin can view all rows and fields

70

Data Definition

post gres=> set role adm n;

SET
post gres=> t abl e passwd;
user_nane | pwhash | uid | gid | real _name | home_phone
extra_info | home_dir | shel
----------- T T T I ppup R
o m e o - - o m e e e oo - T ——
adm n | xxx | 0 | 0| Admn | 111-222-3333
| /root | /bin/dash
bob | xxx | 1] 1| Bob | 123-456-7890
| /hone/ bob | /bin/zsh
alice | xxx | 2| 1| Aice | 098-765-4321
| /hone/alice | /bin/zsh
(3 rows)

-- Test what Alice is able to do
postgres=> set role alice;
SET
post gres=> t abl e passwd;
ERROR: permi ssion denied for relation passwd
post gres=> sel ect
user _nane, real _name, home_phone, extra_i nfo, hone_dir, shel |l from

passwd;

user_nane | real _name | honme_phone | extra_info | hone_dir |

shel |
----------- Ty
.

adm n | Admin | 111-222-3333 | | /root

| /bin/dash

bob | Bob | 123-456-7890 | | /hone/ bob

| /bin/zsh

alice | Alice | 098-765-4321 | | /hone/alice
| /bin/zsh
(3 rows)
post gr es=> update passwd set user_nane = 'joe'

ERROR: permi ssion denied for relation passwd
-- Alice is allowed to change her own real nanme, but no others

post gr es=> update passwd set real _nane = 'Alice Doe';

UPDATE 1

post gres=> update passwd set real _nane = 'John Doe' where user_nane
= "admin';

UPDATE 0

post gr es=> update passwd set shell = '/bin/xx";

ERROR: new row vi ol ates WTH CHECK OPTION for "passwd”

post gres=> del ete from passwd;

ERROR: permi ssion denied for relation passwd

postgres=> insert into passwd (user_nane) values ('xxx');

ERROR: permi ssion denied for relation passwd

-- Alice can change her own password; RLS silently prevents
updati ng ot her rows

post gr es=> updat e passwd set pwhash = 'abc’
UPDATE 1

All of the policies constructed thus far have been permissive policies, meaning that when multiple
policies are applied they are combined using the “OR” Boolean operator. While permissive policies
can be constructed to only allow access to rows in the intended cases, it can be simpler to combine
permissive policies with restrictive policies (which the records must pass and which are combined

71

Data Definition

using the “AND” Boolean operator). Building on the example above, we add a restrictive policy to
requirethe administrator to be connected over alocal Unix socket to accesstherecords of thepasswd
table:

CREATE PCLI CY admi n_Il ocal _only ON passwd AS RESTRI CTI VE TO admi n
USI NG (pg_catal og.inet_client_addr() IS NULL);

We can then see that an administrator connecting over a network will not see any records, due to the
restrictive policy:

=> SELECT current _user;
current _user

=> select inet_client_addr();
i net _client_addr

127.0.0.1
(1 row

=> SELECT current _user;
current _user

=> TABLE passwd;
user_nane | pwhash | uid | gid | real _nanme | home_phone |
extra_info | honme_dir | shell

=> UPDATE passwd set pwhash = NULL;
UPDATE 0

Referential integrity checks, such as unique or primary key constraints and foreign key references,
always bypass row security to ensure that data integrity is maintained. Care must be taken when
developing schemas and row level policies to avoid “covert channel” leaks of information through
such referential integrity checks.

In some contexts it isimportant to be sure that row security is not being applied. For example, when
taking a backup, it could be disastrous if row security silently caused some rows to be omitted from
the backup. In such a situation, you can set the row_security configuration parameter to of f . This
does not in itself bypass row security; what it does is throw an error if any query's results would get
filtered by a policy. The reason for the error can then be investigated and fixed.

Inthe exampl es above, the policy expressionsconsider only the current valuesin therow to be accessed
or updated. This is the smplest and best-performing case; when possible, it's best to design row
security applications to work thisway. If it is necessary to consult other rows or other tables to make
apolicy decision, that can be accomplished using sub-SELECTS, or functionsthat contain SELECTS,
in the policy expressions. Be aware however that such accesses can create race conditions that could
allow information leakage if careis not taken. As an example, consider the following table design:

-- definition of privilege groups
CREATE TABLE groups (group_id int PRI MARY KEY,
group_nane text NOT NULL);

72

Data Definition

I NSERT | NTO gr oups VALUES

(1, "low),
(2, 'medium),
(5, "high");
GRANT ALL ON groups TO alice; -- alice is the adm nistrator

GRANT SELECT ON groups TO public;

-- definition of users' privilege |levels
CREATE TABLE users (user_nane text PRI MARY KEY,
group_id int NOT NULL REFERENCES groups);

| NSERT | NTO users VALUES
("alice', 5),
(" bob', 2),
("mallory', 2);

GRANT ALL ON users TO alice;
GRANT SELECT ON users TO public;

-- table holding the information to be protected
CREATE TABLE information (info text,
group_id int NOT NULL REFERENCES groups);

I NSERT | NTO i nf or mati on VALUES
('barely secret', 1),
("slightly secret', 2),
('very secret', 5);

ALTER TABLE i nf ormati on ENABLE ROW LEVEL SECURI TY;

-- a row shoul d be visible to/updatable by users whose security
group_id is
-- greater than or equal to the row s group_id
CREATE PCLICY fp_s ONinformation FOR SELECT

USI NG (group_id <= (SELECT group_id FROM users WHERE user _nane
current _user));
CREATE POLICY fp_u ON information FOR UPDATE

USI NG (group_id <= (SELECT group_id FROM users WHERE user _nane
current _user));

-- we rely only on RLS to protect the information table
GRANT ALL ON i nformation TO public;

Now suppose that al i ce wishes to change the “dlightly secret” information, but decides that
mal | ory should not be trusted with the new content of that row, so she does:

BEG N;

UPDATE users SET group_id =

UPDATE i nformati on SET info
= 2;

COW T;

1 WHERE user_nane = 'mallory’;
= "secret frommallory' WHERE group_id

That looks safe; thereisno window whereinmal | or y should be ableto seethe* secret from mallory”
string. However, there isarace condition here. If mal | or y is concurrently doing, say,

SELECT * FROM i nformati on WHERE group_id = 2 FOR UPDATE;

73

Data Definition

and her transactionisin READ COVM TTED mode, it ispossible for her to see “ secret from mallory”.
That happens if her transaction reaches the i nf or mat i on row just after al i ce's does. It blocks
waiting for al i ce's transaction to commit, then fetches the updated row contents thanks to the
FOR UPDATE clause. However, it does not fetch an updated row for the implicit SELECT from
user s, because that sub-SELECT did not have FOR UPDATE; instead the user s row isread with
the snapshot taken at the start of the query. Therefore, the policy expression tests the old value of
mal | or y'sprivilege level and allows her to see the updated row.

Thereare severa ways around this problem. Onesimpleanswer istouse SELECT ... FOR SHARE
in sub-SELECTs in row security policies. However, that requires granting UPDATE privilege on the
referenced table (here user s) to the affected users, which might be undesirable. (But another row
security policy could be applied to prevent them from actually exercising that privilege; or the sub-
SELECT could be embedded into asecurity definer function.) Also, heavy concurrent use of row share
lockson thereferenced table could pose aperformance problem, especialy if updates of it arefrequent.
Another solution, practical if updates of the referenced table areinfrequent, isto take an exclusivelock
on the referenced table when updating it, so that no concurrent transactions could be examining old
row values. Or one could just wait for all concurrent transactions to end after committing an update
of the referenced table and before making changes that rely on the new security situation.

For additional details see CREATE POLICY and ALTER TABLE.

5.8. Schemas

5.8.1.

A PostgreSQL database cluster contains one or more named databases. Users and groups of users
are shared across the entire cluster, but no other data is shared across databases. Any given client
connection to the server can access only the data in a single database, the one specified in the
connection request.

Note

Users of acluster do not necessarily have the privilege to access every database in the
cluster. Sharing of user names means that there cannot be different users named, say,
j oe in two databases in the same cluster; but the system can be configured to alow
j oe accessto only some of the databases.

A database contains one or more named schemas, which in turn contain tables. Schemas also contain
other kinds of named objects, including data types, functions, and operators. The same object name
can be used in different schemas without conflict; for example, both schemal and myschena can
containtablesnamed myt abl e. Unlike databases, schemasarenot rigidly separated: auser can access
objectsin any of the schemas in the database they are connected to, if they have privileges to do so.

There are several reasons why one might want to use schemas:
e To alow many users to use one database without interfering with each other.
» To organize database objectsinto logical groupsto make them more manageable.

» Third-party applications can be put into separate schemas so they do not collide with the names
of other objects.

Schemas are analogous to directories at the operating system level, except that schemas cannot be
nested.

Creating a Schema

To create a schema, use the CREATE SCHEMA command. Give the schema a name of your choice.
For example:

74

Data Definition

5.8.2.

5.8.3.

CREATE SCHENA nyschens;

To create or access objects in a schema, write a qualified name consisting of the schema name and
table name separated by a dot:

schena. tabl e

This works anywhere a table name is expected, including the table modification commands and the
data access commands discussed in the following chapters. (For brevity we will speak of tables only,
but the same ideas apply to other kinds of named objects, such as types and functions.)

Actualy, the even more general syntax
dat abase. schena. t abl e

can be used too, but at present thisis just for pro forma compliance with the SQL standard. If you
write a database name, it must be the same as the database you are connected to.

So to create atable in the new schema, use:

CREATE TABLE nyschema. nytabl e (

)

To drop aschemaif it'sempty (all objectsin it have been dropped), use:
DROP SCHEMA nyschens;

To drop a schemaincluding al contained objects, use:

DROP SCHEMA nyschena CASCADE;

See Section 5.13 for a description of the general mechanism behind this.

Often you will want to create a schema owned by someone el se (since thisis one of the waysto restrict
the activities of your usersto well-defined namespaces). The syntax for that is:

CREATE SCHEMA schema_nane AUTHORI ZATI ON user _nane;

Y ou can even omit the schema name, in which case the schema name will be the same as the user
name. See Section 5.8.6 for how this can be useful.

Schema names beginning with pg__ are reserved for system purposes and cannot be created by users.

The Public Schema

In the previous sections we created tables without specifying any schema names. By default such
tables (and other objects) are automatically put into a schema named “public’. Every new database
contains such a schema. Thus, the following are equivalent:

CREATE TABLE products (...);
and:
CREATE TABLE public.products (...);

The Schema Search Path

Qualified names are tedious to write, and it's often best not to wire a particular schema name into
applications anyway. Therefore tables are often referred to by unqualified names, which consist of
just the table name. The system determines which table is meant by following a search path, whichis
alist of schemasto look in. The first matching table in the search path is taken to be the one wanted.

75

Data Definition

If thereis no match in the search path, an error isreported, even if matching table names exist in other
schemas in the database.

The first schema named in the search path is called the current schema. Aside from being the first
schema searched, it is aso the schema in which new tables will be created if the CREATE TABLE
command does not specify a schema name.

To show the current search path, use the following command:

SHOW sear ch_pat h;

In the default setup this returns:

search_pat h

"$user", public

The first element specifies that a schema with the same name as the current user is to be searched.
If no such schema exists, the entry is ignored. The second element refers to the public schema that
we have seen already.

The first schema in the search path that exists is the default location for creating new objects. That
is the reason that by default objects are created in the public schema. When objects are referenced
in any other context without schema qualification (table modification, data modification, or query
commands) the search path is traversed until a matching object is found. Therefore, in the default
configuration, any unqualified access again can only refer to the public schema.

To put our new schemain the path, we use:
SET search_path TO nyschens, publi c;

(We omit the $user here because we have no immediate need for it.) And then we can access the
table without schema qualification:

DROP TABLE mnyt abl e;

Also, since myschema isthefirst element in the path, new objects would by default be created in it.
We could & so have written:

SET search_path TO nyschenms;

Then we no longer have access to the public schema without explicit qualification. There is nothing
special about the public schema except that it exists by default. It can be dropped, too.

See also Section 9.25 for other ways to manipulate the schema search path.

The search path works in the same way for data type names, function names, and operator names asiit
does for table names. Data type and function names can be qualified in exactly the same way astable
names. If you need to write a qualified operator name in an expression, there is a special provision:
you must write

OPERATOR(schermma. oper at or)
Thisis needed to avoid syntactic ambiguity. An exampleis:
SELECT 3 OPERATOR(pg_catal og. +) 4;

In practice one usually relies on the search path for operators, so as not to have to write anything so
ugly asthat.

5.8.4. Schemas and Privileges

76

Data Definition

5.8.5.

5.8.6.

5.8.7.

By default, users cannot access any objects in schemas they do not own. To alow that, the owner of
the schema must grant the USAGE privilege on the schema. To allow users to make use of the objects
in the schema, additional privileges might need to be granted, as appropriate for the object.

A user can also be allowed to create objects in someone else's schema. To alow that, the CREATE
privilege on the schema needs to be granted. Note that by default, everyone has CREATE and USAGE
privileges on the schemapubl i c. Thisallowsall usersthat are able to connect to a given database to
create objectsinits publ i ¢ schema. If you do not want to alow that, you can revoke that privilege:

REVOKE CREATE ON SCHEMA public FROM PUBLI C

(Thefirst “public” is the schema, the second “public” means “every user”. In the first sense it isan
identifier, in the second sense it is akey word, hence the different capitalization; recall the guidelines
from Section 4.1.1.)

The System Catalog Schema

In addition to public and user-created schemas, each database contains a pg_cat al og
schema, which contains the system tables and all the built-in data types, functions, and operators.
pg_cat al og is always effectively part of the search path. If it is not named explicitly in the path
thenitisimplicitly searched before searching the path’'s schemas. This ensuresthat built-in nameswill
always be findable. However, you can explicitly place pg_cat al og at the end of your search path
if you prefer to have user-defined names override built-in names.

Since system table namesbegin withpg_, it isbest to avoid such namesto ensure that you won't suffer
aconflict if some future version defines a system table named the same asyour table. (With the default
search path, an unqualified reference to your table name would then be resolved as the system table
instead.) System tables will continue to follow the convention of having names beginning with pg_,
so that they will not conflict with unqualified user-table names so long as users avoid the pg__ prefix.

Usage Patterns

Schemas can be used to organize your data in many ways. There are a few usage patterns that are
recommended and are easily supported by the default configuration:

* If you do not create any schemas then all users access the public schemaimplicitly. This simulates
the situation where schemasare not availableat all. This setup ismainly recommended when thereis
only asingle user or afew cooperating usersin adatabase. This setup also alows smooth transition
from the non-schema-aware world.

* You can create aschemafor each user with the same name asthat user. Recall that the default search
path starts with $user , which resolves to the user name. Therefore, if each user has a separate
schema, they access their own schemas by default.

If you use this setup then you might also want to revoke access to the public schema (or drop it
atogether), so users are truly constrained to their own schemas.

» Toinstall shared applications (tablesto be used by everyone, additional functions provided by third
parties, etc.), put them into separate schemas. Remember to grant appropriate privilegesto alow the
other users to access them. Users can then refer to these additional objects by qualifying the names
with a schemaname, or they can put the additional schemas into their search path, as they choose.

Portability

In the SQL standard, the notion of objects in the same schema being owned by different users does
not exist. Moreover, some implementations do not allow you to create schemas that have a different
name than their owner. In fact, the concepts of schema and user are nearly equivalent in a database
system that implements only the basi ¢ schema support specified in the standard. Therefore, many users
consider qualified namesto really consist of user _name. t abl e_nane. Thisis how PostgreSQL
will effectively behave if you create a per-user schemafor every user.

77

Data Definition

Also, there is no concept of apubl i ¢ schemain the SQL standard. For maximum conformance to
the standard, you should not use (perhaps even remove) the publ i ¢ schema.

Of course, some SQL database systems might not implement schemas at all, or provide namespace
support by alowing (possibly limited) cross-database access. If you need to work with those systems,
then maximum portability would be achieved by not using schemas at all.

5.9. Inheritance

PostgreSQL implements table inheritance, which can be a useful tool for database designers.
(SQL:1999 and later define atypeinheritance feature, which differsin many respectsfrom thefeatures
described here.)

Let's start with an example: suppose we aretrying to build adatamodel for cities. Each state has many
cities, but only one capital. We want to be able to quickly retrieve the capital city for any particular
state. This can be done by creating two tables, one for state capitals and one for cities that are not
capitals. However, what happens when we want to ask for data about acity, regardless of whether itis
acapital or not? The inheritance feature can help to resolve this problem. We definethe capi t al s
table so that it inheritsfromci ti es:

CREATE TABLE cities (

name t ext,
popul ati on fl oat,
al titude i nt -- in feet

)

CREATE TABLE capitals (
state char (2)
) INHERI TS (cities);

Inthis case, the capi t al s tableinheritsall the columns of its parent table, ci t i es. State capitals
also have an extracolumn, st at e, that showstheir state.

In PostgreSQL, a table can inherit from zero or more other tables, and a query can reference either
all rows of atable or all rows of atable plus al of its descendant tables. The latter behavior is the
default. For example, the following query finds the names of all cities, including state capitals, that
arelocated at an altitude over 500 feet:

SELECT nane, altitude
FROM ci ti es
VWHERE al titude > 500;

Given the sample data from the PostgreSQL tutorial (see Section 2.1), this returns:

nane | altitude
___________ .
Las Vegas | 2174
Mari posa | 1953
Madi son | 845

On the other hand, the following query finds all the cities that are not state capitals and are situated
at an altitude over 500 feet:

SELECT nane, altitude
FROM ONLY cities
WHERE al titude > 500;

name | altitude

78

Data Definition

Mari posa | 1953

Here the ONLY keyword indicates that the query should apply only to ci ti es, and not any tables
below ci ti es in the inheritance hierarchy. Many of the commands that we have already discussed
— SELECT, UPDATE and DELETE — support the ONLY keyword.

You can also write the table name with a trailing * to explicitly specify that descendant tables are
included:

SELECT nane, altitude
FROM ci ti es*
VWHERE al ti tude > 500;

Writing * is not necessary, since this behavior is always the default. However, this syntax is till
supported for compatibility with older releases where the default could be changed.

In some cases you might wish to know which table aparticular row originated from. Thereisasystem
column called t abl eoi d in each table which can tell you the originating table:

SELECT c.tableoid, c.nane, c.altitude
FROM cities c
VWHERE c. al titude > 500;

which returns;

tabl eoid | nane | altitude
__________ e e e e e e e e e e e e e -
139793 | Las Vegas | 2174
139793 | Mariposa | 1953
139798 | Madi son | 845

(If you try to reproduce this example, you will probably get different numeric OIDs.) By doing ajoin
with pg_cl ass you can see the actual table names:

SELECT p.rel nane, c.nane, c.altitude
FROM cities ¢, pg_class p
WHERE c. al titude > 500 AND c.tableoid = p.oid,;

which returns;

rel name | name | altitude
__________ e
cities | Las Vegas | 2174
cities | Mariposa | 1953
capitals | Madi son | 845

Another way to get the same effect isto usether egcl ass aliastype, which will print the table OID
symbolicaly:

SELECT c.tabl eoid::regclass, c.nane, c.altitude
FROM cities ¢
VWHERE c. altitude > 500;

Inheritance does not automatically propagate data from | NSERT or COPY commands to other tables
in the inheritance hierarchy. In our example, the following | NSERT statement will fail:

I NSERT I NTO cities (name, popul ation, altitude, state)
VALUES (' Al bany', NULL, NULL, 'NY');

We might hope that the data would somehow be routed to the capi t al s table, but this does not
happen: | NSERT alwaysinsertsinto exactly the table specified. In some casesit ispossible to redirect
the insertion using a rule (see Chapter 40). However that does not help for the above case because

79

Data Definition

5.9.1.

theci ti es table does not contain the column st at e, and so the command will be rejected before
the rule can be applied.

All check constraints and not-null constraints on a parent table are automatically inherited by its
children, unless explicitly specified otherwise with NO | NHERI T clauses. Other types of constraints
(unique, primary key, and foreign key constraints) are not inherited.

A table can inherit from more than one parent table, in which case it has the union of the columns
defined by the parent tables. Any columns declared in the child table's definition are added to these.
If the same column name appears in multiple parent tables, or in both a parent table and the child's
definition, then these columns are“ merged” so that thereisonly one such columninthechildtable. To
be merged, columns must have the same datatypes, elsean error israi sed. I nheritable check constraints
and not-null constraints are merged in asimilar fashion. Thus, for example, amerged column will be
marked not-null if any one of the column definitionsit came fromismarked not-null. Check constraints
are merged if they have the same name, and the merge will fail if their conditions are different.

Table inheritanceistypically established when the child table is created, using thel NHERI TS clause
of the CREATE TABLE statement. Alternatively, a table which is already defined in a compatible
way can have anew parent relationship added, using thel NHERI T variant of ALTER TABLE. Todo
this the new child table must already include columns with the same names and types as the columns
of the parent. It must also include check constraints with the same names and check expressions as
those of the parent. Similarly aninheritance link can be removed from achild usingthe NO | NHERI T
variant of ALTER TABLE. Dynamically adding and removing inheritance linkslike this can be useful
when the inheritance relationship is being used for table partitioning (see Section 5.10).

One convenient way to create a compatible table that will later be made a new child is to use the
LI KE clausein CREATE TABLE. Thiscreatesanew table with the same columns as the source table.
If there are any CHECK constraints defined on the source table, the | NCLUDI NG CONSTRAI NTS
option to LI KE should be specified, as the new child must have constraints matching the parent to
be considered compatible.

A parent table cannot be dropped while any of its children remain. Neither can columns or check
constraints of child tables be dropped or altered if they are inherited from any parent tables. If you
wish to remove a table and all of its descendants, one easy way is to drop the parent table with the
CASCADE option (see Section 5.13).

ALTER TABLE will propagate any changesin column datadefinitions and check constraintsdown the
inheritance hierarchy. Again, dropping columns that are depended on by other tablesis only possible
when using the CASCADE option. ALTER TABLE follows the same rules for duplicate column
merging and rejection that apply during CREATE TABLE.

Inherited queries perform access permission checks on the parent table only. Thus, for example,
granting UPDATE permission on the ci ti es table implies permission to update rows in the
capi t al s table as well, when they are accessed through ci t i es. This preserves the appearance
that the data is (also) in the parent table. But the capi t al s table could not be updated directly
without an additional grant. In asimilar way, the parent tabl€'s row security policies (see Section 5.7)
are applied to rows coming from child tables during an inherited query. A child table's palicies, if
any, are applied only when it is the table explicitly named in the query; and in that case, any policies
attached to its parent(s) are ignored.

Foreign tables (see Section 5.11) can also be part of inheritance hierarchies, either as parent or child
tables, just as regular tables can be. If aforeign table is part of an inheritance hierarchy then any
operations not supported by the foreign table are not supported on the whole hierarchy either.

Caveats

Note that not all SQL commands are able to work on inheritance hierarchies. Commands that are used
for dataquerying, datamodification, or schemamaodification (e.g., SELECT, UPDATE, DELETE, most
variants of ALTER TABLE, but not | NSERT or ALTER TABLE ... RENAME) typicaly default
to including child tables and support the ONLY notation to exclude them. Commands that do database

80

Data Definition

5.10

maintenance and tuning (e.g., REI NDEX, VACUUM) typically only work onindividual, physical tables
and do not support recursing over inheritance hierarchies. The respective behavior of each individual
command is documented in its reference page (SQL Commands).

A seriouslimitation of theinheritancefeatureisthat indexes (including unique constraints) and foreign
key constraints only apply to single tables, not to their inheritance children. Thisis true on both the
referencing and referenced sides of aforeign key constraint. Thus, in the terms of the above example:

» If we declared ci ti es.nanme to be UNI QUE or a PRI MARY KEY, this would not stop the
capi t al s tablefrom having rows with names duplicating rowsinci t i es. And those duplicate
rowswould by default show upinqueriesfromci ti es. Infact, by default capi t al s would have
no unigue constraint at all, and so could contain multiple rows with the same name. Y ou could add
aunigque constraint to capi t al s, but thiswould not prevent duplication comparedtoci ti es.

e Similarly, if wewereto specify that ci t i es.name REFERENCES some other table, thisconstraint
would not automatically propagatetocapi t al s. Inthiscaseyou couldwork around it by manually
adding the same REFERENCES constraint to capi t al s.

» Specifying that another table's column REFERENCES ci ti es(nane) would alow the other
table to contain city names, but not capital names. There is no good workaround for this case.

These deficiencies will probably be fixed in some future release, but in the meantime considerable
care is needed in deciding whether inheritance is useful for your application.

Table Partitioning

PostgreSQL supports basic table partitioning. This section describes why and how to implement
partitioning as part of your database design.

5.10.1. Overview

Partitioning refersto splitting what islogically onelargetableinto smaller physical pieces. Partitioning
can provide several benefits:

* Query performance can be improved dramatically in certain situations, particularly when most of
the heavily accessed rows of the table are in asingle partition or a small number of partitions. The
partitioning substitutes for leading columns of indexes, reducing index size and making it more
likely that the heavily-used parts of the indexes fit in memory.

» When queries or updates access a large percentage of a single partition, performance can be
improved by taking advantage of sequential scan of that partition instead of using an index and
random access reads scattered across the whole table.

» Bulk loads and del etes can be accomplished by adding or removing partitions, if that requirement is
planned into the partitioning design. Doing ALTER TABLE DETACH PARTI TI ON or dropping
an individual partition using DROP TABLE is far faster than a bulk operation. These commands
also entirely avoid the VACUUMoverhead caused by abulk DELETE.

» Seldom-used data can be migrated to cheaper and slower storage media.

The benefitswill normally be worthwhile only when atable would otherwise be very large. The exact
point at which a table will benefit from partitioning depends on the application, although a rule of
thumb is that the size of the table should exceed the physical memory of the database server.

PostgreSQL offers built-in support for the following forms of partitioning:
Range Partitioning

Thetableispartitioned into “ranges’ defined by akey column or set of columns, with no overlap
between the ranges of values assigned to different partitions. For example, one might partition by
date ranges, or by ranges of identifiers for particular business objects.

81

Data Definition

List Partitioning
Thetableis partitioned by explicitly listing which key values appear in each partition.

If your application needs to use other forms of partitioning not listed above, alternative methods such
asinheritance and UNI ON ALL views can be used instead. Such methods offer flexibility but do not
have some of the performance benefits of built-in declarative partitioning.

5.10.2. Declarative Partitioning

PostgreSQL offers away to specify how to divide a table into pieces called partitions. The table that
is divided is referred to as a partitioned table. The specification consists of the partitioning method
and alist of columns or expressions to be used as the partition key.

All rows inserted into a partitioned table will be routed to one of the partitions based on the value
of the partition key. Each partition has a subset of the data defined by its partition bounds. Currently
supported partitioning methods include range and list, where each partition is assigned arange of keys
and alist of keys, respectively.

Partitions may themselves be defined as partitioned tables, using what is called sub-partitioning.
Partitions may have their own indexes, constraints and default values, distinct from those of other
partitions. Indexesmust be created separately for each partition. See CREATE TABLE for moredetails
on creating partitioned tables and partitions.

It is not possible to turn aregular table into a partitioned table or vice versa. However, it is possible
to add aregular or partitioned table containing data as a partition of a partitioned table, or remove a
partition from a partitioned table turning it into a standalone table; see ALTER TABLE to learn more
about the ATTACH PARTI TI ONand DETACH PARTI Tl ON sub-commands.

Individual partitions arelinked to the partitioned table with inheritance behind-the-scenes; however, it
isnot possibleto use some of theinheritance features discussed in the previous section with partitioned
tablesand partitions. For example, apartition cannot have any parents other than the partitioned tableit
isapartition of, nor can aregular tableinherit from a partitioned table making the | atter its parent. That
means partitioned tables and partitions do not participate in inheritance with regular tables. Since a
partition hierarchy consisting of the partitioned table and its partitionsis still an inheritance hierarchy,
all the normal rules of inheritance apply as described in Section 5.9 with some exceptions, most
notably:

e Both CHECK and NOT NULL constraints of a partitioned table are always inherited by al its
partitions. CHECK constraints that are marked NO | NHERI T are not allowed to be created on
partitioned tables.

» Using ONLY to add or drop a constraint on only the partitioned table is supported when there are no
partitions. Once partitionsexist, using ONLY will result in an error as adding or dropping constraints
on only the partitioned table, when partitions exist, is not supported. Instead, constraints can be
added or dropped, when they are not present in the parent table, directly on the partitions. As a
partitioned table does not have any datadirectly, attemptsto use TRUNCATE ONLY on a partitioned
table will always return an error.

* Partitions cannot have columns that are not present in the parent. It is neither possible to specify
columns when creating partitions with CREATE TABLE nor is it possible to add columns to
partitions after-the-fact using ALTER TABLE. Tables may be added as a partition with ALTER
TABLE ... ATTACH PARTI TI ONonly if their columns exactly match the parent, including
any oi d column.

» You cannot drop the NOT NULL constraint on a partition's column if the constraint is present in
the parent table.

Partitions can also be foreign tables (see CREATE FOREIGN TABLE), although these have some
limitations that normal tables do not. For example, datainserted into the partitioned tableis not routed
to foreign table partitions.

82

Data Definition

5.10.2.1. Example

Suppose we are constructing a database for alarge ice cream company. The company measures peak
temperatures every day aswell asice cream salesin each region. Conceptually, we want atable like:

CREATE TABLE measur enent (

city_ id int not null,
| ogdat e date not null,
peakt enmp int,

uni t sal es i nt

)

We know that most queries will access just the last week's, month's or quarter's data, since the main
use of this table will be to prepare online reports for management. To reduce the amount of old data
that needs to be stored, we decide to only keep the most recent 3 yearsworth of data. At the beginning
of each month wewill remove the oldest month's data. In this situation we can use partitioning to help
us meet al of our different requirements for the measurementstable.

To use declarative partitioning in this case, use the following steps:

1. Create measur enent table as a partitioned table by specifying the PARTI TI ON BY clause,
which includes the partitioning method (RANGE in this case) and the list of column(s) to use as

the partition key.

CREATE TABLE measur enent (
city_id int not null,
| ogdat e date not null,
peakt enmp int,
uni t sal es i nt

) PARTI TI ON BY RANGE (| ogdate);

You may decide to use multiple columns in the partition key for range partitioning, if desired.
Of course, this will often result in a larger number of partitions, each of which is individually
smaller. On the other hand, using fewer columns may lead to a coarser-grained partitioning criteria
with smaller number of partitions. A query accessing the partitioned table will have to scan fewer
partitions if the conditions involve some or &l of these columns. For example, consider a table
range partitioned using columns| ast nane andf i r st namne (in that order) asthe partition key.

2. Create partitions. Each partition's definition must specify the bounds that correspond to the
partitioning method and partition key of the parent. Note that specifying bounds such that the new
partition's values will overlap with those in one or more existing partitions will cause an error.
Inserting data into the parent table that does not map to one of the existing partitions will cause an
error; appropriate partition must be added manually.

Partitions thus created are in every way normal PostgreSQL tables (or, possibly, foreign tables). It
is possible to specify atablespace and storage parameters for each partition separately.

It isnot necessary to create table constraints describing partition boundary condition for partitions.
Instead, partition constraints are generated implicitly from the partition bound specification
whenever thereis need to refer to them.

CREATE TABLE neasurenment _y2006nD2 PARTI TI ON OF neasur ement
FOR VALUES FROM (' 2006-02-01') TO (' 2006-03-01")

CREATE TABLE neasurenment _y2006nD3 PARTI TI ON OF neasur ement
FOR VALUES FROM (' 2006-03-01') TO (' 2006-04-01")

CREATE TABLE neasurenent _y2007ml1l PARTI TI ON OF neasur enment
FOR VALUES FROM (' 2007-11-01') TO ('2007-12-01")

83

Data Definition

CREATE TABLE neasurenment _y2007mi2 PARTI TI ON OF neasur ement
FOR VALUES FROM (' 2007-12-01') TO ('2008-01-01")
TABLESPACE f astt abl espace;

CREATE TABLE neasurenment _y2008nD1 PARTI TI ON OF neasur enment
FOR VALUES FROM (' 2008-01-01') TO ('2008-02-01")
TABLESPACE f astt abl espace
W TH (paral l el _workers = 4);

Toimplement sub-partitioning, specify the PARTI TI ON BY clausein the commandsused to create
individual partitions, for example:

CREATE TABLE neasur enment _y2006n0D2 PARTI TI ON OF neasur enment
FOR VALUES FROM (' 2006-02-01') TO ('2006-03-01")
PARTI TI ON BY RANGE (peaktenp);

After creating partitions of measur ement _y2006n02, any datainserted into neasur enent
that is mapped to neasurenment y2006n02 (or data that is directly inserted into
nmeasur enent _y2006nm02, provided it satisfiesits partition constraint) will befurther redirected
to one of its partitions based on the peakt enp column. The partition key specified may overlap
with the parent's partition key, although care should be taken when specifying the bounds of a sub-
partition such that the set of data it accepts constitutes a subset of what the partition's own bounds
allows; the system does not try to check whether that's really the case.

3. Create an index on the key column(s), as well as any other indexes you might want for every
partition. (The key index is not strictly necessary, but in most scenariosit is helpful. If you intend
the key values to be unique then you should always create a unique or primary-key constraint for
each partition.)

CREATE | NDEX ON neasur enent _y2006n0D2 (| ogdate);
CREATE | NDEX ON neasur enent _y2006n0D3 (| ogdate);

CREATE | NDEX ON neasur enent _y2007nmll (| ogdate);
CREATE | NDEX ON neasur enent _y2007nl2 (| ogdate);
CREATE | NDEX ON neasur enent _y2008nD1 (| ogdate);
4. Ensure that the constraint_exclusion configuration parameter is not disabled in
post gresql . conf . If itis, querieswill not be optimized as desired.

In the above example we would be creating a new partition each month, so it might be wise to write
a script that generates the required DDL automatically.

5.10.2.2. Partition Maintenance

Normally the set of partitions established when initially defining the table are not intended to remain
gtatic. It is common to want to remove old partitions of data and periodically add new partitions for
new data. One of the most important advantages of partitioning is precisely that it allowsthis otherwise
painful task to be executed nearly instantaneously by manipulating the partition structure, rather than
physically moving large amounts of data around.

The simplest option for removing old datais to drop the partition that is no longer necessary:
DROP TABLE neasur enent _y2006n02;

This can very quickly delete millions of records because it doesn't have to individually delete every
record. Note however that the above command requires taking an ACCESS EXCLUSI VE lock on
the parent table.

Another option that is often preferable is to remove the partition from the partitioned table but retain
accessto it asatableinits own right:

ALTER TABLE neasurenment DETACH PARTI TI ON neasur enment _y2006n02;

84

Data Definition

This alows further operations to be performed on the data before it is dropped. For example, thisis
often auseful timeto back up the datausing COPY, pg_dump, or similar tools. It might also be auseful
time to aggregate data into smaller formats, perform other data manipulations, or run reports.

Similarly we can add a new partition to handle new data. We can create an empty partition in the
partitioned table just as the original partitions were created above:

CREATE TABLE neasur enent _y2008nD2 PARTI TI ON OF neasur enment
FOR VALUES FROM (' 2008-02-01') TO ('2008-03-01")
TABLESPACE f astt abl espace;

As an dternative, it is sometimes more convenient to create the new table outside the partition
structure, and make it a proper partition later. This alows the data to be loaded, checked, and
transformed prior to it appearing in the partitioned table:

CREATE TABLE neasur enent _y2008n0D2
(LI KE measurement | NCLUDI NG DEFAULTS | NCLUDI NG CONSTRAI NTS)
TABLESPACE f astt abl espace;

ALTER TABLE neasur enent _y2008nD2 ADD CONSTRAI NT y2008nmD2
CHECK (| ogdate >= DATE '2008-02-01' AND | ogdate < DATE
' 2008-03-01');

\ copy neasurenent _y2008n02 from ' measurenent_y2008n0D2'
-- possibly sonme other data preparation work

ALTER TABLE neasur enent ATTACH PARTI TI ON nmeasur enent _y2008nm02
FOR VALUES FROM (' 2008-02-01') TO ('2008-03-01");

Beforerunningthe ATTACH PARTI TI ONcommand, it isrecommended to create a CHECK constraint
on the table to be attached describing the desired partition constraint. That way, the system will be
able to skip the scan to validate the implicit partition constraint. Without such a constraint, the table
will be scanned to validate the partition constraint while holding an ACCESS EXCLUSI VE lock on
the parent table. One may then drop the constraint after ATTACH PARTI Tl ONis finished, because
it is no longer necessary.

5.10.2.3. Limitations

The following limitations apply to partitioned tables:

» Thereisno facility availableto create the matching indexes on all partitions automatically. Indexes
must be added to each partition with separate commands. This also means that there is no way to
create a primary key, unique constraint, or exclusion constraint spanning al partitions; it is only
possible to constrain each leaf partition individually.

» Since primary keys are not supported on partitioned tables, foreign keys referencing partitioned
tables are not supported, nor are foreign key references from a partitioned table to some other table.

e Using the ON CONFLI CT clause with partitioned tables will cause an error, because unigque or
exclusion constraints can only be created on individual partitions. Thereis no support for enforcing
uniqueness (or an exclusion constraint) across an entire partitioning hierarchy.

» An UPDATE that causes a row to move from one partition to another fails, because the new value
of the row failsto satisfy the implicit partition constraint of the original partition.

* Row triggers, if necessary, must be defined on individual partitions, not the partitioned table.
5.10.3. Implementation Using Inheritance

While the built-in declarative partitioning is suitable for most common use cases, there are some
circumstances where a more flexible approach may be useful. Partitioning can be implemented using

85

Data Definition

tableinheritance, which allowsfor several featureswhich are not supported by declarative partitioning,
such as:

* Partitioning enforces a rule that al partitions must have exactly the same set of columns as the
parent, but table inheritance allows children to have extra columns not present in the parent.

» Tableinheritance allows for multiple inheritance.

* Declarative partitioning only supports list and range partitioning, whereas table inheritance allows
data to be divided in a manner of the user's choosing. (Note, however, that if constraint exclusion
is unable to prune partitions effectively, query performance will be very poor.)

» Some operations require a stronger lock when using declarative partitioning than when using
table inheritance. For example, adding or removing a partition to or from a partitioned table
requires taking an ACCESS EXCLUSI VE lock on the parent table, whereas a SHARE UPDATE
EXCLUSI VE lock is enough in the case of regular inheritance.

5.10.3.1. Example

We use the same measur enment table we used above. To implement it as a partitioned table using
inheritance, use the following steps:

1. Create the “master” table, from which all of the partitions will inherit. This table will contain no
data. Do not define any check constraints on thistable, unlessyou intend them to be applied equally
to al partitions. There is no point in defining any indexes or unique constraints on it, either. For
our example, master table isthe measur enent table asoriginally defined.

2. Create severa “child” tablesthat each inherit from the master table. Normally, these tableswill not
add any columns to the set inherited from the master. Just as with declarative partitioning, these
partitions are in every way normal PostgreSQL tables (or foreign tables).

CREATE TABLE measur enent _y2006n02 () |INHERI TS (rnmeasurenent);
CREATE TABLE measur enent _y2006n03 () | NHERI TS (rneasurenent);

CREATE TABLE measur enent _y2007nill () |INHERI TS (rnmeasurenent);
CREATE TABLE measur enent _y2007nil2 () |INHERI TS (rnmeasurenent);
CREATE TABLE measur enent _y2008n01 () |INHERI TS (rneasurenent);

3. Add non-overlapping table constraints to the partition tables to define the allowed key valuesin
each partition.

Typical examples would be:

CHECK (x = 1)

CHECK (county IN ('Oxfordshire', 'Buckinghanshire',
"Warwi ckshire'))

CHECK (outletID >= 100 AND outletlD < 200)

Ensure that the constraints guarantee that there is no overlap between the key values permitted in
different partitions. A common mistake isto set up range constraints like:

CHECK (outlet! D BETWEEN 100 AND 200)
CHECK (outlet! D BETWEEN 200 AND 300)

Thisiswrong since it is not clear which partition the key value 200 belongs in.
It would be better to instead create partitions as follows:

CREATE TABLE neasur enent _y2006n02 (

CHECK (| ogdate >= DATE ' 2006-02-01' AND | ogdate < DATE
' 2006- 03- 01")
) INHERI TS (neasurenent);

86

Data Definition

CREATE TABLE measur enent _y2006n03 (

CHECK (| ogdate >= DATE ' 2006-03- 01" AND | ogdate < DATE
' 2006- 04-01")
) INHERI TS (neasurenent);
CREATE TABLE measur enent _y2007nill (

CHECK (| ogdate >= DATE ' 2007-11-01'" AND | ogdate < DATE

'2007-12-01')
) INHERI TS (neasurenent);

CREATE TABLE measur enent _y2007nil2 (

CHECK (| ogdate >= DATE ' 2007-12-01'" AND | ogdate < DATE
' 2008-01-01")
) INHERI TS (neasurenent);

CREATE TABLE measur enent _y2008n01 (
CHECK (| ogdate >= DATE '2008-01-01' AND | ogdate < DATE
' 2008-02-01")
) INHERI TS (neasurenent);
. For each partition, create an index on the key column(s), as well as any other indexes you might
want.

CREATE | NDEX neasur enent _y2006n02_| ogdat e ON nmeasur enment _y2006n02
(1 ogdate);

CREATE | NDEX neasur enent _y2006n03_| ogdat e ON nmeasur enment _y2006n03
(1 ogdate);

CREATE | NDEX neasur enent _y2007nll | ogdat e ON nmeasurenment y2007nil
(1 ogdate);

CREATE | NDEX neasur enent _y2007nl2_| ogdat e ON nmeasur enment y2007ni2
(1 ogdate);

CREATE | NDEX neasur enent _y2008n01 | ogdat e ON neasur enment y2008n01
(1 ogdate);

. We want our application to be ableto say | NSERT | NTO neasur enment ... and havethe

data be redirected into the appropriate partition table. We can arrange that by attaching a suitable

trigger function to the master table. If data will be added only to the latest partition, we can use

avery simpletrigger function:

CREATE OR REPLACE FUNCTI ON nmeasurement _i nsert _trigger()

RETURNS TRI GGER AS $$

BEG N
| NSERT | NTO nmeasur enent _y2008nmD1 VALUES (NEW *);
RETURN NULL;

END;

$$

LANGUAGE pl pgsdl ;

After creating the function, we create atrigger which calls the trigger function:

CREATE TRI GGER i nsert_neasurenent _tri gger
BEFORE | NSERT ON neasur enment
FOR EACH ROW EXECUTE PROCEDURE neasurenment insert _trigger();

We must redefine the trigger function each month so that it always points to the current partition.
The trigger definition does not need to be updated, however.

We might want to insert data and have the server automatically locate the partition into which the
row should be added. We could do this with a more complex trigger function, for example:

87

Data Definition

CREATE OR REPLACE FUNCTI ON nmeasurement _i nsert _trigger()
RETURNS TRI GGER AS $$
BEG N
I F (NEW I ogdate >= DATE ' 2006- 02- 01" AND
NEW | ogdat e < DATE ' 2006-03-01') THEN
| NSERT | NTO nmeasur enent _y2006nm02 VALUES (NEW *);
ELSIF (NEW | ogdat e >= DATE ' 2006-03-01' AND
NEW | ogdat e < DATE ' 2006-04-01') THEN
| NSERT | NTO nmeasur enent _y2006nm03 VALUES (NEW *);

ELSIF (NEW | ogdat e >= DATE ' 2008-01-01' AND
NEW | ogdat e < DATE ' 2008-02-01') THEN
| NSERT | NTO nmeasur enent _y2008nmD1 VALUES (NEW *);
ELSE
RAI SE EXCEPTION 'Date out of range. Fix the
measurenent _insert_trigger() function!';
END | F;
RETURN NULL;
END;
$$
LANGUAGE pl pgsdl ;

Thetrigger definition isthe same as before. Note that each | F test must exactly match the CHECK
constraint for its partition.

While this function is more complex than the single-month case, it doesn't need to be updated as
often, since branches can be added in advance of being needed.

Note

In practice it might be best to check the newest partition first, if most insertsgo into
that partition. For smplicity we have shown the trigger's tests in the same order as
in other parts of this example.

A different approach to redirecting inserts into the appropriate partition table is to set up rules,
instead of atrigger, on the master table. For example:

CREATE RULE neasurenent _i nsert_y2006nmD2 AS
ON I NSERT TO measur enment WHERE
(logdate >= DATE ' 2006-02-01'" AND | ogdate < DATE
' 2006- 03-01")
DO | NSTEAD
| NSERT | NTO neasur enment _y2006n02 VALUES (NEW *);

CREATE RULE neasurenent _i nsert_y2008nmD1 AS
ON I NSERT TO measur enent WHERE
(logdate >= DATE ' 2008-01-01'" AND | ogdate < DATE
' 2008- 02-01')
DO | NSTEAD
| NSERT | NTO neasur enment _y2008n01 VALUES (NEW *);

A rulehas significantly more overhead than atrigger, but the overhead is paid once per query rather
than once per row, so this method might be advantageous for bulk-insert situations. In most cases,
however, the trigger method will offer better performance.

88

Data Definition

6.

Be aware that COPY ignoresrules. If you want to use COPY to insert data, you'll need to copy into
the correct partition table rather than into the master. COPY does fire triggers, so you can use it
normally if you use the trigger approach.

Another disadvantage of the rule approach is that there is no simple way to force an error if the set
of rules doesn't cover the insertion date; the datawill silently go into the master table instead.
Ensure that the constraint_exclusion configuration parameter is not disabled in
post gresql . conf . If itis, querieswill not be optimized as desired.

Aswe can see, acomplex partitioning scheme could require asubstantial amount of DDL. Inthe above
example we would be creating a new partition each month, so it might be wise to write a script that
generates the required DDL automatically.

5.10.3.2.

Partition Maintenance

To remove old data quickly, simply drop the partition that is no longer necessary:

DROP TABLE neasurenent _y2006n02;

To remove the partition from the partitioned table but retain accessto it asatablein its own right:

ALTER TABLE neasur enent _y2006n02 NO | NHERI T nmeasur enent ;

To add a new partition to handle new data, create an empty partition just as the original partitions
were created above:

CREATE TABLE neasur enent _y2008n02 (

)
Al

CHECK (| ogdate >= DATE '2008-02-01' AND | ogdate < DATE
2008- 03-01')
| NHERI TS (measurenent);

ternatively, one may want to create the new table outside the partition structure, and make it a

partition after the datais loaded, checked, and transformed.

CREATE TABLE neasur enent _y2008n0D2

(LI KE nmeasuremnment | NCLUDI NG DEFAULTS | NCLUDI NG CONSTRAI NTS) ;

ALTER TABLE neasur enent _y2008nD2 ADD CONSTRAI NT y2008n0D2

CHECK (| ogdate >= DATE '2008-02-01' AND | ogdate < DATE
2008- 03-01');

\ copy neasurenent _y2008nD2 from ' measurenent y2008nD2'

possi bly sonme other data preparati on work

ALTER TABLE neasurenment _y2008n0D2 | NHERI T nmeasur enent ;

5.10.3.3.

Caveats

The following cavests apply to partitioned tables implemented using inheritance:

There is no automatic way to verify that all of the CHECK constraints are mutually exclusive. It is
safer to create code that generates partitions and creates and/or modifies associated objects than to
write each by hand.

The schemes shown here assume that the partition key column(s) of a row never change, or at
least do not change enough to require it to move to another partition. An UPDATE that attempts
to do that will fail because of the CHECK constraints. If you need to handle such cases, you can
put suitable update triggers on the partition tables, but it makes management of the structure much
more complicated.

If you are using manual VACUUMor ANALYZE commands, don't forget that you need to run them
on each partition individually. A command like:

89

Data Definition

ANALYZE nmeasur enent ;
will only process the master table.

* | NSERT statements with ON CONFLI CT clauses are unlikely to work as expected, as the ON
CONFLI CT action is only taken in case of unique violations on the specified target relation, not
its child relations.

» Triggers or rules will be needed to route rows to the desired partition, unless the application is
explicitly aware of the partitioning scheme. Triggers may be complicated to write, and will be much
slower than the tuple routing performed internally by declarative partitioning.

5.10.4. Partitioning and Constraint Exclusion

Constraint exclusion is a query optimization technique that improves performance for partitioned
tables defined in the fashion described above (both declaratively partitioned tables and those
implemented using inheritance). As an example:

SET constrai nt_exclusion = on;
SELECT count (*) FROM neasur enent WHERE | ogdat e >= DATE
' 2008-01-01';

Without constraint exclusion, the above query would scan each of the partitionsof themmeasur enment

table. With constraint exclusion enabled, the planner will examine the constraints of each partition and
try to prove that the partition need not be scanned because it could not contain any rows meeting the
query's WHERE clause. When the planner can prove this, it excludes the partition from the query plan.

You can use the EXPLAIN command to show the difference between a plan with
constrai nt _excl usi on on and a plan with it off. A typical unoptimized plan for this type of
table setup is:

SET constraint_exclusion = off;
EXPLAI N SELECT count (*) FROM neasur enent WHERE | ogdat e >= DATE
' 2008-01-01';

QUERY PLAN
Aggregate (cost=158.66..158.68 rows=1 w dt h=0)
-> Append (cost=0.00..151.88 rows=2715 wi dt h=0)
-> Seq Scan on neasurenment (cost=0.00..30.38 rows=543
wi dt h=0)
Filter: (logdate >= '2008-01-01':: date)
-> Seq Scan on neasurenent _y2006nmD2 neasurenent
(cost=0.00.. 30. 38 rows=543 wi dt h=0)
Filter: (logdate >= '2008-01-01'::date)
-> Seq Scan on neasurenent _y2006nm03 neasur enment
(cost=0.00.. 30. 38 rows=543 wi dt h=0)
Filter: (logdate >= '2008-01-01'::date)

-> Seq Scan on neasurenent _y2007nml2 neasur ement
(cost=0.00.. 30. 38 rows=543 wi dt h=0)
Filter: (logdate >= '2008-01-01':: date)
-> Seq Scan on neasurenent _y2008nmD1 neasurenent
(cost=0.00.. 30. 38 rows=543 wi dt h=0)
Filter: (logdate >= '2008-01-01':: date)

Some or all of the partitions might use index scansinstead of full-table sequential scans, but the point
here is that there is no need to scan the older partitions at all to answer this query. When we enable
constraint exclusion, we get a significantly cheaper plan that will deliver the same answer:

90

Data Definition

SET constrai nt _excl usi on = on;
EXPLAI N SELECT count (*) FROM nmeasur enent WHERE | ogdat e >= DATE
' 2008-01-01';
QUERY PLAN
Aggregate (cost=63.47..63.48 rows=1 wi dt h=0)
-> Append (cost=0.00..60.75 rows=1086 wi dt h=0)
-> Seq Scan on neasurenment (cost=0.00..30.38 rows=543
wi dt h=0)
Filter: (logdate >= '2008-01-01'::date)
-> Seq Scan on neasurenent _y2008nD1 neasur enment
(cost=0.00. . 30. 38 rows=543 w dt h=0)
Filter: (logdate >= '2008-01-01'::date)

Note that constraint exclusion is driven only by CHECK constraints, not by the presence of indexes.
Thereforeit isn't necessary to defineindexes on the key columns. Whether anindex needsto be created
for agiven partition depends on whether you expect that queries that scan the partition will generally
scan a large part of the partition or just a small part. An index will be helpful in the latter case but
not the former.

The default (and recommended) setting of constraint_exclusion isactually neither on nor of f , but an
intermediate setting called par t i t i on, which causesthetechniqueto be applied only to queriesthat
are likely to be working on partitioned tables. The on setting causes the planner to examine CHECK
constraintsin all queries, even simple ones that are unlikely to benefit.

Thefollowing caveats apply to constraint exclusion, whichisused by both inheritance and partitioned
tables:

» Congtraint exclusion only works when the query's WHERE clause contains constants (or externally
supplied parameters). For example, a comparison against a non-immutable function such as
CURRENT _TI MESTAMP cannot be optimized, since the planner cannot know which partition the
function value might fall into at run time.

» Keep the partitioning constraints simple, else the planner may not be able to prove that partitions
don't need to be visited. Use simple equality conditions for list partitioning, or simple range tests
for range partitioning, as illustrated in the preceding examples. A good rule of thumb is that
partitioning constraints should contain only comparisons of the partitioning column(s) to constants
using B-tree-indexable operators, which applies even to partitioned tables, because only B-tree-
indexable column(s) are alowed in the partition key. (Thisis not a problem when using declarative
partitioning, since the automatically generated constraints are simple enough to be understood by
the planner.)

» All constraints on al partitions of the master table are examined during constraint exclusion, so
large numbers of partitions are likely to increase query planning time considerably. Partitioning
using these techniques will work well with up to perhaps a hundred partitions; don't try to use many
thousands of partitions.

Foreign Data

PostgreSQL implements portions of the SQL/MED specification, allowing you to access data that
resides outside PostgreSQL using regular SQL queries. Such datais referred to asforeign data. (Note
that this usage is not to be confused with foreign keys, which are a type of constraint within the
database.)

5.11

Foreign data is accessed with help from a foreign data wrapper. A foreign data wrapper is alibrary
that can communicate with an external data source, hiding the details of connecting to the data source
and obtaining datafrom it. There are someforeign datawrappersavailableascont r i b modules; see
Appendix F. Other kinds of foreign data wrappers might be found as third party products. If none of
the existing foreign data wrappers suit your needs, you can write your own; see Chapter 56.

91

Data Definition

5.12

5.13

To access foreign data, you need to create a foreign server object, which defines how to connect to
a particular external data source according to the set of options used by its supporting foreign data
wrapper. Then you need to create one or more foreign tables, which define the structure of the remote
data. A foreign table can be used in queries just like anormal table, but aforeign table has no storage
inthe PostgreSQL server. Whenever it isused, PostgreSQL asksthe foreign datawrapper to fetch data
from the external source, or transmit datato the external source in the case of update commands.

Accessing remote data may require authenticating to the external data source. This information can
be provided by a user mapping, which can provide additional data such as user names and passwords
based on the current PostgreSQL role.

For additional information, see CREATE FOREIGN DATA WRAPPER, CREATE SERVER,
CREATE USER MAPPING, CREATE FOREIGN TABLE, and IMPORT FOREIGN SCHEMA.

Other Database Objects

Tables are the central objectsin arelational database structure, because they hold your data. But they
are not the only objectsthat exist in adatabase. Many other kinds of objects can be created to makethe
use and management of the data more efficient or convenient. They are not discussed in this chapter,
but we give you alist here so that you are aware of what is possible:

* Views

» Functions and operators

» Datatypes and domains
 Triggers and rewrite rules

Detailed information on these topics appearsin Part V.

Dependency Tracking

When you create complex database structures involving many tables with foreign key constraints,
views, triggers, functions, etc. you implicitly create a net of dependencies between the objects. For
instance, atable with aforeign key constraint depends on the table it references.

To ensure the integrity of the entire database structure, PostgreSQL makes sure that you cannot drop
objects that other objects still depend on. For example, attempting to drop the products table we
considered in Section 5.3.5, with the orders table depending on it, would result in an error message
like this:

DROP TABLE products;

ERROR: cannot drop table products because ot her objects depend on
it

DETAIL: constraint orders_product_no_fkey on table orders depends
on tabl e products

HI NT: Use DROP ... CASCADE to drop the dependent objects too.

Theerror message containsauseful hint: if you do not want to bother deleting all the dependent objects
individually, you can run:

DROP TABLE products CASCADE;

and all the dependent objects will be removed, as will any objects that depend on them, recursively.
In this case, it doesn't remove the orders table, it only removes the foreign key constraint. It stops
there because nothing depends on the foreign key constraint. (If you want to check what DROP . . .
CASCADE will do, run DROP without CASCADE and read the DETAI L output.)

92

Data Definition

Almost all DROP commands in PostgreSQL support specifying CASCADE. Of course, the nature of
the possible dependencies varies with the type of the object. You can also write RESTRI CT instead
of CASCADE to get the default behavior, which is to prevent dropping objects that any other objects
depend on.

Note

According to the SQL standard, specifying either RESTRI CT or CASCADE isrequired
in a DROP command. No database system actually enforces that rule, but whether the
default behavior is RESTRI CT or CASCADE varies across systems.

If a DROP command lists multiple objects, CASCADE is only required when there are dependencies
outside the specified group. For example, when saying DROP TABLE t abl, t ab2 theexistence
of aforeign key referencingt abl fromt ab2 would not mean that CASCADE is needed to succeed.

For user-defined functions, PostgreSQL tracks dependencies associated with a function's externally-
visibleproperties, such asitsargument and result types, but not dependenciesthat could only be known
by examining the function body. As an example, consider this situation:

CREATE TYPE rai nbow AS ENUM ('red', 'orange', 'vyellow,
‘green', 'blue', 'purple');

CREATE TABLE ny_col ors (col or rai nbow, note text);

CREATE FUNCTI ON get _col or_note (rai nbow) RETURNS text AS
' SELECT note FROM ny_col ors WHERE col or = $1'
LANGUAGE SQ@.;

(See Section 37.4 for an explanation of SQL-language functions.) PostgreSQL will be aware that the
get _col or _not e functiondependsonther ai nbowtype: dropping thetypewould force dropping
the function, because its argument type would no longer be defined. But PostgreSQL will not consider
get _col or _not e todependontheny_col or s table, and sowill not drop thefunctionif thetable
isdropped. While there are disadvantages to this approach, there are also benefits. The functionis still
valid in some sense if the table is missing, though executing it would cause an error; creating a new
table of the same name would allow the function to work again.

93

Chapter 6. Data Manipulation

The previous chapter discussed how to create tables and other structures to hold your data. Now it is
time to fill the tables with data. This chapter covers how to insert, update, and delete table data. The
chapter after thiswill finally explain how to extract your long-lost data from the database.

6.1. Inserting Data

When atableiscreated, it contains no data. Thefirst thing to do before a database can be of much use
isto insert data. Data is conceptually inserted one row at atime. Of course you can aso insert more
than one row, but there is no way to insert less than one row. Even if you know only some column
values, a complete row must be created.

To create anew row, use the INSERT command. The command requires the table name and column
values. For example, consider the products table from Chapter 5:

CREATE TABLE products (
product _no i nteger,
name text,
price nuneric

)
An example command to insert arow would be:
I NSERT | NTO products VALUES (1, 'Cheese', 9.99);

The datavalues arelisted in the order in which the columns appear in the table, separated by commas.
Usually, the data values will be literals (constants), but scalar expressions are also allowed.

The above syntax has the drawback that you need to know the order of the columnsin the table. To
avoid thisyou can aso list the columns explicitly. For example, both of the following commands have
the same effect as the one above:

I NSERT | NTO products (product_no, nane, price) VALUES (1, ' Cheese',

9.99);
| NSERT | NTO products (nane, price, product_no) VALUES (' Cheese',
9.99, 1);

Many users consider it good practice to aways list the column names.

If you don't have valuesfor all the columns, you can omit some of them. In that case, the columns will
be filled with their default values. For example;

I NSERT | NTO products (product_no, nane) VALUES (1, 'Cheese');
| NSERT | NTO products VALUES (1, 'Cheese');

The second form is a PostgreSQL extension. It fills the columns from the left with as many values as
are given, and the rest will be defaulted.

For clarity, you can also request default values explicitly, for individual columns or for the entire row:

| NSERT | NTO products (product_no, name, price) VALUES (1, 'Cheese',
DEFAULT) ;

| NSERT | NTO products DEFAULT VALUES;

Y ou can insert multiple rows in a single command:

I NSERT | NTO products (product_no, nane, price) VALUES

94

Data Manipulation

(1, 'Cheese', 9.99),
(2, 'Bread', 1.99),
(3, "MIk', 2.99);

It isalso possible to insert the result of a query (which might be no rows, one row, or many rows):

I NSERT | NTO products (product_no, name, price)
SELECT product_no, name, price FROM new_products
WHERE r el ease_date = 'today';

This provides the full power of the SQL query mechanism (Chapter 7) for computing the rows to be
inserted.

Tip

Wheninserting alot of dataat the sametime, considering using the COPY command. It
isnot asflexible asthe INSERT command, but is more efficient. Refer to Section 14.4
for more information on improving bulk loading performance.

6.2. Updating Data

The modification of data that is already in the database is referred to as updating. Y ou can update
individual rows, all therowsin atable, or asubset of all rows. Each column can be updated separately;
the other columns are not affected.

To update existing rows, use the UPDATE command. This requires three pieces of information:

1. The name of the table and column to update
2. The new value of the column
3. Which row(s) to update

Recall from Chapter 5 that SQL does not, in general, provide aunique identifier for rows. Thereforeit
is not always possible to directly specify which row to update. Instead, you specify which conditions
arow must meet in order to be updated. Only if you have a primary key in the table (independent
of whether you declared it or not) can you reliably address individual rows by choosing a condition
that matches the primary key. Graphical database access toolsrely on thisfact to allow you to update
rows individually.

For example, this command updates all products that have a price of 5 to have a price of 10:
UPDATE products SET price = 10 WHERE price = 5;

This might cause zero, one, or many rows to be updated. It is not an error to attempt an update that
does not match any rows.

Let'slook at that command in detail. First is the key word UPDATE followed by the table name. As
usual, the table name can be schema-qualified, otherwise it is looked up in the path. Next is the key
word SET followed by the column name, an equal sign, and the new column value. The new column
value can be any scalar expression, not just a constant. For example, if you want to raise the price of
all products by 10% you could use:

UPDATE products SET price = price * 1.10;

Asyou see, the expression for the new value can refer to the existing value(s) in the row. We also left
out the WHERE clause. If it is omitted, it means that all rows in the table are updated. If it is present,
only those rows that match the WHERE condition are updated. Note that the equals sign in the SET
clauseisan assignment while the onein the WHERE clause isacomparison, but thisdoes not create any

95

Data Manipulation

ambiguity. Of course, the WHERE condition does not have to be an equality test. Many other operators
are available (see Chapter 9). But the expression needs to evaluate to a Boolean result.

Y ou can update more than one column in an UPDATE command by listing more than one assignment
in the SET clause. For example:

UPDATE nytable SET a =5, b =3, ¢ =1 WHERE a > 0;

6.3. Deleting Data

So far we have explained how to add datato tables and how to change data. What remainsisto discuss
how to remove data that is no longer needed. Just as adding data is only possible in whole rows, you
can only remove entire rows from atable. In the previous section we explained that SQL does not
provide a way to directly address individual rows. Therefore, removing rows can only be done by
specifying conditionsthat the rowsto be removed haveto match. If you haveaprimary key inthetable
then you can specify the exact row. But you can also remove groups of rows matching a condition,
or you can remove all rowsin the table at once.

Y ou use the DELETE command to remove rows, the syntax is very similar to the UPDATE command.
For instance, to remove al rows from the products table that have a price of 10, use:

DELETE FROM products WHERE price = 10;
If you simply write:
DELETE FROM product s;

then all rowsin the table will be deleted! Caveat programmer.

6.4. Returning Data From Modified Rows

Sometimes it is useful to obtain data from modified rows while they are being manipulated. The
| NSERT, UPDATE, and DELETE commands all have an optional RETURNI NG clause that supports
this. Use of RETURNI NG avoids performing an extra database query to collect the data, and is
especially valuable when it would otherwise be difficult to identify the modified rows reliably.

The allowed contents of a RETURNI NG clause are the same as a SELECT command's output list (see
Section 7.3). It can contain column names of the command's target table, or value expressions using
those columns. A common shorthand is RETURNI NG * , which selects all columns of the target table
in order.

Inan| NSERT, the dataavailable to RETURNI NGistherow asit wasinserted. Thisisnot so useful in
trivial inserts, since it would just repeat the data provided by the client. But it can be very handy when
relying on computed default values. For example, when using aser i al column to provide unique
identifiers, RETURNI NG can return the ID assigned to a new row:

CREATE TABLE users (firstnane text, |astnane text, id serial

primary key);

I NSERT | NTO users (firstname, |astnane) VALUES ('Joe', 'Cool"')
RETURNI NG i d;

The RETURNI NGclauseis also very useful with | NSERT ... SELECT.

Inan UPDATE, thedataavailableto RETURNI NGisthe new content of the modified row. For example:

UPDATE products SET price = price * 1.10
WHERE price <= 99.99
RETURNI NG nanme, price AS new price;

96

Data Manipulation

In a DELETE, the data available to RETURNI NGis the content of the deleted row. For example:

DELETE FROM products
WHERE obsol etion_date = 'today'
RETURNI NG *;

If there are triggers (Chapter 38) on the target table, the data available to RETURNI NGis the row as
modified by the triggers. Thus, inspecting columns computed by triggersis another common use-case
for RETURNI NG

97

Chapter 7. Queries

The previous chapters explained how to createtables, how tofill themwith data, and how to manipulate
that data. Now we finally discuss how to retrieve the data from the database.

7.1. Overview

The process of retrieving or the command to retrieve data from a database is called a query. In SQL
the SELECT command is used to specify queries. The general syntax of the SELECT command is

[WTH wit h_queries] SELECT select_list FROMtabl e_expression
[sort _specification]

The following sections describe the details of the select list, the table expression, and the sort
specification. W TH queries are treated last since they are an advanced feature.

A simple kind of query has the form:
SELECT * FROM t abl el;

Assuming that there is a table called t abl el, this command would retrieve al rows and all user-
defined columns from t abl el. (The method of retrieval depends on the client application. For
example, the psgl program will display an ASCII-art table on the screen, while client libraries will
offer functionsto extract individual valuesfrom the query result.) The select list specification * means
all columns that the table expression happens to provide. A select list can also select a subset of the
available columns or make calculations using the columns. For example, if t abl el has columns
named a, b, and ¢ (and perhaps others) you can make the following query:

SELECT a, b + ¢ FROM t abl el;
(assuming that b and ¢ are of anumerical datatype). See Section 7.3 for more details.

FROM tabl el is a simple kind of table expression: it reads just one table. In general, table
expressions can be complex constructs of base tables, joins, and subqueries. But you can also omit the
table expression entirely and use the SEL ECT command as a calculator:

SELECT 3 * 4,

Thisis more useful if the expressions in the select list return varying results. For example, you could
call afunction thisway:

SELECT random();

7.2. Table Expressions

7.2.1.

A table expression computes atable. The table expression contains a FROMclause that is optionally
followed by WHERE, GROUP BY, and HAVI NG clauses. Trivia table expressions simply refer to a
table on disk, a so-called base table, but more complex expressions can be used to modify or combine
base tables in various ways.

The optional WHERE, GROUP BY, and HAVI NG clauses in the table expression specify a pipeline
of successive transformations performed on the table derived in the FROM clause. All these
transformations produce a virtual table that provides the rows that are passed to the select list to
compute the output rows of the query.

The FROMClause

The FROM Clause derives a table from one or more other tables given in a comma-separated table
reference list.

98

Queries

FROM tabl e_reference [, table_reference [, ...]]

A table reference can be a table name (possibly schema-qualified), or a derived table such as a
subquery, a JO N construct, or complex combinations of these. If more than one table reference is
listed in the FROM clause, the tables are cross-joined (that is, the Cartesian product of their rows is
formed; see below). Theresult of the FROMIist isan intermediate virtual table that can then be subject
to transformations by the WHERE, GROUP BY, and HAVI NG clauses and is finally the result of the
overall table expression.

When a table reference names a table that is the parent of a table inheritance hierarchy, the table
reference produces rows of not only that table but al of its descendant tables, unless the key word
ONLY precedes the table name. However, the reference produces only the columns that appear in the
named table — any columns added in subtables are ignored.

Instead of writing ONLY before the table name, you can write * after the table name to explicitly
specify that descendant tables are included. There is no real reason to use this syntax any more,
because searching descendant tablesis now aways the default behavior. However, it is supported for
compatibility with older releases.

7.2.1.1. Joined Tables

A joined table is a table derived from two other (real or derived) tables according to the rules of the
particular join type. Inner, outer, and cross-joins are available. The general syntax of ajoined tableis

Tl join_type T2 [join_condition]

Joins of al types can be chained together, or nested: either or both T1 and T2 can be joined tables.
Parentheses can be used around JO N clauses to control thejoin order. In the absence of parentheses,
JO Nclauses nest | eft-to-right.

Join Types
Crossjoin
T1 CRCSS JON T2

For every possible combination of rows from T1 and T2 (i.e., a Cartesian product), the joined
table will contain a row consisting of all columnsin T1 followed by all columnsin T2. If the
tables have N and M rows respectively, the joined table will have N * M rows.

FROM T1 CROSS JO N T2 isequivalentto FROM T1 | NNER JO N T2 ON TRUE (see
below). Itisalso equivalent to FROM T1, T2.

Note

This latter equivalence does not hold exactly when more than two tables appear,
because JO N binds more tightly than comma. For example FROM T1 CROSS
JON T2 INNER JON T3 ON condition isnotthe same as FROM
T1, T2 INNER JO N T3 ON conditi on becausetheconditi on can
reference T1 in the first case but not the second.

Qualified joins
T1 { [INNER] | { LEFT | RIGHT | FULL } [OQUTER] } JON T2
ON bool ean_expressi on
T1 { [INNER] | { LEFT | RIGHT | FULL } [OUTER] } JO N T2 USI NG

(join colum list)
Tl NATURAL { [INNER] | { LEFT | RIGHT | FULL } [OUTER] } JON T2

99

Queries

The words | NNER and OQUTER are optional in all forms. | NNER is the default; LEFT, Rl GHT,
and FULL imply an outer join.

Thejoin condition is specified in the ON or USI NG clause, or implicitly by the word NATURAL.
Thejoin condition determines which rows from the two source tables are considered to “match”,
as explained in detail below.

The possible types of qualified join are:
I NNER JO N

For each row R1 of T1, the joined table has a row for each row in T2 that satisfies the join
condition with R1.

LEFT QUTER JAO N

First, an inner join is performed. Then, for each row in T1 that does not satisfy the join
condition with any row in T2, ajoined row is added with null valuesin columns of T2. Thus,
the joined table always has at |east one row for each row in T1.

Rl GHT QUTER JAO N

First, an inner join is performed. Then, for each row in T2 that does not satisfy the join
condition with any row in T1, ajoined row is added with null valuesin columns of T1. This
isthe converse of aleft join: the result table will always have arow for each row in T2.

FULL OQUTER JAO N

First, an inner join is performed. Then, for each row in T1 that does not satisfy the join
condition with any row in T2, ajoined row is added with null valuesin columns of T2. Also,
for each row of T2 that does not satisfy the join condition with any row in T1, ajoined row
with null valuesin the columns of T1 is added.

The ON clause is the most general kind of join condition: it takes a Boolean value expression of
the same kind as is used in a WHERE clause. A pair of rows from T1 and T2 match if the ON
expression evaluates to true.

The US| NGclauseisashorthand that allows you to take advantage of the specific situation where
both sides of the join use the same name for the joining column(s). It takes a comma-separated
list of the shared column names and forms ajoin condition that includes an equality comparison
for each one. For example, joining T1 and T2 with USI NG (a, b) producesthejoin condition
ON Tl.a = T2.a AND Tl.b = T2.h.

Furthermore, the output of JO N USI NG suppresses redundant columns: thereis no need to print
both of the matched columns, since they must have equal values. While JO N ON produces all
columns from T1 followed by al columnsfrom T2, JO N USI NG produces one output column
for each of the listed column pairs (in the listed order), followed by any remaining columns from
T1, followed by any remaining columns from T2.

Finally, NATURAL isashorthand form of USI NG it formsaUSI NGlist consisting of all column
names that appear in both input tables. As with USI NG, these columns appear only once in the
output table. If there are no common column names, NATURAL JO N behaveslikeJO N . . .
ON TRUE, producing a cross-product join.

Note

USI NGisreasonably safe from column changesin thejoined relations since only
the listed columns are combined. NATURAL is considerably more risky since any
schema changes to either relation that cause a new matching column name to be
present will cause the join to combine that new column as well.

100

Queries

To put this together, assume we have tablest 1:

num | nane

then we get the following results for the various joins:

=> SELECT * FROMt1l CRCOSS JO N t2;
num | nane | num| val ue

T WWWNNNRP, R PP
<
<
<

5
~ 0 00T TUT9 9O

(9

=> SELECT * FROMt1l INNER JON t2 ONt1l.num= t2. num
num | nane | num| val ue

----- s
1] a | 1] xxx
3] ¢ | 31 yyy

(2 rows)

=> SELECT * FROMt1l INNER JO N t2 USING (nun;
num | nane | val ue

_____ e
1] a | xxx
3] c | yyy

(2 rows)

=> SELECT * FROM t1 NATURAL |INNER JO N t2;
num | nane | val ue

_____ e
1] a | xxx
3] c | yyy

(2 rows)

=> SELECT * FROMt1l LEFT JON1t2 ONt1l.num= t2. num
num | nane | num| val ue

101

Queries

(3 rows)

=> SELECT * FROMt1 LEFT JON t2 USI NG (num;
num | nanme | val ue

=> SELECT * FROMt1l RIGHT JON t2 ON t1. num = t2. num
num| name | num| val ue

----- B e L
1| a | 1| xxx
31 ¢ | 31 yyy

| | 5| zzz
(3 rows)

=> SELECT * FROMt1 FULL JON t2 ON t1. num = t2. num
num| name | num| val ue

----- B e L
1| a | 1| xxx
2] b | |
31 ¢ | 31 yyy

| | 5| zzz
(4 rows)

Thejoin condition specified with ON can also contain conditions that do not relate directly to the join.
This can prove useful for some queries but needs to be thought out carefully. For example:

=> SELECT * FROMt1 LEFT JON1t2 ONtl.num= t2.num AND t2.value =

XXX ;
num| nanme | num| val ue
----- TS SR
1| a | 1| xxx
2] b | |
3] ¢ | |
(3 rows)

Notice that placing the restriction in the WHERE clause produces a different result:

=> SELECT * FROMt1l LEFT JONt2 ONtl. num= t2. num WHERE t 2. val ue

= " Xxx';

num | nane | num| val ue

----- R e E LT ST
1] a | 1] xxx

(1 row)

This is because a restriction placed in the ON clause is processed before the join, while a restriction
placed in the WHERE clause is processed after the join. That does not matter with inner joins, but it
meatters alot with outer joins.

7.2.1.2. Table and Column Aliases

A temporary name can be given to tables and complex table references to be used for references to
the derived table in the rest of the query. Thisis called atable alias.

To create atable alias, write

FROM t abl e_reference AS ali as

102

Queries

or
FROM t abl e_reference ali as
The AS key word is optional noise. al i as can be any identifier.

A typical application of table aliasesis to assign short identifiers to long table names to keep the join
clauses readable. For example:

SELECT * FROM sone_very long_table name s JON
another fairly long nane a ON s.id = a.num

The alias becomes the new name of the table reference so far as the current query is concerned — it
is not allowed to refer to the table by the original name elsewhere in the query. Thus, thisisnot valid:

SELECT * FROM ny_table AS m WHERE ny_table.a > 5; -- wrong

Table aliases are mainly for notational convenience, but it is necessary to use them when joining a
tableto itself, e.g.:

SELECT * FROM peopl e AS nother JO N people AS child ON nother.id =
chi l d. mot her _i d;

Additionally, an adiasis reguired if the table reference is a subquery (see Section 7.2.1.3).

Parentheses are used to resolve ambiguities. In the following example, the first statement assigns the
alias b to the second instance of my_t abl e, but the second statement assigns the alias to the result
of thejoin:

SELECT * FROM ny_table AS a CROSS JON ny_table AS b ...
SELECT * FROM (ny_table AS a CROSS JON ny_table) AS b ...

Another form of table aliasing gives temporary names to the columns of the table, aswell asthetable
itself:

FROM t abl e_reference [AS] alias (columl [, colum2 [, ...]])

If fewer column aliases are specified than the actual table has columns, the remaining columns are not
renamed. This syntax is especially useful for self-joins or subqueries.

When an dlias is applied to the output of a JO N clause, the alias hides the original name(s) within
the JA N. For example:

SELECT a.* FROM ny_table AS a JO N your _table AS b ON ...
isvalid SQL, but:
SELECT a.* FROM (ny_table AS a JO N your _table AS b ON...) AS c

isnot valid; thetable aliasa isnot visible outside the dlias c.

7.2.1.3. Subqueries

Subqueries specifying a derived table must be enclosed in parentheses and must be assigned a table
aliasname (asin Section 7.2.1.2). For example:

FROM (SELECT * FROM tabl el) AS alias_nane

This example is equivalent to FROM t abl el AS al i as_name. More interesting cases, which
cannot be reduced to a plain join, arise when the subquery involves grouping or aggregation.

A subquery can also be a VALUES list:

103

Queries

FROM (VALUES (' anne', 'smith'), ('bob', '"jones'), ('joe', "blow))
AS nanes(first, |ast)

Again, atable aiasisrequired. Assigning alias names to the columns of the VALUES list is optional,
but is good practice. For more information see Section 7.7.

7.2.1.4. Table Functions

Table functions are functions that produce a set of rows, made up of either base data types (scalar
types) or composite data types (table rows). They are used like atable, view, or subquery in the FROM
clause of aquery. Columns returned by table functions can beincluded in SELECT, JA N, or WHERE
clauses in the same manner as columns of atable, view, or subquery.

Table functions may also be combined using the RONS FROM syntax, with the results returned in
parallel columns; the number of result rows in this case is that of the largest function result, with
smaller results padded with null values to match.

function_call [WTH ORDI NALITY] [[AS] table_alias [(columm_alias
[. ... DII

ROAS FROM function_call [, ...]) [WTH ORD NALI TY]

[[AS] table_ alias [(colum_alias [, ...])]11]

If theW TH ORDI NALI TY clauseis specified, an additional column of typebi gi nt will be added
to the function result columns. This column numbers the rows of the function result set, starting from
1. (Thisis ageneraization of the SQL-standard syntax for UNNEST ... W TH ORDI NALI TY.)
By default, the ordinal columniscalled or di nal i t y, but adifferent column name can be assigned
toit using an AS clause.

The special table function UNNEST may be called with any number of array parameters, and it returns
a corresponding number of columns, asif UNNEST (Section 9.18) had been called on each parameter
separately and combined using the ROAS FROMconstruct.

UNNEST(array_expression [, ...]) [WTH ORDI NALI TY]
[[AS] table_alias [(colum_alias [, ...])]11]

If not abl e_al i as isspecified, the function nameis used as the table name; in the case of a RONS
FROM) construct, the first function's name is used.

If column aliases are not supplied, then for afunction returning a base data type, the column nameis
also the same as the function name. For a function returning a composite type, the result columns get
the names of the individual attributes of the type.

Some examples:
CREATE TABLE foo (fooid int, foosubid int, foonane text);

CREATE FUNCTI ON getfoo(int) RETURNS SETOF foo AS $$
SELECT * FROM foo WHERE fooid = $1;
$$ LANGUAGE SQL;

SELECT * FROM getfoo(1) AS t1;

SELECT * FROM f oo
WHERE f oosubid IN (
SELECT foosubi d
FROM get f oo(foo.fooid) z
WHERE z.fooid = foo.fooid

);

104

Queries

CREATE VI EW vw_get f oo AS SELECT * FROM get f 0o(1);

SELECT * FROM vw_get f 00;

In some cases it is useful to define table functions that can return different column sets depending on
how they areinvoked. To support this, the table function can be declared as returning the pseudo-type
r ecor d. When such afunction isused in aquery, the expected row structure must be specified in the
query itself, so that the system can know how to parse and plan the query. This syntax looks like:

function_call [AS] alias (colum_definition [, 1)
function_call AS [alias] (colum_definition [, ...])
ROAMS FROM ... function_call AS (columm_definition [, 1)

[, ... 1)

When not using the RONS FROM) syntax, the col urm_defi ni ti on list replaces the column
aliaslist that could otherwise be attached to the FROMitem; the namesin the column definitions serve
as column aliases. When using the ROAS FROM) syntax, a col umm_def i ni ti on list can be
attached to each member function separately; or if there is only one member function and no W TH
ORDI NALI TY clause, acol utm_defi ni ti on list can be written in place of a column alias list
following ROAS FROM) .

Consider this example:

SELECT *
FROM dbl i nk(' dbnane=nydb', ' SELECT pronane, prosrc FROM

pg_proc')
AS t 1(pronanme name, prosrc text)
WHERE pronane LIKE 'bytea% ;

The dblink function (part of the dblink module) executes a remote query. It is declared to return
r ecor d since it might be used for any kind of query. The actual column set must be specified in the
calling query so that the parser knows, for example, what * should expand to.

7.2.1.5. LATERAL Subqueries

Subqueries appearing in FROM can be preceded by the key word LATERAL. This allows them
to reference columns provided by preceding FROM items. (Without LATERAL, each subquery is
evaluated independently and so cannot cross-reference any other FROMitem.)

Tablefunctions appearing in FROMcan also be preceded by the key word LATERAL, but for functions
the key word is optional; the function's arguments can contain references to columns provided by
preceding FROMitemsin any case.

A LATERAL item can appear at top level in the FROMIist, or withinaJO Ntree. In the latter case it
can also refer to any itemsthat are on the left-hand side of aJO Nthat it is on the right-hand side of.

When a FROMitem contains LATERAL cross-references, evaluation proceeds as follows: for each
row of the FROMitem providing the cross-referenced column(s), or set of rows of multiple FROM
items providing the columns, the LATERAL item is evaluated using that row or row set's values of
the columns. The resulting row(s) are joined as usual with the rows they were computed from. Thisis
repeated for each row or set of rows from the column source table(s).

A trivial example of LATERAL is

SELECT * FROM foo, LATERAL (SELECT * FROM bar WHERE bar.id =
foo. bar _id) ss;

Thisisnot especially useful since it has exactly the same result as the more conventional

SELECT * FROM foo, bar WHERE bar.id = foo.bar _id;

105

Queries

7.2.2.

LATERAL isprimarily useful when the cross-referenced columnis necessary for computing the row(s)
to be joined. A common application is providing an argument value for a set-returning function. For
example, supposing that verti ces(pol ygon) returns the set of vertices of a polygon, we could
identify close-together vertices of polygons stored in atable with:;

SELECT pl.id, p2.id, vl, v2
FROM pol ygons pl, pol ygons p2,
LATERAL vertices(pl.poly) vi,
LATERAL vertices(p2.poly) v2
WHERE (v1 <-> v2) < 10 AND pl.id !'= p2.id;

This query could also be written

SELECT pl.id, p2.id, vl, v2

FROM pol ygons pl CROSS JO N LATERAL vertices(pl.poly) vi,
pol ygons p2 CROSS JO N LATERAL vertices(p2.poly) v2

WHERE (v1 <-> v2) < 10 AND pl.id !'= p2.id;

or in severa other equivalent formulations. (As already mentioned, the LATERAL key word is
unnecessary in this example, but we use it for clarity.)

It is often particularly handy to LEFT JO N to a LATERAL subquery, so that source rows will
appear in the result even if the LATERAL subquery produces no rows for them. For example,
if get _product _names() returns the names of products made by a manufacturer, but some
manufacturers in our table currently produce no products, we could find out which ones those are
likethis:

SELECT m name

FROM manuf acturers m LEFT JO N LATERAL get product _nanes(m i d)
pnanme ON true

VWHERE pnanme |'S NULL;

The WHERE Clause

The syntax of the WHERE Clauseis
WHERE sear ch_condition

where sear ch_condi ti on isany value expression (see Section 4.2) that returns a value of type
bool ean.

After the processing of the FROM clause is done, each row of the derived virtual table is checked
against the search condition. If the result of the condition is true, the row is kept in the output table,
otherwise (i.e., if the result is false or null) it is discarded. The search condition typically references
at least one column of the table generated in the FROMclause; this is not required, but otherwise the
WHERE clause will be fairly useless.

Note

Thejoin condition of an inner join can be written either in the WHERE clause or in the
JA Nclause. For example, these table expressions are equivalent:

FROMa, b WHERE a.id = b.id AND b.val > 5
and:

FROM a INNER JON b ON (a.id = b.id) WHERE b.val > 5

or perhaps even:

106

Queries

7.2.3.

FROM a NATURAL JO N b WHERE b.val > 5

Which one of these you useis mainly amatter of style. The JO N syntax in the FROM
clause is probably not as portable to other SQL database management systems, even
though it isin the SQL standard. For outer joins there is no choice: they must be done
in the FROMclause. The ON or USI NG clause of an outer join is not equivalent to a
VWHERE condition, becauseit resultsin the addition of rows (for unmatched input rows)
aswell asthe removal of rowsin thefinal result.

Here are some examples of WHERE clauses:

SELECT ... FROMfdt WHERE cl1 > 5
SELECT ... FROMfdt WHERE c1 IN (1, 2, 3)

SELECT ... FROM fdt WHERE c1 IN (SELECT c1 FROMt2)

SELECT ... FROMfdt WHERE c1 IN (SELECT ¢3 FROM t2 WHERE c2 =
fdt.cl + 10)

SELECT ... FROM fdt WHERE c1 BETWEEN (SELECT c¢3 FROM t2 WHERE c2 =
fdt.cl + 10) AND 100

SELECT ... FROM fdt WHERE EXI STS (SELECT c1 FROMt2 WHERE c2 >
fdt.cl)

f dt isthetable derived in the FROMclause. Rows that do not meet the search condition of the WHERE
clauseare eliminated from f dt . Notice the use of scalar subqueries asvalue expressions. Just like any
other query, the subgueries can employ complex table expressions. Notice also how f dt isreferenced
in the subqueries. Qualifying c1 asf dt. c1 isonly necessary if c1 is aso the name of a column
in the derived input table of the subquery. But qualifying the column name adds clarity even when
it is not needed. This example shows how the column naming scope of an outer query extends into
itsinner queries.

The GROUP BY and HAVI NG Clauses

After passing the WHERE filter, the derived input table might be subject to grouping, using the GROUP
BY clause, and elimination of group rows using the HAVI NG clause.

SELECT sel ect _|i st
FROM . ..
[WHERE . . .]
GROUP BY groupi ng_col um_r ef erence
[, grouping_columm_reference]...

The GROUP BY Clause is used to group together those rows in a table that have the same values
in all the columns listed. The order in which the columns are listed does not matter. The effect isto
combine each set of rows having common values into one group row that represents all rows in the
group. This is done to eliminate redundancy in the output and/or compute aggregates that apply to
these groups. For instance:

=> SELECT * FROM test1;

x|y
[S
al| 3
c| 2
b|] 5

107

Queries

al| 1
(4 rows)

=> SELECT x FROM test1l GROUP BY x;
X

a
b
c
(3 rows)

In the second query, we could not have written SELECT * FROM t est 1 GROUP BY x, because
there is no single value for the column y that could be associated with each group. The grouped-by
columns can be referenced in the select list since they have a single value in each group.

Ingenerd, if atableisgrouped, columnsthat are not listed in GROUP BY cannot be referenced except
in aggregate expressions. An example with aggregate expressionsiis:

=> SELECT x, sun{y) FROMtest1l GROUP BY x;
X | sum

(o
~ N O b

(3 rows

Here s umisan aggregate function that computesasinglevalue over theentiregroup. Moreinformation
about the available aggregate functions can be found in Section 9.20.

Tip

Grouping without aggregate expressions effectively calculatesthe set of distinct values
inacolumn. Thiscan also beachieved usingthe DI STI NCT clause (see Section 7.3.3).

Here is another example: it calculates the total sales for each product (rather than the total sales of
al products):

SELECT product_id, p.name, (sun(s.units) * p.price) AS sales
FROM products p LEFT JO N sales s USI NG (product _id)
GROUP BY product _id, p.nane, p.price;

In this example, the columns pr oduct i d, p. nane, and p. pri ce must be in the GROUP BY
clause since they are referenced in the query select list (but see below). The column s. uni t s does
not have to be in the GROUP BY list sinceit is only used in an aggregate expression (sumf . . .)),
which represents the sales of a product. For each product, the query returns a summary row about all
sales of the product.

If the productstableis set up sothat, say, pr oduct _i d istheprimary key, then it would be enough to
group by pr oduct _i d inthe above example, since name and price would be functionally dependent
on the product ID, and so there would be no ambiguity about which name and price value to return
for each product 1D group.

In strict SQL, GROUP BY can only group by columns of the source table but PostgreSQL extends
thisto also allow GROUP BY to group by columns in the select list. Grouping by value expressions
instead of simple column namesis also allowed.

108

Queries

7.2.4.

If atable has been grouped using GROUP BY, but only certain groups are of interest, the HAVI NG
clause can be used, much like a WHERE clause, to eliminate groups from the result. The syntax is:

SELECT select_list FROM... [WHERE ...] GROUP BY ...
HAVI NG bool ean_expressi on

Expressionsinthe HAVI NGclause can refer both to grouped expressionsand to ungrouped expressions
(which necessarily involve an aggregate function).

Example:

=> SELECT x, sum(y) FROM test1l GROUP BY x HAVI NG sun({y) > 3;
X | sum

T
a | 4
b | 5
(2 rows)

=> SELECT x, sum(y) FROMtestl GROUP BY x HAVING x < 'c';
X | sum

T
a | 4
b | 5
(2 rows)

Again, amorerealistic example:

SELECT product_id, p.nanme, (sun(s.units) * (p.price - p.cost)) AS
profit
FROM products p LEFT JO N sal es s USI NG (product _id)
VWHERE s. date > CURRENT_DATE - | NTERVAL '4 weeks'
GROUP BY product _id, p.nane, p.price, p.cost
HAVI NG sum(p. price * s.units) > 5000;

In the example above, the WHERE clause is selecting rows by a column that is not grouped (the
expression is only true for sales during the last four weeks), while the HAVI NG clause restricts the
output to groupswith total gross salesover 5000. Notethat the aggregate expressionsdo not necessarily
need to be the samein all parts of the query.

If aquery contains aggregate function calls, but no GROUP BY clause, grouping still occurs: the result
is asingle group row (or perhaps no rows at all, if the single row is then eliminated by HAVI NG).
The sameistrueif it contains a HAVI NG clause, even without any aggregate function calls or GROUP
BY clause.

GROUPI NG SETS, CUBE, and ROLLUP

More complex grouping operations than those described above are possible using the concept of
grouping sets. The data selected by the FROM and WHERE clauses is grouped separately by each
specified grouping set, aggregates computed for each group just as for simple GROUP BY clauses,
and then the results returned. For example:

=> SELECT * FROM itens_sol d;
brand | size | sales

_______ e
Foo | L | 10
Foo | M | 20
Bar | M | 15
Bar | L | 5
(4 rows)

109

Queries

=> SELECT brand, size, sun{sales) FROMitens_sold GROUP BY GROUPI NG
SETS ((brand), (size), ());
brand | size | sum

_______ .
Foo | | 30
Bar | | 20

| L | 15

| M | 35

| | 50
(5 rows)

Each sublist of GROUPI NG SETS may specify zero or more columnsor expressions and isinterpreted
the same way as though it were directly in the GROUP BY clause. An empty grouping set means that
all rows are aggregated down to asingle group (which is output even if no input rows were present),
as described above for the case of aggregate functions with no GROUP BY clause.

References to the grouping columns or expressions are replaced by null values in result rows for
grouping setsin which those columns do not appear. To distinguish which grouping a particular output
row resulted from, see Table 9.56.

A shorthand notation is provided for specifying two common types of grouping set. A clause of the
form

ROLLUP (el, e2, e3, ...)

represents the given list of expressions and al prefixes of the list including the empty list; thus it is
equivalent to

GROUPI NG SETS (

(el, e2, e3, ...),
(el, e2),
(el),

()
)

Thisis commonly used for analysis over hierarchical data; e.g. total salary by department, division,
and company-wide total.

A clause of theform

CUBE (el, e2, ...)

represents the given list and all of its possible subsets (i.e. the power set). Thus
CUBE (a, b, c)

isequivalent to

GROUPI NG SETS (

(a b, c),
(a b),
(a, c),
(a),
(b, ¢),
(b),
(c)
()

110

Queries

7.2.5.

Theindividual elementsof a CUBE or ROLLUP clause may beeither individual expressions, or sublists
of elements in parentheses. In the latter case, the sublists are treated as single units for the purposes
of generating the individual grouping sets. For example:

CUBE ((a, b), (c, d))
is equivalent to

GROUPI NG SETS (
(a b, c, d),

(a b),
(c, d),
()
)
and

ROLLUP (&, (b, c), d)
isequivalent to

GROUPI NG SETS (

(a b, c, d),
(a b, c),
(a)
()

)

The CUBE and ROLLUP constructs can be used either directly in the GROUP BY clause, or nested
inside a GROUPI NG SETS clause. If one GROUPI NG SETS clause is nested inside another, the
effect isthe same asif all the elements of the inner clause had been written directly in the outer clause.

If multiple grouping items are specified in asingle GROUP BY clause, then the final list of grouping
setsis the cross product of the individual items. For example:

GROUP BY a, CUBE (b, c), GROUPING SETS ((d), (e))
isequivalent to

GROUP BY GROUPI NG SETS (
(a, b, ¢, d, (a, b, c, e),

(a, b, d), (a, b, e),
(a, ¢, d), (a, ¢, e),
(a, d), (a, e)

Note

The construct (a, b) isnormally recognized in expressions as a row constructor.
Within the GROUP BY clause, this does not apply at the top levels of expressions, and
(a, b) isparsed asalist of expressions as described above. If for some reason you
need arow constructor in agrouping expression, use RON a, b).

Window Function Processing

If the query contains any window functions (see Section 3.5, Section 9.21 and Section 4.2.8), these
functions are evaluated after any grouping, aggregation, and HAVI NGfiltering isperformed. That is, if

111

Queries

the query uses any aggregates, GROUP BY, or HAVI NG, then the rows seen by the window functions
are the group rows instead of the original table rows from FROMVWHERE.

When multiple window functions are used, all the window functions having syntactically equivalent
PARTI TI ON BY and ORDER BY clausesin their window definitions are guaranteed to be evaluated
in asingle pass over the data. Therefore they will see the same sort ordering, even if the ORDER BY
does not uniquely determine an ordering. However, no guarantees are made about the evaluation of
functions having different PARTI TI ON BY or ORDER BY specifications. (In such casesasort step is
typically required between the passes of window function evaluations, and the sort is not guaranteed
to preserve ordering of rows that its ORDER BY sees as equivalent.)

Currently, window functions always require presorted data, and so the query output will be ordered
according to one or another of the window functions' PARTI TI ON BY/ORDER BY clauses. It is not
recommended to rely on this, however. Use an explicit top-level ORDER BY clause if you want to be
sure the results are sorted in a particular way.

7.3. Select Lists

7.3.1.

7.3.2.

As shown in the previous section, the table expression in the SELECT command constructs an
intermediate virtual table by possibly combining tables, views, eliminating rows, grouping, etc. This
tableisfinally passed on to processing by the select list. The select list determines which columns of
the intermediate table are actually output.

Select-List Items

The simplest kind of select list is * which emits all columns that the table expression produces.
Otherwise, aselect list isacomma-separated list of value expressions (as defined in Section 4.2). For
instance, it could be alist of column names:

SELECT a, b, ¢ FROM ...

The columns names a, b, and ¢ are either the actual names of the columns of tables referenced in the
FROMclause, or the aliases given to them as explained in Section 7.2.1.2. The name space available
in the select list is the same as in the WHERE clause, unless grouping is used, in which case it is the
same asin the HAVI NGclause.

If more than one table has a column of the same name, the table name must also be given, asin:
SELECT tbll.a, thl2.a, tbll.b FROM...

When working with multipletables, it can a so be useful to ask for all the columns of a particular table:
SELECT tbl1.*, tbl2.a FROM ...

See Section 8.16.5 for more about thet abl e_nane. * notation.

If an arbitrary value expression is used in the select list, it conceptually adds a new virtual column to
the returned table. The value expression is evaluated once for each result row, with the row's values
substituted for any column references. But the expressions in the select list do not have to reference
any columnsin the table expression of the FROMclause; they can be constant arithmetic expressions,
for instance.

Column Labels

The entries in the select list can be assigned names for subsequent processing, such as for usein an
ORDER BY clause or for display by the client application. For example:

SELECT a AS value, b + ¢ AS sum FROM ...

112

Queries

7.3.3.

If no output column nameis specified using AS, the system assigns adefault column name. For simple
column references, this is the name of the referenced column. For function calls, thisis the name of
the function. For complex expressions, the system will generate a generic name.

The AS keyword is optional, but only if the new column name does not match any PostgreSQL
keyword (see Appendix C). To avoid an accidental match to a keyword, you can double-quote the
column name. For example, VALUE is a keyword, so this does not work:

SELECT a value, b + ¢ AS sum FROM . ..
but this does:
SELECT a "value", b + ¢ AS sum FROM . ..

For protection against possible future keyword additions, it is recommended that you always either
write AS or double-quote the output column name.

Note

The naming of output columns hereisdifferent from that donein the FROMclause (see
Section 7.2.1.2). It is possible to rename the same column twice, but the name assigned
in the select list is the one that will be passed on.

DI STI NCT

After the select list has been processed, the result table can optionally be subject to the elimination of
duplicate rows. The DI STI NCT key word iswritten directly after SELECT to specify this.

SELECT DI STI NCT sel ect i st

(Instead of DI STI NCT the key word ALL can be used to specify the default behavior of retaining
all rows.)

Obvioudly, two rows are considered distinct if they differ in at least one column value. Null values
are considered equal in this comparison.

Alternatively, an arbitrary expression can determine what rows are to be considered distinct:
SELECT DI STI NCT ON (expression [, expression ...]) select_list

Here expr essi on isan arbitrary value expression that is evaluated for al rows. A set of rows for
which al the expressions are equal are considered duplicates, and only the first row of the set is kept
in the output. Note that the “first row” of a set is unpredictable unless the query is sorted on enough
columns to guarantee a unique ordering of the rows arriving at the DI STI NCT filter. (DI STI NCT
ON processing occurs after ORDER BY sorting.)

The DI STI NCT ON clause is not part of the SQL standard and is sometimes considered bad style
because of the potentially indeterminate nature of its results. With judicious use of GROUP BY and
subqueriesin FROM this construct can be avoided, but it is often the most convenient aternative.

7.4. Combining Queries

Theresults of two queries can be combined using the set operations union, intersection, and difference.
The syntax is

queryl UNION [ALL] query?2
queryl | NTERSECT [ALL] query?2
queryl EXCEPT [ALL] query2

113

Queries

qgueryl and quer y2 are queries that can use any of the features discussed up to this point. Set
operations can also be nested and chained, for example

queryl UNI ON query2 UNI ON query3
which is executed as:
(queryl UNI ON query2) UNI ON query3

UNI ON effectively appends the result of quer y2 to the result of quer y1 (athough there is no
guarantee that this is the order in which the rows are actually returned). Furthermore, it eliminates
duplicate rows from its result, in the same way as DI STI NCT, unlessUNI ON ALL is used.

| NTERSECT returns al rows that are both in the result of quer y1 and in the result of query2.
Duplicate rows are eliminated unless | NTERSECT ALL isused.

EXCEPT returns al rows that are in the result of quer y1 but not in the result of quer y2. (This
is sometimes called the difference between two queries.) Again, duplicates are eliminated unless
EXCEPT ALL isused.

In order to calculate the union, intersection, or difference of two queries, the two queries must be
“union compatible”, which meansthat they return the same number of columns and the corresponding
columns have compatible data types, as described in Section 10.5.

7.5. Sorting Rows

After aquery has produced an output table (after the select list has been processed) it can optionally
be sorted. If sorting is not chosen, the rows will be returned in an unspecified order. The actual order
in that case will depend on the scan and join plan types and the order on disk, but it must not be relied
on. A particular output ordering can only be guaranteed if the sort step is explicitly chosen.

The ORDER BY clause specifies the sort order:

SELECT sel ect _|i st
FROM t abl e_expressi on
ORDER BY sort_expressionl [ASC | DESC] [NULLS { FIRST | LAST }]
[, sort_expression2 [ASC | DESC] [NULLS { FIRST |
LAST }] ...]

The sort expression(s) can be any expression that would be valid in the query's select list. An example
is:

SELECT a, b FROM tabl el ORDER BY a + b, c;

When more than one expression is specified, the later values are used to sort rows that are equal
according to the earlier values. Each expression can befollowed by an optional ASC or DESC keyword
to set the sort direction to ascending or descending. ASC order is the default. Ascending order puts
smaller valuesfirst, where“smaller” is defined in terms of the < operator. Similarly, descending order
is determined with the > operator. *

TheNULLS FI RST and NULLS LAST options can be used to determine whether nulls appear before
or after non-null values in the sort ordering. By default, null values sort asif larger than any non-null
value; that is, NULLS FI RST isthe default for DESC order, and NULLS LAST otherwise.

Notethat the ordering optionsare considered independently for each sort column. For example ORDER
BY x, y DESCmeans ORDER BY x ASC, y DESC, which isnot the same as ORDER BY
x DESC, y DESC.

L Actually, PostgreSQL uses the default B-tree operator class for the expression's data type to determine the sort ordering for ASC and DESC.
Conventionally, data types will be set up so that the < and > operators correspond to this sort ordering, but a user-defined data type's designer
could choose to do something different.

114

Queries

A sort_expressi on can aso be the column label or number of an output column, asin:

SELECT a + b AS sum ¢ FROM tabl el ORDER BY sum
SELECT a, max(b) FROM tabl el GROUP BY a ORDER BY 1;

both of which sort by the first output column. Note that an output column name has to stand alone,
that is, it cannot be used in an expression — for example, thisis not correct:

SELECT a + b AS sum c¢ FROM tabl el ORDER BY sum + c; - -
Wr ong

Thisrestriction is made to reduce ambiguity. Thereisstill ambiguity if an ORDER BY itemisasimple
name that could match either an output column name or a column from the table expression. The
output column is used in such cases. This would only cause confusion if you use AS to rename an
output column to match some other table column's name.

ORDER BY can be applied to the result of a UNI ON, | NTERSECT, or EXCEPT combination, but in
this caseit isonly permitted to sort by output column names or numbers, not by expressions.

7.6. LI M Tand OFFSET

LI M T and OFFSET allow you to retrieve just a portion of the rows that are generated by the rest
of the query:

SELECT sel ect _|i st
FROM t abl e_expressi on
[ORDER BY ...]
[LIMT { nunber | ALL }] [OFFSET number]

If alimit count is given, no more than that many rows will be returned (but possibly fewer, if the
query itself yields fewer rows). LI M T ALL isthe same asomittingtheLl M T clause, asisLIM T
with aNULL argument.

OFFSET says to skip that many rows before beginning to return rows. OFFSET 0 is the same as
omitting the OFFSET clause, asis OFFSET with aNULL argument.

If both OFFSET and LI M T appear, then OFFSET rows are skipped before starting to count the
LI M T rowsthat are returned.

Whenusing LI M T, it isimportant to use an ORDER BY clause that constrains the result rows into a
unique order. Otherwise you will get an unpredictable subset of the query'srows. Y ou might be asking
for the tenth through twentieth rows, but tenth through twentieth in what ordering? The ordering is
unknown, unless you specified ORDER BY.

The query optimizer takes LI M T into account when generating query plans, so you are very likely
to get different plans (yielding different row orders) depending on what you give for LI M T and
OFFSET. Thus, using different LI M T/OFFSET values to select different subsets of a query result
will give inconsistent results unless you enforce a predictable result ordering with ORDER BY. This
isnhot abug; it isan inherent consegquence of the fact that SQL does not promise to deliver the results
of aquery in any particular order unless ORDER BY is used to constrain the order.

The rows skipped by an OFFSET clause still have to be computed inside the server; therefore alarge
OFFSET might be inefficient.

7.7. VALUES Lists

VALUES provides away to generate a “ constant table” that can be used in a query without having to
actually create and populate atable on-disk. The syntax is

115

Queries

VALUES (expression [, ...]) [, ...]

Each parenthesized list of expressions generates arow in the table. The lists must al have the same
number of elements (i.e., the number of columns in the table), and corresponding entries in each
list must have compatible data types. The actual data type assigned to each column of the result is
determined using the same rules as for UNI ON (see Section 10.5).

Asan example:
VALUES (1, 'one'), (2, '"two'), (3, '"three');
will return atable of two columns and three rows. It's effectively equivalent to:

SELECT 1 AS columil, 'one' AS colum?2
UNI ON ALL

SELECT 2, 'two'

UNI ON ALL

SELECT 3, 'three';

By default, PostgreSQL assigns the names col unml, col urmz2, etc. to the columns of a VALUES
table. The column names are not specified by the SQL standard and different database systems do it
differently, so it's usually better to override the default names with atable aiaslist, like this:

=> SELECT * FROM (VALUES (1, 'one'), (2, '"tw'), (3, '"three')) AS't
(numletter);
num | letter

1]
2| two
3| three
(3 rows)
Syntactically, VALUES followed by expression listsis treated as equivalent to:
SELECT sel ect _|ist FROM tabl e_expression

and can appear anywhere a SELECT can. For example, you can useit as part of a UNI ON, or attach a
sort_specificati on(ORDER BY, LI M T, and/or OFFSET) to it. VALUES is most commonly
used as the data source in an | NSERT command, and next most commonly as a subquery.

For more information see VALUES.

7.8. W THQueries (Common Table
Expressions)

7.8.1.

W TH provides away to write auxiliary statements for usein alarger query. These statements, which
are often referred to as Common Table Expressions or CTEs, can be thought of as defining temporary
tables that exist just for one query. Each auxiliary statement in a W TH clause can be a SELECT,
| NSERT, UPDATE, or DELETE; and the W TH clause itself is attached to a primary statement that
can also be a SELECT, | NSERT, UPDATE, or DELETE.

SELECT in WTH

The basic value of SELECT in W TH is to break down complicated queries into simpler parts. An
exampleis:

W TH regi onal _sal es AS (
SELECT regi on, SUM anbunt) AS total sales

116

Queries

FROM or ders
GROUP BY region
), top_regions AS (
SELECT regi on
FROM r egi onal _sal es
WHERE total sales > (SELECT SUMtotal _sales)/10 FROM
regi onal _sal es)
)
SELECT r egi on,
pr oduct,
SUM quantity) AS product_units,
SUM amount) AS product _sal es
FROM or ders
VWHERE regi on I N (SELECT regi on FROM t op_r egi ons)
GROUP BY region, product;

which displays per-product sales totals in only the top sales regions. The W TH clause defines
two auxiliary statements named r egi onal _sal es and t op_r egi ons, where the output of
regi onal sal es isused intop_regi ons and the output of t op_r egi ons is used in the
primary SELECT query. This example could have been written without W TH, but we'd have needed
two levels of nested sub-SELECTS. It's abit easier to follow thisway.

The optional RECURSI VE modifier changes W TH from a mere syntactic convenience into a feature
that accomplishes things not otherwise possiblein standard SQL . Using RECURSI VE, aW TH query
canrefer toitsown output. A very simple exampleisthisquery to sum theintegersfrom 1 through 100:

W TH RECURSI VE t(n) AS (
VALUES (1)
UNI ON ALL
SELECT n+1 FROMt WHERE n < 100

)
SELECT sum(n) FROM t;

The general form of arecursive W TH query is always anon-recursive term, then UNI ON (or UNI ON
ALL), then arecursive term, where only the recursive term can contain areference to the query's own
output. Such a query is executed as follows:

Recursive Query Evaluation

1. Evaluate the non-recursive term. For UNI ON (but not UNI ON ALL), discard duplicate rows.
Include all remaining rowsin theresult of the recursive query, and also place them in atemporary
working table.

2. Solong asthe working tableis not empty, repeat these steps:

a Evaluate the recursive term, substituting the current contents of the working table for the
recursive self-reference. For UNI ON (but not UNI ON ALL), discard duplicate rows and
rows that duplicate any previous result row. Include al remaining rows in the result of the
recursive query, and also place them in atemporary intermediate table.

b. Replace the contents of the working table with the contents of the intermediate table, then
empty the intermediate table.

Note

Strictly speaking, this process is iteration not recursion, but RECURSI VE is the
terminology chosen by the SQL standards committee.

117

Queries

In the exampl e above, the working table has just a single row in each step, and it takes on the values
from 1 through 100 in successive steps. In the 100th step, there is no output because of the WHERE
clause, and so the query terminates.

Recursive queries are typically used to deal with hierarchical or tree-structured data. A useful example
is this query to find all the direct and indirect sub-parts of a product, given only a table that shows
immediate inclusions:

W TH RECURSI VE i ncl uded_parts(sub_part, part, quantity) AS (
SELECT sub_part, part, quantity FROM parts WHERE part =
' our _product'
UNI ON ALL
SELECT p.sub_part, p.part, p.quantity
FROM i ncl uded_parts pr, parts p
WHERE p. part = pr.sub_part
)
SELECT sub_part, SUMquantity) as total _quantity
FROM i ncl uded_parts
GROUP BY sub_part

When working with recursive queriesit isimportant to be sure that the recursive part of the query will
eventually return no tuples, or else the query will loop indefinitely. Sometimes, using UNI ONinstead
of UNI ON ALL can accomplish thisby discarding rowsthat duplicate previous output rows. However,
often a cycle does not involve output rows that are completely duplicate: it may be necessary to check
just one or a few fields to see if the same point has been reached before. The standard method for
handling such situations is to compute an array of the already-visited values. For example, consider
the following query that searchesatable gr aph using al i nk field:

W TH RECURSI VE search_graph(id, link, data, depth) AS (
SELECT g.id, g.link, g.data, 1
FROM gr aph g
UNI ON ALL
SELECT g.id, g.link, g.data, sg.depth + 1
FROM graph g, search_graph sg
WHERE g.id = sg.link
)
SELECT * FROM sear ch_graph;

This query will loop if thel i nk relationships contain cycles. Because we require a“ depth” output,
just changing UNI ON ALL to UNI ON'would not eliminate the looping. Instead we need to recognize
whether we have reached the same row again while following a particular path of links. We add two
columnspat h and cycl e to the loop-prone query:

W TH RECURSI VE search_graph(id, link, data, depth, path, cycle) AS
(
SELECT g.id, g.link, g.data, 1,
ARRAY[g. i d],
fal se
FROM graph g
UNI ON ALL
SELECT g.id, g.link, g.data, sg.depth + 1,
path || g.id,
g.id = ANY(path)
FROM graph g, search_graph sg
WHERE g.id = sg.link AND NOT cycle
)
SELECT * FROM search_graph;

Aside from preventing cycles, the array valueis often useful in itsown right as representing the “ path”
taken to reach any particular row.

118

Queries

In the general case where more than one field needs to be checked to recognize a cycle, use an array
of rows. For example, if we needed to compare fieldsf 1 and f 2:

W TH RECURSI VE search_graph(id, link, data, depth, path, cycle) AS
(
SELECT g.id, g.link, g.data, 1,
ARRAY[RONg.f1, g.f2)],
fal se
FROM graph ¢
UNI ON ALL
SELECT g.id, g.link, g.data, sg.depth + 1,
path || RONg.f1, g.f2),
RONg.f1, g.f2) = ANY(path)
FROM graph g, search_graph sg
WHERE g.id = sg.link AND NOT cycle
)
SELECT * FROM sear ch_gr aph;

Tip

Omit the ROWN) syntax in the common case where only onefield needsto be checked
to recognize a cycle. This allows a simple array rather than a composite-type array to
be used, gaining efficiency.

Tip

The recursive query evaluation algorithm produces its output in breadth-first search
order. Y ou can display the resultsin depth-first search order by making the outer query
ORDER BY a“path” column constructed in thisway.

A helpful trick for testing queries when you are not certain if they might loop isto placeaLl M T in
the parent query. For example, this query would loop forever without the LI M T:

W TH RECURSI VE t (n) AS (
SELECT 1
UNI ON ALL
SELECT n+1 FROM t

)
SELECT n FROMt LIMT 100;

This works because PostgreSQL 's implementation evaluates only as many rows of a W TH query as
are actually fetched by the parent query. Using this trick in production is not recommended, because
other systems might work differently. Also, it usually won't work if you make the outer query sort the
recursive query's results or join them to some other table, because in such cases the outer query will
usually try to fetch all of the W TH query's output anyway.

A useful property of W TH queriesis that they are evaluated only once per execution of the parent
query, even if they are referred to more than once by the parent query or sibling W TH queries.
Thus, expensive calculations that are needed in multiple places can be placed within a W TH query
to avoid redundant work. Another possible application is to prevent unwanted multiple evaluations
of functions with side-effects. However, the other side of this coin is that the optimizer is less able
to push restrictions from the parent query down into a W TH query than an ordinary subquery. The
W TH query will generally be evaluated as written, without suppression of rows that the parent query
might discard afterwards. (But, as mentioned above, evaluation might stop early if the reference(s) to
the query demand only alimited number of rows.)

119

Queries

7.8.2.

The examples above only show W TH being used with SELECT, but it can be attached in the same
way to | NSERT, UPDATE, or DELETE. In each case it effectively provides temporary table(s) that
can be referred to in the main command.

Data-Modifying Statements in W TH

Y ou can use data-modifying statements (I NSERT, UPDATE, or DELETE) in W TH. Thisallows you
to perform severa different operations in the same query. An exampleis:

W TH noved_rows AS (
DELETE FROM product s
VWHERE
"date" >= '2010-10-01' AND
"date" < '2010-11-01'
RETURNI NG *
)
| NSERT | NTO products_I og
SELECT * FROM noved rows;

This query effectively moves rows from pr oduct s to products_| og. The DELETE in W TH
deletes the specified rows from pr oduct s, returning their contents by means of its RETURNI NG
clause; and then the primary query reads that output and insertsit into pr oduct s_| og.

A fine point of the above example is that the W TH clause is attached to the | NSERT, not the sub-
SELECT within the | NSERT. Thisis necessary because data-modifying statements are only allowed
in W TH clauses that are attached to the top-level statement. However, normal W TH visibility rules
apply, so it is possible to refer to the W TH statement's output from the sub-SELECT.

Data-modifying statements in W TH usually have RETURNI NG clauses (see Section 6.4), as shown
in the example above. It is the output of the RETURNI NG clause, not the target table of the data-
modifying statement, that forms the temporary table that can be referred to by the rest of the query.
If adata-modifying statement in W TH lacks a RETURNI NG clause, then it forms no temporary table
and cannot be referred to in the rest of the query. Such a statement will be executed nonetheless. A
not-particularly-useful exampleis:

WTHt AS (
DELETE FROM f 00

)
DELETE FROM bar ;

Thisexamplewould removeal rowsfromtablesf oo and bar . The number of affected rowsreported
to the client would only include rows removed from bar .

Recursive self-references in data-modifying statements are not allowed. In some cases it is possible
to work around this limitation by referring to the output of arecursive W TH, for example:

W TH RECURSI VE i ncl uded_parts(sub_part, part) AS (
SELECT sub_part, part FROM parts WHERE part = 'our_product’
UNI ON ALL
SELECT p. sub_part, p.part
FROM i ncl uded_parts pr, parts p
VWHERE p. part = pr.sub_part
)
DELETE FROM parts
WHERE part |IN (SELECT part FROM i ncl uded_parts);

This query would remove all direct and indirect subparts of a product.

Data-modifying statements in W TH are executed exactly once, and always to completion,
independently of whether the primary query readsall (or indeed any) of their output. Noticethat thisis

120

Queries

different from therulefor SELECT in W TH: as stated in the previous section, execution of aSELECT
iscarried only as far as the primary query demands its output.

The sub-statements in W TH are executed concurrently with each other and with the main query.
Therefore, when using data-modifying statementsin W TH, the order in which the specified updates
actually happen is unpredictable. All the statements are executed with the same snapshot (see
Chapter 13), so they cannot “se€” one another's effects on the target tables. This alleviates the effects
of the unpredictability of the actual order of row updates, and means that RETURNI NG data is the
only way to communicate changes between different W TH sub-statements and the main query. An
example of thisisthat in

WTH t AS (
UPDATE products SET price = price * 1.05
RETURNI NG *

)
SELECT * FROM products;

the outer SELECT would return the original prices before the action of the UPDATE, whilein

WTH t AS (
UPDATE products SET price = price * 1.05
RETURNI NG *

)
SELECT * FROM t;

the outer SELECT would return the updated data.

Trying to update the same row twice in a single statement is not supported. Only one of the
modificationstakes place, but it isnot easy (and sometimes not possible) to reliably predict which one.
This also applies to deleting a row that was already updated in the same statement: only the update
is performed. Therefore you should generally avoid trying to modify a single row twice in a single
statement. In particular avoid writing W TH sub-statementsthat coul d affect the same rows changed by
the main statement or a sibling sub-statement. The effects of such a statement will not be predictable.

At present, any table used as the target of a data-modifying statement in W TH must not have a
conditional rule, nor an ALSOrule, nor an | NSTEAD rule that expands to multiple statements.

121

Chapter 8. Data Types

PostgreSQL has a rich set of native data types available to users. Users can add new types to
PostgreSQL using the CREATE TY PE command.

Table 8.1 shows al the built-in general-purpose data types. Most of the alternative names listed in
the“Aliases’ column are the names used internally by PostgreSQL for historical reasons. In addition,
some internally used or deprecated types are available, but are not listed here.

Table8.1. Data Types

Name Aliases Description

bi gi nt int8 signed eight-byte integer

bi gseri al serial8 autoi ncrementing eight-byte
integer

bit [(n)] fixed-length bit string

bit varying [(n)] var bi t variable-length bit string

bool ean bool logical Boolean (true/false)

box rectangular box on aplane

byt ea binary data (“byte array”)

character [(n)] char [(n)] fixed-length character string

character varying|varchar [(n)] variable-length character string

[(n)]

cidr IPv4 or |Pv6 network address

circle circleon aplane

dat e calendar date (year, month, day)

doubl e precision float8 double precision floating-point
number (8 bytes)

i net IPv4 or |Pv6 host address

i nteger int,int4 signed four-byte integer

interval [fields] time span

[(p)]

j son textual JSON data

j sonb binary JSON data, decomposed

line infinite line on aplane

| seg line segment on a plane

macaddr MAC (Media Access Control)
address

macaddr 8 MAC (Media Access Control)
address (EUI-64 format)

noney currency amount

nuneric [(p, S)] decimal [(p, s)] exact numeric of selectable

precision

pat h geometric path on aplane

pg_l sn PostgreSQL Log Sequence
Number

poi nt geometric point on aplane

122

Data Types

Name Aliases Description

pol ygon closed geometric path on aplane

r eal float4 single precision floating-point
number (4 bytes)

smal | i nt int2 signed two-byte integer

smal | seri al serial 2 autoi ncrementing two-byte
integer

seri al serial4 autoi ncrementing four-byte
integer

t ext variable-length character string

time [(p)] [wthout time of day (no time zone)

tinme zone]

time [(p) 1] with timejtinetz time of day, including time zone

zone

timestamp | (p) 1 date and time (no time zone)

[without tine zone]

timestanp [(p)] withitinestanptz date and time, including time

time zone zone

tsquery text search query

t svector text search document

t xi d_snapshot user-level transaction ID
snapshot

uui d universally unique identifier

xm XML data

Compatibility

The following types (or spellings thereof) are specified by SQL: bi gi nt,bi t,bi t
varyi ng, bool ean, char, character varying, character, varchar,
dat e, doubl e precision, integer, interval, nuneric, deci mal,
real ,smal | int,tinme (withorwithouttimezone),t i mest anp (with or without
time zone), xm .

Each datatype has an external representation determined by itsinput and output functions. Many of the
built-in types have obvious external formats. However, several types are either unique to PostgreSQL,
such as geometric paths, or have several possible formats, such asthe date and time types. Some of the
input and output functions are not invertible, i.e., the result of an output function might lose accuracy
when compared to the original input.

8.1. Numeric Types

Numeric types consist of two-, four-, and eight-byte integers, four- and eight-byte floating-point
numbers, and selectable-precision decimals. Table 8.2 lists the available types.

Table 8.2. Numeric Types

Name Storage Size Description Range

smal | i nt 2 bytes small-range integer -32768 to +32767

123

Data Types

8.1.1.

8.1.2.

Name Storage Size Description Range
i nt eger 4 bytes typica choice for|-2147433648 to
integer +2147483647
bi gi nt 8 bytes large-range integer -9223372036854775808
to
+9223372036854775807
deci nal variable user-specified up to 131072 digits
precision, exact before the decima

point; up to 16383 digits
after the decimal point

numeri c variable user-specified up to 131072 digits
precision, exact before the decima
point; up to 16383 digits
after the decimal point

r eal 4 bytes variable-precision, 6 decimal digits
inexact precision

doubl e preci si on|8bytes variable-precision, 15 decima digits
inexact precision

smal | seri al 2 bytes small autoincrementing|1 to 32767
integer

seri al 4 bytes autoincrementing 1to 2147483647
integer

bi gseri al 8 bytes large autoincrementing|1 to
integer 9223372036854775807

The syntax of constants for the numeric typesis described in Section 4.1.2. The numeric types have a
full set of corresponding arithmetic operators and functions. Refer to Chapter 9 for moreinformation.
The following sections describe the typesin detail.

Integer Types

The types snal | i nt, i nt eger, and bi gi nt store whole numbers, that is, humbers without
fractional components, of various ranges. Attempts to store values outside of the allowed range will
result in an error.

Thetypei nt eger isthecommon choice, asit offersthe best balance between range, storagesize, and
performance. Thesmal | i nt typeisgenerally only used if disk spaceisat apremium. Thebi gi nt
type is designed to be used when the range of thei nt eger typeisinsufficient.

SQL only specifiestheinteger typesi nt eger (ori nt),smal | i nt,andbi gi nt . Thetype names
int2,int4,andi nt 8 are extensions, which are also used by some other SQL database systems.

Arbitrary Precision Numbers

Thetypenuner i ¢ canstorenumberswith avery large number of digits. Itisespecialy recommended
for storing monetary amounts and other quantities where exactness is required. Calculations with
nuneri c values yield exact results where possible, e.g. addition, subtraction, multiplication.
However, calculations on nuner i ¢ values are very slow compared to the integer types, or to the
floating-point types described in the next section.

We use the following terms below: The scale of a nuneri c isthe count of decimal digits in the
fractiona part, to the right of the decimal point. The precision of a nuneri c isthe total count of
significant digitsin the whole number, that is, the number of digits to both sides of the decimal point.
So the number 23.5141 has a precision of 6 and a scale of 4. Integers can be considered to have a
scale of zero.

124

Data Types

Both the maximum precision and the maximum scale of anuner i ¢ column can be configured. To
declare acolumn of type nuner i ¢ use the syntax:

NUMERI C(pr eci si on, scal e)

The precision must be positive, the scale zero or positive. Alternatively:
NUMERI C(pr eci si on)

selects ascale of 0. Specifying:

NUMERI C

without any precision or scale creates a column in which numeric values of any precision and scale
can be stored, up to theimplementation limit on precision. A column of thiskind will not coerce input
values to any particular scale, whereas nuner i ¢ columns with a declared scale will coerce input
valuesto that scale. (The SQL standard requires adefault scale of 0, i.e., coercion to integer precision.
Wefind thisabit useless. If you're concerned about portability, always specify the precision and scale
explicitly.)

Note

The maximum allowed precision when explicitly specified in the type declaration is
1000; NUMERI C without a specified precision is subject to the limits described in
Table 8.2.

If the scale of a value to be stored is greater than the declared scale of the column, the system will
round the value to the specified number of fractional digits. Then, if the number of digits to the left of
the decimal point exceeds the declared precision minus the declared scale, an error is raised.

Numeric values are physically stored without any extraleading or trailing zeroes. Thus, the declared
precision and scale of a column are maximums, not fixed allocations. (In this sense the numner i c
typeis more akin to var char (n) thanto char (n).) The actual storage requirement is two bytes
for each group of four decimal digits, plus three to eight bytes overhead.

In addition to ordinary numeric values, the nurrer i ¢ type allows the special value NaN, meaning
“not-a-number”. Any operation on NaN yields another NaN. When writing this value as a constant in
an SQL command, you must put quotes around it, for example UPDATE t abl e SET x = ' NaN .
On input, the string NaN is recognized in a case-insensitive manner.

Note

In most implementations of the “not-a-number” concept, NaNis not considered equal
to any other numeric value (including NaN). In order to alow nuneri ¢ values to
be sorted and used in tree-based indexes, PostgreSQL treats NaN values as equal, and
greater than all non-NaN values.

Thetypesdeci mal and nuneri ¢ are equivalent. Both types are part of the SQL standard.

When rounding values, the nuner i ¢ type roundsties away from zero, while (on most machines) the
real anddoubl e preci si on typesround ties to the nearest even number. For example:

SELECT x,
round(x: : numeric) AS numround,

125

Data Types

8.1.3.

round(x: : doubl e precision) AS dbl_round
FROM generate_series(-3.5, 3.5, 1) as x;

X | numround | dbl _round
______ e,
-3.5 | -4 | -4
-2.5 | -3 | -2
-1.5 | -2 | -2
-0.5 | -1 | -0

0.5 | 1] 0

1.5 | 2| 2

2.5 | 3 2

3.5 | 4 | 4
(8 rows)

Floating-Point Types

The datatypesr eal and doubl e preci si on are inexact, variable-precision numeric types. In
practice, these types are usualy implementations of |IEEE Standard 754 for Binary Floating-Point
Arithmetic (single and double precision, respectively), to the extent that the underlying processor,
operating system, and compiler support it.

Inexact means that some values cannot be converted exactly to the internal format and are stored as
approximations, so that storing and retrieving avalue might show slight discrepancies. Managing these
errors and how they propagate through calculations is the subject of an entire branch of mathematics
and computer science and will not be discussed here, except for the following points:

« If you require exact storage and calculations (such as for monetary amounts), use the nureri c
typeinstead.

 If you want to do complicated calculations with these types for anything important, especially
if you rely on certain behavior in boundary cases (infinity, underflow), you should evaluate the
implementation carefully.

» Comparing two floating-point values for equality might not always work as expected.

On most platforms, ther eal type has arange of at least 1E-37 to 1E+37 with a precision of at |east
6 decimal digits. Thedoubl e pr eci si on typetypically hasarange of around 1E-307 to 1E+308
withaprecision of at least 15 digits. Valuesthat aretoo large or too small will cause an error. Rounding
might take place if the precision of an input number is too high. Numbers too close to zero that are
not representable as distinct from zero will cause an underflow error.

Note

The extra float_digits setting controls the number of extra significant digits included
when afloating point valueis converted to text for output. With the default value of O,
the output is the same on every platform supported by PostgreSQL . Increasing it will
produce output that more accurately representsthe stored value, but may be unportable.

In addition to ordinary numeric values, the floating-point types have several specia values:

Infinity
-Infinity
NaN

These represent the IEEE 754 specia values “infinity”, “negative infinity”, and “not-a-number”,
respectively. (On a machine whose floating-point arithmetic does not follow |EEE 754, these values

126

Data Types

8.1.4.

will probably not work as expected.) When writing these values as constants in an SQL command,
you must put quotes around them, for example UPDATE table SET x = '-Infinity'.On
input, these strings are recognized in a case-insensitive manner.

Note

| EEE754 specifiesthat NaN should not compare equal to any other floating-point value
(including NaN). In order to allow floating-point values to be sorted and used in tree-
based indexes, PostgreSQL treats NaN values as equal, and greater than all non-NaN
values.

PostgreSQL al so supports the SQL -standard notationsf | oat andf | oat (p) for specifying inexact
numeric types. Here, p specifies the minimum acceptable precision in binary digits. PostgreSQL
acceptsf | oat (1) tof | oat (24) asselectingther eal type, whilef | oat (25) tofl oat (53)
select doubl e preci si on. Vauesof p outside the allowed range draw an error. f | oat with no
precision specified is taken to mean doubl e pr eci si on.

Note

Theassumptionthatr eal anddoubl e preci si on have exactly 24 and 53 bitsin
the mantissarespectively is correct for | EEE-standard floating point implementations.
On non-1EEE platforms it might be off alittle, but for ssimplicity the same ranges of
p are used on all platforms.

Serial Types

Note

This section describes a PostgreSQL-specific way to create an autoincrementing
column. Another way is to use the SQL-standard identity column feature, described
at CREATE TABLE.

Thedatatypessnal | seri al ,seri al andbi gseri al arenottruetypes, but merely anotational
convenience for creating unique identifier columns (similar to the AUTO_| NCREMENT property
supported by some other databases). In the current implementation, specifying:

CREATE TABLE t abl enane (
col nane SERI AL

)
is equivalent to specifying:

CREATE SEQUENCE t abl enane_col nane_seq;
CREATE TABLE t abl enane (

col nane integer NOT NULL DEFAULT
next val ('t abl ename_col name_seq')

)
ALTER SEQUENCE t abl ename_col name_seq OANED BY t abl enamne. col nane;

Thus, we have created an integer column and arranged for its default values to be assigned from a
sequence generator. A NOT NULL constraint is applied to ensure that a null value cannot be inserted.
(In most cases you would also want to attach a UNI QUE or PRI MARY KEY constraint to prevent

127

Data Types

duplicate values from being inserted by accident, but this is not automatic.) Lastly, the sequence is
marked as “owned by” the column, so that it will be dropped if the column or table is dropped.

Note

Because smal | serial, serial and bigserial are implemented using
seguences, there may be "holes" or gaps in the sequence of values which appears in
the column, even if no rows are ever deleted. A value allocated from the sequenceis
still "used up" even if arow containing that value is never successfully inserted into
thetable column. Thismay happen, for example, if theinserting transaction rolls back.
Seenext val () in Section 9.16 for details.

To insert the next value of the sequenceintotheseri al column, specify that theseri al column
should be assigned its default value. This can be done either by excluding the column from the list of
columnsinthe | NSERT statement, or through the use of the DEFAULT key word.

The type names seri al and seri al 4 are equivalent; both create i nt eger columns. The type
names bi gseri al andseri al 8 work the same way, except that they create abi gi nt column.
bi gseri al should be used if you anticipate the use of more than 23t identifiers over the lifetime of
the table. Thetype namessnal | seri al andseri al 2 also work the same way, except that they
createasmal | i nt column.

The sequence created for aseri al column is automatically dropped when the owning column is
dropped. Y ou can drop the sequence without dropping the column, but this will force removal of the
column default expression.

8.2. Monetary Types

The noney type stores a currency amount with a fixed fractional precision; see Table 8.3. The
fractional precision is determined by the database'sIc_monetary setting. The range shown in the table
assumes there are two fractional digits. Input is accepted in a variety of formats, including integer
and floating-point literals, as well astypical currency formatting, suchas' $1, 000. 00" . Output is
generaly in the latter form but depends on the locale.

Table8.3. Monetary Types

Name Storage Size Description Range

noney 8 bytes currency amount -92233720368547758.08
to
+92233720368547758.07

Since the output of this data type is locale-sensitive, it might not work to load noney data into a
database that has a different setting of | c_rnonet ar y. To avoid problems, before restoring a dump
into a new database make sure | ¢_rnonet ar y has the same or equivaent value as in the database
that was dumped.

Values of thenuneri c, i nt, and bi gi nt datatypes can be cast to noney. Conversion from the
real anddoubl e preci si on datatypes can be done by castingto numer i c¢ first, for example:

SELECT ' 12.34'::float8::numeric::noney;

However, thisis not recommended. Floating point numbers should not be used to handle money due
to the potential for rounding errors.

A noney value can be cast to nunrer i ¢ without loss of precision. Conversion to other types could
potentially lose precision, and must also be done in two stages:

128

Data Types

SELECT ' 52093. 89" : : noney: : nuneric::fl oat8;

Division of a noney value by an integer value is performed with truncation of the fractional part
towards zero. To get a rounded result, divide by a floating-point value, or cast the noney value to
nuner i ¢ before dividing and back to noney afterwards. (The latter is preferable to avoid risking
precision loss.) When a noney value is divided by another noney value, the result is doubl e
pr eci si on (i.e, apurenumber, not money); the currency units cancel each other out in thedivision.

8.3. Character Types

Table 8.4. Character Types

Name Description

character varying(n),varchar(n) variable-length with limit
character(n),char(n) fixed-length, blank padded
t ext variable unlimited length

Table 8.4 shows the general -purpose character types available in PostgreSQL.

SQL definestwo primary character types. char act er varyi ng(n) andchar act er (n) ,where
n isapositive integer. Both of these types can store strings up to n characters (not bytes) inlength. An
attempt to store a longer string into a column of these types will result in an error, unless the excess
characters are all spaces, in which case the string will be truncated to the maximum length. (This
somewhat bizarre exception is required by the SQL standard.) If the string to be stored is shorter than
the declared length, values of type char act er will be space-padded; values of type char act er

varyi ng will simply store the shorter string.

If one explicitly casts avalue to char act er varyi ng(n) or character(n), then an over-
length value will be truncated to n characters without raising an error. (This too is required by the
SQL standard.)

The notations var char(n) and char(n) are diases for character varyi ng(n)
and character(n), respectively. character without length specifier is equivaent to
character (1) .lfcharacter varyi ngisusedwithoutlength specifier, thetypeacceptsstrings
of any size. The latter is a PostgreSQL extension.

In addition, PostgreSQL providesthet ext type, which storesstrings of any length. Although thetype
t ext isnotinthe SQL standard, severa other SQL database management systems have it as well.

Values of type char act er are physically padded with spaces to the specified width n, and are
stored and displayed that way. However, trailing spaces are treated as semantically insignificant and
disregarded when comparing two values of type char act er . In collations where whitespace is
significant, this behavior can produce unexpected results; for example SELECT 'a ' :: CHAR(2)

collate "C' < E a\n'::CHAR(2) returnstrue, even though Clocale would consider a space
to be greater than a newline. Trailing spaces are removed when converting a char act er value to
one of the other string types. Note that trailing spaces are semantically significant in char act er

varyi ng andt ext values, and when using pattern matching, that isL| KE and regular expressions.

The storage requirement for a short string (up to 126 bytes) is 1 byte plus the actual string, which
includesthe space paddinginthe caseof char act er . Longer stringshave4 bytes of overhead instead
of 1. Long strings are compressed by the system automatically, so the physical requirement on disk
might be less. Very long values are also stored in background tables so that they do not interfere with
rapid access to shorter column values. In any case, the longest possible character string that can be
stored isabout 1 GB. (The maximum valuethat will beallowed for n inthe datatype declarationisless
than that. It wouldn't be useful to change this because with multibyte character encodings the number
of characters and bytes can be quite different. If you desire to store long strings with no specific upper

129

Data Types

limit, use t ext or character varyi ng without a length specifier, rather than making up an
arbitrary length limit.)

Tip

There is no performance difference among these three types, apart from increased
storage space when using the blank-padded type, and afew extra CPU cyclesto check
thelength when storing into alength-constrained column. Whilechar act er (n) has
performance advantages in some other database systems, there is no such advantage
in PostgreSQL; in fact char act er (n) isusualy the slowest of the three because
of its additional storage costs. In most situationst ext or character varying
should be used instead.

Refer to Section 4.1.2.1 for information about the syntax of string literals, and to Chapter 9 for
information about available operators and functions. The database character set determines the
character set used to store textua values; for more information on character set support, refer to
Section 23.3.

Example 8.1. Using the Character Types

CREATE TABLE testl (a character(4));
I NSERT | NTO test1 VALUES (' ok');

SELECT a, char_length(a) FROMtestl; --
a | char_length

______ o,

ok | 2

CREATE TABLE test2 (b varchar(5));

I NSERT | NTO test2 VALUES (' ok');

I NSERT | NTO test2 VALUES (' good "

| NSERT | NTO test2 VALUES ('too long');

ERROR: value too long for type character varying(5)

I NSERT | NTO test2 VALUES ('too long' ::varchar(5)); -- explicit
truncation

SELECT b, char_Iength(b) FROM test2;

b | char_length
_______ o,
ok | 2
good | 5
too | | 5

Thechar _| engt h function is discussed in Section 9.4.

There are two other fixed-length character types in PostgreSQL, shown in Table 8.5. The nane type
exists only for the storage of identifiers in the internal system catalogs and is not intended for use
by the general user. Itslength is currently defined as 64 bytes (63 usable characters plus terminator)
but should be referenced using the constant NAMEDATALEN in C source code. The length is set at
compiletime (and is therefore adjustable for specia uses); the default maximum length might change
inafuturerelease. Thetype" char " (notethe quotes) isdifferent fromchar (1) inthat it only uses
one byte of storage. It isinternally used in the system catalogs as a simplistic enumeration type.

Table 8.5. Special Character Types

Name Storage Size Description
"char" 1 byte single-byte internal type
nane 64 bytes internal type for object names

130

Data Types

8.4. Binary Data Types

8.4.1.

8.4.2.

The byt ea datatype allows storage of binary strings; see Table 8.6.

Table 8.6. Binary Data Types

Name Storage Size Description
byt ea 1 or 4 bytesplusthe actual binary|variable-length binary string
string

A binary string is a sequence of octets (or bytes). Binary strings are distinguished from character
stringsin two ways. First, binary strings specifically allow storing octets of value zero and other “non-
printable” octets (usually, octets outside the range 32 to 126). Character strings disallow zero octets,
and also disallow any other octet values and sequences of octet values that are invalid according to
the database's selected character set encoding. Second, operations on binary strings process the actual
bytes, whereas the processing of character strings depends on locale settings. In short, binary strings
are appropriate for storing datathat the programmer thinks of as* raw bytes’, whereas character strings
are appropriate for storing text.

Thebyt ea type supportstwo external formats for input and output: PostgreSQL 's historical “ escape”
format, and “hex” format. Both of these are always accepted on input. The output format depends on
the configuration parameter bytea output; the default is hex. (Note that the hex format was introduced
in PostgreSQL 9.0; earlier versions and some tools don't understand it.)

The SQL standard defines a different binary string type, called BLOB or Bl NARY LARGE OBJECT.
The input format is different from byt ea, but the provided functions and operators are mostly the
same.

byt ea Hex Format

The “hex” format encodes binary data as 2 hexadecimal digits per byte, most significant nibble first.
The entire string is preceded by the sequence\ x (to distinguish it from the escape format). In some
contexts, the initial backslash may need to be escaped by doubling it, in the same cases in which
backslashes have to be doubled in escape format; details appear below. The hexadecimal digits can
be either upper or lower case, and whitespace is permitted between digit pairs (but not within a digit
pair nor in the starting \ x sequence). The hex format is compatible with a wide range of external
applications and protocols, and it tends to be faster to convert than the escape format, so its use is
preferred.

Example:

SELECT E'\\ xDEADBEEF' ;

byt ea Escape Format

The“escape” format isthe traditional PostgreSQL format for thebyt ea type. It takesthe approach of
representing abinary string asasequenceof ASCII characters, while converting those bytesthat cannot
be represented as an ASCI| character into special escape sequences. If, from the point of view of the
application, representing bytes as characters makes sense, then this representation can be convenient.
But in practiceit is usually confusing because it fuzzes up the distinction between binary strings and
character strings, and also the particular escape mechanism that was chosen is somewhat unwieldy.
So this format should probably be avoided for most new applications.

When entering byt ea values in escape format, octets of certain values must be escaped, while all
octet values can be escaped. In general, to escape an octet, convert it into its three-digit octal value
and precede it by a backslash (or two backslashes, if writing the value as a literal using escape string

131

Data Types

syntax). Backslash itself (octet value 92) can alternatively be represented by double backslashes.
Table 8.7 shows the characters that must be escaped, and givesthe alternative escape sequences where
applicable.

Table8.7. byt ea Literal Escaped Octets

Decimal Octet | Description Escaped Input|Example Output
Value Representation Representation
0 zero octet E' \\ 000 SELECT E'\ [\ 000
\ 000" : : byt ea;

39 single quote “'*'" or E\|SELECT '

\ 047’ E'\''::bytea;
92 backslash E\\\\'" or E'\ |SELECT E \\\ |\\

\ 134 \'": ! bytea;
0 to 31 and 127 to|“non-printable” E' \\ xxx"' (octal | SELECT E'\|\001
255 octets value) \001': : byt ea;

The requirement to escape non-printable octets varies depending on local e settings. In some instances
you can get away with |eaving them unescaped. Notethat theresult in each of theexamplesin Table 8.7
was exactly one octet in length, even though the output representation is sometimes more than one
character.

The reason multiple backslashes are required, as shown in Table 8.7, is that an input string written
as a string literal must pass through two parse phases in the PostgreSQL server. The first backslash
of each pair isinterpreted as an escape character by the string-literal parser (assuming escape string
syntax is used) and is therefore consumed, leaving the second backslash of the pair. (Dollar-quoted
strings can be used to avoid thislevel of escaping.) The remaining backslash isthen recognized by the
byt ea input function as starting either a three digit octal value or escaping another backslash. For
example, a string literal passed to the server asE' \ \ 001" becomes\ 001 after passing through the
escape string parser. The\ 001 is then sent to the byt ea input function, where it is converted to a
single octet with adecimal value of 1. Note that the single-quote character is not treated specially by
byt ea, so it follows the normal rulesfor string literals. (See also Section 4.1.2.1.)

Byt ea octets are sometimes escaped when output. In general, each “non-printable” octet is converted
into its equivalent three-digit octal value and preceded by one backslash. Most “printable” octets are
represented by their standard representation in the client character set. The octet with decimal value
92 (backslash) is doubled in the output. Details arein Table 8.8.

Table 8.8. byt ea Output Escaped Octets

Decimal Octet | Description Escaped Output|Example Output Result
Value Representation
92 backslash \\ SELECT E'\ |\
\ 134" : : byt ea;
0 to 31 and 127 to|“non-printable” \ xxx (octal value) | SELECT E\|\001
255 octets \ 001" : : byt ea;
32t0 126 “printable” octets |client character set| SELECT E\ |~
representation \ 176" : : byt ea;

Depending on the front end to PostgreSQL you use, you might have additional work to do in terms of
escaping and unescaping byt ea strings. For example, you might also have to escape line feeds and
carriage returns if your interface automatically transates these.

8.5. Date/Time Types

132

Data Types

PostgreSQL supports the full set of SQL date and time types, shown in Table 8.9. The operations
available onthese datatypesare described in Section 9.9. Dates are counted according to the Gregorian
calendar, even in years before that calendar was introduced (see Section B.4 for more information).

Table 8.9. Date/Time Types

Name Storage Size | Description Low Value High Value |Resolution
ti mestanp |8bytes both date and|4713BC 294276 AD 1 microsecond
[(p)] time (no time
[without Zone)
time zone |
ti mestanp |8bytes both date and|4713BC 294276 AD 1 microsecond
[(p)] time, with time
with tine zone
zone
date 4 bytes date (notime of |4713 BC 5874897 AD |1day
day)
tinme 8 bytes time of day (no|00:00:00 24:00:00 1 microsecond
[(p) 1] date)

[without
time zone |

time 12 bytes time of day (no|00:00:00+1459 |24:00:00-1459 |1 microsecond
[(p)] date), with time
with tine zone
zone
i nterval [|16 bytes timeinterval |-178000000 178000000 1 microsecond
fields] years years
[(p)]
Note

The SQL standard requires that writing just ti mestanp be equivalent to
timestanp without time zone, and PostgreSQL honors that behavior.
ti mest anpt z isaccepted asan abbreviationfort i mestanp with ti ne zone;
thisis a PostgreSQL extension.

time,timestanp,andi nt erval acceptanoptional precisionvaluep which specifiesthe number
of fractional digits retained in the seconds field. By default, there is no explicit bound on precision.
The allowed range of p isfrom 0 to 6.

Thei nt er val type has an additional option, which isto restrict the set of stored fields by writing
one of these phrases:

YEAR

MONTH

DAY

HOUR

M NUTE

SECOND

YEAR TO MONTH
DAY TO HOUR
DAY TO M NUTE
DAY TO SECOND
HOUR TO M NUTE

133

Data Types

8.5.1.

HOUR TO SECOND
M NUTE TO SECOND

Notethat if bothf i el ds and p are specified, thef i el ds must include SECOND, sincethe precision
applies only to the seconds.

Thetypetime with time zone isdefined by the SQL standard, but the definition exhibits
properties which lead to questionable usefulness. In most cases, a combination of dat e, ti e,
timestanp without tine zone,andtinmestanp with time zone should provide a
complete range of date/time functionality required by any application.

The types absti ne and rel ti nme are lower precision types which are used internally. You are
discouraged from using these types in applications; these interna types might disappear in a future
release.

Date/Time Input

Dateandtimeinput isaccepted in almost any reasonableformat, including | SO 8601, SQL -compatible,
traditional POSTGRES, and others. For some formats, ordering of day, month, and year in date
input is ambiguous and there is support for specifying the expected ordering of these fields. Set the
DateStyle parameter to MDY to select month-day-year interpretation, DMY to select day-month-year
interpretation, or YMD to select year-month-day interpretation.

PostgreSQL is more flexible in handling date/time input than the SQL standard requires. See
Appendix B for the exact parsing rules of date/time input and for the recognized text fieldsincluding
months, days of the week, and time zones.

Remember that any date or time literal input needs to be enclosed in single quotes, like text strings.
Refer to Section 4.1.2.7 for more information. SQL requires the following syntax

type [(p)] 'value

where p is an optiona precision specification giving the number of fractional digits in the seconds
field. Precision can be specified fort i me, ti mest anp, andi nt er val types, and can range from
0to 6. If no precision is specified in a constant specification, it defaults to the precision of the literal
value (but not more than 6 digits).

8.5.1.1. Dates

Table 8.10 shows some possible inputs for the dat e type.

Table 8.10. Date | nput

Example Description

1999-01-08 SO 8601; January 8 in any mode (recommended
format)

January 8, 1999 unambiguousin any dat est yl e input mode

1/8/1999 January 8 in MDY mode; August 1 in DMY mode

1/18/1999 January 18 in MDY mode; rejected in other modes

01/02/03 January 2, 2003 in MDY mode; February 1, 2003
in DMY mode; February 3, 2001 in YMD mode

1999-Jan-08 January 8 in any mode

Jan-08-1999 January 8 in any mode

08-Jan-1999 January 8 in any mode

99-Jan-08 January 8 in YMD mode, else error

134

Data Types

8.5.1.2.

Example Description

08-Jan-99 January 8, except error in YND mode
Jan-08-99 January 8, except error in YMD mode
19990108 SO 8601; January 8, 1999 in any mode
990108 SO 8601; January 8, 1999 in any mode
1999.008 year and day of year

J2451187 Julian date

January 8, 99 BC year 9 BC

Times

Thetime-of-day typesaretime [(p)] without tinme zoneandtinme [(p)] with
time zone.tinme doneisequivalenttoti me wi thout tine zone.

Valid input for these types consists of atime of day followed by an optional time zone. (See Table8.11
and Table8.12)) If atimezoneisspecifiedintheinputfort i me wi t hout ti ne zone,itisslently
ignored. You can also specify a date but it will be ignored, except when you use a time zone name
that involves adaylight-savings rule, such as Arrer i ca/ New_Yor K. In this case specifying the date
is required in order to determine whether standard or daylight-savings time applies. The appropriate
time zone offset isrecorded inthetine with ti ne zone vaue

Table8.11. Time Input

Example Description

04: 05: 06. 789 SO 8601

04: 05: 06 SO 8601

04: 05 1SO 8601

040506 SO 8601

04: 05 AM same as 04:05; AM does not affect value
04: 05 PM same as 16:05; input hour must be <= 12
04: 05: 06. 789-8 1SO 8601

04: 05: 06- 08: 00 SO 8601

04: 05- 08: 00 SO 8601

040506- 08 SO 8601

04: 05: 06 PST time zone specified by abbreviation
2003- 04-12 04: 05: 06 Aner i cal |time zone specified by full name
New_Yor k

Table8.12. Time Zone I nput

Example Description

PST Abbreviation (for Pacific Standard Time)
Aneri ca/ New_Yor k Full time zone name

PST8PDT POSI X-style time zone specification

-8: 00 1SO-8601 offset for PST

- 800 ISO-8601 offset for PST

-8 ISO-8601 offset for PST

zul u Military abbreviation for UTC

135

Data Types

Example Description

z Short form of zul u

Refer to Section 8.5.3 for more information on how to specify time zones.

8.5.1.3. Time Stamps

Valid input for the time stamp types consists of the concatenation of a date and a time, followed by
an optional time zone, followed by an optional AD or BC. (Alternatively, AD/BC can appear before the
time zone, but thisis not the preferred ordering.) Thus:

1999- 01- 08 04: 05: 06

and:

1999- 01- 08 04: 05: 06 -8:00

are valid values, which follow the 1SO 8601 standard. In addition, the common format:
January 8 04:05:06 1999 PST

is supported.

The SQL standard differentiatest i mestanp without tine zoneandtinestanp wth
ti me zone literalsby the presence of a“+” or “-” symbol and time zone offset after the time. Hence,
according to the standard,

TI MESTAMP ' 2004-10-19 10: 23: 54'
isati nestanp wi thout tine zone,while
TI MESTAMP ' 2004- 10-19 10: 23: 54+02'

isatinestanp with tinme zone. PostgreSQL never examines the content of aliteral string
before determining its type, and therefore will treat both of the above ast i mest anp wi t hout
time zone. Toensurethat aliteral istreated asti mestanp with tine zone, giveitthe
correct explicit type:

TI MESTAMP W TH TI ME ZONE ' 2004-10- 19 10: 23: 54+02'

In aliteral that has been determinedto bet i nest anp wi t hout tinme zone, PostgreSQL will
silently ignore any time zoneindication. That is, the resulting valueis derived from the date/timefields
in the input value, and is not adjusted for time zone.

Fortinmestanp with tine zone, theinternaly stored value is dways in UTC (Universal
Coordinated Time, traditionally known as Greenwich Mean Time, GMT). An input value that has an
explicit time zone specified is converted to UTC using the appropriate offset for that time zone. If
no time zone is stated in the input string, then it is assumed to be in the time zone indicated by the
system's TimeZone parameter, and is converted to UTC using the offset for thet i nezone zone.

Whenatimestanp with tine zone vaueisoutput, it isaways converted from UTC to the
current t i mezone zone, and displayed as local time in that zone. To see the time in another time
zone, either changet i mezone or usethe AT TI ME ZONE construct (see Section 9.9.3).

Conversionsbhetweent i mest anp wi t hout time zoneandti nestanp with ti ne zone
normally assume that thet i nest anp wi t hout tinme zone value should be taken or given as
ti mezone loca time. A different time zone can be specified for the conversion using AT TI MVE
ZONE.

8.5.1.4. Special Values

136

Data Types

8.5.2.

PostgreSQL supports several specia date/time input values for convenience, as shown in Table 8.13.
Thevaluesinfinity and -i nfinity are specialy represented inside the system and will be
displayed unchanged; but the othersare simply notational shorthandsthat will be converted to ordinary
date/time values when read. (In particular, now and related strings are converted to a specific time
value as soon as they are read.) All of these values need to be enclosed in single quotes when used
as constants in SQL commands.

Table 8.13. Special Date/Time Inputs

Input String Valid Types Description

epoch dat e, ti nest anp 1970-01-01 00:00:00+00 (Unix
system time zero)

infinity dat e, ti nest anp |ater than all other time stamps

-infinity dat e, ti nest anp earlier than all other time stamps

now date,tine,tinestanp current transaction's start time

t oday dat e, ti nest anp midnight today

t onor r ow dat e, ti nest anp midnight tomorrow

yest er day dat e, ti nest anp midnight yesterday

allballs time 00:00:00.00 UTC

The following SQL-compatible functions can also be used to obtain the current time value
for the corresponding data type: CURRENT_DATE, CURRENT_TI ME, CURRENT_TI MESTAMP,
LOCALTI ME, LOCALTI MESTAMP. The latter four accept an optional subsecond precision
specification. (See Section 9.9.4.) Note that these are SQL functions and are not recognized in data
input strings.

Date/Time Output

The output format of the date/time types can be set to one of the four styles 1SO 8601, SQL (Ingres),
traditional POSTGRES (Unix date format), or German. The default is the ISO format. (The SQL
standard requires the use of the 1 SO 8601 format. The name of the“SQL" output format is a historical
accident.) Table 8.14 shows examples of each output style. The output of thedat e andt i e typesis
generaly only the date or time part in accordance with the given examples. However, the POSTGRES
style outputs date-only valuesin 1SO format.

Table 8.14. Date/Time Output Styles

Style Specification Description Example

| SO ISO 8601, SQL standard 1997-12-17
07:37: 16-08

SQL traditional style 12/ 17/ 1997
07:37:16.00 PST

Post gres origina style Wed Dec 17 07:37:16
1997 PST

Ger man regional style 17.12. 1997
07:37:16.00 PST

Note

ISO 8601 specifies the use of uppercase letter T to separate the date and time.
PostgreSQL accepts that format on input, but on output it uses a space rather than T,

137

Data Types

8.5.3.

as shown above. Thisis for readability and for consistency with RFC 3339 as well as
some other database systems.

In the SQL and POSTGRES styles, day appears before month if DMY field ordering has been
specified, otherwise month appears before day. (See Section 8.5.1 for how this setting also affects
interpretation of input values.) Table 8.15 shows examples.

Table 8.15. Date Order Conventions

dat est yl e Setting Input Ordering Example Output

SQL, Dw day/mont h/year 17/ 12/ 1997
15: 37: 16. 00 CET

sSQ., MY nmont h/day/year 12/ 17/ 1997
07:37:16. 00 PST

Post gres, DWY day/mont h/year Wwed 17 Dec 07:37:16
1997 PST

The date/time style can be selected by the user using the SET dat est yl e command, the DateStyle
parameter in the post gresql . conf configuration file, or the PGDATESTYLE environment
variable on the server or client.

Theformatting functiont o_char (see Section 9.8) isalso available asamore flexible way to format
date/time output.

Time Zones

Time zones, and time-zone conventions, are influenced by political decisions, not just earth geometry.
Time zones around the world became somewhat standardized during the 1900s, but continue to be
prone to arbitrary changes, particularly with respect to daylight-savings rules. PostgreSQL uses the
widely-used IANA (Olson) time zone database for information about historical time zone rules. For
times in the future, the assumption is that the latest known rules for a given time zone will continue
to be observed indefinitely far into the future.

PostgreSQL endeavorsto be compatiblewith the SQL standard definitionsfor typical usage. However,
the SQL standard has an odd mix of date and time types and capabilities. Two obvious problems are:

» Although the dat e type cannot have an associated time zone, thet i me type can. Time zonesin
the real world have little meaning unless associated with a date as well as a time, since the offset
can vary through the year with daylight-saving time boundaries.

e Thedefault time zoneis specified as a constant numeric offset from UTC. It isthereforeimpossible
to adapt to daylight-saving time when doing date/time arithmetic across DST boundaries.

To address these difficulties, we recommend using date/time types that contain both date and time
when using time zones. We do not recommend using thetypetime with time zone (though
it is supported by PostgreSQL for legacy applications and for compliance with the SQL standard).
PostgreSQL assumes your local time zone for any type containing only date or time.

All timezone-aware dates and times are stored internally in UTC. They are converted to local timein
the zone specified by the TimeZone configuration parameter before being displayed to the client.

PostgreSQL allows you to specify time zones in three different forms:

« A full time zone name, for example Amer i ca/ New_Yor k. The recognized time zone names are
listedinthepg_ti nezone_names view (see Section 51.90). PostgreSQL uses the widely-used
IANA time zone data for this purpose, so the same time zone names are also recognized by much
other software.

138

Data Types

8.5.4.

A time zone abbreviation, for example PST. Such a specification merely defines a particul ar offset
from UTC, in contrast to full time zone names which can imply a set of daylight savings transition-
daterules aswell. The recognized abbreviationsarelisted inthe pg_t i nezone_abbr evs view
(see Section 51.89). You cannot set the configuration parameters TimeZone or log_timezone to a
time zone abbreviation, but you can use abbreviations in date/time input values and with the AT
TI ME ZONE operator.

* In addition to the timezone names and abbreviations, PostgreSQL will accept POSIX-style
time zone specifications of the form STDof f set or STDof f set DST, where STD is a zone
abbreviation, of f set is a numeric offset in hours west from UTC, and DST is an optional
daylight-savings zone abbreviation, assumed to stand for one hour ahead of the given offset. For
example, if ESTSEDT were not already a recognized zone name, it would be accepted and would
be functionally equivalent to United States East Coast time. In this syntax, a zone abbreviation can
be a string of letters, or an arbitrary string surrounded by angle brackets (<>). When a daylight-
savings zone abbreviation is present, it is assumed to be used according to the same daylight-
savings transition rules used in the IANA time zone database's posi xr ul es entry. In a standard
PostgreSQL installation, posi xr ul es is the same as US/ East er n, so that POSIX-style time
zone specifications follow USA daylight-savings rules. If needed, you can adjust this behavior by
replacing the posi xr ul es file.

In short, thisisthe difference between abbreviations and full names:. abbreviations represent aspecific
offset from UTC, whereas many of thefull namesimply alocal daylight-savingstimerule, and so have
two possible UTC offsets. Asan example, 2014- 06- 04 12: 00 Aneri ca/ New_Yor k represents
noon local timein New Y ork, which for this particular date was Eastern Daylight Time (UTC-4). So
2014-06-04 12: 00 EDT specifies that same time instant. But 2014- 06- 04 12: 00 EST
specifies noon Eastern Standard Time (UTC-5), regardless of whether daylight savingswas nominally
in effect on that date.

To complicate matters, somejurisdictions have used the same timezone abbreviation to mean different
UTC offsets at different times; for example, in Moscow MBK has meant UTC+3 in some years and
UTC+4 in others. PostgreSQL interprets such abbreviations according to whatever they meant (or had
most recently meant) on the specified date; but, aswith the EST example above, thisis not necessarily
the same aslocal civil time on that date.

One should be wary that the POSI X -style time zone feature can lead to silently accepting bogusinput,
sincethereisno check on the reasonabl eness of the zone abbreviations. For example, SET TI MEZONE
TO FOOBARO will work, leaving the system effectively using a rather peculiar abbreviation for
UTC. Another issue to keep in mind is that in POSIX time zone names, positive offsets are used for
locations west of Greenwich. Everywhere else, PostgreSQL follows the 1SO-8601 convention that
positive timezone offsets are east of Greenwich.

In al cases, timezone names and abbreviations are recognized case-insensitively. (This is a change
from PostgreSQL versions prior to 8.2, which were case-sensitive in some contexts but not others.)

Neither timezone names nor abbreviations are hard-wired into the server; they are obtained from
configuration files stored under . . . / share/ti nezone/ and.../share/ti nezonesets/
of the installation directory (see Section B.3).

The TimeZone configuration parameter can be set in the file post gr esql . conf, or in any of the
other standard ways described in Chapter 19. There are also some special waysto set it:

» The SQL command SET TI ME ZONE sets the time zone for the session. Thisis an aternative
spelling of SET TI MEZONE TOwith a more SQL-spec-compatible syntax.

e The PGTZ environment variable is used by libpg clientsto send aSET TI ME ZONE command
to the server upon connection.

Interval Input

i nt erval valuescan bewritten using the following verbose syntax:

139

Data Types

[@ quantity unit [quantity unit...] [direction]

where quant ity is a number (possibly signed); unit is nmi crosecond, m|lisecond,
second, m nut e, hour, day, week, nont h, year, decade, century, m || enni um or
abbreviations or plurals of these units; di r ect i on canbeago or empty. Theat sign (@ is optional
noise. The amounts of the different units are implicitly added with appropriate sign accounting.
ago negates al the fields. This syntax is also used for interval output, if IntervalStyle is set to
post gres_ver bose.

Quantities of days, hours, minutes, and seconds can be specified without explicit unit markings. For
example,' 1 12:59: 10" isreadthesameas' 1 day 12 hours 59 min 10 sec'.Also,
a combination of years and months can be specified with a dash; for example' 200- 10" isread the
sameas' 200 years 10 nont hs' . (These shorter formsarein fact the only ones allowed by the
SQL standard, and are used for output when | nt er val St yl e issettosql _st andard.)

Interval values can also be written as ISO 8601 time intervals, using either the “format with
designators’ of the standard's section 4.4.3.2 or the “ alternative format” of section 4.4.3.3. The format
with designators looks like this:

P quantity unit [quantity unit ...] [T [quantity unit ...]]

The string must start with aP, and may includeaT that introducesthe time-of-day units. The available
unit abbreviations are given in Table 8.16. Units may be omitted, and may be specified in any order,
but units smaller than a day must appear after T. In particular, the meaning of Mdepends on whether
it isbefore or after T.

Table 8.16. | SO 8601 Interval Unit Abbreviations

Abbreviation Meaning

Years

Months (in the date part)
Weeks

Days

Hours

Minutes (in the time part)
Seconds

nlz[z|[olslz]<

In the alternative format:
P [years-nonths-days] [T hours:ninutes:seconds]

the string must begin with P, and a T separates the date and time parts of the interval. The values are
given as numbers similar to 1SO 8601 dates.

When writing an interval constant with a f i el ds specification, or when assigning a string to
an interval column that was defined with afi el ds specification, the interpretation of unmarked
guantities dependsonthef i el ds. For examplel NTERVAL ' 1' YEARIisread as 1 year, whereas
| NTERVAL ' 1' means1 second. Also, field values“totheright” of theleast significant field allowed
by the f i el ds specification are silently discarded. For example, writing | NTERVAL ' 1 day
2:03: 04" HOUR TO M NUTE resultsin dropping the seconds field, but not the day field.

According to the SQL standard all fields of an interval value must have the same sign, so a leading
negative sign appliesto all fields; for examplethe negativesignintheinterval literal ' - 1 2: 03: 04'

appliesto both the days and hour/minute/second parts. PostgreSQL allowsthe fields to have different
signs, and traditionally treats each field in the textual representation as independently signed, so that
the hour/minute/second part is considered positive in this example. If | nt erval Styl e is set to
sqgl _standar d then aleading sign is considered to apply to all fields (but only if no additional

140

Data Types

8.5.5.

signs appear). Otherwise the traditional PostgreSQL interpretation is used. To avoid ambiguity, it's
recommended to attach an explicit sign to each field if any field is negative.

Internally i nt er val valuesarestored asmonths, days, and seconds. Thisisdone because the number
of days in a month varies, and a day can have 23 or 25 hours if a daylight savings time adjustment
is involved. The months and days fields are integers while the seconds field can store fractions.
Because intervals are usually created from constant strings or t i mest anp subtraction, this storage
method works well in most cases. Functionsj usti fy_days andj usti fy_hour s areavailable
for adjusting days and hours that overflow their normal ranges.

In the verbose input format, and in some fields of the more compact input formats, field values can
havefractiona parts; for example' 1. 5 week' or' 01: 02: 03. 45' . Suchinput isconverted to the
appropriate number of months, days, and seconds for storage. When this would result in a fractional
number of months or days, the fraction is added to the lower-order fields using the conversion factors
1 month = 30 days and 1 day = 24 hours. For example, ' 1. 5 nont h' becomes 1 month and 15
days. Only seconds will ever be shown as fractional on output.

Table 8.17 shows some examples of valid i nt er val input.

Table8.17. Interval nput

Example Description

1-2 SQL standard format: 1 year 2 months

3 4:05:06 SQL standard format: 3 days 4 hours 5 minutes 6
seconds

1 year 2 months 3 days 4 hours 5 minutes 6| Traditional Postgres format: 1 year 2 months 3

seconds days 4 hours 5 minutes 6 seconds

P1Y2M3DT4H5M6S ISO 8601 “format with designators’: same
meaning as above

P0001-02-03T04:05:06 SO 8601 “alternative format”: same meaning as
above

Interval Output

The output format of the interval type can be set to one of the four styles sql _st andar d,
post gres, post gres_verbose, ori so_8601, using the command SET i nt erval styl e.
The default isthe post gr es format. Table 8.18 shows examples of each output style.

The sql _st andar d style produces output that conforms to the SQL standard's specification for
interval literal strings, if theinterval value meetsthe standard's restrictions (either year-month only or
day-time only, with no mixing of positive and negative components). Otherwise the output |ooks like
a standard year-month literal string followed by a day-time litera string, with explicit signs added to
disambiguate mixed-sign intervals.

The output of the post gr es style matches the output of PostgreSQL releases prior to 8.4 when the
DateStyle parameter was set to | SO.

The output of the post gr es_ver bose style matches the output of PostgreSQL releases prior to
8.4 when the Dat eSt y| e parameter was set to non-1 SO output.

Theoutput of thei so_8601 style matchesthe " format with designators’ described in section 4.4.3.2
of the SO 8601 standard.

Table 8.18. Interval Output Style Examples

Style Specification Year-Month Interval |Day-Timelnterval Mixed Interval
sql _standard 1-2 34:05:06 -1-2 +3-4:05:06

141

Data Types

Style Specification Year-Month Interval |Day-Timelnterval Mixed Interval
post gres 1 year 2 mons 3 days 04:05:06 -1year -2 mons +3 days
-04:05:06
post gres_verbose |@ 1 year 2 mons @ 3 days4 hours5mins| @ 1 year 2 mons-3 days
6 secs 4 hours 5 mins 6 secs
ago
i so_8601 P1lY 2M P3DT4H5M6S P-1Y-2M3DT-4H-5M-6S

8.6. Boolean Type

PostgreSQL provides the standard SQL typebool ean; see Table 8.19. Thebool ean type can have

severa states: “true’, “false”, and athird state, “unknown”, whichisrepresented by the SQL null value.

Table 8.19. Boolean Data Type

Name Storage Size Description

bool ean 1 byte state of true or false

Valid literal valuesfor the “true” state are:

TRUE
e
"true'
"y
'yes'
“on'
t

For the“false” state, the following values can be used:

FALSE

1 fl

'fal se'
'

no'

"of f'

o

Leading or trailing whitespace isignored, and case does not matter. The key words TRUE and FALSE
are the preferred (SQL-compliant) usage.

Example 8.2 shows that bool ean values are output using the letterst and f .

Example 8.2. Using the bool ean Type

CREATE TABLE testl (a boolean, b text);

I NSERT | NTO test1 VALUES (TRUE, 'sic est');
| NSERT | NTO test1 VALUES (FALSE, 'non est');
SELECT * FROM test1;

a | b

t | sic est
f | non est

SELECT * FROM test1l WHERE a;
a | b

142

Data Types

t | sic est

8.7. Enumerated Types

8.7.1.

8.7.2.

Enumerated (enum) types are data types that comprise a static, ordered set of values. They are
equivalent to the enumtypes supported in a number of programming languages. An example of an
enum type might be the days of the week, or a set of status values for a piece of data.

Declaration of Enumerated Types

Enum types are created using the CREATE TY PE command, for example:
CREATE TYPE npod AS ENUM ('sad', 'ok', 'happy');
Once created, the enum type can be used in table and function definitions much like any other type:

CREATE TYPE nmpod AS ENUM ('sad', 'ok', 'happy');
CREATE TABLE person (
name text,
current _nmood nood
)
| NSERT | NTO person VALUES (' Moe', 'happy');
SELECT * FROM person WHERE current _nood = ' happy';
nane | current_nood

______ o,
Me | happy

(1 row

Ordering

The ordering of the values in an enum type is the order in which the values were listed when the
type was created. All standard comparison operators and related aggregate functions are supported
for enums. For example:

| NSERT | NTO person VALUES ('Larry', 'sad');

| NSERT | NTO person VALUES ('Curly', 'ok');

SELECT * FROM person WHERE current _nood > 'sad';
name | current_nood

Moe | happy
Curly | ok
(2 rows)

SELECT * FROM person WHERE current _nmood > 'sad' ORDER BY
current _nood;
name | current_nood

SELECT name

FROM per son

WHERE current_nood = (SELECT M N(current _npod) FROM person);
name

143

Data Types

8.7.3.

8.7.4.

Type Safety

Each enumerated data type is separate and cannot be compared with other enumerated types. Seethis
example:

CREATE TYPE happi ness AS ENUM (' happy', 'very happy', 'ecstatic');
CREATE TABLE hol i days (

num weeks i nt eger,

happi ness happi ness
)
I NSERT | NTO hol i days(num weeks, happi ness) VALUES (4, 'happy');
I NSERT | NTO hol i days(num weeks, happi ness) VALUES (6, 'very happy');
I NSERT | NTO hol i days(num weeks, happi ness) VALUES (8, 'ecstatic');
I NSERT | NTO hol i days(num weeks, happi ness) VALUES (2, 'sad');
ERROR: invalid input value for enum happi ness: "sad"
SELECT person. nane, holidays. num weeks FROM person, holidays

WHERE person. current _nood = hol i days. happi ness;

ERROR: operator does not exist: npod = happi ness

If you really need to do something like that, you can either write a custom operator or add explicit
casts to your query:

SELECT person. nane, holidays. num weeks FROM person, holidays
WHERE person. current _nood: :text = holidays. happi ness: :text;
name | num weeks

Implementation Details

An enum value occupies four bytes on disk. The length of an enum value's textual 1abel is limited by
the NAMEDATAL EN setting compiled into PostgreSQL ; in standard buildsthis means at most 63 bytes.

Enum labels are case sensitive, so' happy' isnotthesameas' HAPPY' . White space in the labels
issignificant too.

Thetrandations from internal enum valuesto textual labels are kept in the system catalog pg_enum
Querying this catalog directly can be useful.

8.8. Geometric Types

Geometric datatypes represent two-dimensional spatial objects. Table 8.20 shows the geometric types
available in PostgreSQL .

Table 8.20. Geometric Types

Name Storage Size Description Representation

poi nt 16 bytes Point on a plane x,y)

l'ine 32 bytes Infiniteline {A,B,C}

| seg 32 bytes Finite line segment ((x1,y1),(x2,y2))

box 32 bytes Rectangular box ((x1,y1),(x2,y2))

pat h 16+16n bytes Closed path (similar to|((x1,y1),...)
polygon)

pat h 16+16n bytes Open path [(x1,y1),...]

144

Data Types

8.8.1.

8.8.2.

8.8.3.

8.8.4.

Name Storage Size Description Representation
pol ygon 40+16n bytes Polygon (similar to|((x1,yl),...)
closed path)
circle 24 bytes Circle <(x,y),r> (center point
and radius)

A rich set of functions and operators is available to perform various geometric operations such as
scaling, translation, rotation, and determining intersections. They are explained in Section 9.11.

Points

Pointsare the fundamental two-dimensional building block for geometric types. Valuesof typepoi nt
are specified using either of the following syntaxes:

(x,vy)
X,y

where x and y are the respective coordinates, as floating-point numbers.

Points are output using the first syntax.

Lines

Lines are represented by the linear equation Ax + By + C= 0, where A and B are not both zero. Values
of typel i ne areinput and output in the following form:

{ A B C}

Alternatively, any of the following forms can be used for input:

[(x2, yl) , (x2, y2)]
((xx, y1l) , (x2,y2))
(x1, yl) , (x2,y2)
x1, yl , X2 , y2

where (x1, y1) and (x2, y2) aretwo different points on theline.

Line Segments

Line segments are represented by pairs of pointsthat are the endpoints of the segment. Values of type
| seg are specified using any of the following syntaxes:

[(x1, y1l) , (x2, y2)]
((x1,yl), (x2,y2))
(x1, yl) , (x2,y2)
x1, yl . X2 , y2

where (x1, y1) and (x2, y2) arethe end points of the line segment.

Line segments are output using the first syntax.

Boxes

Boxes are represented by pairs of points that are opposite corners of the box. Values of type box are
specified using any of the following syntaxes:

yl) , y2'))
yl) , y2)

((x1,
(x1,

(x2,
(x2,

145

Data Types

8.8.5.

8.8.6.

8.8.7.

x1, yl1 X2, y2
where (x1, y1) and (x2, y2) areany two opposite corners of the box.
Boxes are output using the second syntax.

Any two opposite corners can be supplied on input, but the valueswill be reordered as needed to store
the upper right and lower |eft corners, in that order.

Paths

Paths are represented by lists of connected points. Paths can be open, where the first and last pointsin
thelist are considered not connected, or closed, wherethefirst and last pointsare considered connected.

Vaues of type pat h are specified using any of the following syntaxes:

[(x2, y1), ..., (xn, yn)]
((x¥1,vy1), ... , (xn, yn))
(x1, y1), ... , (xn, yn)

(x1, y1 v e Xn , yn)
x1, yl v e Xn , yn

where the points are the end points of the line segments comprising the path. Square brackets ([])
indicate an open path, while parentheses (()) indicate a closed path. When the outermost parentheses
are omitted, asin the third through fifth syntaxes, a closed path is assumed.

Paths are output using the first or second syntax, as appropriate.

Polygons

Polygons are represented by lists of points (the vertexes of the polygon). Polygons are very similar to
closed paths, but are stored differently and have their own set of support routines.

Vaues of type pol ygon are specified using any of the following syntaxes:

((xx, vy1), ... , (xn, yn))
(x2, y1), ..., (xn, yn)
(x1, y1 y e Xn , yn)
x1, yl y e Xn , yn

where the points are the end points of the line segments comprising the boundary of the polygon.

Polygons are output using the first syntax.

Circles

Circles are represented by a center point and radius. Vaues of typeci r cl e are specified using any
of the following syntaxes:

>

)

< 7
(:

—~ A~~~
X X X X
-~ = = =

y
y
y
y

where (X, y) isthe center point and r istheradius of thecircle.

Circles are output using the first syntax.

8.9. Network Address Types

146

Data Types

8.9.1.

8.9.2.

PostgreSQL offers data types to store IPv4, IPv6, and MAC addresses, as shown in Table 8.21. It is
better to use these types instead of plain text types to store network addresses, because these types
offer input error checking and specialized operators and functions (see Section 9.12).

Table 8.21. Network Address Types

Name Storage Size Description

cidr 7 or 19 bytes IPv4 and IPv6 networks

i net 7 or 19 bytes IPv4d and IPv6 hosts and
networks

macaddr 6 bytes MAC addresses

macaddr 8 8 bytes MAC addresses (EUI-64 format)

When sorting i net or cidr data types, IPv4 addresses will aways sort before IPv6
addresses, including |Pv4 addresses encapsulated or mapped to |Pv6 addresses, such as ::110.2.3.4
or ::ffff:10.4.3.2.

| net

Thei net typeholdsanIPv4 or IPv6 host address, and optionally its subnet, all in onefield. The subnet
is represented by the number of network address bits present in the host address (the “netmask”). If
the netmask is 32 and the address is | Pv4, then the value does not indicate a subnet, only asingle host.
In IPv6, the address length is 128 bits, so 128 bits specify aunique host address. Note that if you want
to accept only networks, you should usethe ci dr typerather thani net .

The input format for thistypeisaddr ess/ y where addr ess isan IPv4 or IPv6 addressand y is
the number of bits in the netmask. If the / y portion is missing, the netmask is 32 for IPv4 and 128
for I1Pv6, so the value represents just a single host. On display, the / y portion is suppressed if the
netmask specifies a single host.

ci dr

Theci dr typeholdsan IPv4 or IPv6 network specification. Input and output formatsfollow Classless
Internet Domain Routing conventions. The format for specifying networks is addr ess/ y where
addr ess isthe network represented as an |Pv4 or |Pv6 address, and y is the number of bitsin the
netmask. If y isomitted, it is calculated using assumptions from the older classful network numbering
system, except it will be at |east large enough to include al of the octets written in the input. It isan
error to specify anetwork address that has bits set to the right of the specified netmask.

Table 8.22 shows some examples.

Table8.22. ci dr Typelnput Examples

ci dr Input ci dr Output abbrev(cidr)
192.168.100.128/25 192.168.100.128/25 192.168.100.128/25
192.168/24 192.168.0.0/24 192.168.0/24
192.168/25 192.168.0.0/25 192.168.0.0/25
192.168.1 192.168.1.0/24 192.168.1/24
192.168 192.168.0.0/24 192.168.0/24

128.1 128.1.0.0/16 128.1/16

128 128.0.0.0/16 128.0/16

128.1.2 128.1.2.0/24 128.1.2/24

10.1.2 10.1.2.0/24 10.1.2/24

147

Data Types

8.9.3.

8.9.4.

8.9.5.

ci dr Input ci dr Output abbrev(cidr)

10.1 10.1.0.0/16 10.1/16

10 10.0.0.0/8 10/8

10.1.2.3/32 10.1.2.3/32 10.1.2.3/32

2001:4f8:3:ba::/64 2001:4f8:3:ba::/64 2001:4f8:3:ba::/64
2001:4f8:3:ba:2e0:81ff:fe22:d1f 121¥A : 4f 8: 3:ba: 2e0: 81ff :fe22:d1f 121¥A : 4f 8: 3:ba: 2€0: 81ff :fe22:d1f 1
::ffff:1.2.3.0/120 ::ffff:1.2.3.0/120 ffff:1.2.3/120

.offff:1.2.3.0/128 .:ffff:1.2.3.0/128 .+ffff:1.2.3.0/128

| net vs. ci dr

Theessential differencebetweeni net andci dr datatypesisthati net acceptsvaueswith nonzero
bits to the right of the netmask, whereas ci dr does not. For example, 192. 168. 0. 1/ 24 isvalid
fori net but not for ci dr .

Tip

If you do not like the output format for i net or ci dr values, try thefunctionshost ,
t ext ,and abbr ev.

macaddr

Thermacaddr typestoresMAC addresses, known for examplefrom Ethernet card hardware addresses
(although MAC addresses are used for other purposes as well). Input is accepted in the following
formats:

' 08: 00: 2b: 01: 02: 03’
' 08- 00- 2b- 01- 02- 03’
' 08002b: 010203

' 08002b- 010203

' 0800. 2b01. 0203

' 0800- 2b01- 0203

' 08002b010203"

These examples would all specify the same address. Upper and lower case is accepted for the digits
a through f . Output is alwaysin the first of the forms shown.

IEEE Std 802-2001 specifies the second shown form (with hyphens) as the canonical form for
MAC addresses, and specifies the first form (with colons) as the bit-reversed notation, so that
08-00-2b-01-02-03 = 01:00:4D:08:04:0C. This convention is widely ignored nowadays, and it is
relevant only for obsolete network protocols (such as Token Ring). PostgreSQL makes no provisions
for bit reversal, and al accepted formats use the canonical LSB order.

The remaining five input formats are not part of any standard.

macaddr 8

The macaddr 8 type stores MAC addresses in EUI-64 format, known for example from Ethernet
card hardware addresses (although MAC addresses are used for other purposes as well). This type
can accept both 6 and 8 byte length MAC addresses and stores them in 8 byte length format. MAC
addresses given in 6 byte format will be stored in 8 byte length format with the 4th and 5th bytes set
to FF and FE, respectively. Note that IPv6 uses a modified EUI-64 format where the 7th bit should
be set to one after the conversion from EUI-48. The function macaddr 8_set 7bi t is provided to

148

Data Types

8.10

make this change. Generally speaking, any input which is comprised of pairs of hex digits (on byte
boundaries), optionally separated consistently by oneof ' ;' ," -' or'. "', isaccepted. The number
of hex digits must be either 16 (8 bytes) or 12 (6 bytes). Leading and trailing whitespace is ignored.
The following are examples of input formats that are accepted:

' 08: 00: 2b: 01: 02: 03: 04: 05’
' 08- 00- 2b- 01- 02- 03- 04- 05’
' 08002b: 0102030405

' 08002b- 0102030405

' 0800. 2b01. 0203. 0405'

' 0800- 2b01- 0203- 0405

' 08002b01: 02030405

' 08002b0102030405

These examples would all specify the same address. Upper and lower case is accepted for the digits
a through f . Output is always in the first of the forms shown. The last six input formats that are
mentioned above are not part of any standard. To convert a traditional 48 bit MAC address in
EUI-48 format to modified EUI-64 format to be included as the host portion of an |Pv6 address, use
macaddr 8_set 7bi t asshown:

SELECT nacaddr 8 set 7bi t (' 08: 00: 2b: 01: 02: 03') ;
nacaddr 8 _set 7bi t

Oa: 00: 2b: ff:fe: 01:02: 03
(1 row)

Bit String Types

Bit strings are strings of 1's and 0's. They can be used to store or visualize bit masks. There are two
SQL bittypes: bi t (n) andbit varyi ng(n),wheren isapositive integer.

bi t type data must match the length n exactly; it is an error to attempt to store shorter or longer bit
strings. bi t varyi ng datais of variable length up to the maximum length n; longer strings will
be rejected. Writing bi t without a length is equivalent tobi t (1) , whilebi t varyi ng without
alength specification means unlimited length.

Note

If oneexplicitly castsabit-string valueto bi t (n) , it will betruncated or zero-padded
on the right to be exactly n bits, without raising an error. Similarly, if one explicitly
casts a bit-string value to bi t var yi ng(n), it will be truncated on the right if it
is more than n bits.

Refer to Section 4.1.2.5 for information about the syntax of bit string constants. Bit-logical operators
and string manipulation functions are available; see Section 9.6.

Example 8.3. Using the Bit String Types

CREATE TABLE test (a BIT(3), b BIT VARYINED5));

I NSERT | NTO test VALUES (B 101', B 00');

I NSERT | NTO test VALUES (B 10', B 101');

ERROR: bit string length 2 does not match type hit(3)
I NSERT | NTO test VALUES (B 10'::bit(3), B 101');
SELECT * FROM test;

101 | 00

149

Data Types

100 | 101

A bit string value requires 1 byte for each group of 8 hits, plus 5 or 8 bytes overhead depending on
the length of the string (but long values may be compressed or moved out-of-line, as explained in
Section 8.3 for character strings).

8.11. Text Search Types

PostgreSQL provides two datatypesthat are designed to support full text search, which isthe activity
of searching through a collection of natural-language documents to locate those that best match a
guery. Thet svect or typerepresents adocument in aform optimized for text search; thet squery
type similarly represents atext query. Chapter 12 provides a detailed explanation of this facility, and
Section 9.13 summarizes the related functions and operators.

8.11.1.t svect or

A tsvector valueisasorted list of distinct lexemes, which are words that have been normalized
to merge different variants of the same word (see Chapter 12 for details). Sorting and duplicate-
elimination are done automatically during input, as shown in this example:

SELECT 'a fat cat sat on a mat and ate a fat rat'::tsvector;
t svect or

To represent lexemes containing whitespace or punctuation, surround them with quotes:

SELECT $$the | exene ' ' contains spaces$$::tsvector;
t svect or

'contains' 'lexene' 'spaces' 'the'

(Weuse dollar-quoted string literalsin this example and the next one to avoid the confusion of having
to double quote marks within the literals.) Embedded quotes and backslashes must be doubled:

SELECT $$the lexene 'Joe''s' contains a quote$$::tsvector;
t svect or

'contains' 'lexene' 'quote' 'the'
Optionally, integer positions can be attached to lexemes:

SELECT 'a:1 fat:2 cat:3 sat:4 on:5 a:6 mat:7 and: 8 ate: 9 a: 10
fat:11 rat: 12'::tsvector;
t svect or
'a':1,6,10 'and' :8 '"ate':9 'cat':3 'fat':2,11 'mat':7 'on':5
'rat':12 'sat':4
A position normally indicates the source word's | ocation in the document. Positional information can

be used for proximity ranking. Position values can range from 1 to 16383; larger numbers are silently
set to 16383. Duplicate positions for the same lexeme are discarded.

Lexemes that have positions can further be labeled with aweight, which can be A, B, C, or D. Disthe
default and hence is not shown on output:

SELECT 'a: 1A fat: 2B, 4C cat: 5D ::tsvector;
t svect or

150

Data Types

Weights are typically used to reflect document structure, for example by marking title words
differently from body words. Text search ranking functions can assign different priorities to the
different weight markers.

It isimportant to understand that thet svect or typeitself does not perform any word normalization;
it assumes the wordsiit is given are normalized appropriately for the application. For example,

SELECT ' The Fat Rats'::tsvector;
tsvect or

For most English-text-searching applications the above words would be considered non-normalized,
butt svect or doesn't care. Raw document text should usually be passed throught o_t svect or
to normalize the words appropriately for searching:

SELECT to_tsvector('english', 'The Fat Rats');
to_tsvector

Again, see Chapter 12 for more detail.

8.11.2. t squery

At squery valuestoreslexemesthat areto be searched for, and can combine them using the Boolean
operators & (AND), | (OR),and! (NOT), aswell asthe phrase search operator <- > (FOLLOWED
BY). Thereisaso avariant <N> of the FOLLOWED BY operator, where Nis an integer constant that
specifies the distance between the two lexemes being searched for. <- > isequivalent to <1>.

Parentheses can be used to enforce grouping of these operators. |nthe absence of parentheses, ! (NOT)
binds most tightly, <- > (FOLLOWED BY) next most tightly, then & (AND), with | (OR) binding
the least tightly.

Here are some examples:

SELECT 'fat & rat'::tsquery;
t squery

SELECT 'fat & (rat | cat)'::tsquery;
t squery

SELECT 'fat & rat & ! cat'::tsquery;
t squery

Optionally, lexemesin at squery can be labeled with one or more weight letters, which restricts
them to match only t svect or lexemes with one of those weights:

SELECT 'fat:ab & cat'::tsquery;
tsquery

"fat': AB & 'cat’

Also, lexemesin at squery can be labeled with * to specify prefix matching:

151

Data Types

8.12.

SELECT ' super:*'::tsquery,
tsquery

This query will match any wordinat svect or that begins with “super”.

Quotingrulesfor lexemesarethe sameasdescribed previoudly for lexemesint svect or ; and, aswith
t svect or, any required normalization of words must be done before converting to the t squery
type. Thet o_t squer y function is convenient for performing such normalization:

SELECT to_tsquery('Fat:ab & Cats');
to_tsquery

"fat': AB & 'cat’

Note that t 0_t squery will process prefixes in the same way as other words, which means this
comparison returns true:

SELECT to_tsvector('postgraduate’) @to_tsquery('postgres:*');
?col um?

because post gr es gets stemmed to post gr :

SELECT to_tsvector('postgraduate'), to_tsquery('postgres:*');
to_tsvector | to_tsquery

'postgradu’ :1 | 'postgr':*

which will match the stemmed form of post gr aduat e.

UUID Type

The data type uui d stores Universally Unique Identifiers (UUID) as defined by RFC 4122, 1SO/
|EC 9834-8:2005, and related standards. (Some systems refer to this data type as a globally unique
identifier, or GUID, instead.) This identifier is a 128-bit quantity that is generated by an algorithm
chosen to make it very unlikely that the same identifier will be generated by anyone else in the known
universe using the sasme algorithm. Therefore, for distributed systems, theseidentifiers provide abetter
uni queness guarantee than sequence generators, which are only unique within a single database.

A UUID is written as a sequence of lower-case hexadecimal digits, in several groups separated by
hyphens, specifically agroup of 8 digitsfollowed by three groups of 4 digitsfollowed by agroup of 12
digits, for atotal of 32 digitsrepresenting the 128 bits. An example of aUUID inthisstandard formis:

aleebc99- 9¢c0b- 4ef 8- bb6d- 6bb9bd380all

PostgreSQL also accepts the following aternative forms for input: use of upper-case digits, the
standard format surrounded by braces, omitting some or al hyphens, adding a hyphen after any group
of four digits. Examples are:

AOEEBC99- 9C0B- 4EF8- BB6D- 6BB9BD380A11
{a0eebc99- 9cOb- 4ef 8- bb6d- 6bb9bd380a11}
a0eebc999c0Ob4ef 8bb6d6bb9bd380all

alee- bc99- 9c0b- 4ef 8- bb6d- 6bb9- bd38- 0all
{a0eebc99- 9cOb4ef 8- bb6d6bb9- bd380all}

Output is always in the standard form.

152

Data Types

8.13.

PostgreSQL provides storage and comparison functions for UUIDs, but the core database does not
include any function for generating UUIDs, because no single algorithm is well suited for every
application. The uuid-ossp module provides functions that implement several standard algorithms.
The pgcrypto module also provides a generation function for random UUIDs. Alternatively, UUIDs
could be generated by client applications or other libraries invoked through a server-side function.

XML Type

The xm datatype can be used to store XML data. Its advantage over storing XML datain at ext
field isthat it checks the input values for well-formedness, and there are support functions to perform
type-safe operations on it; see Section 9.14. Use of this data type requiresthe installation to have been
built withconfi gure --with-1ibxn.

The xm type can store well-formed “documents’, as defined by the XML standard, as well as
“content” fragments, which are defined by the production XM_Decl ? cont ent in the XML
standard. Roughly, this means that content fragments can have more than one top-level element or
character node. The expression xm val ue 1S DOCUMENT can be used to evaluate whether a
particular xm valueisafull document or only a content fragment.

8.13.1. Creating XML Values

To produce avalue of type xm from character data, use the function xm par se:
XMLPARSE ({ DOCUMENT | CONTENT } val ue)
Examples:

XMLPARSE (DOCUMENT ' <?xm version="1.0"?><book><titl| e>Manual </
titl e><chapter>...</chapter></book>")
XMLPARSE (CONTENT ' abc<f oo>bar </ f oo><bar >f oo</ bar>")

Whilethisistheonly way to convert character stringsinto XML values according to the SQL standard,
the PostgreSQL -specific syntaxes:

xm ' <foo>bar</foo>'
' <f oo>bar </ f oo>' : : xni

can also be used.

Thexm type does not validate input values against a document type declaration (DTD), even when
theinput value specifiesaDTD. Thereisalso currently no built-in support for validating against other
XML schemalanguages such as XML Schema.

The inverse operation, producing a character string value from xm , uses the function
xm serialize:

XMLSERI ALl ZE ({ DOCUMENT | CONTENT } val ue AS type)

type canbechar act er,charact er varyi ng,ortext (oranaliasfor oneof those). Again,
according to the SQL standard, thisisthe only way to convert between type xm and character types,
but PostgreSQL also allows you to simply cast the value.

When a character string value is cast to or from type xm without going through XMLPARSE or
XMLSERI ALI ZE, respectively, the choice of DOCUMENT versus CONTENT is determined by the
“XML option” session configuration parameter, which can be set using the standard command:

SET XML OPTI ON { DOCUMENT | CONTENT };

or the more PostgreSQL -like syntax

153

Data Types

SET xm option TO { DOCUMVENT | CONTENT };

The default is CONTENT, so all forms of XML data are allowed.

Note

With the default XML option setting, you cannot directly cast character strings to
typexm if they contain a document type declaration, because the definition of XML
content fragment does not accept them. If you need to do that, either use XM_LPARSE
or change the XML option.

8.13.2. Encoding Handling

Care must be taken when dealing with multiple character encodings on the client, server, and in
the XML data passed through them. When using the text mode to pass queries to the server and
guery results to the client (which isthe norma mode), PostgreSQL converts all character data passed
between the client and the server and vice versa to the character encoding of the respective end; see
Section 23.3. Thisincludes string representations of XML values, such asin the above examples. This
would ordinarily mean that encoding declarations contained in XML data can become invalid as the
character datais converted to other encodings while traveling between client and server, because the
embedded encoding declaration is not changed. To cope with this behavior, encoding declarations
contained in character strings presented for input to the xm type are ignored, and content is assumed
to bein the current server encoding. Consequently, for correct processing, character strings of XML
data must be sent from the client in the current client encoding. It is the responsibility of the client
to either convert documents to the current client encoding before sending them to the server, or to
adjust the client encoding appropriately. On output, values of type xm will not have an encoding
declaration, and clients should assume all dataiis in the current client encoding.

When using binary mode to pass query parametersto the server and query results back to the client, no
encoding conversion is performed, so the situation is different. In this case, an encoding declaration
in the XML data will be observed, and if it is absent, the data will be assumed to be in UTF-8 (as
required by the XML standard; note that PostgreSQL does not support UTF-16). On output, data will
have an encoding declaration specifying the client encoding, unless the client encoding is UTF-8, in
which case it will be omitted.

Needless to say, processing XML data with PostgreSQL will be less error-prone and more efficient
if the XML data encoding, client encoding, and server encoding are the same. Since XML data is
internally processed in UTF-8, computations will be most efficient if the server encoding is also
UTF-8.

Caution

Some XML -related functions may not work at all on non-ASCI| data when the server
encodingisnot UTF-8. Thisisknownto beanissuefor xim t abl e() andxpat h()
in particular.

8.13.3. Accessing XML Values

The xm datatype is unusual in that it does not provide any comparison operators. This is because
thereisno well-defined and universally useful comparison algorithm for XML data. One consequence
of thisis that you cannot retrieve rows by comparing an xm column against a search value. XML
values should therefore typically be accompanied by a separate key field such asan ID. An aternative
solution for comparing XML valuesisto convert them to character stringsfirst, but note that character
string comparison has little to do with a useful XML comparison method.

154

Data Types

Since there are no comparison operators for the xm data type, it is not possible to create an index
directly on a column of thistype. If speedy searchesin XML data are desired, possible workarounds
include casting the expression to a character string type and indexing that, or indexing an XPath
expression. Of course, the actual query would have to be adjusted to search by the indexed expression.

The text-search functionality in PostgreSQL can also be used to speed up full-document searches of
XML data. The necessary preprocessing support is, however, not yet available in the PostgreSQL
distribution.

JSON Types

JSON data types are for storing JSON (JavaScript Object Notation) data, as specified in RFC 71591,
Such data can also be stored ast ext , but the JISON data types have the advantage of enforcing that
each stored valueisvalid according to the JSON rules. There are al so assorted JSON-specific functions
and operators available for data stored in these data types; see Section 9.15.

8.14

Therearetwo JSON datatypes: j son andj sonb. They accept almost identical setsof valuesasinput.
The major practical difference is one of efficiency. The j son data type stores an exact copy of the
input text, which processing functions must reparse on each execution; whilej sonb dataisstoredin
a decomposed binary format that makes it dightly slower to input due to added conversion overhead,
but significantly faster to process, since no reparsing isneeded. j sonb also supportsindexing, which
can be a significant advantage.

Becausethej son typestoresan exact copy of theinput text, it will preserve semantically-insignificant
white space between tokens, as well asthe order of keyswithin JISON objects. Also, if a JSON object
within the val ue contai nsthe same key more than once, all the key/value pairsare kept. (The processing
functions consider the last value as the operative one.) By contrast, j sonb does not preserve white
space, does not preserve the order of object keys, and does not keep duplicate object keys. If duplicate
keys are specified in the input, only the last value is kept.

In general, most applications should prefer to store JSON data as j sonb, unless there are quite
specialized needs, such as legacy assumptions about ordering of object keys.

PostgreSQL allows only one character set encoding per database. It is therefore not possible for the
JSON types to conform rigidly to the JSON specification unless the database encoding is UTFS8.
Attempts to directly include characters that cannot be represented in the database encoding will fail;
conversely, characters that can be represented in the database encoding but not in UTF8 will be
allowed.

RFC 7159 permits JSON strings to contain Unicode escape sequences denoted by \ uXXXX. In the
input function for the j son type, Unicode escapes are allowed regardless of the database encoding,
and are checked only for syntactic correctness (that is, that four hex digits follow \ u). However,
the input function for j sonb is stricter: it disallows Unicode escapes for non-ASCII characters
(those above U+007F) unless the database encoding isUTF8. Thej sonb typealso rejects\ u0000
(because that cannot be represented in PostgreSQL 'st ext type), and it insiststhat any use of Unicode
surrogate pairs to designate characters outside the Unicode Basic Multilingual Plane be correct. Valid
Unicode escapes are converted to the equivalent ASCII or UTF8 character for storage; this includes
folding surrogate pairs into a single character.

Note

Many of the JSON processing functionsdescribed in Section 9.15will convert Unicode
escapes to regular characters, and will therefore throw the same types of errors just
described even if their input isof typej son not j sonb. Thefact that thej son input
function does not make these checks may be considered a historical artifact, although
it does alow for simple storage (without processing) of JSON Unicode escapesin a

L hitps://tool s.ietf.org/html/rfc7159

155

https://tools.ietf.org/html/rfc7159
https://tools.ietf.org/html/rfc7159

Data Types

non-UTF8 database encoding. In general, it is best to avoid mixing Unicode escapes

in JSON with anon-UTF8 database encoding, if possible.

When converting textual JSON input into j sonb, the primitive types described by RFC 7159 are
effectively mapped onto native PostgreSQL types, as shown in Table 8.23. Therefore, there are some
minor additional constraints on what constitutesvalidj sonb datathat do not apply tothej son type,
nor to JSON in the abstract, corresponding to limits on what can be represented by the underlying data
type. Notably, j sonb will reject numbers that are outside the range of the PostgreSQL nuneri ¢
datatype, whilej son will not. Such implementati on-defined restrictions are permitted by RFC 7159.
However, in practice such problems are far more likely to occur in other implementations, as it is
common to represent JSON's nunber primitive type as |EEE 754 double precision floating point
(which RFC 7159 explicitly anticipates and allows for). When using JSON as an interchange format
with such systems, the danger of losing numeric precision compared to data originally stored by

PostgreSQL should be considered.

Conversdly, as noted in the table there are some minor restrictions on the input format of JSON

primitive types that do not apply to the corresponding PostgreSQL types.

Table 8.23. JSON primitive types and corresponding PostgreSQL types

JSON primitive type PostgreSQL type Notes

string t ext \ u0000 is disdlowed, as are
non-ASCIl Unicode escapes if
database encoding isnot UTF8

nunber nuneric NaNandi nfinity valuesare
disallowed
bool ean bool ean Only lowercase true and

f al se spellings are accepted

nul | (none) SQL NULL isadifferent concept

8.14.1. JSON Input and Output Syntax

The input/output syntax for the JSON datatypesis as specified in RFC 7159.
Thefollowing are dl validj son (or j sonb) expressions:

-- Sinple scalar/prinmtive val ue

-- Primtive values can be nunbers, quoted strings, true, false,

nul |
SELECT '5'::json;

-- Array of zero or nore elenents (el enents need not be of sane

type)
SELECT '[1, 2, "foo", null]'::]son;

-- (bject containing pairs of keys and val ues
-- Note that object keys nust always be quoted strings

SELECT '{"bar": "baz", "balance": 7.77, "active": false}'::json;

-- Arrays and objects can be nested arbitrarily

or

SELECT '{"foo0": [true, "bar"], "tags": {"a": 1, "b": null}}'::json;

As previously stated, when a JSON valueisinput and then printed without any additional processing,
j son outputsthe sametext that wasinput, whilej sonb does not preserve semantically-insignificant

details such as whitespace. For example, note the differences here:

156

Data Types

SELECT ' {"bar": "baz", "balance": 7.77, "active":false}'::json;

json

{"bar": "baz", "balance": 7.77, "active":false}

(1 row

SELECT ' {"bar": "baz", "balance": 7.77, "active":false}'::jsonb;
j sonb

{"bar": "baz", "active": false, "balance": 7.77}

(1 row

Onesemantically-insignificant detail worth notingisthatinj sonb, numberswill be printed according
to the behavior of the underlying nuner i ¢ type. In practice this means that numbers entered with E
notation will be printed without it, for example:

SELECT '{"reading": 1.230e-5}'::json, '{"reading":
1.230e-5}"::jsonb;
j son | j sonb

{"reading": 1.230e-5} | {"reading": 0.00001230}
(1 row)

However, j sonb will preserve trailing fractional zeroes, as seen in this example, even though those
are semantically insignificant for purposes such as equality checks.

8.14.2. Designing JSON documents effectively

Representing data as JSON can be considerably more flexible than the traditional relational data
model, which is compelling in environments where requirements arefluid. It is quite possible for both
approaches to co-exist and complement each other within the same application. However, even for
applications where maximal flexibility is desired, it is still recommended that JSON documents have
a somewhat fixed structure. The structure is typically unenforced (though enforcing some business
rules declaratively is possible), but having a predictable structure makes it easier to write queries that
usefully summarize a set of “documents’ (datums) in atable.

JSON data is subject to the same concurrency-control considerations as any other data type when
stored in a table. Although storing large documents is practicable, keep in mind that any update
acquires arow-level lock on the whole row. Consider limiting JSON documents to a manageable size
in order to decrease lock contention among updating transactions. Ideally, JSON documents should
each represent an atomic datum that business rules dictate cannot reasonably be further subdivided
into smaller datums that could be modified independently.

8.14.3.] sonb Containment and Existence

Testing containment is an important capability of j sonb. Thereis no parallel set of facilities for the
j son type. Containment tests whether one j sonb document has contained within it another one.
These examples return true except as noted:

-- Sinple scalar/prinmtive values contain only the identical val ue:
SELECT '"foo"'::jsonb @ '"foo"'::jsonb;

-- The array on the right side is contained within the one on the
left:
SELECT '[1, 2, 3]'::jsonb @ '[1, 3]'::]jsonb;

-- Oder of array elenents is not significant, so this is also
true:

157

Data Types

SELECT '[1, 2, 3]'::jsonb @ '[3, 1]'::jsonb;

-- Duplicate array elenents don't matter either:
SELECT '[1, 2, 3]'::jsonb @ '[1, 2, 2]'::jsonb;

-- The object with a single pair on the right side is contained
-- within the object on the left side:

SELECT ' {"product”: "PostgreSQ", "version": 9.4, "jsonb":
true}'::jsonb @ '{"version": 9.4}'::jsonb;

-- The array on the right side is not considered contained within

t he

-- array on the left, even though a simlar array is nested within
it:

SELECT '[1, 2, [1, 3]]'::jsonb @ '[1, 3]'::jsonb; -- yields false

-- But with a layer of nesting, it is contained:
SELECT '[1, 2, [1, 3]]'::jsonb @ '[[1, 3]]'::]jsonb;

-- Simlarly, containment is not reported here:
SELECT '{"foo": {"bar": "baz"}}'::jsonb @ '{"bar": "baz"}'::jsonb;
-- yields fal se

-- Atop-level key and an enpty object is contained:
SELECT ' {"foo": {"bar": "baz"}}'::jsonb @ '{"foo": {}}'::jsonb;

The general principleisthat the contained object must match the containing object asto structure and
data contents, possibly after discarding some non-matching array elements or object key/value pairs
from the containing object. But remember that the order of array elements is not significant when
doing a containment match, and duplicate array elements are effectively considered only once.

As a specia exception to the general principle that the structures must match, an array may contain
aprimitive value:

-- This array contains the primtive string val ue:

SELECT '["fo0", "bar"]'::jsonb @ '"bar"'::jsonb;

-- This exception is not reciprocal -- non-containment is reported
here:

SELECT '"bar"'::jsonb @ '["bar"]'::jsonb; -- yields false

j sonb aso has an existence operator, which is a variation on the theme of containment: it tests
whether astring (given asat ext value) appears as an object key or array element at the top level of
thej sonb value. These examples return true except as noted:

-- String exists as array el ement:
SELECT '["foo0", "bar", "baz"]'::jsonb ? 'bar';

-- String exists as object key:
SELECT '{"foo0": "bar"}'::jsonb ? 'foo';

-- (bject values are not considered:
SELECT '{"foo0": "bar"}'::jsonb ? '"bar'; -- yields false

-- As with containment, existence nust match at the top |evel:
SELECT '{"foo0": {"bar": "baz"}}'::jsonb ? "bar'; -- yields fal se

-- Astring is considered to exist if it matches a prinmtive JSON
string:

158

Data Types

SELECT '"foo0"'::jsonb ? 'foo';

JSON objects are better suited than arrays for testing containment or existence when there are many
keys or elements involved, because unlike arrays they are internally optimized for searching, and do
not need to be searched linearly.

Tip

Because JSON containment is nested, an appropriate query can skip explicit selection
of sub-objects. As an example, suppose that we have a doc column containing
objects at the top level, with most objects containing t ags fields that contain
arrays of sub-objects. This query finds entries in which sub-objects containing both
"ternf:"paris" and"tern:"food" appear, while ignoring any such keys
outsidethet ags array:

SELECT doc->'site_nane' FROM websites
VWHERE doc @ '{"tags":[{"terni:"paris"},
{"term':"food"}]}";

One could accomplish the same thing with, say,
SELECT doc->'site_nane' FROM websites
WHERE doc->'tags' @ '[{"term:"paris"},
{"term':"food"}]";

but that approach is less flexible, and often less efficient as well.

On the other hand, the JSON existence operator is not nested: it will only look for the
specified key or array element at top level of the JSON value.

The various containment and existence operators, along with all other JSON operators and functions
are documented in Section 9.15.

8.14.4.] sonb Indexing

GIN indexes can be used to efficiently search for keys or key/value pairs occurring within a large
number of j sonb documents (datums). Two GIN “operator classes’ are provided, offering different
performance and flexibility trade-offs.

The default GIN operator classfor j sonb supports queries with top-level key-exists operators ?, ?&
and ?| operators and path/value-exists operator @ . (For details of the semantics that these operators
implement, see Table 9.44.) An example of creating an index with this operator classis:

CREATE | NDEX i dxgin ON api USING G N (jdoc);

The non-default GIN operator classj sonb_pat h_ops supports indexing the @ operator only. An
example of creating an index with this operator classis:

CREATE | NDEX i dxgi np ON api USING G N (jdoc jsonb_path_ops);

Consider the example of atable that stores JISON documents retrieved from athird-party web service,
with a documented schema definition. A typical document is:

{
"guid": "9c36adcl- 7f b5- 4d5b- 83b4- 90356a46061a",

"nane": "Angel a Barton",
"is_active": true,
"conpany": "Magnaf one",

159

Data Types

"address": "178 Howard Pl ace, Gulf, Washington, 702",
“regi stered": "2009-11-07T08:53:22 +08: 00",
“latitude": 19.793713,
"l ongi tude": 86.513373,
"tags": |

"enint',

"al i qui p",

"qui

}

We store these documents in atable named api ,inaj sonb column namedj doc. If aGIN index is
created on this column, queries like the following can make use of the index:

-- Find docunents in which the key "conpany" has val ue "Magnaf one"
SELECT jdoc->'guid', jdoc->'nane' FROM api WHERE j doc @
"{"conpany": "Magnafone"}';

However, theindex could not be used for queries like the following, because though the operator ? is
indexable, it is not applied directly to the indexed column j doc:

-- Find docunments in which the key "tags" contains key or array

el enent "qui"
SELECT jdoc->'guid', jdoc->'nane' FROM api WHERE jdoc -> 'tags' ?

) qui) ;
Still, with appropriate use of expression indexes, the above query can use an index. If querying for
particular itemswithinthe "t ags" key iscommon, defining an index like this may be worthwhile:
CREATE | NDEX i dxgi ntags ON api USING AN ((jdoc -> '"tags'));

Now, the WHERE clausej doc -> 'tags' ? 'qui' will berecognized asan application of the
indexable operator ? to theindexed expressionj doc -> 't ags' . (Moreinformation on expression
indexes can be found in Section 11.7.)

Another approach to querying isto exploit containment, for example:

-- Find docunents in which the key "tags" contains array el ement

llqui n
SELECT jdoc->'guid', jdoc->'nane' FROM api WHERE jdoc @ '{"tags":
["qui”]}";

A simple GIN index on the j doc column can support this query. But note that such an index will
store copies of every key and valueinthej doc column, whereas the expression index of the previous
example stores only data found under the t ags key. While the simple-index approach is far more
flexible (since it supports queries about any key), targeted expression indexes are likely to be smaller
and faster to search than a simple index.

Although the j sonb_pat h_ops operator class supports only queries with the @ operator, it has
notabl e performance advantages over the default operator classj sonb_ops.Aj sonb_pat h_ops
index is usually much smaller than aj sonb_ops index over the same data, and the specificity of
searchesis better, particularly when queries contain keys that appear frequently in the data. Therefore
search operations typically perform better than with the default operator class.

The technical difference between aj sonb_ops and aj sonb_pat h_ops GIN index is that the
former creates independent index items for each key and value in the data, while the latter creates
index items only for each value in the data. 2 Basicaly, each j sonb_pat h_ops index itemisa
hash of the value and the key(s) leading to it; for exampletoindex{ " f oo": {"bar": "baz"}},

2 For this purpose, the term “value’ includes array elements, though JSON terminology sometimes considers array elements distinct from
values within objects.

160

Data Types

8.15.

a single index item would be created incorporating all three of f 0o, bar, and baz into the hash
value. Thus a containment query looking for this structure would result in an extremely specific index
search; but there is no way at al to find out whether f 00 appears as a key. On the other hand, a
j sonb_ops index would create three index items representing f 00, bar , and baz separately; then
to do the containment query, it would look for rows containing al three of these items. While GIN
indexes can perform such an AND search fairly efficiently, it will still be less specific and slower
than the equivalent j sonb_pat h_ops search, especidly if there are a very large number of rows
containing any single one of the three index items.

A disadvantage of the j sonb_pat h_ops approach is that it produces no index entries for JSON
structures not containing any values, suchas{"a": {}}.If asearchfor documents containing such
astructure is requested, it will require a full-index scan, which is quite low. j sonb_pat h_ops is
therefore ill-suited for applications that often perform such searches.

j sonb also supports bt r ee and hash indexes. These are usualy useful only if it's important to
check equality of complete JSON documents. The bt r ee ordering for j sonb datums is seldom of
great interest, but for completenessit is:

Qoj ect > Array > Bool ean > Nurmber > String > Null
hject with n pairs > object with n - 1 pairs
Array with n elenents > array with n - 1 elenents
Objects with equal numbers of pairs are compared in the order:

key-1, value-1, key-2 ...

Note that object keys are compared in their storage order; in particular, since shorter keys are stored
before longer keys, this can lead to results that might be unintuitive, such as:

{ "aa": 1, "c¢": 1} > {"b": 1, "d": 1}
Similarly, arrays with equal numbers of elements are compared in the order:
element-1, elenent-2 ...

Primitive JSON values are compared using the same comparison rules as for the underlying
PostgreSQL data type. Strings are compared using the default database collation.

Arrays

PostgreSQL allows columnsof atableto bedefined asvariable-length multidimensional arrays. Arrays
of any built-in or user-defined base type, enum type, or composite type can be created. Arrays of
domains are not yet supported.

8.15.1. Declaration of Array Types

Toillustrate the use of array types, we creste thistable:

CREATE TABLE sal _enp (

nane t ext,
pay_by quarter integer[],
schedul e text[][]

)

Asshown, an array datatypeis named by appending square brackets ([]) to the datatype name of the
array elements. The above command will createatablenamed sal _enp with acolumn of typet ext
(nane), a one-dimensiona array of type i nt eger (pay_by_quart er), which represents the

161

Data Types

employee's salary by quarter, and atwo-dimensional array of t ext (schedul e), which represents
the employee's weekly schedule.

The syntax for CREATE TABLE alowsthe exact size of arraysto be specified, for example:

CREATE TABLE tictactoe (
squar es i nteger[3][3]
)

However, the current implementation ignores any supplied array size limits, i.e., the behavior is the
same as for arrays of unspecified length.

The current implementation does not enforce the declared number of dimensions either. Arrays of
a particular element type are al considered to be of the same type, regardless of size or number of
dimensions. So, declaring the array size or number of dimensions in CREATE TABLE is smply
documentation; it does not affect run-time behavior.

An aternative syntax, which conformsto the SQL standard by using the keyword ARRAY, can be used
for one-dimensional arrays. pay_by_quart er could have been defined as:

pay_ by quarter integer ARRAY[4],
Or, if no array sizeisto be specified:
pay_by quarter integer ARRAY,

As before, however, PostgreSQL does not enforce the size restriction in any case.

8.15.2. Array Value Input

Towriteanarray valueasaliteral constant, enclosethe element valueswithin curly bracesand separate
them by commas. (If you know C, thisis not unlike the C syntax for initializing structures.) Y ou can
put double quotes around any element value, and must do so if it contains commas or curly braces.
(More details appear below.) Thus, the general format of an array constant is the following:

'{ vall delimval2 delim... }'

where del i misthe delimiter character for the type, as recorded in its pg_t ype entry. Among the
standard datatypes provided in the PostgreSQL distribution, all useacommay,), except for type box
which uses a semicolon (;). Each val is either a constant of the array element type, or a subarray.
An example of an array constant is:

"{{1,2,3},{4,5,6},{7,8,9}}'
This constant is atwo-dimensional, 3-by-3 array consisting of three subarrays of integers.

To set an element of an array constant to NULL, write NULL for the element value. (Any upper- or
lower-case variant of NULL will do.) If you want an actual string value“NULL”, you must put double
quotes around it.

(These kinds of array constants are actually only a special case of the generic type constants discussed
in Section 4.1.2.7. The constant isinitially treated as a string and passed to the array input conversion
routine. An explicit type specification might be necessary.)

Now we can show some | NSERT statements:

| NSERT | NTO sal _enp

VALUES ('Bill",
' {10000, 10000, 10000, 10000}',
"{{"neeting", "lunch"}, {"training", "presentation"}}');

162

Data Types

| NSERT | NTO sal _enp
VALUES (' Carol ",
' {20000, 25000, 25000, 25000}',
"{{"breakfast”, "consulting"}, {"neeting”, "lunch"}}");

Theresult of the previous two inserts looks like this:

SELECT * FROM sal _enp;
nane | pay_ by quarter | schedul e

Bill | {10000, 10000, 10000, 10000} | {{neeting,|unch},
{training, presentation}}

Carol | {20000, 25000, 25000, 25000} | {{breakfast, consulting},
{neeting, |l unch}}
(2 rows)

Multidimensional arrays must have matching extentsfor each dimension. A mismatch causes an error,
for example:

I NSERT | NTO sal _enp

VALUES ('Bill",
'{10000, 10000, 10000, 10000}',
"{{"neeting", "lunch"}, {"nmeeting"}}");

ERROR: nmul tidi nensional arrays must have array expressions with
mat chi ng di mensi ons

The ARRAY constructor syntax can also be used:

| NSERT | NTO sal _enp

VALUES ('Bill",
ARRAY[10000, 10000, 10000, 10000],
ARRAY[[' neeting', 'lunch'], ['training', 'presentation']]);

| NSERT | NTO sal _enp
VALUES (' Carol ',
ARRAY[20000, 25000, 25000, 25000],
ARRAY[[' breakfast', 'consulting'], ['neeting', 'lunch']]);

Notice that the array elements are ordinary SQL constants or expressions; for instance, string literals
aresingle quoted, instead of double quoted asthey would bein an array literal. The ARRAY constructor
syntax is discussed in more detail in Section 4.2.12.

8.15.3. Accessing Arrays

Now, we can run some queries on the table. First, we show how to access asingle element of an array.
This query retrieves the names of the employees whose pay changed in the second quarter:

SELECT nane FROM sal _enp WHERE pay_by quarter[1l] <>
pay_by_quarter[2];

The array subscript numbers are written within square brackets. By default PostgreSQL uses a one-
based numbering convention for arrays, that is, an array of n elements starts with arr ay[1] and
endswitharray[n] .

163

Data Types

This query retrieves the third quarter pay of all employees:

SELECT pay_by quarter[3] FROM sal _enp;

pay_ by quarter

(2 rows)

We can also access arbitrary rectangular slices of an array, or subarrays. An array slice is denoted by
writing | ower - bound: upper - bound for one or more array dimensions. For example, this query
retrieves the first item on Bill's schedule for the first two days of the week:

SELECT schedul e[1: 2][1: 1] FROM sal _enp WHERE nane = 'Bill";

schedul e

{{meeting}, {training}
(1 row

If any dimension is written as a slice, i.e., contains a colon, then al dimensions are treated as slices.
Any dimension that has only a single number (no colon) is treated as being from 1 to the number
specified. For example, [2] istreated as[1: 2] , asin this example:

SELECT schedul e[1:2][2] FROM sal _enp WHERE nane = 'Bill';

schedul e

{{nmeeting, lunch},{training, presentation}}

(1 row

To avoid confusion with the non-slice case, it's best to use dice syntax for all dimensions, e.g., [1: 2]
[1:1],not[2][1:1].

It is possible to omit the | ower - bound and/or upper - bound of a dlice specifier; the missing
bound is replaced by the lower or upper limit of the array's subscripts. For example:

SELECT schedul e[:2][2:] FROM sal _enp WHERE nanme = 'Bill";

schedul e

({1 unch} , {pr esent ati on})
(1 row

SELECT schedul e[:][1:1] FROM sal _enp WHERE nanme = 'Bill";

schedul e
{{meeting}, {training}}
(1 row

Anarray subscript expressionwill return null if either thearray itself or any of the subscript expressions
are null. Also, null is returned if a subscript is outside the array bounds (this case does not raise
an error). For example, if schedul e currently has the dimensions[1: 3] [1: 2] then referencing
schedul e[3] [3] yieldsNULL. Similarly, an array reference with the wrong number of subscripts
yields anull rather than an error.

An array slice expression likewise yields null if the array itself or any of the subscript expressions are
null. However, in other cases such as selecting an array slicethat iscompletely outside the current array

164

Data Types

bounds, a dlice expression yields an empty (zero-dimensional) array instead of null. (This does not
match non-slice behavior and is done for historical reasons.) If the requested slice partially overlaps
the array bounds, then it is silently reduced to just the overlapping region instead of returning null.

The current dimensions of any array value can be retrieved with thear r ay_di ns function:

SELECT array_di ns(schedul e) FROM sal _enp WHERE nanme = 'Carol';

array_di ns

(22
(1 row

array_di nms produces a t ext result, which is convenient for people to read but perhaps
inconvenient for programs. Dimensions can aso be retrieved with array_upper and
array_| ower ,whichreturn the upper and lower bound of aspecified array dimension, respectively:

SELECT array_upper (schedule, 1) FROM sal _enp WHERE nanme = 'Carol';

array_upper

(1 row)
array_| engt h will return the length of a specified array dimension:

SELECT array_| engt h(schedul e, 1) FROM sal _enp WHERE nane = 'Carol"';

array_l ength

(1 row

car di nal i ty returnsthetotal number of elementsin an array acrossall dimensions. It iseffectively
the number of rows acall tounnest would yield:

SELECT cardinality(schedul e) FROM sal _enp WHERE nane = 'Carol';

cardinality

(1 row
8.15.4. Modifying Arrays

An array value can be replaced completely:

UPDATE sal _enp SET pay_by quarter ' {25000, 25000, 27000, 27000}’

VWHERE nanme = 'Carol';

or using the ARRAY expression syntax:

UPDATE sal _enp SET pay_by quarter
VWHERE nanme = 'Carol';

ARRAY[25000, 25000, 27000, 27000]

An array can also be updated at a single element:

UPDATE sal _enp SET pay_by_quarter[4] = 15000
VWHERE nanme = 'Bill";

or updated in adlice:

165

Data Types

UPDATE sal _enp SET pay_by quarter[1:2] = '{27000, 27000}"'
VWHERE nane = 'Carol';

The dlice syntaxes with omitted | ower - bound and/or upper - bound can be used too, but only
when updating an array value that is not NULL or zero-dimensional (otherwise, there is no existing
subscript limit to substitute).

A stored array value can be enlarged by assigning to elements not aready present. Any positions
between those previously present and the newly assigned elements will be filled with nulls. For
example, if array myar r ay currently has 4 elements, it will have six elements after an update that
assignsto nyar ray[6] ; myar ray[5] will contain null. Currently, enlargement in this fashion is
only alowed for one-dimensional arrays, not multidimensional arrays.

Subscripted assignment allows creation of arrays that do not use one-based subscripts. For example
one might assignto nyar r ay[- 2: 7] to create an array with subscript values from -2to 7.

New array values can also be constructed using the concatenation operator, | | :

SELECT ARRAY[1,2] || ARRAY[3,4];
?col um?

(12,34
(1 row

SELECT ARRAY[5,6] || ARRAY[[1,2],[3,4]];
?col um?

{{5 6},{1,2},{3,4}}
(1 row

The concatenation operator alows a single element to be pushed onto the beginning or end of a
one-dimensional array. It also accepts two N-dimensional arrays, or an N-dimensional and an N+1-
dimensional array.

When a single element is pushed onto either the beginning or end of a one-dimensional array, the
result is an array with the same lower bound subscript as the array operand. For example:

SELECT array_dinms(1 || "[0:1]={2,3}'::int[]);
array_dins

SELECT array_di mns(ARRAY[1,2] || 3);
array_dins

When two arrays with an equal number of dimensions are concatenated, the result retains the lower
bound subscript of the left-hand operand's outer dimension. The result is an array comprising every
element of the |eft-hand operand followed by every element of the right-hand operand. For example:

SELECT array_di ns(ARRAY[1, 2] || ARRAY[3,4,5]);
array_di ns

SELECT array_di ns(ARRAY[[1,2],[3,4]] || ARRAY[[5,6],[7,8],[9,0]11);

166

Data Types

array_dins

(s
(1 row

When an N-dimensional array is pushed onto the beginning or end of an N+1-dimensional array, the
result is analogous to the element-array case above. Each N-dimensional sub-array is essentialy an
element of the N+1-dimensional array's outer dimension. For example:

SELECT array_di ns(ARRAY[1,2] || ARRAY[[3,4],[5,6]]);
array_dins

(a2
(1 row

An array can aso be constructed by using the functions array_prepend, array_append,
or array_cat. The first two only support one-dimensional arrays, but array_cat supports
multidimensional arrays. Some examples:

SELECT array_prepend(1, ARRAY[2,3]);
array_prepend

SELECT array_append(ARRAY[1, 2], 3);
array_append

SELECT array_cat (ARRAY[1, 2], ARRAY[3,4]);
array_cat

{1,234
(1 row

SELECT array_cat (ARRAY[[1,2],[3,4]], ARRAY[5,6]);
array_cat

{{1,2},{3,4},{5, 6}}
(1 row

SELECT array_cat (ARRAY[5, 6], ARRAY[[1,2],[3,4]]);
array_cat

{{5.6},{1,2},{3,4}}

In simple cases, the concatenation operator discussed above is preferred over direct use of these
functions. However, because the concatenation operator is overloaded to serve al three cases, there
are situations where use of one of the functionsis helpful to avoid ambiguity. For example consider:

SELECT ARRAY[1, 2] || '{3, 4}'; ~-- the untyped literal is taken as
an array

?col um?

{1, 2, 3, 4}

SELECT ARRAY[1, 2] || '7"; -- so is this one

167

Data Types

ERROR: malfornmed array literal: "7"

SELECT ARRAY[1, 2] || NULL; -- so is an undecor at ed
NULL
?col um?

SELECT array_append(ARRAY[1, 2], NULL); -- this mght have been
nmeant
array_append

{1, 2, NULL}

In the examples above, the parser sees an integer array on one side of the concatenation operator,
and a constant of undetermined type on the other. The heuristic it uses to resolve the constant's type
is to assume it's of the same type as the operator's other input — in this case, integer array. So the
concatenation operator is presumed to represent ar r ay_cat , notar r ay_append. When that'sthe
wrong choice, it could be fixed by casting the constant to the array's element type; but explicit use of
array_append might be a preferable solution.

8.15.5. Searching in Arrays

Tosearch for avaluein an array, each value must be checked. This can be done manually, if you know
the size of the array. For example:

SELECT * FROM sal _enmp WHERE pay_by quarter[1] = 10000 OR
pay by quarter[2] = 10000 OR
pay by quarter[3] = 10000 OR
pay by quarter[4] = 10000;

However, this quickly becomes tedious for large arrays, and is not helpful if the size of the array is
unknown. An alternative method is described in Section 9.23. The above query could be replaced by:

SELECT * FROM sal _enmp WHERE 10000 = ANY (pay_by_quarter);
In addition, you can find rows where the array has all values equal to 10000 with:
SELECT * FROM sal _emp WHERE 10000 = ALL (pay_by_quarter);
Alternatively, thegener at e_subscri pt s function can be used. For example:

SELECT * FROM
(SELECT pay_by_quarter,
generate_subscri pts(pay_by quarter, 1) AS s
FROM sal _enp) AS foo
WHERE pay_by quarter[s] = 10000;

This function is described in Table 9.59.

You can also search an array using the && operator, which checks whether the |eft operand overlaps
with the right operand. For instance:

SELECT * FROM sal _enmp WHERE pay_ by quarter && ARRAY[10000];

This and other array operators are further described in Section 9.18. It can be accelerated by an
appropriate index, as described in Section 11.2.

You can aso search for specific values in an array using the array position and
array_posi tions functions. The former returns the subscript of the first occurrence of a value

168

Data Types

in an array; the latter returns an array with the subscripts of all occurrences of the value in the array.
For example:

SELECT

array_position(ARRAY['sun','non','tue',"'wed ,'thu','fri','sat'],
Irmnl);

array_positions

SELECT array_positions(ARRAY[1, 4, 3, 1, 3, 4, 2, 1], 1);
array_positions

Tip

Arrays are not sets; searching for specific array elements can be a sign of database
misdesign. Consider using a separate table with arow for each item that would be an
array element. This will be easier to search, and is likely to scale better for a large
number of elements.

8.15.6. Array Input and Output Syntax

The external text representation of an array value consists of items that are interpreted according to
the 1/O conversion rulesfor the array's element type, plus decoration that indicates the array structure.
The decoration consists of curly braces ({ and }) around the array value plus delimiter characters
between adjacent items. The delimiter character is usually acomma (,) but can be something else: it
is determined by thet ypdel i msetting for the array's element type. Among the standard data types
providedin the PostgreSQL distribution, all useacomma, except for typebox, which usesasemicolon
(;). Inamultidimensiona array, each dimension (row, plane, cube, etc.) getsits own level of curly
braces, and delimiters must be written between adjacent curly-braced entities of the same level.

The array output routine will put double quotes around element values if they are empty strings,
contain curly braces, delimiter characters, double quotes, backslashes, or white space, or match the
word NULL. Double quotes and backslashes embedded in element values will be backslash-escaped.
For numeric data typesit is safe to assume that double quotes will never appear, but for textual data
types one should be prepared to cope with either the presence or absence of quotes.

By default, the lower bound index value of an array's dimensions is set to one. To represent arrays
with other lower bounds, the array subscript ranges can be specified explicitly beforewriting the array
contents. This decoration consists of square brackets ([]) around each array dimension's lower and
upper bounds, with a colon (:) delimiter character in between. The array dimension decoration is
followed by an equal sign (=). For example:

SELECT f1[1][-2][3] AS el, f1[1][-1][5] AS e2
FROM (SELECT '[21:1][-2:-1][3:5]={{{1,2,3},{4,5,6}}}' ::int[] AS f1l)
AS ss;

el | e2

e
1] 6

(1 row)

The array output routine will include explicit dimensionsin itsresult only when there are one or more
lower bounds different from one.

169

Data Types

If the value written for an element is NULL (in any case variant), the element is taken to be NULL.
The presence of any quotes or backslashes disables this and allows the literal string value “NULL”"
to be entered. Also, for backward compatibility with pre-8.2 versions of PostgreSQL, the array_nulls
configuration parameter can be turned of f to suppress recognition of NULL asaNULL.

As shown previously, when writing an array value you can use double quotes around any individual
array element. You must do so if the element value would otherwise confuse the array-value parser.
For example, elements containing curly braces, commas (or the datatype's delimiter character), double
guotes, backslashes, or leading or trailing whitespace must be double-quoted. Empty stringsand strings
matching the word NULL must be quoted, too. To put a double quote or backslash in a quoted array
element value, use escape string syntax and precede it with a backslash. Alternatively, you can avoid
guotes and use backsl ash-escaping to protect all data charactersthat would otherwise betaken asarray
syntax.

Y ou can add whitespace before aleft brace or after aright brace. Y ou can also add whitespace before
or after any individual item string. In all of these cases the whitespace will be ignored. However,
whitespace within double-quoted elements, or surrounded on both sides by non-whitespace characters
of an element, is not ignored.

Note

Remember that what you writein an SQL command will first be interpreted asa string
literal, and then as an array. This doubles the number of backs ashes you need. For
example, toinsert at ext array value containing abackslash and adouble quote, you'd
need to write:

INSERT ... VALUES (E {"\\\\","\\""}");

The escape string processor removes one level of backs ashes, so that what arrives at
the array-value parser lookslike {"\\ ", "\ " "} . Inturn, the strings fed to thet ext
datatype'sinput routine become\ and" respectively. (If wewere working with adata
type whose input routine also treated backslashes specialy, byt ea for example, we
might need as many as eight backslashes in the command to get one backslash into
the stored array element.) Dollar quoting (see Section 4.1.2.4) can be used to avoid
the need to double backslashes.

Tip

The ARRAY constructor syntax (see Section 4.2.12) is often easier to work with than
the array-literal syntax when writing array values in SQL commands. In ARRAY,
individual element values are written the same way they would be written when not
members of an array.

8.16. Composite Types

A composite type represents the structure of arow or record; it is essentialy just alist of field names
and their data types. PostgreSQL allows composite types to be used in many of the same ways that
simple types can be used. For example, a column of atable can be declared to be of a composite type.

8.16.1. Declaration of Composite Types

Here are two simple examples of defining composite types:

CREATE TYPE conpl ex AS (

170

Data Types

r doubl e preci sion,
[doubl e precision

)

CREATE TYPE inventory_item AS (

name t ext,
supplier_id i nteger,
price nuneric

)

Thesyntax iscomparableto CREATE TABLE, except that only field names and types can be specified;
no constraints (such as NOT NULL) can presently be included. Note that the AS keyword is essential;
without it, the system will think a different kind of CREATE TYPE command is meant, and you will
get odd syntax errors.

Having defined the types, we can use them to create tables:

CREATE TABLE on_hand (
item i nventory item
count i nt eger

)
I NSERT | NTO on_hand VALUES (ROW' fuzzy dice', 42, 1.99), 1000);
or functions:

CREATE FUNCTI ON price_extension(inventory item integer) RETURNS
numeri c
AS ' SELECT $1.price * $2' LANGUACE SQ.;

SELECT price_extension(item 10) FROM on_hand;

Whenever you create a table, a composite type is also automatically created, with the same name as
the table, to represent the table's row type. For example, had we said:

CREATE TABLE i nventory_ item (

nane t ext,
supplier_id i nt eger REFERENCES suppl i ers,
price nuneric CHECK (price > 0)

)

then the same i nvent ory_i t em composite type shown above would come into being as a
byproduct, and could be used just as above. Note however an important restriction of the current
implementation: since no constraints are associ ated with acompositetype, the constraints showninthe
table definition do not apply to values of the composite type outside the table. (A partial workaround
isto use domain types as members of composite types.)

8.16.2. Constructing Composite Values

Towriteacompositevalueasaliteral constant, enclosethefield valueswithin parentheses and separate
them by commas. Y ou can put double quotes around any field value, and must do so if it contains
commas or parentheses. (More details appear below.) Thus, the general format of acomposite constant
isthe following:

"(vall, val2 , ...)’
Anexampleis:

'("fuzzy dice", 42,1.99)"

171

Data Types

which would be a valid value of thei nvent ory_i t emtype defined above. To make a field be
NULL, write no charactersat all initsposition in thelist. For example, this constant specifiesaNULL
third field:

"("fuzzy dice",42,)"

If you want an empty string rather than NULL, write double quotes:
L, 42,

Herethefirst field isanon-NULL empty string, the third isNULL.

(These constants are actualy only a special case of the generic type constants discussed in
Section 4.1.2.7. The constant is initially treated as a string and passed to the composite-type input
conversion routine. An explicit type specification might be necessary to tell which type to convert
the constant to.)

The ROWexpression syntax can also be used to construct composite values. In most cases this is
considerably simpler to use than the string-literal syntax since you don't have to worry about multiple
layers of quoting. We already used this method above:

RON' fuzzy dice', 42, 1.99)
ROW' ', 42, NULL)

The ROW keyword is actually optional as long as you have more than one field in the expression,
so these can be simplified to:

('fuzzy dice', 42, 1.99)
("', 42, NULL)

The ROWexpression syntax is discussed in more detail in Section 4.2.13.

8.16.3. Accessing Composite Types

To access afield of a composite column, one writes a dot and the field name, much like selecting a
field from atable name. In fact, it's so much like selecting from atable name that you often have to use
parentheses to keep from confusing the parser. For example, you might try to select some subfields
from our on_hand example table with something like:

SELECT item nane FROM on_hand WHERE item price > 9.99;

Thiswill not work sincethe namei t emistaken to be atable name, not acolumn name of on_hand,
per SQL syntax rules. You must write it like this:

SELECT (item.nane FROM on_hand WHERE (item.price > 9.99;
or if you need to use the table name aswell (for instance in a multitable query), like this:

SELECT (on_hand.item.name FROM on_hand WHERE (on_hand.item.price
> 9, 99;

Now the parenthesized object is correctly interpreted as areferenceto thei t emcolumn, and then the
subfield can be selected from it.

Similar syntactic issues apply whenever you select a field from a composite value. For instance, to
select just one field from the result of a function that returns a composite value, you'd need to write
something like:

SELECT (my_func(...)).field FROM ...

Without the extra parentheses, this will generate a syntax error.

172

Data Types

The special field name* means“all fields’, as further explained in Section 8.16.5.

8.16.4. Modifying Composite Types

Here are some examples of the proper syntax for inserting and updating composite columns. First,
inserting or updating a whole column:

| NSERT | NTO nmytab (conpl ex_col) VALUES((1.1,2.2));

UPDATE nytab SET conplex_col = RON1.1,2.2) WHERE .. .;

The first example omits ROW the second uses it; we could have done it either way.

We can update an individual subfield of a composite column:

UPDATE nytab SET conplex_col.r = (conplex_col).r + 1 WHERE .. .;

Notice here that we don't need to (and indeed cannot) put parentheses around the column name
appearing just after SET, but we do need parentheses when referencing the same column in the
expression to the right of the equal sign.

And we can specify subfields as targets for | NSERT, too:
| NSERT | NTO nytab (conpl ex_col.r, conmplex_col.i) VALUES(1l.1, 2.2);

Had we not supplied values for all the subfields of the column, the remaining subfields would have
been filled with null values.

8.16.5. Using Composite Types in Queries

Therearevarious special syntax rules and behaviors associated with composite typesin queries. These
rules provide useful shortcuts, but can be confusing if you don't know the logic behind them.

In PostgreSQL, a reference to a table name (or dias) in a query is effectively a reference to the
composite value of the table's current row. For example, if we had atablei nventory_itemas
shown above, we could write:

SELECT ¢ FROM i nventory_itemc;

This query produces a single composite-valued column, so we might get output like:

("fuzzy dice",42,1.99)
(1 row

Note however that simple names are matched to column names before table names, so this example
works only because there is no column named ¢ in the query's tables.

The ordinary qualified-column-name syntax t abl e_nane. col uim_nane can be understood as
applying field selection to the composite value of the table's current row. (For efficiency reasons, it's
not actually implemented that way.)

When we write

SELECT c.* FROM inventory_ item c;

then, according to the SQL standard, we should get the contents of the table expanded into separate
columns:

173

Data Types

nane | supplier_id | price
____________ e
fuzzy dice | 42 | 1.99
(1 row

asif the query were
SELECT c.nanme, c.supplier_id, c.price FROMinventory itemc;

PostgreSQL will apply this expansion behavior to any composite-valued expression, although as
shown above, you need to write parentheses around the valuethat . * is applied to whenever it'snot a
simple table name. For example, if myf unc() isafunction returning acomposite type with columns
a, b, and ¢, then these two queries have the same result:

SELECT (nmyfunc(x)).* FROM sone_t abl e;
SELECT (nmyfunc(x)).a, (myfunc(x)).b, (nyfunc(x)).c FROM sone_tabl e;

Tip

PostgreSQL handles column expansion by actually transforming the first forminto the
second. So, in this example, nyf unc() would get invoked three times per row with
either syntax. If it's an expensive function you may wish to avoid that, which you can
do with aquery like:

SELECT (m.* FROM (SELECT nyfunc(x) AS m FROM sone_t abl e
OFFSET 0) ss;

The OFFSET 0 clause keeps the optimizer from “flattening” the sub-select to arrive
at the form with multiple calls of nyf unc() .

The conposi te_val ue. * syntax results in column expansion of this kind when it appears
at the top level of a SELECT output list, a RETURNI NG list in | NSERT/UPDATE/DELETE, a
VALUES clause, or a row constructor. In al other contexts (including when nested inside one of
those constructs), attaching . * to a composite value does not change the value, since it means “all
columns’ and so the same composite valueis produced again. For example, if somref unc() accepts
a composite-valued argument, these queries are the same:

SELECT sonmefunc(c.*) FROM inventory_ item c;
SELECT sonmefunc(c) FROMinventory_item c;

In both cases, the current row of i nvent ory_i t emispassed to the function as a single composite-
valued argument. Even though . * does nothing in such cases, using it is good style, since it makes
clear that a composite value is intended. In particular, the parser will consider ¢ inc. * to refer to a
table name or aias, not to a column name, so that there is no ambiguity; whereas without . * , it is not
clear whether ¢ means a table name or a column name, and in fact the column-name interpretation
will be preferred if thereis a column named c.

Another example demonstrating these conceptsis that all these queries mean the same thing:

SELECT * FROM inventory item c ORDER BY c;
SELECT * FROM inventory itemc ORDER BY c.*;
SELECT * FROM inventory item c ORDER BY RONcC. *);

All of these ORDER BY clauses specify the row's composite value, resulting in sorting the rows
according to the rules described in Section 9.23.6. However, if i nvent ory_i t emcontained a
column named c, the first case would be different from the others, as it would mean to sort by that
column only. Given the column names previously shown, these queries are also equivalent to those
above:

174

Data Types

SELECT * FROM inventory_ item c ORDER BY RONc. name, c.supplier_id,
c.price);

SELECT * FROM inventory item c ORDER BY (c.name, c.supplier_id,
c.price);

(The last case uses arow constructor with the key word ROWomitted.)

Another special syntactical behavior associated with composite values is that we can use functional
notation for extracting a field of a composite value. The simple way to explain this is that the
notationsf i el d(t abl e) andt abl e. fi el d areinterchangeable. For example, these queries are
equivalent:

SELECT c. name FROM inventory item c WHERE c. price > 1000;
SELECT nane(c) FROM inventory itemc WHERE price(c) > 1000;

Moreover, if we have a function that accepts a single argument of a composite type, we can call it
with either notation. These queries are all equivalent:

SELECT sonefunc(c) FROMinventory itemc;
SELECT sonefunc(c.*) FROM inventory itemc;
SELECT c. sonmefunc FROM i nventory item c;

This equivalence between functional notation and field notation makes it possible to use functions on
composite typesto implement “computed fields’. An application using thelast query above wouldn't
need to be directly aware that sonmef unc isn't areal column of the table.

Tip

Because of this behavior, it's unwise to give afunction that takes a single composite-
type argument the same name as any of the fields of that composite type. If thereis
ambiguity, thefield-nameinterpretation will be preferred, so that such afunction could
not be called without tricks. One way to force the function interpretation isto schema-
qualify the function name, that is, write schema. f unc(conposi t eval ue) .

8.16.6. Composite Type Input and Output Syntax

The external text representation of a composite value consists of items that are interpreted according
to the 1/O conversion rules for the individual field types, plus decoration that indicates the composite
structure. The decoration consists of parentheses ((and)) around the whole value, plus commas (,)
between adjacent items. Whitespace outside the parentheses is ignored, but within the parentheses it
is considered part of the field value, and might or might not be significant depending on the input
conversion rules for the field data type. For example, in:

L} (42) L}
the whitespace will be ignored if the field type isinteger, but not if it istext.

As shown previously, when writing a composite value you can write double quotes around any
individua field value. Y ou must do so if the field value would otherwise confuse the composite-value
parser. In particular, fields containing parentheses, commas, double quotes, or backslashes must be
double-quoted. To put adouble quote or backslash in a quoted composite field value, precede it with
a backdash. (Also, apair of double quotes within a double-quoted field value is taken to represent a
double quote character, analogously to therulesfor single quotesin SQL literal strings.) Alternatively,
you can avoid quoting and use backslash-escaping to protect all data characters that would otherwise
be taken as composite syntax.

A completely empty field value (no characters at all between the commas or parentheses) represents
aNULL. To write avalue that is an empty string rather than NULL, write" " .

175

Data Types

The composite output routine will put double quotes around field values if they are empty strings or
contain parentheses, commas, double quotes, backslashes, or white space. (Doing so for white space
is not essential, but aids legihility.) Double quotes and backslashes embedded in field values will be
doubled.

Note

Remember that what you writein an SQL command will first beinterpreted asastring
literal, and then as a composite. This doubles the number of backslashes you need
(assuming escape string syntax is used). For example, toinsert at ext field containing
a double quote and a backslash in a composite value, you'd need to write;

INSERT ... VALUES (E ("\\"\\\\")");

The string-literal processor removes one level of backdlashes, so that what arrives at
the composite-value parser looks like ("\ " \'\ ") . In turn, the string fed to the t ext
data type's input routine becomes "\ . (If we were working with a data type whose
input routine also treated backslashes specially, byt ea for example, we might need
as many as eight backslashes in the command to get one backslash into the stored
composite field.) Dollar quoting (see Section 4.1.2.4) can be used to avoid the need
to double backslashes.

Tip

The ROWconstructor syntax is usually easier to work with than the composite-literal
syntax when writing composite values in SQL commands. In ROW individual field
values are written the same way they would be written when not members of a
composite.

8.17. Range Types

Range types are data types representing a range of values of some element type (called the range's
subtype). For instance, ranges of t i nest anp might be used to represent the ranges of time that a
meeting room is reserved. In this case the datatypeist sr ange (short for “timestamp range’), and
ti mest anp is the subtype. The subtype must have a total order so that it is well-defined whether
element values are within, before, or after arange of values.

Range types are useful because they represent many element values in a single range value, and
because concepts such as overlapping ranges can be expressed clearly. The use of time and date

ranges for scheduling purposesisthe clearest example; but price ranges, measurement ranges from an
instrument, and so forth can a so be useful.

8.17.1. Built-in Range Types

PostgreSQL comes with the following built-in range types:
* i nt4range — Rangeof i nt eger

* i nt 8range — Range of bi gi nt

e nunr ange — Rangeof nuneri c

e tsrange —Rangeofti nestanp wi thout tinme zone

176

Data Types

e tstzrange — Rangeofti mestanp with tine zone
» dat er ange — Range of dat e

In addition, you can define your own range types; see CREATE TY PE for more information.

8.17.2. Examples

CREATE TABLE reservation (roomint, during tsrange);
I NSERT | NTO reservati on VALUES
(1108, '[2010-01-01 14:30, 2010-01-01 15:30)');

-- Cont ai nnent
SELECT i nt4range(10, 20) @ 3;

-- Overl aps
SELECT nunrange(11.1, 22.2) && nunrange(20.0, 30.0);

-- Extract the upper bound
SELECT upper (i nt 8range(15, 25));

-- Conpute the intersection
SELECT i nt4range(10, 20) * intd4range(15, 25);

-- |Is the range enpty?
SELECT i senpty(nunrange(1, 5));

See Table 9.50 and Table 9.51 for complete lists of operators and functions on range types.

8.17.3. Inclusive and Exclusive Bounds

Every non-empty range has two bounds, the lower bound and the upper bound. All points between
these values are included in the range. An inclusive bound means that the boundary point itself is
included in the range as well, while an exclusive bound means that the boundary point is not included
in the range.

In the text form of arange, an inclusive lower bound is represented by “[” while an exclusive lower
bound is represented by “(”. Likewise, an inclusive upper bound is represented by “] ", while an
exclusive upper bound is represented by “) ”. (See Section 8.17.5 for more details.)

The functions | ower _i nc and upper _i nc test the inclusivity of the lower and upper bounds of
arange value, respectively.

8.17.4. Infinite (Unbounded) Ranges

The lower bound of a range can be omitted, meaning that all points less than the upper bound are
included inthe range. Likewise, if the upper bound of the range is omitted, then all points greater than
the lower bound are included in the range. If both lower and upper bounds are omitted, all values of
the element type are considered to be in the range.

Thisis equivalent to considering that the lower bound is“minusinfinity”, or the upper bound is*“plus
infinity”, respectively. But note that these infinite values are never values of the range's element type,
and can never be part of the range. (So there is no such thing as an inclusive infinite bound — if you
try to write one, it will automatically be converted to an exclusive bound.)

Also, some element types have a notion of “infinity”, but that is just another value so far as the range
type mechanisms are concerned. For example, intimestamp ranges, [t oday,] meansthe samething

177

Data Types

as[today,) .But[t oday, i nfini ty] meanssomethingdifferentfrom|[t oday, i nfinity)
— the latter excludesthe special t i nest anp valuei nfinity.

The functions | ower _i nf and upper _i nf test for infinite lower and upper bounds of a range,
respectively.

8.17.5. Range Input/Output

Theinput for arange value must follow one of the following patterns:

(1 ower - bound, upper - bound)
(1 ower - bound, upper - bound]
[1 ower - bound, upper - bound)
[1 ower - bound, upper - bound]

enpty

The parentheses or brackets indicate whether the lower and upper bounds are exclusive or inclusive,
as described previously. Notice that the final pattern is enpt y, which represents an empty range (a
range that contains no points).

The | ower - bound may be either a string that is valid input for the subtype, or empty to indicate
no lower bound. Likewise, upper - bound may be either a string that is valid input for the subtype,
or empty to indicate no upper bound.

Each bound value can be quoted using " (double quote) characters. This is necessary if the bound
value contains parentheses, brackets, commas, double quotes, or backslashes, since these characters
would otherwise be taken as part of the range syntax. To put a double quote or backslash in a quoted
bound value, precede it with abacksash. (Also, apair of double quotes within a double-quoted bound
value istaken to represent a double quote character, analogously to the rules for single quotesin SQL
literal strings.) Alternatively, you can avoid quoting and use backslash-escaping to protect all data
charactersthat would otherwise be taken as range syntax. Also, to write abound value that isan empty
string, write" ", since writing nothing means an infinite bound.

Whitespace is allowed before and after the range value, but any whitespace between the parentheses
or brackets is taken as part of the lower or upper bound value. (Depending on the element type, it
might or might not be significant.)

Note

Theserules are very similar to those for writing field valuesin composite-type literals.
See Section 8.16.6 for additional commentary.

Examples:

-- includes 3, does not include 7, and does include all points in

bet ween

SELECT '[3,7)'::intdrange;

-- does not include either 3 or 7, but includes all points in
bet ween

SELECT ' (3,7)'::intdrange;

-- includes only the single point 4

SELECT '[4,4]'::intdrange;

-- includes no points (and will be normalized to 'enpty')
SELECT '[4,4)'::intdrange;

178

Data Types

8.17.6. Constructing Ranges

Each range type has a constructor function with the same name asthe range type. Using the constructor
function isfrequently more convenient than writing arangeliteral constant, sinceit avoidsthe need for
extraquoting of the bound values. The constructor function accepts two or three arguments. The two-
argument form constructs a range in standard form (lower bound inclusive, upper bound exclusive),
while the three-argument form constructs a range with bounds of the form specified by the third
argument. The third argument must be one of the strings“() ", “(]”,“[) ", or“[] . For example:

-- The full formis: |ower bound, upper bound, and text argunent
i ndi cating

-- inclusivity/exclusivity of bounds.

SELECT nunrange(1.0, 14.0, '(]');

-- If the third argunent is omtted, '[)' is assuned.
SELECT nunr ange(1.0, 14.0);

-- Although '(]' is specified here, on display the value will be
converted to

-- canonical form since int8range is a discrete range type (see
bel ow) .

SELECT int8range(1, 14, '(]');

-- Using NULL for either bound causes the range to be unbounded on
t hat side.
SELECT nunr ange(NULL, 2.2);

8.17.7. Discrete Range Types

A discrete range is one whose element type has a well-defined “step”, such asi nt eger or dat e.
In these types two elements can be said to be adjacent, when there are no valid values between them.
This contrasts with continuous ranges, where it's always (or amost always) possible to identify other
element values between two given values. For example, arangeover thenuner i ¢ typeiscontinuous,
as is arange over ti mest anp. (Even though t i nest anp has limited precision, and so could
theoretically be treated as discrete, it's better to consider it continuous since the step size is normally
not of interest.)

Another way to think about a discrete range type isthat there is a clear idea of a“next” or “previous’
value for each element value. Knowing that, it is possible to convert between inclusive and exclusive
representations of arange's bounds, by choosing the next or previous element value instead of the one
originally given. For example, in an integer range type [4, 8] and (3, 9) denote the same set of
values; but this would not be so for arange over numeric.

A discrete range type should have a canonicalization function that is aware of the desired step size for
the element type. The canonicalization function is charged with converting equivalent values of the
range type to have identical representations, in particular consistently inclusive or exclusive bounds.
If a canonicalization function is not specified, then ranges with different formatting will always be
treated as unequal, even though they might represent the same set of valuesin reality.

Thebuilt-inrange typesi nt 4r ange, i nt 8r ange, and dat er ange all use a canonical form that
includes the lower bound and excludes the upper bound; that is, [) . User-defined range types can use
other conventions, however.

8.17.8. Defining New Range Types

Users can define their own range types. The most common reason to do this is to use ranges over
subtypes not provided among the built-in range types. For example, to define a new range type of
subtypef | oat 8:

179

Data Types

CREATE TYPE fl oatrange AS RANGE (
subtype = fl oat8,
subtype_diff = fl oat8m

)
SELECT '[1.234, 5.678]'::fl oatrange;

Because f | oat 8 has no meaningful “step”, we do not define a canonicalization function in this
example.

Defining your own range type a so alows you to specify a different subtype B-tree operator class or
collation to use, so asto change the sort ordering that determines which valuesfall into agiven range.

If the subtype is considered to have discrete rather than continuous values, the CREATE TYPE
command should specify acanoni cal function. The canonicalization function takes an input range
value, and must return an equivalent range value that may have different bounds and formatting. The
canonical output for two ranges that represent the same set of values, for example the integer ranges
[1, 7] and[1, 8),mustbeidentical. It doesn't matter which representation you choose to be the
canonical one, so long as two equivalent values with different formattings are always mapped to the
same value with the same formatting. In addition to adjusting the inclusive/exclusive boundsformat, a
canonicalization function might round off boundary values, in case the desired step sizeislarger than
what the subtype is capable of storing. For instance, arangetype overt i nest anp could be defined
to have a step size of an hour, in which case the canonicalization function would need to round off
bounds that weren't a multiple of an hour, or perhaps throw an error instead.

In addition, any range type that is meant to be used with GiST or SP-GiST indexes should
define a subtype difference, or subt ype_di ff, function. (The index will still work without
subt ype_di ff, but it is likely to be considerably less efficient than if a difference function is
provided.) The subtype difference function takes two input values of the subtype, and returns their
difference (i.e.,, X minus Y) represented as a f | oat 8 value. In our example above, the function
f | oat 8m that underliestheregular f | oat 8 minusoperator can be used; but for any other subtype,
sometype conversion would be necessary. Some creative thought about how to represent differencesas
numbers might be needed, too. To the greatest extent possible, the subt ype_di f f function should
agree with the sort ordering implied by the selected operator class and collation; that is, its result
should be positive whenever itsfirst argument is greater than its second according to the sort ordering.

A less-oversimplified example of asubt ype_di f f functionis:

CREATE FUNCTION time_subtype diff(x tine, y tine) RETURNS fl oat8 AS
' SELECT EXTRACT(EPOCH FROM (x - y))' LANGUAGE sql STRICT | MMUTABLE;

CREATE TYPE timerange AS RANGE (
subtype = tine,
subtype diff = tinme_subtype_ diff
);

SELECT '[11:10, 23:00]'::tinerange;

See CREATE TY PE for more information about creating range types.

8.17.9. Indexing

GiST and SP-GIiST indexes can be created for table columns of range types. For instance, to create
a GiST index:

CREATE | NDEX reservation_idx ON reservation USING G ST (during);

A GiST or SP-GiST index can accelerate queries involving these range operators: =, &&, <@ @, <<,
>>, - | -, &<, and &> (see Table 9.50 for more information).

180

Data Types

In addition, B-tree and hash indexes can be created for table columns of range types. For these index
types, basically the only useful range operation is equality. Thereis a B-tree sort ordering defined for
range values, with corresponding < and > operators, but the ordering israther arbitrary and not usually
useful in the real world. Range types' B-tree and hash support is primarily meant to allow sorting and
hashing internally in queries, rather than creation of actual indexes.

8.17.10. Constraints on Ranges

While UNI QUE is a natural constraint for scalar values, it is usually unsuitable for range types.
Instead, an exclusion constraint is often more appropriate (see CREATE TABLE ... CONSTRAINT ...
EXCLUDE). Exclusion constraints allow the specification of constraints such as “non-overlapping”
on arange type. For example:

CREATE TABLE reservation (

during tsrange,

EXCLUDE USI NG G ST (during WTH &&)
)

That constraint will prevent any overlapping values from existing in the table at the same time:

| NSERT | NTO reservati on VALUES
('[2010-01-01 11:30, 2010-01-01 15:00)');
INSERT 0 1

I NSERT | NTO reservati on VALUES
(' [2010-01-01 14:45, 2010-01-01 15:45)');

ERROR: conflicting key val ue viol ates excl usi on constrai nt
"reservation_during_excl"

DETAIL: Key (during)=(["2010-01-01 14: 45: 00", "2010-01-01
15:45:00")) conflicts

with existing key (during)=(["2010-01-01 11:30: 00", "2010-01-01
15: 00: 00")).

You can usethe bt r ee_gi st extension to define exclusion constraints on plain scalar data types,
which can then be combined with range exclusions for maximum flexibility. For example, after
bt r ee_gi st isinstalled, the following constraint will reject overlapping ranges only if the meeting
room numbers are equal:

CREATE EXTENSI ON btree_gi st;
CREATE TABLE roomreservation (

room t ext,

during tsrange,

EXCLUDE USING A ST (room WTH =, during WTH &&)
)

| NSERT | NTO room reservati on VALUES
("123A", '[2010-01-01 14:00, 2010-01-01 15:00)');
I NSERT 0 1

| NSERT | NTO room reservati on VALUES
("123A", '[2010-01-01 14:30, 2010-01-01 15:30)');
ERROR: conflicting key val ue viol ates exclusi on constraint
"roomreservation_roomduring_excl"
DETAIL: Key (room during)=(123A, ["2010-01-01
14:30: 00", "2010-01-01 15:30:00")) conflicts
with existing key (room during)=(123A, ["2010-01-01
14: 00: 00", "2010-01-01 15:00:00")).

| NSERT | NTO room reservati on VALUES

181

Data Types

("123B', '[2010-01-01 14:30, 2010-01-01 15:30)');
I NSERT 0 1

8.18. Object Identifier Types

Object identifiers (OIDs) are used internally by PostgreSQL as primary keys for various system
tables. OIDs are not added to user-created tables, unless W TH QO DS is specified when the
table is created, or the default with _oids configuration variable is enabled. Type oi d represents
an object identifier. There are also severa alias types for oi d: regproc, regprocedure,
regoper, regoper at or, regcl ass, regt ype, regrol e, regnanespace, regconfi g,
and r egdi cti onary. Table 8.24 shows an overview.

The oi d type is currently implemented as an unsigned four-byte integer. Therefore, it is not large
enough to provide database-wide uniquenessin large databases, or even in large individual tables. So,
using a user-created table's OID column as a primary key is discouraged. OIDs are best used only for
references to system tables.

The oi d type itself has few operations beyond comparison. It can be cast to integer, however, and
then manipulated using the standard integer operators. (Beware of possible signed-versus-unsigned
confusion if you do this.)

The OID dlias types have no operations of their own except for specialized input and output routines.
These routines are able to accept and display symbolic names for system objects, rather than the raw
numeric value that type oi d would use. The alias types allow simplified lookup of OID values for
objects. For example, to examinethepg_at t ri but e rowsrelated to atable nyt abl e, one could
write:

SELECT * FROM pg_attribute WHERE attrelid = 'nmytable'::regcl ass;
rather than:

SELECT * FROM pg_attribute
WHERE attrelid = (SELECT oid FROM pg_cl ass WHERE rel nanme =
"nytable');

While that doesn't look all that bad by itself, it's still oversimplified. A far more complicated sub-
select would be needed to select theright OID if thereare multiple tablesnamed nyt abl e indifferent
schemas. The r egcl ass input converter handles the table lookup according to the schema path
setting, and so it does the “right thing” automatically. Similarly, casting atable's OID tor egcl ass
is handy for symbolic display of anumeric OID.

Table 8.24. Object Identifier Types

Name References Description Value Example
oid any numeric object| 564182
identifier
regproc pg_proc function name sum
regpr ocedur e pg_proc function with argument|sun(i nt 4)
types
r egoper pg_oper at or operator name +
r egoper at or pg_oper at or operator with argument|* (i nt eger, i nt eger
types or -
(NONE, i nt eger)
regcl ass pg_cl ass relation name pg_type
regtype pg_type data type name i nt eger
regrol e pg_aut hid role name smit hee

182

Data Types

8.19.

8.20.

Name References Description Value Example
regnanmespace pg_nanmespace namespace hame pg_cat al og
regconfig pg_ts config text search|engl i sh

configuration

regdi ctionary pg_ts_dict text search dictionary |si npl e

All of the OID aliastypesfor objects grouped by namespace accept schema-qualified names, and will
display schema-qualified names on output if the object would not be found in the current search path
without being qualified. Ther egpr oc andr egoper aiastypeswill only accept input namesthat are
unique (not overloaded), so they areof limited use; for most usesr egpr ocedur e orr egoper at or

are more appropriate. For r egoper at or, unary operators are identified by writing NONE for the
unused operand.

An additional property of most of the OID alias types is the creation of dependencies. If a
constant of one of these types appears in a stored expression (such as a column default expression
or view), it creates a dependency on the referenced object. For example, if a column has a
default expression next val (' ny_seq' : : regcl ass) , PostgreSQL understands that the default
expression depends on the sequence ny _seq; the system will not let the sequence be dropped without
first removing the default expression. r egr ol e isthe only exception for the property. Constants of
this type are not allowed in such expressions.

Note

The OID alias types do not completely follow transaction isolation rules. The planner
also treats them as simple constants, which may result in sub-optimal planning.

Another identifier type used by the system isxi d, or transaction (abbreviated xact) identifier. Thisis
the data type of the system columns xni n and xmax. Transaction identifiers are 32-bit quantities.

A third identifier type used by the systemisci d, or command identifier. Thisisthe data type of the
system columns cmi n and cmax. Command identifiers are also 32-bit quantities.

A final identifier type used by the systemist i d, or tuple identifier (row identifier). Thisis the data
type of the system column ct i d. A tuple ID isapair (block number, tuple index within block) that
identifies the physical location of the row within itstable.

(The system columns are further explained in Section 5.4.)

pg_lIsn Type

The pg_I sn datatype can be used to store LSN (Log Sequence Number) data which is a pointer to
alocation in the WAL. This type is a representation of XLogRecPt r and an internal system type
of PostgreSQL.

Internally, an LSN is a 64-hit integer, representing a byte position in the write-ahead log stream. It is
printed as two hexadecimal numbers of up to 8 digits each, separated by a dash; for example, 16/
B374D848. Thepg_| sn type supports the standard comparison operators, like = and >. Two LSNs
can be subtracted using the - operator; the result is the number of bytes separating those write-ahead
log locations.

Pseudo-Types

The PostgreSQL type system contains a number of special-purpose entries that are collectively called
pseudo-types. A pseudo-type cannot be used as a column data type, but it can be used to declare a

183

Data Types

function's argument or result type. Each of the available pseudo-typesis useful in situations where a
function's behavior does not correspond to simply taking or returning a value of a specific SQL data
type. Table 8.25 lists the existing pseudo-types.

Table 8.25. Pseudo-Types

Name Description

any Indicates that a function accepts any input data
type.

anyel enent Indicatesthat afunction acceptsany datatype (see
Section 37.2.5).

anyarray Indicates that a function accepts any array data
type (see Section 37.2.5).

anynonarray Indicates that a function accepts any non-array
data type (see Section 37.2.5).

anyenum Indicates that a function accepts any enum data
type (see Section 37.2.5 and Section 8.7).

anyr ange Indicates that a function accepts any range data
type (see Section 37.2.5 and Section 8.17).

cstring Indicates that a function accepts or returns a null-
terminated C string.

i nternal Indicates that a function accepts or returns a
server-internal datatype.

| anguage_handl er A procedura language call handler is declared to
return| anguage_handl er.

f dw_handl er A foreign-data wrapper handler is declared to
return f dw_handl er.

i ndex_am handl er An index access method handler is declared to
returni ndex_am handl er.

t sm_handl er A tablesample method handler is declared to
returnt sm_handl er.

record Identifies a function taking or returning an
unspecified row type.

trigger A trigger function is declared to return
trigger.

event trigger An event trigger function is declared to return
event _trigger.

pg_ddl _commrand | dentifiesarepresentation of DDL commandsthat
isavailable to event triggers.

voi d Indicates that a function returns no value.

unknown Identifies a not-yet-resolved type, eg. of an

undecorated string literal.

opaque An obsolete type name that formerly served many
of the above purposes.

Functions coded in C (whether built-in or dynamically loaded) can be declared to accept or return any
of these pseudo data types. It is up to the function author to ensure that the function will behave safely
when a pseudo-type is used as an argument type.

Functions coded in procedural languages can use pseudo-types only as alowed by ther
implementation languages. At present most procedural languages forbid use of a pseudo-type

184

Data Types

as an argument type, and allow only voi d and record as a result type (plus tri gger or
event _trigger when the function is used as a trigger or event trigger). Some also support

polymorphic functionsusing thetypesanyel enent , anyar r ay, anynonarr ay, anyenum and
anyr ange.

Thei nt er nal pseudo-type is used to declare functions that are meant only to be called internally
by the database system, and not by direct invocation in an SQL query. If afunction has at least one
i nt er nal -type argument then it cannot be called from SQL. To preserve the type safety of this
restrictionitisimportant to follow this coding rule: do not create any function that isdeclared to return
i nt ernal unlessit hasat least onei nt er nal argument.

185

Chapter 9. Functions and Operators

PostgreSQL provides alarge number of functions and operators for the built-in data types. Users can
also define their own functions and operators, as described in Part V. The psgl commands\ df and
\ do can be used to list all available functions and operators, respectively.

If you are concerned about portability then note that most of the functions and operators described
in this chapter, with the exception of the most trivia arithmetic and comparison operators and some
explicitly marked functions, are not specified by the SQL standard. Some of this extended functionality
is present in other SQL database management systems, and in many cases this functionality is
compatible and consistent between the various implementations. This chapter is also not exhaustive;
additional functions appear in relevant sections of the manual.

9.1. Logical Operators

The usual logical operators are available:

AND
OR
NOT

SQL uses a three-valued logic system with true, false, and nul | , which represents “unknown”.
Observe the following truth tables:

a b aAND b aORDb
TRUE TRUE TRUE TRUE
TRUE FALSE FALSE TRUE
TRUE NULL NULL TRUE
FALSE FALSE FALSE FALSE
FALSE NULL FALSE NULL
NULL NULL NULL NULL
a NOT a
TRUE FALSE
FALSE TRUE
NULL NULL

The operators AND and OR are commutative, that is, you can switch the left and right operand without
affecting the result. But see Section 4.2.14 for more information about the order of evaluation of
subexpressions.

9.2. Comparison Functions and Operators

The usua comparison operators are available, as shown in Table 9.1.

Table 9.1. Comparison Operators

Operator Description

< less than

> greater than

<= less than or equal to
>= greater than or equal to

186

Functions and Operators

Operator Description

= equal

<>or!= not equal
Note

The! = operator is converted to <> in the parser stage. It is not possible to implement
I = and <> operators that do different things.

Comparison operators are available for all relevant data types. All comparison operators are binary
operators that return values of type bool ean; expressionslikel < 2 < 3 arenot valid (because
there is no < operator to compare a Boolean value with 3).

There are al so some comparison predicates, as shown in Table 9.2. These behave much like operators,
but have specia syntax mandated by the SQL standard.

Table 9.2. Comparison Predicates

Predicate Description

a BETVEEN X ANDy between

a NOT BETWEENX ANDYy not between

a BETWEEN SYMVETRI Cx ANDYy between, after sorting the comparison values
a NOT BETVEEN SYMMETRI Cx ANDy not between, after sorting the comparison values
alS DI STI NCT FROMb not equal, treating null like an ordinary value
alS NOT DI STI NCT FROMb equal, treating null like an ordinary value
expressionl|S NULL isnull

expression| S NOT NULL isnot null

expressi on | SNULL isnull (nonstandard syntax)

expr essi on NOTNULL isnot null (nonstandard syntax)

bool ean_expression| S TRUE istrue

bool ean_expression| S NOT TRUE isfalse or unknown

bool ean_expression| S FALSE isfalse

bool ean_expression|S NOT FALSE istrue or unknown

bool ean_expressi on | S UNKNOAN is unknown

bool ean_expression| S NOT UNKNOMN |istrue or false

The BETWVEEN predicate simplifies range tests:
a BETVEEN x AND y

is equivalent to

a > x AND a <=y

Notice that BETWEEN treats the endpoint values as included in the range. NOT BETWEEN does the
opposite comparison:;

a NOT BETWEEN x AND y
isequivalent to

a<xORa>y

187

Functions and Operators

BETVEEN SYMMVETRI Cis like BETVEEEN except there is no requirement that the argument to the
left of AND be less than or equal to the argument on the right. If it is not, those two arguments are
automatically swapped, so that a nonempty range is always implied.

Ordinary comparison operatorsyield null (signifying “ unknown™), not true or false, when either input
isnull. For example, 7 = NULL yieldsnull, asdoes7 <> NULL. When thisbehavior isnot suitable,
usethel S [NOT] DI STI NCT FROMpredicates:

a |'S DI STINCT FROM b
a |'S NOT DI STINCT FROM b

For non-null inputs, | S DI STI NCT FROMis the same as the <> operator. However, if both inputs
arenull it returns false, and if only one input is null it returns true. Similarly, | S NOT DI STI NCT
FROMisidentical to = for non-null inputs, but it returns true when both inputs are null, and fal se when
only one input is null. Thus, these predicates effectively act as though null were anormal data value,
rather than “unknown”.

To check whether avalueisor is not null, use the predicates:

expression IS NULL
expression |'S NOT NULL

or the equivalent, but nonstandard, predicates:

expression | SNULL
expressi on NOTNULL

Do not write expressi on = NULL because NULL is not “equal to” NULL. (The null value
represents an unknown value, and it is not known whether two unknown values are equal .)

Tip
Some applications might expect that expressi on = NULL returns true if
expr essi on evauates to the null value. It is highly recommended that these
applications be modified to comply with the SQL standard. However, if that cannot

be done the transform_null_equals configuration variable is available. If it is enabled,
PostgreSQL will convert x = NULL clausestox 1S NULL.

If the expr essi on isrow-valued, then | S NULL is true when the row expression itself is null
or when al the row's fields are null, while | S NOT NULL is true when the row expression itself
is non-null and all the row's fields are non-null. Because of this behavior, | S NULL and I S NOT
NULL do not always return inverse results for row-valued expressions; in particular, a row-valued
expression that contains both null and non-null fields will return false for both tests. In some cases,
it may be preferable to writerow 1 S DI STINCT FROM NULL orrowl S NOT DI STI NCT
FROM NULL, which will simply check whether the overall row value is null without any additional
tests on the row fields.

Boolean values can also be tested using the predicates

bool ean_expression IS TRUE

bool ean_expression |'S NOT TRUE
bool ean_expression | S FALSE

bool ean_expression IS NOT FALSE
bool ean_expression | S UNKNOAN
bool ean_expression |'S NOT UNKNOMN

These will always return true or false, never anull value, even when the operand is null. A null input
is treated as the logical value “unknown”. Noticethat | S UNKNOAN and | S NOT UNKNOWN are

188

Functions and Operators

effectively thesameas| S NULL and1 S NOT NULL, respectively, except that the input expression
must be of Boolean type.

Some comparison-related functions are also available, as shown in Table 9.3.

Table 9.3. Comparison Functions

Function Description Example Example Result

returns the number of [num nonnul I s(1, |2
num_nonnul | s(VARI A®I-&ill arguments NULL, 2)

"any")

returns the number of [num nul I s(1, 1
num nul | s(VARI ADI @il arguments NULL, 2)
“any")

9.3. Mathematical Functions and Operators

Mathematical operators are provided for many PostgreSQL types. For types without standard
mathematical conventions (e.g., date/time types) we describe the actual behavior in subsegquent
sections.

Table 9.4 shows the available mathematical operators.

Table 9.4. Mathematical Operators

Operator Description Example Result
+ addition 2+ 3 5
- subtraction 2 -3 -1
* multiplication 2 * 3
/ division (integer|4 | 2
division truncates the
result)
% modulo (remainder) 5 %4
A exponentiation 2.0~ 3.0 8
(associates |eft to right)
|/ sguare root |/ 25.0 5
[/ cube root ||/ 27.0 3
! factorial 51 120
I factorial (prefix|!'! 5 120
operator)
@ absolute value @-5.0 5
& bitwise AND 91 & 15 11
| bitwise OR 32| 3 35
bitwise XOR 17 # 5 20
~ bitwise NOT ~1 -2
<< bitwise shift left 1 << 4 16
>> bitwise shift right 8 >> 2 2

The bitwise operatorswork only onintegral datatypes, whereasthe othersare availablefor all numeric
data types. The bitwise operators are also available for the bit string typesbi t andbit varyi ng,
as shown in Table 9.13.

189

Functions and Operators

Table 9.5 shows the available mathematical functions. In the table, dp indicates doubl e

pr eci si on. Many of these functions are provided in multiple forms with different argument types.

Except where noted, any given form of a function returns the same data type as its argument. The
functions working with doubl e pr eci si on data are mostly implemented on top of the host
system's C library; accuracy and behavior in boundary cases can therefore vary depending on the host

system.

Table9.5. Mathematical Functions

equal to argument
(sameascei l)

Function Return Type Description Example Result
abs(x) (same asinput) absolute value abs(-17. 4) 17.4
cbrt (dp) dp cube root cbrt (27.0) 3
ceil (dp or |(sameasinput) nearest integer|cei | (-42.8) |-42
nuneri c) greater than or
equal to argument
cei |l i ng(dp|(sameasinput) nearest integer|cei | i ng(-95. 3)- 95
or numeric) greater than or

412

905

9945

979

degrees(dp) |dp radians to degrees |degr ees(0.5) |28. 6478897565
di v(y|nuneric integer quotient of |di v(9, 4) 2

nuneri c, X y/Ix
nuneri c)

exp(dp or |(same asinput) exponential exp(1.0) 2.71828182845
nuneri c)

floor(dp or |(sameasinput) nearest integer less|f | oor (-42.8) |-43
numeri c) than or equa to

argument

I n(dp or |(sameasinput) natural logarithm |l n(2. 0) 0. 69314718055
nuneri c)

l og(dp or |(same asinput) base 10 logarithm |l 0g(100. 0) 2
nuneri c)
| og(b nuneric logarithmtobaseb |l og(2. 0, 6. 0000000000
nuneri c, X 64. 0)
nuneri c)
mod(y, Xx) (same as argument [remainder of y/x |[nod(9, 4) 1

types)

pi () dp “#' constant pi () 3.14159265358
power (a dp, b|dp a raised to the|power (9.0, 729
dp) power of b 3.0)
power (a nuneric a raised to the|power (9.0, 729
nuneri c, b power of b 3.0)
nuneri c)
radi ans(dp) |dp degreestoradians |r adi ans(45. 0)|0. 78539816339

7448

round(dp or

(same asinput)

round to nearest

round(42. 4)

42

numeri c) integer
round(v nuneric roundto s decimal |r ound(42. 4382,42. 44
nuneri c, S places 2)
i nt)

i nt eger scale of thelscal e(8.41) |2
scal e(nuneric argument (the

190

Functions and Operators

Function Return Type Description Example Result
number of decimal
digits in the
fractional part)
sign(dp or |(sameasinput) sign of the|si gn(- 8. 4) -1
numeri c) argument (-1, O,
+1)
sqrt(dp or |(sameasinput) square root sqrt(2.0) 1.41421356237
nuneri c)
trunc(dp or |(sameasinput) truncate toward|{trunc(42.8) |42
nuneri c) Zero
trunc(v nuneric truncate to s|trunc(42.4382/42.43
nuneri c, S decimal places 2)
int)
i nt return the bucket|wi dt h_bucket (8 35,
wi dt h_bucket (oper and number to which|0. 024, 10. 06,
dp, bl dp, operand would|5)
b2 dp, count be assigned in a
int) histogram having
count equal-
width buckets
spanning the range
bl to b2; returns
0 or count +1 for
aninput outsidethe
range
wi dt h_bucket (opgr and return the bucket|wi dt h_bucket (8 35,
nuneri c, b1 number to which|0. 024, 10. 06,
nuneri c, b2 operand would|5)
nuneri c, be assigned in a
count int) histogram having
count equal-
width buckets
spanning the range
bl to b2; returns
0 or count +1 for
aninput outsidethe
range
wi dt h_bucket (opdr and return the bucket|wi dt h_bucket (row(),
anyel enent number to which|array[' yesterday',
t hreshol ds operand would|' t oday',
anyarray) be assigned given|' tonorrow]::ti mestanptz[]

an array listing
the lower bounds
of the buckets,
retuns 0 for an
input less than the
first lower bound;
the t hr eshol ds
aray must be
sorted, smallest
first, or unexpected
results will be
obtained

191

Functions and Operators

Table 9.6 shows functions for generating random numbers.

Table 9.6. Random Functions

Function Return Type Description

random() dp random valueintherange0.0 <=
x<1.0

set seed(dp) voi d set seed for subsequent
randon() calls(valuebetween
-1.0 and 1.0, inclusive)

The characteristics of the values returned by r andon() depend on the system implementation. It is
not suitable for cryptographic applications; see pgcrypto module for an aternative.

Finally, Table 9.7 shows the available trigonometric functions. All trigonometric functions take
arguments and return values of type doubl e pr eci si on. Each of the trigonometric functions
comes in two variants, one that measures angles in radians and one that measures angles in degrees.

Table9.7. Trigonometric Functions

Function (radians) Function (degr ees) Description
acos(x) acosd(x) inverse cosine
asi n(x) asi nd(x) inverse sine
at an(x) at and(x) inverse tangent
atan2(y, x) atan2d(y, x) inverse tangent of y/ x
cos(x) cosd(x) cosine
cot (x) cot d(x) cotangent
si n(x) si nd(x) sine
tan(x) t and(x) tangent
Note

Another way to work with angles measured in degreesisto use the unit transformation
functionsr adi ans() and degr ees() shown earlier. However, using the degree-
based trigonometric functions is preferred, as that way avoids round-off error for
specia cases such assi nd(30) .

9.4. String Functions and Operators

This section describes functions and operators for examining and manipulating string values. Strings
in this context include values of thetypeschar act er ,char act er varyi ng,andt ext . Unless
otherwise noted, al of the functions listed below work on al of these types, but be wary of potential
effects of automatic space-padding when using the char act er type. Some functions also exist
natively for the bit-string types.

SQL defines some string functions that use key words, rather than commas, to separate arguments.
Details are in Table 9.8. PostgreSQL also provides versions of these functions that use the regular
function invocation syntax (see Table 9.9).

Note

Before PostgreSQL 8.3, these functions would silently accept values of several non-
string data types as well, due to the presence of implicit coercions from those data

192

Functions and Operators

types to t ext . Those coercions have been removed because they frequently caused
surprising behaviors. However, the string concatenation operator (| |) still accepts
non-string input, so long as at least oneinput is of astring type, asshown in Table 9.8.
For other cases, insert an explicit coercion to t ext if you need to duplicate the
previous behavior.

Table 9.8. SQL String Functions and Operators

from pattern
for escape)

matching SQL
regular expression.
See Section 9.7 for
more information
on pattern
matching.

from
1 O/#II O_a#ll _I
for '"#')

Function Return Type Description Example Result
string || |t ext String ' Post ' | | |Post greSQL
string concatenation "gresqQ’
string || [text String "Value: ' || |Value: 42
non-string or concatenation with |42
non-string || one non-string
string input
i nt Number of bitsin|bit | ength('j @)
bit | ength(string) string
i nt Number of|char _| engt h(' jdse')
char _|l ength(string) charactersin string
or
character_l ength(string)
t ext Convert string to|l ower (' TOM) [tom
| ower (string) lower case
i nt Number of bytesin|oct et _| engt h({4 ose')
octet _| ength(string) string
t ext Replace substring |over | ay(' TxxxXdsimas
overlay(string pl aci ng ' hom
pl aci ng from2 for 4)
string from
i nt [for
int])
i nt Location of|posi tion(' om |3
posi tion(substring specified substring |i n ' Thomas')
in string)
t ext Extract substring |substri ng(' Thdmas'
substring(string from2 for 3)
[from int]
[for int])
subst ri ng(st r jtrext Extract substring|substri ng(' Thoress'
frompattern) matching POSIX|from'...$")
regular expression.
See Section 9.7 for
more information
on pattern
matching.
subst ri ng(str jtrext Extract substring|substri ng(' Thaores'

193

Functions and Operators

upper (string)

upper case

Function Return Type Description Example Result
t ext Remove the[tri m(bot h Tom
trinm([I| eadi ng longest string|' xyz' from
| trailing containing only|" yxTonkx")
| bot h] characters from
[characters] characters (a
fromstring) space by default)
from the dart,
end, or both
ends (both is
the default) of
string
trim([I| eadi ng|t ext Non-standard trimboth Tom
| trailing | syntax for|from
both] [froni trim)) "yxTonkx',
string [, ''xyz')
characters])
t ext Convert string to|upper('tonmi) |TOM

Additional string manipulation functions are available and are listed in Table 9.9. Some of them are

used internally to implement the SQL -standard string functions listed in Table 9.8.

Table 9.9. Other String Functions

Function

Return Type

Description

Example

Result

ascii(string)

i nt

ASCIl code of
the first character
of the argument.
For UTF8 returns
the Unicode code
point of the
character. For
other multibyte
encodings, the
argument must
be an ASCII
character.

ascii('x")

120

btrim(string
t ext [,
characters
text])

t ext

Remove the
longest string
consisting only
of characters in
characters (a
space by default)
from the start and

endof string

btrinm(' xyxtri
'xyz')

ryyixh,

chr(int)

t ext

Character with
the given code.
For UTF8 the
argument istreated
as a Unicode
code point. For
other multibyte
encodings the
argument must

designate an

chr (65)

194

Functions and Operators

Function

Return Type

Description

Example

Result

ASCIl character.
The NULL (0)
character is not
alowed because
text data types
cannot store such
bytes.

concat (str
n any" [,
str "any"

L ...1 1

t ext

Concatenate the
text

representations of
al the arguments.
NULL arguments

areignored.

concat (' abcde
2, NULL, 22)

abcde222

concat _ws(sep
t ext, str
“any" [
str "any"

L ...1 1

t ext

Concatenate all but
the first argument
with separators.
The first argument
is used as the
separator string.
NULL arguments
areignored.

concat _ws(',"
"abcde' , 2,
NULL, 22)

,abcde, 2, 22

convert(strin
byt ea,
src_encodi ng
namne,
dest _encodi ng
nane)

byt ea

Convert string to
dest _encodi ng
The original
encoding is
specified by
src_encodi ng.
Thestri ng must
be vdid in
this encoding.
Conversions can
be defined by
CREATE
CONVERSI ON.
Also there are
some predefined
conversions. See
Table 9.10 for
available
conversions.

convert ('text
! UTF8'
"LATI N1')

tiextutifrB'ut f 8
represented in
Latin-1 encoding
(1SO 8859-1)

convert from
byt ea,
src_encodi ng
nane)

t ext
string

Convert string
to the database
encoding. The
origina encoding
is specified by
src_encodi ng.
Thestri ng must
be vaid in this
encoding.

convert _from
" UTF8')

ttesott_iim uitffg'
represented in the
current database
encoding

convert to(st
t ext,
dest _encodi ng
nane)

byt ea
ring

Convert string to
dest _encodi ng

convert _to('s
ltext',
" UTF8')

e t ext
represented in the
UTF8 encoding

195

Functions and Operators

Function

Return Type

Description

Example

Result

decode(string
text, format
text)

byt ea

Decode binary
data from textual
representation in
string. Options
for format are
same as in
encode.

decode(' MIl zA
' base64')

AE3132330001

encode(dat a
byt ea, format
text)

t ext

Encode binary data
into a textud
representation.
Supported formats
are; base64,
hex, escape.
escape converts
zero bytes and
high-bit-set bytes
to octal sequences
(\ nnn) and
doubles
backslashes.

encode(E' 123\
\ 000\ \ 001",
' base64')

MIT z AAE=

format (fornat
t ext [,
formatarg

"any

[, ...]

1)

t ext
str

Format arguments
according to a
format string. This
function is similar
to the C function
sprintf. See
Section 9.4.1.

format (' Hel l o
s, % $s',
"World')

Hello World,
Wor |l d

initcap(strin

t ext
0)

Convert the first
letter of each word
to upper case
and the rest to
lower case. Words
are sequences
of aphanumeric
characters
separated by non-
alphanumeric
characters.

i ni tcap(' hi
THOVAS')

H Thomms

left(str

text, nint)

t ext

Return first n
characters in the
string. When n
iS negative, return
al but last |n|
characters.

| eft (' abcde',
2)

ab

I ength(string

Number of
characters in
string

| engt h('j ose'

4

| engt h(string|i

byt ea,
encodi ng nane

)

Number of
characters in
string in the
given encodi ng.
Thestri ng must
be vaid in this
encoding.

| ength('j ose'
" UTF8')

14

196

Functions and Operators

Function Return Type Description Example Result
| pad(string|text Fill up the(l pad(' hi', 5, |xyxhi
text, length string to length|' xy')
int [, fill I ength by
text]) prepending the
charactersfi | | (a
space by default).
If the string is
already longer than
| engt h then it is
truncated (on the
right).
Itrim(string|text Remove thell trim(' zzzyt egtést
t ext [, longest string|' xyz')
characters containing only
text]) characters from
characters (a
space by default)
from the start of
string
md5(string) |text Calculates the/md5(" abc') 900150983cd24f b0
MD5 hash of d6963f 7d28el7f 72
string,
returning the result
in hexadecimal
text[] Split parse_i dent (' [{Some=SRdiems, . ssoret Bl a3)
parse_ident (qualified_identgbakerfied identifier
t ext [, into an aray
strictnode of identifiers,
bool ean removing any
DEFAULT quoting of
true]) individual
identifiers. By
default, extra
characters after

the last identifier
are considered an
error; but if the
second parameter
is fal se, then
such extra
characters are
ignored. (This
behavior is useful
for parsing names
for objects like
functions) Note
that this function
does not truncate
over-length

identifiers. If you
want truncation
you can cast the
result toname[] .

197

Functions and Operators

Function

Return Type

Description

Example

Result

pg_client_enc

name
odi ng()

Current client
encoding name

pg_client_enc

BN ASCI |

quote_ident(s
text)

t ext
tring

Return the given
string suitably
quoted to be used
as an identifier
in an SQL
statement string.
Quotes are added
only if necessary
(i.e, if the string
contains non-
identifier
characters or
would be case
folded). Embedded
quotes are properly
doubled. See aso
Example 42.1.

quot e_i dent ('
bar')

Fd@mo bar"”

quote literal
text)

t ext
string

Return the given
string suitably
quoted to be used
asastring litera in
an SQL statement
string. Embedded
single-quotes and
backslashes are
properly doubled.
Note that
quote literal
returns null on
null input; if
the argument
might be null,
quot e_nul | abl
is often more
suitable. See also
Example 42.1.

quote literal
\'"Reilly")

'EDORei l 1y'

quote_literal
anyel enent)

tveedtue

Coerce the given
value to text and
then quote it as a
literal. Embedded
single-quotes and
backslashes are
properly doubled.

quote_literal

quot e_nul | abl
text)

t ext
e(string

Return the given
string suitably
quoted to be
used as a string
literal in an SQL
statement string;
or, if the argument
is null, return
NULL. Embedded
single-quotes and

quot e_nul | abl

ENULLLL L)

198

Functions and Operators

Function

Return Type

Description

Example

Result

backdlashes are
properly doubled.
See aso
Example 42.1.

quot e_nul | abl
anyel enent)

d(esdl ue

Coerce the given
value to text and
then quote it
as a literd; or,
if the argument
is null, return
NULL. Embedded
single-quotes and
backslashes are
properly doubled.

quot e_nul | abl

8(42.5)

regexp_mat ch(
text, pattern
text [, flags
text])

text[]
string

Return captured
substring(s)

resulting from the
first match of
a POSIX regular
expression to the
string. See
Section 9.7.3 for
more information.

regexp_mat ch(
" (bar)
(beque) ")

{fheoh drespm)ebs

setof text[] |Return captured|r egexp_mat ched(Bdrgobar bequebaz' ,
regexp_mat ches(string substring(s) "ba.', 'g")
text, pattern resulting ~ from { baz}
text [, flags matching a POSIX
text]) regular expression (2 rows)
to the string.
See Section 9.7.3
for more
information.
t ext Replace regexp_repl acgliMhonas' ,
regexp_replace(string substring(s) ".[mM\a.',
text, pattern matching a POSIX|' M)
t ext, regular expression.
r epl acenent See Section 9.7.3
text [, flags for more
text]) information.
text[] Split string|regexp_split_Hdhoerrgwdrial}l o
regexp_split_to_array(stringsing a POSIX{world , E'\\s
text, pattern regular expression|+')
text [, flags as the deimiter.
text 1) See Section 9.7.3
for more
information.
set of text Split string|regexp_split_theltlabl e(' hel ljo
regexp_split_to_table(stringsing a POSIX{world , E\\s
text, pattern regular expression|+') wor | d
text [, flags as the delimiter.
See Section 9.7.3 (2 rows)

text])

for
information.

more

199

Functions and Operators

Function Return Type Description Example Result
t ext Repeat string|repeat (' Pg', |PgPgPgPg
repeat (string the specified|4)
text, number nunber of times
i nt)
t ext Replace al|repl ace(' abcdethatedatd XXef
repl ace(string occurrences in'cd , 'XX)
t ext, from string of
t ext, to substring from
text) with substring t o
reverse(str) |text Return reversed|r ever se(' abcdedcba
string.
right(str|text Return last njright (' abcde' |de
text, n int) characters in the|2)
string. When n
iS negative, return
al but first |n|
characters.
rpad(string|text Fill up the[rpad(' hi', 5, |hixyx
text, length string to length|' xy')
int [, fill I ength by
text]) appending the
charactersfi | | (a
space by default).
If the string is
already longer than
| engt h then it is
truncated.
rtrim(string|text Remove theirtrim'testxxgest
t ext [, longest string|' xyz')
characters containing only
text]) characters from
characters (a
space by default)
from the end of
string
t ext Split string on|split_part (' alef@-def ~@-ghil'
split_part(string delimter and|'~@', 2)
t ext, return the given
delimter field (counting
t ext, field from one)
int)
i nt Location of|strpos(' high' |2
strpos(string, specified substring|' i ')
substring) (same as
posi tion(substring
in string),but
note the reversed
argument order)
t ext Extract substring|substr (' al phah#t ',
substr(string, (same as|3, 2)
from [, substring(string

count])

fromfromfor

count))

200

Functions and Operators

replaced by the
corresponding
character in the
to set. If from
is longer than
t o, occurrences of
theextracharacters
in from are
removed.

Function Return Type Description Example Result
t ext Convert string|to_ascii (' Kargdrel
to_ascii(string to ASCIl from
t ext [, another encoding
encodi ng (only supports
text]) conversion from
LATI N1,
LATI N2,
LATI N9, and
W N1250
encodings)
t ext Convert nunber |t o_hex (2147483641 fff
t o_hex(nunber to its equivaent
i nt or hexadecimal
bi gi nt) representation
t ext Any character|t r ansl at e(' 12@8X5
translate(strijng in string that|' 143", 'ax')
t ext, from matches a
t ext, to character in the
text) from st s

Theconcat,concat _ws andf or mat functionsarevariadic, soit ispossible to passthe valuesto
be concatenated or formatted as an array marked with the VARI ADI C keyword (see Section 37.4.5).
The array's elements are treated as if they were separate ordinary arguments to the function. If the
variadic array argument is NULL, concat and concat _ws return NULL, but f or mat treats a
NULL as azero-element array.

See also the aggregate function st ri ng_agg in Section 9.20.

Table 9.10. Built-in Conversions

Conversion Name? Sour ce Encoding Destination Encoding
ascii _to_mc SQ._ASCI | MULE_| NTERNAL
ascii_to utf8 SQL_ASCI | UTF8

bigs to euc tw Bl G5 EUC TW
big5_to_mc Bl G5 MULE_| NTERNAL
big5 to utf8 Bl G5 UTF8

euc_cn_to mc EUC CN MULE | NTERNAL
euc_cn_to utf8 EUC CN UTF8

euc_jp_to mc EUC JP MULE | NTERNAL
euc_jp_to_sjis EUC JP SJI S

euc_jp_to utf8 EUC JP UTF8

euc_kr _to nmc EUC KR MULE | NTERNAL
euc_kr_to utf8 EUC KR UTF8

201

Functions and Operators

Conversion Name?

Sour ce Encoding

Destination Encoding

euc_tw to_bigs EUC TW Bl G
euc_twto_nmc EUC_TW MULE_| NTERNAL
euc_twto utf8 EUC TW UTF8
gh18030_to_utf8 GB18030 UTF8
gbk_to_utf8 GBK UTF8
iso_8859 10 _to_utf8 LATI N6 UTF8

iso_ 8859 13 to utf8 LATI N7 UTF8
iso_8859 14 to utf8 LATI N8 UTF8
iso_8859 15 to_utf8 LATI N9 UTF8
iso_8859 16 _to_utf8 LATI N10 UTF8

iso_ 8859 1 to mc LATI N1 MULE_| NTERNAL
iso_ 8859 1 to utf8 LATI N1 UTF8
iso_8859 2 to mc LATI N2 MULE_| NTERNAL
iso 8859 2 to utf8 LATI N2 UTF8

i so_8859 2 to w ndows 1260 N2 W N1250
iso_8859 3 to mc LATI N3 MULE_| NTERNAL
iso_8859 3 to utf8 LATI N3 UTF8
is0_8859 4 to_mic LATI N4 MULE_| NTERNAL
iso 8859 4 to utf8 LATI N4 UTF8
iso_8859 5 to_koi8_r |[1SO 8859 5 KO 8R
iso_8859 5 to_mc | SO 8859 _5 MULE_| NTERNAL
iso0_8859 5 to_utf8 | SO 8859 _5 UTF8
iso_8859 5 to wi ndows [AZ¥] 8859 5 W N1251

i so_8859 5 to_wi ndows_86&8 8859 5 W NB866
iso_8859 6 to utf8 | SO 8859 _6 UTF8
is0_8859 7 to_utf8 | SO 8859 _7 UTF8
iso_8859 8 to_utf8 | SO 8859_8 UTF8
iso_8859 9 to utf8 LATI N5 UTF8
johab_to_utf8 JOHAB UTF8

koi8 r to iso 8859 5 |KO 8R | SO 8859 5

koi 8_r_to_mc KA 8R MULE_| NTERNAL
koi8 r to utf8 KA 8R UTF8

koi 8 r _to_w ndows_1251KO 8R W N1251

koi 8 r _to _wi ndows 866 KO 8R W N866

koi8 u to utf8 KO 8U UTF8
mc_to_ascii MULE_| NTERNAL SQ._ASC |
mc_to_bigb MULE_| NTERNAL Bl G5

mc to _euc_cn MULE | NTERNAL EUC CN

mc to euc_jp MULE | NTERNAL EUC JP

m c_t o_euc_kr MULE_| NTERNAL EUC KR
mc_to_euc_tw MULE_| NTERNAL EUC_TW

202

Functions and Operators

Conversion Name ? Sour ce Encoding Destination Encoding
mc_to_iso 8859 1 MULE_| NTERNAL LATI N1
mc_to_iso_8859 2 MULE_| NTERNAL LATI N2

mc to_ iso 8859 3 MULE_| NTERNAL LATI N3
mc_to_iso_8859 4 MULE_| NTERNAL LATI N4
mc_to_iso 8859 5 MULE_| NTERNAL | SO 8859 _5
m c_to_koi8_r MULE_| NTERNAL KO 8R

mc to sjis MULE | NTERNAL SJI S

m c_t o_wi ndows_1250 MULE_| NTERNAL W N1250

m c_to_wi ndows_1251 MULE_| NTERNAL W N1251

m c_to_wi ndows_ 866 MULE | NTERNAL W N866
sjis_to euc jp SJI S EUC JP
sjis_to_mc SJI'S MULE_| NTERNAL
sjis_to utf8 SJIS UTF8
tcvn_to utf8 W N1258 UTF8

uhc_to utf8 UHC UTF8

utf8 to_ascii UTF8 SQL_ASCI |
utf8_ to_bigs UTF8 Bl G5

utf8 to_euc_cn UTF8 EUC CN

utf8 to euc jp UTF8 EUC JP

utf8 to_euc kr UTF8 EUC KR

utf8 to_euc_tw UTF8 EUC TW

utf8 to_ghl18030 UTF8 GB18030

utf8 to_gbk UTF8 GBK

utf8 to iso 8859 1 UTF8 LATI N1

utf8 to_iso 8859 10 UTF8 LATI N6

utf8 to_iso 8859 13 UTF8 LATI N7

utf8 to iso 8859 14 UTF8 LATI N8

utf8 to iso 8859 15 UTF8 LATI N9

utf8 to_iso 8859 16 UTF8 LATI N10
utf8 to_ iso 8859 2 UTF8 LATI N2

utf8 to iso 8859 3 UTF8 LATI N3

utf8 to iso 8859 4 UTF8 LATI N4

utf8 to_iso 8859 5 UTF8 | SO 8859 _5
utf8 to_iso 8859 6 UTF8 | SO 8859_6
utf8 to_iso 8859 7 UTF8 | SO 8859_7
utf8 to_iso 8859 8 UTF8 | SO 8859_8
utf8 to_iso 8859 9 UTF8 LATI N5

utf8 to_johab UTF8 JOHAB

utf8 to koi8 r UTF8 KA 8R

utf8 to_koi8 u UTF8 KO 8U

utf8 to_sjis UTF8 SJI S

203

Functions and Operators

9.4.1.

Conversion Name ? Sour ce Encoding Destination Encoding
utf8 to_tcvn UTF8 W N1258

utf8 to_uhc UTF8 UHC

utf8 to w ndows_ 1250 |UTF8 W N1250

utf8 to_wi ndows_1251 |UTF8 W N1251

utf8 to_w ndows_1252 |UTF8 W N1252

utf8 to_w ndows_ 1253 |UTF8 W N1253

utf8 to w ndows_ 1254 |UTF8 W N1254

utf8 to_w ndows_1255 |UTF8 W N1255

utf8 to_w ndows_1256 |UTF8 W N1256

utf8 to_w ndows_ 1257 |UTF8 W N1257

utf8 to w ndows_ 866 UTF8 W N866

utf8 to w ndows 874 UTF8 W N874

wi ndows_1250_to_i so_8888 NA250 LATI N2

wi ndows_1250_to_nic W N1250 MULE_| NTERNAL
wi ndows 1250 to utf8 |W N1250 UTF8

wi ndows_1251 to_i so_88B4 N 251 | SO 8859_5

w ndows_1251 to_koi 8 r|W N1251 KO 8R

wi ndows_1251 to_nic W N1251 MULE_| NTERNAL
wi ndows_1251 to_utf8 |WN1251 UTF8

wi ndows_1251_t o_wi ndowsN8aR51 W N866

wi ndows_1252 to utf8 |WN1252 UTF8

wi ndows 1256 to utf8 |WN1256 UTF8

wi ndows 866 to_i so_8859NIN866 | SO 8859 5

wi ndows 866 to koi 8 r |W N866 KO 8R

wi ndows_866_to_mc W N866 MULE_| NTERNAL
wi ndows 866 to utf8 W N866 UTF8

wi ndows 866 _t o_w ndows \A2NBH66 W N

wi ndows_874 to_utf8 W N874 UTF8
euc_jis_2004 to_utf8 |EUC JIS 2004 UTF8

utf8 to euc jis_2004 |UTF8 EUC JI S 2004
shift_jis_2004_to_utf8SH FT_JI S_2004 UTF8

utf8 to_shift_jis_2004 UTF8 SH FT_JI S_2004
euc_jis_2004_to_shift_jEYC 20\ 2004 SHI FT_JI'S 2004
shift_jis_2004_to_euc_jSH 0@ S 2004 EUC JI S_2004

8The conversion names follow a standard naming scheme: The official name of the source encoding with all non-al phanumeric
characters replaced by underscores, followed by _t o_, followed by the similarly processed destination encoding name.
Therefore, the names might deviate from the customary encoding names.

f or mat

The function f or mat produces output formatted according to a format string, in a style similar to
the C functionspri nt f.

format (formatstr text [, formatarg "any" [, ...] 1)

204

Functions and Operators

format str isaformat string that specifies how the result should be formatted. Text in the format
string is copied directly to the result, except where format specifiers are used. Format specifiers act
as placeholders in the string, defining how subsequent function arguments should be formatted and
inserted into theresult. Each f or mat ar g argument is converted to text according to the usual output
rules for its data type, and then formatted and inserted into the result string according to the format
specifier(s).

Format specifiers are introduced by a %character and have the form
% position][flags][w dth]type

where the component fields are;

posi ti on (optional)

A string of the form n$ where n is the index of the argument to print. Index 1 means the first
argument after f or mat st r . If theposi t i on isomitted, the default isto use the next argument
in sequence.

fl ags (optiona)

Additional options controlling how the format specifier's output is formatted. Currently the only
supported flagisaminussign (-) which will cause the format specifier's output to beleft-justified.
This has no effect unlessthewi dt h field is also specified.

wi dt h (optional)

Specifies the minimum number of characters to use to display the format specifier's output. The
output is padded on the l€eft or right (depending on the - flag) with spaces as needed to fill the
width. A too-small width does not cause truncation of the output, but issimply ignored. The width
may be specified using any of the following: a positive integer; an asterisk (*) to use the next
function argument as the width; or a string of the form * n$ to use the nth function argument
asthe width.

If the width comes from afunction argument, that argument is consumed before the argument that
isused for the format specifier'svalue. If the width argument is negative, the result isleft aligned
(asif the- flag had been specified) within afield of length abs (wi dt h).

t ype (required)

Thetype of format conversion to use to produce the format specifier's output. Thefollowing types
are supported:

* s formats the argument value as asimple string. A null value istreated as an empty string.

| treatsthe argument value as an SQL identifier, double-quoting it if necessary. It is an error
for the value to be null (equivalent to quot e_i dent).

* L quotes the argument value as an SQL literal. A null value is displayed as the string NULL,
without quotes (equivalent to quot e_nul | abl e).

In addition to the format specifiers described above, the special sequence %8%may be used to output
aliteral %character.

Here are some examples of the basic format conversions:

SELECT format (' Hello %', '"Wrld');
Result: Hello World

SELECT format (' Testing %, %, %, %6, 'one', 'tw', 'three');

205

Functions and Operators

Result: Testing one, two, three, %

SELECT format (' I NSERT I NTO % VALUES(%.)', 'Foo bar', E O
\'Reilly");

Resul t: INSERT I NTO "Foo bar" VALUES(' O 'Reilly")

SELECT format (' I NSERT | NTO % VALUES(%.)', 'locations', E C\

\Program Files');
Result: I NSERT I NTO | ocati ons VALUES(E C. \\Program Files')

Here are examplesusing wi dt h fields and the - flag:

SELECT format('|9%0s|', 'foo');
Resul t: | f oo|
SELECT format('| % 10s|', 'foo0');

Result: |foo |

SELECT format('|%s|', 10, 'foo');
Resul t: | f oo|

SELECT format('|%s|', -10, 'foo');
Result: |foo |

SELECT format('|%*s|', 10, 'foo0');
Result: |foo |

SELECT format('|%*s|', -10, 'foo');
Result: |foo |

These examples show use of posi ti on fields:

SELECT fornmat (' Testing ¥8%s, %®%s, %$s', 'one', 'two', 'three');
Result: Testing three, two, one

SELECT format('|%2%s|', 'foo', 10, 'bar');
Resul t: | bar |

SELECT format (' |%$*2%s|', 'foo', 10, 'bar');
Resul t: | foo|

Unlike the standard C function spri nt f , PostgreSQL's f or mat function allows format specifiers
with and without posi t i on fieldsto be mixed in the same format string. A format specifier without
aposi ti on field aways uses the next argument after the last argument consumed. In addition, the
f or mat function does not requireall function argumentsto be used in the format string. For example:

SELECT format (' Testing ¥8%s, %®$s, %', 'one', 'two', 'three');
Result: Testing three, two, three

The 94 and % format specifiers are particularly useful for safely constructing dynamic SQL
statements. See Example 42.1.

9.5. Binary String Functions and Operators

This section describes functions and operators for examining and manipulating values of typebyt ea.

SQL defines some string functions that use key words, rather than commas, to separate arguments.
Details are in Table 9.11. PostgreSQL also provides versions of these functions that use the regular
function invocation syntax (see Table 9.12).

206

Functions and Operators

Note

The sample results shown on this page assume that the server parameter
byt ea_out put issettoescape (thetraditional PostgreSQL format).

Table9.11. SQL Binary String Functions and Operators

start and end of
string

Function Return Type Description Example Result
string || [byt ea String E \\\ \\ Post ' gres
string concatenation \ Post ' :: byt eal\ 000
| E\
\ 047gr es\
\ 000" : : byt ea
i nt Number of bytesin|octet | ength(B jo
octet | ength(string) binary string \
\ 000se' : : byt ep)
byt ea Replace substring |over |l ay(E' Th [T\ \ 002\
overlay(string \ \ 003nms
pl aci ng \ 000onms' : : byt ea
string from placing E'\
i nt [for \ 002\
int]) \003':: bytea
from2 for 3)
i nt Location of|[position(E\ |3
posi tion(substring specified substring |\ 000om : : byt e;@
in string) in E' Th\
\ 000omas' : : byt ea)
byt ea Extract substring |subst ri ng(E T\ 0000
substring(string \
[from int] \ 000omas' : : byt ea
[for int]) from2 for 3)
trim([both] bytea Remove theltri m(E'\ Tom
byt es from longest string|\ 000\
string) containing only|\ 001" : : byt ea
bytes appearing in|f r om E\
byt es from the|\ 000Tom

\001': : byt ea)

Additional binary string manipulation functions are available and are listed in Table 9.12. Some of
them are used internally to implement the SQL -standard string functionslisted in Table 9.11.

Table9.12. Other Binary String Functions

byt es from the
start and end of
string

\ 001" : : byt ea)

Function Return Type Description Example Result
btrin(string|bytea Remove the/bt ri n(E'\ trim
bytea, bytes longest string|{\ 000t ri M
byt ea) containing only|\ 001' : : byt ea,

bytes appearing in|E' \ \ 000\

207

Functions and Operators

Function Return Type Description Example Result
byt ea Decode binary|decode(E' 123\|123\ 000456
decode(string data from textual |\ 000456' ,
text, format representation in|' escape')
text) string. Options
for format are
same as in
encode.
encode(dat a|t ext Encode binary data|encode(E' 123\ {123\ 000456
byt ea, format into a textual|\ 000456' :: byt ea,
text) representation. ' escape')
Supported formats
are; base64,
hex, escape.
escape converts
zero bytes and
high-bit-set bytes
to octal sequences
(\ nnn) and
doubles
backslashes.
i nt Extract bit from|get _bit(E Th |1
get _bit(string, string \
of f set) \ 000omnms' : : byt ea,
45)
i nt Extract byte from|get _byt e(E Th|109
get _byte(string, string \
of f set) \ 000onmas' : : byt ea,
4)
i nt Length of binary|l engt h(E jo\ |5
I ength(string string \ 000se' : : byt ep)
nd5(string) |text Calculates the|md5(E' Th\ 8ab2d3c9689aaf 18
MD5 hash of |\ 000onas' : : byt=E)58c334c82d8b1
string,
returning the result
in hexadecimal
byt ea Set bit in string set _bit(E Th |Th\ 0000mAs
set _bit(string, \
of f set, \ 000onms' : : byt ea,
newal ue) 45, 0)
byt ea Set byteinstring |set byt e(E' Th|Th\ 000o@s
set _byte(string, \

of f set,
newal ue)

\ 000ommas' : : by

tea,

4, 64)

get _byte and set byt e number the first byte of a binary string as byte 0. get _bit and

set _bi t number bitsfrom the right within each byte; for example bit 0 isthe least significant bit of

the first byte, and bit 15 isthe most significant bit of the second byte.

See aso the aggregate function st ri ng_agg in Section 9.20 and the large object functions in

Section 34.4.

9.6. Bit String Functions and Operators

208

Functions and Operators

This section describes functions and operators for examining and manipulating bit strings, that is
valuesof thetypesbi t andbi t varyi ng. Asidefromtheusual comparison operators, the operators
shown in Table 9.13 can be used. Bit string operands of &, | , and # must be of equal length. When bit
shifting, the original length of the string is preserved, as shown in the examples.

Table 9.13. Bit String Operators

Operator Description Example Result

[concatenation B' 10001" |] 110001011
B' 011

& bitwise AND B' 10001" &|00001
B 01101

[bitwise OR B' 10001" | (11101
B' 01101

bitwise XOR B' 10001 #(11100
B' 01101

~ bitwise NOT ~ B 10001’ 01110

<< bitwise shift left B' 10001' << 3 01000

>> bitwise shift right B'10001' >> 2 00100

The following SQL-standard functions work on bit strings as well as character strings: | engt h,
bit_| ength,octet_| ength,position,substring,overl ay.

The following functions work on bit strings as well as binary strings: get _bi t, set _bi t. When
working with abit string, these functions number the first (leftmost) bit of the string as bit 0.

In addition, it is possible to cast integral values to and from type bi t . Some examples:

44: :bit (10) 0000101100
44: :bit (3) 100

cast (-44 as bit(12)) 111111010100
'1110'::bit(4)::integer 14

Note that casting to just “bit” means castingto bi t (1) , and so will deliver only the least significant
bit of the integer.

Note

Casting an integer to bi t (n) copiesthe rightmost n bits. Casting an integer to a bit
string width wider than the integer itself will sign-extend on the | eft.

9.7. Pattern Matching

There are three separate approaches to pattern matching provided by PostgreSQL : the traditional SQL
LI KE operator, the more recent SI M LAR TO operator (added in SQL:1999), and POSIX-style
regular expressions. Aside from the basic “does this string match this pattern?’ operators, functions
are available to extract or replace matching substrings and to split a string at matching locations.

Tip

If you have pattern matching needsthat go beyond this, consider writing auser-defined
function in Perl or Tcl.

209

Functions and Operators

Caution

While most regular-expression searches can be executed very quickly, regular
expressions can be contrived that take arbitrary amounts of time and memory to
process. Bewary of accepting regul ar-expression search patterns from hostile sources.
If you must do so, it is advisable to impose a statement timeout.

Searches using SIM LAR TO patterns have the same security hazards, since
SIM LAR TO provides many of the same capabilities as POSIX-style regular
expressions.

L1 KE searches, being much simpler than the other two options, are safer to use with
possibly-hostile pattern sources.

9.7.1. LI KE

string LIKE pattern [ESCAPE escape-character]
string NOT LIKE pattern [ESCAPE escape-character]

The LI KE expression returns true if the st r i ng matches the supplied pat t er n. (As expected, the
NOT LI KE expression returns false if LI KE returns true, and vice versa. An equivalent expression
iSNOT (string LIKE pattern).)

If pat t er n does not contain percent signs or underscores, then the pattern only represents the string
itself; in that case LI KE acts like the equals operator. An underscore () in pat t er n stands for
(matches) any single character; a percent sign (%9 matches any sequence of zero or more characters.

Some examples:

"abc' LIKE 'abc' true
"abc' LIKE 'a% true
"abc' LIKE' b ' true
"abc' LIKE 'c' fal se

LI KE pattern matching always covers the entire string. Therefore, if it's desired to match a sequence
anywhere within a string, the pattern must start and end with a percent sign.

To match a literal underscore or percent sign without matching other characters, the respective
character in pat t er n must be preceded by the escape character. The default escape character is
the backslash but a different one can be selected by using the ESCAPE clause. To match the escape
character itself, write two escape characters.

Note

If you have standard_conforming_strings turned off, any backslashes you write
in literal string constants will need to be doubled. See Section 4.1.2.1 for more
information.

It's also possible to select no escape character by writing ESCAPE ' ' . This effectively disables
the escape mechanism, which makes it impossible to turn off the special meaning of underscore and
percent signsin the pattern.

The key word | LI KE can be used instead of LI KE to make the match case-insensitive according to
the active locale. Thisis not in the SQL standard but is a PostgreSQL extension.

The operator ~~ is equivalent to LI KE, and ~~* correspondsto | LI KE. Therearealso! ~~ and !
~~* operators that represent NOT LI KE and NOT | LI KE, respectively. All of these operators are
PostgreSQL -specific.

210

Functions and Operators

9.7.2.

9.7.3.

SI M LAR TORegular Expressions

string SIMLAR TO pattern [ESCAPE escape-character]
string NOT SIMLAR TO pattern [ESCAPE escape-character]

The SI M LAR TOoperator returns true or false depending on whether its pattern matches the given
string. Itissimilar to LI KE, except that it interpretsthe pattern using the SQL standard's definition of a
regular expression. SQL regular expressions are a curious cross between L1 KE notation and common
regular expression notation.

Like Ll KE, the SI M LAR TOoperator succeeds only if its pattern matches the entire string; thisis
unlike common regular expression behavior where the pattern can match any part of the string. Also
likeLl KE, SI M LAR TOuses__ and %as wildcard characters denoting any single character and any
string, respectively (these are comparableto . and . * in POSIX regular expressions).

In addition to these facilities borrowed from LI KE, SI M LAR TO supports these pattern-matching
metacharacters borrowed from POSI X regular expressions:

* | denotes alternation (either of two aternatives).
» * denotes repetition of the previous item zero or more times.
» + denotes repetition of the previous item one or more times.

 ? denotes repetition of the previous item zero or onetime.

{n} denotes repetition of the previousitem exactly mtimes.

{m } denotesrepetition of the previousitem mor more times.

e {m n} denotes repetition of the previousitem at least mand not more than n times.

Parentheses () can be used to group itemsinto asingle logical item.
» A bracket expression[. . .] specifiesacharacter class, just asin POSIX regular expressions.
Notice that the period (.) is not a metacharacter for SI M LAR TO.

Aswith LI KE, abackslash disables the special meaning of any of these metacharacters; or adifferent
escape character can be specified with ESCAPE.

Some examples:

"abc' SIMLAR TO ' abc’ true
"abc' SIMLAR TO 'a' fal se
"abc' SIMLAR TO '%b|d)% true
"abc’ SIMLAR TO ' (b]c)% fal se

The subst ri ng function with three parameters, substri ng(string from pattern for
escape- char act er) , provides extraction of a substring that matches an SQL regular expression
pattern. Aswith SI M LAR TO, the specified pattern must match the entire data string, or else the
function fails and returns null. To indicate the part of the pattern that should be returned on success,
the pattern must contain two occurrences of the escape character followed by a double quote ("). The
text matching the portion of the pattern between these markers s returned.

Some examples, with #" delimiting the return string:

substring(' foobar' from'%"o b#"% for '#') oob
substring(' foobar' from'#"o_b#"'% for '#') NULL

POSIX Regular Expressions

Table 9.14 lists the available operators for pattern matching using POSIX regular expressions.

211

Functions and Operators

Table 9.14. Regular Expression Match Operators

Operator Description Example

~ Matchesregular expression, case|' t hormas' ~
sensitive ".*thomas. *'

~* Matchesregular expression, case|' t horas' ~*
insensitive ' . *Thonas. *'

I~ Does not match regular|' t hormas' I~
expression, case sensitive ' . *Thomas. *'

I ~* Does not match regular|' t honas' I ~*
expression, case insensitive ".*vadim *'

POSIX regular expressions provide a more powerful means for pattern matching than the LI KE and
SIM LAR TO operators. Many Unix tools such as egr ep, sed, or awk use a pattern matching
language that is similar to the one described here.

A regular expression is a character sequence that is an abbreviated definition of a set of strings (a
regular set). A string is said to match aregular expression if it isamember of the regular set described
by the regular expression. As with LI KE, pattern characters match string characters exactly unless
they are special charactersin the regular expression language — but regular expressions use different
special characters than LI KE does. Unlike LI KE patterns, a regular expression is allowed to match
anywhere within a string, unless the regular expression is explicitly anchored to the beginning or end
of the string.

Some examples:

"abc' ~ 'abc' true
"abc' ~ '7a’ true
"abc' ~ "(b|d)" true
"abc' ~ "~(bljc)"' false

The POSIX pattern language is described in much greater detail below.

The subst ri ng function with two parameters, substring(string from pattern),
provides extraction of a substring that matches a POSIX regular expression pattern. It returns null if
there is no match, otherwise the portion of the text that matched the pattern. But if the pattern contains
any parentheses, the portion of the text that matched the first parenthesized subexpression (the one
whose left parenthesis comesfirst) isreturned. Y ou can put parentheses around the whole expression
if you want to use parentheses within it without triggering this exception. If you need parenthesesin
the pattern before the subexpression you want to extract, see the non-capturing parentheses described
below.

Some examples:

substring(' foobar' from'o.b") oob
substring(' foobar' from'o(.)b") o]

The regexp_r epl ace function provides substitution of new text for substrings that match
POSIX regular expression patterns. It has the syntax r egexp_r epl ace(sour ce, pattern,
repl acenent [, flags]). The sour ce string is returned unchanged if there is no match to
the pat t er n. If there is a match, the sour ce string is returned with the r epl acenent string
substituted for the matching substring. The r epl acenent string can contain \ n, where n is 1
through 9, to indicate that the source substring matching the n'th parenthesized subexpression of the
pattern should be inserted, and it can contain \ & to indicate that the substring matching the entire
pattern should be inserted. Write\ \ if you need to put aliteral backslash in the replacement text. The
f | ags parameter is an optional text string containing zero or more single-letter flags that change the
function's behavior. Flagi specifies case-insensitive matching, while flag g specifies replacement of
each matching substring rather than only the first one. Supported flags (though not g) are described
in Table 9.22.

212

Functions and Operators

Some examples:

regexp_repl ace(' foobarbaz', '"b.."', 'X)
f ooXbaz
regexp_repl ace(' foobarbaz', 'b..', 'X, 'g")
f ooXX

regexp_replace(' foobarbaz', "b(..)', EX\\1Y', 'g")
f ooXar YXazY

The r egexp_mat ch function returns a text array of captured substring(s) resulting from the first
match of aPOSIX regular expression pattern to astring. It hasthe syntax r egexp_mat ch(st ri ng,
pattern[,fl ags]).!f thereisnomatch, theresultisNULL. If amatchisfound, andthepatt ern
contains no parenthesized subexpressions, then the result is a single-element text array containing the
substring matching the whole pattern. If a match is found, and the pat t er n contains parenthesized
subexpressions, then the result is a text array whose n'th element is the substring matching the n'th
parenthesized subexpression of the pat t er n (not counting “non-capturing” parentheses; see below
for details). Thef | ags parameter isan optional text string containing zero or more single-letter flags
that change the function's behavior. Supported flags are described in Table 9.22.

Some examples:

SELECT regexp_mat ch(' f oobar bequebaz' ,
regexp_mat ch

{barbeque}
(1 row

bar. *que');

SELECT regexp_mat ch(' f oobar bequebaz', ' (bar) (beque)');
regexp_mat ch
{bar, beque}

(1 row

In the common case where you just want the whole matching substring or NULL for no match, write
something like

SELECT (regexp_match('foobarbequebaz', 'bar.*que'))[1];
regexp_natch

bar beque

(1 row

Ther egexp_mat ches function returns a set of text arrays of captured substring(s) resulting from
matching a POSI X regular expression pattern to astring. It has the same syntax asr egexp_rmmat ch.
Thisfunction returnsno rowsif thereisno match, onerow if thereisamatch and theg flagisnot given,
or Nrowsif thereare Nmatches and the g flag isgiven. Each returned row isatext array containing the
whole matched substring or the substrings matching parenthesized subexpressions of the pat t er n,
just as described above for r egexp_mat ch. r egexp_nat ches accepts al the flags shown in
Table 9.22, plusthe g flag which commandsiit to return all matches, not just the first one.

Some examples:

SELECT regexp_matches('foo', 'not there');
regexp_mat ches

SELECT regexp_mat ches(' f oobar bequebazi | barf bonk', ' (b[”b]+)
(b[*b]+)", "g');
regexp_mat ches

213

Functions and Operators

{bar, beque}
{bazil, barf}
(2 rows)

Tip

In most cases r egexp_nat ches() should be used with the g flag, since if you
only want the first match, it's easier and more efficient to use r egexp_nmat ch() .
However, r egexp_mat ch() only exists in PostgreSQL version 10 and up. When
working in older versions, acommon trick isto place ar egexp_nat ches() call
in asub-select, for example:

SELECT col 1, (SELECT regexp_natches(col 2, ' (bar)
(beque)')) FROMt ab;

This produces a text array if theres a match, or NULL if not, the same as
regexp_mat ch() would do. Without the sub-select, this query would produce no
output at all for table rowswithout amatch, whichistypically not the desired behavior.

Ther egexp_split_to_tabl e function splitsastring using a POSI X regular expression pattern
as adelimiter. It hasthe syntax r egexp_split_to_tabl e(string,pattern[,flags]).If
there is no match to the pat t er n, the function returnsthe st r i ng. If there is at least one match,
for each match it returns the text from the end of the last match (or the beginning of the string) to
the beginning of the match. When there are no more matches, it returns the text from the end of the
last match to the end of the string. The f | ags parameter is an optional text string containing zero or
more single-letter flags that change the function's behavior. r egexp_spl it _t o_t abl e supports
the flags described in Table 9.22.

Theregexp_split_to_array function behaves the same asregexp_split_to_tabl e,
except that regexp_split_to_array returnsitsresult as an array of t ext . It has the syntax
regexp_split_to_array(string,pattern[,flags]). Theparametersarethe sameasfor
regexp_split_to_table.

Some examples:

SELECT foo FROM regexp_split _to _table('the quick brown fox junps
over the lazy dog', E' \\s+') AS foo;
f oo

SELECT regexp_split_to_array('the quick brown fox junps over the
lazy dog', E \\s+');
regexp_split_to_array

{t he, qui ck, brown, f ox, j unps, over, t he, | azy, dog}

214

Functions and Operators

(1 row

SELECT foo FROM regexp_split_to_table('the quick brown fox', E\
\'s*') AS foo;

As the last example demonstrates, the regexp split functions ignore zero-length matches that occur
at the start or end of the string or immediately after a previous match. This is contrary to the strict
definition of regexp matching that isimplemented by r egexp_nmat ch andr egexp_mat ches, but
is usualy the most convenient behavior in practice. Other software systems such as Perl use similar
definitions.

9.7.3.1. Regular Expression Details

PostgreSQL's regular expressions are implemented using a software package written by Henry
Spencer. Much of the description of regular expressions below is copied verbatim from his manual.

Regular expressions (RES), as defined in POSIX 1003.2, come in two forms; extended RES or ERES
(roughly those of egr ep), and basic REs or BREs (roughly those of ed). PostgreSQL supports both
forms, and also implements some extensions that are not in the POSIX standard, but have become
widely used due to their availability in programming languages such as Perl and Tcl. REs using these
non-POSI X extensions are called advanced REs or AREs in this documentation. ARES are amost an
exact superset of EREs, but BRES have several notational incompatibilities (as well as being much
more limited). We first describe the ARE and ERE forms, noting features that apply only to AREsS,
and then describe how BREs differ.

Note

PostgreSQL always initially presumes that a regular expression follows the ARE
rules. However, the more limited ERE or BRE rules can be chosen by prepending an
embedded option to the RE pattern, as described in Section 9.7.3.4. This can be useful
for compatibility with applications that expect exactly the POSIX 1003.2 rules.

A regular expression is defined as one or more branches, separated by | . It matches anything that
matches one of the branches.

A branch is zero or more quantified atoms or constraints, concatenated. It matches a match for the
first, followed by amatch for the second, etc; an empty branch matches the empty string.

215

Functions and Operators

A quantified atom is an atom possibly followed by asingle quantifier. Without aquantifier, it matches
amatch for the atom. With a quantifier, it can match some number of matches of the atom. An atom
can be any of the possihilities shown in Table 9.15. The possible quantifiers and their meanings are

shown in Table 9.16.

A constraint matches an empty string, but matches only when specific conditionsare met. A constraint
can be used where an atom could be used, except it cannot be followed by a quantifier. The simple
constraints are shown in Table 9.17; some more constraints are described later.

Table 9.15. Regular Expression Atoms

Atom

Description

(re)

(wherer e is any regular expression) matches a
match for r e, with the match noted for possible

reporting

(?:re)

as above, but the match is not noted for reporting
(a “non-capturing” set of parentheses) (AREs

only)

matches any single character

[char s]

a bracket expression, matching any one of the
char s (see Section 9.7.3.2 for more detail)

\k

(where k is a non-aphanumeric character)
matches that character taken as an ordinary
character, e.g.,\ \ matches a backslash character

\c

where ¢ is alphanumeric (possibly followed by
other characters) is an escape, see Section 9.7.3.3
(AREs only; in EREs and BREs, this matches c)

when followed by a character other than a digit,
matchesthe | eft-brace character { ; when followed
by a digit, it is the beginning of a bound (see
bel ow)

where x is a single character with no other
significance, matches that character

An RE cannot end with abackslash (\).

information.

Note

If you have standard_conforming_strings turned off, any backslashes you write
in literal string constants will need to be doubled. See Section 4.1.2.1 for more

Table 9.16. Regular Expression Quantifiers

Quantifier M atches

* a sequence of 0 or more matches of the atom

+ a sequence of 1 or more matches of the atom

? a sequence of 0 or 1 matches of the atom

{n} a sequence of exactly mmatches of the atom

{m} a sequence of mor more matches of the atom

{m n} a sequence of mthrough n (inclusive) matches of
the atom; mcannot exceed n

216

Functions and Operators

Quantifier Matches

*? non-greedy version of *

+? non-greedy version of +

?? non-greedy version of ?
{m? non-greedy version of { n}
{m}? non-greedy version of { m }
{mn}? non-greedy version of { m n}

The formsusing { . . . } are known as bounds. The numbers mand n within a bound are unsigned
decimal integers with permissible values from 0 to 255 inclusive.

Non-greedy quantifiers (available in AREs only) match the same possihilities as their corresponding
normal (greedy) counterparts, but prefer the smallest number rather than thelargest number of matches.
See Section 9.7.3.5 for more detail.

Note

A quantifier cannot immediately follow another quantifier, e.g., ** is invaid. A
quantifier cannot begin an expression or subexpression or follow » or | .

Table9.17. Regular Expression Constraints

Constraint Description

" matches at the beginning of the string

$ matches at the end of the string

(?=re) positive lookahead matches at any point where a

substring matching r e begins (AREs only)

(?'re) negativelookahead matchesat any point whereno
substring matching r e begins (AREs only)

(?<=re) positive lookbehind matches at any point where a
substring matching r e ends (AREs only)

(?<'re) negative lookbehind matches at any point where
no substring matching r e ends (AREs only)

Lookahead and lookbehind constraints cannot contain back references (see Section 9.7.3.3), and all
parentheses within them are considered non-capturing.

9.7.3.2. Bracket Expressions

A bracket expression is alist of charactersenclosed in [] . It normally matches any single character
from the list (but see below). If the list begins with ~, it matches any single character not from the
rest of the list. If two characters in the list are separated by -, this is shorthand for the full range of
characters between those two (inclusive) in the collating sequence, e.g., [0- 9] in ASCII matchesany
decimal digit. Itisillegal for two rangesto share an endpoint, e.g., a- ¢- e. Ranges are very collating-
seguence-dependent, so portable programs should avoid relying on them.

To include a literal] in the list, make it the first character (after », if that is used). To include a
literal - , make it the first or last character, or the second endpoint of a range. To use aliteral - as
the first endpoint of arange, encloseitin[. and .] to make it a collating element (see below).
With the exception of these characters, some combinationsusing [(see next paragraphs), and escapes
(AREs only), all other special characters lose their specia significance within a bracket expression.

217

Functions and Operators

In particular, \ is not specia when following ERE or BRE rules, though it is special (as introducing
an escape) in AREs.

Within a bracket expression, a collating element (a character, a multiple-character sequence that
collates as if it were a single character, or a collating-sequence name for either) enclosed in [.
and .] stands for the sequence of characters of that collating element. The sequence is treated as a
single element of the bracket expression'slist. This allows a bracket expression containing a multiple-
character collating element to match more than one character, e.g., if the collating sequence includes
ach collating element, thenthe RE[[. ch.]] * ¢ matchesthefirst five characters of chchcc.

Note

PostgreSQL currently does not support multi-character collating elements. This
information describes possible future behavior.

Within a bracket expression, a collating element enclosed in [= and =] is an equivalence class,
standing for the sequences of characters of al collating elements equivalent to that one, including
itself. (If there are no other equivalent collating elements, the treatment isasif the enclosing delimiters
were[. and.].) For example, if 0 and * are the members of an equivalence class, then[[=0=]] ,
[[=~=]],and[0"] aredl synonymous. An equivalence class cannot be an endpoint of arange.

Within a bracket expression, the name of acharacter classenclosedin[: and:] standsfor thelist of
all characters belonging to that class. Standard character class names are: al num al pha, bl ank,
cntrl,digit,graph,lower,print,punct,space, upper, xdi gi t. These stand for the
character classes defined in ctype. A locale can provide others. A character class cannot be used as
an endpoint of arange.

There are two special cases of bracket expressions: the bracket expressions[[: <:]] and[[: >:1]]
are constraints, matching empty strings at the beginning and end of a word respectively. A word is
defined as a sequence of word charactersthat is neither preceded nor followed by word characters. A
word character is an al numcharacter (as defined by ctype) or an underscore. Thisis an extension,
compatible with but not specified by POSIX 1003.2, and should be used with caution in software
intended to be portableto other systems. The constraint escapes described below are usually preferable;
they are no more standard, but are easier to type.

9.7.3.3. Regular Expression Escapes

Escapesare specia sequencesbeginningwith\ followed by an al phanumeric character. Escapes come
in several varieties: character entry, class shorthands, constraint escapes, and back references. A \
followed by an alphanumeric character but not constituting avalid escapeisillegal in AREs. In ERES,
there are no escapes: outside a bracket expression, a\ followed by an alphanumeric character merely
stands for that character as an ordinary character, and inside a bracket expression, \ is an ordinary
character. (The latter is the one actual incompatibility between EREs and ARES.)

Character-entry escapes exist to make it easier to specify non-printing and other inconvenient
charactersin REs. They are shown in Table 9.18.

Class-shorthand escapes provide shorthands for certain commonly-used character classes. They are
shown in Table 9.19.

A constraint escape is a constraint, matching the empty string if specific conditions are met, written
as an escape. They are shown in Table 9.20.

A back reference (\ n) matches the same string matched by the previous parenthesi zed subexpression
specified by the number n (see Table 9.21). For example, ([bc])\ 1 matches bb or cc but not
bc or cb. The subexpression must entirely precede the back reference in the RE. Subexpressions
are numbered in the order of their leading parentheses. Non-capturing parentheses do not define
subexpressions.

218

Functions and Operators

Table 9.18. Regular Expression Character-entry Escapes

Escape Description

\a aert (bell) character, asin C

\b backspace, asin C

\B synonym for backslash (\) to help reduce the need
for backslash doubling

\cX (where X is any character) the character whose
low-order 5 bits are the same as those of X, and
whose other bitsare al zero

\e the character whose collating-sequence name is
ESC, or failing that, the character with octal value
033

\ f form feed, asin C

\n newline, asin C

\r carriage return, asin C

\ 't horizontal tab, asin C

\ uwxyz (where wxyz is exactly four hexadecimal
digits) the character whose hexadecimal value is
Oxwxyz

\ Ust uvwxyz (where st uvwxyz is exactly eight hexadecimal
digits) the character whose hexadecimal value is
Oxst uvwxyz

\v vertical tab, asin C

\ xhhh (where hhh is any sequence of hexadecimal
digits) the character whose hexadecimal value is
Oxhhh (a single character no matter how many
hexadecimal digits are used)

\0 the character whose valueis O (the null byte)

\ xy (where xy is exactly two octal digits, and is not
aback reference) the character whose octal value
isOxy

\ xyz (wherexyz isexactly three octal digits, and isnot
aback reference) the character whose octal value
isOxyz

Hexadecimal digitsare 0-9, a-f , and A-F. Octal digitsare 0-7.

Numeric character-entry escapes specifying values outside the ASCII range (0-127) have meanings
dependent on the database encoding. When the encoding is UTF-8, escape values are equivaent
to Unicode code points, for example \ u1234 means the character U+1234. For other multibyte
encodings, character-entry escapes usually just specify the concatenation of the byte values for the
character. If the escape value does not correspond to any legal character in the database encoding, no
error will beraised, but it will never match any data.

Thecharacter-entry escapes are dwaystaken asordinary characters. For example,\ 135is] inASCII,
but\ 135 does not terminate a bracket expression.

Table 9.19. Regular Expression Class-shorthand Escapes

Escape Description
\d [[:digit:]]

219

Functions and Operators

Escape Description

\'s [[:space:]]

\'w [[:al num] _] (noteunderscoreisincluded)
\D [AM:digit:]]

\'S [*[:space:]]

\'W [~ :al num] _] (noteunderscoreisincluded)

Within bracket expressions, \ d, \'s, and \ w lose their outer brackets, and \ D, \' S, and \ Ware
illegal. (So, for example, [a- c\ d] isequivalentto[a-c[:digit:]].Also, [a-c\D],whichis
equivaentto[a-c”[:digit:]],isillega.)

Table 9.20. Regular Expression Constraint Escapes

Escape Description

\A matches only at the beginning of the string (see
Section 9.7.3.5 for how this differsfrom ")

\'m matches only at the beginning of aword

\M matches only at the end of aword

\y matches only at the beginning or end of aword

\'Y matches only at a point that is not the beginning
or end of aword

\Z matches only at the end of the string (see
Section 9.7.3.5 for how this differs from $)

A word is defined as in the specificationof [[: <:]] and[[: >:]] above. Constraint escapes are
illegal within bracket expressions.

Table 9.21. Regular Expression Back References

Escape Description

\'m (where mis a nonzero digit) a back reference to
the mith subexpression

\' mn (where mis a nonzero digit, and nn is some
more digits, and the decimal value mn is not
greater than the number of closing capturing
parentheses seen so far) a back reference to the
mmn'th subexpression

Note

There is an inherent ambiguity between octal character-entry escapes and back
references, which isresolved by the following heuristics, as hinted at above. A leading
zero dwaysindicates an octal escape. A single non-zero digit, not followed by another
digit, is aways taken as a back reference. A multi-digit sequence not starting with a
zero is taken as a back reference if it comes after a suitable subexpression (i.e., the
number isin the legal range for a back reference), and otherwiseis taken as octal.

9.7.3.4. Regular Expression Metasyntax

In addition to the main syntax described above, there are some special forms and miscellaneous
syntactic facilities available.

220

Functions and Operators

An RE can begin with one of two special director prefixes. If an RE begins with *** ;| the rest of
the RE istaken asan ARE. (This normally has no effect in PostgreSQL., since RES are assumed to be
ARES; but it does have an effect if ERE or BRE mode had been specified by the f | ags parameter
to aregex function.) If an RE beginswith * * * =, the rest of the RE istaken to be aliteral string, with
all characters considered ordinary characters.

An ARE can begin with embedded options. asequence (?xyz) (wherexyz isoneor more alphabetic
characters) specifies options affecting the rest of the RE. These options override any previously
determined options— in particular, they can override the case-sensitivity behavior implied by aregex
operator, or the f | ags parameter to a regex function. The available option letters are shown in
Table 9.22. Note that these same option letters are used in the f | ags parameters of regex functions.

Table9.22. ARE Embedded-option Letters

Option Description

b rest of REisaBRE

c case-sensitive matching (overrides operator type)

e rest of RE isan ERE

i case-insensitive matching (see Section 9.7.3.5)
(overrides operator type)

m historical synonym for n

n newline-sensitive matching (see Section 9.7.3.5)

p partial newline-sensitive matching (see
Section 9.7.3.5)

q rest of RE isaliteral (“quoted”) string, al ordinary
characters

S non-newline-sensitive matching (default)

t tight syntax (default; see below)

w inverse partiadl newline-sensitive (“weird”)
matching (see Section 9.7.3.5)

X expanded syntax (see below)

Embedded options take effect at the) terminating the sequence. They can appear only at the start of
an ARE (after the***: director if any).

In addition to the usual (tight) RE syntax, in which all characters are significant, there is an expanded
syntax, available by specifying the embedded x option. Inthe expanded syntax, white-space characters
in the RE are ignored, as are all characters between a# and the following newline (or the end of the
RE). This permits paragraphing and commenting a complex RE. There are three exceptions to that
basic rule:

» awhite-space character or # preceded by \ isretained
 white space or # within a bracket expression is retained
 white space and comments cannot appear within multi-character symbols, such as (?:

For this purpose, white-space characters are blank, tab, newline, and any character that belongs to the
space character class.

Finally, in an ARE, outside bracket expressions, the sequence (?#t tt) (wherettt isany text not
containinga)) isacomment, completely ignored. Again, thisis not allowed between the characters of
multi-character symbols, like (?: . Such comments are more ahistorical artifact than auseful facility,
and their use is deprecated; use the expanded syntax instead.

221

Functions and Operators

None of these metasyntax extensionsisavailableif aninitial * * * = director has specified that the user's
input be treated as a literal string rather than as an RE.

9.7.3.5. Regular Expression Matching Rules

In the event that an RE could match more than one substring of a given string, the RE matches the
one starting earliest in the string. If the RE could match more than one substring starting at that point,
either the longest possible match or the shortest possible match will be taken, depending on whether
the RE is greedy or non-greedy.

Whether an RE is greedy or not is determined by the following rules:

* Most atoms, and all constraints, have no greediness attribute (because they cannot match variable
amounts of text anyway).

» Adding parentheses around an RE does not change its greediness.

* A guantified atom with a fixed-repetition quantifier ({ n} or {n} ?) has the same greediness
(possibly none) as the atom itself.

« A guantified atom with other normal quantifiers (including { m n} with mequal to n) is greedy
(prefers longest match).

* A quantified atom with anon-greedy quantifier (including { m n} ? with mequal to n) isnon-greedy
(prefers shortest match).

» A branch — that is, an RE that has no top-level | operator — has the same greediness as the first
quantified atom in it that has a greediness attribute.

» An RE consisting of two or more branches connected by the | operator is aways greedy.

The above rules associate greediness attributes not only with individual quantified atoms, but with
branches and entire REs that contain quantified atoms. What that means is that the matching is done
in such a way that the branch, or whole RE, matches the longest or shortest possible substring as a
whole. Once the length of the entire match is determined, the part of it that matches any particular
subexpression is determined on the basis of the greediness attribute of that subexpression, with
subexpressions starting earlier in the RE taking priority over ones starting later.

An example of what this means:

SELECT SUBSTRI NG(' XY1234Z', ' Y*([0-9]{1,3})"):

Result: 123
SELECT SUBSTRI NG& ' XY1234Z7', "Y*?([0-9]{1,3})");
Result: 1

In the first case, the RE as awhole is greedy because Y* is greedy. It can match beginning at the Y,
and it matches the longest possible string starting there, i.e., Y123. The output is the parenthesized
part of that, or 123. In the second case, the RE as awhole is non-greedy because Y* ? is non-greedy.
It can match beginning at the Y, and it matches the shortest possible string starting there, i.e., Y1.
The subexpression[0- 9] { 1, 3} isgreedy but it cannot change the decision as to the overall match
length; so it isforced to match just 1.

In short, when an RE contains both greedy and non-greedy subexpressions, the total match length is
either as long as possible or as short as possible, according to the attribute assigned to the whole RE.
The attributes assigned to the subexpressions only affect how much of that match they are allowed
to “eat” relative to each other.

The quantifiers{ 1, 1} and{ 1, 1} ? can be used to force greediness or non-greediness, respectively,
on a subexpression or awhole RE. Thisis useful when you need the whole RE to have a greediness
attribute different from what's deduced from its elements. As an example, suppose that we are trying

222

Functions and Operators

to separate a string containing some digitsinto the digits and the parts before and after them. We might
try to do that like this:

SELECT regexp_mat ch('abc01234xyz', ' (.*)(\d+)(.*)");
Result: {abc0123, 4, xyz}

That didn't work: thefirst . * isgreedy so it “eats’ as much asit can, leaving the\ d+ to match at the
last possible place, the last digit. We might try to fix that by making it non-greedy:

SELECT regexp_mat ch(' abc01234xyz', '(.*?)(\d+)(.*)");
Result: {abc,0,""}

That didn't work either, because now the RE as awhole is non-greedy and so it ends the overall match
as soon as possible. We can get what we want by forcing the RE as awhole to be greedy:

SELECT regexp_mat ch(' abc01234xyz', ' (?2:(.*?)(\d+)(.*)){1,1}");
Resul t: {abc, 01234, xyz}

Controlling the RE's overall greediness separately from its components greediness allows great
flexibility in handling variable-length patterns.

When deciding what is a longer or shorter match, match lengths are measured in characters, not
collating elements. An empty string is considered longer than no match at all. For example: bb*
matches the three middle characters of abbbc; (week]| wee) (ni ght | kni ght s) matchesall ten
charactersof weekni ght s; when (. *) . * ismatched against abc the parenthesized subexpression
matches all three characters;, and when (a*) * is matched against bc both the whole RE and the
parenthesized subexpression match an empty string.

If case-independent matching is specified, the effect is much as if all case distinctions had vanished
from the alphabet. When an alphabetic that exists in multiple cases appears as an ordinary character
outside a bracket expression, it is effectively transformed into a bracket expression containing both
cases, e.g., X becomes|[xX] . When it appears inside a bracket expression, all case counterparts of it
are added to the bracket expression, e.g., [x] becomes[xX] and [*x] becomes[*xX] .

If newline-sensitive matching is specified, . and bracket expressions using will never match the
newline character (so that matches will never cross newlines unless the RE explicitly arrangesit) and
A and $ will match the empty string after and before anewline respectively, in addition to matching at
beginning and end of string respectively. But the ARE escapes\ Aand\ Z continueto match beginning
or end of string only.

If partial newline-sensitive matching is specified, this affects . and bracket expressions as with
newline-sensitive matching, but not ~ and $.

If inverse partial newline-sensitive matching is specified, thisaffects” and $ aswith newline-sensitive
matching, but not . and bracket expressions. Thisisn't very useful but is provided for symmetry.

9.7.3.6. Limits and Compatibility

No particular limit is imposed on the length of REs in this implementation. However, programs
intended to be highly portable should not employ REs longer than 256 bytes, as a POSI X-compliant
implementation can refuse to accept such REs.

The only feature of AREs that is actually incompatible with POSIX EREsisthat \ does not lose its
specia significance inside bracket expressions. All other ARE features use syntax which isillegal or
has undefined or unspecified effectsin POSIX ERES; the * * * syntax of directors likewise is outside
the POSIX syntax for both BREs and EREs.

Many of the ARE extensions are borrowed from Perl, but some have been changed to clean them
up, and a few Perl extensions are not present. Incompatibilities of note include \ b, \ B, the lack
of special treatment for atrailing newline, the addition of complemented bracket expressions to the
things affected by newline-sensitive matching, the restrictions on parentheses and back referencesin

223

Functions and Operators

lookahead/l ookbehind constraints, and the longest/shortest-match (rather than first-match) matching
semantics.

Two significant incompatibilities exist between AREs and the ERE syntax recognized by pre-7.4
releases of PostgreSQL :

* INAREs,\ followed by an aphanumeric character is either an escape or an error, whilein previous
releases, it wasjust another way of writing the alphanumeric. This should not be much of aproblem
because there was no reason to write such a sequence in earlier releases.

* In AREs,\ remains a special character within[], so aliteral \ within a bracket expression must
bewritten\ \ .

9.7.3.7. Basic Regular Expressions

BREs differ from ERESs in several respects. In BREs, | , +, and ? are ordinary characters and there
is no equivalent for their functionality. The delimiters for bounds are\ { and\ }, with{ and } by
themselves ordinary characters. The parentheses for nested subexpressionsare\ (and\) , with (and
) by themselves ordinary characters. * is an ordinary character except at the beginning of the RE or
the beginning of a parenthesized subexpression, $ is an ordinary character except at the end of the
RE or the end of a parenthesized subexpression, and * is an ordinary character if it appears at the
beginning of the RE or the beginning of a parenthesized subexpression (after a possible leading).
Finally, single-digit back references are available, and \ < and \ > are synonymsfor [[: <:]] and
[[:>:]] respectively; no other escapes are available in BREs.

9.8. Data Type Formatting Functions

The PostgreSQL formatting functions provide a powerful set of toolsfor converting various datatypes
(date/time, integer, floating point, numeric) to formatted strings and for converting from formatted
strings to specific data types. Table 9.23 lists them. These functions all follow a common calling
convention: the first argument is the value to be formatted and the second argument is atemplate that
defines the output or input format.

Table 9.23. Formatting Functions

Function Return Type Description Example
t ext convert time stamp to|t o_char (current _ti mest anp,
to_char (ti mest anp, string "HH12: M : SS')
text)
to_char (interval |t ext convertinterval tostring|t o_char (i nt erval
text) "15h 2m 12s',
' HH24: M : SS')

to_char (int, t ext convert integer to string |t o_char (125,
text) '999')
to_char (doubl e |text convert real/double|t o_char (125. 8: : r e¢al ,
precision, text) precision to string ' 999D9')
to_char (nureric, |text convert numeric to|to_char(-125. 8,
text) string ' 999DQ9S')

to_date(text, |date convert stringtodate |t o_dat e(' 0BO00' ,
text) "DD Mon YYYY')

to_nunber (text, [nuneric convert string to|t o_nunber (' 12, 454. 8-"',
text) numeric ' 99@P99D9S')
ti mestanp Wi t h|convert string to time|t o_ti nmest a@ARaD5

to_timestanp(texttinme zone stamp "DD Mon YYYY')
text)

224

Functions and Operators

Note

Thereisaso asingle-argumentt o_t i mest anp function; see Table 9.30.

Tip

to_timestanp and to_date exist to handle input formats that cannot be
converted by simple casting. For most standard date/time formats, simply casting
the source string to the required data type works, and is much easier. Similarly,
t o_nunber isunnecessary for standard numeric representations.

Inat o_char output template string, there are certain patterns that are recognized and replaced with
appropriatel y-formatted data based on the given value. Any text that is not atemplate patternissimply
copied verbatim. Similarly, in an input template string (for the other functions), template patterns
identify the values to be supplied by the input data string.

Table 9.24 shows the template patterns available for formatting date and time values.

Table 9.24. Template Patternsfor Date/Time Formatting

Pattern Description

HH hour of day (01-12)

HH12 hour of day (01-12)

HH24 hour of day (00-23)

M minute (00-59)

SS second (00-59)

VB millisecond (000-999)

us microsecond (000000-999999)

SSSS seconds past midnight (0-86399)

AM am PMor pm meridiem indicator (without periods)

AM,am,P.Morp.m meridiem indicator (with periods)

Y, YYY year (4 or more digits) with comma

YYYY year (4 or more digits)

YYY last 3 digits of year

YY last 2 digits of year

Y last digit of year

I YYY 1 SO 8601 week-numbering year (4 or moredigits)

1YY last 3 digits of 1SO 8601 week-numbering year

Y last 2 digits of 1SO 8601 week-numbering year

I last digit of 1SO 8601 week-numbering year

BC, bc, ADor ad eraindicator (without periods)

B.C. ,b.c.,A D ora.d. eraindicator (with periods)

MONTH full upper case month name (blank-padded to 9
chars)

Mont h full capitalized month name (blank-padded to 9
chars)

225

Functions and Operators

Pattern Description

nmont h full lower case month name (blank-padded to 9
chars)

MON abbreviated upper case month name (3 chars in
English, localized lengths vary)

Mon abbreviated capitalized month name (3 chars in
English, localized lengths vary)

non abbreviated lower case month name (3 chars in
English, localized lengths vary)

WM month number (01-12)

DAY full upper case day name (blank-padded to 9
chars)

Day full capitalized day name (blank-padded to 9
chars)

day full lower case day name (blank-padded to 9
chars)

DY abbreviated upper case day name (3 chars in
English, localized lengths vary)

Dy abbreviated capitalized day name (3 chars in
English, localized lengths vary)

dy abbreviated lower case day name (3 chars in
English, localized lengths vary)

DDD day of year (001-366)

| DDD day of 1SO 8601 week-numbering year (001-371,;
day 1 of theyear isMonday of thefirst | SO week)

DD day of month (01-31)

D day of the week, Sunday (1) to Saturday (7)

I D SO 8601 day of theweek, Monday (1) to Sunday
(1)

w week of month (1-5) (the first week starts on the
first day of the month)

WV week number of year (1-53) (the first week starts
on thefirst day of the year)

W week number of 1SO 8601 week-numbering year
(01-53; thefirst Thursday of theyear isin week 1)

cC century (2 digits) (the twenty-first century starts
on 2001-01-01)

J Julian Day (integer dayssince November 24, 4714
BC at midnight UTC)

Q quarter

RM month in upper case Roman numeras (I-XII;
I=January)

rm month in lower case Roman numeras (i-xii;
i=January)

TZ upper case time-zone abbreviation (only
supported int o_char)

tz lower case time-zone abbreviation (only

supportedint o_char)

226

Functions and Operators

Pattern Description
OF time-zone offset from UTC (only supported in
to_char)

Modifiers can be applied to any template pattern to alter its behavior. For example, FMvont h isthe
Mont h pattern with the FMmodifier. Table 9.25 showsthe modifier patternsfor date/time formatting.

Table 9.25. Template Pattern Modifiersfor Date/Time Formatting

M odifier Description Example
FMprefix fill mode (suppress leading|FMVont h
zeroes and padding blanks)
TH suffix upper case ordinal number suffix| DDTH, e.g., 12TH
t h suffix lower case ordinal number suffix|DDt h, e.g., 12t h
FX prefix fixed format global option (see|FX Month DD Day
usage notes)
TMprefix translation mode (print localized| TMVbnt h
day and month names based on
Ic_time)
SP suffix spell mode (not implemented) | DDSP

Usage notes for date/time formatting:

FMsuppresses |eading zeroes and trailing blanks that would otherwise be added to make the output
of apattern be fixed-width. In PostgreSQL , FMmodifies only the next specification, whilein Oracle
FMaffects all subsequent specifications, and repeated FMmaodifiers toggle fill mode on and off.

TMdoes not include trailing blanks. t o_t i mest anp andt o_dat e ignore the TMmodifier.

to tinmestanp and t o_dat e skip multiple blank spaces in the input string unless the FX
option is used. For example, t o_ti mest anp(' 2000 JUN , "YYYY MON') works,
but to_tinmestanp(' 2000 JUN , " FXYYYY MON) returns an error because
t o_ti mest anp expects one space only. FX must be specified as the first item in the template.

Ordinary textisallowedint o_char templatesand will be output literally. Y ou can put asubstring
in double quotesto forceit to be interpreted asliteral text even if it contains pattern key words. For
example,in' "Hel | o Year "YYYY',theYYYY will bereplaced by the year data, but the single
YinYear will notbe. Into_date,to_nunber,andto_ti nest anp, double-quoted strings
skip the number of input characters contained in the string, e.g. " XX" skips two input characters.

If you want to have a double quote in the output you must precede it with a backslash, for example
"\"YYYY Month\ "' .

Into_tinmestanp andt o_dat e, if the year format specification is less than four digits, e.g.
YYY, and the supplied year is less than four digits, the year will be adjusted to be nearest to the
year 2020, e.g. 95 becomes 1995.

Into_tinmestanp and t o_dat e, the YYYY conversion has a restriction when processing
years with more than 4 digits. You must use some non-digit character or template after YYYY,
otherwise the year is always interpreted as 4 digits. For example (with the year 20000):
to_date(' 200001131, ' YYYYMVDD) will be interpreted as a 4-digit year; instead use
a non-digit separator after the year, like t o_dat e(' 20000- 1131"', ' YYYY-MVDD) or
to_date(' 20000Nov31', 'YYYYMoOnDD).

Into_tinmestanp andto_dat e, the CC (century) field is accepted but ignored if there is a
YYY, YYYY or Y, YYY field. If CCisused with YY or Y then the result is computed as that year
in the specified century. If the century is specified but the year is not, the first year of the century
is assumed.

227

Functions and Operators

e Into_tinmestanpandt o_dat e, weekday names or numbers (DAY, D, and related field types)
are accepted but are ignored for purposes of computing the result. The same is true for quarter (Q
fields.

e Into_tinestanp and to_dat e, an I1SO 8601 week-numbering date (as distinct from a
Gregorian date) can be specified in one of two ways:

e Year, week number, and weekday: for examplet o_dat e(' 2006-42-4', "1YYY-IW
I D) returnsthe date 2006- 10- 19. If you omit the weekday it is assumed to be 1 (Monday).

* Year and day of year: for examplet o_dat e(' 2006-291', '1YYY-1DDD) also returns
2006- 10-19.

Attempting to enter a date using a mixture of 1SO 8601 week-numbering fields and Gregorian date
fieldsis nonsensical, and will cause an error. In the context of an SO 8601 week-numbering year,
the concept of a “month” or “day of month” has no meaning. In the context of a Gregorian year,
the 1SO week has no meaning.

Caution

Whilet o_dat e will reject a mixture of Gregorian and | SO week-numbering date
fields, t o_char will not, since output format specifications like YYYY- M\t DD
(1'YYY-1DDD) can be useful. But avoid writing something like | YYY- M DD;
that would yield surprising results near the start of the year. (See Section 9.9.1 for
more information.)

* Into_timestanp, millisecond (M5) or microsecond (US) fields are used as the seconds
digits after the decimal point. For examplet o_ti nestanp('12.3', 'SS.M5') isnot 3
milliseconds, but 300, because the conversion treats it as 12 + 0.3 seconds. So, for the format
SS. MS, the input values 12. 3, 12. 30, and 12. 300 specify the same number of milliseconds.
To get three milliseconds, one must write 12. 003, which the conversion treats as 12 + 0.003 =
12.003 seconds.

Here is a more complex example: to_tinestanp('15:12:02.020.001230',
" HH24: M : SS. M5. US') is 15 hours, 12 minutes, and 2 seconds + 20 milliseconds + 1230
microseconds = 2.021230 seconds.

eto char(..., 'ID)'s day of the week numbering matches the extract (i sodow
from ...) function, but to_char(..., "D)'s does not match extract (dow
from ...)'sday numbering.

 to_char(interval) formats HHand HH12 as shown on a 12-hour clock, for example zero
hours and 36 hours both output as 12, while HH24 outputs the full hour value, which can exceed
23inani nt erval value

Table 9.26 shows the template patterns available for formatting numeric values.

Table 9.26. Template Patternsfor Numeric For matting

Pattern Description

9 value with the specified number of digits
0 value with leading zeros

. (period) decimal point

, (comma) group (thousand) separator

PR negative value in angle brackets

S sign anchored to number (uses locale)

228

Functions and Operators

Pattern Description

L currency symbol (useslocale)

D decimal point (useslocale)

G group separator (uses locale)

M minus sign in specified position (if number < 0)
PL plus sign in specified position (if number > 0)
SG plus/minus sign in specified position

RN Roman numeral (input between 1 and 3999)
THorth ordina number suffix

\% shift specified number of digits (see notes)
EEEE exponent for scientific notation

Usage notes for numeric formatting:

» Asignformatted using SG, PL, or M isnot anchored to the number; for example,t o_char (- 12,
"M 9999') produces' - 12' butto_char(-12, 'S9999') produces' -12' . The
Oracleimplementation does not allow the use of M before 9, but rather requiresthat 9 precede M .

* 9 results in a value with the same number of digits as there are 9s. If a digit is not available it
outputs a space.

» THdoes not convert values less than zero and does not convert fractional numbers.
» PL, SG and TH are PostgreSQL extensions.

* Vwitht o_char multipliesthe input values by 10”n, where n is the number of digits following
V.V witht o_nunber dividesin asimilar manner.t o_char andt o_nunber do not support
the use of V combined with adecimal point (e.g., 99. 9V99 is not allowed).

» EEEE (scientific notation) cannot be used in combination with any of the other formatting patterns
or modifiers other than digit and decimal point patterns, and must be at the end of the format string
(eg., 9. 99EEEE isavalid pattern).

Certain modifiers can be applied to any template pattern to alter its behavior. For example, FMP999 is
the 9999 pattern with the FMmaodifier. Table 9.27 showsthe modifier patternsfor numeric formatting.

Table 9.27. Template Pattern M odifiersfor Numeric Formatting

M odifier Description Example

FMprefix fill mode (suppress leading|FMB999
zeroes and padding blanks)

TH suffix upper case ordinal number suffix| 999TH

t h suffix lower case ordinal number suffix|999t h

Table 9.28 shows some examples of the use of thet o_char function.

Table9.28.t o_char Examples

Expression Result

to_char(current tinestanp, ' Tuesday , 06 05:39:18'
'Day, DD HH12:M:SS')

to_char(current tinestanp, ' Tuesday, 6 05:39:18'

' FMDay, FMDD HH12: M :SS')

to _char(-0.1, '99.99") o= 10

229

Functions and Operators

Expression Result
to_char(-0.1, 'FMB.99") -1

to char(0.1, '0.9") 0.1
to_char (12, '9990999.9") 0012. 0
to_char (12, 'FMP990999.9') '0012."
to_char (485, '999") 485'
to_char (-485, '999') ' - 485

to _char(485, '9 9 9') 4 8 5
to_char (1485, '9,999') 1, 485’
to_char (1485, '9@99') 1 485

to _char(148.5, '999.999") 148. 500'
to_char(148.5, ' FMP99. 999') ' 148. 5'
to_char(148.5, ' FMB99.990') ' 148. 500
to_char(148.5, '999D999') 148, 500
to_char(3148.5, '9(299D999') 3 148, 500’
to_char (-485, '999S) ' 485-"
to_char(-485, '999M ") ' 485-"
to_char (485, '999M ') '485 '
to_char (485, ' FMB99M ') ' 485’
to_char (485, 'PL999") ' +485'
to_char (485, 'S@E99') ' +485'
to_char (-485, 'S@99') ' -485'
to_char(-485, '9S@@9') ' 4- 85"
to_char(-485, '999PR) ' <485>'
to_char (485, 'L999') ' DM 485’
to_char (485, 'RN) CDLXXXV'
to_char (485, ' FMRN) " CDLXXXV'

to _char (5.2, 'FMRN) 'V

to_char (482, '999th') 482nd'
to_char (485, '"Good nunber:"999') |' Good nunber: 485
to_char (485. 8, "Pre: 485 Post: .800'
""Pre:"999" Post:" .999")

to_char (12, '99Vv999') 12000’
to_char(12.4, '99Vv999') 12400’
to_char(12.45, '99V9') 125
to_char (0.0004859, '9.99EEEE') 4. 86e- 04'

9.9. Date/Time Functions and Operators

Table 9.30 shows the available functions for date/time value processing, with details appearing in
the following subsections. Table 9.29 illustrates the behaviors of the basic arithmetic operators (+,
* | etc.). For formatting functions, refer to Section 9.8. Y ou should be familiar with the background
information on date/time data types from Section 8.5.

230

Functions and Operators

All the functions and operators described below that taket i me ort i mest anp inputs actually come
in two variants: onethat takestine with tinme zoneortinmestanp with tine zone,
and onethat takesti me wi t hout tinme zoneortinmestanp wi thout tine zone.For
brevity, these variants are not shown separately. Also, the + and * operators come in commutative
pairs (for example both date + integer and integer + date); we show only one of each such pair.

Table 9.29. Date/Time Operators

Operator Example Result

+ date '2001-09-28' +|date '2001-10-05'
i nteger '7

+ date '2001-09-28 +[timestanp ' 2001-09-28
interval '1 hour' 01: 00: 00’

+ date '2001-09-28' +[timestanp ' 2001-09-28
time '03: 00 03: 00: 00’

+ interval '1 day' +|interval "1 day
interval '1 hour' 01: 00: 00’

+ timestanp '2001-09-28|tinmestanp '2001-09-29
01: 00" + interval '23]00:00: 00
hour s’

+ time ' 01: 00 +|time ' 04:00: 00

interval '3 hours'
- - interval '23 hours' |interval '-23:00:00'

- date '2001-10-01' - |[integer '3' (days)
date '2001-09-28'
- date '2001-10-01' - |date '2001-09-24'
i nteger '7
- date '2001-09-28' - [timestanp ' 2001-09-27
interval '1 hour' 23: 00: 00’
- time '05:00° - tinmejinterval '02:00: 00
' 03: 00
- tinme ' 05: 00 - |time ' 03:00: 00

interval '2 hours'
- timestanp '2001-09-28|tinmestanp '2001-09-28

23: 00" - interval '23|00:00: 00
hour s’

- interval '1 day' - |interval "1 day
interval '1 hour' -01: 00: 00'

- ti mestanp ' 2001-09-29|i nterval "1 day
03: 00’ - ti mestanp|15: 00: 00
' 2001- 09- 27 12:00'

* 900 * i nterval "1linterval '00:15:00
second’

* 21 * interval '1 day' |interval '21 days'

* doubl e precision '3.5" [interval '03:30: 00
* interval '1 hour'

/ interval '1 hour' [/ |interval '00:40:00

doubl e precision '1.5'

231

Functions and Operators

Table 9.30. Date/Time Functions

that uses years and
months, rather than
just days

Function Return Type Description Example Result
i nterval Subtract age(tinestanp/43 years 9
age(ti nest anp, arguments, ' 2001- 04-10' , |nons 27 days
ti mest anp) producing ajti mestanp
“symbolic” result|' 1957- 06-13")

i nterval)

"2 years 3

nmont hs')

age(ti nestanp)i nt erval Subtract from|age(ti mestanp|43 years 8
current _date |'1957-06-13')|nons 3 days
(at midnight)
ti mestanp Current date and
cl ock_ti mest ajp(t)h time|time (changes
zone during statement
execution); see
Section 9.9.4
current date |date Current date; see
Section 9.9.4
current _time|tinme Wi t h|Current time of
time zone day; see
Section 9.9.4
ti nmestanp Current date and
current _ti mespvargh time|time (stat of
zone current
transaction); see
Section 9.9.4
doubl e Get subfield|dat e_part (' ho0 ,
dat e_part (textprecision (equivalent toti mest anp
ti mest anp) extract); see|' 2001-02-16
Section 9.9.1 20: 38: 40")
dat e_part (textdoubl e Get subfield|dat e_part (' mofg h' ,
interval) preci sion (equivalent to|i nt erval ‘2
extract); seelyears 3
Section 9.9.1 nmont hs')
ti mestanp Truncate tojdate_trunc(' hd@001- 02- 16
date_trunc(text, specified ti mestanmp 20: 00: 00
ti mest anp) precision; see also|' 2001- 02- 16
Section 9.9.2 20: 38: 40")
dat e_trunc(teptnt erval Truncate tojdate_trunc(' hdur', days
i nterval) specified i nterval '2]03: 00: 00
precision; see dso|days 3 hours
Section 9.9.2 40 m nutes')
doubl e Get subfield; see|extract (hour |20
extract (fiel dprecision Section 9.9.1 from
from ti mestanp
ti mest anp) ' 2001-02- 16
20: 38:40")
extract (fiel ddouble Get subfield; see|extract (nont h|3
from preci sion Section 9.9.1 frominterval

232

Functions and Operators

Function Return Type Description Example Result
bool ean Test for finite date|i sfi ni te(date|true
isfinite(date (not +/-infinity) |' 2001- 02-16")
i sfinite(tinmedicoiman Test for finitetime|i sfinite(ti negtrar
stamp (not +/-|' 2001- 02- 16
infinity) 21:28:30")
i sfinite(interbadl)ean Test for finite|i sfinite(intenwvale
interval "4 hours')
i nterval Adjust interval [j usti fy_days(ilntrervdl days
justify days(j nterval) so 30-day time|' 35 days')
periods are
represented as
months
i nterval Adjust interval [j usti fy_hours(li nterval day
justify hours|(interval) so 24-hour time|' 27 hours') |03:00: 00
periods are
represented asdays
i nterval Adjust interval [j ustify _inter\d (interdalys
justify interyal (interval) |using "l mon -1{23:00:00
justify days |hour')

and

justify hours
with additional
sign adjustments

| ocal tine time Current time of
day; see
Section 9.9.4
ti mestanp Current date and
| ocal ti nestanp time (stat of
current
transaction); see
Section 9.9.4

dat e Create date from|make_dat e(2012013- 07- 15
make_ dat e(year year, month and|7, 15)
i nt, nmont h day fields
int, day int)
i nterval Create interval [make_i nt er val (Idaydays
make i nterval (years from years,|=> 10)
i nt DEFAULT months, weeks,
0, nmont hs days, hours,
i nt DEFAULT minutes and
0, weeks seconds fields
i nt DEFAULT
0, days int
DEFAULT 0,
hour s i nt
DEFAULT 0,
nm ns i nt
DEFAULT 0,
secs double
preci sion
DEFAULT 0. 0)

233

Functions and Operators

Function Return Type Description Example Result
time Create time from|make_tine(8, |08:15:23.5
make_ti nme(hour hour, minute and|15, 23.5)
int, mnint, seconds fields
sec doubl e
preci si on)
ti nmestanp Create timestamp|nake ti nest anf{@BLAN7- 15
make tinestanp(year from year, month,|7, 15, 8, 15, |08:15:23.5
i nt, nmont h day, hour, minute|23. 5)
i nt, day and seconds fields
int, hour
int, mnint,
sec doubl e
preci si on)
ti mestanp Create timestamp|nake ti nest anfA(R@73,15
make tinestanptiz(hyear time|with time zone|7, 15, 8, 15, |08:15:23.5+01
i nt, nmont h|{zone from year, month,|23. 5)
int, day day, hour, minute
i nt, hour and secondsfields;
int, minint, if tinmezone is
sec doubl e not specified, the
precision, [current time zone
ti mezone t ext isused
1)
now() ti mestanp Current date and
with time|time (stat of
zone current
transaction); see
Section 9.9.4
ti mestanp Current date and
statement _ti npdttdnp() tinme|time (start of
zone current statement);
see Section 9.9.4
ti meof day() |text Current date and
time (like
cl ock_ti nmestanp,
but as a
text string); see
Section 9.9.4
ti mestanp Current date and
transaction_tjwddt anp(}i ne|time (stat of
zone current
transaction); see
Section 9.9.4
ti mestanp Convert Unix|t o_t i nest anp(PZB4ABIIB AP
to_timestanp(peubi e ti me|epoch (seconds 04: 32: 03+00
preci si on) zone since 1970-01-01
00:00:00+00) to
timestamp

In addition to these functions, the SQL OVERLAPS operator is supported:

(start1il,
(start1il,

endl) OVERLAPS (start2,
| engt hl) OVERLAPS (start 2,

end?2)

| engt h2)

234

Functions and Operators

This expression yields true when two time periods (defined by their endpoints) overlap, false when
they do not overlap. The endpoints can be specified as pairs of dates, times, or time stamps; or as a
date, time, or time stamp followed by an interval. When a pair of valuesis provided, either the start or
the end can be written first; OVERLAPS automatically takes the earlier value of the pair as the start.
Each time period is considered to represent the half-open interval st art <=t i me < end, unless
st art and end areequal inwhich caseit representsthat single timeinstant. This meansfor instance
that two time periods with only an endpoint in common do not overlap.

SELECT (DATE ' 2001-02-16'
(DATE ' 2001- 10- 30'

Result: true

SELECT (DATE ' 2001-02-16'
(DATE ' 2001- 10- 30'

Result: fal se

SELECT (DATE ' 2001-10-29'
(DATE ' 2001- 10- 30'

Result: fal se

SELECT (DATE ' 2001-10- 30
(DATE ' 2001- 10- 30'

Result: true

DATE ' 2001-12-21') OVERLAPS
DATE ' 2002- 10- 30") ;

| NTERVAL ' 100 days') OVERLAPS
DATE ' 2002- 10-30') ;

DATE ' 2001-10-30"') OVERLAPS
DATE ' 2001-10-31");

DATE ' 2001-10-30') OVERLAPS
DATE ' 2001-10-31");

When adding an i nt er val value to (or subtracting an i nt er val value from) ati mest anp
wi th tinme zone vaue, thedayscomponent advances or decrements the date of thet i mest anp
with tine zone by theindicated number of days. Across daylight saving time changes (when
the session time zone is set to atime zone that recognizes DST), thismeansi nt erval ' 1 day'
does not necessarily equal i nt erval ' 24 hours' . For example, with the session time zone set
to CST7CDT, ti nestanp with time zone '2005-04-02 12: 00-07' + interval
"1 day' will produceti mestanp with tine zone '2005-04-03 12: 00-06',while
addingi nterval '24 hours' tothesameinitial ti mestanp with time zone produces
timestanp with tine zone ' 2005-04-03 13: 00- 06' , asthereisachangein daylight
saving time at 2005- 04- 03 02: 00 intime zone CST7CDT.

Note there can be ambiguity in the nont hs field returned by age because different months have
different numbers of days. PostgreSQL's approach uses the month from the earlier of the two dates
when calculating partial months. For example, age(' 2004- 06-01', ' 2004-04-30') uses
April toyield1 non 1 day, whileusing May would yield 1 non 2 days because May has
31 days, while April has only 30.

Subtraction of dates and timestamps can also be complex. One conceptually simple way to perform
subtraction isto convert each value to a number of seconds using EXTRACT(EPOCH FROM . . .),
then subtract the results; this produces the number of seconds between the two values. This will
adjust for the number of daysin each month, timezone changes, and daylight saving time adjustments.
Subtraction of date or timestamp values with the “- " operator returns the number of days (24-hours)
and hours/minutes/seconds between the values, making the same adjustments. The age function
returns years, months, days, and hours/minutes/seconds, performing field-by-field subtraction and
then adjusting for negative field values. The following queries illustrate the differences in these
approaches. The sample results were produced with t i nezone = ' US/ Eastern'; thereisa
daylight saving time change between the two dates used:

SELECT EXTRACT(EPCCH FROM ti mestanptz '2013-07-01 12:00:00') -
EXTRACT(EPCCH FROM ti mest anptz ' 2013-03-01 12: 00: 00');

Result: 10537200

SELECT (EXTRACT(EPOCH FROM ti mestanptz '2013-07-01 12:00:00") -
EXTRACT(EPCCH FROM ti mest anptz ' 2013-03-01 12: 00:00'))
/ 60 / 60 / 24;

Result: 121.958333333333

SELECT tinmestanptz '2013-07-01 12:00:00" - tinmestanptz '2013-03-01

12: 00: 00" ;
Result: 121 days 23:00: 00

235

Functions and Operators

9.9.1.

SELECT age(timestanptz '2013-07-01 12:00: 00", timestanptz
' 2013-03-01 12:00:00');
Result: 4 nons

EXTRACT, dat e_part

EXTRACT(fi el d FROM source)

Theext ract function retrieves subfields such as year or hour from date/time values. sour ce must
be a value expression of typeti mest anp, ti me, or i nt er val . (Expressions of type dat e are
casttot i nmest anp and can therefore be used aswell.) f i el d isan identifier or string that selects
what field to extract from the source value. The ext r act function returns values of type doubl e
preci si on. Thefollowing are valid field names:

century
The century

SELECT EXTRACT(CENTURY FROM TI MESTAMP ' 2000-12-16 12:21:13');
Resul t: 20
SELECT EXTRACT(CENTURY FROM TI MESTAMP ' 2001- 02- 16 20: 38:40');
Resul t: 21

The first century starts at 0001-01-01 00:00:00 AD, although they did not know it at the time.
This definition applies to all Gregorian calendar countries. There is no century number 0, you
go from -1 century to 1 century. If you disagree with this, please write your complaint to: Pope,
Cathedral Saint-Peter of Roma, Vatican.

day

Fort i mest anp values, theday (of themonth) field (1- 31) ; fori nt er val values, the number
of days

SELECT EXTRACT(DAY FROM TI MESTAMP ' 2001-02-16 20: 38:40');
Result: 16

SELECT EXTRACT(DAY FROM | NTERVAL ' 40 days 1 minute');
Result: 40

decade
Theyear field divided by 10

SELECT EXTRACT(DECADE FROM Tl MESTAMP ' 2001-02-16 20:38:40');
Resul t: 200

dow
The day of the week as Sunday (0) to Saturday (6)

SELECT EXTRACT(DOW FROM TI MESTAMP ' 2001- 02- 16 20: 38:40');
Result: 5

Notethat ext r act 'sday of theweek numbering differsfromthat of thet o_char (..., 'D)
function.

doy
The day of the year (1 - 365/366)

SELECT EXTRACT(DOY FROM TI MESTAMP ' 2001-02-16 20: 38:40');

236

Functions and Operators

Resul t: 47
epoch

For timestanp with tine zone vaues, the number of seconds since 1970-01-01
00:00:00 UTC (can be negative); for dat e andt i mest anp values, the number of secondssince
1970-01-01 00:00:001ocal time; fori nt er val values, thetotal number of secondsintheinterval

SELECT EXTRACT(EPOCH FROM TI MESTAMP W TH TI ME ZONE ' 2001- 02- 16
20: 38:40.12-08");
Resul t: 982384720. 12

SELECT EXTRACT(EPOCH FROM | NTERVAL '5 days 3 hours');
Resul t: 442800

Y ou can convert an epoch value back to atime stamp witht o_t i mest anp:

SELECT to_tinestanp(982384720. 12);
Resul t: 2001-02-17 04:38:40.12+00

hour
The hour field (0 - 23)

SELECT EXTRACT(HOUR FROM TI MESTAMP ' 2001- 02-16 20: 38:40');
Result: 20

i sodow
The day of the week as Monday (1) to Sunday (7)

SELECT EXTRACT(| SODOW FROM Tl MESTAMP ' 2001- 02- 18 20:38:40');
Result: 7

Thisisidentical to dowexcept for Sunday. Thismatchesthe | SO 8601 day of the week numbering.
i soyear
The SO 8601 week-numbering year that the date fallsin (not applicable to intervals)

SELECT EXTRACT(| SOYEAR FROM DATE ' 2006- 01-01');
Resul t: 2005
SELECT EXTRACT(| SOYEAR FROM DATE ' 2006- 01-02');
Resul t: 2006

Each 1SO 8601 week-numbering year begins with the Monday of the week containing the 4th of
January, so in early January or late December the 1SO year may be different from the Gregorian
year. See theweek field for more information.

Thisfield is not available in PostgreSQL releases prior to 8.3.
m cr oseconds

The seconds field, including fractional parts, multiplied by 1 000 000; note that this includes full
seconds

SELECT EXTRACT(M CROSECONDS FROM TI ME ' 17:12:28.5');
Resul t: 28500000

m || enni um

The millennium

237

Functions and Operators

SELECT EXTRACT(M LLENNI UM FROM Tl MESTAMP ' 2001- 02- 16 20:38:40');
Result: 3

Y ears in the 1900s are in the second millennium. The third millennium started January 1, 2001.
mlliseconds

The seconds field, including fractiona parts, multiplied by 1000. Note that this includes full
seconds.

SELECT EXTRACT(M LLI SECONDS FROM TI ME ' 17:12:28.5");
Resul t: 28500

nm nut e
The minutesfield (O - 59)

SELECT EXTRACT(M NUTE FROM Tl MESTAMP ' 2001-02-16 20:38:40');
Result: 38

nont h

Fort i mest anp values, the number of themonthwithintheyear (1- 12) ; fori nt er val values,
the number of months, modulo 12 (0 - 11)

SELECT EXTRACT(MONTH FROM TI MESTAMP ' 2001-02-16 20: 38:40');
Result: 2

SELECT EXTRACT(MONTH FROM | NTERVAL ' 2 years 3 nonths');
Result: 3

SELECT EXTRACT(MONTH FROM | NTERVAL ' 2 years 13 nonths');
Result: 1

quarter
The quarter of the year (1 - 4) that the dateisin

SELECT EXTRACT(QUARTER FROM TI MESTAMP ' 2001- 02- 16 20: 38:40');
Result: 1

second
The seconds field, including fractional parts (O - 59%)

SELECT EXTRACT(SECOND FROM Tl MESTAMP ' 2001-02-16 20:38:40');
Result: 40

SELECT EXTRACT(SECOND FROM TI ME '17:12:28.5");
Result: 28.5

ti mezone

The time zone offset from UTC, measured in seconds. Positive values correspond to time zones
east of UTC, negative valuesto zoneswest of UTC. (Technically, PostgreSQL does not use UTC
because leap seconds are not handled.)

ti mezone_hour

The hour component of the time zone offset

160 if leap seconds are implemented by the operating system

238

Functions and Operators

9.9.2.

ti mezone_m nute
The minute component of the time zone offset
week

The number of the ISO 8601 week-numbering week of the year. By definition, 1SO weeks start
on Mondays and the first week of ayear contains January 4 of that year. In other words, the first
Thursday of ayear isin week 1 of that year.

In the SO week-numbering system, it is possible for early-January dates to be part of the 52nd
or 53rd week of the previous year, and for late-December dates to be part of the first week of the
next year. For example, 2005- 01- 01 is part of the 53rd week of year 2004, and 2006- 01- 01
is part of the 52nd week of year 2005, while 2012- 12- 31 is part of the first week of 2013. It's
recommended to usethei soyear field together with week to get consistent results.

SELECT EXTRACT(WEEK FROM TI MESTAMP ' 2001-02-16 20: 38:40');
Result: 7

year

The year field. Keep in mind thereisno 0 AD, so subtracting BC years from AD years should
be done with care.

SELECT EXTRACT(YEAR FROM TI MESTAMP ' 2001- 02-16 20: 38:40');
Resul t: 2001

Note

When the input value is +/-Infinity, ext r act returns +/-Infinity for monotonically-
increasing fields (epoch, j uli an, year, i soyear, decade, century, and
m | | enni um. For other fields, NULL is returned. PostgreSQL versions before 9.6
returned zero for all cases of infinite input.

Theext ract functionis primarily intended for computational processing. For formatting date/time
values for display, see Section 9.8.

The dat e_part function is modeled on the traditional Ingres equivalent to the SQL-standard
functionext r act :

date part('field , source)

Notethat herethef i el d parameter needsto be a string value, not aname. The valid field names for
dat e_part arethesameasfor extract.

SELECT date_part('day', TIMESTAWP '2001-02-16 20: 38:40');
Result: 16

SELECT date_part (' hour', INTERVAL '4 hours 3 minutes');
Result: 4

date trunc

Thefunctiondat e_t r unc isconceptualy similar to thet r unc function for numbers.

date trunc('field , source)

239

Functions and Operators

9.9.3.

sour ce isavalueexpression of typet i mest anp ori nt er val . (Vauesof typedat e andt i ne
arecast automaticallytot i mest anp ori nt er val , respectively.) f i el d selectstowhichprecision
to truncate theinput value. Thereturn valueisof typet i mest anp ori nt er val withal fieldsthat
are less significant than the selected one set to zero (or one, for day and month).

Valid valuesfor fi el d are:

m cr oseconds
mlliseconds
second

m nut e

hour

day

week

nmont h
quarter

year

decade
century

m || enni um

Examples:

SELECT date_trunc(' hour', TIMESTAWVP '2001-02-16 20:38:40');
Result: 2001-02-16 20: 00: 00

SELECT date_trunc('year', TIMESTAVP '2001-02-16 20:38:40');
Result: 2001-01-01 00: 00: 00

AT TI ME ZONE

The AT TI ME ZONE construct allows conversions of time stampsto different time zones. Table 9.31
showsiits variants.

Table9.31. AT TI ME ZONE Variants

Expression Return Type Description

tinmestanp without tinejtinestanp wth tinme|Treat given time stamp without
zone AT TI ME ZONE zone|zone time zone as located in the
specified time zone

timestanp wth tinmeftimestanp w thout time|Convert given time stamp with
zone AT TI ME ZONE zone|zone time zone to the new time zone,
with no time zone designation

time with tinme zone AT|time with tinme zone Convert given time with time
TI ME ZONE zone zone to the new time zone

In these expressions, the desired time zone zone can be specified either asatext string (e.g.,' PST')
or asaninterval (e.g., | NTERVAL ' -08: 00'). Inthe text case, atime zone name can be specified
in any of the ways described in Section 8.5.3.

Examples (assuming the local time zone is PST8PDT):

SELECT Tl MESTAMP ' 2001-02-16 20:38:40" AT TIME ZONE ' MST';
Resul t: 2001-02-16 19: 38:40-08

SELECT TI MESTAMP WTH TI ME ZONE ' 2001-02-16 20: 38: 40-05" AT TIME
ZONE ' MST
Resul t: 2001-02-16 18:38:40

240

Functions and Operators

9.9.4.

Thefirst example takes atime stamp without time zone and interpretsit asM ST time (UTC-7), which
is then converted to PST (UTC-8) for display. The second example takes a time stamp specified in
EST (UTC-5) and convertsit to local timein MST (UTC-7).

The function t i nezone(zone, tinmestanp) is equivalent to the SQL-conforming construct
ti mestanp AT TIME ZONE zone.

Current Date/Time

PostgreSQL provides a number of functions that return values related to the current date and time.
These SQL-standard functions all return values based on the start time of the current transaction:

CURRENT_DATE

CURRENT_TI ME

CURRENT_TI MESTAMWP

CURRENT _TI ME(pr eci si on)
CURRENT _TI MESTAMP(pr eci si on)
LOCALTI ME

LOCALTI MESTAMP

LOCALTI ME(pr eci si on)

LOCALTI MESTAMP(pr eci si on)

CURRENT _TI ME and CURRENT _TI MESTAMP deliver values with time zone; LOCALTI ME and
LOCALTI MESTAMP deliver values without time zone.

CURRENT_TI ME, CURRENT_TI MESTAMP, LOCALTI ME, and LOCALTI MESTAMP can optionally
take a precision parameter, which causes the result to be rounded to that many fractional digitsin the
seconds field. Without a precision parameter, the result is given to the full available precision.

Some examples:

SELECT CURRENT_TI ME;
Resul t: 14:39:53.662522-05

SELECT CURRENT_DATE;
Resul t: 2001-12-23

SELECT CURRENT_TI MESTAMP,
Resul t: 2001-12-23 14:39: 53. 662522- 05

SELECT CURRENT_TI MESTAMP(2) ;
Resul t: 2001-12-23 14:39: 53. 66- 05

SELECT LCOCALTI MESTAMP,
Resul t: 2001-12-23 14:39:53. 662522

Since these functions return the start time of the current transaction, their values do not change during
the transaction. This is considered a feature: the intent is to alow a single transaction to have a
consistent notion of the“current” time, so that multiple modifications within the same transaction bear
the same time stamp.

Note

Other database systems might advance these values more frequently.

PostgreSQL also provides functions that return the start time of the current statement, as well as the
actual current time at the instant the function is called. The complete list of non-SQL-standard time
functionsis:

241

Functions and Operators

9.9.5.

transaction_ti nestanp()
statenent _timestanp()
cl ock_ti mestanmp()

ti meof day()

now()

transaction_ti nestanp() is equivdent to CURRENT_TI MESTAMP, but is named to
clearly reflect what it returns. st at ement _ti nest anp() returns the start time of the current
statement (more specificaly, the time of receipt of the latest command message from the
client). stat enent _ti mestanp() andtransacti on_ti nmestanp() returnthe samevalue
during the first command of a transaction, but might differ during subsequent commands.
cl ock_ti mestanp() returns the actual current time, and therefore its value changes even
within a single SQL command. ti meof day() is a historical PostgreSQL function. Like
cl ock_tinmestanp(), it returns the actual current time, but as a formatted t ext string rather
thanatimestanmp with tine zone vaue now) isatraditiona PostgreSQL equivaent to
transaction_ti mestanp().

All the date/time datatypes al so accept the special literal value nowto specify the current date and time
(again, interpreted as the transaction start time). Thus, the following three all return the same result:

SELECT CURRENT_TI MESTANP;
SELECT now() ;
SELECT TI MESTAMP 'now ; -- incorrect for use with DEFAULT

Tip

You do not want to use the third form when specifying a DEFAULT clause while
creating atable. Thesystemwill convert nowtoat i mest anp assoon asthe constant
is parsed, so that when the default value is needed, the time of the table creation would
be used! The first two forms will not be evaluated until the default value is used,
because they are function calls. Thus they will give the desired behavior of defaulting
to the time of row insertion.

Delaying Execution

The following functions are available to delay execution of the server process:

pg_sl eep(seconds)
pg_sleep _for(interval)
pg_sleep until (timestanp with tinme zone)

pg_sl eep makes the current session's process sleep until seconds seconds have elapsed.
seconds isavalue of type doubl e preci si on, so fractional-second delays can be specified.
pg_sl eep_for is a convenience function for larger sleep times specified as an i nt erval .
pg_sl eep_until is a convenience function for when a specific wake-up time is desired. For
example:

SELECT pg_sl eep(1.5);
SELECT pg_sleep_for('5 nminutes');
SELECT pg_sleep_until ('tonorrow 03:00');

Note

The effective resolution of the sleep interval is platform-specific; 0.01 seconds is a
common value. The sleep delay will be at least aslong as specified. It might be longer

242

Functions and Operators

depending on factors such as server load. In particular, pg_sl eep_unti |l is not
guaranteed to wake up exactly at the specified time, but it will not wake up any earlier.

Warning

Make sure that your session does not hold more locks than necessary when calling
pg_sl eep or its variants. Otherwise other sessions might have to wait for your
sleeping process, slowing down the entire system.

9.10. Enum Support Functions

9.11.

For enum types (described in Section 8.7), there are several functionsthat allow cleaner programming
without hard-coding particular values of an enum type. These are listed in Table 9.32. The examples
assume an enum type created as.

CREATE TYPE rai nbow AS ENUM ('red', 'orange', 'yellow, 'green',
"blue', 'purple');
Table 9.32. Enum Support Functions
Function Description Example Example Result
Returnsthefirstvalueof lenum first (nul | : jrednbow)
enum fir st (anyenuime input enum type
Returnsthelast value of |lenum | ast (nul | : : 1 aunblog)

enum | ast (anyenunihe input enum type

enum r ange(anyent

Returns all values of the
limput enum type in an

enum range(nul | ::

faedbomange, yel |

DW, gr een, bl ue

ordered array. The
values must be from the
same enum type. If the
first parameter is null,
the result will start with
the first value of the
enum type. If the second
parameter is null, the
result will end with the
last value of the enum

type.

‘green'::rai nbow

ordered array
enum r ange(anyenuReturns the range|enum r ange(' or anggor angé npell, ow, g een}
anyenum) between the two given|' green' : : rai nbow

enum values, & an enum r ange(NULL, [{red, orange, yel | ow, gr een}

enum r ange(' or ang
NULL)

Hebr ange npeiw, ow, gr

een, bl ue, put

Notice that except for the two-argument form of enum _r ange, these functions disregard the specific
value passed to them; they care only about its declared datatype. Either null or a specific value of the
type can be passed, with the same result. It is more common to apply these functionsto atable column
or function argument than to a hardwired type name as suggested by the examples.

Geometric Functions and Operators

The geometric typespoi nt , box, | seg, | i ne, pat h, pol ygon, andci r cl e have alarge set of
native support functions and operators, shown in Table 9.33, Table 9.34, and Table 9.35.

243

Functions and Operators

Caution

Note that the “same as’ operator, ~=, represents the usual notion of equality for the
poi nt, box, pol ygon, and ci r cl e types. Some of these types also have an =
operator, but = compares for equal areas only. The other scalar comparison operators
(<= and so on) likewise compare areas for these types.

Table 9.33. Geometric Operators

Operator Description Example
+ Tranglation box '((0,0),(1,1))" +
point '(2.0,0)'
- Trandation box '((0,0),(1,1))" -
point '(2.0,0)'
* Scaling/rotation box '((0,0),(1,1))" *
point '(2.0,0)"
/ Scaling/rotation box '((0,0),(2,2))" [/
point '(2.0,0)'
Point or box of intersection box ' ((1,-1),(-1,1))"
box "((1,1),
(-2,-2))"
Number of points in path or|# path '((1,0),(0,1),
polygon (-1,0))"
@@ Length or circumference @@ path "((0,0),
(1,0))"
@ Center @circle '((0,0),10)"
#it Closest point to first operand on|poi nt ' (0,0)" ## | seg
second operand "((2,0),(0,2))"
<-> Distance between circle '((0,0),1)" <->
circle '((5,0),1)"
&& Overlaps? (One point infbox '((0,0),(1,1))" &&
common makes this true.) box '((0,0),(2,2))"
<< Isdtrictly left of? circle '((0,0),1)" <<
circle '((5,0),1)"
>> Isstrictly right of ? circle '((5,0),1)" >>
circle "((0,0),1)"
&< Does not extend to theright of? |box ' ((0,0),(1,1))"' &<
box '((0,0),(2,2))"'
&> Does not extend to the left of? |box ' ((0,0),(3,3))"' &
box ' ((0,0),(2,2))"
<<| Is strictly below? box "((0,0),(3,3))"
<<| box "((3,4),
(5,5)"
| >> Is strictly above? box '((3,4),(5,5)" |
>> box ' ((0,0),(3,3))"'
&<| Does not extend above? box "((0,0),(1,1))"
&<| box "((0,0),
(2,2))"

244

Functions and Operators

Operator Description Example

| & Does not extend below? box '((0,0),(3,3))" |
&> box ' ((0,0),(2,2))'

<N Is below (alows touching)? circle '((0,0),1)" <~
circle '((0,5),1)"

>N Is above (allows touching)? circle '((0,5),1)" >
circle '"((0,0),1)"

M Intersects? | seg "((-1,0),
(1,0))" % box
'((-2,-2),(2,2))"

?- Is horizontal ? ?- | seg "((-1,0),
(1,0))

?- Are horizontally aligned? point '(1,0)" ?- point
1 (0, 0)|

?| Isvertical? ?| | seg "((-1,0),
(1,0))

?| Arevertically aligned? point '(0,1)' ?| point
[(0, 0)|

?- I's perpendicular? | seg "((0,0),
(0,1))" ?- | seg
'((0,0),(1,0))"

?0 Are paralel? | seg "((-1,0),
(1,0))" ?| | | seg
I ((_1! 2)!(1! 2))I

@ Contains? circle '"((0,0),2)' @
point '(1,1)'

<@ Contained in or on? poi nt "(1,1)" <@
circle '((0,0),2)"

~= Same as? pol ygon "((0,0),
(1,1))" ~= pol ygon

'((1,1),(0,0))"

removed.

Note

Before PostgreSQL 8.2, the containment operators @ and <@were respectively called
~ and @ These names are still available, but are deprecated and will eventually be

Table 9.34. Geometric Functions

Function

Return Type

Description

Example

ar ea(obj ect)

doubl e precision|area

ar ea(box

1((0,0),(1,1))")

cent er (obj ect)

poi nt center

cent er (box

1((0,0),(1,2))")

di ameter(circle)

doubl e preci si on|diameter of circle

di aneter(circle
'((0,0),2.0)")

hei ght (box)

doubl e preci si on|vertica size of box

hei ght (box
1((0,0),(1,1))")

245

Functions and Operators

Function

Return Type

Description

Example

i scl osed(pat h)

bool ean

aclosed path?

i scl osed(path
"((0,0),(1, 1),
(2,0))")

i sopen(pat h)

bool ean

an open path?

i sopen(path
'[(0,0),(1,1),
(2,001")

I engt h(obj ect)

doubl e precision

length

| engt h(path
“((-1,0),
(1,0))")

npoi nt s(pat h)

number of points

npoi nt s(path
"[(0,0),(1, 1),
(2,0)]")

npoi nt s(pol ygon)

i nt

number of points

npoi nt s(pol ygon
'((1,1),(0,0))")

pcl ose(pat h)

pat h

convert path to closed

pcl ose(path
'[(0,0),(1,1),
(2,001")

popen(pat h)

pat h

convert path to open

popen(path
'((0,0),(1,1),
(2,0))")

radi us(circle)

doubl e precision

radius of circle

radius(circle
'((0,0),2.0)")

wi dt h(box)

doubl e precision

horizontal size of box

wi dt h(box
'((0,0),(1,1))")

Table 9.35. Geometric Type Conversion Functions

Function Return Type Description Example

box(circle) box circleto box box(circle
"((0,0),2.0)")

box(poi nt) box point to empty box box(poi nt
'(0,0)")

box(poi nt, box points to box box(poi nt

poi nt) (0,0, poi nt
(1L, 1)7)

box(pol ygon) box polygon to box box(pol ygon
"((0,0),(1,1),
(2,0))")

bound_box(box, box boxes to bounding box |bound_box(box

box) *((0,0),(1,1))",
box "((3,3),
(4,4))")

circle(box) circle box to circle circle(box
'((0,0),(1,1))")

circl e(point, circle center and radius to|ci rcl e(point

doubl e circle '(0,0)', 2.0)

preci si on)

circle(polygon) |circle polygon to circle ci rcl e(pol ygon

((0,0),(1,1),
(2,0))")

246

Functions and Operators

Function Return Type Description Example
I'i ne(point, I'ine pointsto line I i ne(point
poi nt) "(-1,0)', point
'(1,0))
| seg(box) | seg box diagonal to line|l seg(box
segment "((-1,0),
(1,0))")
| seg(point, | seg pointsto line segment |l seg(poi nt
poi nt) "(-1,0)', point
'(1,0))
pat h(pol ygon) pat h polygon to path pat h(pol ygon
"((0,0),(1,1),
(2,0))")
poi nt (doubl e|poi nt construct point poi nt (23. 4,
pr eci si on, -44.5)
doubl e
preci si on)
poi nt (box) poi nt center of box poi nt (box
“((-1,0),
(1,0))")
poi nt (circle) poi nt center of circle point(circle
'((0,0),2.0)")
poi nt (1 seq) poi nt center of linesegment |poi nt (| seg
“((-1,0),
(1,0))")
poi nt (pol ygon) poi nt center of polygon poi nt (pol ygon
"((0,0),(1, 1),
(2,0))")
pol ygon(box) pol ygon box to 4-point polygon |pol ygon(box
'((0,0),(1,1))")
pol ygon(circle) |polygon circle to 12-point|pol ygon(circle
polygon '((0,0),2.0)")
pol ygon(npt s, pol ygon circle to npts-point|pol ygon(12,
circle) polygon circle
'((0,0),2.0)")
pol ygon(pat h) pol ygon path to polygon pol ygon(pat h
"((0,0),(1, 1),
(2,0))")

It is possible to access the two component numbersof apoi nt asthough the point were an array with
indexes 0 and 1. For example, if t . p isapoi nt column then SELECT p[0] FROM t retrieves
the X coordinate and UPDATE t SET p[1] = ... changestheY coordinate. In the same way,
avalue of typebox or | seg can betreated as an array of two poi nt values.

The ar ea function works for the types box, circl e, and pat h. The ar ea function only
works on the pat h data type if the points in the pat h are non-intersecting. For example, the
path ' ((0,0),(0,1),(2,1),(2,2),(1,2),(1,0),(0,0)) "' :: PATH will not work;
however, the following visually identical path ' ((0,0),(0,1),(1,1),(1,2),(2,2),
(2,1),(1,1),(1,0),(0,0))" :: PATHwiIll work. If the concept of an intersecting versus non-
intersecting pat h is confusing, draw both of the above pat hsside by side on apiece of graph paper.

247

Functions and Operators

9.12. Network Address Functions and

Operators

Table 9.36 shows the operators available for theci dr andi net types. The operators <<, <<=, >>,
>>=, and && test for subnet inclusion. They consider only the network parts of the two addresses
(ignoring any host part) and determine whether one network is identical to or a subnet of the other.

Table9.36.ci dr andi net Operators

Operator Description Example

< islessthan inet '192.168.1.5" <
inet '192.168.1.6'

<= islessthan or equal inet '192.168.1.5" <=
inet '192.168.1.5'

= equals inet '192.168.1.5" =
inet '192.168.1.5'

>= is greater or equal inet '192.168.1.5" >=
inet '192.168.1.5'

> is greater than inet '192.168.1.5" >
inet '192.168.1.4'

<> is not equal inet '192.168.1.5" <>
inet '192.168.1.4'

<< is contained by inet '192.168.1.5" <<
inet '192.168.1/24'

<<= is contained by or equals i net '192.168. 1/ 24'
<<= i net
'192. 168. 1/ 24’

>> contains inet '192.168.1/24" >>
inet '192.168.1.5'

>>= contains or equals i net '192.168. 1/ 24’
>>= i net
'192. 168. 1/ 24’

&& contains or is contained by i net '192. 168. 1/ 24'
&& i net
'192. 168. 1. 80/ 28"

~ bitwise NOT ~ inet '192.168.1.6

& bitwise AND inet '192.168.1.6' &
inet '0.0.0.255

[bitwise OR inet '192.168.1.6" |
inet '0.0.0. 255

+ addition inet '192.168.1.6" +
25

- subtraction inet '192.168.1.43 -
36

- subtraction inet '192.168.1.43" -
inet '192.168.1.19

Table 9.37 showsthefunctionsavailablefor usewiththeci dr andi net types. Theabbr ev, host ,
andt ext functions are primarily intended to offer alternative display formats.

248

Functions and Operators

Table9.37.ci dr andi net Functions

Any ci dr value can becast toi net implicitly or explicitly; therefore, the functions shown above
asoperatingoni net alsowork on ci dr values. (Where there are separate functions for i net and
ci dr, it is because the behavior should be different for the two cases.) Also, it is permitted to cast
ani net valueto ci dr. When thisis done, any bits to the right of the netmask are silently zeroed
to create avalid ci dr value. In addition, you can cast atext valuetoi net or ci dr using normal
casting syntax: for example, i net (expr essi on) or col name: : ci dr.

Table 9.38 shows the functions available for use with the rmacaddr
t runc(macaddr) returns a MAC address with the last 3 bytes set to zero. This can be used to
associate the remaining prefix with a manufacturer.

type. The function

249

~

24

Function Return Type Description Example Result
abbrev(inet) |text abbreviated abbrev(inet |10.1.0.0/16
display format as|' 10. 1. 0. 0/ 16’
text
abbrev(cidr) |text abbreviated abbrev(cidr |10.1/16
display format as|' 10. 1. 0. 0/ 16'
text
i net broadcast address|br oadcast (' 192.9268.68.5/. 285
br oadcast (i net) for network
fam |l y(inet) |int extract family of(fam ly('::1")|(6
address;, 4 for
IPv4, 6 for IPv6
host (i net) t ext extract |IP address/host (' 192. 168/ 1095/188.)1. 5
astext
i net construct host | host mask(' 192/0L&8.R3A 20/ 30'
host mask(i net mask for network
i nt extract netmask|maskl en(' 192. 18BB. 1. 5/ 24")
maskl en(i net) length
i net construct netmask |net mask(' 192. (5. P5H. 285. 0
net mask(i net) for network
cidr extract network | net wor k(' 192. IR . N.68.24'0/ 24
net wor k(i net) part of address
i net set netmask length|set _maskl en(' 192, 168R. 1. B/ 246 ,
set _maskl en(i het, fori net value |16)
int)
set _nmaskl en(cjadrdr set netmask length|set _nmaskl en(' [192. 168R. 0.@/248 : : ci dr,
int) forci dr value |16)
text (inet) t ext extract IP address|t ext (i net 192.168.1.5/ 3R
andnetmask length|' 192. 168. 1. 5'
astext
bool ean are the addresses|i net _sane_f anijflat(sel92. 168. 1. 5/ 24" ,
i net_sane_fam |l y(inet, from the same|'::1")
i net) family?
cidr the smallest|i net _nerge(' 190216%8L.Gb/®4LP,
i net_nerge(inget, network which|' 192. 168. 2. 5/4")
i net) includes both of
the given networks

Functions and Operators

9.13.

Table9.38. racaddr Functions

Function

Return Type

Description

Example

Result

trunc(macaddr

macaddr

set last 3 bytes to
zero

trunc(macaddr

12: 34:56: 00: 0

'12:34:56:78:90: ab")

0: 00

The macaddr type aso supports the standard relational operators (>, <=, etc.) for lexicographical

ordering, and the bitwise arithmetic operators (~, & and |) for NOT, AND and OR.

Table 9.39 shows the functions available for use with the macaddr 8 type. The function
t runc(nacaddr 8) returns a MAC address with the last 5 bytes set to zero. This can be used to
associate the remaining prefix with a manufacturer.

Table9.39. racaddr 8 Functions

Function

Return Type

Description

Example

Result

t runc(nacaddr B)

macaddr 8

set last 5 bytes to
zero

trunc(nacaddrg2: 34: 56: 00: 0
'12: 34:56: 78:90: ab: cd: ef ')

0: 00: 00: 00

macaddr 8

macaddr 8_set 7pi t (nacaddr 8)

set 7th bit to
one, also known as
modified EUI-64,
for inclusion in an
IPv6 address

macaddr 8_set 7j2: (3Gl drf8 f

' 00: 34: 56: ab: cd: ef ')

e: ab: cd: ef

Thermacaddr 8 type also supports the standard relational operators (>, <=, etc.) for ordering, and the
bitwise arithmetic operators (~, & and |) for NOT, AND and OR.

Text Search Functions and Operators

Table 9.40, Table 9.41 and Table 9.42 summarize the functions and operators that are provided for

full text searching. See Chapter 12 for a detailed explanation of PostgreSQL 's text search facility.

Table 9.40. Text Search Operators

Operator Return Type Description Example Result
@ bool ean t svect or to_tsvector(' ftat
matches cats ate
tsquery ? rats') @al
to_tsquery('cat
&rat')
@ao bool ean deprecated to_tsvector(' ftat
synonym for @@ |cats ate
rats') @ag)
to_tsquery('cat
&rat')
[t svect or concatenate "a:l 'a':1'b':
tsvectors b:2"::tsvectoyc':3 'd":
|| 'c:1 d:2
b:3"::tsvector
&& t squery AND tsquerys|' fat [1(fat'
together rat'::tsquery|' rat’ &
&& "cat'
‘cat'::tsquery
[t squery OR tsquerys|' fat [1(fat'
together rat'::tsquery|'rat’
"cat'’

250

Functions and Operators

Operator Return Type Description Example Result
|
‘cat'::tsquery
M tsquery negateat squery |!! I''cat'’
‘cat'::tsquery
<-> tsquery t squery to_tsquery(' fatf'at’ <->
followed by |<- > "rat’
t squery to_tsquery('rat')
@ bool ean t squery "cat'::tsquer)
containsanother ? |@ ' cat &
rat'::tsquery
<@ bool ean t squery is|' cat'::tsquerp
contained in ? <@ 'cat &
rat'::tsquery
Note

The t squery containment operators consider only the lexemes listed in the two
gueries, ignoring the combining operators.

In addition to the operators shown in the tabl e, the ordinary B-tree comparison operators (=, <, etc) are

defined for typest svect or andt squery. These are not very useful for text searching but allow,
for example, unique indexes to be built on columns of these types.

Table9.41. Text Search Functions

Function Return Type Description Example Result
t svect or convert array|array_to_tsvectomt(' {f af atat
array_to tsvector(text[]) |of Iexemes to ‘rat’
t svect or
regconfig get default text|get current termnfdig()
get _current _ts_config() search

configuration

i nt eger number of lexemes|l engt h(' fat: 2|34
| engt h(tsvectpr) int svect or cat:3
rat:5A ::tsvector)
i nt eger number of lexemes|numode(' (f at |5
nummode(t squery) plus operators in|& rat) |
tsquery cat'::tsquery
t squery producet squer y|pl ai nt o_t squery(dtend i sht,
pl ai nto_tsquery([ignoring ' The Fat
config punctuation Rats')
regconfig ,]
query text)
t squery producet squery|phraset o_t squerfygt''engl i sh>,
phraseto_tsquery([that searches for|' The Fat |'rat’
config a phrase, ignoring|Rat s')
regconfig ,] punctuation
query text)
t ext get indexable part|querytree(' fop f oo’
querytree(query of at squery & !

t squery)

bar'::tsquery

251

,rat}'::text

Functions and Operators

Function Return Type Description Example Result

t svect or assign wei ght to|set wei ght (' f at':cat4 : 3A
set wei ght (vect or each element of|cat:3 "fat':2A 4A
tsvector, vect or rat:5B' ::tsvegctrat, : 5A
wei ght "A)

"char")

t svect or assign wei ght [setwei ght (' f at':cat4 : 3A
set wei ght (vect or to elements of|cat: 3 "fat':2,4
tsvector, vector that are|rat:5B'::tsvegctrat, : 5A
wei ght listedinl exemes|' A",

"char", ‘{cat,rat}")
| exenes
text[])

t svect or remove positions|strip(' fat: 2,4 cat’ 'fat'

strip(tsvector) and weights from|cat : 3 "rat’
tsvector rat:5A ::tsvector)

to_tsquery([|tsquery normalize words|t o_t squery(' efdlatsh'& ' rat"’

config and convert to|' The & Fat &

regconfig ,] tsquery Rats')

query text)

t svect or reduce document|t o_t svect or (' grigti'si? ,
to_tsvector([texttot svect or |' The Fat |"rat':3
config Rats')
regconfig ,]
docunent
text)
to_tsvector([|tsvector reduce each string|t o_t svect or (' erfdti'si2 ,
config vadue in thel' {"a": "The|'rat':3
regconfig ,] document to a|Fat
docunent tsvector, and/Rats"}'::json
j son(b)) then concatenate

those in document
order to produce a
singlet svect or

t svect or remove given|ts_del ete(' fat':cat4: 3
ts_del et e(vector | exenme from|cat: 3 "rat':5A
tsvector, vect or rat:5A ::tsvector,
| exenme text) "fat')
ts_del et e(vecftamvect or remove any|ts_delete(' fat:cat4:3
t svect or, occurrence oficat: 3
| exenes lexemes injrat: 5A" : :tsvector,
text[]) | exemes from|ARRAY['fat','rat'])

vect or

t svect or select only|ts_filter('fat:cat4: 3B
ts filter(vector elements with|cat : 3b "rat’':5A
t svector, given weights|rat:5A ::tsvector,
wei ght's fromvect or "{a,b}")

"char"[])

t ext display a query|ts_headline('x y z
ts_headline([match y z',
config 'z'::tsquery)
regconfig,]
docunent
t ext, query

252

Functions and Operators

Function Return Type Description Example Result
t squery [,
options text
1)
ts_headl i ne([|t ext display a query|ts_headl i ne(" f{{"a&": "% y
config match y z"}'::json, |z"}
regconfig,] "z'::tsquery)
docunent
j son(b),
query tsquery
[, options
text 1)
ts_rank([|fl oat4 rank document for|t s_r ank(t ext sgarg&lg
wei ght s query query)
float4[],]
vect or
t svector,
query tsquery
[
nor mal i zati on
i nteger 1)
ts_rank _cd([|fl oat4 rank document for|ts_rank _cd('{@2.101317
wei ght's query using cover|0. 2, 0. 4,
float4[],] density 1.0},
vect or t ext sear ch,
t svect or, query)
guery tsquery
[
normal i zati on
i nteger 1)

t squery replace target |ts_rewite('a'b' & ('foo'
ts rewite(query with & | '"bar')
t squery, substitute b'::tsquery,

t ar get within query "a'::tsquery,
t squery, 'fool
substitute bar'::tsquery
t squery)
ts_rewite(qugrsquery replace using| SELECT "b' & ('foo'
tsquery, targets andits_rewite('al| 'bar')
sel ect text) substitutes from a|&
SELECT b'::tsquery,
command "SELECT t,s
FROM
al i ases')

tsquery make query that|t squery_phrasg(ftad 't squeky¢'

t squery_phrase(queryl searches for|t o_t squery(' c@atcat)

t squery, queryl followed

query?2 by quer y2 (same

t squery) as <- > operator)

t squery_phr asg(sapuaryl make query that|t squery_phrasg(ftad 't squedPe'
t squery, searches for|t o_t squery(' catcat,

query2 queryl followed|10)

t squery, by query2 a

253

fat'),

fat'),

Functions and Operators

Function Return Type Description Example Result
di st ance distance
i nt eger) di stance
text[] convert t svect or _t o_aH{rcat(, 'ffadt, . rat4
tsvector_to_array(tsvector)tsvector tojcat: 3
array of lexemes [rat: 5A ::tsvector)
trigger trigger function| CREATE
tsvector_update_trigger() |[for automatic| TRI GGER
t svect or tsvector _update_trigger(tsycol,
column update ' pg_cat al og. swedi sh' ,
title, body)
trigger trigger function| CREATE
tsvector_update trigger_colfom() automatic|TRI GGER
t svect or tsvector _update trigger_collum(tsvcol,
column update configcol,
title, body)
setof record |expand alunnest (' fat: 2\(€at, {3},
unnest (t svect pr, tsvector to alcat:3 {D})
out | exene set of rows rat:5A ::tsvector)
t ext, out
posi tions
smallint[],
QUT weights
text)
Note
All thetext search functionsthat accept an optional r egconf i g argument will usethe
configuration specified by default_text_search_config when that argument is omitted.
The functions in Table 9.42 are listed separately because they are not usualy used in everyday
text searching operations. They are helpful for development and debugging of new text search
configurations.
Table 9.42. Text Search Debugging Functions
Function Return Type Description Example Result
ts_debug([|setof record |testaconfiguration|ts_debug(' eng|(iadti,i word, "Wrd,
config ' The al |
regconfig,] Bri ght est ASCI | ", The,
docunent super novaes') |{english_stent, english_st
text, ouT {}
alias text,
out
description
t ext, out
token text,
out

dictionaries
regdi ctionary
aut

di ctionary
regdi ctionary

[1.

254

Functions and Operators

9.14.

Function Return Type Description Example Result
QUT | exenes
text[])
text[] testadictionary [ts_| exize(' endldtsr}st en
ts_ | exize(dict ‘stars')
regdi cti onary
t oken text)
setof record |testaparser ts_parse(' def gul,tf'qo)
ts_parse(parser_name "foo - bar')
text,
docunent
text, autr
t oki d
i nteger, OUT
t oken text)
ts_parse(par seetaifd record |test aparser ts_parse(3722)(1, foo)
oi d, docunent "foo - bar')
text, aJtr
t oki d
i nteger, OUT
token text)
setof record |get token types|ts_token_type(('ldefsailitvor d,
ts_token_type(parser_nane |definedby parser al |
t ext, aut ASCI 1 ")
t oki d
i nteger, OUT
alias text,
out
description
text)
ts_token_type(gerafer emiaf d |get token types|ts_token_type((372&)ciiword,
oi d, out defined by parser al |
tokid ASCI 1 ™)
i nteger, OUT
alias text,
ot
description
text)
setof record |get datistics of|ts_stat (' SELECT oo, 10, 15)
ts_stat(sql query a t svect or |vect or from
t ext, [column apod')
wei ght s
t ext,]
out wor d
text, ot
ndoc i nt eger,
ot nentry
i nt eger)
XML Functions

The functions and function-like expressions described in this section operate on values of type xm .
Check Section 8.13 for information about the xm type. The function-like expressions xmi par se

255

"Word,

"Word,

Functions and Operators

andxml seri al i ze for converting to and from typexm are not repeated here. Use of most of these
functions requires the installation to have been built withconfi gure --wi th-1ibxmn .

9.14.1. Producing XML Content

A set of functions and function-like expressions are available for producing XML content from SQL
data. As such, they are particularly suitable for formatting query results into XML documents for
processing in client applications.

9.14.1.1. xnl comment

xm coment (t ext)

The function xm comment creates an XML value containing an XML comment with the specified
text as content. Thetext cannot contain“- - ” or end witha“- " so that the resulting construct isavalid
XML comment. If the argument is null, the result is null.

Example:
SELECT xm conment (' hell 0");

xm conment

<l--hello-->

9.14.1.2. xnl concat
xm concat (xm [, ...])

The function xm concat concatenates a list of individual XML values to create a single value
containing an XML content fragment. Null values are omitted; the result is only null if there are no
nonnull arguments.

Example:
SELECT xm concat (' <abc/>', '<bar>foo</bar>");

xm concat

<abc/ ><bar >f oo</ bar >

XML declarations, if present, are combined as follows. If al argument values have the same XML
version declaration, that version is used in the result, else no version is used. If al argument values
have the standal one declaration value “yes’, then that valueisused in the result. If all argument values
have a standalone declaration value and at least one is “no”, then that is used in the result. Else the
result will have no standal one declaration. If theresult isdetermined to require astandal one declaration
but no version declaration, a version declaration with version 1.0 will be used because XML requires
an XML declaration to contain a version declaration. Encoding declarations are ignored and removed
inall cases.

Example:

SELECT xm concat (' <?xm version="1.1"?><foo/>", '<?xn
versi on="1.1" standal one="no"?><bar/>");

xm concat

256

Functions and Operators

<?xnml version="1.1"?><f oo/ ><bar/ >

9.14.1.3. xnl el enent

xm el enent (name nanme [, xm attributes(value [AS attnane] [, ...])]
[, content, ...])

Thexm el ement expression producesan XML element with the given name, attributes, and content.
Examples:
SELECT xml el erent (nane f 00);

xm el enent

SELECT xml el ement (nane foo, xmattributes('xyz' as bar));

xm el enent

<foo bar="xyz"/>

SELECT xm el ement (nane foo, xmattributes(current_date as bar),
‘cont', 'ent');

xm el enent

<f oo bar="2007-01-26">cont ent </ f oo>

Element and attribute names that are not valid XML names are escaped by replacing the offending
characters by the sequence _xHHHH , where HHHH is the character's Unicode codepoint in
hexadecimal notation. For example:

SELECT xml el emrent (nane "foo$bar", xmlattributes('xyz' as "a&b"));

xm el enent

<f 00_x0024_bar a_x0026_b="xyz"/>

An explicit attribute name need not be specified if the attribute value is a column reference, in which
case the column's name will be used as the attribute name by default. In other cases, the attribute must
be given an explicit name. So this exampleisvalid:

CREATE TABLE test (a xm, b xm);
SELECT xmi el enent (nane test, xmattributes(a, b)) FROMtest;

But these are not:

SELECT xml el enent (nane test, xmattributes('constant'), a, b) FROM
test;
SELECT xml el enent (nane test, xmattributes(func(a, b))) FROMtest;

Element content, if specified, will be formatted according to its data type. If the content is itself of
typexml , complex XML documents can be constructed. For example:

SELECT xml el enent (nane foo, xmattributes('xyz' as bar),
xm el enent (nane abc),
xm coment ("test'),

257

Functions and Operators

xnl el enent (nanme xyz));

xm el enent

<f oo bar="xyz"><abc/><!--test--><xyz/></foo>

Content of other types will be formatted into valid XML character data. This means in particular
that the characters <, >, and & will be converted to entities. Binary data (data type byt ea) will
be represented in base64 or hex encoding, depending on the setting of the configuration parameter
xmibinary. The particular behavior for individual datatypesis expected to evolvein order to align the
SQL and PostgreSQL data types with the XML Schema specification, at which point a more precise
description will appear.

9.14.1.4. xnl f or est

xm forest(content [AS nane] [, ...])

Thexnl f or est expression produces an XML forest (sequence) of elements using the given names
and content.

Examples:
SELECT xml forest (' abc' AS foo, 123 AS bar);

xm f or est

<f oo>abc</ f oo><bar >123</ bar >

SELECT xml f orest (tabl e_nane, col unm_nane)
FROM i nf or mati on_schema. col ums
WHERE t abl e_schena = 'pg_catal og';

xm f or est

<t abl e_nane>pg_aut hi d</t abl e_nanme><col um_nane>r ol nanme</
col um_nane>

<t abl e_nane>pg_aut hi d</t abl e_nanme><col um_nane>r ol super </
col um_nane>

As seen in the second example, the element name can be omitted if the content value is a column
reference, in which case the column name is used by default. Otherwise, a name must be specified.

Element names that are not valid XML names are escaped as shown for xnl el enent above.
Similarly, content data is escaped to make valid XML content, unless it is already of typexm .

Note that XML forests are not valid XML documents if they consist of more than one element, so it
might be useful towrap xn f or est expressionsinxni el enent .

9.14.1.5. xm pi

xm pi (name target [, content])

The xm pi expression creates an XML processing instruction. The content, if present, must not
contain the character sequence ?>.

Example:

258

Functions and Operators

SELECT xm pi (nane php, "echo "hello world";");

<?php echo "hello world"; ?>

9.14.1.6. xml r oot

xm root (xm, version text | no value [, standal one yes|no|no
val ue])

The xm r oot expression alters the properties of the root node of an XML value. If a version is
specified, it replacesthe valuein theroot node's version declaration; if astandal one setting is specified,
it replaces the value in the root node's standal one decl aration.

SELECT xml r oot (xm par se(docunent '<?xml version="1.1"7
><cont ent >abc</content>'),
version '1.0', standal one yes);

<?xm version="1.0" standal one="yes"?>
<cont ent >abc</ cont ent >

9.14.1.7. xm agg
xm agg(xm)

The function xm agg is, unlike the other functions described here, an aggregate function. It
concatenates the input values to the aggregate function call, much likexni concat does, except that
concatenation occurs across rows rather than across expressionsin asingle row. See Section 9.20 for
additional information about aggregate functions.

Example:

CREATE TABLE test (y int, x xm);
I NSERT | NTO test VALUES (1, '<foo>abc</foo>");
| NSERT | NTO test VALUES (2, '<bar/>');
SELECT xm agg(x) FROM test;
xm agg

<f oo>abc</ f oo><bar/ >

To determine the order of the concatenation, an ORDER BY clause may be added to the aggregate call
as described in Section 4.2.7. For example:

SELECT xm agg(x ORDER BY y DESC) FROM test;
xm agg

<bar/ ><f oo>abc</ f oo>

The following non-standard approach used to be recommended in previous versions, and may still be
useful in specific cases:

SELECT xm agg(x) FROM (SELECT * FROM test ORDER BY y DESC) AS tab;
xm agg

<bar/ ><f oo>abc</ f oo>

259

Functions and Operators

9.14.2. XML Predicates

The expressions described in this section check properties of xm values.

9.14.2.1.1 S DOCUMENT
xm 1S DOCUVENT

Theexpression| S DOCUMENT returnstrue if the argument XML value is a proper XML document,
faseif itisnot (that is, itisacontent fragment), or null if the argument is null. See Section 8.13 about
the difference between documents and content fragments.

9.14.2.2. XMLEXI STS
XMLEXI STS(text PASSING [BY REF] xni [BY REF])

Thefunctionxm exi st s returnstrueif the X Path expression in the first argument returns any nodes,
and false otherwise. (If either argument is null, the result isnull.)

Example:

SELECT xm exists('//town[text() = "''Toronto'']"' PASSING BY REF
' <t owns><t own>Tor ont o</t own><t own>Qt t awa</ t own></t owns>');
xm exi sts
t

(1 row

The BY REF clauses have no effect in PostgreSQL, but are alowed for SQL conformance and
compatibility with other implementations. Per SQL standard, thefirst BY REF isrequired, the second
is optional. Also note that the SQL standard specifies the xm exi st s construct to take an XQuery
expression as first argument, but PostgreSQL currently only supports XPath, which is a subset of
XQuery.

9.14.23.xm is well forned

xm _is_well forned(text)
xm _is_well fornmed _docunent (text)
xm _is_well formed content(text)

These functions check whether a text string is well-formed XML, returning a Boolean
result. xm _is well formed _docunment checks for a well-formed document, while
xm _is well formed_content checks for well-formed content. xm _is_wel | _formed
does the former if the xmloption configuration parameter is set to DOCUMENT, or the latter if it is
set to CONTENT. This means that xml _i s_wel | _f or med is useful for seeing whether a smple
cast to type xm will succeed, whereas the other two functions are useful for seeing whether the
corresponding variants of XM_PARSE will succeed.

Examples:

SET xml opti on TO DOCUMENT;
SELECT xm _is_well _forned('<>");
xm _is_well forned

SELECT xml _is well forned('<abc/>");

260

Functions and Operators

xm _is well formed

SET xm opti on TO CONTENT;
SELECT xm _is_well _formed(' abc');
xm _is well formed

SELECT xm _is_wel | _forned_docunent (' <pg:foo xm ns:pg="http://
post gresql . org/ st uf f">bar </ pg: f 00>") ;
xm _is well formed _docunent

SELECT xm _is_wel | _forned_docunent (' <pg:foo xm ns:pg="http://
post gresql . org/ stuff">bar</my:foo>");
xm _is well formed_docunent

The last exampl e shows that the checks include whether namespaces are correctly matched.

9.14.3. Processing XML

To process values of datatype xmi , PostgreSQL offers the functions xpat h and xpat h_exi st s,
which evaluate X Path 1.0 expressions, and the XML TABLE table function.

9.14.3.1. xpat h

xpat h(xpat h, xm [, nsarray])

The function xpat h evaluates the XPath expression xpat h (at ext value) against the XML value
xm . It returns an array of XML values corresponding to the node set produced by the XPath
expression. If the XPath expression returns ascalar value rather than anode set, a single-element array
is returned.

The second argument must be awell formed XML document. In particular, it must have a single root
node element.

The optional third argument of the function is an array of namespace mappings. This array should be
atwo-dimensional t ext array with the length of the second axis being equal to 2 (i.e., it should be
an array of arrays, each of which consists of exactly 2 elements). Thefirst element of each array entry
is the namespace name (alias), the second the namespace URI. It is not required that aliases provided
in this array be the same as those being used in the XML document itself (in other words, both in the
XML document and in the xpat h function context, aliases are local).

Example:
SELECT xpath('/ny:al/text()', '<my:a xmns:nmy="http://

exanpl e. con' >t est </ nmy: a>",
ARRAY[ARRAY[' ny', 'http://exanple.com]]);

xpat h

261

Functions and Operators

ftest}
(1 row

To deal with default (anonymous) namespaces, do something like this:

SELECT xpath('//mydefns:b/text()', '<a xm ns="http://
exanpl e. con' >t est </ b></ a>',
ARRAY[ARRAY[' nydefns', 'http://exanple.com]]);

ftest)
(1 row

9.14.3.2. xpat h_exi st s

xpat h_exi sts(xpath, xm [, nsarray])

Thefunction xpat h_exi st s isaspeciaized form of the xpat h function. Instead of returning the
individual XML values that satisfy the XPath, this function returns a Boolean indicating whether the
guery was satisfied or not. This function is equivalent to the standard XMLEXI STS predicate, except
that it also offers support for a namespace mapping argument.

Example:
SELECT xpath_exists('/ny:altext()', '<ny:a xmns:nmy="http://
exanpl e. con' >t est </ ny: a>' ,

ARRAY[ARRAY[' ny', 'http://exanple.com]]);

xpat h_exi sts

(1 row)
9.14.3.3. xm t abl e
xm t abl e([XMLNAMESPACES(nanmespace uri AS nanmespace nanme[, ...]),]
row_expr essi on PASSI NG [BY REF] docunent _expression [BY
REF]

COLUWNS name { type [PATH col um_expr essi on]
[DEFAULT defaul t _expression] [NOT NULL | NULL]
| FOR ORDI NALI TY }
[, -..]
)

The xm t abl e function produces a table based on the given XML value, an XPath filter to extract
rows, and an optional set of column definitions.

The optional XMLNANMESPACES clauseisacomma-separated list of namespaces. It specifiesthe XML
namespaces used in the document and their aliases. A default namespace specification is not currently
supported.

The required r ow_expr essi on argument is an XPath expression that is evaluated against the
supplied XML document to obtain an ordered sequence of XML nodes. This sequence is what
xm t abl e transformsinto output rows.

docunent _expressi on provides the XML document to operate on. The BY REF clauses
have no effect in PostgreSQL, but are allowed for SQL conformance and compatibility with other

262

Functions and Operators

implementations. The argument must be a well-formed XML document; fragments/forests are not
accepted.

The mandatory COLUMNS clause specifies the list of columns in the output table. If the COLUMNS
clause is omitted, the rows in the result set contain a single column of type xm containing the data
matched by r ow_expr essi on. If COLUMNS is specified, each entry describes asingle column. See
the syntax summary above for the format. The column name and type are required; the path, default
and nullability clauses are optional.

A column marked FOR ORDI NALI TY will be populated with row numbers matching the order in
which the output rows appeared in the original input XML document. At most one column may be
marked FOR ORDI NALI TY.

The col um_expr essi on for a column is an XPath expression that is evaluated for each
row, relative to the result of the r ow_expr essi on, to find the value of the column. If no
col umm_expr essi on isgiven, then the column nameis used as an implicit path.

If acolumn's XPath expression returns multiple elements, an error israised. If the expression matches
an empty tag, the result is an empty string (not NULL). Any xsi : ni | attributes are ignored.

The text body of the XML matched by the col unm_expr essi on is used as the column value.
Multiplet ext () nodeswithin an element are concatenated in order. Any child elements, processing
instructions, and comments are ignored, but the text contents of child elements are concatenated to the
result. Note that the whitespace-only t ext () node between two non-text elementsis preserved, and
that leading whitespace on at ext () nodeis not flattened.

If the path expression does not match for agiven row but def aul t _expr essi on is specified, the
valueresulting from eval uating that expression isused. If no DEFAULT clauseisgiven for the column,
the field will be set to NULL. It ispossible for adef aul t _expr essi on to reference the value of
output columns that appear prior to it in the column list, so the default of one column may be based
on the value of another column.

Columns may be marked NOT NULL. If thecol unm_expr essi on foraNOT NULL column does
not match anything and thereisno DEFAULT or thedef aul t _expr essi on aso evaluatesto null,
an error isreported.

Unlike regular PostgreSQL functions, col urm_expr essi on and def aul t _expr essi on are
not evaluated to a simple value before calling the function. col urm_expr essi on is normally
evaluated exactly once per input row, and def aul t _expressi on is evaluated each time a
default is needed for afield. If the expression qualifies as stable or immutable the repeat evaluation
may be skipped. Effectively xm t abl e behaves more like a subquery than a function call. This
means that you can usefully use volatile functions like next val indef aul t _expr essi on, and
col umm_expr essi on may depend on other parts of the XML document.

Examples:

CREATE TABLE xnl data AS SELECT
xm $$
<RONG>
<ROWid="1">
<COUNTRY_| D>AU</ COUNTRY_| D>
<COUNTRY_NAME>Aust r al i a</ COUNTRY_NANME>
</ RON
<ROW i d="5">
<COUNTRY_| D>JP</ COUNTRY_| D>
<COUNTRY_NAME>Japan</ COUNTRY_NAME>
<PREM ER NAME>Shi nzo Abe</ PREM ER_NAME>
<SI ZE uni t ="sq_m ">145935</ S| ZE>
</ RON
<ROW i d="6">

263

Functions and Operators

<COUNTRY_| D>SG</ COUNTRY_I| D>
<COUNTRY_NAME>Si ngapor e</ COUNTRY_NAME>
<Sl| ZE uni t ="sq_kni' >697</ S| ZE>
</ RON
</ ROAG>
$$ AS dat a;

SELECT xmi table. *
FROM xml dat a,
XMLTABLE(" / / RONS/ ROW
PASSI NG dat a
COLUMNS id int PATH ' @d',
ordinality FOR ORDI NALITY,
" COUNTRY_NAME" text,
country_id text PATH ' COUNTRY_ID ,
size_sq_kmfloat PATH 'SIZEf @nit =
"sq_kn']",
si ze_other text PATH
‘concat (SI ZE[f @nit! ="sq_kni], " ",
SIZE[@nit! ="sq_kni]/@nit)"’,
prem er_nane text PATH ' PREM ER_NAME
DEFAULT ' not specified') ;

id]| ordinality | COUNTRY_NAME | country id | size_sq_km|

Size_other | premnier_nane
T T o m e o - - o m e o - -
T o e e e e oo - -

1| 1| Australia | AU | |

| not specified

5| 2 | Japan | JP | | 145935
sg_m | Shinzo Abe

6 | 3 | Singapore | SG | 697 |

| not specified

The following example shows concatenation of multiple text() nodes, usage of the column name as
XPath filter, and the treatment of whitespace, XML comments and processing instructions:

CREATE TABLE xmnl el enents AS SELECT
xm $$
<r oot >
<el ement > Hello<!-- xyxxz -->2a2<?aaaaa?> <!--x--> Dbbb<x>xxx</
x>CC </el enment>
</root >
$$ AS dat a;

SELECT xni table.*
FROM xm el enents, XM.TABLE('/root' PASSI NG data COLUWNS el enent
text);
el ement

Hel | 02a2 bbbCC

Thefollowing exampleillustrates how the XML NAMESPACES clause can be used to specify the default
namespace, and a list of additional namespaces used in the XML document as well as in the XPath
expressions:

W TH xm dat a(data) AS (VALUES ('
<exanpl e xm ns="http://exanple.conlnyns" xmns: B="http://
exanpl e. conf b" >

264

Functions and Operators

<item foo="1" B: bar="2"/>
<item foo="3" B:bar="4"/>
<item foo="4" B:bar="5"/>
</ exampl e>"::xm)
)
SELECT xm table.*
FROM XMLTABLE(XMLNAMESPACES("' htt p: // exanpl e. com nyns' AS X,
"http://exanple.com b AS "B"),
"I x:exanple/ x:item
PASSI NG (SELECT data FROM xnl dat a)
COLUWNS foo int PATH ' @oo0',
bar int PATH ' @B: bar');

9.14.4. Mapping Tables to XML

The following functions map the contents of relational tables to XML values. They can be thought
of as XML export functionality:

table to xm (tbl regclass, nulls bool ean, tableforest bool ean
targetns text)
query to xm (query text, nulls bool ean, tabl eforest bool ean
targetns text)
cursor_to_xm (cursor refcursor, count int, nulls bool ean

t abl ef orest bool ean, targetns text)

The return type of each functionisxmi .

tabl e_to_xm maps the content of the named table, passed as parameter t bl . Ther egcl ass
type accepts strings identifying tables using the usua notation, including optional schema
gualifications and double quotes. query_t o_xm executes the query whose text is passed as
parameter quer y and maps the result set. cur sor _t o_xm fetches the indicated number of rows
from the cursor specified by the parameter cur sor . Thisvariant isrecommended if large tables have
to be mapped, because the result value is built up in memory by each function.

If t abl ef or est isfalse, then the resulting XML document looks like this:

<t abl enane>
<r ow>
<col umnanel>dat a</ col umnanel1>
<col umnane2>dat a</ col umnane2>
</ row>
<r ow>
</ row>
</ t abl enane>

If t abl ef or est istrue, theresult isan XML content fragment that looks like this:

<t abl enanme>

265

Functions and Operators

<col umnanel>dat a</ col umnanel1>
<col utmnane2>dat a</ col umnane2>
</ t abl enane>

<t abl enane>

</ t abl enane>

If no table name is available, that is, when mapping a query or a cursor, the string t abl e isused in
the first format, r owin the second format.

The choice between these formats is up to the user. The first format is a proper XML document,
which will be important in many applications. The second format tends to be more useful in the
cursor _to_xm functionif theresult values are to be reassembled into one document later on. The
functions for producing XML content discussed above, in particular xnl el enent , can be used to
alter the results to taste.

The data values are mapped in the same way as described for the function xm el errent above.

The parameter nul | s determines whether null values should be included in the output. If true, null
valuesin columns are represented as:

<col umnane xsi:nil="true"/>

where xsi is the XML namespace prefix for XML Schema Instance. An appropriate namespace
declaration will beadded to theresult value. If false, columns containing null valuesare simply omitted
from the output.

The parameter t ar get ns specifies the desired XML namespace of the result. If no particular
namespace is wanted, an empty string should be passed.

The following functions return XML Schema documents describing the mappings performed by the
corresponding functions above:

table to xm schema(tbl regclass, nulls bool ean, tabl eforest
bool ean, targetns text)
query to _xm schema(query text, nulls bool ean, tabl eforest bool ean
targetns text)
cursor_to_xm schema(cursor refcursor, nulls bool ean, tabl eforest
bool ean, targetns text)

It is essential that the same parameters are passed in order to obtain matching XML data mappings
and XML Schema documents.

The following functions produce XML data mappings and the corresponding XML Schema in one
document (or forest), linked together. They can be useful where self-contained and self-describing
results are wanted:

table_to_xm _and_xm schema(tbl regclass, nulls bool ean, tabl eforest
bool ean, targetns text)

guery_to_xm _and_xm schema(query text, nulls bool ean, tabl eforest
bool ean, targetns text)

In addition, the following functions are available to produce ana ogous mappings of entire schemas
or the entire current database:

schema_to_xm (schema nane, nulls bool ean, tabl eforest bool ean,
targetns text)

266

Functions and Operators

schema_t o_xm schema(schema name, nulls bool ean, tabl ef orest
bool ean, targetns text)
schema_t o_xm _and_xm schema(schema nane, nulls bool ean, tabl eforest
bool ean, targetns text)
dat abase_to_xm (nulls bool ean, tableforest bool ean, targetns text)
dat abase_t o_xm schema(nul | s bool ean, tabl eforest bool ean, targetns
t ext)
dat abase_to_xm _and_xm schema(nul | s bool ean, tabl eforest bool ean,
targetns text)
Note that these potentially produce a lot of data, which needs to be built up in memory. When
requesting content mappings of large schemas or databases, it might be worthwhile to consider
mapping the tables separately instead, possibly even through a cursor.
Theresult of a schema content mapping looks like this:
<schemanane>
t abl e1- mappi ng

t abl e2- mappi ng

</ schemanane>

where the format of atable mapping dependson thet abl ef or est parameter as explained above.
The result of a database content mapping looks like this;

<dbnane>

<schemalnane>

</ .s;:herralnarm>

<schema2nane>

</ schema2nane>

</ dbnane>
where the schema mapping is as above.

Asan example of using the output produced by these functions, Figure 9.1 shows an XSLT stylesheet
that convertstheoutputof t abl e_t o_xm _and_xm schenma toan HTML document containing a
tabular rendition of thetabledata. Inasimilar manner, the resultsfrom these functionscan be converted
into other XML -based formats.

267

Functions and Operators

Figure9.1. XSLT Stylesheet for Converting SQL/XML Output toHTML

<?xm version="1.0"?>

<xsl :styl esheet version="1.0"
xm ns: xsl ="http://ww. w3. org/ 1999/ XSL/ Tr ansf or nf
xm ns: xsd="http://ww. w3. or g/ 2001/ XM_Schema"
xm ns="http://ww. w3. org/ 1999/ xht m "

<xsl : out put net hod="xm "
doct ype-system="http://ww. wW3. or g/ TR/ xht m 1/ DTDY xht m 1-
strict.dtd"
doct ype-public="-//WBC/DTD XHTM. 1.0 Strict//EN'
i ndent ="yes"/ >

<xsl:tenplate match="/*">
<xsl :vari abl e nanme="schem" sel ect="//xsd: schema"/>
<xsl :vari abl e name="t abl et ypenane”
sel ect =" $schema/
xsd: el ement [@anme=nanme(current())]/ @ype"/ >
<xsl :vari abl e name="r owt ypenane"
sel ect =" $schena/ xsd: conpl exType[@ane=
$t abl et ypenane] / xsd: sequence/ xsd: el ement [@ame="row]/ @ype"/ >

<htm >
<head>
<title><xsl:val ue-of select="name(current())"/></title>
</ head>
<body>
<t abl e>
<tr>
<xsl : for-each sel ect ="$schema/ xsd: conpl exType[@ane=
$rowt ypenane] / xsd: sequence/ xsd: el ement / @ane" >

<t h><xsl : val ue-of select="."/></th>
</ xsl : for-each>
</[tr>

<xsl :for-each sel ect="row'>

<tr>

<xsl :for-each select="*">
<t d><xsl : val ue-of select="."/></td>

</ xsl :for-each>

</[tr>

</ xsl :for-each>
</t abl e>
</ body>

</htm >
</ xsl : tenpl at e>

</ xsl : styl esheet >

9.15. JSON Functions and Operators

Table 9.43 shows the operators that are available for use with the two JSON data types (see
Section 8.14).

268

Functions and Operators

Table9.43.j son and j sonb Operators

Operator Right Operand|Description Example Example Result
Type
-> i nt Get JSON array|'[{"a":"foo"}|{"c":"baz"}
dement (indexed|{"b":"bar"},
from zero,|{"c":"baz"}] "'} :json-
negative integers|>2
count from the
end)
-> t ext Get JSON object|' {"a": {"b":"foo0"}
field by key {"b":"fo0"}}'}:]json-
>'a'
->> i nt Get JSON array|'[1,2,3]'::]jsdh-
elementast ext |>>2
->> t ext Get JSON object|' {"a":1,"b":2}2::json-
field ast ext >>' b
#> text[] Get JSSON objectat|' {"a": {"b": |{"c": "fo0"}
specified path {"c":
"foo"}}}' ::json#>'{a, b}’
#>> text[] Get JSON object|' {"a": 3
at specified pathas|[1, 2, 3], " b":
t ext [4,5,6]}' ::jspn#>>"{a, 2}’
Note

There are parallel variants of these operatorsfor both thej son andj sonb types. The
field/element/path extraction operators return the same type as their left-hand input
(either j son orj sonb), except for those specified asreturning t ext , which coerce
thevalueto text. Thefield/element/path extraction operatorsreturn NULL, rather than
failing, if the JSON input does not have the right structure to match the request; for
example if no such element exists. The field/element/path extraction operators that
accept integer JSON array subscripts all support negative subscripting from the end
of arrays.

The standard comparison operators shown in Table 9.1 are available for j sonb, but not for j son.
They follow the ordering rules for B-tree operations outlined at Section 8.14.4.

Some further operators also exist only for j sonb, as shown in Table 9.44. Many of these operators
can beindexed by j sonb operator classes. For afull description of j sonb containment and existence
semantics, see Section 8.14.3. Section 8.14.4 describes how these operators can be used to effectively
index j sonb data.

Table 9.44. Additional | sonb Operators

Operator Right Operand Type |Description Example
@ j sonb Does the left JSON|'{"a":1,
value contain the right|" b": 2}' ::j sonb
JSON path/value entries| @
at thetop level ? "{"b":2}"::jsonb
<@ j sonb Arethe left JSON path/|' {"b":2}'::jsonb
value entries contained|<@ "{"a": 1,
"b":2}'::jsonb

269

Functions and Operators

Operator Right Operand Type |Description Example

at the top level within
the right JSON value?

? t ext Doesthestringexistasa|' {"a": 1,

top-level key within the|"b":2}'::jsonb ?
JSON value? "b’

? text[] Do any of these array|' {"a":1, "b":2,
stringsexist astop-level |"c": 3} : :j sonb?|
keys? array['b', 'c']

?& text[] Do dl of these array|'["a",
stringsexist astop-level |"b"]'::jsonb ?&
keys? array['a', 'b']

[j sonb Concatenate two|' ["a",

j sonb vaues into al"b"]"'::jsonb ||
new j sonb value
"::jsonb

- t ext Delete key/value pair|'
or string element from|"
left operand. Key/value|'
pairs are matched based
on their key value.

- text[] Delete multiple key/|' {"a": "b", "c":
value pairs or string|"d"}'::jsonb -
dements from left]' {a,c}' ::text[]
operand. Keylvalue
pairs are matched based
on their key value.

“"‘SD_ '—'O_'—'

"::jsonb -

Lot T

- i nteger Deletethearray element |
with specified index|"
(Negative integers
count from the end).
Throws an error if top
level container is not an
array.

#- text[] Delete the fidd or|'["a",

dement with specified{{"b":1}]"'::jsonb
path (for JSON arrays, |#- ' {1, b}'

negative integers count
from the end)

o

:ijsonb - 1

Note

The| | operator concatenates the elements at the top level of each of its operands. It
does not operate recursively. For example, if both operands are objects with acommon
key field name, the value of the field in the result will just be the value from the right
hand operand.

Table 9.45 shows the functions that are available for creatingj son andj sonb values. (There are no
equivaent functionsforj sonb, of therow t o_j sonandarray_t o_j son functions. However,
thet o_j sonb function supplies much the same functionality as these functions would.)

270

Functions and Operators

Table 9.45. JSON Creation Functions

Function

Description

Example

Example Result

to_j son(anyel enej

to_j sonb(anyel ent

REturns the value
as json or jsonb.
®Akrhys and composites
are converted
(recursively) to arrays
and objects; otherwise,
if thereisacast fromthe
type to j son, the cast
function will be used to
perform the conversion;
otherwise, ascalar value
is produced. For any
scalar type other than a
number, a Boolean, or
a null value, the text
representation will be
used, in such a fashion
thatitisavaidj son or
j sonb value.

to_json('Fred
sai d
"Hi. "' text)

"Fred said \"Hi .
\IIII

array_to_j son(any
[, pretty_bool])

Retumg the array as
a JSON array. A
PostgreSQL

multidimensional array
becomes a JSON array
of arrays. Line feeds
will be added between
dimension-1 elements if
pretty_bool istrue

array_to_json('{{
{99, 100}}"'::int[]

[l 5}5] . [99, 100]]
)

row to_json(recof
[, pretty bool])

Returns the row as a
JSON object. Linefeeds
will be added between
level-1 elements if
pretty_ bool istrue

row to_json(row]

{"foo))" f2":"foo"

json_build array
“any")

BUIRISADI&C possibly-
heterogeneously-typed
JSON array out of a

json_build array

112,2,3"34,54, 5]

j sonb_bui | d_ar r ay{a/Bic’dpément list.
"any")
j son_buil d_obj ectBMAR ADI&C JSON|j son_bui |l d_obj ect{"foo": 1, bar'12
"any") object out of a "bar": 2}
variadic argument list.
j sonb_bui | d_obj e¢cg(VARIBhon, the
"any") argument list consists
of alternating keys and
values.
j son_obj ect (t ext [[Blilds a JSON object|j son_obj ect('{a, [{"a": "1", "b":
out of atext array. The|l, b, "def", ¢, |"def", "c"
j sonb_obj ect (t ext&rtdy must have either|3. 5} ") "3.5"}

exactly one dimension
with an even number
of members, in which
case they are taken
as alternating key/value

j son_obj ect (' {{a,
1}, {b, "def"},
{c, 3.5}}")

271

Functions and Operators

Function

Description

Example

Example Result

pairs, or two dimensions
such that each inner
array has exactly two
elements, which are
taken as a key/vaue
pair.

j son_obj ect (keys |This form of|j son_object('{a, |{"a 1", b
text[], val ues|j son_obj ect takes|b}', '{1,2}") 2"}
text[]) keys and values

pairwise from two
j sonb_obj ect (keys$separate arrays. In all
text[], values|other respects it is
text[]) identical to the one-

argument form.

Note

array_to_jsonandrow_ to_j son havethesamebehavior ast o_j son except
for offering a pretty-printing option. The behavior described for t o_j son likewise
applies to each individual value converted by the other JSON creation functions.

Note

The hstore extension has a cast from hst or e to j son, so that hst or e values
converted via the JSON creation functions will be represented as JSON objects, not
as primitive string values.

Table 9.46 shows the functions that are available for processingj son andj sonb values.

Table 9.46. JSON Processing Functions

values will be of
typet ext .

Function Return Type Description Example Example Result
json_array_| engtth(j son) Returns the|j son_array_lerigth('[1, 2, 3,
number of {"f1":1,"f2":
jsonb_array_l ength(j sonb) |elements in the|[5,6]},4]")
outermost JSON
array.
j son_each(j sorpet of key | Expands the|sel ect *| key | value
t ext, val ue|outermost JSON|from — |-----
j sonb_each(j sgrion object into a set of |j son_each(' {"@a":-"-f-00™,
keylvaluepairs. |"b":"bar"}') | a | "foo'
set of key b | "bar’
t ext, val ue
j sonb
j son_each_t extqgtsdn) key | Expands the|sel ect *| key | value
t ext, val ue|outermost JSON|from — |-----
j sonb_each_t extdjtsonb) object into a|j son_each_t ext#-'-{-~a":-"f 00",
set of key/value/"b":"bar"}') | a | foo
pairs. The returned b | bar

272

Functions and Operators

Function Return Type Description Example Example Result

j son_extract _padn f rom j sonReturns JSON|j son_extract _datfig":{99,2'f.6" ["f 00" }
j son, value pointed to|{"f3":1},"f4";

VARI ADI C j sonb by path_elenms|{"f5":99,"f6"["fo0"}}", ' f4])
pat h_el ens (equivalent to #>

text[]) operator).

j sonb_extract| path(fromjson

j sonb,

VARI ADI C

pat h_el ens

text[])

j son_extract pabit_t ext (fr onResions JSON|j son_extract patch_text (' {"fi2":
j son, valuepointedtoby |{"f3": 1}, "f4"|

VARI ADI C path_elens as|{"f5":99,"f6"["fo0"}}', ' f4],
pat h_el ens text (equivaent|' f6')

text[]) to #>> operator).

jsonb_extract| path_text(fromjson

j sonb,

VARI ADI C

pat h_el ens

text[])

j son_obj ect _kjset(gfsdrext Returns set of keys|j son_obj ect _keys(dr "dHj"ectalkgy,s' f 2" :
in the outermost{{"“f3":"a", |-------------}F----
j sonb_obj ect _keys(j sonb) |JSON object. "f4":"b"}}') | f1
f2
j son_popul at e|argedradh@dse |Expandsthe object|{sel ect *a | b
anyel enent, in fromjson|from | c
fromjson to a row whose|j son_popul at e|-r-ecord(nul | : ;| nyrow ype,
j son) columns match the|' {" a": 1, [+-----------
recordtypedefined|" b" : ["2", |[4------------ -
j sonb_popul ate_record(base|py base (seenote|"a b"], "c":| 1| {2,"a
anyel ement , below). {"d": 4, "e":| b"} | (4,"a
fromj son "abc"}}") b c")
j sonb)
j son_popul at e|gegadr dset (basExpands the|sel ect *al| b
anyel enent, anyel enent outermost array|f rom R
fromjson of objects in|j son_popul at e| rledordset (nulll : : nyr owm ype
j son) fromjsontoal' [{"a":1,"b":P}3 | 4
set of rows whose|{"a":3,"b":4}[")
j sonb_popul at e_r ecor dset (bag®umns match the
anyel enent record type defined
fromjson by base (see note
j sonb) below).
json_array_el syendfs(jjsson) |Expands a JSON|sel ect * val ue
aray to a set offfrom |-----------
j sonb_ar ray_e|ssteft §(gmunb) JSON values. json_array_el erfents('[1,tr e,
[2,false]]") | true
[2, fal se]
j son_array_el eyetrdfs ttesott (j sBrpands a JSON|sel ect * val ue

jsonb_array_e

enent s_text (j

aray to a set of
seRbaues.

from
json_array_el
"bar"]")

bar

efferdt s text('["

f oo"

273

Functions and Operators

Function

Return Type

Description

Example

Example Result

j son_t ypeof (]

j sonb_t ypeof (

@t

sonb)

Returns the type
of the outermost
JSON value as
a text string.
Possible types
are obj ect,
array, string,
nunber,
bool ean,
nul | .

and

j son_t ypeof ('

remet)

json_to_recor

jsonb_to_reco

(g cxoy)
rd(j sonb)

Builds an arbitrary
record from a
JSON object (see
note below). As
with all functions
returning
record, the
caller must
explicitly define
the structure of the
record with an AS
clause.

*

sel ect
from
json_to_recor
[1,2,3],"c":
[1,2,3],"e":"
{"a": 123,
"b": "a b
c"}}') as x(a
int, b text,
c int[],
d text, r
myr owt ype)

a | b
I c I
dd {"a": 1,"b":

json_to_recor

jsonb_to_reco

asttqfj s@cor d

rdset (j sonb)

Builds an arbitrary
set of records from
a JSON array of
objects (see note
below). Aswith all
functions returning
record, the
caller must
explicitly define
the structure of the
record with an AS
clause.

*

sel ect
from
json_to_recor
{"a":"2","c"
as x(a int,
text);

b

[t}

dslet|(‘fldd' a": 1,

json_strip_nu
j son)

jsonb_strip_n
j sonb)

jlsxrf rom j son

j sonb
ul I s(fromj sor

Returns

fromj son with
all object fields
'that have null
values omitted.
Other null values
are untouched.

json_strip_nu

(S M2,

jsonb_set(tar
j sonb, pat h
text[],

new val ue

j sonb[,
create_mssin
bool ean])

getonb

Returns t ar get
with the section
designated by
pat h replaced by
new val ue, or
with new _val ue
added if
create_mssin
is true (default
is true) and the
item designated by
path does not
exist. As with

the path orientated

jsonb_set (' [{

{0, f1}","[2,
fal se)
jsonb_set('[{
{0,f3}","'[2,
g

THIFAT,:" f 2" n
3.213,.4], "f2"

[{"f1": 1,
"ffr":1, " hat i ny
3.fg8":) [2, 3,
41}, 2]

"b":"fo00"},

uf2"3nul 1}, :

ul '}, 2, null, 2

‘hull}, 2, null

iy, 2],

274

Functions and Operators

Function Return Type

Description

Example

Example Result

operators, negative
integers that
appear in path
count from the end
of JSON arrays.

j sonb_insert (jaayet
j sonb, pat h
text[],

new_val ue

j sonb,
[insert_after

bool ean])

Returns t ar get
with new_val ue

inserted. If
target section
designated by
pat h is in

a JSONB array,
new val ue will
be inserted before
target or after if
insert_after

is true (default
is false). If
target section
designated by
pat h is in
JSONB object,

new val ue will
be inserted only
if target does
not exist. As with
the path orientated
operators, negative

jsonb_insert(
[0,1,2]}",

[{a, 1}- ,
""new_val ue"'

jsonb_insert(
[0,1,2]}",
'{a, 1},
""new_val ue"'
true)

a0,
"new _val ue",
1, 2]}

{"a": [0, 1,
"{Heati :val ue",
2]}

integers that
appear in path
count from the end
of JSON arrays.
j sonb_pretty(ftreorh j son Returns jsonb_pretty(f[[{"f1":1,"f2
j sonb) fromjson as {
indented JSON
text. "far: 1,
"f2": null
H
2,
nul |,
3
]
Note

error, as noted in Section 8.14.

Many of thesefunctionsand operatorswill convert Unicode escapesin JSON stringsto
the appropriate single character. Thisisanon-issueif theinput istypej sonb, because
the conversion was already done; but for j son input, this may result in throwing an

275

:null}, 2, nul

Functions and Operators

Note

In j son_popul ate_record, j son_popul at e_r ecordset,
json_to_recordandjson_to_recordset, type coercion from the JSON is
“best effort” and may not result in desired values for some types. JSON keys are
matched to identical column names in the target row type. JSON fields that do not
appear in the target row type will be omitted from the output, and target columns that
do not match any JSON field will simply be NULL.

Note

All the items of the pat h parameter of] sonb_set aswell asj sonb_i nsert
except the last item must be present inthet ar get . If cr eat e_mi ssi ng isfase,
al items of the pat h parameter of j sonb_set must be present. If these conditions
are not met thet ar get isreturned unchanged.

If the last path item is an object key, it will be created if it is absent and given the new
value. If the last path item is an array index, if it is positive the item to set is found
by counting from the left, and if negative by counting from the right - - 1 designates
the rightmost element, and so on. If the item is out of the range -array_length ..
array_length -1, and create_missing istrue, the new valueis added at the beginning of
the array if the item is negative, and at the end of the array if it is positive.

Note

Thej son_t ypeof function'snul | return value should not be confused with a SQL
NULL. Whilecalingj son_typeof (' nul |l '::json) will returnnul | , caling
j son_typeof (NULL: : j son) will returnaSQL NULL.

Note

If the argument to j son_stri p_nul | s contains duplicate field names in any
object, the result could be semantically somewhat different, depending on the order
in which they occur. Thisis not an issue for j sonb_stri p_nul | s sincej sonb
values never have duplicate object field names.

See also Section 9.20 for the aggregate functionj son_agg which aggregatesrecord values as JSSON,
andtheaggregatefunctionj son_obj ect _agg which aggregates pairs of valuesinto aJSON object,
and their j sonb equivalents, j sonb_agg andj sonb_obj ect _agg.

9.16. Sequence Manipulation Functions

This section describes functions for operating on sequence objects, also called sequence generators or
just sequences. Sequence objects are specia single-row tables created with CREATE SEQUENCE.
Sequence objects are commonly used to generate unique identifiers for rows of atable. The sequence
functions, listed in Table 9.47, provide simple, multiuser-safe methods for obtaining successive
seguence values from sequence objects.

276

Functions and Operators

Table 9.47. Sequence Functions

Function Return Type Description

currval (regcl ass) bi gi nt Return value most recently
obtained with nextval for
specified sequence

I astval () bi gi nt Return value most recently
obtained with next val for any
sequence

next val (regcl ass) bi gi nt Advance sequence and return
new value

setval (regcl ass, bi gi nt Set sequence's current value

bi gi nt)

setval (regcl ass, bi gi nt Set sequence's current value and

bi gi nt, bool ean) i s_calledflag

The sequence to be operated on by a sequence function is specified by ar egcl ass argument, which
is simply the OID of the sequence in the pg_cl ass system catalog. Y ou do not have to look up
the OID by hand, however, since the r egcl ass data type's input converter will do the work for
you. Just write the sequence name enclosed in single quotes so that it looks like aliteral constant. For
compatibility with the handling of ordinary SQL names, the string will be converted to lower case
unlessit contains double quotes around the sequence name. Thus:

nextval (' foo") operates on sequence foo
nextval (' FOO) operates on sequence foo
nextval (' "Foo"") operates on sequence Foo

The sequence name can be schema-qualified if necessary:

next val (' myschena. f 00') operates on nyschema. f oo
nextval (' "nyschema". foo0') sanme as above
nextval (' foo') searches search path for foo

See Section 8.18 for more information about r egcl ass.

Note

Before PostgreSQL 8.1, the arguments of the sequence functions were of typet ext ,
not r egcl ass, and the above-described conversion from a text string to an OID
value would happen at run time during each call. For backward compatibility, this
facility still exists, but internally it is now handled as an implicit coercion fromt ext
tor egcl ass before the function isinvoked.

When you write the argument of a sequence function as an unadorned literal string, it
becomes a constant of typer egcl ass. Since thisisrealy just an OID, it will track
the originally identified sequence despite later renaming, schema reassignment, etc.
This“early binding” behavior is usually desirable for sequence references in column
defaults and views. But sometimes you might want “late binding” where the sequence
referenceisresolved at run time. To get late-binding behavior, force the constant to be
stored asat ext constant instead of r egcl ass:

nextval (' foo' ::text) foo is | ooked up at runtine

Note that late binding was the only behavior supported in PostgreSQL releases before
8.1, so you might need to do this to preserve the semantics of old applications.

277

Functions and Operators

Of course, the argument of a sequence function can be an expression as well as a
constant. If it is a text expression then the implicit coercion will result in arun-time
lookup.

The available sequence functions are:
next val

Advance the sequence object to its next value and return that value. Thisis done atomically: even
if multiple sessions execute next val concurrently, each will safely receive a distinct sequence
value.

If a sequence object has been created with default parameters, successive next val calls will
return successive values beginning with 1. Other behaviors can be obtained by using special
parameters in the CREATE SEQUENCE command; see its command reference page for more
information.

I mportant

To avoid blocking concurrent transactions that obtain numbers from the same
sequence, a next val operation is never rolled back; that is, once a value has
been fetched it is considered used and will not be returned again. This is true
even if the surrounding transaction later aborts, or if the calling query ends up not
using the value. For example an | NSERT with an ON CONFLI CT clause will
compute the to-be-inserted tuple, including doing any required next val cals,
before detecting any conflict that would cause it to follow the ON CONFLI CT
rule instead. Such cases will leave unused “holes’ in the sequence of assigned
values. Thus, PostgreSQL sequence objects cannot be used to obtain “ gapless’
sequences.

This function requires USAGE or UPDATE privilege on the sequence.
currval

Return the value most recently obtained by next val for this sequence in the current session.
(Anerrorisreportedif next val hasnever been called for this sequencein this session.) Because
thisisreturning a session-local value, it gives a predictable answer whether or not other sessions
have executed next val since the current session did.

This function requires USAGE or SELECT privilege on the sequence.
| ast val

Return the value most recently returned by next val in the current session. This function is
identical tocur r val , except that instead of taking the sequence name as an argument it refersto
whichever sequence next val was most recently applied to in the current session. It isan error
tocall | ast val if next val hasnot yet been called in the current session.

This function requires USAGE or SELECT privilege on the last used sequence.
set val

Reset the seguence object's counter value. The two-parameter form sets the sequence's
| ast _val ue field to the specified value and setsitsi s_cal | ed fieldtot r ue, meaning that
the next next val will advance the sequence before returning a value. The value reported by
currval isalso settothe specified value. In the three-parameter form, i s_cal | ed can be set
to either t rue or f al se. t r ue has the same effect as the two-parameter form. If it is set to
f al se, the next next val will return exactly the specified value, and sequence advancement

278

Functions and Operators

commences with the following next val . Furthermore, the value reported by cur r val isnot
changed in this case. For example,

SELECT setval (' foo', 42); Next nextval will return 43
SELECT setval (' foo', 42, true); Sane as above
SELECT setval (' foo', 42, false); Next nextval will return 42

Theresult returned by set val isjust the value of its second argument.

I mportant

Because sequences are non-transactional, changes made by set val are not
undone if the transaction rolls back.

This function requires UPDATE privilege on the sequence.

9.17. Conditional Expressions

This section describes the SQL-compliant conditional expressions available in PostgreSQL.

Tip

If your needs go beyond the capahilities of these conditional expressions, you might
want to consider writing a stored procedure in a more expressive programming
language.

9.17.1. CASE

The SQL CASE expression is a generic conditional expression, similar to if/else statements in other
programming languages:

CASE WHEN condition THEN result
[WHEN . . .]
[ELSE resul t]

END

CASE clauses can be used wherever an expression is valid. Each condi t i on is an expression that
returns a bool ean result. If the condition's result is true, the value of the CASE expression is the
resul t that followsthe condition, and the remainder of the CASE expression isnot processed. If the
condition's result is not true, any subsequent VWHEN clauses are examined in the same manner. If no
VWHENcondi t i on yieldstrue, the value of the CASE expressionisther esul t of the ELSE clause.
If the ELSE clause is omitted and no condition is true, the result is null.

An example:

SELECT * FROM test;

WNEF ' Q@

SELECT a,

279

Functions and Operators

CASE WHEN a=1 THEN ' one’
WHEN a=2 THEN ' two'

ELSE ' ot her'
END
FROM t est ;

a | case

T
1| one
2] two

3 | other

The data types of al the resul t expressions must be convertible to a single output type. See
Section 10.5 for more details.

Thereisa“simple’ form of CASE expression that is a variant of the general form above:

CASE expression
VWHEN val ue THEN result
[WHEN . . .]
[ELSE result]

END

Thefirst expr essi on is computed, then compared to each of the val ue expressions in the WHEN
clauses until oneisfound that is equal to it. If no match isfound, ther esul t of the ELSE clause (or
anull value) isreturned. Thisissimilar to theswi t ch statement in C.

The example above can be written using the simple CASE syntax:

SELECT a,
CASE a WHEN 1 THEN ' one'
VWHEN 2 THEN 't wo'
ELSE ' ot her'
END
FROM t est;

A CASE expression does not evaluate any subexpressions that are not needed to determine the result.
For example, thisis a possible way of avoiding a division-by-zero failure:

SELECT ... WHERE CASE WHEN x <> 0 THEN y/x > 1.5 ELSE fal se END

Note

As described in Section 4.2.14, there are various situations in which subexpressions
of an expression are evaluated at different times, so that the principle that “CASE
evaluates only necessary subexpressions’ is not ironclad. For exampleaconstant 1/ 0
subexpression will usually result in a division-by-zero failure at planning time, even
if it'swithin a CASE arm that would never be entered at run time.

9.17.2. COALESCE

COALESCE(value [, ...])

280

Functions and Operators

The COALESCE function returns the first of its arguments that is not null. Null is returned only if all
arguments are null. It is often used to substitute a default value for null values when data is retrieved
for display, for example:

SELECT CQOALESCE(description, short_description, '(none)')

This returns descri pti on if it is not null, otherwise short _descri pti on if it is not null,
otherwise (none) .

Like a CASE expression, COALESCE only evaluates the arguments that are needed to determine the
result; that is, arguments to the right of the first non-null argument are not evaluated. This SQL-
standard function provides capabilities similar to NVL and | FNULL, which are used in some other
database systems.

9.17.3. NULLI F

NULLI F(val uel, val ue2)

TheNULLI F function returnsanull valueif val uel equalsval ue2; otherwiseit returnsval uel.
This can be used to perform the inverse operation of the COAL ESCE example given above:

SELECT NULLI F(val ue, '(none)')

Inthisexample, if val ue is(none), null isreturned, otherwise the value of val ue isreturned.

9.17.4. GREATEST and LEAST

GREATEST(value [, ...1])
LEAST(value [, ...])

The GREATEST and LEAST functions select the largest or smallest value from alist of any number of
expressions. The expressions must all be convertible to acommon datatype, which will be the type of
the result (see Section 10.5 for details). NULL valuesin thelist areignored. The result will be NULL
only if al the expressions evaluate to NULL.

Note that GREATEST and LEAST are not in the SQL standard, but are a common extension. Some
other databases make them return NULL if any argument is NULL, rather than only when al are
NULL.

9.18. Array Functions and Operators

Table 9.48 shows the operators available for array types.

Table 9.48. Array Operators

Operator Description Example Result

= equal ARRAY[1.1,2.1,3. 1 ::int[]
= ARRAY[1, 2, 3]

<> not equal ARRAY[1, 2,3] <>t
ARRAY[1, 2, 4]

< less than ARRAY[1, 2, 3] <|t
ARRAY[1, 2, 4]

> greater than ARRAY[1, 4, 3] >\t
ARRAY[1, 2, 4]

<= less than or equal ARRAY[1, 2,3] <=|t
ARRAY[1, 2, 3]

281

Functions and Operators

Operator Description Example Result
>= greater than or equal ARRAY[1, 4, 3] >=|t
ARRAY[1, 4, 3]
@ contains ARRAY[1, 4,3] @|t
ARRAY] 3, 1]
<@ is contained by ARRAY] 2, 7] <@t
ARRAY[1, 7, 4, 2, 6]
&& overlap (have elements| ARRAY[1, 4, 3] &&|t
in common) ARRAY[2, 1]
[array-to-array ARRAY[1,2,3] || |{1,2,3,4,5,6}
concatenation ARRAY] 4, 5, 6]
| array-to-array ARRAY[1, 2,3] |||{{1,2, 3},
concatenation ARRAY[[4, 5, 6], {4,5,6},{7,8,9}}
[7,8,9]]
[element-to-array 3] {3, 4,5, 6}
concatenation ARRAY][4, 5, 6]
[array-to-element ARRAY[4,5,6] || |{4,5,6,7}
concatenation 7

Array comparisons compare the array contents element-by-element, using the default B-tree
comparison function for the element data type. In multidimensional arraysthe elements are visited in
row-major order (last subscript varies most rapidly). If the contents of two arrays are equal but the
dimensionality is different, the first difference in the dimensionality information determines the sort
order. (This is a change from versions of PostgreSQL prior to 8.2: older versions would claim that
two arrays with the same contents were equal, even if the number of dimensions or subscript ranges

were different.)

See Section 8.15 for more details about array operator behavior. See Section 11.2 for more details
about which operators support indexed operations.

Table 9.49 shows the functions available for use with array types. See Section 8.15 for more
information and examples of the use of these functions.

Table 9.49. Array Functions

int[],
int[]])

[,

initialized with
supplied value
and dimensions,
optionally with

ARRAY[3],
ARRAY 2])

Function Return Type Description Example Result
array_append(g@nyariray, append an element|arr ay_append(ARRAY[3L, 2],
anyel enent) to the end of an|3)
array
array_cat (anygmyar,ray concatenate two|array_cat (ARRAY],2,3,3],,5}
anyarray) arrays ARRAY[4, 5])
array_ndi ns(anydrray) returns the number|ar ray_ndi ms(ARRAY[[1, 2, 3],
of dimensions of |[4,5, 6]])
the array
array_di nms(anjtaxtay) returns a text|array_di ns(ARRRAY[]]1,12,3],
representation of [4, 5, 6]])
array's dimensions
array_fill (anyelyararsy, returns an array|array fill(7,([2:4]={7,7,7}

282

Functions and Operators

Function

Return Type

Description

Example

Result

lower bounds other
than 1

array_| engt h(
int)

amtarray,

returns the length
of the requested
array dimension

array_| engt h(
1)

@&ray[1, 2, 3],

array_| ower(a
i nt)

Nydr r ay,

lower
the

array

returns
bound
reguested
dimension

of

array_| ower ('
1)

[0: 2] ={1, 2, 3}

array_positio
anyel enent [,
int])

n(renyarr ay,

returns the

subscript of the|'

first occurrence
of the second
argument in the
array, starting
a the eement
indicated by the
third argument or
at the first element
(array must be one-
dimensional)

array_positio
nmon')

array_positio
anyel enent)

ns(tdrjyarray,

returns an array of
subscripts of all
occurrences of the
second argument
in the array given
as first argument
(array must be one-
dimensional)

array_positio
IAI)

Hsl(ARFAY[" A,

array_prepend
anyarray)

aam\eglrenent ,

append an element
to the beginning of
an array

array_prepend
ARRAY[2, 3])

{1, 2, 3}

array_renove(
anyel enment)

FRTYYGET ITaR,

remove all
elements equa to
the given vaue
from the array
(array must be one-
dimensional)

array_renove(
2)

ARRAY 1, 2, 3, 2]

% ARRAY[' sun' |

rint[],

array_repl ace
anyel enent
anyel enent)

aayeIraa)y

replace each array
dement equal to
the given vaue
with anew value

array_repl ace
5, 3)

{ARRAH,]4}21 51 1

H

array_to_stri
t ext [,
text])

ngpdanyarr ay,

concatenates array
dements using
supplied delimiter
and optional null
string

array _to_stri
2, 3, NULL,
5] il ' 7 ' 7 b)

g (ARRAY[SL,

array_upper (anydrray, returns upper|array_upper (ARRAY[1, 8, 3, 7],
int) bound of thell)

requested array

dimension
cardinal i t y(anysrray) returns the total|cardi nality(ARRAY[[1, 2],

number of

[3.4]1)

283

"tue',

Functions and Operators

Function Return Type Description Example Result

dements in the
array, or O if the

array is empty
string_to_arrgyXtdXt, splits string into|string_to_arr gyX, Mt~y +
t ext [, array dements|' ~"~', 'yy')
text]) using supplied
delimiter and
optional null string
unnest (anyar r ggt of expand an array tojunnest (ARRAY[(1, 2])
anyel enent aset of rows 2
(2 rows)
unnest (anyar r ggt of expand multiplelunnest (ARRAY[[11, 2] , ARRAY[' f ¢
anyarray anyel enent, arrays (possibly of 2 bar
[, ...1) anyel enent different types) toa NULL baz
[, ...] set of rows. Thisis
only allowed inthe (3rows)
FROM clause; see
Section 7.2.1.4

Inarray_positionandarray_positions, each array element is compared to the searched
valueusingl S NOT DI STI NCT FROMsemantics.

Inarray_position, NULL isreturned if the value is not found.

Inarray_positions, NULL isreturned only if thearray is NULL; if the valueis not found in the
array, an empty array is returned instead.

Instring_to_array, if thedelimiter parameter is NULL, each character in the input string will
become a separate element in the resulting array. If the delimiter is an empty string, then the entire
input string is returned as a one-element array. Otherwise the input string is split at each occurrence
of the delimiter string.

Instring_to_array, if the null-string parameter is omitted or NULL, none of the substrings of
theinput will bereplaced by NULL. Inarray_t o_st ri ng, if the null-string parameter is omitted
or NULL, any null elementsin the array are simply skipped and not represented in the output string.

Note

There are two differences in the behavior of string_to_array from pre-9.1
versions of PostgreSQL . First, it will return an empty (zero-element) array rather than
NULL when theinput string is of zero length. Second, if the delimiter stringisNULL,
the function splits the input into individual characters, rather than returning NULL as
before.

See also Section 9.20 about the aggregate function ar r ay _agg for use with arrays.

9.19. Range Functions and Operators

See Section 8.17 for an overview of range types.

Table 9.50 shows the operators available for range types.

284

Functions and Operators

Table 9.50. Range Operators

11

Operator Description Example Result
= equal i nt4range(1,5) =|t
"[1,4] ::int4range
<> not equal nunt ange(1.1, 2. 2)t
<>
nunrange(1.1, 2.3
< less than i nt4range(1, 10) |t
< intd4range(2, 3)
> greater than i nt4range(1, 10) |t
> int4range(1,5)
<= less than or equal nunr ange(1.1, 2. 2)t
<=
nunr ange(1.1, 2.2
>= greater than or equal nunt ange(1.1, 2. 2)t
>=
nunrange(1.1,2.0
@ contains range i nt 4range(2, 4) t
@
i nt4range(2, 3)
@ contains element '[2011-01-01, 2011+ 03-01)"': :tsrang
@
'2011-01-10'::timestanp
<@ rangeiscontained by |i nt 4r ange(2, 4) t
<@
i nt4range(1,7)
<@ element is contained by |42 <@f
i nt4range(1,7)
&& overlap (have points in|i nt 8range(3, 7) t
common) &&
i nt 8range(4, 12)
<< strictly left of i nt 8range(1, 10) |t
<<
i nt 8range(100, 110)
>> strictly right of i nt 8range(50, 60) |t
>>
i nt 8range(20, 30)
&< does not extend to the|i nt 8r ange(1, 20) |t
right of &<
i nt 8range(18, 20)
&> does not extend to the|i nt 8r ange(7, 20) |t
left of &>
i nt 8range(5, 10)
-] - is adjacent to nunr ange(1. 1, 2. 2)t
- | -
nunr ange(2. 2, 3.3
+ union nunr ange(5, 15) +|[5, 20)

nunr ange(10, 20)

285

Functions and Operators

9.20.

Operator Description Example Result

* intersection i nt 8range(5, 15) |[10, 15)
*
i nt 8range(10, 20)

- difference i nt 8range(5, 15) |[5, 10)
i nt 8range(10, 20)

The simple comparison operators <, >, <=, and >= compare the lower bounds first, and only if those
are equal, compare the upper bounds. These comparisons are not usually very useful for ranges, but
are provided to allow B-tree indexes to be constructed on ranges.

The left-of/right-of /adjacent operators always return false when an empty range is involved; that is,
an empty range is not considered to be either before or after any other range.

The union and difference operators will fail if the resulting range would need to contain two disjoint
sub-ranges, as such arange cannot be represented.

Table 9.51 shows the functions available for use with range types.

Table 9.51. Range Functions

Thel ower and upper functionsreturn null if the range is empty or the requested bound isinfinite.
The | ower _i nc, upper _i nc, | ower _i nf, and upper _i nf functions al return false for an
empty range.

Aggregate Functions

Aggregate functions compute a single result from a set of input values. The built-in general-purpose
aggregate functions are listed in Table 9.52 and statistical aggregates in Table 9.53. The built-in
within-group ordered-set aggregate functions are listed in Table 9.54 while the built-in within-group
hypothetical-set ones are in Table 9.55. Grouping operations, which are closely related to aggregate
functions, are listed in Table 9.56. The special syntax considerations for aggregate functions are
explained in Section 4.2.7. Consult Section 2.7 for additional introductory information.

286

Function Return Type Description Example Result
| ower (anyranggange's eement|lower bound of |l ower (nunrangd(1l 1, 2. 2))
type range
upper (anyranggange's eement|/upper bound of lupper (nunrangg.R 1, 2. 2))
type range
i senpty(anyr arige)l ean istherangeempty?|i senpt y(nunr arige(sk 1, 2. 2))
| ower _i nc(anyraraedan is the lower bound|l ower _i nc(numtange(1. 1, 2. 2))
inclusive?
upper _i nc(anyraaean is the upper bound|upper _i nc(numfaigs 1. 1, 2. 2))
inclusive?
| ower i nf (anyraraean is the lower bound|l ower _i nf (' (,)t'r:uedat er ange
infinite?
upper _i nf (anyraraedan is the upper bound|upper _i nf (' (,)t'r:uedat er ange
infinite?
range_ner ge(afaymarsgge the smallest range(r ange_ner ge(' [[1,,2)' : : i nt 4r ange,
anyr ange) which includes|' [3, 4) ' : ;i nt 4r ange)
both of the given
ranges

Functions and Operators

Table 9.52. General-Purpose Aggregate Functions

Function Argument Return Type Partial Mode Description
Type(s)
any non-array type|array ~ of the|No input values,
array_agg(expression) argument type including nulls,
concatenated into
an array
array_agg(exprapg siranjype same as argument|No input arrays
datatype concatenated into
aray of one
higher dimension
(inputs must all
have same
dimensionality,
and cannot be
empty or NULL)
smal lint, int, nuneric for|Yes the average
avg(expressi o gi nt, real,lany integer-type (arithmetic mean)
doubl e argument, of al input values
preci si on, doubl e
numeri c, or|preci sion for
i nterval a floating-point
argument,
otherwise the same
as the argument
datatype
smal | i nt, i nt,|same as argument|Yes thebitwise AND of
bit _and(expredsigimt,orbit |datatype al non-null input
values, or null if
none
smal | i nt, i nt, same as argument|Yes the bitwise OR of
bit_or(expresdiigi)nt,orbit |datatype al non-null input
values, or null if
none
bool bool Yes true if al input
bool _and(expressi on) values are true,
otherwise false
bool bool Yes true if at least one
bool _or (expression) input value is true,
otherwisefalse
count (*) bi gi nt Yes number of input
rows
count (expressjaog) bi gi nt Yes number of input
rows for which
the value of
expression is
not null
bool bool Yes equivalent to
every(expressjon) bool _and
any j son No aggregates values
j son_agg(expressi on) asaJSON array

287

Functions and Operators

xm agg(expres

Si on)

Function Argument Return Type Partial Mode Description

Type(s)

any j sonb No aggregates values
j sonb_agg(expr essi on) asaJSON array

(any, any) j son No aggregates name/
j son_obj ect _agg(nane, value pairs as a
val ue) JSON object

(any, any) j sonb No aggregates name/
j sonb_obj ect _agg(nane, value pairs as a
val ue) JSON object

any numeric, |same as argument|Yes maximum value
max(expressi opgring, date/time,|type of expression

network, or enum across al input

type, or arrays of values

these types

any numeric, |same as argument|Yes minimum value
m n(expressi opgring, date/time,|type of expression

network, or enum across al input

type, or arrays of values

these types

(text, text) or{same as argument|No input values
string_agg(expgbgssaphbyt ea) |types concatenated into
delinmter) a string, separated

by delimiter

smal lint, int,|bigint for|Yes sum of
sum expressi o) gint, real,|smallint or expr essi on

doubl e int arguments, across al input

preci si on, numeri c for values

nuneri c, bi gi nt

i nterval, or | arguments,

noney otherwise the same

as the argument
datatype
xm xm No concatenation of

XML vaues (see
aso
Section 9.14.1.7)

It should be noted that except for count , these functionsreturn anull valuewhen no rowsare sel ected.
In particular, sumof no rows returns null, not zero as one might expect, and ar r ay_agg returns
null rather than an empty array when there are no input rows. The coal esce function can be used

to substitute zero or an empty array for null when necessary.

Aggregate functions which support Partial Mode are eligible to participate in various optimizations,
such as paralléel aggregation.

Note

Boolean aggregates bool _and and bool or
aggregatesever y and any or sone. Asfor any and sone, it seemsthat thereisan
ambiguity built into the standard syntax:

SELECT bl = ANY((SELECT b2 FROMt2

correspond to standard SQL

...)) FROMt1 ...

288

Functions and Operators

Here ANY can be considered either asintroducing a subquery, or asbeing an aggregate
function, if the subquery returns onerow with aBoolean value. Thusthe standard name
cannot be given to these aggregates.

Note

Users accustomed to working with other SQL database management systems might
be disappointed by the performance of the count aggregate when it is applied to the
entiretable. A query like:

SELECT count (*) FROM sonet abl e;

will require effort proportional to the size of the table: PostgreSQL will need to scan
either the entire table or the entirety of an index which includes all rows in the table.

The aggregate functions array_agg, j son_agg, jsonb_agg, json_object_agg,
j sonb_obj ect _agg, string_agg, and xm agg, as well as similar user-defined aggregate
functions, produce meaningfully different result values depending on the order of the input values.
Thisordering is unspecified by default, but can be controlled by writing an ORDER BY clause within
the aggregate call, as shown in Section 4.2.7. Alternatively, supplying the input values from a sorted
subquery will usually work. For example:

SELECT xm agg(x) FROM (SELECT x FROM test ORDER BY y DESC) AS tab;

Beware that this approach can fail if the outer query level contains additional processing, such as a
join, because that might cause the subquery's output to be reordered before the aggregate is computed.

Table 9.53 shows aggregate functions typically used in statistical analysis. (These are separated out
merely to avoid cluttering the listing of more-commonly-used aggregates.) Where the description
mentions N, it means the number of input rows for which al theinput expressions are non-null. In all
cases, null isreturned if the computation is meaningless, for example when Nis zero.

Table 9.53. Aggregate Functionsfor Statistics

Function Argument Type |Return Type Partial Mode Description
corr(Y, X doubl e doubl e Yes correlation
preci sion preci sion coefficient
covar _pop(Y, |doubl e doubl e Yes population
preci sion preci sion covariance
doubl e doubl e Yes sample covariance
covar _sanp(Y, |precision preci sion
X)
regr_avgx(y, |doubl e doubl e Yes average of the
X) preci si on preci si on independent
variable
(sun(X)/'N)
regr_avgy(Y, |doubl e doubl e Yes average of the
X) preci sion preci sion dependent variable
(sum(V)/'N)
doubl e bi gi nt Yes number of input
regr_count (Y, |precision rows in which
X) both expressions
are nonnull

289

Functions and Operators

Function Argument Type |Return Type Partial Mode Description
doubl e doubl e Yes y-intercept of
regr_interceptar¥ci si on preci sion the least-squares-
X) fit linear equation
determined by the
(X, Y) pairs
regr_r2(Y, |doubl e doubl e Yes square of the
X) preci sion preci sion correlation
coefficient
doubl e doubl e Yes slope of the least-
regr_sl ope(Y, |precision preci sion squares-fit linear
X) equation
determined by the
(X, Y) pairs
regr_sxx(Y, |doubl e doubl e Yes sum(X*2) -
X) preci sion preci sion sum(X) *2/ N
(“sum of squares’
of the independent
variable)
regr_sxy(Y, |doubl e doubl e Yes sum X*Y) -
X) preci sion preci sion sum(X) *
sum(Y)/ N (“sum
of products’ of
independent times
dependent
variable)
regr_syy(Y, |doubl e doubl e Yes sum(YA2) -
X) preci sion preci sion sum Y) "2/ N
(“sum of squares’
of the dependent
variable)
smal lint, int,|double Yes historical alias for
st ddev(expresdiigi)nt, real,|precision for st ddev_sanp
doubl e floating-point
pr eci si on, or|larguments,
numeri c otherwise
numeri c
smal lint, int,|double Yes population
st ddev_pop(exprigggitgn)r eal ,|preci si on for standard deviation
doubl e floating-point of the input values
preci si on, or|larguments,
nuneric otherwise
numeric
smal lint, int, double Yes sample standard
st ddev_sanp(epprgsgi,on)eal ,|preci si on for deviation of the
doubl e fl oating-point input values
preci sion, or|arguments,
nuneric otherwise
nuneric
smal lint, int,|double Yes historical aias for
vari ance(expr ebsgon), real, | precision for var _sanp
doubl e floating-point
preci si on, or|arguments,
numeri c

290

Functions and Operators

Function Argument Type |Return Type Partial Mode Description
otherwise
numeri c
smal lint, int,|double Yes population
var _pop(expr esbi ohijt, real ,|precision for variance of the
doubl e floating-point input values
preci si on, or|larguments, (square of the
numeri c otherwise population
numeri c standard deviation)
smal lint, int, double Yes sample variance of
var _sanp(expr essgon), real ,|precision for the input values
doubl e floating-point (square of the
preci si on, or|arguments, sample standard
nuneric otherwise deviation)
numeri c

Table 9.54 shows some aggregate functionsthat use the or der ed-set aggregate syntax. These functions
are sometimes referred to as “inverse distribution” functions.

Table 9.54. Ordered-Set Aggregate Functions

Function Direct Aggregated |Return Type |Partial Mode |Description
Argument Argument
Type(s) Type(s)
nmode() any sortable{same as sort|No returns the
W TH N type expression most frequent
GROUP input value
(ORDER BY (arbitrarily
sort _expressi on) choosing the
first oneif there
are multiple
equally-
frequent
results)
doubl e doubl e same as sort|No continuous
percentil e_|poec(ki aot i gr)eci si on |expression percentile:
W THI N orinterval returns a value
GROUP corresponding
(ORDER BY to the specified
sort _expression) fraction in
the ordering,
interpolating
between
adjacent input
itemsif needed
percenti |l e_|cont(fer act i @wmibl e array of sort|No multiple
W THI N preci sion[]|precision |expression's continuous
GROUP orinterval |type percentile:
(ORDER BY returns an
sort _expression) array of results
matching the
shape of the
fractions
parameter, with
each non-

291

Functions and Operators

Function

Direct
Argument
Type(s)

Aggregated
Argument
Type(s)

Return Type

Partial Mode

Description

null element
replaced by the
value
corresponding
to that
percentile

percentil e |
W THI N
GROUP
(ORDER BY
sort_expres

doubl e
¢ir ec{ i act i

si on)

any sortable

daype

same as sort
expression

No

discrete
percentile:
returns
first input
vaue whose
position in the
ordering equals
or exceeds
the specified
fraction

the

percentil e_|
W THI N
GROUP
(ORDER BY
sort_expres

diositb(fer act i
precision[]

si on)

@ng) sortable

type

array of sort
expression's
type

No

multiple
discrete
percentile:
returns an
array of results
matching the
shape of the
fractions
parameter, with

each non-
null element
replaced by

the input value
corresponding
to that
percentile

All the aggregates listed in Table 9.54 ignore null values in their sorted input. For those that take a
f racti on parameter, the fraction value must be between 0 and 1; an error isthrown if not. However,

anull fraction value simply produces anull result.

Each of the aggregates listed in Table 9.55 is associated with a window function of the same name
defined in Section 9.21. In each casg, the aggregate result is the value that the associated window
function would have returned for the “hypothetical” row constructed from ar gs, if such a row had
been added to the sorted group of rows computed fromthesort ed_ar gs.

Table 9.55. Hypothetical-Set Aggregate Functions

Function Direct Aggregated Return Type |Partial Mode |Description
Argument Argument
Type(s) Type(s)
rank(args) [VARIADIC |VARI ADI C bi gi nt No rank of the
W TH N "any" "any" hypothetical
GROUP row, with gaps
(ORDER BY for duplicate
sorted_args) rows

292

Functions and Operators

Function Direct Aggregated |Return Type |Partial Mode |Description

Argument Argument

Type(s) Type(s)

VARI ADI C |VARI ADI C bi gi nt No rank of the
dense_r ank(|dagy) "any" hypothetical
W THI N row, without
CGROUP gaps
(ORDER BY
sorted_args)

VARI ADI C |VARI ADI C |doubl e No relative rank of
per cent _rankK@aygs) "any" preci sion the
W THI N hypothetical
GROUP row, ranging
(ORDER BY fromOto 1
sorted_args)

VARI ADIC |VARI ADIC |doubl e No relative rank of
cume_di st (atr'gsy" "any" preci sion the
W TH N hypothetical
GROUP row, ranging
(ORDER BY from 1/Nto 1
sorted_args)

For each of these hypothetical-set aggregates, the list of direct arguments given in ar gs must match
the number and types of the aggregated arguments given in sort ed_ar gs. Unlike most built-in
aggregates, these aggregates are not strict, that is they do not drop input rows containing nulls. Null
values sort according to the rule specified in the ORDER BY clause.

Table 9.56. Grouping Operations

Function Description

GROUPI NG args. . .)

Return Type

Integer bit mask indicating
which arguments are not being
included in the current grouping
Set

i nteger

Grouping operations are used in conjunction with grouping sets (see Section 7.2.4) to distinguish result
rows. The arguments to the GROUPI NG operation are not actually evaluated, but they must match
exactly expressionsgiveninthe GROUP BY clause of the associated query level. Bitsare assigned with
the rightmost argument being the least-significant bit; each bit is O if the corresponding expression
isincluded in the grouping criteria of the grouping set generating the result row, and 1 if it is not.
For example:

=> SELECT * FROM itens_sol d;

make | nodel | sales
_______ .
Foo | GT | 10
Foo | Tour | 20
Bar | Gty | 15
Bar | Sport | 5
(4 rows)
=> SELECT make, nodel, GROUPI NG rmake, nodel), sun(sal es) FROM

itens_sold GROUP BY ROLLUP(make, nodel);
make | nodel | grouping | sum

Functions and Operators

Foo | Tour | 0] 20
Bar | Gty | 0| 15
Bar | Sport | 0] 5
Foo | | 1| 30
Bar | | 1| 20

| | 3] 50
(7 rows)

9.21. Window Functions

Window functions provide the ability to perform calculations across sets of rows that are related to
the current query row. See Section 3.5 for an introduction to this feature, and Section 4.2.8 for syntax
details.

The built-in window functions are listed in Table 9.57. Note that these functions must be invoked
using window function syntax, i.e., an OVER clause is required.

In addition to these functions, any built-in or user-defined general-purpose or statistical aggregate (i.e.,
not ordered-set or hypothetical-set aggregates) can be used as a window function; see Section 9.20
for alist of the built-in aggregates. Aggregate functions act as window functions only when an OVER
clause follows the call; otherwise they act as non-window aggregates and return a single row for the
entire set.

Table 9.57. General-Purpose Window Functions

Function Return Type Description

row_nunber () bi gi nt number of the current row within
its partition, counting from 1

rank() bi gi nt rank of the current row with
gaps, same asr ow_nunber of
itsfirst peer

dense_rank() bi gi nt rank of the current row without
gaps, this function counts peer
groups

percent _rank() doubl e precision relative rank of the current row:
(rank - 1)/ (total partition rows
-1)

cune_di st () doubl e precision cumulative distribution:

(number of partition rows
preceding or peer with current
row) / total partition rows

ntil e(num bucket s|i nt eger integer ranging from 1 to the

i nt eger) argument value, dividing the
partition as equally as possible

| ag(val ue anyel enent |sane type as val ue returns val ue evauated at

[, offset integer [, the row that is of f set rows

default anyel ement]]) before the current row within

the partition; if there is no such
row, instead return def aul t
(which must be of the same type
as val ue). Both of f set and
default are evaluated with
respect to the current row. If
omitted, of f set defaults to 1
and def aul t tonull

294

Functions and Operators

Function Return Type Description

| ead(val ue anyel enent |sane type as val ue returns val ue evaluated at
[, offset integer [, the row that is of f set rows
default anyel enment]]) after the current row within the

partition; if there is no such
row, instead return def aul t
(which must be of the same type
as val ue). Both of f set and
default are evaluated with
respect to the current row. If
omitted, of f set defaults to 1
and def aul t tonull

first_val ue(val ue|sane type as val ue returns val ue evaluated at the
any) row that is the first row of the
window frame

| ast _val ue(val ue any) [sane type as val ue returns val ue evaluated at the
row that is the last row of the
window frame

nt h_val ue(val ue any, |[sane type as val ue returns val ue evaluated at the
nth integer) row that is the nt h row of the
window frame (counting from
1); null if no such row

All of thefunctionslisted in Table 9.57 depend on the sort ordering specified by the ORDER BY clause
of the associated window definition. Rows that are not distinct when considering only the ORDER BY
columns are said to be peers. The four ranking functions (including curre_di st) are defined so that
they give the same answer for al peer rows.

Note that first_val ue, | ast _val ue, and nt h_val ue consider only the rows within the
“window frame”, which by default contains the rows from the start of the partition through the last
peer of the current row. Thisislikely to give unhelpful resultsfor | ast _val ue and sometimes also
nt h_val ue. You can redefine the frame by adding a suitable frame specification (RANGE or ROAS)
to the OVER clause. See Section 4.2.8 for more information about frame specifications.

When an aggregate function is used as a window function, it aggregates over the rows within the
current row's window frame. An aggregate used with ORDER BY and the default window frame
definition produces a “running sum” type of behavior, which may or may not be what's wanted. To
obtain aggregation over the whole partition, omit ORDER BY or use RONS BETWEEN UNBOUNDED
PRECEDI NG AND UNBOUNDED FOLLOW NG. Other frame specifications can be used to obtain
other effects.

Note

The SQL standard definesa RESPECT NULLSor | GNORE NULLS optionfor | ead,
| ag, first_val ue, | ast_val ue, and nt h_val ue. This is not implemented
in PostgreSQL.: the behavior is always the same as the standard's default, namely
RESPECT NULLS. Likewise, the standard's FROM FI RST or FROM LAST option
for nt h_val ue is not implemented: only the default FROM FI RST behavior is
supported. (You can achieve the result of FROM LAST by reversing the ORDER BY
ordering.)

cune_di st computesthefraction of partition rowsthat arelessthan or equal to the current row and
its peers, whileper cent _r ank computesthe fraction of partition rows that are less than the current
row, assuming the current row does not exist in the partition.

295

Functions and Operators

9.22. Subquery Expressions

This section describes the SQL-compliant subquery expressions available in PostgreSQL. All of the
expression forms documented in this section return Boolean (true/fal se) results.

9.22.1. EXI STS

EXI STS (subquery)

The argument of EXI STS isan arbitrary SELECT statement, or subquery. The subquery is evaluated
to determine whether it returns any rows. If it returns at least one row, the result of EXI STSis“true’;
if the subquery returns no rows, the result of EXI STSis“false”.

The subquery can refer to variables from the surrounding query, which will act as constants during
any one evaluation of the subquery.

The subquery will generally only be executed long enough to determine whether at least one row is
returned, not all the way to completion. It is unwise to write a subquery that has side effects (such as
calling sequence functions); whether the side effects occur might be unpredictable.

Since the result depends only on whether any rows are returned, and not on the contents of those rows,
the output list of the subquery is normally unimportant. A common coding convention isto write all
EXI STS testsin the form EXI STS(SELECT 1 WHERE ...). There are exceptions to this rule
however, such as subqueries that use | NTERSECT.

This simple example is like an inner join on col 2, but it produces at most one output row for each
t abl row, even if there are several matching t ab2 rows:

SELECT col 1
FROM t abl
VWHERE EXI STS (SELECT 1 FROM tab2 WHERE col 2 = tabl. col 2);

9.22.2. I N

expression | N (subquery)

Theright-hand side is a parenthesized subquery, which must return exactly one column. The left-hand
expression is evaluated and compared to each row of the subquery result. The result of | Nis “true’
if any equal subquery row isfound. The result is“false” if no equal row isfound (including the case
where the subquery returns no rows).

Note that if the left-hand expression yields null, or if there are no equal right-hand values and at
least one right-hand row yields null, the result of the | N construct will be null, not false. Thisisin
accordance with SQL's normal rules for Boolean combinations of null values.

Aswith EXI STS, it's unwise to assume that the subquery will be evaluated compl etely.
row constructor I N (subquery)

The left-hand side of this form of | Nis arow constructor, as described in Section 4.2.13. The right-
hand side is a parenthesized subquery, which must return exactly as many columns as there are
expressions in the left-hand row. The left-hand expressions are evaluated and compared row-wise to
each row of the subquery result. The result of | Nis “true” if any equal subquery row isfound. The
result is“false” if no equal row isfound (including the case where the subquery returns no rows).

As usual, null values in the rows are combined per the normal rules of SQL Boolean expressions.
Two rows are considered equal if all their corresponding members are non-null and equal; the rows
are unegual if any corresponding members are non-null and unegual; otherwise the result of that row

296

Functions and Operators

comparison is unknown (null). If al the per-row results are either unequal or null, with at least one
null, then the result of | Nisnull.

9.22.3. NOT I N

expression NOT I N (subquery)

Theright-hand side is a parenthesi zed subquery, which must return exactly one column. The left-hand
expression is evaluated and compared to each row of the subquery result. The result of NOT | Nis
“true” if only unequal subquery rows are found (including the case where the subquery returns no
rows). Theresult is“false” if any equal row isfound.

Note that if the left-hand expression yields null, or if there are no equal right-hand values and at | east
one right-hand row yields null, the result of the NOT | N construct will be null, not true. Thisisin
accordance with SQL's normal rules for Boolean combinations of null values.

Aswith EXI STS, it's unwise to assume that the subquery will be evaluated compl etely.
row_constructor NOT I N (subquery)

The left-hand side of thisform of NOT | Nisarow constructor, as described in Section 4.2.13. The
right-hand side is a parenthesized subquery, which must return exactly as many columns as there are
expressions in the left-hand row. The left-hand expressions are evaluated and compared row-wise to
each row of the subquery result. The result of NOT | Nis“true” if only unequal subquery rows are
found (including the case where the subquery returns no rows). The result is“false” if any equal row
isfound.

As usual, null values in the rows are combined per the normal rules of SQL Boolean expressions.
Two rows are considered equal if all their corresponding members are non-null and equal; the rows
are unequal if any corresponding members are non-null and unegual; otherwise the result of that row
comparison is unknown (null). If al the per-row results are either unequal or null, with at least one
null, then the result of NOT | Nisnull.

9.22.4. ANY/SQVE

expressi on operator ANY (subquery)
expr essi on operator SOVE (subquery)

Theright-hand side is a parenthesi zed subquery, which must return exactly one column. The left-hand
expression is evaluated and compared to each row of the subquery result using the given oper at or ,
which must yield aBoolean result. The result of ANY is“true” if any true result is obtained. The result
is“false” if no trueresult isfound (including the case where the subquery returns no rows).

SOVE isasynonym for ANY. | Nisequivalentto= ANY.

Notethat if there are no successes and at least one right-hand row yields null for the operator's resullt,
the result of the ANY construct will be null, not false. Thisisin accordance with SQL's normal rules
for Boolean combinations of null values.

Aswith EXI STS, it's unwise to assume that the subquery will be evaluated compl etely.

row_constructor operator ANY (subquery)
row_constructor operator SOVE (subquery)

The left-hand side of this form of ANY is a row constructor, as described in Section 4.2.13. The
right-hand side is a parenthesized subquery, which must return exactly as many columns as there are
expressions in the left-hand row. The left-hand expressions are evaluated and compared row-wise
to each row of the subquery result, using the given oper at or . The result of ANY is “true” if the
comparison returnstrue for any subquery row. Theresult is“false” if the comparison returnsfalse for

297

Functions and Operators

every subquery row (including the case where the subquery returns no rows). The result is NULL if
the comparison does not return true for any row, and it returns NULL for at least one row.

See Section 9.23.5 for details about the meaning of arow constructor comparison.

9.22.5. ALL

expression operator ALL (subquery)

Theright-hand side is a parenthesized subquery, which must return exactly one column. The left-hand
expression is evaluated and compared to each row of the subquery result using the given oper at or ,
which must yield aBoolean result. Theresult of ALL is“true” if all rowsyield true (including the case
where the subquery returns no rows). The result is “false” if any false result is found. The result is
NULL if the comparison does not return false for any row, and it returns NULL for at least one row.

NOT | Nisequivalentto<> ALL.
Aswith EXI STS, it's unwise to assume that the subquery will be evaluated compl etely.
row constructor operator ALL (subquery)

The left-hand side of this form of ALL is a row constructor, as described in Section 4.2.13. The
right-hand side is a parenthesized subquery, which must return exactly as many columns asthere are
expressions in the left-hand row. The left-hand expressions are evaluated and compared row-wise
to each row of the subquery result, using the given oper at or . The result of ALL is “true” if the
comparison returnstruefor all subquery rows (including the case where the subquery returnsno rows).
Theresult is“false” if the comparison returns false for any subquery row. The result is NULL if the
comparison does not return false for any subquery row, and it returns NULL for at |east one row.

See Section 9.23.5 for details about the meaning of arow constructor comparison.

9.22.6. Single-row Comparison

9.23.

row_constructor operator (subquery)

The left-hand side is a row constructor, as described in Section 4.2.13. The right-hand side is a
parenthesized subquery, which must return exactly as many columns as there are expressions in the
left-hand row. Furthermore, the subquery cannot return more than one row. (If it returns zero rows,
the result is taken to be null.) The left-hand side is evaluated and compared row-wise to the single
subquery result row.

See Section 9.23.5 for details about the meaning of arow constructor comparison.

Row and Array Comparisons

This section describes several specialized constructsfor making multiple comparisons between groups
of values. These forms are syntactically related to the subquery forms of the previous section, but
do not involve subqueries. The formsinvolving array subexpressions are PostgreSQL extensions; the
rest are SQL-compliant. All of the expression forms documented in this section return Boolean (true/
false) results.

9.23.1. I N

expression IN (value [, ...])

The right-hand side is a parenthesized list of scalar expressions. The result is “true” if the left-hand
expression's result is equal to any of the right-hand expressions. Thisis a shorthand notation for

expression = val uel

298

Functions and Operators

oR
expression = val ue2
oR

Note that if the left-hand expression yields null, or if there are no equal right-hand values and at least
one right-hand expression yields null, the result of the I N construct will be null, not false. Thisisin
accordance with SQL's normal rules for Boolean combinations of null values.

9.23.2.NOT' I N

expression NOT IN (value [, ...])

The right-hand side is a parenthesized list of scalar expressions. The result is “true” if the left-hand
expression's result is unequal to al of the right-hand expressions. Thisis a shorthand notation for

expressi on <> val uel
AND
expressi on <> val ue2
AND

Note that if the left-hand expression yields null, or if there are no equal right-hand values and at | east
one right-hand expression yields null, the result of the NOT | N construct will be null, not true as
one might naively expect. Thisis in accordance with SQL's normal rules for Boolean combinations
of null values.

Tip

X NOT IN yisequivalenttoNOT (x I N y) inall cases. However, null values
are much more likely to trip up the novice when working with NOT | N than when
working with | N. It is best to express your condition positively if possible.

9.23.3. ANY/SQOME (array)

expression operator ANY (array expression)
expression operator SOVE (array expression)

The right-hand side is a parenthesized expression, which must yield an array value. The left-hand
expression is evaluated and compared to each element of the array using the given oper at or , which
must yield a Boolean result. The result of ANY is “true” if any true result is obtained. The result is
“false” if no true result is found (including the case where the array has zero elements).

If the array expression yields a null array, the result of ANY will be null. If the left-hand expression
yieldsnull, theresult of ANY isordinarily null (though anon-strict comparison operator could possibly
yield adifferent result). Also, if theright-hand array contains any null elementsand no true comparison
result is obtained, the result of ANY will be null, not false (again, assuming a strict comparison
operator). Thisisin accordance with SQL's normal rules for Boolean combinations of null values.

SOME isasynonym for ANY.

9.23.4. ALL (array)

expression operator ALL (array expression)

The right-hand side is a parenthesized expression, which must yield an array value. The left-hand
expression is evaluated and compared to each element of the array using the given oper at or , which

299

Functions and Operators

must yield a Boolean result. The result of ALL is“true’ if all comparisons yield true (including the
case where the array has zero elements). Theresult is“false” if any false result isfound.

If the array expression yields a null array, the result of ALL will be null. If the left-hand expression
yields null, the result of ALL is ordinarily null (though a non-strict comparison operator could
possibly yield a different result). Also, if the right-hand array contains any null elements and no
false comparison result is obtained, the result of ALL will be null, not true (again, assuming a strict
comparison operator). This is in accordance with SQL's normal rules for Boolean combinations of
null values.

9.23.5. Row Constructor Comparison

row_constructor operator row_constructor

Each side is a row constructor, as described in Section 4.2.13. The two row values must have the
same number of fields. Each side is evaluated and they are compared row-wise. Row constructor
comparisons are allowed when the oper at or is=, <>, <, <=, > or >=. Every row element must be
of atypewhich hasadefault B-tree operator class or the attempted comparison may generate an error.

Note

Errors related to the number or types of elements might not occur if the comparison
isresolved using earlier columns.

The= and <> caseswork dlightly differently from the others. Two rowsare considered equal if all their
corresponding members are non-null and equal; the rows are unequal if any corresponding members
are non-null and unequal; otherwise the result of the row comparison is unknown (null).

For the <, <=, > and >= cases, the row elements are compared |eft-to-right, stopping as soon as an
unequal or null pair of elementsisfound. If either of this pair of elementsis null, the result of the row
comparison is unknown (null); otherwise comparison of this pair of elements determines the result.
For example, RON(1, 2, NULL) < ROW1, 3, 0) yields true, not null, because the third pair of
elements are not considered.

Note

Prior to PostgreSQL 8.2, the <, <=, > and >= cases were not handled per SQL
specification. A comparison like ROM a, b) < ROWN ¢, d) wasimplemented as a
< ¢ AND b < d whereas the correct behavior is equivalenttoa < ¢ OR (a
=c AND b < d).

row_constructor IS DI STI NCT FROM r ow_construct or

This construct issimilar to a<> row comparison, but it does not yield null for null inputs. Instead, any
null valueis considered unequal to (distinct from) any non-null value, and any two nullsare considered
equal (not distinct). Thusthe result will either be true or false, never null.

row_constructor IS NOT DI STI NCT FROM row_const ruct or

This construct is similar to a= row comparison, but it does not yield null for null inputs. Instead, any
null valueis considered unequal to (distinct from) any non-null value, and any two nullsare considered
equal (not distinct). Thus the result will always be either true or false, never null.

9.23.6. Composite Type Comparison

record operator record

300

Functions and Operators

9.24.

The SQL specification requires row-wise comparison to return NULL if the result depends on
comparing two NULL values or a NULL and a non-NULL. PostgreSQL does this only when
comparing the results of two row constructors (asin Section 9.23.5) or comparing arow constructor to
the output of a subquery (asin Section 9.22). In other contexts where two composite-type values are
compared, two NULL field values are considered equal, and aNULL is considered larger than a non-
NULL. Thisisnecessary inorder to have consi stent sorting and indexing behavior for compositetypes.

Each side is evaluated and they are compared row-wise. Composite type comparisons are allowed
whentheoper at or is=, <>, <, <=,> or >=, or hassemanticssimilar to one of these. (To be specific,
an operator can be arow comparison operator if it is a member of a B-tree operator class, or is the
negator of the = member of a B-tree operator class.) The default behavior of the above operators is
thesameasfor| S [NOT] DI STI NCT FROMfor row constructors (see Section 9.23.5).

To support matching of rows which include elements without a default B-tree operator class, the
following operators are defined for composite type comparison: * =, *<>, *< *<= *> and * >=,
These operators compare the internal binary representation of the two rows. Two rows might have a
different binary representation even though comparisons of the two rows with the equality operator
is true. The ordering of rows under these comparison operators is deterministic but not otherwise
meaningful. These operators are used internally for materialized views and might be useful for other
specialized purposes such asreplication but are not intended to be generally useful for writing queries.

Set Returning Functions

This section describes functions that possibly return more than one row. The most widely used
functionsin this class are series generating functions, as detailed in Table 9.58 and Table 9.59. Other,
more specialized set-returning functions are described elsaewhere in this manual. See Section 7.2.1.4
for ways to combine multiple set-returning functions.

Table 9.58. Series Generating Functions

Function Argument Type Return Type Description
generate_series(sitmart, bigint or|setof int, setof |Generate a series of
st op) nuneric bi gint, or setof |values fromstart to
nuneric (same as|stop withastepsizeof
argument type) one
generate_series(stmart, bigint orjsetof int, setof |Generate a series of
stop, step) numeric bigint or setof |vaues fromstart to
numeric (same as|stop withastepsizeof
argument type) step
gener at e_seri es(stiamest anp or|setof tinestanp|Generate a series of
st op, step|ti mestanp Wit hjor set of |values, from start to
i nterval) tinme zone ti nmestanp wi t h|st op withastep size of
time zone (same as|step
argument type)

When st ep is positive, zero rows are returned if st art is greater than st op. Conversely, when
st ep isnegative, zerorows arereturned if st art islessthan st op. Zero rows are also returned for
NULL inputs. Itisan error for st ep to be zero. Some examples follow:

SELECT * FROM generate_series(2,4);
generate_series

(3 rows)

301

Functions and Operators

SELECT * FROM generate_series(5,1,-2);

generate_series

(3 rows)

SELECT * FROM generate_series(4, 3);

generate_series

SELECT generate_series(1.1, 4, 1.3);

generate_series

(3 rows)

-- this exanmple relies on the date-plus-integer operator
SELECT current_date + s.a AS dates FROM generate_series(0,14,7) AS

s(a);
dat es
2004- 02- 05
2004- 02- 12
2004- 02- 19
(3 rows)

SELECT * FROM generate_series('2008-03-01 00: 00" ::ti mestanp,
' 2008-03-04 12:00', '10 hours');

generate_series

2008- 03-01 00: 00: 00
2008- 03-01 10: 00: 00
2008- 03-01 20: 00: 00
2008- 03-02 06: 00: 00
2008- 03-02 16: 00: 00
2008- 03-03 02: 00: 00
2008- 03-03 12: 00: 00
2008- 03-03 22: 00: 00
2008- 03- 04 08: 00: 00
(9 rows)

Table 9.59. Subscript Generating Functions

Function Return Type Description

gener at e_subscri pt s(arsat of int Generate a series comprising the
anyarray, dimint) given array's subscripts.

gener at e_subscri pts(arfsat of int Generate a series comprising the

anyarray, dim int,
reverse bool ean)

given array's subscripts. When
rever se is true, the series is
returned in reverse order.

302

Functions and Operators

gener at e_subscr i pt s isaconveniencefunction that generatesthe set of valid subscriptsfor the
specified dimension of the given array. Zero rowsare returned for arraysthat do not have the requested
dimension, or for NULL arrays (but valid subscripts are returned for NULL array elements). Some
examples follow:

-- basi c usage
SELECT generate_subscripts('{NULL, 1, NULL,2}"'::int[], 1) AS s;

-- presenting an array, the subscript and the subscripted
-- value requires a subquery
SELECT * FROM arrays;

-3
{100, 200, 300}
(2 rows)

SELECT a AS array, s AS subscript, a[s] AS val ue
FROM (SELECT generate_subscripts(a, 1) ASs, a FROM arrays) foo;

array | subscript | value
_______________ O
{-1,-2} | 1] -1
{-1,-2} | 2 | -2
{100, 200, 300} | 1| 100
{100, 200, 300} | 2 | 200
{100, 200, 300} | 3 300

(5 rows)

-- unnest a 2D array
CREATE OR REPLACE FUNCTI ON unnest 2(anyarray)
RETURNS SETOF anyel enent AS 3
select $1[i][]]
from generate_subscripts($1,1) gi(i),
gener ate_subscripts(%$1,2) g2(j);
$$ LANGUAGE sgl | MMUTABLE;
CREATE FUNCTI ON
SELECT * FROM unnest 2(ARRAY[[1,2],[3,4]]);
unnest 2

When a function in the FROM clause is suffixed by W TH ORDI NALI TY, a bi gi nt column is
appended to the output which starts from 1 and increments by 1 for each row of the function's output.
Thisismost useful in the case of set returning functions such asunnest () .

-- set returning function WTH ORDI NALI TY
SELECT * FROM pg_Is_dir('.') WTH ORDINALITY AS t(Is,n);

303

Functions and Operators

I's | n
_________________ Fe - -
pg_seri al | 1
pg_t wophase | 2
post master.opts | 3
pg_notify | 4
postgresqgl.conf | 5
pg_t bl spc | 6
logfile | 7
base | 8
postmaster.pid | 9
pg_i dent . conf | 10
gl obal | 11
pg_xact | 12
pg_snapshot s | 13
pg_mul ti xact | 14
PG_VERSI ON | 15
pg_wal | 16
pg_hba. conf | 17
pg_stat_tnp | 18
pg_subtrans | 19
(19 rows)

9.25. System Information Functions

Table 9.60 shows several functionsthat extract session and system information.

In addition to the functionslisted in this section, there are anumber of functionsrel ated to the statistics
system that also provide system information. See Section 28.2.2 for more information.

Table 9.60. Session | nformation Functions

Name Return Type Description

current _catal og nane name of current database (called
“catalog” in the SQL standard)

current dat abase() nane name of current database

current _query() t ext text of the currently executing
query, as submitted by the client
(might contain more than one
statement)

current _role nane equivalenttocur rent _user

current _schema[()] nane name of current schema

current _schenas(bool eamaneg]] names of schemasin search path,
optionally including implicit
schemas

current _user nane user name of current execution
context

i net _client_addr() i net address of the remote connection

inet_client_port() i nt port of the remote connection

i net _server_addr () i net address of the local connection

i net_server_port () i nt port of the local connection

pg_backend_pi d() i nt Process ID of the server process
attached to the current session

304

F

unctions and Operators

Name

Return Type

Description

pg_bl ocki ng_pi ds(int)

int[]

Process ID(s) that are blocking
specified server process D from
acquiring alock

pg_conf | oad_tine() timestanp wth time|configurationloadtime
zone

pg_current _| ogfil e([teptdxt Primary log file name, or log in
the requested format, currently
in use by the logging collector

pg_ny_tenp_schena() oid OID of session's temporary
schema, or O if none

pg_i s_ot her _tenp_schengd(amldan is schema another session's
temporary schema?

pg_l i steni ng_channel s()set of text channel namesthat the sessionis
currently listening on

pg_notification_queue_doadd (@ fraction of the asynchronous
notification queue currently
occupied (0-1)

pg_postnaster _start _tie(estanp wth time|server starttime

Zone

pg_saf e_snapshot _bl ock

iimg [fi ds(i nt)

Process ID(s) that are blocking
specified server process D from
acquiring a safe snapshot

pg_trigger _depth()

nt

curent nesting level of
PostgreSQL triggers (0 if not
called, directly or indirectly,
from inside a trigger)

sessi on_user

nane

SEession user name

user

nane

equivalenttocur r ent _user

version()

t ext

PostgreSQL version
information. See aso
server_version num for a

machine-readable version.

current _schens, but

Note

not with the others.)

current _catal og, current _rol e, current_schema, current _user,
sessi on_user,anduser havespecial syntactic statusin SQL : they must be called
without trailing parentheses. (In PostgreSQL, parentheses can optionally be used with

The sessi on_user is normaly the user who initiated the current database connection; but
superusers can change this setting with SET SESSION AUTHORIZATION. Thecurr ent _user
is the user identifier that is applicable for permission checking. Normally it is equa to the session
user, but it can be changed with SET ROLE. It also changes during the execution of functions with the
attribute SECURI TY DEFI NER. In Unix parlance, the session user isthe “real user” and the current
user isthe “effective user”. cur r ent _r ol e and user are synonymsfor cur r ent _user . (The
SQL standard draws a distinction between cur r ent _r ol e and cur r ent _user , but PostgreSQL
does not, since it unifies users and roles into asingle kind of entity.)

cur r ent _schena returns the name of the schemathat isfirst in the search path (or anull value if
the search path isempty). Thisisthe schemathat will be used for any tables or other named objectsthat

305

Functions and Operators

are created without specifying atarget schema. cur r ent _schenmas(bool ean) returns an array
of thenames of all schemas presently in the search path. The Boolean option determineswhether or not
implicitly included system schemas such aspg_cat al og are included in the returned search path.

Note

The search path can be altered at run time. The command is:

SET search_path TO schema [, schenm, ...]

i net _client_addr returns the IP address of the current client, and i net _cli ent _port
returns the port number. i net _ser ver _addr returnsthe IP address on which the server accepted
the current connection, andi net _ser ver _port returnsthe port number. All thesefunctionsreturn
NULL if the current connection is via a Unix-domain socket.

pg_bl ocki ng_pi ds returnsan array of the process | Ds of the sessions that are blocking the server
process with the specified process ID, or an empty array if there is no such server process or it is not
blocked. One server process blocks another if it either holds a lock that conflicts with the blocked
process's lock request (hard block), or is waiting for a lock that would conflict with the blocked
processslock request and is ahead of it in the wait queue (soft block). When using parallel queriesthe
result always lists client-visible process IDs (that is, pg_backend_pi d results) even if the actual
lock isheld or awaited by a child worker process. Asaresult of that, there may be duplicated PIDsin
the result. Also note that when a prepared transaction holds a conflicting lock, it will be represented
by a zero process ID in the result of this function. Frequent calls to this function could have some
impact on database performance, because it needs exclusive access to the lock manager's shared state
for ashort time.

pg_conf_| oad_tine returns the timestanp wth time zone when the server
configuration files were last loaded. (If the current session was alive at the time, this will be the time
when the session itself re-read the configuration files, so the reading will vary a little in different
sessions. Otherwise it is the time when the postmaster process re-read the configuration files.)

pg_current _| ogfi | ereturns, ast ext , the path of thelog file(s) currently in use by the logging
collector. The path includes the log_directory directory and the log file name. Log collection must
be enabled or the return value is NULL. When multiple log files exist, each in a different format,
pg_current | ogfil e caledwithout argumentsreturnsthe path of thefile having thefirst format
found in the ordered list: stderr, csvliog. NULL is returned when no log file has any of these formats.
To regquest a specific file format supply, ast ext , either csvlog or stderr as the value of the optional
parameter. Thereturn valueisNULL whenthelog format requested isnot aconfigured log_destination.
Thepg_current | ogfil es reflectsthe contentsof thecurrent | ogfi | es file.

pg_rmny_t enp_schena returnsthe OID of the current session's temporary schema, or zero if it has
none (becauseit has not created any temporary tables). pg_i s_ot her _t enp_schena returnstrue
if the given OID isthe OID of another session’'s temporary schema. (This can be useful, for example,
to exclude other sessions temporary tables from a catalog display.)

pg_l i st eni ng_channel s returns a set of names of asynchronous notification channels that the
current sessionislisteningto. pg_noti fi cati on_queue_usage returnsthefraction of thetotal
available space for notifications currently occupied by notifications that are waiting to be processed,
asadoubl e intherange 0-1. See LISTEN and NOTIFY for more information.

pg_postmaster _start _timeretunstheti mestanp with time zone when the server
started.

306

Functions and Operators

pg_saf e_snapshot bl ocki ng_pi ds returns an array of the process IDs of the sessions that
are blocking the server process with the specified process ID from acquiring a safe snapshot, or an
empty array if thereisno such server processor itisnot blocked. A sessionrunningaSERI ALI ZABLE
transaction blocks a SERI ALI ZABLE READ ONLY DEFERRABLE transaction from acquiring a
snapshot until thelatter determinesthat it issafeto avoid taking any predicate locks. See Section 13.2.3
for more information about serializable and deferrable transactions. Frequent calls to this function
could have some impact on database performance, because it needs access to the predicate lock
manager's shared state for a short time.

ver si on returns a string describing the PostgreSQL server's version. You can also get this
information from server_version or for a machine-readable version, server_version_num. Software
developers should use server _versi on_num (available since 8.2) or PQser ver Ver si on
instead of parsing the text version.

Table 9.61 lists functions that allow the user to query object access privileges programmatically. See
Section 5.6 for more information about privileges.

Table 9.61. Access Privilege Inquiry Functions

Name Return Type Description

has_any_col um_pri vi | eds(alsam does user have privilege for any
table, privilege) column of table

has_any_col um_pri vi | edm(dl adzre, does current user have privilege
privilege) for any column of table
has_col um_pri vi | ege(udergl ean does user have privilege for
tabl e, col um, column

privilege)

has_col um_pri vil ege(t ddad,ean does current user have privilege
col umm, privilege) for column

has_dat abase_pri vi | ege(asdrean does user have privilege for
dat abase, privil ege) database

has_dat abase_pri vi | ege(atatl szas e, does current user have privilege
privilege) for database

has_forei gn_data_ w appdrogbrdan | ege(user, does user have privilege for
fdw, privilege) foreign-data wrapper
has_forei gn_dat a_w appdrogirdan | ege(f dw, does current user have privilege
privil ege) for foreign-data wrapper
has_function_privil ege(bodrean does user have privilege for
function, privilege) function
has_function_privil ege(faoiaaron, does current user have privilege
privilege) for function

has_| anguage_pri vi | ege(amsdrean does user have privilege for
| anguage, privil ege) language

has_| anguage_pri vi | ege(dcanigeage, does current user have privilege
privil ege) for language
has_schenma_pri vi | ege(udergl ean does user have privilege for
schenma, privilege) schema

has_schenma_pri vi | ege(sduatean does current user have privilege
privilege) for schema
has_sequence_pri vi | ege(omsdrean does user have privilege for
sequence, privil ege) sequence

307

Functions and Operators

Name Return Type Description

has_sequence_pri vi | ege(lsedeence, does current user have privilege

privilege) for sequence

has_server _privil ege(udergl ean does user have privilege for

server, privilege) foreign server

has_server _privil ege(sdrocdrean does current user have privilege

privilege) for foreign server

has_tabl e_privil ege(usgdrgol ean doesuser have privilegefor table

tabl e, privilege)

has_tabl e _privil ege(taldanl ean does current user have privilege

privilege) for table

has_t abl espace_pri vi | eds(alsam does user have privilege for

t abl espace, tablespace

privilege)

has_t abl espace_pri vi | edmal azdrespace, does current user have privilege

privilege) for tablespace

has_type_privil ege(usemool ean does user have privilege for type

type, privilege)

has_type_privil ege(typdool ean does current user have privilege

privilege) for type

pg_has_rol e(user, bool ean does user have privilegefor role

role, privilege)

pg_has _rol e(role, bool ean does current user have privilege

privilege) for role

row_security_active(taldol ean does current user have row level
security active for table

has_t abl e_pri vi | ege checkswhether auser can accessatablein aparticular way. The user can
be specified by name, by OID (pg_aut hi d. oi d), publ i ¢ toindicatethe PUBLIC pseudo-role, or
if theargumentisomittedcur r ent _user isassumed. Thetable can be specified by nameor by OID.
(Thus, thereareactualy six variantsof has_t abl e_pri vi | ege, which canbedistinguished by the
number and types of their arguments.) When specifying by name, the name can be schema-qualified
if necessary. The desired access privilege type is specified by a text string, which must evaluate to
one of thevalues SELECT, | NSERT, UPDATE, DELETE, TRUNCATE, REFERENCES, or TRl GGER.
Optionaly, W TH GRANT OPTI ON can be added to a privilege type to test whether the privilege
is held with grant option. Also, multiple privilege types can be listed separated by commas, in which
case the result will bet r ue if any of thelisted privilegesis held. (Case of the privilege string is not
significant, and extrawhitespaceis allowed between but not within privilege names.) Some examples:

SELECT has_table_privil ege(' nyschema. nytable', 'select');
SELECT has_table_privilege('joe', '"nytable', 'INSERT, SELECT W TH
GRANT OPTION);

has_sequence_pri vi | ege checks whether a user can access a sequence in a particular way.
The possibilities for its arguments are analogous to has_t abl e_pri vi | ege. The desired access
privilege type must evaluate to one of USAGE, SELECT, or UPDATE.

has_any _col um_pri vi | ege checks whether a user can access any column of atable in a
particular way. Its argument possibilities are analogous to has_t abl e_pri vi | ege, except that
the desired access privilege type must evaluate to some combination of SELECT, | NSERT, UPDATE,
or REFERENCES. Note that having any of these privileges at the table level implicitly grants it
for each column of the table, so has_any_col umm_pri vi | ege will always return t r ue if
has_tabl e _privil ege does for the same arguments. But has_any_col unm_pri vi |l ege
also succeeds if thereis a column-level grant of the privilege for at least one column.

308

Functions and Operators

has_col um_pri vi | ege checks whether a user can access a column in a particular way. Its
argument possibilitiesareanalogoustohas_t abl e_pri vi | ege, with the addition that the column
can be specified either by name or attribute number. The desired access privilege type must evaluateto
some combination of SELECT, | NSERT, UPDATE, or REFERENCES. Note that having any of these
privileges at the table level implicitly grantsit for each column of the table.

has_dat abase_pri vi | ege checks whether a user can access a database in a particular way.
Its argument possibilities are analogousto has_t abl e_pri vi | ege. The desired access privilege
type must evaluate to some combination of CREATE, CONNECT, TEMPORARY, or TEMP (which is
equivaent to TEMPORARY).

has_functi on_pri vi | ege checks whether a user can access a function in a particular way. Its
argument possibilities are analogousto has_t abl e_pri vi | ege. When specifying a function by
atext string rather than by OID, the allowed input is the same as for the r egpr ocedur e datatype
(see Section 8.18). The desired access privilege type must evaluate to EXECUTE. An exampleis:

SELECT has_function_privilege('joeuser', 'myfunc(int, text)',
"execute');

has_forei gn_data_w apper _pri vil ege checks whether a user can access a foreign-data
wrapper in a particular way. Its argument possibilities are analogousto has_t abl e_pri vi | ege.
The desired access privilege type must evaluate to USAGE.

has_| anguage_pri vi | ege checks whether a user can access a procedural language in a
particular way. Its argument possibilities are analogousto has_t abl e_pri vi | ege. The desired
access privilege type must evaluate to USAGE.

has_schema_pri vi | ege checks whether a user can access a schema in a particular way. Its
argument possibilitiesareanalogoustohas_t abl e_pri vi | ege. Thedesired accessprivilegetype
must evaluate to some combination of CREATE or USACE.

has_server _pri vil ege checks whether a user can access aforeign server in a particular way.
Its argument possibilities are analogousto has_t abl e_pri vi | ege. The desired access privilege
type must evaluate to USAGE.

has_t abl espace_pri vi | ege checkswhether auser can access atablespacein aparticular way.
Its argument possibilities are analogousto has_t abl e_pri vi | ege. The desired access privilege
type must evaluate to CREATE.

has_t ype_pri vi | ege checks whether a user can access atype in a particular way. Its argument
possibilities are analogous to has_t abl e_pri vi | ege. When specifying a type by a text string
rather than by OID, the allowed input is the same as for the r egt ype data type (see Section 8.18).
The desired access privilege type must evaluate to USAGE.

pg_has_r ol e checkswhether auser can accessarolein aparticular way. Itsargument possibilities
areanaogoustohas_t abl e_pri vi | ege, except that publ i ¢ isnot allowed asauser name. The
desired access privilege type must evaluate to some combination of MEMBER or USAGE. MEMBER
denotes direct or indirect membership in the role (that is, the right to do SET ROLE), while USAGE
denotes whether the privileges of the role are immediately available without doing SET ROLE.

row_security_acti ve checkswhether row level security is active for the specified table in the
context of thecur r ent _user and environment. The table can be specified by name or by OID.

Table 9.62 shows functions that determine whether a certain object is visible in the current schema
search path. For example, atable is said to be visible if its containing schema is in the search path
and no table of the same name appears earlier in the search path. Thisis equivalent to the statement
that the table can be referenced by name without explicit schema qualification. To list the names of
al visible tables:

SELECT rel nane FROM pg_cl ass WHERE pg_tabl e_i s_visi bl e(oid);

309

F

unctions and Operators

Table 9.62. Schema Visibil

ity Inquiry Functions

Name

Return Type

Description

pg_collation_is_visibl

d(aodldaat i on_oi d)

iscollation visible in search path

pg_conversion_is visib

Ibex(ad @@arer si on_oi d)

is conversion visible in search
path

pg_function_is_visible

(Haodatdron_oi d)

isfunction visible in search path

pg_opcl ass_i s_vi si bl e(

dqonl| &8 o d)

isoperator classvisiblein search
path

pg_operator _is_visible

(bayme resgtror _oi d)

is operator visible in search path

pg_opfamly is visible

(bogd lessss _0i d)

is operator family visible in
search path

pg_statistics_obj _is_ v

iidbles(rst at _oi d)

is statistics object visible in
search path

pg_table_is visible(ta

td e | @iad)

istable visible in search path

pg_ts config_ is_visibl

d(cdrefarg_oi d)

is text search configuration
visiblein search path

pg_ts_dict_is_visible(

dicntl_eird)

is text search dictionary visible
in search path

pg_ts_parser_is_visibl

d(qmdresar _oi d)

is text search parser visible in
search path

pg_ts_ tenplate_is_visi

ol tesrpl at e_oi d)

is text search template visible in
search path

pg_type_is_visible(typ

damil dan

is type (or domain) visible in
search path

Each function performs the visibility check for one type of database object. Note that
pg_t abl e_i s_vi si bl e can aso be used with views, materialized views, indexes, sequences and
foreigntables, pg_t ype_i s_vi si bl e canaso beused with domains. For functionsand operators,
an object in the search path isvisibleif there is no object of the same name and argument data type(s)
earlier inthe path. For operator classes, both name and associated index access method are considered.

All these functions require object OIDs to identify the object to be checked. If you want to test an
object by name, itisconvenient tousethe OID aiastypes(r egcl ass,r egt ype,r egpr ocedur e,
regoper at or,regconfi g,orregdi cti onary), for example:

SELECT pg_type_is_visible('nyschema.w dget'::regtype);

Note that it would not make much sense to test a non-schema-qualified type name in this way — if

the name can be recognized at all

, it must be visible.

Table 9.63 lists functions that extract information from the system catalogs.

Table 9.63. System Catalog I nfor mation Functions

Name

Return Type

Description

format _type(type_ oid,
t ypenod)

t ext

get SQL name of adatatype

pg_get _constrai ntdef(c

dresttr ai nt _oi d)

get definition of aconstraint

pg_get _constrai ntdef(c
pretty bool)

dresttr ai nt _oi d,

get definition of aconstraint

310

Functions and Operators

Name Return Type Description

pg_get _expr (pg_node_trgext decompile internal form of

rel ati on_oid) an expression, assuming that
any Vars in it refer to the
relation indicated by the second
parameter

pg_get expr(pg_node_trgext decompile internal form of

relation_oid, an expression, assuming that

pretty bool) any Vars in it refer to the
relation indicated by the second
parameter

pg_get functi ondef (fung eoxitd) get definition of afunction

pg_get function_argune

ntesqtf unc_oi d)

get argument list of function's
definition (with default values)

pg_get function_identi

ttyexdar gunment s(f unc_oi d)

get argument list to identify a
function (without default values)

pg_get function_result

(tfextic_oi d)

get RETURNS clause for

function

pg_get _i ndexdef (i ndex_|

ikt

get CREATE | NDEX command
for index

pg_get _i ndexdef (i ndex_|
col um_no,
pretty bool)

dieckt

get CREATE | NDEX command
for index, or definition of
just one index column when
col uim_no isnot zero

pg_get _keywor ds() setof record get list of SQL keywords and
their categories

pg_get rul edef (rul e_oi d)ext get CREATE RULE command
for rule

pg_get rul edef (rul e_oi d,ext get CREATE RULE command

pretty_bool) for rule

pg_get _serial _sequence(ttedtl e_nane, get name of the sequence that

col um_nane)

aserial,smallserial or
bi gseri al column uses

pg_get _statisticsobjde

ft(esttat obj _oi d)

get CREATE STATI STICS
command for extended statistics
object

pg_get triggerdef(triggeexbid)

get CREATE
[CONSTRAINT] TRI GGER
command for trigger

pg_get triggerdef(triggeexbid,

pretty bool)

get CREATE
[CONSTRAINT] TRI GGER
command for trigger

pg_get _user byi d(r ol e_ojrine get role name with given OID
pg_get vi ewdef (vi ew_nanext get underlying SELECT
command for view or
materialized view (deprecated)
pg_get vi ewdef (vi ew_nanmxt get underlying SELECT
pretty bool) command for view or

materialized view (deprecated)

311

F

unctions and Operators

Name Return Type Description

pg_get vi ewdef (vi ew_oi d)ext get underlying SELECT
command for view or
materialized view

pg_get vi ewdef (vi ew_oi d,ext get underlying SELECT

pretty bool) command for view or
materialized view

pg_get vi ewdef (vi ew _oi d,ext get underlying SELECT

wrap_col umm_i nt) command for view or

materialized view; lines with
fields are wrapped to specified
number of columns, pretty-
printing isimplied

pg_i ndex_col um_has_pr

diyoer teyg(i ndex_oi d,

test whether an index column has

col utm_no, prop_nane) aspecified property

pg_i ndex_has_propert y(jbuddean d, test whether an index has a
pr op_nane) specified property

pg_i ndexam has_pr oper t M(carheazird, test whether an index access
prop_nane) method has a specified property
pg_options_to_tabl e(relsgitdfonsgcord get the set of storage option

name/value pairs

pg_t abl espace_dat abase

setatil esghce_oi d)

get the set of database OIDs that
have objects in the tablespace

pg_t abl espace_l ocati on

(tteadtl espace_oi d)

get thepath in thefile system that
this tablespaceis located in

pg_t ypeof (any) regtype get the data type of any value

collation for (any) t ext get the collation of the argument

to_regcl ass(rel _name) |regcl ass get the OID of the named
relation

to_regproc(func_nane) |regproc get the OID of the named
function

to_regprocedure(func_naregpr ocedure get the OID of the named
function

t o_regoper (oper at or _namegoper get the OID of the named
operator

t o_r egoper at or (oper at ojr_ aggpEr at or get the OID of the named
operator

to_regtype(type_nane) |regtype get the OID of the named type

t o_regnanespace(schens/rregranmespace get the OID of the named schema

to_regrol e(rol e_nanme) |regrole get the OID of the named role

f or mat _t ype returnsthe SQL name of adatatype that isidentified by itstype OID and possibly a
type modifier. Pass NULL for the type modifier if no specific modifier is known.

pg_get keywor ds returnsaset of records describing the SQL keywords recognized by the server.
The wor d column contains the keyword. The cat code column contains a category code: U for
unreserved, Cfor column name, T for type or function name, or Rfor reserved. Thecat desc column

contains a possibly-localized string describing the category.

pg_get constrai ntdef,

pg_get i ndexdef,

pg_get rul edef,

pg_get statisticsobjdef, and pg get triggerdef, respectively reconstruct the

312

Functions and Operators

creating command for a constraint, index, rule, extended statistics object, or trigger. (Note that this
is a decompiled reconstruction, not the original text of the command.) pg_get _expr decompiles
the internal form of an individual expression, such as the default value for a column. It can be useful
when examining the contents of system catalogs. If the expression might contain Vars, specify the
OID of the relation they refer to as the second parameter; if no Vars are expected, zero is sufficient.
pg_get vi ewdef reconstructs the SELECT query that defines a view. Most of these functions
comein two variants, one of which can optionally “ pretty-print” theresult. The pretty-printed format is
more readable, but the default format is more likely to be interpreted the same way by future versions
of PostgreSQL ; avoid using pretty-printed output for dump purposes. Passing f al se for the pretty-
print parameter yields the same result as the variant that does not have the parameter at all.

pg_get functiondef returns a complete CREATE R REPLACE FUNCTI ON
statement for a function. pg_get function_argunents returns the argument list of
a function, in the form it would need to appear in within CREATE FUNCTI ON.
pg_get function_result similarly returns the appropriate RETURNS clause for the function.
pg_get function_identity_argunents returns the argument list necessary to identify a
function, in the form it would need to appear in within ALTER FUNCTI ON, for instance. Thisform
omits default values.

pg_get _seri al _sequence returnsthe name of the sequence associated with acolumn, or NULL
if no sequence is associated with the column. The first input parameter is a table name with optional
schema, and the second parameter is a column name. Because the first parameter is potentialy a
schema and table, it is not treated as a double-quoted identifier, meaning it is lower cased by defaullt,
while the second parameter, being just a column name, is treated as double-quoted and has its case
preserved. The function returns a value suitably formatted for passing to sequence functions (see
Section 9.16). This association can be modified or removed with ALTER SEQUENCE OANED BY.
(The function probably should have been called pg_get _owned_sequence; its current name
reflects the fact that it's typically used with ser i al or bi gseri al columns.)

pg_get _user byi d extractsarole's name given its OID.

pg_i ndex_col unmm_has_property, pg_i ndex_has_property, and
pg_i ndexam has_pr operty return whether the specified index column, index, or index access
method possesses the named property. NULL is returned if the property name is not known or does
not apply to the particular object, or if the OID or column number does not identify a valid object.
Refer to Table 9.64 for column properties, Table 9.65 for index properties, and Table 9.66 for access
method properties. (Note that extension access methods can define additional property namesfor their
indexes.)

Table 9.64. Index Column Properties

Name Description

asc Does the column sort in ascending order on a
forward scan?

desc Does the column sort in descending order on a
forward scan?

nul | s_first Doesthe column sort with nullsfirst on aforward
scan?

nul | s_| ast Does the column sort with nulls last on aforward
scan?

orderabl e Does the column possess any defined sort
ordering?

di stance_orderabl e Can the column be scanned in order by a

“distance” operator, for example ORDER BY
col <-> constant ?

returnabl e Can the column value be returned by an index-
only scan?

313

Functions and Operators

Name

Description

search_array

Does the column natively support col =
ANY(arr ay) searches?

search_nulls

Doesthe column support | S NULL and 1 S NOT
NULL searches?

Table 9.65. Index Properties

Name

Description

clusterable

Can the index be used in a CLUSTER command?

i ndex_scan

Doestheindex support plain (non-bitmap) scans?

bi t map_scan

Does the index support bitmap scans?

backward_scan

Can the index be scanned backwards?

Table 9.66. Index Access M ethod Properties

Name

Description

can_order

Does the access method support ASC, DESC and
related keywordsin CREATE | NDEX?

can_uni que

Does the access method support unique indexes?

can_nul ti _col

Does the access method support indexes with
multiple columns?

can_excl ude

Does the access method support exclusion
constraints?

pg_options_to_tabl e returns the set of storage option name/value pairs (opti on_narme/
opti on_val ue) when passed pg_cl ass.rel options orpg_attri bute.attoptions.

pg_t abl espace_dat abases alows atablespace to be examined. It returns the set of OIDs of
databases that have objects stored in the tablespace. If this function returns any rows, the tablespace
is not empty and cannot be dropped. To display the specific objects populating the tablespace, you
will need to connect to the databases identified by pg_t abl espace_dat abases and query their

pg_cl ass catalogs.

pg_t ypeof returns the OID of the data type of the value that is passed to it. This can be helpful
for troubleshooting or dynamically constructing SQL queries. The function is declared as returning
r egt ype, whichisan OID alias type (see Section 8.18); thismeansthat it is the same asan OID for
comparison purposes but displays as a type name. For example:

SELECT pg_typeof (33);

pg_t ypeof

i nt eger

(1 row

SELECT typl en FROM pg type WHERE oi d = pg_typeof(33);

typl en

Theexpression col | ati on for returnsthe collation of the value that is passed to it. Example:

SELECT col lation for (description) FROM pg description LIMT 1;

pg_collation_for

314

Functions and Operators

"defaul t"

(1 row

SELECT col lation for ('foo" COLLATE "de_DE");
pg_col l ation_for

Thevalue might be quoted and schema-qualified. If no collationisderived for the argument expression,
then anull value isreturned. If the argument is not of a collatable data type, then an error israised.

Theto_regcl ass,to_regproc,to_regprocedure,to_regoper,to_regoperator,
to_regtype, to_regnanespace, and t o_regrol e functions trandate relation, function,
operator, type, schema, and role names (given ast ext) to objects of typer egcl ass, r egpr oc,
regpr ocedure, regoper, regoperator, regtype, regnanespace, and regrole
respectively. These functions differ from a cast from text in that they don't accept anumeric OID, and
that they return null rather than throwing an error if the name is not found (or, fort o_r egpr oc and
t o_r egoper, if the given name matches multiple objects).

Table 9.67 lists functions related to database object identification and addressing.

Table 9.67. Object Information and Addressing Functions

Name Return Type Description

pg_descri be_obj ect (catidleod i d, get description of a database
obj ect i d, object

obj ect _sub_id)

pg_i dentify_obj ect (cat@dlygpe itéext, schema t ext,|getidentity of a database object

oi d, obj ect _id/nanetext,identitytext

oi d, object_sub_id

i nteger)

pg_identify_ object_as_@ddgreessxtatmhmg tiekt [], get external representation of a
oi d, object _idjargstext][] database object's address

oi d, object_sub_id

i nt eger)

pg_get obj ect address(ftogial og_id 0i d,|get address of a database object,
t ext, nane text[], |lobject_id oi d,|from its external representation

args text[]) object_sub_idint32

pg_descri be_obj ect returnsatextual description of adatabase object specified by catalog OID,
object OID and a (possibly zero) sub-object ID. This description is intended to be human-readable,
and might be translated, depending on server configuration. Thisis useful to determine the identity of
an object as stored inthe pg_depend cataog.

pg_i dentify_obj ect returns a row containing enough information to uniquely identify the
database object specified by catalog OID, object OID and a (possibly zero) sub-object ID. This
information is intended to be machine-readable, and is never trandated. t ype identifies the type of
database object; schema isthe schemaname that the object belongsin, or NULL for object typesthat
do not belong to schemas; nane is the name of the object, quoted if necessary, only present if it can
be used (alongside schema name, if pertinent) as a unique identifier of the object, otherwise NULL ;
i denti ty isthe complete object identity, with the precise format depending on object type, and
each part within the format being schema-qualified and quoted as necessary.

pg_i dentify object as_address returnsarow containing enough information to uniquely
identify the database object specified by catalog OID, object OID and a (possibly zero) sub-object
ID. The returned information is independent of the current server, that is, it could be used to identify

315

Functions and Operators

an identically named object in another server. t ype identifies the type of database object; nane and
ar gs aretext arraysthat together form areference to the object. These three columns can be passed to
pg_get obj ect addr ess toobtaintheinternal addressof the object. Thisfunctionistheinverse
of pg_get obj ect address.

pg_get _obj ect _addr ess returnsarow containing enough information to uniquely identify the
database object specified by its type and object name and argument arrays. The returned values are
the ones that would be used in system catalogs such as pg_depend and can be passed to other
system functions such as pg_i denti fy_obj ect or pg_descri be_object.catalog_id
is the OID of the system catalog containing the object; obj ect _i d is the OID of the object
itself, and obj ect _sub_i d is the object sub-I1D, or zero if none. This function is the inverse of
pg_i dentify_object_as_address.

The functions shown in Table 9.68 extract comments previoudly stored with the COMMENT
command. A null valueisreturned if no comment could be found for the specified parameters.

Table 9.68. Comment I nfor mation Functions

Name Return Type Description

col _description(tabl e giakt get comment for atable column

col um_nunber)

obj _descri ption(object|t@xd, get comment for a database

cat al og_nane) object

obj _descri pti on(obj ect |[ta@xd) get comment for a database
object (deprecated)

shobj descri pti on(obj edtexdi d, get comment for a shared

cat al og_nane) database object

col _descri pti on returns the comment for atable column, which is specified by the OID of its
table and its column number. (obj _descri pti on cannot be used for table columns since columns
do not have OIDs of their own.)

The two-parameter form of obj _descri pti on returns the comment for a database object
specified by its OID and the name of the containing system catalog. For example,
obj _description(123456, " pg_cl ass') would retrieve the comment for the table with
OID 123456. The one-parameter form of obj _descri pti on requires only the object OID. It is
deprecated sincethereisno guarantee that Ol Ds are unique across different system catal ogs; therefore,
the wrong comment might be returned.

shobj _description is used just like obj _descri ption except it is used for retrieving
comments on shared objects. Some system catalogs are global to all databases within each cluster, and
the descriptions for objects in them are stored globally as well.

The functions shown in Table 9.69 provide server transaction information in an exportable form. The
main use of these functionsisto determinewhich transactionswere committed between two snapshots.

Table 9.69. Transaction | Ds and Snapshots

Name Return Type Description

txid current() bi gi nt get current transaction D,
assigning a new one if the
current transaction does not have
one

txid_current_if_assi gngd(@i nt same as txid_current()
but returns null instead of
assigning anew transaction ID if
noneis already assigned

316

Functions and Operators

Name Return Type Description

txi d_current _snapshot ()t xi d_snapshot get current snapshot

txi d_snapshot _xi p(txi d/ sstayshtotgi nt get in-progress transaction 1Ds
in snapshot

t xi d_snapshot _xmax(t xi digyaypshot) get xmax of snapshot

t xi d_snapshot _xmi n(t xi digyiaypshot) get xm n of snapshot

t xi d_vi si bl e_i n_snapshgdiqdbiegimt , is transaction ID visible in

t xi d_snapshot) snapshot? (do not use with
subtransaction ids)

txi d_status(bigint) txi d_status report the status of the
given transaction: conmi t t ed,
aborted,in progress,or
null if the transaction ID is too
old

Theinternal transaction ID type (xi d) is 32 bits wide and wraps around every 4 hillion transactions.
However, these functions export a 64-bit format that is extended with an “epoch” counter so it
will not wrap around during the life of an installation. The data type used by these functions,
t xi d_snapshot , storesinformation about transaction ID visibility at a particular moment in time.
Its components are described in Table 9.70.

Table 9.70. Snapshot Components

Name Description

Xmn Earliest transaction ID (txid) that isstill active. All
earlier transactions will either be committed and
visible, or rolled back and dead.

Xmax First as-yet-unassigned txid. All txids greater than
or equal to thisare not yet started as of the time of
the snapshot, and thus invisible.

Xip_list Active txids at the time of the snapshot. The list
includes only those active txids between xm n
and x e ; there might be active txids higher than
xmax. A txidthatisxmin <= txid < xmax
and not in this list was aready completed at the
time of the snapshot, and thus either visible or
dead according to its commit status. The list does
not include txids of subtransactions.

txi d_snapshot's textual representation is xmin:xmax: xi p_list. For example
10: 20: 10, 14, 15 meansxm n=10, xmax=20, xi p_list=10, 14, 15.

t xi d_status(bi gi nt) reportsthe commit status of a recent transaction. Applications may use
it to determine whether a transaction committed or aborted when the application and database server
become disconnected while a COVM T isin progress. The status of a transaction will be reported as
eitheri n progress, conm tted, or abort ed, provided that the transaction is recent enough
that the system retains the commit status of that transaction. If is old enough that no referencesto that
transaction survive in the system and the commit status information has been discarded, this function
will return NULL. Note that prepared transactions arereported asi n pr ogr ess; applications must
check pg_pr epar ed_xact s if they need to determine whether the txid is a prepared transaction.

The functions shown in Table 9.71 provide information about transactions that have been already
committed. These functions mainly provide information about when the transactions were committed.
They only provide useful data when track_commit_timestamp configuration option is enabled and
only for transactions that were committed after it was enabled.

317

Functions and Operators

Table9.71. Committed transaction infor mation

Zzone

Name Return Type Description

timestanp wth tinme|get commit timestamp of a
pg_xact _conmit _ti mest amupd d) transaction

xi d Xi d, ti mest anp|get transaction ID and commit
pg_l ast _conmitted_xact|t) nestanp w th time|timestamp of latest committed

transaction

The functions shown in Table 9.72 print information initialized during i ni t db, such as the catalog
version. They aso show information about write-ahead logging and checkpoint processing. This
information is cluster-wide, and not specific to any one database. They provide most of the same
information, from the same source, as pg_controldata, although in a form better suited to SQL

functions.

Table9.72. Control Data Functions

Name Return Type Description
record Returns information about

pg_control _checkpoi nt (current checkpoint state.

pg_control _system) record Returns information about
current control file state.

pg_control _init() record Returns information about
cluster initialization state.

pg_control recovery() |[record Returns information about
recovery state.

pg_control _checkpoi nt returnsarecord, shown in Table 9.73

Table9.73. pg_control _checkpoi nt Columns

Column Name Data Type
checkpoint | sn pg_Isn
prior_lsn pg_l sn
redo_I sn pg_l sn
redo wal file t ext
tinmeline_id i nt eger
prev_tineline_id i nt eger
full _page_wites bool ean
next xid t ext
next _oid oid
next _nul tixact_id xid
next _nmulti_offset xid

ol dest _xid xi d

ol dest _xid _dbid oid

ol dest _active_xid xi d
oldest _multi _xid xid

ol dest _nulti _dbid oid

ol dest _conmit _ts xid xid
newest _comrit _ts xid xi d

318

Functions and Operators

Column Name Data Type

checkpoi nt _tine timestanp with time zone

pg_control _syst emreturnsarecord, shownin Table 9.74

Table9.74. pg_contr ol _syst emColumns

Column Name Data Type

pg_control _version i nt eger

catal og_version_no i nt eger
system.identifier bi gi nt

pg_control last_nodified timestanp with tinme zone

pg_control _init returnsarecord, shownin Table 9.75

Table9.75. pg_control _init Columns

Column Name Data Type
max_data_al i gnnment i nt eger
dat abase bl ock_si ze i nt eger
bl ocks_per _segnent i nt eger
wal bl ock_si ze i nteger
byt es_per_wal segnent i nt eger
max_identifier_length i nt eger
mex_i ndex_col ums i nt eger
max_t oast _chunk_si ze i nteger
| ar ge_obj ect _chunk_si ze i nt eger
float4_pass_by val ue bool ean
fl oat 8_pass_by_val ue bool ean
dat a_page_checksum versi on i nt eger

pg_control _recovery returnsarecord, shownin Table 9.76

Table9.76. pg_control _recovery Columns

Column Name Data Type
m n_recovery_end | sn pg_lsn
m n_recovery_end_tineline i nt eger
backup_start_Isn pg_I sn
backup_end_I sn pg_lsn
end_of backup _record _required bool ean

9.26. System Administration Functions

The functions described in this section are used to control and monitor a PostgreSQL installation.

9.26.1. Configuration Settings Functions

Table 9.77 shows the functions available to query and alter run-time configuration parameters.

319

Functions and Operators

Table 9.77. Configuration Settings Functions

Name Return Type Description

t ext get current value of setting
current _setting(setting name
[, missing_ok])

t ext set parameter and return new

set _config(setting_nang, value
new val ue, is_local)

The function current _setting yields the current value of the setting setti ng_nane. It
corresponds to the SQL command SHOW An example;

SELECT current_setting(' datestyle');

current_setting

If there is no setting named setting_nane, current_setting throws an error unless
m ssi ng_ok issuppliedandist r ue.

set _confi g setstheparameter setti ng_nanetonew _val ue.Ifi s_| ocal istrue,thenew
value will only apply to the current transaction. If you want the new value to apply for the current
session, usef al se instead. The function corresponds to the SQL command SET. An example:

SELECT set _config('log_statenent_stats', 'off', false);

set _config

9.26.2. Server Signaling Functions

Thefunctionsshownin Table9.78 send control signal sto other server processes. Use of thesefunctions
is restricted to superusers by default but access may be granted to others using GRANT, with noted
exceptions.

Table 9.78. Server Signaling Functions

Name Return Type Description
pg_cancel backend(pi d |bool ean Cancel a backend's current
int) query. This is aso alowed if

the calling role is a member
of the role whose backend
is being canceled or the
caling role has been granted
pg_si gnal _backend,

however only superusers can
cancel superuser backends.

pg_rel oad_conf () bool ean Cause server processes to reload
their configuration files

pg_rotate logfile() bool ean Rotate server'slog file

pg_t erm nat e_backend(pjlabol ean Terminate a backend. This is

int) aso alowed if the calling role

320

Functions and Operators

Name Return Type Description

is a member of the role whose
backend is being terminated or
the calling role has been granted
pg_si gnal _backend,
however only superusers can
terminate superuser backends.

Each of these functionsreturnst r ue if successful and f al se otherwise.

pg_cancel _backend and pg_t erm nat e_backend send signals (SIGINT or SIGTERM
respectively) to backend processes identified by process ID. The process ID of an active backend can
be found from the pi d column of the pg_stat _acti vity view, or by listing the post gr es
processes on the server (using ps on Unix or the Task Manager on Windows). The role of an active
backend can be found from the usename column of thepg_st at _acti vity view.

pg_r el oad_conf sendsaSIGHUP signal to the server, causing configuration files to be reloaded
by all server processes.

pg_rotate | ogfil e signasthelog-file manager to switchto anew output fileimmediately. This
works only when the built-in log collector is running, since otherwise there is no log-file manager
subprocess.

9.26.3. Backup Control Functions
The functions shown in Table 9.79 assist in making on-line backups. These functions cannot
be executed during recovery (except pg_is_i n_backup, pg_backup_start_tine and
pg_wal _| sn_diff).

Table 9.79. Backup Control Functions

Name Return Type Description
pg_create_restore_poi ntpghdren Create a named point for
text) performing restore (restricted to
superusers by default, but other
users can be granted EXECUTE
to run the function)
pg_current _wal _flush_Igg) sn Get current write-ahead log flush
location
pg_current _wal _insert |pn(d)sn Get current write-ahead log
insert location
pg_current_wal _Isn() |pg_lsn Get current write-ahead log
write location
pg_start _backup(l abel |pg_lsn Prepare for performing on-line
text [, fast boolean backup (restricted to superusers
[, exclusive boolean by default, but other users can
1D be granted EXECUTE to run the
function)
pg_st op_backup() pg_I sn Finish performing exclusive
on-line backup (restricted to
superusers by default, but other
users can be granted EXECUTE
to run the function)
pg_stop_backup(excl usi \s®t of record Finish performing exclusive or
bool ean [, non-exclusive on-line backup
(restricted to superusers by

321

Functions and Operators

Name Return Type Description

wai t _for_archive default, but other users can be

bool ean 1) granted EXECUTE to run the
function)

pg_i s_in_backup() bool True if an on-line exclusive

backup is still in progress.

pg_backup_start_time()|tinestanp with time|Get stat time of an on-line
zone exclusive backup in progress.

pg_swi tch wal () pg_l sn Force switch to a new write-
ahead log file (restricted to
superusers by default, but other
users can be granted EXECUTE
to run the function)

pg_wal fil e _name(lsn t ext Convert write-ahead log location

pg_I sn) tofile name

pg_wal fil e_nane_of f set (tlesti, i nt eger Convert write-ahead log location

pg_l sn) to file name and decima byte
offset within file

pg_wal |sn_diff(lsn nuneric Calculate the difference between

pg_lsn, Isn pg_Isn) two write-ahead | og locations

pg_st art backup acceptsan arbitrary user-defined label for the backup. (Typically thiswould be
the name under which the backup dump filewill be stored.) When used in exclusive mode, the function
writesabackup label file(backup_| abel) and, if thereareany linksinthepg_t bl spc/ directory,
a tablespace map file (t abl espace_nmap) into the database cluster's data directory, performs a
checkpoint, and then returns the backup's starting write-ahead log | ocation astext. The user canignore
thisresult value, but it is provided in case it is useful. When used in non-exclusive mode, the contents
of these files are instead returned by the pg_st op_backup function, and should be written to the
backup by the caller.

post gres=# sel ect pg_start_backup('!label goes_here');
pg_start _backup

0/ D4445B8
(1 row

There is an optional second parameter of type bool ean. If true, it specifies executing
pg_start _backup asquickly as possible. This forces an immediate checkpoint which will cause
aspikein I/O operations, slowing any concurrently executing queries.

In an exclusive backup, pg_stop_backup removes the label file and, if it exists, the
t abl espace_nap filecreated by pg_st art _backup. In anon-exclusive backup, the contents
of the backup_| abel and t abl espace_nap are returned in the result of the function, and
should be written to files in the backup (and not in the data directory). There is an optional second
parameter of type bool ean. If fase, the pg_st op_backup will return immediately after the
backup is completed without waiting for WAL to be archived. This behavior is only useful for
backup software which independently monitors WAL archiving. Otherwise, WAL required to make
the backup consistent might be missing and make the backup useless. When this parameter is set to
true, pg_st op_backup will wait for WAL to be archived when archiving isenabled; on the standby,
thismeansthat it will wait only whenar chi ve_node = al ways. If write activity on the primary
islow, it may be useful to run pg_swi t ch_wal on the primary in order to trigger an immediate
segment switch.

When executed on a primary, the function also creates a backup history file in the write-ahead log
archivearea. Thehistory fileincludesthelabel giventopg st art _backup, thestarting and ending
write-ahead log locations for the backup, and the starting and ending times of the backup. The return

322

Functions and Operators

value is the backup's ending write-ahead |og location (which again can be ignored). After recording
the ending location, the current write-ahead log insertion point is automatically advanced to the next
write-ahead log file, so that the ending write-ahead |og file can be archived immediately to complete
the backup.

pg_sw t ch_wal moves to the next write-ahead log file, alowing the current file to be archived
(assuming you are using continuous archiving). Thereturn valueisthe ending write-ahead log location
+ 1 within the just-completed write-ahead log file. If there has been no write-ahead log activity since
the last write-ahead log switch, pg_swi t ch_wal does nothing and returns the start location of the
write-ahead log file currently in use.

pg_create_restore_point createsanamed write-ahead log record that can be used asrecovery
target, and returns the corresponding write-ahead log location. The given name can then be used with
recovery_target_name to specify the point up to which recovery will proceed. Avoid creating multiple
restore points with the same name, since recovery will stop at the first one whose name matches the
recovery target.

pg_current _wal _| sn displaysthe current write-ahead |og writelocation in the same format used
by the above functions. Similarly, pg_current _wal _i nsert _| sn displays the current write-
ahead log insertion location and pg_cur rent _wal _f | ush_I sn displaysthe current write-ahead
log flush location. The insertion location is the “logical” end of the write-ahead log at any instant,
while the write location is the end of what has actually been written out from the server's internal
buffersand flush location isthelocation guaranteed to be written to durable storage. Thewritelocation
isthe end of what can be examined from outside the server, and is usually what you want if you are
interested in archiving partially-complete write-ahead log files. The insertion and flush locations are
made available primarily for server debugging purposes. These are both read-only operations and do
not require superuser permissions.

Youcanusepg_wal fil e_nane_of f set to extract the corresponding write-ahead log file name
and byte offset from the results of any of the above functions. For example:

post gres=# SELECT * FROM pg_wal fil e_nanme_of fset (pg_st op_backup());
file_name | file_offset

00000001000000000000000D | 4039624
(1 row)

Similarly, pg_wal fi | e_nane extracts just the write-ahead log file name. When the given write-
ahead log location is exactly at awrite-ahead log file boundary, both these functions return the name
of the preceding write-ahead log file. Thisis usually the desired behavior for managing write-ahead
log archiving behavior, since the preceding file isthe last one that currently needs to be archived.

pg_wal | sn_di f f calculatesthe differencein bytes between two write-ahead log locations. It can
beusedwithpg_st at _repl i cati on or somefunctionsshownin Table9.79to get thereplication

lag.
For details about proper usage of these functions, see Section 25.3.

9.26.4. Recovery Control Functions

The functions shown in Table 9.80 provide information about the current status of the standby. These
functions may be executed both during recovery and in normal running.

Table 9.80. Recovery Information Functions

Name Return Type Description

pg_is_in_recovery() bool True if recovery is still in
progress.

pg_l ast_wal receive | spg_| sn Get last write-ahead log location
received and synced to disk

323

Functions and Operators

Name

Return Type

Description

by streaming replication. While
streaming replication is in
progress this will increase
monotonically. If recovery has
completed thiswill remain static
a the value of the last WAL
record received and synced
to disk during recovery. If
streaming replicationisdisabled,
or if it has not yet started, the
function returns NULL.

pg_l ast _wal _replay_I sn

(Pg_I sn

Get last write-ahead log location
replayed during recovery. |If
recovery is till in progress this
will increase monotonically. If
recovery has completed then this
value will remain static at the
value of the last WAL record
applied during that recovery.
When the server has been started
normally without recovery the
function returns NULL.

pg_l ast _xact_replay_ti

Ite Stest(Ip

zone

tinme

Get time stamp of last
transaction replayed during
recovery. This is the time at
which the commit or abort WAL
record for that transaction was
generated on the primary. If no
transactions have been replayed
during recovery, this function
returns NULL. Otherwise, if
recovery is still in progress this
will increase monotonically. If
recovery has completed then this
value will remain static at the
value of the last transaction
applied during that recovery.
When the server has been started
normally without recovery the
function returns NULL.

Thefunctions shown in Table 9.81 control the progress of recovery. These functions may be executed

only during recovery.

Table 9.81. Recovery Control Functions

Name Return Type Description

pg_i s_wal _repl ay_paused(ol Trueif recovery is paused.

pg_wal _replay_pause() |void Pauses recovery immediately
(restricted to superusers by
default, but other users can be
granted EXECUTE to run the
function).

pg_wal replay_resune()|void Restarts recovery if it was

paused (restricted to superusers

324

Functions and Operators

Name Return Type Description

by default, but other users can
be granted EXECUTE to run the
function).

While recovery is paused no further database changes are applied. If in hot standby, all new queries
will see the same consistent snapshot of the database, and no further query conflicts will be generated
until recovery isresumed.

If streaming replication is disabled, the paused state may continue indefinitely without problem. While
streaming replication isin progress WAL records will continue to be received, which will eventually
fill available disk space, depending upon the duration of the pause, the rate of WAL generation and
available disk space.

9.26.5. Snapshot Synchronization Functions

PostgreSQL allows database sessions to synchronize their snapshots. A snapshot determines which
dataisvisibleto the transaction that is using the snapshot. Synchronized snapshots are necessary when
two or more sessions need to see identical content in the database. If two sessions just start their
transactions independently, there is always a possibility that some third transaction commits between
the executions of the two START TRANSACTI ON commands, so that one session sees the effects of
that transaction and the other does not.

To solve this problem, PostgreSQL allows a transaction to export the snapshot it is using. Aslong
as the exporting transaction remains open, other transactions can import its snapshot, and thereby
be guaranteed that they see exactly the same view of the database that the first transaction sees.
But note that any database changes made by