PostGIS 2.1.0 Manual

PostGIS 2.1.0 Manual

SVN Revision (11822)

PostGIS 2.1.0 Manual

ii

Contents
1 Introduction 2
1.1 Project Steering COmMmMILEE o .t v it e e e e e e e e e e e e e 2
1.2 Core Contributors Present 2
1.3 Core Contributors Past e 3
1.4 Other Contributors o e e e e e e e e 3
1.5 More Information e e 4
2 PostGIS Installation 5
2.1 Short Version e 5
2.2 Install Requirements e e e e e e e e e e e e e e e e 6
2.3 Getting the SOUICE o o e e e e e e e e 7
2.4 Compiling and Install from Source: Detailed 7
24.1 Configuration e e 7
242 Building 9
2.4.3 Building PostGIS Extensions and Deployingthem 9
244 Testig e e 11
245 Installation 16
2.5 Create a spatially-enabled database on PostgreSQL lower than9.1 16
2.6 Creating a spatial database using EXTENSIONS 17
2.7 Installing, Upgrading Tiger Geocoder and loading data 18
2.7.1 Tiger Geocoder Enabling your PostGIS database: Using Extension 18
2.7.1.1 Converting a Tiger Geocoder Regular Install to Extension Model 19
2.7.1.2 Using PAGC address standardizer 19
2.7.2 Tiger Geocoder Enabling your PostGIS database: Not Using Extensions 20
273 Loading Tiger Data e e e e 20
274 Upgrading your Tiger Geocoder Install oo 21
2.8 Create a spatially-enabled database from atemplate L o 21
2.9 Upgrading o e e e e e 22
29.1 Softupgrade 22
29.1.1 Soft Upgrade Pre 9.1+ or without extensions 22

PostGIS 2.1.0 Manual

i

2.9.1.2 Soft Upgrade 9.1+ using exXtensions« . v v v v v vt b e e 22

2.9.2 Hardupgrade L e e e e e e e e e 23

2.10 Common Problems during installation L e 24
2,11 IDBC . o 24
2.12 Loader/DUumper o oo e e e e e e e e e e e 25
PostGIS Frequently Asked Questions 26
Using PostGIS: Data Management and Queries 30
4.1 GISODJECES o e e e 30
4.1.1 OpenGIS WKB and WKT e e e e e e 30

4.1.2 PostGIS EWKB, EWKT and Canonical Forms 31

4.1.3 SQL-MMPart3 e e 32

4.2 PostGIS Geography Type o o 33
4.2.1 Geography Basics e e e e 33

4.2.2 When to use Geography Data type over Geometry datatype 35

423 Geography Advanced FAQ 35

4.3 Using OpenGIS Standards L e 35
4.3.1 The SPATTAL_REF_SYS Table and Spatial Reference Systems 36
4.3.2 The GEOMETRY_COLUMNS VIEW et 37

433 CreatingaSpatial Table L 37

4.3.4 Manually Registering Geometry Columns in geometry_columns 38

4.3.5 Ensuring OpenGIS compliancy of geometries 41
4.3.6 Dimensionally Extended 9 Intersection Model (DE-9IM) 45
43.6.1 Theory o e 46

4.4 Loading GIS (Vector) Data e e e 49
441 LoadingDataUsing SQL e 49

442 shp2pgsql: Using the ESRI Shapefile Loader 49

45 Retrieving GISData. L e e e e 51
4.5.1 Using SQLtoRetrieve Data e 51
452 Usingthe Dumper e 52

4.6 BuildingIndexes L e 52
4.6.1 GiSTIndexes o e e 53

4.62 UsingIndexes. e 53

477 Complex QUETIeS o i e 54
4.7.1 Taking Advantage of Indexes L e 54
4.7.2 Examples of Spatial SQL L. e 54

PostGIS 2.1.0 Manual

iv

5 Raster Data Management, Queries, and Applications 58
5.1 Loading and Creating Rasters e e e 58
5.1.1 Usingraster2pgsql to load rasters e 58

5.1.2 Creating rasters using PostGIS raster functions L. 62

5.2 Raster Catalogs e e 62
5.2.1 Raster Columns Catalog e e e 62

522 Raster OVEIVIEWS o v o it it e e e e e e e e e e e e 63

5.3 Building Custom Applications with PostGIS Raster 64
5.3.1 PHP Example Outputting using ST_AsPNG in concert with other raster functions 64

5.3.2 ASP.NET C# Example Outputting using ST_AsPNG in concert with other raster functions 65

5.3.3 Java console app that outputs raster query as Image file oL, 66

5.3.4 Use PLPython to dump outimages viaSQL 68

5.3.5 Outputting Rasters with PSQL e 68

6 Using PostGIS Geometry: Building Applications 70
6.1 Using MapServer o o e e e e e e e e 70
6.1.1 BasicUsage e 70

6.1.2 Frequently Asked Questions 71

6.1.3 Advanced Usage e e e e e 72

6.1.4 Examples o e e e e 73

6.2 JavaClients JDBC) e 74
6.3 CClients (Ilbpq) o o 75
6.3.1 TextCursors e e e e e e 75

6.3.2 Binary Cursors e e 75

7 Performance tips 76
7.1 Small tables of large geometries L L e 76
7.1.1 Problemdescription e e e 76

7.1.2 Workarounds L. e 76

7.2 CLUSTERing on geometry indices i e e 77
7.3 Avoiding dimension CONVErsion Lt e e e e e e e e e 77
7.4 Tuning your configurationl e e e e e e 77
TATL Startup oo e e e e e e e 78

TA2 RUNLME L o e e e e e e 78

PostGIS 2.1.0 Manual

v
8 PostGIS Reference 79
8.1 PostgreSQL PostGIS Geometry/Geography/Box Types i e 79
.11 box2d 79

8.1.2 box3d e 79

8.1.3 geOmEtry e e e e e 80

8.1.4 geometry_dump L. e e e e e 80

8.1.5 geography 80

8.2 Management Functions L e e e e e e 81
8.2.1 AddGeometryColumn e e e 81

8.2.2 DropGeometryColumn L L e e e e e e e 83

8.2.3 DropGeometryTable e 84

8.2.4 PostGIS_Full_Version e 84

8.2.5 PostGIS_GEOS_Version o o 0 e s 85

8.2.6 PostGIS_LibXML_Version e e 85

8.2.7 PostGIS_Lib Build_Date e 86

8.2.8 PostGIS_Lib_Version e 86

8.2.9 PostGIS_PROJ_Version v i i i e e 87
8.2.10 PostGIS_Scripts_Build_Date e e e 87
8.2.11 PostGIS_Scripts_Installed 88
8.2.12 PostGIS_Scripts_Released L 88
8.2.13 PostGIS_Version o s 89
8.2.14 Populate_Geometry_Columns L e e e e e e e 89
8.2.15 UpdateGeometrySRID e 91

8.3 Geometry CONSLIUCIOTS v v v v o i i e i e e e e e e e e e e e e e e e e e e e 92
8.3.1 ST_BdPolyFromText e e 92

8.3.2 ST_BdMPolyFromText e e e e e 92

8.3.3 ST Box2dFromGeoHash e 93

8.3.4 ST_GeogFromText e e e e e 94

8.3.5 ST_GeographyFromText o e 94
8.3.6 ST_GeogFromWKB e 95

8.3.7 ST GeomCollFromText e s 95

8.3.8 ST_GeomFromEWKB e 96

8.3.9 ST _GeomFromEWKT e 97
8.3.10 ST_GeometryFromText e e e e e 99
8.3.11 ST GeomFromGeoHash e 99
8.3.12 ST_GeomFromGML e 100
8.3.13 ST GeomFromGeoJSON e 102
8.3.14 ST_GeomFromKML e 103
8.3.15 ST_GMLToSQL 104

PostGIS 2.1.0 Manual

vi

8.3.16 ST _GeomFromText e 105
8.3.17 ST_GeomFromWKB e 106
8.3.18 ST LineFromMultiPoint e 107
8.3.19 ST _LineFromText e 108
8.3.20 ST_LineFromWKB e 108
8.3.21 ST_LinestringFromWKB e 109
8.3.22 ST _MakeBox2D e 110
8.3.23 ST_3DMakeBox e e 111
8.3.24 ST_MakeLine e 111
8.3.25 ST_MakeEnvelope e e e e 113
8.3.26 ST_MakePolygon e 113
8.3.27 ST_MakePoint e 115
8.3.28 ST_MakePointM L . 116
8.3.29 ST_MLineFromText e 117
8.3.30 ST MPointFromText e 118
8.3.31 ST_MPolyFromText e e e e e e e 119
8.3.32 ST_Point 120
8.3.33 ST_PointFromGeoHash e 120
8.3.34 ST PointFromText e e 121
8.3.35 ST _PointFromWKB e 122
8.3.36 ST_Polygon 123
8.3.37 ST_PolygonFromText e e e e e 124
8.3.38 ST_WKBTOSQL 125
8.3.39 ST_WKTToSQL e e 125
84 Geometry ACCESSOIS .« . v v v v v e v e 126
8.4.1 GeometryType e e e e e e 126
8.4.2 ST Boundary e e e 127
843 ST CoordDim e e 128
8.4.4 ST DImMeENnSion o v i e s 129
8.4.5 ST_EndPoint e 130
8.4.6 ST_Envelope e 131
8.4.7 ST_ExteriorRing e e 132
8.4.8 ST_GeometryN L e e e e 133
8.4.9 ST_GeometryType o o o i e e e e e 135
8.4.10 ST_InteriorRingN e 136
8.4.11 ST _IsClosed o o i i e e e e 137
8.4.12 ST ISCollection o o e s 138
8.4.13 ST_ISEmpty o o e e e e 140
8.4.14 ST_ISRIng 141

PostGIS 2.1.0 Manual

vii

8.4.15 ST_IsSimple o o e e 142
8.4.16 ST_IsValid 142
8.4.17 ST IsValidReason o e s 143
8.4.18 ST_IsValidDetail e 144
8.4.19 ST M . . . 145
8.4.20 ST_NDIMS i 146
8.4.21 ST_NPOINS o e 147
8.4.22 ST_NRINGS o 148
8.4.23 ST NumGeOMELIES o e e e e e e e e e e e s 148
8.4.24 ST_NumlnteriorRings o e 149
8.4.25 ST _NumlnteriorRing L e 150
8.426 ST_NumPatches 150
8.4.27 ST NumPoints s 151
8.4.28 ST_PatchN 152
8.4.29 ST _PointN 153
8.4.30 ST_SRID 154
8.4.31 ST_StartPoint o 155
8.4.32 ST_Summary e e e e e e 156
8.4.33 ST X . o o o 157
8434 ST_XMaXottt 158
8.4.35 ST_XMIN o oo i e 159
8.4.36 STLY . . o o 160
8437 ST_YMaX o o o 160
8.4.38 ST_YMIN 161
8439 ST _Z . . o 162
8.4.40 ST_ZMax o 163
8.4.41 ST Zmflag 164
8.4.42 ST_ZMIn 165
8.5 Geometry Editors 166
8.5.1 ST_AddPoint 166
852 ST_Affine o 167
853 ST_Force2D 168
8.54 ST _Force3D o 169
8.5.5 ST_Force3DZ 170
8.5.6 ST _Force3DM 171
8577 ST_ForcedD 172
8.5.8 ST ForceCollection o 0 e s 172
8.5.9 ST_ForceSFS 174
8.5.10 ST_ForceRHR 174

PostGIS 2.1.0 Manual

viii

8.5.11 ST_LineMerge o o ot e 175
8.5.12 ST_CollectionExtract 176
8.5.13 ST_CollectionHOMOZENIZE oo ittt ittt e e e e e e 176
8.5.14 ST_Multi 177
8.5.15 ST RemovePoInt e s 178
85.16 ST_Reverse 178
8.5.17 ST_Rotate e 179
8.5.18 ST_RotateX 180
8.5.19 ST_RotateY 181
8520 ST_RotateZ o 181
8.5.21 ST_Scale 183
8.5.22 ST_Segmentize o i e e e e e e e 184
8.5.23 ST_SetPoint e 185
8.5.24 ST_SetSRID 185
8.5.25 ST_SnapToGrid L . e 186
8.5.26 ST_Snap 188
8.5.27 ST _Transform o s 191
8.5.28 ST_ Translate 193
8.5.29 ST TransScale s 194
8.6 Geometry OULPULS ot i e e e e e e e e e e e e e e 195
8.6.1 ST_AsBinary e 195
8.6.2 ST_ASEWKB 197
8.63 ST_ASEWKT 198
8.6.4 ST_AsGeoJSON 200
8.6.5 ST_AsGML 201
8.6.6 ST_ASHEXEWKB 203
8.6.7 ST_AsKML 204
8.6.8 ST_AsSSVG 205
8.6.9 ST _AsX3D 206
8.6.10 ST_GeoHash 209
8.6.11 ST_ASTEXt o o e 210
8.6.12 ST_AsLatLonText 211
8.7 OPErators i e e e e e e e e e e e 212
8T.1 && . . o 212
872 &&& . . . 213
873 &< 214
874 &<l . o 215
8.5 &> 216
B87.6 << i i 217

PostGIS 2.1.0 Manual

ix

877 <<l o 217
8.7 8 = 218
87,9 > 219
B8T7.10 @ . . o 220
711 1&> . o o 221
8712 I>> o 222
8.7 13 ~ 222
BT 14 ~= o 223
BT.15 <> o 224
8716 <#> . . L 226
8.8 Spatial Relationships and Measurements oo e e e e 227
8.8.1 ST_3DClosestPoint e e e 227
8.82 ST 3DDIStANCE« o v ot e e e e e e e e e e e 228
8.83 ST 3DDWithin e e 229
8.8.4 ST_3DDFullyWithin 230
8.8.5 ST_3DINtersects v v v ittt e e e e e e e e e e 231
8.8.6 ST_3DLongestline it e e e e e e 232
8.8.7 ST_3DMaxDistance o it e e e e 233
8.8.8 ST 3DShortestline e e 234
8.89 ST_Area e 236
8.8.10 ST_Azimuth e e 237
8.8.11 ST_Centroid e e e 238
8.8.12 ST ClosestPoint s 240
8.8.13 ST_Contains ot e e e e e 241
8.8.14 ST_ContainsProperly e 245
8.8.15 ST_CovVers e e e 246
8.8.16 ST_CoveredBy e 248
8.8.17 ST_CrosSes . . . v v v v v it i e e e e e e e e e e 249
8.8.18 ST_LineCrossingDirection o e e e 251
8.8.19 ST _DISJoint« o e e e e e e 253
8.8.20 ST DIStance o o o o s 255
8.8.21 ST_HausdorffDistance e 256
8.8.22 ST MaxDIistance e s 257
8.8.23 ST_Distance_Sphere L e e e e 258
8.8.24 ST_Distance_Spheroid L 259
8.8.25 ST_DFullyWithin. e e 259
8.8.26 ST_DWithin 260
8.8.27 ST_Equals e e 261
8.8.28 ST_HaSAIC o o o 262

PostGIS 2.1.0 Manual

X

8.8.20 ST INErSECts o o v o o e e s 263
8.830 ST_Length 264
8.831 ST _Length2D 266
8.832 ST 3DLength. 266
8.8.33 ST_Length_Spheroid e 267
8.8.34 ST_Length2D_Spheroid e e 268
8.8.35 ST_3DLength_Spheroid e 269
8.8.36 ST_Longestline e e e e e 270
8.8.37 ST_OrderingEquals. e 272
8.8.38 ST_Overlaps o . o e e e 273
8.8.39 ST Perimeter o o e s 275
8.8.40 ST_Perimeter2D 277
8.8.41 ST 3DPerimeter o e e s 277
8.8.42 ST_PointOnSurface 278
8.8.43 ST_Project o e 279
8.8.44 ST Relate. 280
8.8.45 ST RelateMatch s 281
8.8.46 ST_ShortestLine 282
8.8.47 ST Touches o s 283
8.8.48 ST_Within 285
8.9 Using SFCGAL Advanced 2D/3D functionso i i 286
89.1 ST_Extrude 287
8.9.2 ST_StraightSkeleton e 287
893 ST_IsPlanar. 287
8.9.4 ST _Orientation o i i e e e e e 288
8.9.5 ST_ForceLHR 288
8.9.6 ST _MinkowskiSum e 289
8.9.7 ST_Tesselate 289
8.10 Geometry Processing e 289
8.10.1 ST_Buffer 289
8.10.2 ST BuildArea e 293
8.10.3 ST_Collect 295
8.10.4 ST ConcaveHull s 297
8.10.5 ST_ConvexHull. 302
8.10.6 ST CurveToliine s 303
8.10.7 ST_DelaunayTriangles o o i e e e e e e e 305
8.10.8 ST Difference o e s 310
8109 ST Dump 311

PostGIS 2.1.0 Manual

Xi
8.10. 11 ST_DumpRings o e e 317
8.10.12 ST_FlipCoordinates o i i e e e e e e e e e e e 318
81013 ST INtersection o v v e e e e e e s 319
8.10.14 ST_LineToCurve e e e e 320
8.10.15ST_MakeValid L 322
8.10.16 ST _MemUnion L . o e e e e e e 322
8.10.17 ST_MinimumBoundingCircle e 323
8.10.18 ST_Polygonize e e e e e e e 324
8.J0.19ST_Node 325
8.10.20 ST_OffsetCurve o e e e e e e 326
8.10.21 ST_RemoveRepeatedPoints e e 330
8.10.22 ST_SharedPaths e 331
8.10.23 ST_Shift_Longitude e 333
8.10.24 ST_Simplify o e 334
8.10.25 ST_SimplifyPreserveTopology e 334
8.10.26 ST_SpPLit e e 335
8.10.27 ST_SymbDifference e 337
8028 ST _Union o o e e e 339
8.10.29 ST_UnaryUnion L . it e e e e e 341
8.11 Linear Referencing e e e e e 342
8.11.1 ST_LinelnterpolatePoint 342
8.11.2 ST_LineLocatePoint e 343
8.11.3 ST_LineSubstring e e e e 344
8.11.4 ST_LocateAlong e e e e e e e 346
8.11.5 ST LocateBetween o s 347
8.11.6 ST_LocateBetweenElevations e 348
8.11.7 ST_InterpolatePoint e 349
8.11.8 ST_AddMeasure ittt e e e e e e 349
8.12 Long Transactions SUPPOIt o v vttt e e e e e e e e e 350
8.12.1 AddAuth e e 350
8.12.2 CheckAuth e 351
8.12.3 DisableLongTransactions v v i i e e e e e e e e e e e e 352
8.12.4 EnableLongTransactions ot vttt e e e e e e e 352
8.12.5 LockROW e e 353
8.12.6 UnlockROWS e 353
8.13 Miscellaneous Functions L e e 354
8.13.1 ST Accum e s 354
8.13.2 Box2D . . . e 355

8.13.3 Box3D 356

PostGIS 2.1.0 Manual

xii

8.13.4 ST EstimatedEXtent e e 356
8.13.5 ST_Expand e e e e 357
8.13.6 ST_EXtent 359
8.13.7 ST 3DEXIENt o e e e e e e e e 360
8.13.8 Find_SRID 361
8.13.9 ST _Mem_Size 362
8.13.10 ST Point_Inside_Circle s 363

8.14 Exceptional Functions e e e e e e e 363
8.14.1 PostGIS_AddBBOX 363
8.14.2 PostGIS_DropBBox e e 364
8.14.3 PostGIS_HasBBOX e 365

9 Raster Reference 366
9.1 Raster Support Data types e e e 367
9.1.1 geomval e 367

9.1.2 addbandarg e e e e e e 367

9.1.3 rastbandarg e 367

014 TaSteT e e e e 368
9.1.5 reclassarg e e e e e e e e e e e e e e 3068
9.1.6 UNIONATZ o v vt e e e e e e e e e e e 369

9.2 Raster Management L e e e e e e e e e e e e e 369
9.2.1 AddRasterConstraints e e e e 369

9.2.2 DropRasterConstraintsl e e e e e e e e e e 371

9.2.3 PostGIS_Raster_Lib_Build_Date 372
9.2.4 PostGIS_Raster Lib_Version 373
9.2.5 ST_GDALDIIVETS« o o i i e e e e e e e e e e 373
9.2.6 UpdateRasterSRID e e e 376

9.3 Raster ConsStruCtors« v v v it e e e e e e e e e e e 377
93.1 ST_AddBand 377
0.3.2 ST _ASRAStEr e e e 379
933 ST Band e 381
9.3.4 ST_MakeEmptyRaster e 383
935 ST Tile o 384
9.3.6 ST FromGDALRaASter e e 386

0.4 RaAStEr ACCESSOIS o v vttt it e e 387
9.4.1 ST _GeoReference o 387

9.42 ST_Height e 388
9.43 ST_ISEmpty e e e e e e e e e e e 389

944 ST MetaData e e e e 389

PostGIS 2.1.0 Manual

Xiii
9.4.5 ST NumBands 390
9.4.6 ST_PixelHeight. 390
947 ST_PixelWidth o 391
9.48 ST_ScaleX 392
949 ST_ScaleY 393
9.4.10 ST_RasterToWorldCoord 394
9.4.11 ST RasterToWorldCoordX 394
9.4.12 ST_RasterToWorldCoordY 395
9.4.13 ST_ROtation o o it i e e e e e 396
9.4.14 ST_SKkewX 397
9.4.15 ST_SKewY o 398
9.4.16 ST_SRID L 398
9.4.17 ST_Summary o o o e e e e e e e e 399
9.4.18 ST_UpperLeftX e e e 400
9.4.19 ST_UpperLeftY e 400
9.420 ST_Width 401
9.4.21 ST WorldToRasterCoord 401
9.422 ST _WorldToRasterCoordX 402
9.4.23 ST WorldToRasterCoordY o 403
9.5 Raster Band Accessors 403
9.5.1 ST BandMetaData 403
952 ST_BandNoDataValue 404
9.5.3 ST BandIsNoData e e 405
9.54 ST BandPath 406
9.5.5 ST_BandPixelType e 406
9.5.6 ST_HasNoBand 407
9.6 Raster Pixel Accessors and Setters L e e e e e e e e 408
9.6.1 ST_PixelAsPolygon e e e 408
9.6.2 ST_PixelAsPolygons 409
9.6.3 ST_PixelAsPoint 409
9.6.4 ST _PixelAsPoints e 410
9.6.5 ST_PixelAsCentroid 411
9.6.6 ST PixelAsCentroids e e 411
9.6.7 ST_Value 412
9.6.8 ST NearestValue 0 e 415
9.6.9 ST_Neighborhood e e 417
9.6.10 ST_SetValue 419
9.6.11 ST_SetValues 420
9.6.12 ST_DumpValues e 428

PostGIS 2.1.0 Manual

Xiv

9.6.13 ST_PixelOfValue 429

9.7 RasterEditors 430
0.7.1 ST _SetGeoReference e 430
972 ST_SetRotation 432
0.7.3 ST _SetScale e 432
9.7.4 ST_SetSKew 433
9.7.5 ST_SetSRID 434
9.7.6 ST_SetUpperLeft e e e 434
9.777 ST_Resample e 435
97.8 ST_Rescale 436
979 ST_Reskew o o 437
9.7.10 ST_SnapToGrid e e e e 438
0.7.11 ST _RESIZE 439
9.7.12 ST_Transform 441

9.8 Raster Band Editors L L 443
9.8.1 ST_SetBandNoDataValue 443
0.8.2 ST SetBandIsNoData 444
9.9 Raster Band Statistics and Analytics L. e e 445
9.9.1 ST_Count o e e 445
9.9.2 ST_Histogram e e e e e e e 446
9.9.3 ST _Quantile e 448
9.9.4 ST_SummaryStats o e e e e e e e e e 449
9.9.5 ST ValueCount o e e 451
0.10 Raster OUtputs o o o e e e e e e e e e e 454
9.10.1 ST_AsBinary e 454
9.10.2 ST_AsGDALRaSter e 454
9.10.3 ST_ASIPEG o 455
9.10.4 ST_ASPNG 456
9.10.5 ST_ASTIFF o 457
9.11 Raster Processing e e e e e e 458
9.11.1 Map Algebra e 458
O.11.1.1 ST .CHp o o e 458

9.11.1.2 ST_ColorMap e 460

9.11.1.3 ST_Intersection ittt it 463

9.11.1.4 ST MapAlgebra e 465

9.11.1.5 ST_MapAlgebra e e e 470

9.11.1.6 ST _MapAlgebraExpr e 472

9.11.1.7 ST_MapAlgebraExpr e e 474

9.11.1.8 ST _MapAlgebraFct e 479

PostGIS 2.1.0 Manual

XV
9.11.1.9 ST_MapAlgebraFct e 483
9.11.1.10 ST_MapAlgebraFctNgb e 487
9.11.1.11 ST_Reclass e 489
O.01.1.12 ST_Union oo e 490

9.11.2 Built-in Map Algebra Callback Functions 491
9.11.2.1 ST_Distinctdma e 491
9.11.2.2 ST InvDistWeightdma 492
9.11.23 ST _Max4ma e 493
0.11.2.4 ST Meandma i e e e e 494
9.11.25 ST_Mindma 495
9.11.2.6 ST _MinDistdma e e e 496
9.11.27 ST_Rangedma o o e e e e 497
9.11.2.8 ST_StdDev4Ama e 498
9.11.29 ST _Sumdma e 499

9.11.3 DEM (Elevation) i e e e e e e 0500
91131 ST_ASPECt . . . o o o e e e e e e 500
9.11.3.2 ST HillShade 0502
9.11.3.3 ST_Roughness e e e 503
9.11.34 ST_SIope o i 504
9.11.3.5 ST_TPL e 506
9.11.3.6 ST_TRI e 5006

9.11.4 Raster to GEOMELrY o v it e e e e e e e e e e e e 507
9.11.4.1 Box3D e e 50T
9.1142 ST ConvexHull 507
9.11.43 ST _DumpAsPolygons 508
9.11.4.4 ST_Envelope. 0 e e e 509
9.11.4.5 ST _MinConvexHull e 510
9.11.4.6 ST_Polygon e e 511

9.12 Raster Operatorst e e e 513

90.12.1 && 513

0.12.2 &< o o 513

0.12.3 &> . . 514

9.13 Raster and Raster Band Spatial Relationships 515

9.13.1 ST_Containso i e e 515

9.13.2 ST_ContainsProperly 516

9.13.3 ST_COVEISo i it 516

9.13.4 ST_CoveredBy e 517

9.13.5 ST_DIsjoint o oo e 518

9.13.6 ST _INLErsectst v i e e e e e 519

PostGIS 2.1.0 Manual

XVi

9.13.7 ST_Overlaps e 520
0.13.8 ST _Touches e e 521
9.13.9 ST_SameAlignment e 522
9.13.10 ST_NotSameAlignmentReason 523
91311 ST_Within o Lo e 523
9.13.12ST_DWithin L o e e e e 524
9.13.13ST_DFullyWithin e 525

10 PostGIS Raster Frequently Asked Questions 527
11 Topology 531
I1.1 Topology TYPES o o o o e e e e e e e e e e 531
11.1.1 getfaceedges_returntype o o o i e e e e e e e 531
11.1.2 TopoGeometry v vttt e e e e e e e 532
11.1.3 validatetopology_returntype o v v v v i i e e e e e e e e e e e e e e e 532
11.2 Topology Domains o L . i e e e e e 533
11.2.1 TopoElement e e 533
11.2.2 TopoElementAIray o v o i i e e e e e e e e e e e e e e e e e e 533

11.3 Topology and TopoGeometry Management o v vt v v v it et e e e e e 534
11.3.1 AddTopoGeometryColumn L e e e 534
11.3.2 DropTopology o o o e 535
11.3.3 DropTopoGeometryColumn it ittt e e e e e 535
11.3.4 TopologySummaryot e e e e e e 536
11.3.5 ValidateTopology o e e 537
11.4 Topology CONSIIUCIOIS v v vt ittt e e e et e e e e e e e 537
11.4.1 CreateTopology o o o e e e e e e 537
11.42 CopyTopology e e 538
11.43 ST_InitTopoGeo i e e e e e 538
11.44 ST_CreateTopoGeO v v i i i e e e e e e e e e e e e e e e e e e e 539
11.4.5 TopoGeo_AddPoint e e 540
11.4.6 TopoGeo_AddLineString i i e 540
11.477 TopoGeo_AddPolygon e 541

11.5 Topology Editors o e e e e e e e e 541
11.5.1 ST_AddIsoNode 541
11.52 ST_AddIsoEdge e 542
11.5.3 ST_AddEdgeNewFaces e e e e e 542
11.5.4 ST_AddEdgeModFace e 543
11.5.5 ST_RemEdgeNewFace e 544
11.5.6 ST_RemEdgeModFace e 544

PostGIS 2.1.0 Manual

XVii

11.5.77 ST_ChangeEdgeGeom ittt 545
11.5.8 ST_ModEdgeSplit 546
1159 ST_ModEdgeHeal e 546
11.5.10 ST_NewEdgeHeal e 547
11.5.11 ST _MovelsoNode e e 547
11.5.12ST_NewEdgesSplit L e e e e 548
11.5.13 ST_RemovelsoNode e e 549

11.6 Topology ACCESSOIS v v v v i v i it e e e e e e e e e e e e e e e e e e 550
11.6.1 GetEdgeByPoint e e e e 550
11.6.2 GetFaceByPoint e 550
11.6.3 GetNodeByPoint 551
11.6.4 GetTopologyID e 552
11.6.5 GetTopologySRID e e 553
11.6.6 GetTopologyName e 553
11.6.7 ST_GetFaceEdges e e e 554
11.6.8 ST_GetFaceGeometry o v v i it e et e e e e e e e e e e e e e e e 554
11.6.9 GetRingEdges e e 555
11.6.10 GetNodeEdges e 556

11.7 Topology Processing e e e 556
11.7.1 Polygonize e e e e e e e e 556
11.7.2 AddNode e e e 557
11.7.3 AddEdge e 557
11.7.4 AddFace 558
11.7.5 ST_Simplify o 560
11.8 TopoGeometry CONSIrUCtOrS ot it ittt e e e e e e e 560
11.8.1 CreateTopoGeom vt ittt e e e e e 560
11.8.2 toTopoGeom o o e e e e e e e e e 562
11.8.3 TopoElementArray_Agg e e 563
11.9 TopoGeometry Editors e 564
11.9.1 clearTopoGeom o i e e 564
11.9.2 toTopoGeom o o o e e e e e e e e e 564
11.10TopoGeometry ACCESSOTS o v v v v ittt e e e e et e e e e e e e e e e 565
11.10.1 GetTopoGeomElementArray o o v v i i it e e e e e e 565
11.10.2 GetTopoGeomElements o it i e e e e e e e e 565
11.11TopoGeometry OULPULS o vt it e e e e e e e e e e e e e e e e e 566
TTITTASGML . . L 566

11.11.2 AsTopoJSON . . . o 568

PostGIS 2.1.0 Manual

Xviii

12 PostGIS Extras 570
12.1 Tiger Geocoder e e 570
12.1.1 Drop_Indexes_Generate_SCript v i i i i i e e e e e e e e e e 570
12.1.2 Drop_Nation_Tables_Generate_Script o it 571
12.1.3 Drop_State_Tables_Generate_Script i v v it e e e e e e 572
12.1.4 Geocode e e 5T
12.1.5 Geocode_Intersection e e e 575
12.1.6 Get_Geocode_Settingot e e e e e 576
12.1.7 Get_Tract e e e 577
12.1.8 Install_Missing_Indexes ot i i e e e e 577
12.1.9 Loader_Generate_Census_SCript o vt ittt 578
12.1.10 Loader_Generate_Script i i e e e e e e 580
12.1.11 Loader_Generate_Nation_Script e 581
12.1.12 Missing_Indexes_Generate_Scripto e e e 582
12.1.13 Normalize_ Address o e e e e e 583
12.1.14 Pagc_Normalize_ Address 584
12.1.15Pprint_Addy e e 586
12.1.16 Reverse_Geocode o s 586
12.1.17 Topology_Load_Tiger e e 588
12.1.18 Set_Geocode_Setting i i e e e e e e e e e e e e e e 0590

13 PostGIS Special Functions Index 592
13.1 PostGIS Aggregate Functions e 592
13.2 PostGIS SQL-MM Compliant Functions e 592
13.3 PostGIS Geography Support Functions e 597
13.4 PostGIS Raster Support Functions L e 599
13.5 PostGIS Geometry / Geography / Raster Dump Functions 603
13.6 PostGIS Box Functions e 604
13.7 PostGIS Functions that support 3D e e e 604
13.8 PostGIS Curved Geometry Support Functions 608
13.9 PostGIS Polyhedral Surface Support Functions 611
13.10PostGIS Function Support Matrix o i e e e e 613
13.11New, Enhanced or changed PostGIS Functions 621
13.11.1 PostGIS Functions new or enhanced in 2.1 o o 621
13.11.2 PostGIS functions breaking changes in 2.1 624
13.11.3 PostGIS Functions new, behavior changed, or enhancedin2.0 625
13.11.4 PostGIS Functions changed behaviorin2.0 633
13.11.5 PostGIS Functions new, behavior changed, or enhancedin1.5 635
13.11.6 PostGIS Functions new, behavior changed, or enhancedin 1.4 636

13.11.7 PostGIS Functions new in 1.3 e 637

PostGIS 2.1.0 Manual

Xix

14 Reporting Problems 638
14.1 Reporting Software Bugs L e 638
14.2 Reporting Documentation ISsues e e e e e 638
A Appendix 639
A.l Release 2.1.0 639
A.1.1 Important/Breaking Changes 639
A.12 NewPFeatures e 640
A.1.3 Enhancements L 641
A4 FiXeS o e 642
ALS Knownlssueso 643

A2 Release 2.0.3 L e e 643
A2.1 BugFixes e e e 643
A.22 Enhancements e 644

A3 Release 2.0.2 L e e 644
A3l BugFixes e e e e 644
A3.2 Enhancements e 645

A4 Release 2.0.1 L L e e 645
A4l BugFixes e e e e e 646
A4.2 Enhancements L e e e e e 647

AS Release 2.0.0 e 647
A5.1 Testers- Ourunsung heroes e 647
A.5.2 Important / Breaking Changes 647
AS53 NewPFeatures e 648
A.5.4 Enhancements e 648
AS5S5 BugFixes e 649
A.5.6 Release specificcredits L e e e e e e 649

A.6 Release 1.5.4 649
A6.1 BugFixes o e e 649

AT Release 1.5.3 . . . o L L e 650
AT7.1 BugFixes 650

A8 Release 1.52 e 650
AB.1 BugFixes 650

A9 Release 1.5.1 o e e e 651
A9.1 BugFixes e e e 651

A.10 Release 1.5.0 o 651
A.10.1 APIStability o e 652
A.10.2 Compatibility L e 652

A.10.3 New Features e e 652

PostGIS 2.1.0 Manual

XX
A.10.4 Enhancements L e e 653
A0S Bugfixes o e e 653

A1l Release 1.4.0 e 653
ATL1 APIStability o o e e 653
A.11.2 Compatibility L L e 653
A11.3 New Features e 653
A.11.4 Enhancements L e e 654
ATLS Bugfixes o o o e e 654

A2 Release 1.3.6 L 654

A3 Release 1.3.5 . . . L . e 654

A.l4 Release 1.3.4 655

AlS Release 1.3.3 . . . L L e e 655

A.l6 Release 1.3.2 . . . L . L e 655

A.l7 Release 1.3.1 o e 655

A.18 Release 1.3.0 oL e e 655
A.18.1 Added Functionality e e e e 655
A.18.2 Performance Enhancements 655
A.18.3 Other Changes i i e e e e e e e e 656

A.19 Release 1.2.1 L L e e 656
AT9.1 Changes o o o o e e e e e e 656

A20 Release 1.2.0 L L e e 656
A20.1 Changes o v o i e e e e e e e 656

A21 Release 1.1.6 656
A21.1 Upgrading o e e e e e e 656
A21.2 BugfiXes oo e 657
A21.3 Otherchanges. o e e e e e 657

A22 Release 1.1.5 657
A22.1 Upgrading o e e e e e e e 657
A222 BUugfiXes i 657
A223 New Features e 657

A23 Release 1.1.4 L L e e e 657
A23.1 Upgrading o e e e e 658
A232 BugfiXes 658
A.23.3 Javachanges L e e 658

A24 Release 1.1.3 L L e e e 658
A24.1 Upgrading o e e e e 658
A24.2 Bug fiIXes / COITECINESS o v v v it e e e e e e e e e e e e 658
A.24.3 New functionalities L e 659

A24.4 JDBCchanges e e e 659

PostGIS 2.1.0 Manual

XXi
A24.5 Otherchanges e 659
A25Release 1.1.2o 659
A25.1 Upgrading oL e e 659
A252 Bugfixes i e e e 659
A.253 New functionalities L 660
A25.4 Otherchanges. o e e e 660
A26 Release 1.1.1 o 660
A26.1 Upgrading e e e e e 660
A26.2 BUugfiXes e 660
A.26.3 New functionalities L 660
A27 Release 1.1.0 o 661
A27.1 Credits oo 661
A27.2 Upgradingo e e 661
A273 New functions 661
A27.4 BugfiXes i 662
A.27.5 Function semantic changes e e e e 662
A.27.6 Performance improvementsot e e e e e e e e e e 662
A277 JDBC2works o 662
A.27.8 Othernew things e 662
A27.9 Otherchanges. i e e e e e e e 662
A28 Release 1.0.6 663
A28.1 Upgrading o e e e e e e 663
A28.2 BUugfiXes 663
A28.3 TMProvementsS o v v e 663
A29 Release 1.0.5 e 663
A29.1 Upgrading o e e e e e 663
A292 Library changes e e e e e e 664
A.29.3 Loaderchanges e e e e 664
A29.4 Otherchanges e 664
A30 Release 1.0.4 664
A30.1 Upgrading o L e e 664
A30.2 Bugfixes o e e e e e e 664
A303 Improvementso e e e e e e e e e e e e e 665
A3l Release 1.0.3 665
A3L.1 Upgrading oL e 665
A31.2 Bugfixes o e e e e e e 665
A313 ImpProvementso e e e e e e e e e e e e e e 665
A32Release 1.0.2 665

A32.1 Upgrading L e 666

PostGIS 2.1.0 Manual

XXii
A322 BUugfiXes i e 666
A32.3 TMProvemMeNntS v v v v e 666
A33 Release 1.O0.1 o 666
A33.1 Upgrading L e 666
A.33.2 Librarychanges o o e 666
A.33.3 Other changes/additions e e e e e 666
A34 Release 1.0.0 L e 667
A34.1 Upgrading oL e e 667
A.34.2 Library changes o e e e e e e e e 667
A.34.3 Other changes/additions e e e 667
A35 Release 1.0.0RCO L 667
A35.1 Upgrading oL e e 667
A.35.2 Library changes e e e e e 667
A35.3 Scriptschanges e 667
A.35.4 Otherchanges e 668
A36 Release 1.O.ORCS L L L 668
A36.1 Upgrading o e e e 668
A.36.2 Librarychanges e 668
A.36.3 Otherchanges o o e 668
A37 Release 1.0.0RC4 668
A37.1 Upgrading L e e 668
A.37.2 Librarychanges e 668
A.37.3 Scriptschanges e e 669
A37.4 Otherchanges. o e e e e e e 669
A38 Release 1.0.0RC3 L 669
A38.1 Upgrading L L e 669
A.38.2 Library changes e e e e e 669
A38.3 Scriptschanges e 669
A38.4 JDBCchanges e e e e 670
A38.5 Otherchanges o e 670
A39 Release 1.0.0RC2 670
A39.1 Upgrading 670
A.39.2 Librarychanges e e 670
A.39.3 Scriptschanges e e e e e e e e e 670
A39.4 Otherchanges. o e e e e 671
A.40 Release 1.0.0RCL 671
A40.1 Upgrading o o e 671

A40.2 Changes o v o o e e e e e e e e e 671

Abstract

PostGIS is an extension to the PostgreSQL object-relational database system which allows GIS (Geographic Information Sys-
tems) objects to be stored in the database. PostGIS includes support for GiST-based R-Tree spatial indexes, and functions for
analysis and processing of GIS objects.

Spatial PostgreSQL

This is the manual for version 2.1.0

This work is licensed under a Creative Commons Attribution-Share Alike 3.0 License. Feel free to use
this material any way you like, but we ask that you attribute credit to the PostGIS Project and wherever possible, a link back to
http://postgis.net.

http://creativecommons.org/licenses/by-sa/3.0/
http://postgis.net

PostGIS 2.1.0 Manual
1/671

SVN Revision (11822)

PostGIS 2.1.0 Manual
2/671

Chapter 1

Introduction

PostGIS was developed by Refractions Research Inc, as a spatial database technology research project. Refractions is a GIS
and database consulting company in Victoria, British Columbia, Canada, specializing in data integration and custom software
development. We plan on supporting and developing PostGIS to support a range of important GIS functionality, including full
OpenGIS support, advanced topological constructs (coverages, surfaces, networks), desktop user interface tools for viewing and
editing GIS data, and web-based access tools.

PostGIS is an incubation project of the OSGeo Foundation. PostGIS is being continually improved and funded by many FOSS4G
Developers as well as corporations all over the world that gain great benefit from its functionality and versatility.

1.1 Project Steering Committee

The PostGIS Project Steering Committee (PSC) coordinates the general direction, release cycles, documentation, and outreach
efforts for the PostGIS project. In addition the PSC provides general user support, accepts and approves patches from the general
PostGIS community and votes on miscellaneous issues involving PostGIS such as developer commit access, new PSC members
or significant API changes.

Mark Cave-Ayland Coordinates bug fixing and maintenance effort, alignment of PostGIS with PostgreSQL releases, spatial in-
dex selectivity and binding, loader/dumper, and Shapefile GUI Loader, integration of new and new function enhancements.

Regina Obe Buildbot Maintenance, windows production and experimental builds, Documentation, general user support on
PostGIS newsgroup, X3D support, Tiger Geocoder Support, management functions, and smoke testing new functionality
or major code changes.

Bborie Park Raster development, integration with GDAL, raster loader, user support, general bug fixing, testing on various OS
(Slackware, Mac, Windows, and more)

Paul Ramsey (Chair) Co-founder of PostGIS project. General bug fixing, geography support, geography and geometry index
support (2D, 3D, nD index and anything spatial index), underlying geometry internal structures, PointCloud (in develop-
ment), GEOS functionality integration and alignment with GEOS releases, loader/dumper, and Shapefile GUI loader.

Sandro Santilli Bug fixes and maintenance and integration of new GEOS functionality and alignment with GEOS releases,
Topology support, and Raster framework and low level api functions.

1.2 Core Contributors Present

Jorge Arévalo Raster development, GDAL driver support, loader

Nicklas Avén Distance function enhancements (including 3D distance and relationship functions) and additions, Tiny WKB
output format (TWKB) (in development) and general user support

PostGIS 2.1.0 Manual
3/671

Olivier Courtin Input output XML (KML,GML)/GeoJSON functions, 3D support and bug fixes.
Pierre Racine Raster overall architecture, prototyping, programming support

David Zwarg Raster development (mostly map algebra analytic functions)

1.3 Core Contributors Past

Chris Hodgson Prior PSC Member. General development, site and buildbot maintenance, OSGeo incubation management

Kevin Neufeld Prior PSC Member. Documentation and documentation support tools, buildbot maintenance, advanced user
support on PostGIS newsgroup, and PostGIS maintenance function enhancements.

Dave Blasby The original developer/Co-founder of PostGIS. Dave wrote the server side objects, index bindings, and many of
the server side analytical functions.

Mateusz Loskot Raster loader, low level raster api functions
Jeff Lounsbury Original development of the Shape file loader/dumper. Current PostGIS Project Owner representative.

Mark Leslie Ongoing maintenance and development of core functions. Enhanced curve support. Shapefile GUI loader.

1.4 Other Contributors

Individual Contributors In alphabetical order: Alex Bodnaru, Alex Mayrhofer, Andrea Peri, Andreas Forg Tollefsen, An-
dreas Neumann, Anne Ghisla, Barbara Phillipot, Ben Jubb, Bernhard Reiter, Brian Hamlin, Bruce Rindahl, Bruno Wolff
III, Bryce L. Nordgren, Carl Anderson, Charlie Savage, Dane Springmeyer, David Skea, David Techer, Eduin Carrillo,
Even Rouault, Frank Warmerdam, George Silva, Gerald Fenoy, Gino Lucrezi, Guillaume Lelarge, [IDA Tetsushi, Ingvild
Nystuen, Jason Smith, Jeff Adams, Jose Carlos Martinez Llari, Kashif Rasul, Klaus Foerster, Kris Jurka, Leo Hsu, Loic
Dachary, Luca S. Percich, Maria Arias de Reyna, Mark Sondheim, Markus Schaber, Maxime Guillaud, Maxime van Nop-
pen, Michael Fuhr, Nathan Wagner, Nathaniel Clay, Nikita Shulga, Norman Vine, Rafal Magda, Ralph Mason, Richard
Greenwood, Silvio Grosso, Steffen Macke, Stephen Frost, Tom van Tilburg, Vincent Picavet

Corporate Sponsors These are corporate entities that have contributed developer time, hosting, or direct monetary funding to
the PostGIS project

In alphabetical order: Arrival 3D, Associazione Italiana per I’Informazione Geografica Libera (GFOSS.it), AusVet, Aven-
cia, Azavea, Cadcorp, CampToCamp, City of Boston (DND), Clever Elephant Solutions, Cooperativa Alveo, Deimos
Space, Faunalia, Geographic Data BC, Hunter Systems Group, Lidwala Consulting Engineers, LisaSoft, Logical Tracking
& Tracing International AG, Michigan Tech Research Institute, Natural Resources Canada, Norwegian Forest and Land-
scape Institute, OpenGeo, OSGeo, Oslandia, Palantir Technologies, Paragon Corporation, R3 GIS, Refractions Research,
Regione Toscana-SIGTA, Safe Software, Sirius Corporation plc, Stadt Uster, UC Davis Center for Vectorborne Diseases,
University of Laval, U.S Department of State (HIU), Vizzuality, Zonar Systems

Crowd Funding Campaigns Crowd funding campaigns are campaigns we run to get badly wanted features funded that can
service a large number of people. Each campaign is specifically focused on a particular feature or set of features. Each
sponsor chips in a small fraction of the needed funding and with enough people/organizations contributing, we have the
funds to pay for the work that will help many. If you have an idea for a feature you think many others would be willing to
co-fund, please post to the PostGIS newsgroup your thoughts and together we can make it happen.

PostGIS 2.0.0 was the first release we tried this strategy. We used PledgeBank and we got two successful campaigns out
of it.

postgistopology - 10 plus sponsors each contributed $250 USD to build toTopoGeometry function and beef up topology
support in 2.0.0. It happened.

postgis6dwindows - 20 someodd sponsors each contributed $100 USD to pay for the work needed to work out PostGIS
64-bit issues on windows. It happened. We now have a 64-bit release for PostGIS 2.0.1 available on PostgreSQL stack
builder.

http://postgis.net/mailman/listinfo/postgis-users
http://www.pledgebank.com
http://www.pledgebank.com/postgistopology
http://www.pledgebank.com/postgis64windows

PostGIS 2.1.0 Manual
4 /671

Important Support Libraries The GEOS geometry operations library, and the algorithmic work of Martin Davis in making it
all work, ongoing maintenance and support of Mateusz Loskot, Sandro Santilli (strk), Paul Ramsey and others.

The GDAL Geospatial Data Abstraction Library, by Frank Warmerdam and others is used to power much of the raster
functionality introduced in PostGIS 2.0.0. In kind, improvements needed in GDAL to support PostGIS are contributed
back to the GDAL project.

The Proj4 cartographic projection library, and the work of Gerald Evenden and Frank Warmerdam in creating and main-
taining it.

Last but not least, the PostgreSQL DBMS, The giant that PostGIS stands on. Much of the speed and flexibility of PostGIS
would not be possible without the extensibility, great query planner, GIST index, and plethora of SQL features provided
by PostgreSQL.

1.5 More Information

¢ The latest software, documentation and news items are available at the PostGIS web site, http://postgis.net.

* More information about the GEOS geometry operations library is available athttp://trac.osgeo.org/geos/.

* More information about the Proj4 reprojection library is available at http://trac.osgeo.org/proj/.

* More information about the PostgreSQL database server is available at the PostgreSQL main site http://www.postgresql.org.

* More information about GiST indexing is available at the PostgreSQL GiST development site, http://www.sai.msu.su/~megera/-
postgres/gist/.

* More information about MapServer internet map server is available at http://mapserver.org.

* The "Simple Features for Specification for SQL" is available at the OpenGIS Consortium web site: http://www.opengeospatial.org/-

http://trac.osgeo.org/geos/
http://trac.osgeo.org/gdal/
http://trac.osgeo.org/proj/
http://www.postgresql.org
http://postgis.net
http://trac.osgeo.org/geos/
http://trac.osgeo.org/proj/
http://www.postgresql.org
http://www.sai.msu.su/~megera/postgres/gist/
http://www.sai.msu.su/~megera/postgres/gist/
http://mapserver.org/
http://www.opengeospatial.org/standards/sfs
http://www.opengeospatial.org/
http://www.opengeospatial.org/

PostGIS 2.1.0 Manual
5/671

Chapter 2

PostGIS Installation

This chapter details the steps required to install PostGIS.

2.1 Short Version

To compile assuming you have all the dependencies in your search path:

tar xvfz postgis-2.1.0.tar.gz
cd postgis-2.1.0

./configure

make

make install

Once postgis is installed, it needs to be enabled in each individual database you want to use it in.

s Note
N"‘""! The raster support is currently optional, but installed by default. For enabling using the PostgreSQL 9.1+ extensions
model raster is required. Using the extension enable process is preferred and more user-friendly. To spatially enable
your database:

psgl -d yourdatabase —-c "CREATE EXTENSION postgis;"
psgl —-d yourdatabase —-c "CREATE EXTENSION postgis_topology;"
psgl -d yourdatabase —-c "CREATE EXTENSION postgis_tiger_geocoder;"

Please refer to Section 2.4.3 for more details about querying installed/available extensions and upgrading extensions, or switching
from a non-extension install to an extension install.

For those running PostgreSQL 9.0 or who decided for some reason not to compile with raster support, or just are old-fashioned,
here are longer more painful instructions for you:

All the .sql files once installed will be installed in share/contrib/postgis-2.1 folder of your PostgreSQL install

createdb yourdatabase

createlang plpgsgl yourdatabase

psgl -d yourdatabase —-f postgis.sqgl

psgl -d yourdatabase —-f postgis_comments.sqgl
psgl -d yourdatabase -f spatial_ref sys.sgl
psgl -d yourdatabase -f rtpostgis.sqgl

psgl —-d yourdatabase —-f raster_comments.sqgl
psql —-d yourdatabase -f topology/topology.sgl
psgl —-d yourdatabase —-f topology_comments.sqgl

The rest of this chapter goes into detail each of the above installation steps.

PostGIS 2.1.0 Manual
6/671

2.2 Install Requirements

PostGIS has the following requirements for building and usage:

Required

* PostgreSQL 9.0 or higher. A complete installation of PostgreSQL (including server headers) is required. PostgreSQL is
available from http://www.postgresql.org .

For a full PostgreSQL / PostGIS support matrix and PostGIS/GEOS support matrix refer to http://trac.osgeo.org/postgis/wiki/-
UsersWikiPostgreSQLPostGIS

* GNU C compiler (gcc). Some other ANSI C compilers can be used to compile PostGIS, but we find far fewer problems when
compiling with gcc.

* GNU Make (gmake or make). For many systems, GNU make is the default version of make. Check the version by invoking
make -v. Other versions of make may not process the PostGIS Makefile properly.

* Proj4 reprojection library, version 4.6.0 or greater. The Proj4 library is used to provide coordinate reprojection support within
PostGIS. Proj4 is available for download from http://trac.osgeo.org/proj/ .

* GEOS geometry library, version 3.3 or greater, but GEOS 3.4+ is recommended to take full advantage of all the new func-
tions and features. Without GEOS 3.4, you will be missing some major enhancements such as ST_Triangles and long-running
function interruption, and improvements to geometry validation and making geometries valid such as ST_ValidDetail and
ST_MakeValid. GEOS 3.3.2+ is also required for topology support. GEOS is available for download from http://trac.osgeo.org/-
geos/ and 3.4+ is backward-compatible with older versions so fairly safe to upgrade.

e LibXML2, version 2.5.x or higher. LibXML2 is currently used in some imports functions (ST_GeomFromGML and ST_GeomFromKI
LibXML2 is available for download from http://xmlsoft.org/downloads.html.

* JSON-C, version 0.9 or higher. JSON-C is currently used to import GeoJSON via the function ST_GeomFromGeoJson.
JSON-C is available for download from http://oss.metaparadigm.com/json-c/.

* GDAL, version 1.8 or higher (1.9 or higher is strongly recommended since some things will not work well or behavior differ-
ently with lower versions). This is required for raster support and to be able to install with CREATE EXTENSION postgis
so highly recommended for those running 9.1+. http://trac.osgeo.org/gdal/wiki/DownloadSource.

Optional

* GDAL (pseudo optional) only if you don’t want raster and don’t care about installing with CREATE EXTENSION post-
gis can you leave it out. Keep in mind other extensions may have a requires postgis extension which will prevent you from
installing them unless you install postgis as an extension. So it is highly recommended you compile with GDAL support.

* GTK (requires GTK+2.0, 2.8+) to compile the shp2pgsql-gui shape file loader. http://www.gtk.org/ .

* SFCGAL, version 0.2 (or higher) could be used to provide additional 2D and 3D advanced analysis functions to PostGIS
cf Section 8.9. And also allow to use SFCGAL rather than GEOS for some 2D functions provided by both backends (like
ST_Intersection or ST_Area, for instance). A PostgreSQL configuration variable postgis.backend allow end user to
control which backend he want to use if SFCGAL is installed (GEOS by default). Nota: SFCGAL 0.2 require at least CGAL
4.1. https://github.com/Oslandia/SFCGAL.

e CUnit (CUnit). This is needed for regression testing. http://cunit.sourceforge.net/

* Apache Ant (ant) is required for building any of the drivers under the java directory. Antis available from http://ant.apache.org

* DocBook (xs1ltproc) is required for building the documentation. Docbook is available from http://www.docbook.org/ .

» DBLatex (dblatex) isrequired for building the documentation in PDF format. DBLatex is available from http://dblatex.sourceforge.1

* ImageMagick (convert) is required to generate the images used in the documentation. ImageMagick is available from
http://www.imagemagick.org/ .

http://www.postgresql.org
http://trac.osgeo.org/postgis/wiki/UsersWikiPostgreSQLPostGIS
http://trac.osgeo.org/postgis/wiki/UsersWikiPostgreSQLPostGIS
http://trac.osgeo.org/proj/
http://trac.osgeo.org/geos/
http://trac.osgeo.org/geos/
http://xmlsoft.org/downloads.html
http://oss.metaparadigm.com/json-c/
http://trac.osgeo.org/gdal/wiki/DownloadSource
http://www.gtk.org/
https://github.com/Oslandia/SFCGAL
http://cunit.sourceforge.net/
http://ant.apache.org
http://ant.apache.org
http://www.docbook.org/
http://dblatex.sourceforge.net/
http://dblatex.sourceforge.net/
http://www.imagemagick.org/

PostGIS 2.1.0 Manual
7 /671

2.3 Getting the Source

Retrieve the PostGIS source archive from the downloads website http://download.osgeo.org/postgis/source/postgis-2.1.0.tar.gz

wget http://download.osgeo.org/postgis/source/postgis-2.1.0.tar.gz
tar -xvzf postgis-2.1.0.tar.gz

This will create a directory called postgis—2.1.0 in the current working directory.
Alternatively, checkout the source from the svn repository http://svn.osgeo.org/postgis/trunk/ .

svn checkout http://svn.osgeo.org/postgis/trunk/ postgis-2.1.0

Change into the newly created postgis—2.1.0 directory to continue the installation.

2.4 Compiling and Install from Source: Detailed

Note
Many OS systems now include pre-built packages for PostgreSQL/PostGIS. In many cases compilation is only neces-
sary if you want the most bleeding edge versions or you are a package maintainer.

Na'ld This section includes general compilation instructions, if you are compiling for Windows etc or another OS, you may
find additional more detailed help at PostGIS User contributed compile guides and PostGIS Dev Wiki.
Pre-Built Packages for various OS are listed in PostGIS Pre-built Packages
If you are a windows user, you can get stable builds via Stackbuilder or PostGIS Windows download site We also
have very bleeding-edge windows experimental builds that are built usually once or twice a week or whenever anything
exciting happens. You can use these to experiment with the in progress releases of PostGIS

The PostGIS module is an extension to the PostgreSQL backend server. As such, PostGIS 2.1.0 requires full PostgreSQL server
headers access in order to compile. It can be built against PostgreSQL versions 9.0 or higher. Earlier versions of PostgreSQL are
not supported.

Refer to the PostgreSQL installation guides if you haven’t already installed PostgreSQL. http://www.postgresql.org .

Note
For GEOS functionality, when you install PostgresSQL you may need to explicitly link PostgreSQL against the standard

¢ C++ library:
Note!

LDFLAGS=-1stdc++ ./configure [YOUR OPTIONS HERE]

This is a workaround for bogus C++ exceptions interaction with older development tools. If you experience weird
problems (backend unexpectedly closed or similar things) try this trick. This will require recompiling your PostgreSQL
from scratch, of course.

The following steps outline the configuration and compilation of the PostGIS source. They are written for Linux users and will
not work on Windows or Mac.

2.4.1 Configuration

As with most linux installations, the first step is to generate the Makefile that will be used to build the source code. This is done
by running the shell script

Jconfigure

http://download.osgeo.org/postgis/source/postgis-2.1.0.tar.gz
http://subversion.apache.org/
http://svn.osgeo.org/postgis/trunk/
http://trac.osgeo.org/postgis/wiki/UsersWikiInstall
http://trac.osgeo.org/postgis/wiki/DevWikiMain
http://trac.osgeo.org/postgis/wiki/UsersWikiPackages
http://www.postgis.org/download/windows/
http://www.postgis.org/download/windows/experimental.php
http://www.postgresql.org

PostGIS 2.1.0 Manual
8/671

With no additional parameters, this command will attempt to automatically locate the required components and libraries needed
to build the PostGIS source code on your system. Although this is the most common usage of ./configure, the script accepts
several parameters for those who have the required libraries and programs in non-standard locations.

The following list shows only the most commonly used parameters. For a complete list, use the --help or --help=short parame-
ters.

--prefix=PREFIX This is the location the PostGIS libraries and SQL scripts will be installed to. By default, this location is the
same as the detected PostgreSQL installation.

& Caution
This parameter is currently broken, as the package will only install into the PostgreSQL installation directory. Visit
http://trac.osgeo.org/postgis/ticket/635 to track this bug.

--with-pgconfig=FILE PostgreSQL provides a utility called pg_config to enable extensions like PostGIS to locate the Post-
greSQL installation directory. Use this parameter (--with-pgconfig=/path/to/pg_config) to manually specify a particular
PostgreSQL installation that PostGIS will build against.

--with-gdalconfig=FILE GDAL, a required library, provides functionality needed for raster support gdal-config to enable soft-
ware installations to locate the GDAL installation directory. Use this parameter (--with-gdalconfig=/path/to/gdal-config)
to manually specify a particular GDAL installation that PostGIS will build against.

--with-geosconfig=FILE GEOS, a required geometry library, provides a utility called geos-config to enable software installa-
tions to locate the GEOS installation directory. Use this parameter (--with-geosconfig=/path/to/geos-config) to manually
specify a particular GEOS installation that PostGIS will build against.

--with-xml2config=FILE LibXML is the library required for doing GeomFromKML/GML processes. It normally is found
if you have libxml installed, but if not or you want a specific version used, you’ll need to point PostGIS at a specific
xml2-config confi file to enable software installations to locate the LibXML installation directory. Use this parameter
(>--with-xml2config=/path/to/xml2-config) to manually specify a particular LibXML installation that PostGIS will build
against.

--with-projdir=DIR Proj4 is a reprojection library required by PostGIS. Use this parameter (--with-projdir=/path/to/projdir)
to manually specify a particular Proj4 installation directory that PostGIS will build against.

--with-libiconv=DIR Directory where iconv is installed.

--with-jsondir=DIR JSON-C is an MIT-licensed JSON library required by PostGIS ST_GeomFromJSON support. Use this
parameter (--with-jsondir=/path/to/jsondir) to manually specify a particular JSON-C installation directory that PostGIS
will build against.

--with-gui Compile the data import GUI (requires GTK+2.0). This will create shp2pgsql-gui graphical interface to shp2pgsql.

--with-raster Compile with raster support. This will build rtpostgis-2.1.0 library and rtpostgis.sql file. This may not be required
in final release as plan is to build in raster support by default.

--with-topology Compile with topology support. This will build the topology.sql file. There is no corresponding library as all
logic needed for topology is in postgis-2.1.0 library.

--with-gettext=no By default PostGIS will try to detect gettext support and compile with it, however if you run into incompatibil-
ity issues that cause breakage of loader, you can disable it entirely with this command. Refer to ticket http://trac.osgeo.org/-
postgis/ticket/748 for an example issue solved by configuring with this. NOTE: that you aren’t missing much by turning
this off. This is used for international help/label support for the GUI loader which is not yet documented and still experi-
mental.

http://trac.osgeo.org/postgis/ticket/635
http://oss.metaparadigm.com/json-c/
http://trac.osgeo.org/postgis/ticket/748
http://trac.osgeo.org/postgis/ticket/748

PostGIS 2.1.0 Manual
9/671

Note
. If you obtained PostGIS from the SVN repository , the first step is really to run the script
Not? jautogen.sh
This script will generate the configure script that in turn is used to customize the installation of PostGIS.
If you instead obtained PostGIS as a tarball, running ./autogen.sh is not necessary as configure has already been
generated.

2.4.2 Building

Once the Makefile has been generated, building PostGIS is as simple as running
make
The last line of the output should be "PostGIS was built successfully. Ready to install."

As of PostGIS v1.4.0, all the functions have comments generated from the documentation. If you wish to install these comments
into your spatial databases later, run the command which requires docbook. The postgis_comments.sql and other package
comments files raster_comments.sql, topology_comments.sql are also packaged in the tar.gz distribution in the doc folder so no
need to make comments if installing from the tar ball.

make comments

Introduced in PostGIS 2.0. This generates html cheat sheets suitable for quick reference or for student handouts. This requires
xsltproc to build and will generate 4 files in doc folder topology_cheatsheet .html, tiger_geocoder_cheatsheet.
html, raster_cheatsheet.html, postgis_cheatsheet.html

You can download some pre-built ones available in html and pdf from PostGIS / PostgreSQL Study Guides

make cheatsheets

2.4.3 Building PostGIS Extensions and Deploying them

The PostGIS extensions are built and installed automatically if you are using PostgreSQL 9.1+.

If you are building from source repository, you need to build the function descriptions first. These get built if you have docbook
installed. You can also manually build with the statement:

make comments

Building the comments is not necessary if you are building from a release tar ball since these are packaged pre-built with the tar
ball already.

If you are building against PostgreSQL 9.1, the extensions should automatically build as part of the make install process. You
can if needed build from the extensions folders or copy files if you need them on a different server.

cd extensions

cd postgis

make clean

make

make install

cd ..

cd postgis_topology
make clean

make

make install

The extension files will always be the same for the same version of PostGIS regardless of OS, so it is fine to copy over the
extension files from one OS to another as long as you have the PostGIS binaries already installed on your servers.

If you want to install the extensions manually on a separate server different from your development, You need to copy the
following files from the extensions folder into the PostgreSQL / share / extension folder of your PostgreSQL install
as well as the needed binaries for regular PostGIS if you don’t have them already on the server.

http://svn.osgeo.org/postgis/trunk/
http://www.postgis.us/study_guides

PostGIS 2.1.0 Manual
10/ 671

* These are the control files that denote information such as the version of the extension to install if not specified. postgis.
control, postgis_topology.control.

 All the files in the /sql folder of each extension. Note that these need to be copied to the root of the PostgreSQL share/extension
folder extensions/postgis/sqgl/*.sql, extensions/postgis_topology/sqgl/*.sql

Once you do that, you should see postgis, postgis_topology as available extensions in PgAdmin -> extensions.
If you are using psql, you can verify that the extensions are installed by running this query:

SELECT name, default_version,installed_version
FROM pg_available_extensions WHERE name LIKE ’'postgis%’ ;

name | default_version | installed_version
_________________ e
postgis | 2.1.0 | 2.1.0
postgis_topology | 2.1.0 |

If you have the extension installed in the database you are querying, you’ll see mention in the installed_version column.
If you get no records back, it means you don’t have postgis extensions installed on the server at all. PgAdmin III 1.14+ will also
provide this information in the extensions section of the database browser tree and will even allow upgrade or uninstall by
right-clicking.

If you have the extensions available, you can install postgis extension in your database of choice by either using pgAdmin
extension interface or running these sql commands:

CREATE EXTENSION postgis;
CREATE EXTENSION postgis_topology;
CREATE EXTENSION postgis_tiger_geocoder;

In psql you can use to see what versions you have installed and also what schema they are installed.

\connect mygisdb
\x
\dx postgisx

List of installed extensions

—[RECORD 1 J—m——m e e
Name | postgis
Version | 2.1.0
Schema | public
Description | PostGIS geometry, geography, and raster spat..
—[RECORD 2 |—m——— e
Name | postgis_tiger_geocoder
Version | 2.1.0
Schema | tiger
Description | PostGIS tiger geocoder and reverse geocoder
=[RECORD 3J] o e S e e e e D e e e e
Name | postgis_topology
Version | 2.1.0
Schema | topology
\

Description PostGIS topology spatial types and functions

PostGIS 2.1.0 Manual
11 /671

Warning

Extension tables spatial_ref_sys, layer, topology can not be explicitly backed up. They can only be backed
up when the respective postgis or postgis_topology extension is backed up, which only seems to happen
when you backup the whole database. As of PostGIS 2.0.1, only srid records not packaged with PostGIS are backed
up when the database is backed up so don’t go around changing srids we package and expect your changes to be
there. Put in a ticket if you find an issue. The structures of extension tables are never backed up since they are created
with CREATE EXTENSION and assumed to be the same for a given version of an extension. These behaviors are
built into the current PostgreSQL extension model, so nothing we can do about it.

If you installed 2.1.0, without using our wonderful extension system, you can change it to be extension based by first upgrading
to the latest micro version running the upgrade scripts: postgis_upgrade_20_minor.sqgl,raster_upgrade_20_
minor.sqgl,topology_upgrade_20_minor.sqgl.

If you installed postgis without raster support, you’ll need to install raster support first (using the full rtpostgis.sql
Then you can run the below commands to package the functions in their respective extension.

CREATE EXTENSION postgis FROM unpackaged;
CREATE EXTENSION postgis_topology FROM unpackaged;
CREATE EXTENSION postgis_tiger_geocoder FROM unpackaged;

2.4.4 Testing

If you wish to test the PostGIS build, run
make check

The above command will run through various checks and regression tests using the generated library against an actual Post-
greSQL database.

) Note
Note
If you configured PostGIS using non-standard PostgreSQL, GEOS, or Proj4 locations, you may need to add their library

locations to the LD_LIBRARY_PATH environment variable.

Caution

£ 1 % Currently, the make check relies on the PATH and PGPORT environment variables when performing the checks - it
does not use the PostgreSQL version that may have been specified using the configuration parameter --with-pgconfig.
So make sure to modify your PATH to match the detected PostgreSQL installation during configuration or be prepared
to deal with the impending headaches.

If successful, the output of the test should be similar to the following:

CUnit - A Unit testing framework for C - Version 2.1-0
http://cunit.sourceforge.net/

Suite: print_suite

Test: test_lwprint_default_format ... passed
Test: test_lwprint_format_orders ... passed
Test: test_lwprint_optional_ format ... passed
Test: test_lwprint_oddball_ formats ... passed
Test: test_lwprint_bad_formats ... passed

Suite: misc
Test: test_misc_force_2d ... passed

PostGIS 2.1.0 Manual

12/671

IT2SE 3
Test:
Test:
Test:

Suite:

Test:
Test:
Test:
Test:
Test:
Test:
Test:
Test:
Test:

Suite:

Test:
Test:
Test:
Test:
Test:
Test:
Test:
Test:
Test:
Test:
Test:
Test:
Test:
Test:
Test:
Test:

Suite:

Test:
Test:
Test:
Test:
Test:
Test:
Test:
Test:

Suite:

Test:

Suite:

Test:
Test:
Test:
Test:
Test:
Test:
Test:
Test:
Test:
Test:
Test:

Suite:

Test:

Suite:

Test:
Test:
Test:
Test:
Test:

test_misc_simplify ... passed
test_misc_count_vertices ... passed
test_misc_area ... passed
test_misc_wkb ... passed
ptarray
test_ptarray_append_point ... passed
test_ptarray_append_ptarray ... passed
test_ptarray_locate_point ... passed
test_ptarray_isccw ... passed
test_ptarray_signed_area ... passed
test_ptarray_desegmentize ... passed
test_ptarray_insert_point ... passed
test_ptarray_contains_point ... passed
test_ptarrayarc_contains_point ... passed
PostGIS Computational Geometry Suite
test_lw_segment_side ... passed
test_lw_segment_intersects ... passed
test_lwline_crossing_short_lines ... passed
test_lwline_crossing_long_lines ... passed
test_lwline_crossing_bugs ... passed
test_lwpoint_set_ordinate ... passed
test_lwpoint_get_ordinate ... passed
test_point_interpolate ... passed
test_lwline_clip ... passed
test_lwline_clip_big ... passed
test_lwmline_clip ... passed
test_geohash_point ... passed
test_geohash_precision ... passed
test_geohash ... passed
test_geohash_point_as_int ... passed
test_isclosed ... passed
buildarea
buildareal ... passed
buildarea2 ... passed
buildarea3 ... passed
buildaread4 ... passed
buildareadb ... passed
buildareab5 ... passed
buildarea6 ... passed
buildarea7 ... passed
clean
test_lwgeom_make_valid ... passed
PostGIS Measures Suite
test_mindistance2d_tolerance ... passed
test_rect_tree_contains_point ... passed
test_rect_tree_intersects_tree ... passed
test_lwgeom_segmentize2d ... passed
test_lwgeom_locate_along ... passed
test_lw_dist2d_pt_arc ... passed
test_lw_dist2d_seg_arc ... passed
test_lw_dist2d_arc_arc ... passed
test_1lw_arc_length ... passed
test_lw_dist2d_pt_ptarrayarc ... passed

test_lw_dist2d_ptarray_ptarrayarc ... passed

node

test_lwgeom_node ... passed

WKT Out Suite

test_wkt_out_point ... passed
test_wkt_out_linestring ... passed
test_wkt_out_polygon ... passed
test_wkt_out_multipoint ... passed
test_wkt_out_multilinestring ... passed

PostGIS 2.1.0 Manual

13/671

IT2SE 3
Test:
Test:
Test:
Test:
Test:
Test:

Suite:

Test:
Test:
Test:
Test:
Test:
Test:
Test:
Test:
Test:
Test:
Test:
Test:
Test:
Test:
Test:

Suite:

Test:
Test:
Test:
Test:
Test:
Test:
Test:
Test:
Test:
Test:
Test:
Test:
Test:

Suite:

Test:
Test:
Test:
Test:
Test:

Test:

Suite:

Test:
Test:
Test:
Test:

Suite:

Test:

Suite:

Test:
Test:

Suite:

Test:
Test:
Test:
Test:

Suite:

test_wkt_out_multipolygon ... passed
test_wkt_out_collection ... passed
test_wkt_out_circularstring ... passed
test_wkt_out_compoundcurve ... passed
test_wkt_out_curvpolygon ... passed
test_wkt_out_multicurve ... passed
test_wkt_out_multisurface ... passed

WKT In Suite
test_wkt_in_point ... passed
test_wkt_in_linestring ... passed
test_wkt_in_polygon ... passed
test_wkt_in_multipoint ... passed
test_wkt_in_multilinestring ... passed
test_wkt_in_multipolygon ... passed
test_wkt_in_collection ... passed
test_wkt_in_circularstring ... passed
test_wkt_in_compoundcurve ... passed
test_wkt_in_curvpolygon ... passed
test_wkt_in_multicurve ... passed
test_wkt_in_multisurface ... passed
test_wkt_in_tin ... passed
test_wkt_in_polyhedralsurface ... passed
test_wkt_in_errlocation ... passed

WKB Out Suite
test_wkb_out_point ... passed
test_wkb_out_linestring ... passed
test_wkb_out_polygon ... passed
test_wkb_out_multipoint ... passed
test_wkb_out_multilinestring ... passed
test_wkb_out_multipolygon ... passed
test_wkb_out_collection ... passed
test_wkb_out_circularstring ... passed
test_wkb_out_compoundcurve ... passed
test_wkb_out_curvpolygon ... passed
test_wkb_out_multicurve ... passed
test_wkb_out_multisurface ... passed
test_wkb_out_polyhedralsurface ... passed

Geodetic Suite

test_sphere_direction ... passed
test_sphere_project ... passed
test_lwgeom_area_sphere ... passed
test_signum ... passed
test_gbox_from_spherical_ coordinates ... passed
test_geos_noop ... passed

Internal Spatial Trees
test_tree_circ_create ... passed
test_tree_circ_pip ... passed
test_tree_circ_pip2 ... passed
test_tree_circ_distance ... passed
triangulate
test_lwgeom_delaunay_triangulation ... passed
stringbuffer

test_stringbuffer_append ... passed
test_stringbuffer_aprintf ... passed
surface

triangle_parse ... passed

tin_parse ... passed
polyhedralsurface_parse ... passed
surface_dimension ... passed

homogenize

PostGIS 2.1.0 Manual
14 /671

Test: test_coll_point ... passed
Test: test_coll_line ... passed
Test: test_coll_poly ... passed
Test: test_coll_coll ... passed
Test: test_geom ... passed
Test: test_coll_curve ... passed
Suite: force_sfs
Test: test_sfs_11 ... passed
Test: test_sfs_12 ... passed
Test: test_sglmm ... passed
Suite: out_gml
Test: out_gml_test_precision ... passed
Test: out_gml_test_srid ... passed
Test: out_gml_test_dims ... passed
Test: out_gml_test_geodetic ... passed
Test: out_gml_test_geoms ... passed
Test: out_gml_test_geoms_prefix ... passed
Test: out_gml_test_geoms_nodims ... passed
Test: out_gml2_extent ... passed
Test: out_gml3_extent ... passed
Suite: KML Out Suite
Test: out_kml_test_precision ... passed
Test: out_kml_test_dims ... passed
Test: out_kml_test_geoms ... passed
Test: out_kml_test_prefix ... passed
Suite: Geodson Out Suite
Test: out_geojson_test_precision ... passed
Test: out_geojson_test_dims ... passed
Test: out_geojson_test_srid ... passed
Test: out_geojson_test_bbox ... passed
Test: out_geojson_test_geoms ... passed
Suite: SVG Out Suite
Test: out_svg_test_precision ... passed
Test: out_svg_test_dims ... passed
Test: out_svg_test_relative ... passed
Test: out_svg_test_geoms ... passed
Test: out_svg_test_srid ... passed
Suite: X3D Out Suite
Test: out_x3d3_test_precision ... passed
Test: out_x3d3_test_geoms ... passed
——Run Summary: Type Total Ran Passed Failed
suites 27 27 n/a 0
tests 198 198 198 0
asserts 1728 1728 1728 0

Creating database ’'postgis_reg’
Loading PostGIS into ’'postgis_reg’
PostgreSQL 9.3betal on x86_64-unknown-linux-gnu, compiled by gcc (Debian 4.4.5-8) 4.4.5, <
64-bit
Postgis 2.1.0SVN - r11415 - 2013-05-11 02:48:21
GEOS: 3.4.0dev-CAPI-1.8.0 r3797
PROJ: Rel. 4.7.1, 23 September 2009

Running tests

loader/Pointiiiuno... ok
loader/PointM ok
loader/PointZoouueeen.. ok
loader/MultiPointo.... ok
loader/MultiPointM ok

loader/MultiPointZ ok

PostGIS 2.1.0 Manual

15/671

loader/ArC ... ok
loader/ArcMiiiiinn... ok
loader/ArCZ «.eeveueennnn.. ok
loader/Polygonceen... ok
loader/PolygonMouou... ok
loader/PolygonZoeeee... ok
loader/TSTPolygon ok
loader/TSIPolygon ok
loader/TSTIPolygon ok
loader/PointWithSchema ok
loader/NoTransPoint ok

loader/NotReallyMultiPoint

loader/MultiToSinglePoint
loader/ReprojectPts ok
loader/ReprojectPtsGeog
loader/Latinl ok
binary .. ok

regress .. ok
regress_index .. ok
regress_index_nulls .. ok
regress_selectivity .. ok
lwgeom_regress .. ok
regress_lrs .. ok
removepoint .. ok

setpoint .. ok

simplify .. ok

snaptogrid .. ok

summary .. ok

affine .. ok

empty .. ok

measures .. ok

legacy .. ok

long_xact .. ok

ctors .. ok
sgl-mm-serialize .. ok
sgl-mm-circularstring .. ok
sgl-mm—-compoundcurve .. ok
sgl-mm-curvepoly .. ok
sgl-mm—-general .. ok
sgl-mm-multicurve .. ok
sgl-mm-multisurface .. ok
polyvhedralsurface .. ok
polygonize .. ok
postgis_type_name .. ok
geography .. ok
out_geometry .. ok
out_geography .. ok
in_geohash .. ok

in_gml .. ok

in_kml .. ok

iscollection .. ok
regress_ogc .. ok
regress_ogc_cover .. ok
regress_ogc_prep .. ok
regress_bdpoly .. ok
regress_proj .. ok
regress_management .. ok
dump .. ok

dumppoints .. ok

boundary .. ok

wmsservers .. ok

wkt .. ok

PostGIS 2.1.0 Manual
16 /671

wkb .. ok

tickets .. ok

typmod .. ok
remove_repeated_points .. ok
split .. ok

relate .. ok

bestsrid .. ok
concave_hull .. ok
hausdorff .. ok
regress_buffer_params .. ok
offsetcurve .. ok
relatematch .. ok
isvaliddetail .. ok
sharedpaths .. ok

snap .. ok

node .. ok

unaryunion .. ok

clean .. ok

relate_bnr .. ok
delaunaytriangles .. ok
in_geojson .. ok
uninstall .. ok (4112)

Run tests: 90

2.4.5 Installation

To install PostGIS, type
make install

This will copy the PostGIS installation files into their appropriate subdirectory specified by the --prefix configuration parameter.
In particular:

* The loader and dumper binaries are installed in [prefix] /bin.

e The SQL files, such as postgis.sqgl, are installed in [prefix]/share/contrib.

¢ The PostGIS libraries are installed in [prefix]/lib.

If you previously ran the make comments command to generate the postgis_comments.sqgl, raster_comments.sqgl
file, install the sql file by running

make comments-install

N;‘R’! Note

postgis_comments.sqgl, raster_comments.sql, topology_comments.sqgl was separated from the
typical build and installation targets since with it comes the extra dependency of xsltproc.

2.5 Create a spatially-enabled database on PostgreSQL lower than 9.1

The first step in creating a PostGIS database is to create a simple PostgreSQL database.

createdb [yourdatabase]

PostGIS 2.1.0 Manual
17 /671

Many of the PostGIS functions are written in the PL/pgSQL procedural language. As such, the next step to create a PostGIS
database is to enable the PL/pgSQL language in your new database. This is accomplish by the command below command. For
PostgreSQL 8.4+, this is generally already installed

createlang plpgsql [yourdatabase]

Now load the PostGIS object and function definitions into your database by loading the postgis. sql definitions file (located
in [prefix]/share/contrib as specified during the configuration step).

psql -d [yourdatabase] -f postgis.sql

For a complete set of EPSG coordinate system definition identifiers, you can also load the spatial_ref_sys.sqgl definitions
file and populate the spatial_ref_sys table. This will permit you to perform ST_Transform() operations on geometries.

psql -d [yourdatabase] -f spatial_ref_sys.sql

If you wish to add comments to the PostGIS functions, the final step is to load the postgis_comments. sqgl into your spatial
database. The comments can be viewed by simply typing \dd [function_name] from a psql terminal window.

psql -d [yourdatabase] -f postgis_comments.sql
Install raster support
psql -d [yourdatabase] -f rtpostgis.sql

Install raster support comments. This will provide quick help info for each raster function using psql or PgAdmin or any other
PostgreSQL tool that can show function comments

psql -d [yourdatabase] -f raster_comments.sql
Install topology support
psql -d [yourdatabase] -f topology/topology.sql

Install topology support comments. This will provide quick help info for each topology function / type using psql or PgAdmin
or any other PostgreSQL tool that can show function comments

psql -d [yourdatabase] -f topology/topology_comments.sql
If you plan to restore an old backup from prior versions in this new db, run:

psql -d [yourdatabase] -f legacy.sql

. Note
N There is an alternative legacy_minimal.sqgl you can run instead which will install barebones needed to recover
tables and work with apps like MapServer and GeoServer. If you have views that use things like distance / length etc,
you’ll need the full blown 1legacy.sqgl

You can later run uninstall_legacy.sqgl to get rid of the deprecated functions after you are done with restoring and
cleanup.

2.6 Creating a spatial database using EXTENSIONS

If you are using PostgreSQL 9.1+ and have compiled and installed the extensions/ postgis modules, you can create a spatial
database the new way.

createdb [yourdatabase]

The core postgis extension installs PostGIS geometry, geography, raster, spatial_ref_sys and all the functions and comments with
a simple:

CREATE EXTENSION postgis;

PostGIS 2.1.0 Manual
18 /671

command.

psql -d [yourdatabase] -c ''CREATE EXTENSION postgis;"

Topology is packaged as a separate extension and installable with command:
psql -d [yourdatabase] -c ""CREATE EXTENSION postgis_topology;"
If you plan to restore an old backup from prior versions in this new db, run:
psql -d [yourdatabase] -f legacy.sql

You can later run uninstall_legacy.sql to get rid of the deprecated functions after you are done with restoring and
cleanup.

2.7 Installing, Upgrading Tiger Geocoder and loading data

Extras like Tiger geocoder may not be packaged in your PostGIS distribution, but will always be available in the postgis-
2.1.0.tar.gz file. The instructions provided here are also available inthe extras/tiger_geocoder/tiger_2011/README

If you are on Windows and you don’t have tar installed, you can use http://www.7-zip.org/ to unzip the PostGIS tarball.

2.7.1 Tiger Geocoder Enabling your PostGIS database: Using Extension

If you are using PostgreSQL 9.1+ and PostGIS 2.1.0, you can take advantage of the new extension model for installing tiger
geocoder. To do so:

1. First get binaries for PostGIS 2.1.0 or compile and install as usual. This should install the necessary extension files as well
for tiger geocoder.

2. Connect to your database via psql or pgAdmin or some other tool and run the following SQL commands. Note that if you
are installing in a database that already has postgis, you don’t need to do the first step. If you have fuzzystrmatch
extension already installed, you don’t need to do the second step either.

CREATE EXTENSION postgis;
CREATE EXTENSION fuzzystrmatch;
CREATE EXTENSION postgis_tiger_geocoder;

3. To confirm your install is working correctly, run this sql in your database:

SELECT na.address, na.streetname,na.streettypeabbrev, na.zip
FROM normalize_address (’1l Devonshire Place, Boston, MA 02109’) AS na;

Which should output
address | streetname | streettypeabbrev | zip
————————— T Rt e
1 | Devonshire | P1 | 02109

4. Create anew record in tiger.loader_platform table with the paths of your executables and server.

So for example to create a profile called debbie that follows sh convention. You would do:

INSERT INTO tiger.loader_platform(os, declare_sect, pgbin, wget, unzip_command, psql, —
path_sep,
loader, environ_set_command, county_process_command)
SELECT ’"debbie’, declare_sect, pgbin, wget, unzip_command, psqgl, path_sep,
loader, environ_set_command, county_process_command
FROM tiger.loader_platform
WHERE os = ’'sh’;

http://www.7-zip.org/

PostGIS 2.1.0 Manual
19 /671

And then edit the paths in the declare_sect column to those that fit Debbie’s pg, unzip,shp2pgsql, psql, etc path locations.

If you don’t edit this 1oader_plat form table, it will just contain common case locations of items and you’ll have to
edit the generated script after the script is generated.

5. Then run the Loader_Generate_Nation_Script and Loader_Generate_Script SQL functions make sure to use the name of
your custom profile. So for example to do the nation load using our new profile we would:

SELECT Loader_Generate_Nation_Script ('debbie’);

2.7.1.1 Converting a Tiger Geocoder Regular Install to Extension Model

If you installed the tiger geocoder without using the extension model, you can convert to the extension model as follows:

1. Follow instructions in Section 2.7.4 for the non-extension model upgrade.

2. Connect to your database with psql or pgAdmin and run the following command:

CREATE EXTENSION postgis_tiger_geocoder FROM unpackaged;

2.7.1.2 Using PAGC address standardizer

One of the many complaints of folks is the address normalizer function Normalize_Address function that normalizes an address
for prepping before geocoding. The normalizer is far from perfect and trying to patch its imperfectness takes a vast amount of
resources. As such we have integrated with another project that has a much better address standardizer engine. This is currently a
separate project, which is a subproject of PAGC. The source code for this PostgreSQL standardizer extension can be downloaded
from PAGC PostgreSQL Address Standardizer. To use this new normalizer, you compile the pagc extension and install as an
extension in your database.

The PAGC project and standardizer portion in particular, relies on PCRE which is usually already installed on most Nix systems,
but you can download the latest at: http://www.pcre.org

For Windows users, the PostGIS 2.1+ bundle will come packaged with the address_standardizer already so no need to compile
and can move straight to CREATE EXTENSION step.
Compiling

svn co svn://svn.code.sf.net/p/pagc/code/branches/sew-refactor/postgresqgl <
address_standardizer
cd address_standardizer

make

#if you have in non-standard location pcre try

make SHLIB_LINK="-L/path/pcre/lib -lpostgres -lpgport —-lpcre" CPPFLAGS="-I. -I/path/pcre ¢
/include"

make install

Once you have installed, you can connect to your database and run the SQL:

CREATE EXTENSION address_standardizer;

Once you install this extension in the same database as you have installed postgis_tiger_geocoder, then the Pagc_Normalize Ac
can be used instead of Normalize_Address. The other nice thing about this extension is that its tiger agnostic, so can be used
with other data sources such as international addresses.

http://sourceforge.net/p/pagc/code/360/tree/branches/sew-refactor/postgresql
http://www.pcre.org

PostGIS 2.1.0 Manual
20/ 671

2.7.2 Tiger Geocoder Enabling your PostGIS database: Not Using Extensions

First install PostGIS using the prior instructions.

If you don’t have an extras folder, download http://download.osgeo.org/postgis/source/postgis-2.1.0.tar.gz
tar xvfz postgis-2.1.0.tar.gz

cd postgis-2.1.0/extras/tiger_geocoder/tiger_2011

Editthe tiger_loader_2012.sqgl to the paths of your executables server etc or alternatively you can update the 1loader-
_platform table once installed. If you don’t edit this file or the 1oader_plat form table, it will just contain common case
locations of items and you’ll have to edit the generated script after the fact when you run the Loader_Generate_Nation_Script
and Loader_Generate_Script SQL functions.

If you are installing Tiger geocoder for the first time edit either the create_geocode . bat script If you are on windows or the
create_geocode. sh if you are on Linux/Unix/Mac OSX with your PostgreSQL specific settings and run the corresponding
script from the commandline.

Verify that you now have a t iger schema in your database and that it is part of your database search_path. If it is not, add it
with a command something along the line of:

ALTER DATABASE geocoder SET search_path=public, tiger;

The normalizing address functionality works more or less without any data except for tricky addresses. Run this test and verify
things look like this:

SELECT pprint_addy (normalize_address (202 East Fremont Street, Las Vegas, Nevada 891017)) <+
As pretty_address;
pretty_address

202 E Fremont St, Las Vegas, NV 89101

2.7.3 Loading Tiger Data

The instructions for loading data are available in a more detailed form in the extras/tiger_geocoder/tiger_2011/
README. This just includes the general steps.

The load process downloads data from the census website for the respective nation files, states requested, extracts the files,
and then loads each state into its own separate set of state tables. Each state table inherits from the tables defined in tiger
schema so that its sufficient to just query those tables to access all the data and drop a set of state tables at any time using the
Drop_State_Tables_Generate_Script if you need to reload a state or just don’t need a state anymore.

In order to be able to load data you’ll need the following tools:

* A tool to unzip the zip files from census website.
For Unix like systems: unz ip executable which is usually already installed on most Unix like platforms.

For Windows, 7-zip which is a free compress/uncompress tool you can download from http://www.7-zip.org/
* shp2pgsgl commandline which is installed by default when you install PostGIS.

* wget which is a web grabber tool usually installed on most Unix/Linux systems.

If you are on windows, you can get pre-compiled binaries from http://gnuwin32.sourceforge.net/packages/wget.htm

If you are upgrading from tiger_2010, you’ll need to first generate and run Drop_Nation_Tables_Generate_Script. Before you
load any state data, you need to load the nation wide data which you do with Loader_Generate_Nation_Script. Which will
generate a loader script for you. Loader_Generate_Nation_Script is a one-time step that should be done for upgrading (from
2010) and for new installs.

To load state data refer to Loader_Generate_Script to generate a data load script for your platform for the states you desire. Note
that you can install these piecemeal. You don’t have to load all the states you want all at once. You can load them as you need
them.

After the states you desire have been loaded, make sure to run the:

http://download.osgeo.org/postgis/source/postgis-2.1.0.tar.gz
http://www.7-zip.org/
http://gnuwin32.sourceforge.net/packages/wget.htm

PostGIS 2.1.0 Manual
21 /671

SELECT install missing_indexes () ;

as described in Install_Missing_Indexes.

To test that things are working as they should, try to run a geocode on an address in your state using Geocode

2.7.4 Upgrading your Tiger Geocoder Install

If you have Tiger Geocoder packaged with 2.0+ already installed, you can upgrade the functions at any time even from an interim
tar ball if there are fixes you badly need. This will only work for Tiger geocoder not installed with extensions.

If you don’t have an extras folder, download http://download.osgeo.org/postgis/source/postgis-2.1.0.tar.gz

tar xvfz postgis-2.1.0.tar.gz

cd postgis-2.1.0/extras/tiger_geocoder/tiger_2011

Locate the upgrade_geocoder . bat script If you are on windows or the upgrade_geocoder. sh if you are on Linux/U-
nix/Mac OSX. Edit the file to have your postgis database credentials.

If you are upgrading from 2010 or 2011, make sure to unremark out the loader script line so you get the latest script for loading
2012 data.

Then run th corresponding script from the commandline.
Next drop all nation tables and load up the new ones. Generate a drop script with this SQL statement as detailed in Drop_Nation_Tables_(

SELECT drop_nation_tables_generate_script () ;

Run the generated drop SQL statements.
Generate a nation load script with this SELECT statement as detailed in Loader_Generate_Nation_Script
For windows

SELECT loader_generate_nation_script ('windows’) ;

For unix/linux

SELECT loader_generate_nation_script (’sh’);

Refer to Section 2.7.3 for instructions on how to run the generate script. This only needs to be done once.

N:rld Note

You can have a mix of 2010/2011 state tables and can upgrade each state separately. Before you upgrade a state to
2011, you first need to drop the 2010 tables for that state using Drop_State Tables_Generate_Script.

2.8 Create a spatially-enabled database from a template

Some packaged distributions of PostGIS (in particular the Win32 installers for PostGIS >= 1.1.5) load the PostGIS functions
into a template database called template_postgis. If the template_postgis database exists in your PostgreSQL
installation then it is possible for users and/or applications to create spatially-enabled databases using a single command. Note
that in both cases, the database user must have been granted the privilege to create new databases.

From the shell:

createdb -T template_postgis my_spatial_db

From SQL:

postgres=# CREATE DATABASE my_spatial db TEMPLATE=template_postgis

http://download.osgeo.org/postgis/source/postgis-2.1.0.tar.gz

PostGIS 2.1.0 Manual
22 /671

2.9 Upgrading

Upgrading existing spatial databases can be tricky as it requires replacement or introduction of new PostGIS object definitions.
Unfortunately not all definitions can be easily replaced in a live database, so sometimes your best bet is a dump/reload process.

PostGIS provides a SOFT UPGRADE procedure for minor or bugfix releases, and a HARD UPGRADE procedure for major
releases.

Before attempting to upgrade PostGIS, it is always worth to backup your data. If you use the -Fc flag to pg_dump you will
always be able to restore the dump with a HARD UPGRADE.

2.9.1 Soft upgrade

If you installed your database using extensions, you’ll need to upgrade using the extension model as well. If you installed using
the old sql script way, then you should upgrade using the sql script way. Please refer to the appropriate.

2.9.1.1 Soft Upgrade Pre 9.1+ or without extensions
This section applies only to those who installed PostGIS not using extensions. If you have extensions and try to upgrade with
this approach you’ll get messages like:

can’t drop ... because postgis extension depends on it

After compiling you should find several postgis_upgradex*.sql files. Install the one for your version of PostGIS. For
example postgis_upgrade_13_to_15.sqgl should be used if you are upgrading from PostGIS 1.3 to 1.5. If you are
moving from PostGIS 1.* to PostGIS 2.* or from PostGIS 2.* prior to 17409, you need to do a HARD UPGRADE.

psgl -f postgis_upgrade_20_minor.sgl -d your_spatial_ database

The same procedure applies to raster and topology extensions, with upgrade files named rtpostgis_upgradex.sqgl and
topology_upgradex . sqgl respectively. If you need them:

psgl —-f rtpostgis_upgrade_20_minor.sgl -d your_spatial_ database

psgl —-f topology_upgrade_20_minor.sgl -d your_spatial_database

N;‘l"! Note

If you can’t find the postgis_upgradex* . sql specific for upgrading your version you are using a version too early
for a soft upgrade and need to do a HARD UPGRADE.

The PostGIS_Full_Version function should inform you about the need to run this kind of upgrade using a "procs need upgrade"
message.

2.9.1.2 Soft Upgrade 9.1+ using extensions

If you originally installed PostGIS with extensions, then you need to upgrade using extensions as well. Doing a minor upgrade
with extensions, is fairly painless.

ALTER EXTENSION postgis UPDATE TO "2.1.0";
ALTER EXTENSION postgis_topology UPDATE TO "2.1.0";

If you get an error notice something like:

PostGIS 2.1.0 Manual
23 /671

No migration path defined for ... to 2.1.0

Then you’ll need to backup your database, create a fresh one as described in Section 2.6 and then restore your backup ontop of
this new database.

If you get a notice message like:

Version "2.1.0" of extension "postgis" is already installed

Then everything is already up to date and you can safely ignore it. UNLESS you’re attempting to upgrade from an SVN version
to the next (which doesn’t get a new version number); in that case you can append "next" to the version string, and next time
you’ll need to drop the "next" suffix again:

ALTER EXTENSION postgis UPDATE TO "2.1.0next";
ALTER EXTENSION postgis_topology UPDATE TO "2.1.0next";

= Note
N"R’! If you installed PostGIS originally without a version specified, you can often skip the reinstallation of postgis extension
before restoring since the backup just has CREATE EXTENSION postgis and thus picks up the newest latest
version during restore.

2.9.2 Hard upgrade

By HARD UPGRADE we mean full dump/reload of postgis-enabled databases. You need a HARD UPGRADE when PostGIS
objects’ internal storage changes or when SOFT UPGRADE is not possible. The Release Notes appendix reports for each version
whether you need a dump/reload (HARD UPGRADE) to upgrade.

The dump/reload process is assisted by the postgis_restore.pl script which takes care of skipping from the dump all definitions
which belong to PostGIS (including old ones), allowing you to restore your schemas and data into a database with PostGIS
installed without getting duplicate symbol errors or bringing forward deprecated objects.

Supplementary instructions for windows users are available at Windows Hard upgrade.

The Procedure is as follows:

1. Create a "custom-format" dump of the database you want to upgrade (let’s call it o1ddb) include binary blobs (-b) and
verbose (-v) output. The user can be the owner of the db, need not be postgres super account.

pg_dump -h localhost —-p 5432 -U postgres -Fc -b -v —-f "/somepath/olddb.backup" olddb

2. Do a fresh install of PostGIS in a new database -- we’ll refer to this database as newdb. Please refer to Section 2.5 and
Section 2.6 for instructions on how to do this.

The spatial_ref_sys entries found in your dump will be restored, but they will not override existing ones in spatial_ref_sys.
This is to ensure that fixes in the official set will be properly propagated to restored databases. If for any reason you really
want your own overrides of standard entries just don’t load the spatial_ref_sys.sql file when creating the new db.

If your database is really old or you know you’ve been using long deprecated functions in your views and functions, you
might need to load legacy. sql for all your functions and views etc. to properly come back. Only do this if _really_
needed. Consider upgrading your views and functions before dumping instead, if possible. The deprecated functions can
be later removed by loading uninstall_legacy.sql.

3. Restore your backup into your fresh newdb database using postgis_restore.pl. Unexpected errors, if any, will be printed
to the standard error stream by psql. Keep a log of those.

perl utils/postgis_restore.pl "/somepath/olddb.backup" | psgl -h localhost -p 5432 -U <
postgres newdb 2> errors.txt

http://trac.osgeo.org/postgis/wiki/UsersWikiWinUpgrade

PostGIS 2.1.0 Manual
24 /671

Errors may arise in the following cases:

1. Some of your views or functions make use of deprecated PostGIS objects. In order to fix this you may try loading
legacy.sqgl script prior to restore or you’ll have to restore to a version of PostGIS which still contains those objects
and try a migration again after porting your code. If the legacy . sgl way works for you, don’t forget to fix your code to
stop using deprecated functions and drop them loading uninstall_legacy.sql.

2. Some custom records of spatial_ref_sys in dump file have an invalid SRID value. Valid SRID values are bigger than 0 and
smaller than 999000. Values in the 999000.999999 range are reserved for internal use while values > 999999 can’t be used
at all. All your custom records with invalid SRIDs will be retained, with those > 999999 moved into the reserved range,
but the spatial_ref_sys table would loose a check constraint guarding for that invariant to hold and possibly also its primary
key (when multiple invalid SRIDS get converted to the same reserved SRID value).

In order to fix this you should copy your custom SRS to a SRID with a valid value (maybe in the 910000..910999 range),
convert all your tables to the new srid (see UpdateGeometrySRID), delete the invalid entry from spatial_ref sys and re-
construct the check(s) with:

ALTER TABLE spatial_ref_sys ADD CONSTRAINT spatial_ref_ sys_srid_check check (srid > 0 <
AND srid < 999000);

ALTER TABLE spatial_ref sys ADD PRIMARY KEY (srid));

2.10 Common Problems during installation

There are several things to check when your installation or upgrade doesn’t go as you expected.

1. Check that you have installed PostgreSQL 9.0 or newer, and that you are compiling against the same version of the
PostgreSQL source as the version of PostgreSQL that is running. Mix-ups can occur when your (Linux) distribution has
already installed PostgreSQL, or you have otherwise installed PostgreSQL before and forgotten about it. PostGIS will only
work with PostgreSQL 9.0 or newer, and strange, unexpected error messages will result if you use an older version. To
check the version of PostgreSQL which is running, connect to the database using psql and run this query:

SELECT version();

If you are running an RPM based distribution, you can check for the existence of pre-installed packages using the rpm
command as follows: rpm -qa | grep postgresql

2. If your upgrade fails, make sure you are restoring into a database that already has PostGIS installed.
SELECT postgis_full_version();
Also check that configure has correctly detected the location and version of PostgreSQL, the Proj4 library and the GEOS library.

1. The output from configure is used to generate the postgis_config.h file. Check that the POSTGIS_PGSQL_VER-
SION, POSTGIS_PROJ_VERSION and POSTGIS_GEOS_VERSION variables have been set correctly.

2.11 JDBC

The JDBC extensions provide Java objects corresponding to the internal PostGIS types. These objects can be used to write Java
clients which query the PostGIS database and draw or do calculations on the GIS data in PostGIS.

1. Enter the java/ jdbc sub-directory of the PostGIS distribution.

2. Run the ant command. Copy the postgis. jar file to wherever you keep your java libraries.

PostGIS 2.1.0 Manual
25 /671

The JDBC extensions require a PostgreSQL JDBC driver to be present in the current CLASSPATH during the build process. If
the PostgreSQL JDBC driver is located elsewhere, you may pass the location of the JDBC driver JAR separately using the -D
parameter like this:

ant -Dclasspath=/path/to/postgresqgl-jdbc. jar

PostgreSQL JDBC drivers can be downloaded from http://jdbc.postgresql.org .

2.12 Loader/Dumper

The data loader and dumper are built and installed automatically as part of the PostGIS build. To build and install them manually:

cd postgis—-2.1.0/loader
make
make install

The loader is called shp2pgsqgl and converts ESRI Shape files into SQL suitable for loading in PostGIS/PostgreSQL. The
dumper is called pgsgl2shp and converts PostGIS tables (or queries) into ESRI Shape files. For more verbose documentation,
see the online help, and the manual pages.

http://jdbc.postgresql.org

PostGIS 2.1.0 Manual
26 /671

Chapter 3

PostGIS Frequently Asked Questions

1. Where can I find tutorials, guides and workshops on working with PostGIS

OpenGeo has a step by step tutorial guide workshop Introduction to PostGIS. It includes packaged data as well as intro
to working with OpenGeo Suite. It is probably the best tutorial on PostGIS.BostonGIS also has a PostGIS almost idiot’s
guide on getting started. That one is more focused on the windows user.

2. My applications and desktop tools worked with PostGIS 1.5,but they don’t work with PostGIS 2.0. How do 1 fix this?

A lot of deprecated functions were removed from the PostGIS code base in PostGIS 2.0. This has affected applications
in addition to third-party tools such as Geoserver, MapServer, QuantumGIS, and OpenJump to name a few. There are a
couple of ways to resolve this. For the third-party apps, you can try to upgrade to the latest versions of these which have
many of these issues fixed. For your own code, you can change your code to not use the functions removed. Most of these
functions are non ST_ aliases of ST_Union, ST_Length etc. and as a last resort, install the whole of legacy.sqgl or
just the portions of 1legacy.sql you need.The legacy.sql file is located in the same folder as postgis.sql. You can
install this file after you have installed postgis.sql and spatial_ref_sys.sql to get back all the 200 some-odd old functions
we removed.

'

3. When I load OpenStreetMap data with osm2pgsql, I'm getting an error failed: ERROR: operator class "gist_geometry_ops'
does not exist for access method "gist" Error occurred. This worked fine in PostGIS 1.5.

In PostGIS 2, the default geometry operator class gist_geometry_ops was changed to gist_geometry_ops_2d and the
gist_geometry_ops was completely removed. This was done because PostGIS 2 also introduced Nd spatial indexes for
3D support and the old name was deemed confusing and a misnomer.Some older applications that as part of the process
create tables and indexes, explicitly referenced the operator class name. This was unnecessary if you want the default 2D
index. So if you manage said good, change index creation from:BAD:

CREATE INDEX idx_my_table_geom ON my_table USING gist (geom gist_geometry_ops) ;

To GOOD:

CREATE INDEX idx_my_table_geom ON my_table USING gist (geom) ;

The only case where you WILL need to specify the operator class is if you want a 3D spatial index as follows:

CREATE INDEX idx_my_super3d_geom ON my_super3d USING gist (geom gist_geometry_ops_nd);

If you are unfortunate to be stuck with compiled code you can’t change that has the old gist_geometry_ops hard-coded,
then you can create the old class using the legacy_gist.sqgl packaged in PostGIS 2.0.2+. However if you use this
fix, you are advised to at a later point drop the index and recreate it without the operator class. This will save you grief in
the future when you need to upgrade again.

4. I'm running PostgreSQL 9.0 and I can no longer read/view geometries in OpenJump, Safe FME, and some other tools?

In PostgreSQL 9.0+, the default encoding for bytea data has been changed to hex and older JDBC drivers still assume
escape format. This has affected some applications such as Java applications using older JDBC drivers or .NET ap-
plications that use the older npgsql driver that expect the old behavior of ST_AsBinary. There are two approaches to

http://workshops.opengeo.org/postgis-intro/
http://www.bostongis.com/PrinterFriendly.aspx?content_name=postgis_tut01
http://www.bostongis.com/PrinterFriendly.aspx?content_name=postgis_tut01

PostGIS 2.1.0 Manual
27 /671

getting this to work again.You can upgrade your JDBC driver to the latest PostgreSQL 9.0 version which you can get
from http://jdbc.postgresql.org/download.htmlIf you are running a .NET app, you can use Npgsql 2.0.11 or higher which
you can download from http://pgfoundry.org/frs/?group_id=1000140 and as described on Francisco Figueiredo’s NpgSQL
2.0.11 released blog entryIf upgrading your PostgreSQL driver is not an option, then you can set the default back to the
old behavior with the following change:

ALTER DATABASE mypostgisdb SET bytea_output=’escape’;

5. Itried to use PgAdmin to view my geometry column and it is blank, what gives?

PgAdmin doesn’t show anything for large geometries. The best ways to verify you do have data in your geometry columns
are?

—— this should return no records if all your geom fields are filled in
SELECT somefield FROM mytable WHERE geom IS NULL;

—— To tell just how large your geometry is do a query of the form

——which will tell you the most number of points you have in any of your geometry <>
columns

SELECT MAX (ST_NPoints (geom)) FROM sometable;

6. What kind of geometric objects can I store?

You can store point, line, polygon, multipoint, multiline, multipolygon, and geometrycollections. In PostGIS 2.0 and above
you can also store TINS and Polyhedral Surfaces in the basic geometry type. These are specified in the Open GIS Well
Known Text Format (with XYZ,XYM,XYZM extensions). There are three data types currently supported. The standard
OGC geometry data type which uses a planar coordinate system for measurement, the geography data type which uses a
geodetic coordinate system (not OGC, but you’ll find a similar type in Microsoft SQL Server 2008+). Only WGS 84 long
lat (SRID:4326) is supported by the geography data type. The newest family member of the PostGIS spatial type family
is raster for storing and analyzing raster data. Raster has its very own FAQ. Refer to Chapter 10 and Chapter 9 for more
details.

7. I'm all confused. Which data store should I use geometry or geography?

Short Answer: geography is a new data type that supports long range distances measurements, but most computations on
it are currently slower than they are on geometry. If you use geography -- you don’t need to learn much about planar
coordinate systems. Geography is generally best if all you care about is measuring distances and lengths and you have
data from all over the world. Geometry data type is an older data type that has many more functions supporting it, enjoys
greater support from third party tools, and operations on it are generally faster -- sometimes as much as 10 fold faster
for larger geometries. Geometry is best if you are pretty comfortable with spatial reference systems or you are dealing
with localized data where all your data fits in a single spatial reference system (SRID), or you need to do a lot of spatial
processing. Note: It is fairly easy to do one-off conversions between the two types to gain the benefits of each. Refer to
Section 13.10 to see what is currently supported and what is not. Long Answer: Refer to our more lengthy discussion in
the Section 4.2.2 and function type matrix.

8. I have more intense questions about geography, such as how big of a geographic region can I stuff in a geography column
and still get reasonable answers. Are there limitations such as poles, everything in the field must fit in a hemisphere (like
SQL Server 2008 has), speed etc?

Your questions are too deep and complex to be adequately answered in this section. Please refer to our Section 4.2.3.

9. How do I insert a GIS object into the database?

First, you need to create a table with a column of type "geometry" or "geography" to hold your GIS data. Storing geography
type data is a little different than storing geometry. Refer to Section 4.2.1 for details on storing geography. For geometry:
Connect to your database with psgl and try the following SQL:

CREATE TABLE gtest (gid serial primary key, name varchar (20)
, geom geometry (LINESTRING));

If the geometry column definition fails, you probably have not loaded the PostGIS functions and objects into this database
or are using a pre-2.0 version of PostGIS. See the Section 2.4.Then, you can insert a geometry into the table using a SQL
insert statement. The GIS object itself is formatted using the OpenGIS Consortium "well-known text" format:

http://jdbc.postgresql.org/download.html
http://pgfoundry.org/frs/?group_id=1000140
http://fxjr.blogspot.com/2010/11/npgsql-2011-released.html
http://fxjr.blogspot.com/2010/11/npgsql-2011-released.html

PostGIS 2.1.0 Manual

28 /671

10.

11.

12.

INSERT INTO gtest (ID, NAME, GEOM)
VALUES (
11
"First Geometry’,
ST_GeomFromText (' LINESTRING(2 3,4 5,6 5,7 8)')
)

For more information about other GIS objects, see the object reference.To view your GIS data in the table:

SELECT id, name, ST_AsText (geom) AS geom FROM gtest;

The return value should look something like this:

1 | First Geometry | LINESTRING(2 3,4 5,6 5,7 8)
(1 row)

How do I construct a spatial query?

The same way you construct any other database query, as an SQL combination of return values, functions, and boolean
tests.For spatial queries, there are two issues that are important to keep in mind while constructing your query: is there a
spatial index you can make use of; and, are you doing expensive calculations on a large number of geometries.In general,
you will want to use the "intersects operator” (&&) which tests whether the bounding boxes of features intersect. The
reason the && operator is useful is because if a spatial index is available to speed up the test, the && operator will make
use of this. This can make queries much much faster.You will also make use of spatial functions, such as Distance(),
ST_Intersects(), ST_Contains() and ST_Within(), among others, to narrow down the results of your search. Most spatial
queries include both an indexed test and a spatial function test. The index test serves to limit the number of return tuples
to only tuples that might meet the condition of interest. The spatial functions are then use to test the condition exactly.

SELECT id, the_geom
FROM thetable
WHERE
ST_Contains (the_geom, ' POLYGON((O O, 0 10, 10 10, 10 0, 0 0))");

How do I speed up spatial queries on large tables?

Fast queries on large tables is the raison d’etre of spatial databases (along with transaction support) so having a good index
is important.To build a spatial index on a table with a geomet ry column, use the "CREATE INDEX" function as follows:

CREATE INDEX [indexname] ON [tablename] USING GIST ([geometrycolumn]);

The "USING GIST" option tells the server to use a GiST (Generalized Search Tree) index.

:rl!’! Note
N GiST indexes are assumed to be lossy. Lossy indexes uses a proxy object (in the spatial case, a bounding box)
for building the index.

You should also ensure that the PostgreSQL query planner has enough information about your index to make rational
decisions about when to use it. To do this, you have to "gather statistics" on your geometry tables.For PostgreSQL
8.0.x and greater, just run the VACUUM ANALYZE command.For PostgreSQL 7.4.x and below, run the SELECT UP-
DATE_GEOMETRY_STATS() command.

Why aren’t PostgreSQL R-Tree indexes supported?

Early versions of PostGIS used the PostgreSQL R-Tree indexes. However, PostgreSQL R-Trees have been completely
discarded since version 0.6, and spatial indexing is provided with an R-Tree-over-GiST scheme.Our tests have shown
search speed for native R-Tree and GiST to be comparable. Native PostgreSQL R-Trees have two limitations which make
them undesirable for use with GIS features (note that these limitations are due to the current PostgreSQL native R-Tree
implementation, not the R-Tree concept in general):

PostGIS 2.1.0 Manual

29/671

13.

14.

15.

16.

17.

18.

* R-Tree indexes in PostgreSQL cannot handle features which are larger than 8K in size. GiST indexes can, using the
"lossy" trick of substituting the bounding box for the feature itself.

* R-Tree indexes in PostgreSQL are not "null safe”, so building an index on a geometry column which contains null
geometries will fail.

Why should I use the AddGeometryColumn () function and all the other OpenGIS stuff?

If you do not want to use the OpenGIS support functions, you do not have to. Simply create tables as in older versions,
defining your geometry columns in the CREATE statement. All your geometries will have SRIDs of -1, and the OpenGIS
meta-data tables will not be filled in properly. However, this will cause most applications based on PostGIS to fail, and it
is generally suggested that you do use AddGeometryColumn () to create geometry tables.MapServer is one application
which makes use of the geometry_columns meta-data. Specifically, MapServer can use the SRID of the geometry
column to do on-the-fly reprojection of features into the correct map projection.

What is the best way to find all objects within a radius of another object?

To use the database most efficiently, it is best to do radius queries which combine the radius test with a bounding box test:
the bounding box test uses the spatial index, giving fast access to a subset of data which the radius test is then applied to.The
ST_DWithin (geometry, geometry, distance) function is a handy way of performing an indexed distance
search. It works by creating a search rectangle large enough to enclose the distance radius, then performing an exact
distance search on the indexed subset of results.For example, to find all objects with 100 meters of POINT(1000 1000) the
following query would work well:

SELECT » FROM geotable
WHERE ST_DWithin (geocolumn, ’'POINT (1000 1000)’, 100.0);

How do I perform a coordinate reprojection as part of a query?

To perform a reprojection, both the source and destination coordinate systems must be defined in the SPATIAL_REF_SYS
table, and the geometries being reprojected must already have an SRID set on them. Once that is done, a reprojection is
as simple as referring to the desired destination SRID. The below projects a geometry to NAD 83 long lat. The below will
only work if the srid of the_geom is not -1 (not undefined spatial ref)

SELECT ST_Transform(the_geom,4269) FROM geotable;

1 did an ST_ASsEWKT and ST_AsText on my rather large geometry and it returned blank field. What gives?

You are probably using PgAdmin or some other tool that doesn’t output large text. If your geometry is big enough, it will
appear blank in these tools. Use PSQL if you really need to see it or output it in WKT.

——To check number of geometries are really blank
SELECT count (gid) FROM geotable WHERE the_geom IS NULL;

When I do an ST _Intersects, it says my two geometries don’t intersect when I KNOW THEY DO. What gives?

This generally happens in two common cases. Your geometry is invalid -- check ST_IsValid or you are assuming they
intersect because ST_AsText truncates the numbers and you have lots of decimals after it is not showing you.

I am releasing software that uses PostGIS, does that mean my software has to be licensed using the GPL like PostGIS?
Will I have to publish all my code if I use PostGIS?

Almost certainly not. As an example, consider Oracle database running on Linux. Linux is GPL, Oracle is not, does
Oracle running on Linux have to be distributed using the GPL? No. So your software can use a PostgreSQL/PostGIS
database as much as it wants and be under any license you like.The only exception would be if you made changes to the
PostGIS source code, and distributed your changed version of PostGIS. In that case you would have to share the code of
your changed PostGIS (but not the code of applications running on top of it). Even in this limited case, you would still
only have to distribute source code to people you distributed binaries to. The GPL does not require that you publish your
source code, only that you share it with people you give binaries to.

PostGIS 2.1.0 Manual
30/671

Chapter 4

Using PostGIS: Data Management and Queries

4.1 GIS Objects

The GIS objects supported by PostGIS are a superset of the "Simple Features" defined by the OpenGIS Consortium (OGC). As
of version 0.9, PostGIS supports all the objects and functions specified in the OGC "Simple Features for SQL" specification.

PostGIS extends the standard with support for 3DZ,3DM and 4D coordinates.

4.1.1 OpenGIS WKB and WKT

The OpenGIS specification defines two standard ways of expressing spatial objects: the Well-Known Text (WKT) form and the
Well-Known Binary (WKB) form. Both WKT and WKB include information about the type of the object and the coordinates
which form the object.

Examples of the text representations (WKT) of the spatial objects of the features are as follows:

POINT(0 0)

LINESTRING(0 0,1 1,1 2)

POLYGON((00,40,44,04,00),(11,21,22,12,11))

MULTIPOINT(0 0,1 2)

MULTILINESTRING((0 0,1 1,1 2),(2 3,3 2,5 4))

MULTIPOLYGON(((0 0,4 0,4 4,0 4,0 0),(1 1,2 1,22,1 2,1 1)), ((-1 -1,-1 -2,-2 -2,-2 -1 ,-1 -1)))

GEOMETRYCOLLECTION(POINT(2 3),LINESTRING(2 3,3 4))

The OpenGIS specification also requires that the internal storage format of spatial objects include a spatial referencing system
identifier (SRID). The SRID is required when creating spatial objects for insertion into the database.

Input/Output of these formats are available using the following interfaces:

bytea WKB = ST_AsBinary (geometry) ;

text WKT = ST_AsText (geometry);

geometry = ST_GeomFromWKB (bytea WKB, SRID);
geometry = ST_GeometryFromText (text WKT, SRID);

For example, a valid insert statement to create and insert an OGC spatial object would be:

INSERT INTO geotable (the_geom, the_name)
VALUES (ST_GeomFromText (" POINT (-126.4 45.32)'’, 312), '"A Place’);

PostGIS 2.1.0 Manual
31/671

4.1.2 PostGIS EWKB, EWKT and Canonical Forms

OGC formats only support 2d geometries, and the associated SRID is *never* embedded in the input/output representations.

PostGIS extended formats are currently superset of OGC one (every valid WKB/WKT is a valid EWKB/EWKT) but this might
vary in the future, specifically if OGC comes out with a new format conflicting with our extensions. Thus you SHOULD NOT
rely on this feature!

PostGIS EWKB/EWKT add 3dm,3dz,4d coordinates support and embedded SRID information.

Examples of the text representations (EWKT) of the extended spatial objects of the features are as follows. The * ones are new
in this version of PostGIS:

« POINT(0 0 0) -- XYZ

« SRID=32632;POINT(0 0) -- XY with SRID

« POINTM(0 0 0) -- XYM

« POINT(0 0 0 0) -- XYZM

« SRID=4326;MULTIPOINTM(0 0 0,1 2 1) -- XYM with SRID

« MULTILINESTRING((000,1 10,12 1),23 1,32 1,54 1))

« POLYGON((0 0 0,400,440,040,000),(110,210,220,120,110))

« MULTIPOLYGON(((0 00,4 00,44 0,04 0,0 00),(110,210,220,120,1 10)),((-1 -1 0,-1-20,-2-20,-2 -1 0,-1 -1 0)))
« GEOMETRYCOLLECTIONM(POINTM(2 3 9), LINESTRINGM(2 3 4, 3 4 5))

« MULTICURVE((0 0, 5 5), CIRCULARSTRING(4 0, 4 4, 8 4))

« POLYHEDRALSURFACE(((000,001,011,010,000)),((000,010,110,100,000)),((000,100,101,001,0
00),((110,111,101,100,110)),((010,011,111,110,010)),(©01,101,111,011,001)))

« TRIANGLE ((00,09, 9 0, 0 0))
« TIN(((000,001,010,000)),((000,010,110,000)))

Input/Output of these formats are available using the following interfaces:

bytea EWKB = ST_ASEWKB (geometry);

text EWKT = ST_ASEWKT (geometry) ;
geometry = ST_GeomFromEWKB (bytea EWKB) ;
geometry = ST_GeomFromEWKT (text EWKT) ;

For example, a valid insert statement to create and insert a PostGIS spatial object would be:

INSERT INTO geotable (the_geom, the_name)
VALUES (ST_GeomFromEWKT (’ SRID=312;POINTM(-126.4 45.32 15)’), ’'A Place’)

The "canonical forms" of a PostgreSQL type are the representations you get with a simple query (without any function call) and
the one which is guaranteed to be accepted with a simple insert, update or copy. For the postgis ’geometry’ type these are:

— Output

- binary: EWKB

ascii: HEXEWKB (EWKB in hex form)
— Input

- binary: EWKB

ascii: HEXEWKB |EWKT

For example this statement reads EWKT and returns HEXEWKB in the process of canonical ascii input/output:

PostGIS 2.1.0 Manual
32 /671

=# SELECT ’SRID=4;POINT(0 0)’::geometry;

geometry

01010000200400000000000000000000000000000000000000
(1 row)

41.3 SQL-MM Part 3

The SQL Multimedia Applications Spatial specification extends the simple features for SQL spec by defining a number of
circularly interpolated curves.

The SQL-MM definitions include 3dm, 3dz and 4d coordinates, but do not allow the embedding of SRID information.

The well-known text extensions are not yet fully supported. Examples of some simple curved geometries are shown below:

e CIRCULARSTRING(00,11,10)
CIRCULARSTRING(00,40,44,04,00)

The CIRCULARSTRING is the basic curve type, similar to a LINESTRING in the linear world. A single segment required
three points, the start and end points (first and third) and any other point on the arc. The exception to this is for a closed circle,
where the start and end points are the same. In this case the second point MUST be the center of the arc, ie the opposite
side of the circle. To chain arcs together, the last point of the previous arc becomes the first point of the next arc, just like in
LINESTRING. This means that a valid circular string must have an odd number of points greated than 1.

* COMPOUNDCURVE(CIRCULARSTRING(00, 11,1 0),(10,0 1))

A compound curve is a single, continuous curve that has both curved (circular) segments and linear segments. That means that
in addition to having well-formed components, the end point of every component (except the last) must be coincident with the
start point of the following component.

* CURVEPOLYGON(CIRCULARSTRING(00,40,44,04,00),(11,33,31,11))

Example compound curve in a curve polygon: CURVEPOLY GON(COMPOUNDCURVE(CIRCULARSTRING(0 0,20, 2 1,
23,43),(43,45,14,00)), CIRCULARSTRING(1.71,1.404,1.60.4,1.60.5,1.71))

A CURVEPOLYGON is just like a polygon, with an outer ring and zero or more inner rings. The difference is that a ring can
take the form of a circular string, linear string or compound string.

As of PostGIS 1.4 PostGIS supports compound curves in a curve polygon.

* MULTICURVE((0 0, 5 5),CIRCULARSTRING(4 0, 4 4, 8 4))

The MULTICURVE is a collection of curves, which can include linear strings, circular strings or compound strings.

« MULTISURFACE(CURVEPOLYGON(CIRCULARSTRING(0 0, 40,4 4,04,00),(1 1,33,3 1,1 1)),((10 10, 14 12, 11 10,
10 10),(11 11, 11.5 11, 11 11.5, 11 11)))

This is a collection of surfaces, which can be (linear) polygons or curve polygons.

N:rld Note

PostGIS prior to 1.4 does not support compound curves in a curve polygon, but PostGIS 1.4 and above do support the
use of Compound Curves in a Curve Polygon.

NG‘I‘Q’! Note

All floating point comparisons within the SQL-MM implementation are performed to a specified tolerance, currently
1E-8.

PostGIS 2.1.0 Manual
33 /671

4.2 PostGIS Geography Type

The geography type provides native support for spatial features represented on "geographic" coordinates (sometimes called
"geodetic" coordinates, or "lat/lon", or "lon/lat"). Geographic coordinates are spherical coordinates expressed in angular units
(degrees).

The basis for the PostGIS geometry type is a plane. The shortest path between two points on the plane is a straight line. That
means calculations on geometries (areas, distances, lengths, intersections, etc) can be calculated using cartesian mathematics and
straight line vectors.

The basis for the PostGIS geographic type is a sphere. The shortest path between two points on the sphere is a great circle arc.
That means that calculations on geographies (areas, distances, lengths, intersections, etc) must be calculated on the sphere, using
more complicated mathematics. For more accurate measurements, the calculations must take the actual spheroidal shape of the
world into account, and the mathematics becomes very complicated indeed.

Because the underlying mathematics is much more complicated, there are fewer functions defined for the geography type than
for the geometry type. Over time, as new algorithms are added, the capabilities of the geography type will expand.

One restriction is that it only supports WGS 84 long lat (SRID:4326). It uses a new data type called geography. None of the
GEOS functions support this new type. As a workaround one can convert back and forth between geometry and geography types.

The new geography type uses the PostgreSQL 8.3+ typmod definition format so that a table with a geography field can be added
in a single step. All the standard OGC formats except for curves are supported.

4.2.1 Geography Basics

The geography type only supports the simplest of simple features. Standard geometry type data will autocast to geography if it
is of SRID 4326. You can also use the EWKT and EWKB conventions to insert data.
* POINT: Creating a table with 2d point geometry:

CREATE TABLE testgeog(gid serial PRIMARY KEY, the_geog geography (POINT, 4326));

Creating a table with z coordinate point

CREATE TABLE testgeog(gid serial PRIMARY KEY, the_geog geography (POINTZ,4326));

* LINESTRING

* POLYGON

* MULTIPOINT

« MULTILINESTRING

* MULTIPOLYGON

* GEOMETRYCOLLECTION

The new geography fields don’t get registered in the geometry_columns. They get registered in a new view called ge-
ography_columns which is a view against the system catalogs so is always automatically kept up to date without need for an
AddGeom... like function.

Now, check the "geography_columns" view and see that your table is listed.

You can create a new table with a GEOGRAPHY column using the CREATE TABLE syntax. Unlike GEOMETRY, there is no
need to run a separate AddGeometryColumns() process to register the column in metadata.

CREATE TABLE global_points (
id SERIAL PRIMARY KEY,
name VARCHAR (64),
location GEOGRAPHY (POINT, 4326)
)i

PostGIS 2.1.0 Manual
34 /671

Note that the location column has type GEOGRAPHY and that geography type supports two optional modifier: a type modifier
that restricts the kind of shapes and dimensions allowed in the column; an SRID modifier that restricts the coordinate reference
identifier to a particular number.

Allowable values for the type modifier are: POINT, LINESTRING, POLYGON, MULTIPOINT, MULTILINESTRING, MUL-
TIPOLYGON. The modifier also supports dimensionality restrictions through suffixes: Z, M and ZM. So, for example a modifier
of 'LINESTRINGM’ would only allow line strings with three dimensions in, and would treat the third dimension as a measure.
Similarly, "POINTZM’ would expect four dimensional data.

The SRID modifier is currently of limited use: only 4326 (WGS84) is allowed as a value. If you do not specify an SRID, the a
value O (undefined spheroid) will be used, and all calculations will proceed using WGS84 anyways.

In the future, alternate SRIDs will allow calculations on spheroids other than WGS84.
Once you have created your table, you can see it in the GEOGRAPHY_COLUMNS table:

—— See the contents of the metadata view
SELECT x FROM geography_columns;

You can insert data into the table the same as you would if it was using a GEOMETRY column:

—— Add some data into the test table

INSERT INTO global_points (name, location) VALUES (’Town’, ST_GeographyFromText (' SRID=4326; <>
POINT (=110 30)"));

INSERT INTO global_points (name, location) VALUES (’Forest’, ST_GeographyFromText (/ SRID <
=4326;POINT (=109 29)"));

INSERT INTO global_points (name, location) VALUES (’London’, ST_GeographyFromText (/ SRID <
=4326;POINT (0 49)"));

Creating an index works the same as GEOMETRY. PostGIS will note that the column type is GEOGRAPHY and create an
appropriate sphere-based index instead of the usual planar index used for GEOMETRY.

—— Index the test table with a spherical index
CREATE INDEX global_points_gix ON global_points USING GIST (location);

Query and measurement functions use units of meters. So distance parameters should be expressed in meters, and return values
should be expected in meters (or square meters for areas).

—-— Show a distance query and note, London is outside the 1000km tolerance
SELECT name FROM global_points WHERE ST_DWithin(location, ST_GeographyFromText (/ SRID <
=4326;POINT (=110 29)’), 1000000);

You can see the power of GEOGRAPHY in action by calculating the how close a plane flying from Seattle to London (LINESTRING(-
122.33 47.606, 0.0 51.5)) comes to Reykjavik (POINT(-21.96 64.15)).

—— Distance calculation using GEOGRAPHY (122.2km)
SELECT ST_Distance (' LINESTRING(-122.33 47.606, 0.0 51.5)’::geography, ’'POINT(-21.96 <>
64.15)’ :: geography) ;

—— Distance calculation using GEOMETRY (13.3 "degrees")
SELECT ST_Distance (/' LINESTRING(-122.33 47.606, 0.0 51.5)’"::geometry, ’"POINT(-21.96 64.15) <
’:: geometry);

The GEOGRAPHY type calculates the true shortest distance over the sphere between Reykjavik and the great circle flight path
between Seattle and London.

Great Circle mapper The GEOMETRY type calculates a meaningless cartesian distance between Reykjavik and the straight line
path from Seattle to London plotted on a flat map of the world. The nominal units of the result might be called "degrees", but the
result doesn’t correspond to any true angular difference between the points, so even calling them "degrees" is inaccurate.

http://gc.kls2.com/cgi-bin/gc?PATH=SEA-LHR

PostGIS 2.1.0 Manual
35/671

4.2.2 When to use Geography Data type over Geometry data type

The new GEOGRAPHY type allows you to store data in longitude/latitude coordinates, but at a cost: there are fewer functions
defined on GEOGRAPHY than there are on GEOMETRY; those functions that are defined take more CPU time to execute.

The type you choose should be conditioned on the expected working area of the application you are building. Will your data
span the globe or a large continental area, or is it local to a state, county or municipality?

* If your data is contained in a small area, you might find that choosing an appropriate projection and using GEOMETRY is the
best solution, in terms of performance and functionality available.

* If your data is global or covers a continental region, you may find that GEOGRAPHY allows you to build a system without
having to worry about projection details. You store your data in longitude/latitude, and use the functions that have been defined
on GEOGRAPHY.

¢ If you don’t understand projections, and you don’t want to learn about them, and you’re prepared to accept the limitations in
functionality available in GEOGRAPHY, then it might be easier for you to use GEOGRAPHY than GEOMETRY. Simply load
your data up as longitude/latitude and go from there.

Refer to Section 13.10 for compare between what is supported for Geography vs. Geometry. For a brief listing and description
of Geography functions, refer to Section 13.3

4.2.3 Geography Advanced FAQ

1. Do you calculate on the sphere or the spheroid?

By default, all distance and area calculations are done on the spheroid. You should find that the results of calculations in
local areas match up will with local planar results in good local projections. Over larger areas, the spheroidal calculations
will be more accurate than any calculation done on a projected plane. All the geography functions have the option of
using a sphere calculation, by setting a final boolean parameter to 'FALSE’. This will somewhat speed up calculations,
particularly for cases where the geometries are very simple.

2. What about the date-line and the poles?

All the calculations have no conception of date-line or poles, the coordinates are spherical (longitude/latitude) so a shape
that crosses the dateline is, from a calculation point of view, no different from any other shape.

3. What is the longest arc you can process?

We use great circle arcs as the "interpolation line" between two points. That means any two points are actually joined up
two ways, depending on which direction you travel along the great circle. All our code assumes that the points are joined
by the *shorter* of the two paths along the great circle. As a consequence, shapes that have arcs of more than 180 degrees
will not be correctly modelled.

4. Why is it so slow to calculate the area of Europe / Russia / insert big geographic region here ?

Because the polygon is so darned huge! Big areas are bad for two reasons: their bounds are huge, so the index tends to pull
the feature no matter what query you run; the number of vertices is huge, and tests (distance, containment) have to traverse
the vertex list at least once and sometimes N times (with N being the number of vertices in the other candidate feature).
As with GEOMETRY, we recommend that when you have very large polygons, but are doing queries in small areas, you
"denormalize" your geometric data into smaller chunks so that the index can effectively subquery parts of the object and
so queries don’t have to pull out the whole object every time. Just because you *can* store all of Europe in one polygon
doesn’t mean you *should*.

4.3 Using OpenGIS Standards

The OpenGIS "Simple Features Specification for SQL" defines standard GIS object types, the functions required to manipulate
them, and a set of meta-data tables. In order to ensure that meta-data remain consistent, operations such as creating and removing
a spatial column are carried out through special procedures defined by OpenGIS.

There are two OpenGIS meta-data tables: SPATIAL_REF_SYS and GEOMETRY_COLUMNS. The SPATIAL_REF_SYS table
holds the numeric IDs and textual descriptions of coordinate systems used in the spatial database.

PostGIS 2.1.0 Manual
36 /671

4.3.1 The SPATIAL_REF_SYS Table and Spatial Reference Systems

The spatial_ref_sys table is a PostGIS included and OGC compliant database table that lists over 3000 known spatial reference
systems and details needed to transform/reproject between them.

Although the PostGIS spatial_ref_sys table contains over 3000 of the more commonly used spatial reference system definitions
that can be handled by the proj library, it does not contain all known to man and you can even define your own custom projection
if you are familiar with proj4 constructs. Keep in mind that most spatial reference systems are regional and have no meaning
when used outside of the bounds they were intended for.

An excellent resource for finding spatial reference systems not defined in the core set is http://spatialreference.org/

Some of the more commonly used spatial reference systems are: 4326 - WGS 84 Long Lat, 4269 - NAD 83 Long Lat, 3395 -
WGS 84 World Mercator, 2163 - US National Atlas Equal Area, Spatial reference systems for each NAD 83, WGS 84 UTM
zone - UTM zones are one of the most ideal for measurement, but only cover 6-degree regions.

Various US state plane spatial reference systems (meter or feet based) - usually one or 2 exists per US state. Most of the meter
ones are in the core set, but many of the feet based ones or ESRI created ones you will need to pull from spatialreference.org.

For details on determining which UTM zone to use for your area of interest, check out the utmzone PostGIS plpgsql helper
function.

The SPATIAL_REF_SYS table definition is as follows:

CREATE TABLE spatial_ref_sys (
srid INTEGER NOT NULL PRIMARY KEY,
auth_name VARCHAR(256),
auth_srid INTEGER,
srtext VARCHAR (2048),
projdtext VARCHAR (2048)

The SPATIAL_REF_SYS columns are as follows:

SRID An integer value that uniquely identifies the Spatial Referencing System (SRS) within the database.

AUTH_NAME The name of the standard or standards body that is being cited for this reference system. For example, "EPSG"
would be a valid AUTH_NAME.

AUTH_SRID The ID of the Spatial Reference System as defined by the Authority cited in the AUTH_NAME. In the case of
EPSQG, this is where the EPSG projection code would go.

SRTEXT The Well-Known Text representation of the Spatial Reference System. An example of a WKT SRS representation is:

PROJCS ["NAD83 / UTM Zone 10N",
GEOGCS ["NAD83",
DATUM["North_American_Datum_1983",

SPHEROID["GRS 1980",6378137,298.257222101]

]I
PRIMEM["Greenwich", 0],
UNIT["degree",0.0174532925199433]
]I
PROJECTION["Transverse_Mercator"],
PARAMETER["latitude_of_origin", 0],
PARAMETER["central meridian",-123],
PARAMETER["scale_factor",0.9996],
PARAMETER["false_easting", 5000007,
PARAMETER["false_northing",0],
UNIT["metre", 1]

]

For a listing of EPSG projection codes and their corresponding WKT representations, see http://www.opengeospatial.org/.
For a discussion of WKT in general, see the OpenGIS "Coordinate Transformation Services Implementation Specification"
at http://www.opengeospatial.org/standards. For information on the European Petroleum Survey Group (EPSG) and their
database of spatial reference systems, see http://www.epsg.org.

http://www.sharpgis.net/post/2007/05/Spatial-references2c-coordinate-systems2c-projections2c-datums2c-ellipsoids-e28093-confusing.aspx
http://www.sharpgis.net/post/2007/05/Spatial-references2c-coordinate-systems2c-projections2c-datums2c-ellipsoids-e28093-confusing.aspx
http://spatialreference.org/
http://spatialreference.org/ref/epsg/4326/
http://spatialreference.org/ref/epsg/4269/
http://spatialreference.org/ref/epsg/3395/
http://spatialreference.org/ref/epsg/3395/
http://spatialreference.org/ref/epsg/2163/
http://spatialreference.org
http://trac.osgeo.org/postgis/wiki/UsersWikiplpgsqlfunctionsDistance
http://trac.osgeo.org/postgis/wiki/UsersWikiplpgsqlfunctionsDistance
http://en.wikipedia.org/wiki/SRID
http://www.opengeospatial.org/
http://www.opengeospatial.org/standards
http://www.epsg.org/

PostGIS 2.1.0 Manual
37 /671

PROJ4ATEXT PostGIS uses the Proj4 library to provide coordinate transformation capabilities. The PROJ4TEXT column
contains the Proj4 coordinate definition string for a particular SRID. For example:

+proj=utm +zone=10 +ellps=clrk66 +datum=NAD27 +units=m

For more information about, see the Proj4 web site at http://trac.osgeo.org/proj/. The spatial_ ref sys.sql file
contains both SRTEXT and PROJ4TEXT definitions for all EPSG projections.

4.3.2 The GEOMETRY_COLUMNS VIEW

In versions of PostGIS prior to 2.0.0, geometry_columns was a table that could be directly edited, and sometimes got out of
synch with the actual definition of the geometry columns. In PostGIS 2.0.0, GEOMETRY_COLUMNS became a view with the
same front-facing structure as prior versions, but reading from database system catalogs Its structure is as follows:

\d geometry_columns

View "public.geometry_columns"
Column | Type
f_table_catalog
f _table_schema
f_table_name
f_geometry_column

character varying (256
character varying (256
character varying (256
character varying (256

coord_dimension integer
srid integer
type character varying (30)

The column meanings have not changed from prior versions and are:

F_TABLE_CATALOG, F_TABLE_SCHEMA, F_TABLE_NAME The fully qualified name of the feature table containing
the geometry column. Note that the terms "catalog" and "schema" are Oracle-ish. There is not PostgreSQL analogue of
"catalog" so that column is left blank -- for "schema" the PostgreSQL schema name is used (public is the default).

F_GEOMETRY_COLUMN The name of the geometry column in the feature table.
COORD_DIMENSION The spatial dimension (2, 3 or 4 dimensional) of the column.

SRID The ID of the spatial reference system used for the coordinate geometry in this table. It is a foreign key reference to the
SPATIAL_REF_SYS.

TYPE The type of the spatial object. To restrict the spatial column to a single type, use one of: POINT, LINESTRING, POLY-
GON, MULTIPOINT, MULTILINESTRING, MULTIPOLYGON, GEOMETRYCOLLECTION or corresponding XYM
versions POINTM, LINESTRINGM, POLYGONM, MULTIPOINTM, MULTILINESTRINGM, MULTIPOLYGONM,
GEOMETRYCOLLECTIONM. For heterogeneous (mixed-type) collections, you can use "GEOMETRY" as the type.

N_ﬂ‘l"! Note

This attribute is (probably) not part of the OpenGIS specification, but is required for ensuring type homogeneity.

4.3.3 Creating a Spatial Table

Creating a table with spatial data, can be done in one step. As shown in the following example which creates a roads table with
a 2D linestring geometry column in WGS84 long lat

CREATE TABLE ROADS (ID int4
, ROAD_NAME varchar (25), geom geometry (LINESTRING,4326));

http://trac.osgeo.org/proj/

PostGIS 2.1.0 Manual
38 /671

We can add additional columns using standard ALTER TABLE command as we do in this next example where we add a 3-D
linestring.

ALTER TABLE roads ADD COLUMN geom2 geometry (LINESTRINGZ,4326);

For backwards compability, you can still create a spatial table in two stages using the management functions.

* Create a normal non-spatial table.
For example: CREATE TABLE ROADS (ID int4, ROAD_NAME varchar(25))

* Add a spatial column to the table using the OpenGIS "AddGeometryColumn" function. Refer to AddGeometryColumn for
more details.

The syntax is:

AddGeometryColumn (
<schema_name>,
<table_name>,
<column_name>,
<srid>,
<type>,
<dimension>

Or, using current schema:

AddGeometryColumn (
<table_name>,
<column_name>,
<srid>,
<type>,
<dimension>

Examplel: SELECT AddGeometryColumn(’public’, ’roads’, ’geom’, 423, "LINESTRING’, 2)
Example2: SELECT AddGeometryColumn(’roads’, ’geom’, 423, ’LINESTRING’, 2)

Here is an example of SQL used to create a table and add a spatial column (assuming that an SRID of 128 exists already):

CREATE TABLE parks (
park_id INTEGER,
park_name VARCHAR,
park_date DATE,
park_type VARCHAR
)
SELECT AddGeometryColumn (’'parks’, ’'park_geom’, 128, ’'MULTIPOLYGON’, 2);

Here is another example, using the generic "geometry" type and the undefined SRID value of 0O:

CREATE TABLE roads (
road_id INTEGER,
road_name VARCHAR
)i
SELECT AddGeometryColumn(’'roads’, ’'roads_geom’, 0, ’'GEOMETRY’, 3);

4.3.4 Manually Registering Geometry Columns in geometry_columns

The AddGeometryColumn() approach creates a geometry column and also registers the new column in the geometry_columns
table. If your software utilizes geometry_columns, then any geometry columns you need to query by must be registered in this
view. Starting with PoastGIS 2.0, geometry_columns is no longer editable and all geometry columns are autoregistered.

PostGIS 2.1.0 Manual
39 /671

However they may be registered as a generic geometry column if the column was not defined as a specific type during creation.

Two of the cases where this may happen, but you can’t use AddGeometryColumn, is in the case of SQL Views and bulk inserts.
For these cases, you can correct the registration in the geometry_columns table by constraining the column. Note in PostGIS
2.0+ if your column is typmod based, the creation process would register it correctly, so no need to do anything.

—--Lets say you have a view created like this

CREATE VIEW public.vwmytablemercator AS
SELECT gid, ST_Transform(geom,3395) As geom, f_name
FROM public.mytable;

—-— For it to register correctly in PostGIS 2.0+

—— You need to cast the geometry

DROP VIEW public.vwmytablemercator;

CREATE VIEW public.vwmytablemercator AS
SELECT gid, ST_Transform(geom,3395) ::geometry (Geometry, 3395) As geom, f_name
FROM public.mytable;

—— If you know the geometry type for sure is a 2D POLYGON then you could do
DROP VIEW public.vwmytablemercator;
CREATE VIEW public.vwmytablemercator AS
SELECT gid, ST_Transform(geom,3395) ::geometry (Polygon, 3395) As geom, f_name
FROM public.mytable;

—-Lets say you created a derivative table by doing a bulk insert

SELECT poi.gid, poi.geom, citybounds.city_name

INTO myschema.my_special_pois

FROM poi INNER JOIN citybounds ON ST_Intersects (citybounds.geom, poi.geom);

——Create 2d index on new table
CREATE INDEX idx_myschema_myspecialpois_geom_gist
ON myschema.my_special_pois USING gist (geom) ;

-— If your points are 3D points or 3M points,
—-— then you might want to create an nd index instead of a 2d index
-— like so
CREATE INDEX my_special_pois_geom_gist_nd
ON my_special_pois USING gist (geom gist_geometry_ops_nd);

—--To manually register this new table’s geometry column in geometry_columns

—— Note that this approach will work for both PostGIS 2.0+ and PostGIS 1.4+

—-— For PostGIS 2.0 it will also change the underlying structure of the table to
—-— to make the column typmod based.

—-— For PostGIS prior to 2.0, this technique can also be used to register views
SELECT populate_geometry_columns ('myschema.my_special_pois’::regclass);

—-—If you are using PostGIS 2.0 and for whatever reason, you

—-— you need the old constraint based definition behavior

—— (such as case of inherited tables where all children do not have the same type and srid)
—-— set new optional wuse_typmod argument to false

SELECT populate_geometry_columns ('myschema.my_special_pois’::regclass, false);

Although the old-constraint based method is still supported, a constraint-based geomentry column used directly in a view, will
not register correctly in geometry_columns, as will a typmod one. In this example we define a column using typmod and another
using constraints.

CREATE TABLE pois_ny(gid SERIAL PRIMARY KEY
, pol_name text, cat wvarchar (20)
, geom geometry (POINT, 4326));
SELECT AddGeometryColumn (’'pois_ny’, ’'geom_2160’, 2160, "POINT’, 2, false);

PostGIS 2.1.0 Manual
40/ 671

If we run in psql

\d pois_ny;

We observe they are defined differently -- one is typmod, one is constraint

Table "public.pois_ny"

Column | Type | Modifiers

___________ T
gid | integer | not null default nextval ('pois_ny_gid_seq’ ::regclass)
poi_name | text |

cat | character varying(20) |

geom | geometry (Point,4326) |

geom_2160 | geometry |

Indexes:

"pois_ny_pkey" PRIMARY KEY, btree (gid)
Check constraints:

"enforce_dims_geom_2160" CHECK (st_ndims (geom_2160) = 2)

"enforce_geotype_geom_2160" CHECK (geometrytype (geom_2160) = "POINT’::text
OR geom_2160 IS NULL)

"enforce_srid_geom_2160" CHECK (st_srid(geom_2160) = 2160)

In geometry_columns, they both register correctly

SELECT f_table_name, f_geometry_column, srid, type
FROM geometry_columns

WHERE f_table_name = ’'pois_ny’;
f_table_name | f_geometry_column | srid | type
————————————— e
pois_ny | geom | 4326 | POINT
pois_ny | geom_2160 | 2160 | POINT

However -- if we were to create a view like this

CREATE VIEW vw_pois_ny_parks AS
SELECT «

FROM pois_ny

WHERE cat='park’;

SELECT f_table_name, f_geometry_column, srid, type

FROM geometry_columns
WHERE f_table_name = ’'vw_pois_ny_parks’;

The typmod based geom view column registers correctly, but the constraint based one does not.

f_table_name | f_geometry_column | srid | type
—————————————————— e
vw_pois_ny_parks | geom | 4326 | POINT
vw_pois_ny_parks | geom_ 2160 | 0 | GEOMETRY

This may change in future versions of PostGIS, but for now To force the constraint based view column to register correctly, we
need to do this:

DROP VIEW vw_pois_ny_parks;
CREATE VIEW vw_pois_ny_parks AS
SELECT gid, poi_name, cat
, geom
, geom_2160::geometry (POINT,2160) As geom_2160
FROM pois_ny
WHERE cat='park’;

PostGIS 2.1.0 Manual
41 /671

SELECT f_table_name, f_geometry_column, srid, type
FROM geometry_columns
WHERE f_table_name = ’'vw_pois_ny_parks’;

f _table_name | f_geometry_column | srid | type
—————————————————— Bt S
vw_pois_ny_parks | geom | 4326 | POINT
vw_pois_ny_parks | geom_2160 | 2160 | POINT

4.3.5 Ensuring OpenGIS compliancy of geometries

PostGIS is compliant with the Open Geospatial Consortium’s (OGC) OpenGIS Specifications. As such, many PostGIS methods
require, or more accurately, assume that geometries that are operated on are both simple and valid. For example, it does not
make sense to calculate the area of a polygon that has a hole defined outside of the polygon, or to construct a polygon from a
non-simple boundary line.

According to the OGC Specifications, a simple geometry is one that has no anomalous geometric points, such as self intersection
or self tangency and primarily refers to 0 or 1-dimensional geometries (i.e. [MULTI]POINT, [MULTI]LINESTRING).
Geometry validity, on the other hand, primarily refers to 2-dimensional geometries (i.e. [MULTI]POLYGON) and defines the
set of assertions that characterizes a valid polygon. The description of each geometric class includes specific conditions that
further detail geometric simplicity and validity.

A POINT is inheritably simple as a 0-dimensional geometry object.
MULTIPOINTSs are simple if no two coordinates (POINTSs) are equal (have identical coordinate values).

A LINESTRING is simple if it does not pass through the same POINT twice (except for the endpoints, in which case it is referred
to as a linear ring and additionally considered closed).

(a) (b)

PostGIS 2.1.0 Manual

42 /671

(V]

(a) and (c¢) are simple LINESTRINGS, (b) and (d) are not.

(d)

A MULTILINESTRING is simple only if all of its elements are simple and the only intersection between any two elements

occurs at POINTSs that are on the boundaries of both elements.

(e

(e) and (f) are simple MULTILINESTRINGS, (g) is not.

®

®

By definition, a POLYGON is always simple. It is valid if no two rings in the boundary (made up of an exterior ring and interior
rings) cross. The boundary of a POLYGON may intersect at a POINT but only as a tangent (i.e. not on a line). A POLYGON may
not have cut lines or spikes and the interior rings must be contained entirely within the exterior ring.

PostGIS 2.1.0 Manual
43 /671

(k) U] (m)

(h) and (i) are valid POLYGONS, (j-m) cannot be represented as single POLYGONS, but (j) and (m) could be represented as
a valid MULTIPOLYGON.

A MULTIPOLYGON is valid if and only if all of its elements are valid and the interiors of no two elements intersect. The
boundaries of any two elements may touch, but only at a finite number of POINTS.

PostGIS 2.1.0 Manual
44 / 671

(n) (o)

(n) and (o) are not valid MULTIPOLYGONS. (p), however, is valid.

Most of the functions implemented by the GEOS library rely on the assumption that your geometries are valid as specified by
the OpenGIS Simple Feature Specification. To check simplicity or validity of geometries you can use the ST_IsSimple() and
ST_IsValid()

—-— Typically, it doesn’t make sense to check
—— for validity on linear features since it will always return TRUE.
—— But in this example, PostGIS extends the definition of the OGC IsValid
—-— by returning false if a LineString has less than 2 xdistinct* vertices.
gisdb=# SELECT

ST_IsValid(/LINESTRING(O 0, 1 1)7),

ST_IsValid(/LINESTRING(O O, 0 0, 0 0)");

st_isvalid | st_isvalid
____________ +___________
t | f

By default, PostGIS does not apply this validity check on geometry input, because testing for validity needs lots of CPU time for
complex geometries, especially polygons. If you do not trust your data sources, you can manually enforce such a check to your
tables by adding a check constraint:

ALTER TABLE mytable
ADD CONSTRAINT geometry_valid_check
CHECK (ST_IsValid(the_geom)) ;

If you encounter any strange error messages such as "GEOS Intersection() threw an error!" or "JTS Intersection() threw an error!"
when calling PostGIS functions with valid input geometries, you likely found an error in either PostGIS or one of the libraries
it uses, and you should contact the PostGIS developers. The same is true if a PostGIS function returns an invalid geometry for
valid input.

€ Note
No‘lﬂ Strictly compliant OGC geometries cannot have Z or M values. The ST_IsValid() function won’t consider higher dimen-
sioned geometries invalid! Invocations of AddGeometryColumn() will add a constraint checking geometry dimensions,
so it is enough to specify 2 there.

PostGIS 2.1.0 Manual
45/ 671

4.3.6 Dimensionally Extended 9 Intersection Model (DE-9IM)

It is sometimes the case that the typical spatial predicates (ST_Contains, ST_Crosses, ST_Intersects, ST_Touches, ...) are
insufficient in and of themselves to adequately provide that desired spatial filter.

For example, consider a linear dataset representing a road network. It may be the task of a GIS analyst to identify all road
segments that cross each other, not at a point, but on a line, perhaps invalidating some business rule. In this case,
ST_Crosses does not adequately provide the necessary spatial filter since, for linear features, it returns t rue only where
they cross at a point.

One two-step solution might be to first perform the actual intersection (ST_Intersection) of pairs of road segments that
spatially intersect (ST_Intersects), and then compare the intersection’s ST_GeometryType with 'LINESTRING’ (properly
dealing with cases that return GEOMETRYCOLLECTIONs of [MULTI]POINTs, [MULTI]LINESTRINGsS, etc.).

A more elegant / faster solution may indeed be desirable.

PostGIS 2.1.0 Manual
46 / 671

A second [theoretical] example may be that of a GIS analyst trying to locate all wharfs or docks that intersect a lake’s
boundary on a line and where only one end of the wharf is up on shore. In other words, where a wharf is within, but not
completely within a lake, intersecting the boundary of a lake on a line, and where the wharf’s endpoints are both
completely within and on the boundary of the lake. The analyst may need to use a combination of spatial predicates to
isolate the sought after features:

¢ ST Contains(lake, wharf) = TRUE
e ST_ContainsProperly(lake, wharf) = FALSE
e ST_GeometryType(ST_Intersection(wharf, lake)) = "LINESTRING’

e ST_NumGeometries(ST_Multi(ST_Intersection(ST_Boundary(wharf), ST_Boundary(lake)))) = 1

... (needless to say, this could get quite complicated)

So enters the Dimensionally Extended 9 Intersection Model, or DE-9IM for short.

4.3.6.1 Theory

According to the OpenGIS Simple Features Implementation Specification for SQL, "the basic approach to comparing two ge-
ometries is to make pair-wise tests of the intersections between the Interiors, Boundaries and Exteriors of the two geometries and
to classify the relationship between the two geometries based on the entries in the resulting ’intersection’ matrix."

Boundary

The boundary of a geometry is the set of geometries of the next lower dimension. For POINTSs, which have a dimension of
0, the boundary is the empty set. The boundary of a LINESTRING are the two endpoints. For POLYGONS, the boundary
is the linework that make up the exterior and interior rings.

Interior

The interior of a geometry are those points of a geometry that are left when the boundary is removed. For POINTSs,
the interior is the POINT itself. The interior of a LINESTRING are the set of real points between the endpoints. For
POLYGONS, the interior is the areal surface inside the polygon.

Exterior

The exterior of a geometry is the universe, an areal surface, not on the interior or boundary of the geometry.

http://www.opengeospatial.org/standards/sfs

PostGIS 2.1.0 Manual
47 / 671

Given geometry a, where the I(a), B(a), and E(a) are the Interior, Boundary, and Exterior of a, the mathematical representation

of the matrix is:

Interior Boundary Exterior
Interior dim(I(a) N I(b)) dim(I(a) N B(b)) dim(I(a) N E(b))
Boundary dim(B(a) N I(b)) dim(B(a) N B(b)) dim(B(a) N E(b))
Exterior dim(E(a) N 1(b)) dim(E(a) N B(b)) dim(E(a) N E(b))

Where dim(a) is the dimension of a as specified by ST_Dimension but has the domain of {0,1,2,T,F, »}

* 0 => point

e 1 =>line

e 2 =>area

e T=>{0,1,2}
* F =>empty set

e x =>don’t care

Visually, for two overlapping polygonal geometries, this looks like:

PostGIS 2.1.0 Manual
48/ 671

Interior Boundary Exterior
Interior
dim(...) =2 dim(...) =1 dim(...) =2
Boundary
dim(...) =1 dim(...) =0 dim(...) =1
Exterior
dim(...) =2

Read from left to right and from top to bottom, the dimensional matrix is represented, *212101212’.
A relate matrix that would therefore represent our first example of two lines that intersect on a line would be: >1#1%%%] %%’

—— Identify road segments that cross on a line
SELECT a.id

FROM roads a, roads b

WHERE a.id != b.id

AND a.geom && b.geom

AND ST_Relate(a.geom, b.geom, "lxlxxxlxx’);

A relate matrix that represents the second example of wharfs partly on the lake’s shoreline would be *102101FF2’

—— Identify wharfs partly on a lake’s shoreline
SELECT a.lake_id, b.wharf_id

FROM lakes a, wharfs b

WHERE a.geom && b.geom

AND ST_Relate(a.geom, b.geom, "102101FF2');

PostGIS 2.1.0 Manual
49 /671

For more information or reading, see:

OpenGIS Simple Features Implementation Specification for SQL (version 1.1, section 2.1.13.2)
* Dimensionally Extended Nine-Intersection Model (DE-9IM) by Christian Strobl

* GeoTools: Point Set Theory and the DE-9IM Matrix

* Encyclopedia of GIS By Hui Xiong

4.4 Loading GIS (Vector) Data

Once you have created a spatial table, you are ready to upload GIS data to the database. Currently, there are two ways to get data
into a PostGIS/PostgreSQL database: using formatted SQL statements or using the Shape file loader/dumper.

441 Loading Data Using SQL

If you can convert your data to a text representation, then using formatted SQL might be the easiest way to get your data into
PostGIS. As with Oracle and other SQL databases, data can be bulk loaded by piping a large text file full of SQL "INSERT"
statements into the SQL terminal monitor.

A data upload file (roads . sgl for example) might look like this:

BEGIN;
INSERT INTO roads (road_id, roads_geom, road_name)

VALUES (1,ST_GeomFromText (' LINESTRING (191232 243118,191108 243242)'’,-1),’Jeff Rd’);
INSERT INTO roads (road_id, roads_geom, road_name)

VALUES (2, ST_GeomFromText (' LINESTRING (189141 244158,189265 244817)",-1),’Geordie Rd’);
INSERT INTO roads (road_id, roads_geom, road_name)

VALUES (3,ST_GeomFromText (' LINESTRING (192783 228138,192612 229814)’,-1),’Paul St’);
INSERT INTO roads (road_id, roads_geom, road_name)

VALUES (4,ST_GeomFromText (' LINESTRING (189412 252431,189631 259122)’,-1),'Graeme Ave’);
INSERT INTO roads (road_id, roads_geom, road_name)

VALUES (5, ST_GeomFromText (" LINESTRING (190131 224148,190871 228134)",-1),’Phil Tce’);
INSERT INTO roads (road_id, roads_geom, road_name)

VALUES (6, ST_GeomFromText (' LINESTRING (198231 263418,198213 268322)",-1),"'Dave Cres’);
COMMIT;

The data file can be piped into PostgreSQL very easily using the "psql" SQL terminal monitor:

psgl -d [database] —-f roads.sqgl

4.4.2 shp2pgsql: Using the ESRI Shapefile Loader

The shp2pgsqgl data loader converts ESRI Shape files into SQL suitable for insertion into a PostGIS/PostgreSQL database
either in geometry or geography format. The loader has several operating modes distinguished by command line flags:

In addition to the shp2pgsql command-line loader, there is an shp2pgsgl—-gui graphical interface with most of the options as
the command-line loader, but may be easier to use for one-off non-scripted loading or if you are new to PostGIS. It can also be
configured as a plugin to PgAdminlIII.

(claldlp) These are mutually exclusive options:

-c Creates a new table and populates it from the shapefile. This is the default mode.

-a Appends data from the Shape file into the database table. Note that to use this option to load multiple files, the files
must have the same attributes and same data types.

-d Drops the database table before creating a new table with the data in the Shape file.

http://www.opengeospatial.org/standards/sfs
http://gis.hsr.ch/wiki/images/3/3d/9dem_springer.pdf
http://docs.geotools.org/latest/userguide/library/jts/dim9.html

PostGIS 2.1.0 Manual
50/ 671

-p Only produces the table creation SQL code, without adding any actual data. This can be used if you need to completely
separate the table creation and data loading steps.

-? Display help screen.

-D Use the PostgreSQL "dump" format for the output data. This can be combined with -a, -c and -d. It is much faster to load
than the default "insert" SQL format. Use this for very large data sets.

-s [<FROM_SRID %gt;:1<SRID> Creates and populates the geometry tables with the specified SRID. Optionally specifies that
the input shapefile uses the given FROM_SRID, in which case the geometries will be reprojected to the target SRID.
FROM_SRID cannot be specified with -D.

-k Keep identifiers’ case (column, schema and attributes). Note that attributes in Shapefile are all UPPERCASE.

-i Coerce all integers to standard 32-bit integers, do not create 64-bit bigints, even if the DBF header signature appears to warrant
it.

-I Create a GiST index on the geometry column.

-S Generate simple geometries instead of MULTI geometries. Will only succeed if all the geometries are actually single (LE. a
MULTIPOLYGON with a single shell, or or a MULTIPOINT with a single vertex).

-t <dimensionality> Force the output geometry to have the specified dimensionality. Use the following strings to indicate the
dimensionality: 2D, 3DZ, 3DM, 4D.

If the input has fewer dimensions that specified, the output will have those dimensions filled in with zeroes. If the input
has more dimensions that specified, the unwanted dimensions will be stripped.

-w Output WKT format, instead of WKB. Note that this can introduce coordinate drifts due to loss of precision.

-e Execute each statement on its own, without using a transaction. This allows loading of the majority of good data when there
are some bad geometries that generate errors. Note that this cannot be used with the -D flag as the "dump" format always
uses a transaction.

-W <encoding> Specify encoding of the input data (dbf file). When used, all attributes of the dbf are converted from the
specified encoding to UTFS. The resulting SQL output will contain a SET CLIENT_ENCODING to UTF8 command,
so that the backend will be able to reconvert from UTF8 to whatever encoding the database is configured to use internally.

-N <policy> NULL geometries handling policy (insert*,skip,abort)

-n -n Only import DBEF file. If your data has no corresponding shapefile, it will automatically switch to this mode and load just
the dbf. So setting this flag is only needed if you have a full shapefile set, and you only want the attribute data and no
geometry.

-G Use geography type instead of geometry (requires lon/lat data) in WGS84 long lat (SRID=4326)

-T <tablespace> Specify the tablespace for the new table. Indexes will still use the default tablespace unless the -X parameter
is also used. The PostgreSQL documentation has a good description on when to use custom tablespaces.

-X <tablespace> Specify the tablespace for the new table’s indexes. This applies to the primary key index, and the GIST spatial
index if -1 is also used.

An example session using the loader to create an input file and uploading it might look like this:

shp2pgsgl -c -D -s 4269 -i -I shaperoads.shp myschema.roadstable > roads.sqgl

psgl -d roadsdb -f roads.sqgl

A conversion and upload can be done all in one step using UNIX pipes:

shp2pgsgl shaperoads.shp myschema.roadstable | psgl -d roadsdb

PostGIS 2.1.0 Manual
51 /671

4.5 Retrieving GIS Data

Data can be extracted from the database using either SQL or the Shape file loader/dumper. In the section on SQL we will discuss
some of the operators available to do comparisons and queries on spatial tables.

4.5.1 Using SQL to Retrieve Data

The most straightforward means of pulling data out of the database is to use a SQL select query to reduce the number of
RECORDS and COLUMNS returned and dump the resulting columns into a parsable text file:

db=# SELECT road_id, ST_AsText (road_geom) AS geom, road_name FROM roads;

road_id | geom | road_name
________ O T
1 | LINESTRING (191232 243118,191108 243242) | Jeff Rd
2 | LINESTRING (189141 244158,189265 244817) | Geordie Rd
3 | LINESTRING (192783 228138,192612 229814) | Paul St
4 | LINESTRING (189412 252431,189631 259122) | Graeme Ave
5 | LINESTRING (190131 224148,190871 228134) | Phil Tce
6 | LINESTRING (198231 263418,198213 268322) | Dave Cres
7 | LINESTRING (218421 284121,224123 241231) | Chris Way
(6 rows)

However, there will be times when some kind of restriction is necessary to cut down the number of fields returned. In the case of
attribute-based restrictions, just use the same SQL syntax as normal with a non-spatial table. In the case of spatial restrictions,
the following operators are available/useful:

& & This operator tells whether the bounding box of one geometry intersects the bounding box of another.

ST_OrderingEquals This tests whether two geometries are geometrically identical. For example, if ’'POLYGON((0 0,1 1,1 0,0
0))’ is the same as ’POLYGON((0 0,1 1,1 0,0 0))’ (it is).

= This operator is a little more naive, it only tests whether the bounding boxes of two geometries are the same.

Next, you can use these operators in queries. Note that when specifying geometries and boxes on the SQL command line,
you must explicitly turn the string representations into geometries by using the "ST_GeomFromText()" function. The 312 is a
fictitious spatial reference system that matches our data. So, for example:

SELECT road_id, road_name
FROM roads
WHERE ST_OrderingEquals (roads_geom , ST_GeomFromText (/' LINESTRING (191232 243118,191108 <+
243242)" ,312)) ;

The above query would return the single record from the "ROADS_GEOM" table in which the geometry was equal to that value.

When using the "&&" operator, you can specify either a BOX3D as the comparison feature or a GEOMETRY. When you specify
a GEOMETRY, however, its bounding box will be used for the comparison.

SELECT road_id, road_name
FROM roads
WHERE roads_geom && ST_GeomFromText (POLYGON((...))’,312);

The above query will use the bounding box of the polygon for comparison purposes.

The most common spatial query will probably be a "frame-based" query, used by client software, like data browsers and web
mappers, to grab a "map frame" worth of data for display. Using a "BOX3D" object for the frame, such a query looks like this:

SELECT ST_AsText (roads_geom) AS geom
FROM roads
WHERE
roads_geom && ST_MakeEnvelope (191232, 243117,191232, 243119,312);

Note the use of the SRID 312, to specify the projection of the envelope.

PostGIS 2.1.0 Manual
52 /671

4.5.2 Using the Dumper

The pgsqgl2shp table dumper connects directly to the database and converts a table (possibly defined by a query) into a shape
file. The basic syntax is:

pgsgl2shp [<options>] <database> [<schema>.]<table>
pgsgl2shp [<options>] <database> <query>
The commandline options are:

-f <filename> Write the output to a particular filename.

-h <host> The database host to connect to.

-p <port> The port to connect to on the database host.

-P <password> The password to use when connecting to the database.
-u <user> The username to use when connecting to the database.

-g <geometry column> In the case of tables with multiple geometry columns, the geometry column to use when writing the
shape file.

-b Use a binary cursor. This will make the operation faster, but will not work if any NON-geometry attribute in the table lacks a
cast to text.

-r Raw mode. Do not drop the gid field, or escape column names.

-d For backward compatibility: write a 3-dimensional shape file when dumping from old (pre-1.0.0) postgis databases (the
default is to write a 2-dimensional shape file in that case). Starting from postgis-1.0.0+, dimensions are fully encoded.

-m filename Remap identifiers to ten character names. The content of the file is lines of two symbols separated by a single
white space and no trailing or leading space: VERYLONGSYMBOL SHORTONE ANOTHERVERYLONGSYMBOL
SHORTER etc.

4.6 Building Indexes

Indexes are what make using a spatial database for large data sets possible. Without indexing, any search for a feature would
require a "sequential scan" of every record in the database. Indexing speeds up searching by organizing the data into a search
tree which can be quickly traversed to find a particular record. PostgreSQL supports three kinds of indexes by default: B-Tree
indexes, R-Tree indexes, and GiST indexes.

* B-Trees are used for data which can be sorted along one axis; for example, numbers, letters, dates. GIS data cannot be rationally
sorted along one axis (which is greater, (0,0) or (0,1) or (1,0)?) so B-Tree indexing is of no use for us.

* R-Trees break up data into rectangles, and sub-rectangles, and sub-sub rectangles, etc. R-Trees are used by some spatial
databases to index GIS data, but the PostgreSQL R-Tree implementation is not as robust as the GiST implementation.

non non

* GiST (Generalized Search Trees) indexes break up data into "things to one side", "things which overlap"”, "things which are
inside" and can be used on a wide range of data-types, including GIS data. PostGIS uses an R-Tree index implemented on top
of GiST to index GIS data.

PostGIS 2.1.0 Manual
53 /671

4.6.1 GiST Indexes

GiST stands for "Generalized Search Tree" and is a generic form of indexing. In addition to GIS indexing, GiST is used to speed
up searches on all kinds of irregular data structures (integer arrays, spectral data, etc) which are not amenable to normal B-Tree
indexing.

Once a GIS data table exceeds a few thousand rows, you will want to build an index to speed up spatial searches of the data
(unless all your searches are based on attributes, in which case you’ll want to build a normal index on the attribute fields).

The syntax for building a GiST index on a "geometry" column is as follows:

CREATE INDEX [indexname] ON [tablename] USING GIST ([geometryfield]);

The above syntax will always build a 2D-index. To get the an n-dimensional index supported in PostGIS 2.0+ for the geometry
type, you can create one using this syntax

CREATE INDEX [indexname] ON [tablename] USING GIST ([geometryfield] gist_geometry_ops_nd);

Building a spatial index is a computationally intensive exercise: on tables of around 1 million rows, on a 300MHz Solaris
machine, we have found building a GiST index takes about 1 hour. After building an index, it is important to force PostgreSQL
to collect table statistics, which are used to optimize query plans:

VACUUM ANALYZE [table_name] [(column_name)];
—— This is only needed for PostgreSQL 7.4 installations and below
SELECT UPDATE_GEOMETRY_STATS ([table_name], [column_name]);

GiST indexes have two advantages over R-Tree indexes in PostgreSQL. Firstly, GiST indexes are "null safe", meaning they can
index columns which include null values. Secondly, GiST indexes support the concept of "lossiness" which is important when
dealing with GIS objects larger than the PostgreSQL 8K page size. Lossiness allows PostgreSQL to store only the "important”
part of an object in an index -- in the case of GIS objects, just the bounding box. GIS objects larger than 8K will cause R-Tree
indexes to fail in the process of being built.

4.6.2 Using Indexes

Ordinarily, indexes invisibly speed up data access: once the index is built, the query planner transparently decides when to use
index information to speed up a query plan. Unfortunately, the PostgreSQL query planner does not optimize the use of GiST
indexes well, so sometimes searches which should use a spatial index instead default to a sequence scan of the whole table.

If you find your spatial indexes are not being used (or your attribute indexes, for that matter) there are a couple things you can
do:

* Firstly, make sure statistics are gathered about the number and distributions of values in a table, to provide the query plan-
ner with better information to make decisions around index usage. For PostgreSQL 7.4 installations and below this is done
by running update_geometry_stats([table_name, column_name]) (compute distribution) and VACUUM ANALYZE [ta-
ble_name] [column_name] (compute number of values). Starting with PostgreSQL 8.0 running VACUUM ANALYZE will
do both operations. You should regularly vacuum your databases anyways -- many PostgreSQL DBAs have VACUUM run as
an off-peak cron job on a regular basis.

* If vacuuming does not work, you can force the planner to use the index information by using the SET ENABLE_SEQSCAN=OFF

command. You should only use this command sparingly, and only on spatially indexed queries: generally speaking, the planner
knows better than you do about when to use normal B-Tree indexes. Once you have run your query, you should consider setting
ENABLE_SEQSCAN back on, so that other queries will utilize the planner as normal.

N;"“’! Note

As of version 0.6, it should not be necessary to force the planner to use the index with ENABLE_SEQSCAN.

 If you find the planner wrong about the cost of sequential vs index scans try reducing the value of random_page_cost in
postgresql.conf or using SET random_page_cost=#. Default value for the parameter is 4, try setting it to 1 or 2. Decrementing
the value makes the planner more inclined of using Index scans.

PostGIS 2.1.0 Manual
54 /671

4.7 Complex Queries

The raison d’etre of spatial database functionality is performing queries inside the database which would ordinarily require
desktop GIS functionality. Using PostGIS effectively requires knowing what spatial functions are available, and ensuring that
appropriate indexes are in place to provide good performance. The SRID of 312 used in these examples is purely for demonstra-
tion. You should be using a REAL SRID listed in the the spatial_ref_sys table and one that matches the projection of your data.
If your data has no spatial reference system specified, you should be THINKING very thoughtfully why it doesn’t and maybe it
should. If your reason is because you are modeling something that doesn’t have a geographic spatial reference system defined
such as the internals of a molecule or a good location on Mars to transport the human race in the event of a nuclear holocaust,
then simply leave out the SRID or make one up and insert it in the spatial_ref sys table.

4.7.1 Taking Advantage of Indexes

When constructing a query it is important to remember that only the bounding-box-based operators such as && can take ad-
vantage of the GiST spatial index. Functions such as ST_Distance () cannot use the index to optimize their operation. For
example, the following query would be quite slow on a large table:

SELECT the_geom
FROM geom_table
WHERE ST_Distance (the_geom, ST_GeomFromText ('POINT (100000 200000)", 312)) < 100

This query is selecting all the geometries in geom_table which are within 100 units of the point (100000, 200000). It will be
slow because it is calculating the distance between each point in the table and our specified point, ie. one ST_Distance ()
calculation for each row in the table. We can avoid this by using the && operator to reduce the number of distance calculations
required:

SELECT the_geom
FROM geom_table
WHERE ST_DWithin (the_geom, ST_MakeEnvelope (90900, 190900, 100100, 200100,312), 100)

This query selects the same geometries, but it does it in a more efficient way. Assuming there is a GiST index on the_geom, the
query planner will recognize that it can use the index to reduce the number of rows before calculating the result of the ST_dis-
tance () function. Notice that the ST_MakeEnvelope geometry which is used in the && operation is a 200 unit square box
centered on the original point - this is our "query box". The && operator uses the index to quickly reduce the result set down to
only those geometries which have bounding boxes that overlap the "query box". Assuming that our query box is much smaller
than the extents of the entire geometry table, this will drastically reduce the number of distance calculations that need to be done.

N:"“’! Change in Behavior
As of PostGIS 1.3.0, most of the Geometry Relationship Functions, with the notable exceptions of ST_Disjoint and
ST_Relate, include implicit bounding box overlap operators.

4.7.2 Examples of Spatial SQL

The examples in this section will make use of two tables, a table of linear roads, and a table of polygonal municipality boundaries.
The table definitions for the bc_roads table is:

Column | Type | Description

,,,,,,,,,,,, S

gid | integer | Unique ID

name | character varying | Road Name

the_geom | geometry | Location Geometry (Linestring)

The table definition for the bc_municipality table is:

PostGIS 2.1.0 Manual
55 /671

Column | Type | Description

___________ +___________________+___________________

gid | integer | Unique ID

code | integer | Unique ID

name | character varying | City / Town Name

the_geom | geometry | Location Geometry (Polygon)

1. What is the total length of all roads, expressed in kilometers?

You can answer this question with a very simple piece of SQL:

SELECT sum(ST_Length (the_geom)) /1000 AS km_roads FROM bc_roads;

km_roads

70842.1243039643
(1 row)

2. How large is the city of Prince George, in hectares?

This query combines an attribute condition (on the municipality name) with a spatial calculation (of the area):

SELECT

ST_Area (the_geom) /10000 AS hectares
FROM bc_municipality
WHERE name = ’'PRINCE GEORGE’;

hectares

32657.9103824927
(1 row)

3. What is the largest municipality in the province, by area?

This query brings a spatial measurement into the query condition. There are several ways of approaching this problem, but
the most efficient is below:

SELECT

name,

ST_Area (the_geom) /10000 AS hectares
FROM

bc_municipality
ORDER BY hectares DESC

LIMIT 1;

name | hectares
777777777777777 +77777777777777777
TUMBLER RIDGE | 155020.02556131
(1 row)

Note that in order to answer this query we have to calculate the area of every polygon. If we were doing this a lot it would
make sense to add an area column to the table that we could separately index for performance. By ordering the results in a
descending direction, and them using the PostgreSQL "LIMIT" command we can easily pick off the largest value without
using an aggregate function like max().

4. What is the length of roads fully contained within each municipality?

This is an example of a "spatial join", because we are bringing together data from two tables (doing a join) but using a
spatial interaction condition ("contained") as the join condition rather than the usual relational approach of joining on a
common key:

PostGIS 2.1.0 Manual
56 /671

SELECT
m.name,
sum (ST_Length (r.the_geom)) /1000 as roads_km
FROM
bc_roads AS r,
bc_municipality AS m
WHERE
ST_Contains (m.the_geom, r.the_geom)
GROUP BY m.name
ORDER BY roads_km;

name | roads_km

____________________________ e

SURREY | 1539.47553551242

VANCOUVER | 1450.33093486576

LANGLEY DISTRICT | 833.793392535662

BURNABY | 773.769091404338
|

PRINCE GEORGE 694.37554369147

This query takes a while, because every road in the table is summarized into the final result (about 250K roads for our
particular example table). For smaller overlays (several thousand records on several hundred) the response can be very
fast.

5. Create a new table with all the roads within the city of Prince George.

This is an example of an "overlay", which takes in two tables and outputs a new table that consists of spatially clipped or
cut resultants. Unlike the "spatial join" demonstrated above, this query actually creates new geometries. An overlay is like
a turbo-charged spatial join, and is useful for more exact analysis work:

CREATE TABLE pg_roads as
SELECT
ST_Intersection(r.the_geom, m.the_geom) AS intersection_geom,
ST_Length (r.the_geom) AS rd_orig_length,
r.x*
FROM
bc_roads AS r,
bc_municipality AS m
WHERE m.name = ’'PRINCE GEORGE’ AND ST_Intersects(r.the_geom, m.the_geom);

6. What is the length in kilometers of "Douglas St" in Victoria?

SELECT
sum (ST_Length (r.the_geom)) /1000 AS kilometers
FROM
bc_roads r,
bc_municipality m
WHERE r.name = ’'Douglas St’ AND m.name = ’'VICTORIA’
AND ST_Contains (m.the_geom, r.the_geom) ;

kilometers

4.89151904172838
(1 row)

7. What is the largest municipality polygon that has a hole?

SELECT gid, name, ST_Area(the_geom) AS area
FROM bc_municipality

WHERE ST_NRings (the_geom) > 1

ORDER BY area DESC LIMIT 1;

PostGIS 2.1.0 Manual
57 /671

gid | name | area

,,,,, o
12 | SPALLUMCHEEN | 257374619.430216
(1 row)

PostGIS 2.1.0 Manual
58 /671

Chapter 5

Raster Data Management, Queries, and Applica-
tions

5.1 Loading and Creating Rasters

For most use cases, you will create PostGIS rasters by loading existing raster files using the packaged raster2pgsql raster
loader.

5.1.1 Using raster2pgsql to load rasters

The raster2pgsql is a raster loader executable that loads GDAL supported raster formats into sql suitable for loading into a
PostGIS raster table. It is capable of loading folders of raster files as well as creating overviews of rasters.

Since the raster2pgsql is compiled as part of PostGIS most often (unless you compile your own GDAL library), the raster types
supported by the executable will be the same as those compiled in the GDAL dependency library. To get a list of raster types
your particular raster2pgsql supports use the —G switch. These should be the same as those provided by your PostGIS install
documented here ST_GDALDrivers if you are using the same gdal library for both.

. Note
NO‘M The older version of this tool was a python script. The executable has replaced the python script. If you still find the
need for the Python script Examples of the python one can be found at GDAL PostGIS Raster Driver Usage. Please
note that the raster2pgsql python script may not work with future versions of PostGIS raster and is no longer supported.

NO‘R’! Note

When creating overviews of a specific factor from a set of rasters that are aligned, it is possible for the overviews to not
align. Visit http://trac.osgeo.org/postgis/ticket/1764 for an example where the overviews do not align.

EXAMPLE USAGE:

raster2pgsqgl raster_options_go_here raster_file someschema.sometable > out.sqgl

-? Display help screen. Help will also display if you don’t pass in any arguments.
-G Print the supported raster formats.

(claldlp) These are mutually exclusive options:

http://trac.osgeo.org/gdal/wiki/frmts_wtkraster.html
http://trac.osgeo.org/postgis/ticket/1764

PostGIS 2.1.0 Manual
59 /671

-c Create new table and populate it with raster(s), this is the default mode
-a Append raster(s) to an existing table.
-d Drop table, create new one and populate it with raster(s)

-p Prepare mode, only create the table.
Raster processing: Applying constraints for proper registering in raster catalogs

-C Apply raster constraints -- srid, pixelsize etc. to ensure raster is properly registered in raster_columns view.
-x Disable setting the max extent constraint. Only applied if -C flag is also used.

-r Set the constraints (spatially unique and coverage tile) for regular blocking. Only applied if -C flag is also used.
Raster processing: Optional parameters used to manipulate input raster dataset
-s <SRID> Assign output raster with specified SRID. If not provided or is zero, raster’s metadata will be checked to

determine an appropriate SRID.

-b BAND Index (1-based) of band to extract from raster. For more than one band index, separate with comma (,). If
unspecified, all bands of raster will be extracted.

-t TILE_SIZE Cut raster into tiles to be inserted one per table row. TILE_SIZE is expressed as WIDTHXHEIGHT or
set to the value "auto" to allow the loader to compute an appropriate tile size using the first raster and applied to all
rasters.

-R, --register Register the raster as a filesystem (out-db) raster.
Only the metadata of the raster and path location to the raster is stored in the database (not the pixels).

-]l OVERVIEW_FACTOR Create overview of the raster. For more than one factor, separate with comma(,). Overview
table name follows the pattern o_overview factor_table, where overview factor is a placeholder for
numerical overview factor and table is replaced with the base table name. Created overview is stored in the
database and is not affected by -R. Note that your generated sql file will contain both the main table and overview
tables.

-N NODATA NODATA value to use on bands without a NODATA value.
Optional parameters used to manipulate database objects

-q Wrap PostgreSQL identifiers in quotes

-f COLUMN Specify name of destination raster column, default is "rast’
-F Add a column with the name of the file

-I Create a GiST index on the raster column.

-M Vacuum analyze the raster table.

-T tablespace Specify the tablespace for the new table. Note that indices (including the primary key) will still use the
default tablespace unless the -X flag is also used.

-X tablespace Specify the tablespace for the table’s new index. This applies to the primary key and the spatial index
if the -I flag is used.

-Y Use copy statements instead of insert statements.
-e Execute each statement individually, do not use a transaction.

-E ENDIAN Control endianness of generated binary output of raster; specify 0 for XDR and 1 for NDR (default); only NDR
output is supported now

-V version Specify version of output format. Default is 0. Only 0 is supported at this time.

An example session using the loader to create an input file and uploading it chunked in 100x100 tiles might look like this:

N:"R’! Note

You can leave the schema name out e.g demelevation instead of public.demelevation and the raster table
will be created in the default schema of the database or user

PostGIS 2.1.0 Manual
60 /671

raster2pgsql -s 4236 -I -C -M *.tif -F -t 100x100 public.demelevation > elev.sqgl
psgl -d gisdb -f elev.sqgl

A conversion and upload can be done all in one step using UNIX pipes:

raster2pgsql -s 4236 -I -C -M x.tif -F -t 100x100 public.demelevation | psgl -d gisdb

Load rasters Massachusetts state plane meters aerial tiles into a schema called aerial and create a full view, 2 and 4 level
overview tables, use copy mode for inserting (no intermediary file just straight to db), and -e don’t force everything in a transaction
(good if you want to see data in tables right away without waiting). Break up the rasters into 128x128 pixel tiles and apply raster
constraints. Use copy mode instead of table insert. (-F) Include a field called filename to hold the name of the file the tiles were
cut from.

raster2pgsgql -I -C -e -Y -F -s 26986 -t 128x128 -1 2,4 bostonaerials2008/x.]Jjpg aerials. <
boston | psgl -U postgres -d gisdb -h localhost -p 5432

-—get a list of raster types supported:
raster2pgsql -G

The -G commands outputs a list something like

Available GDAL raster formats:
Virtual Raster
GeoTIFF
National Imagery Transmission Format
Raster Product Format TOC format
ECRG TOC format
Erdas Imagine Images (.img)
CEOS SAR Image
CEOS Image
JAXA PALSAR Product Reader (Level 1.1/1.5)
Ground-based SAR Applications Testbed File Format (.gff)
ELAS
Arc/Info Binary Grid
Arc/Info ASCII Grid
GRASS ASCII Grid
SDTS Raster
DTED Elevation Raster
Portable Network Graphics
JPEG JFIF
In Memory Raster
Japanese DEM (.mem)
Graphics Interchange Format (.gif)
Graphics Interchange Format (.gif)
Envisat Image Format
Maptech BSB Nautical Charts
X11 PixMap Format
MS Windows Device Independent Bitmap
SPOT DIMAP
AirSAR Polarimetric Image
RadarSat 2 XML Product
PCIDSK Database File
PCRaster Raster File
ILWIS Raster Map
SGI Image File Format 1.0
SRTMHGT File Format
Leveller heightfield
Terragen heightfield
USGS Astrogeology ISIS cube (Version 3)
USGS Astrogeology ISIS cube (Version 2)

PostGIS 2.1.0 Manual
61 /671

NASA Planetary Data System
EarthWatch .TIL

ERMapper .ers Labelled

NOAA Polar Orbiter Level 1b Data Set
FIT Image

GRIdded Binary (.grb)

Raster Matrix Format

EUMETSAT Archive native (.nat)
Idrisi Raster A.1

Intergraph Raster

Golden Software ASCII Grid (.grd)
Golden Software Binary Grid (.grd)
Golden Software 7 Binary Grid (.grd)
COSAR Annotated Binary Matrix (TerraSAR-X)
TerraSAR-X Product

DRDC COASP SAR Processor Raster

R Object Data Store

Portable Pixmap Format (netpbm)
USGS DOQ (0l1ld Style)

USGS DOQ (New Style)

ENVI .hdr Labelled

ESRI .hdr Labelled

Generic Binary (.hdr Labelled)

PCI .aux Labelled

Vexcel MFF Raster

Vexcel MFF2 (HKV) Raster

Fuji BAS Scanner Image

GSC Geogrid

EOSAT FAST Format

VIP .bt (Binary Terrain) 1.3 Format
Erdas .LAN/.GIS

Convair PolGASP

Image Data and Analysis

NLAPS Data Format

Erdas Imagine Raw

DIPEx

FARSITE v.4 Landscape File (.lcp)
NOAA Vertical Datum .GTX

NADCON .los/.las Datum Grid Shift
NTv2 Datum Grid Shift

ACE2

Snow Data Assimilation System
Swedish Grid RIK (.rik)

USGS Optional ASCII DEM (and CDED)
GeoSoft Grid Exchange Format
Northwood Numeric Grid Format .grd/.tab
Northwood Classified Grid Format .grc/.tab
ARC Digitized Raster Graphics
Standard Raster Product (ASRP/USRP)
Magellan topo (.blx)

SAGA GIS Binary Grid (.sdat)

Kml Super Overlay

ASCII Gridded XYZ

HF2/HFZ heightfield raster
OziExplorer Image File

USGS LULC Composite Theme Grid
Arc/Info Export E00 GRID

ZMap Plus Grid

NOAA NGS Geoid Height Grids

PostGIS 2.1.0 Manual
62 /671

5.1.2 Creating rasters using PostGIS raster functions

On many occasions, you’ll want to create rasters and raster tables right in the database. There are a plethora of functions to do
that. The general steps to follow.

1. Create a table with a raster column to hold the new raster records which can be accomplished with:

CREATE TABLE myrasters(rid serial primary key, rast raster);

2. There are many functions to help with that goal. If you are creating rasters not as a derivative of other rasters, you will
want to start with: ST_MakeEmptyRaster, followed by ST_AddBand

You can also create rasters from geometries. To achieve that you’ll want to use ST_AsRaster perhaps accompanied with
other functions such as ST_Union or ST_MapAlgebraFct or any of the family of other map algebra functions.

There are even many more options for creating new raster tables from existing tables. For example you can create a raster
table in a different projection from an existing one using ST_Transform

3. Once you are done populating your table initially, you’ll want to create a spatial index on the raster column with something
like:

CREATE INDEX myrasters_rast_st_convexhull idx ON myrasters USING gist (ST_ConvexHull (<
rast));

Note the use of ST_ConvexHull since most raster operators are based on the convex hull of the rasters.

;'H'! Note
N Pre-2.0 versions of PostGIS raster were based on the envelope rather than the convex hull. For the spatial
indexes to work properly you’ll need to drop those and replace with convex hull based index.

4. Apply raster constraints using AddRasterConstraints

5.2 Raster Catalogs

There are two raster catalog views that come packaged with PostGIS. Both views utilize information embedded in the constraints
of the raster tables. As a result the catalog views are always consistent with the raster data in the tables since the constraints are
enforced.

1. raster_columns this view catalogs all the raster table columns in your database.

2. raster_overviews this view catalogs all the raster table columns in your database that serve as overviews for a finer
grained table. Tables of this type are generated when you use the —1 switch during load.

5.2.1 Raster Columns Catalog

The raster_columns is a catalog of all raster table columns in your database that are of type raster. It is a view utilizing the
constraints on the tables so the information is always consistent even if you restore one raster table from a backup of another
database. The following columns exist in the raster_columns catalog.

If you created your tables not with the loader or forgot to specify the —C flag during load, you can enforce the constraints after
the fact using AddRasterConstraints so that the raster_columns catalog registers the common information about your raster
tiles.

* r_table_catalog The database the table is in. This will always read the current database.

* r_table_schema The database schema the raster table belongs to.

PostGIS 2.1.0 Manual
63 /671

e r table_name raster table

* r_raster_column the column in the r_table_name table that is of type raster. There is nothing in PostGIS preventing
you from having multiple raster columns per table so its possible to have a raster table listed multiple times with a different
raster column for each.

* srid The spatial reference identifier of the raster. Should be an entry in the Section 4.3.1.

* scale_x The scaling between geometric spatial coordinates and pixel. This is only available if all tiles in the raster column
have the same scale_x and this constraint is applied. Refer to ST_ScaleX for more details.

* scale_y The scaling between geometric spatial coordinates and pixel. This is only available if all tiles in the raster column
have the same scale_y and the scale_y constraint is applied. Refer to ST_ScaleY for more details.

* blocksize_x The width (number of pixels across) of each raster tile . Refer to ST_Width for more details.
* blocksize_y The width (number of pixels down) of each raster tile . Refer to ST_Height for more details.

* same_alignment A boolean that is true if all the raster tiles have the same alignment . Refer to ST_SameAlignment for
more details.

* regular_blocking If the raster column has the spatially unique and coverage tile constraints, the value with be TRUE.
Otherwise, it will be FALSE.

* num_bands The number of bands in each tile of your raster set. This is the same information as what is provided by
ST _NumBands

* pixel_types An array defining the pixel type for each band. You will have the same number of elements in this array as
you have number of bands. The pixel_types are one of the following defined in ST_BandPixelType.

* nodata_values An array of double precision numbers denoting the nodata_value for each band. You will have the
same number of elements in this array as you have number of bands. These numbers define the pixel value for each band that
should be ignored for most operations. This is similar information provided by ST_BandNoDataValue.

* extent This is the extent of all the raster rows in your raster set. If you plan to load more data that will change the extent of the
set, you’ll want to run the DropRasterConstraints function before load and then reapply constraints with AddRasterConstraints
after load.

5.2.2 Raster Overviews

raster_overviews catalogs information about raster table columns used for overviews and additional information about
them that is useful to know when utilizing overviews. Overview tables are cataloged in both raster_columns and raster-
_overviews because they are rasters in their own right but also serve an additional special purpose of being a lower resolution
caricature of a higher resolution table. These are generated along-side the main raster table when you use the —1 switch in raster
loading.

Overview tables contain the same constraints as other raster tables as well as additional informational only constraints specific to
overviews.

s Note
Nﬁ'l"! The information in raster_overviews does not duplicate the information in raster_columns. If you need
the information about an overview table present in raster_columns you can join the raster_overviews and
raster_columns together to get the full set of information you need.

Two main reasons for overviews are:

1. Low resolution representation of the core tables commonly used for fast mapping zoom-out.

PostGIS 2.1.0 Manual
64 /671

2. Computations are generally faster to do on them than their higher resolution parents because there are fewer records and
each pixel covers more territory. Though the computations are not as accurate as the high-res tables they support, they can
be sufficient in many rule-of-thumb computations.

The raster_overviews catalog contains the following columns of information.

* o_table_catalog The database the overview table is in. This will always read the current database.

* o_table_schema The database schema the overview raster table belongs to.

* o_table_name raster overview table name

* o_raster_columnn the raster column in the overview table.

* r_table_catalog The database the raster table that this overview services is in. This will always read the current database.
* r_table_schema The database schema the raster table that this overview services belongs to.

* r_table_name raster table that this overview services.

* r_raster_column the raster column that this overview column services.

* overview_factor - this is the pyramid level of the overview table. The higher the number the lower the resolution of
the table. raster2pgsql if given a folder of images, will compute overview of each image file and load separately. Level 1
is assumed and always the original file. Level 2 is will have each tile represent 4 of the original. So for example if you
have a folder of 5000x5000 pixel image files that you chose to chunk 125x125, for each image file your base table will have
(5000%5000)/(125*125) records = 1600, your (1=2) o_2 table will have ceiling(1600/Power(2,2)) = 400 rows, your (1=3) o_3
will have ceiling(1600/Power(2,3)) = 200 rows. If your pixels aren’t divisible by the size of your tiles, you’ll get some scrap
tiles (tiles not completely filled). Note that each overview tile generated by raster2pgsql has the same number of pixels as its
parent, but is of a lower resolution where each pixel of it represents (Power(2,overview_factor) pixels of the original).

5.3 Building Custom Applications with PostGIS Raster

The fact that PostGIS raster provides you with SQL functions to render rasters in known image formats gives you a lot of optoins
for rendering them. For example you can use OpenOffice / LibreOffice for rendering as demonstrated in Rendering PostGIS
Raster graphics with LibreOffice Base Reports. In addition you can use a wide variety of languages as demonstrated in this
section.

5.3.1 PHP Example Outputting using ST_AsPNG in concert with other raster functions

In this section, we’ll demonstrate how to use the PHP PostgreSQL driver and the ST_AsGDALRaster family of functions to
output band 1,2,3 of a raster to a PHP request stream that can then be embedded in an img src html tag.

The sample query demonstrates how to combine a whole bunch of raster functions together to grab all tiles that intersect a
particular wgs 84 bounding box and then unions with ST_Union the intersecting tiles together returning all bands, transforms to
user specified projection using ST_Transform, and then outputs the results as a png using ST_AsPNG.

You would call the below using

http://mywebserver/test_raster.php?srid=2249

to get the raster image in Massachusetts state plane feet.

<?php

/** contents of test_raster.php =*x/

Sconn_str =’dbname=mydb host=localhost port=5432 user=myuser password=mypwd’;
Sdbconn = pg_connect (Sconn_str) ;

header (' Content-Type: image/png’) ;

http://www.postgresonline.com/journal/archives/244-Rendering-PostGIS-Raster-graphics-with-LibreOffice-Base-Reports.html
http://www.postgresonline.com/journal/archives/244-Rendering-PostGIS-Raster-graphics-with-LibreOffice-Base-Reports.html

PostGIS 2.1.0 Manual
65 /671

/+*xI1f a particular projection was requested use it otherwise use mass state plane meters <+
*%/
if (lempty($_REQUEST[’srid’]) && is_numeric($_REQUEST[’srid’])) {
$input_srid = intval ($_REQUEST[’srid’]);
}
else { $input_srid = 26986; }
/+*x The set bytea_output may be needed for PostgreSQL 9.0+, but not for 8.4 x*x/
Ssgl = "set bytea_output=’escape’;
SELECT ST_AsPNG (ST_Transform/(
ST_AddBand (ST_Union(rast, 1), ARRAY[ST_ Union(rast,2),ST_Union(rast,3)])

, $input_srid)) As new_rast
FROM aerials.boston
WHERE
ST_Intersects(rast, ST _Transform(ST_MakeEnvelope(-71.1217, 42.227, -71.1210, —
42.218,4326),26986))";

Sresult = pg_query ($sql);
Srow = pg_fetch_row ($Sresult);
pg_free_result (Sresult) ;

if (Srow === false) return;
echo pg_unescape_bytea ($Srow[0]);
>

5.3.2 ASP.NET C# Example Outputting using ST_AsPNG in concert with other raster functions

In this section, we’ll demonstrate how to use Npgsql PostgreSQL .NET driver and the ST_AsGDALRaster family of functions
to output band 1,2,3 of a raster to a PHP request stream that can then be embedded in an img src html tag.

You will need the npgsql .NET PostgreSQL driver for this exercise which you can get the latest of from http://npgsql.projects.postgresql.o
. Just download the latest and drop into your ASP.NET bin folder and you’ll be good to go.

The sample query demonstrates how to combine a whole bunch of raster functions together to grab all tiles that intersect a
particular wgs 84 bounding box and then unions with ST_Union the intersecting tiles together returning all bands, transforms to
user specified projection using ST_Transform, and then outputs the results as a png using ST_AsPNG.

This is same example as Section 5.3.1 except implemented in C#.
You would call the below using

http://mywebserver/TestRaster.ashx?srid=2249

to get the raster image in Massachusetts state plane feet.

-— web.config connection string section —-
<connectionStrings>
<add name="DSN"
connectionString="server=localhost;database=mydb;Port=5432;User Id=myuser;password= <
mypwd" />
</connectionStrings>

// Code for TestRaster.ashx

<%@ WebHandler Language="C#" Class="TestRaster" %>
using System;

using System.Data;

using System.Web;

using Npgsqgl;

public class TestRaster : IHttpHandler

{
public void ProcessRequest (HttpContext context)

{

http://npgsql.projects.postgresql.org/
http://npgsql.projects.postgresql.org/

PostGIS 2.1.0 Manual
66 /671

context .Response.ContentType = "image/png";
context .Response.BinaryWrite (GetResults (context));

public bool IsReusable {
get { return false; }

public byte[] GetResults (HttpContext context)
{
byte[] result = null;
NpgsglCommand command;
string sgl = null;
int input_srid = 26986;
try {
using (NpgsglConnection conn = new NpgsglConnection (System.Configuration. ¢
ConfigurationManager.ConnectionStrings["DSN"].ConnectionString)) {
conn.Open () ;

if (context.Request["srid"] != null)
{
input_srid = Convert.ToInt32 (context.Request["srid"]);

}
sgql = Q@"SELECT ST_AsPNG (

ST_Transform (

ST_AddBand (
ST_Union(rast,1l), ARRAY[ST_Union (rast,2),ST_Union(rast,3)])

, tinput_srid)) As new_rast
FROM aerials.boston
WHERE

ST_Intersects(rast,
ST_Transform(ST_MakeEnvelope (-71.1217, 42.227, —
-71.1210, 42.218,4326),26986))";
command = new NpgsqglCommand(sgl, conn);
command.Parameters.Add (new NpgsglParameter ("input_srid", input_srid));

result = (byte[]) command.ExecuteScalar();
conn.Close();

catch (Exception ex)

{
result = null;
context .Response.Write (ex.Message.Trim());

}

return result;

5.3.3 Java console app that outputs raster query as Image file

This is a simple java console app that takes a query that returns one image and outputs to specified file.
You can download the latest PostgreSQL JDBC drivers from http://jdbc.postgresql.org/download.html
You can compile the following code using a command something like:

set env CLASSPATH .:..\postgresqgl-9.0-801.jdbc4.jar

http://jdbc.postgresql.org/download.html

PostGIS 2.1.0 Manual

67 /671
javac SaveQuerylImage.java
jar cfm SaveQueryImage.jar Manifest.txt x.class
And call it from the command-line with something like
java —jar SaveQuerylImage.jar "SELECT ST_AsPNG (ST_AsRaster (ST_Buffer (ST_Point(1,5),10, <~

quad_segs=2’"),150, 150, ’'8BUI’,100));" "test.png"

—— Ma
Class-—
Main-C

nifest.txt ——
Path: postgresqgl-9.0-801.jdbc4. jar
lass: SaveQueryImage

// Code for SaveQueryImage.java

import
import
import
import
import

public
publ

Fi

java.sqgl.Connection;
java.sql.SQLException;
java.sqgl.PreparedStatement;
java.sqgl.ResultSet;
java.io.x;

class SaveQueryImage {
ic static void main(String[] argv) {

System.out.println ("Checking if Driver is registered with DriverManager.")

try {

//Jjava.sqgl.DriverManager.registerDriver (new org.postgresgl.Driver())

Class.forName ("org.postgresqgl.Driver") ;

}

catch (ClassNotFoundException cnfe) {

System.out.println("Couldn’t find the driver!");

cnfe.printStackTrace () ;
System.exit (1) ;

Connection conn = null;

try |

’

conn = DriverManager.getConnection ("jdbc:postgresqgl://localhost:5432/mydb", "myuser <

n , "mypwdll) ’.
conn.setAutoCommit (false) ;

PreparedStatement sGetImg = conn.prepareStatement (argv[0]);

ResultSet rs = sGetImg.executeQuery();

leOutputStream fout;

try

{

}

rs.next ();

/+* Output to file name requested by user *x/
fout = new FileOutputStream(new File (argv[1l])
fout.write (rs.getBytes(1l));

fout.close();

catch (Exception e)

{

System.out.println("Can’t create file");
e.printStackTrace () ;

rs.close();

sGetImg.close () ;

)i

PostGIS 2.1.0 Manual
68 /671

conn.close();
}
catch (SQLException se) {
System.out.println("Couldn’t connect: print out a stack trace and exit.");
se.printStackTrace () ;
System.exit (1) ;

5.3.4 Use PLPython to dump out images via SQL

This is a plpython stored function that creates a file in the server directory for each record.

//plpython postgresqgl stored proc. Requires you have plpython installed
CREATE OR REPLACE FUNCTION write_file (param_bytes bytea, param_ filepath text)
RETURNS text

AS $$

f = open(param_filepath, ’'wb+’)

f.write (param_bytes)

return param_filepath

$$ LANGUAGE plpythonu;

-—write out 5 images to the PostgreSQL server in varying sizes
—— note the postgresgl daemon account needs to have write access to folder
—— this echos back the file names created;
SELECT write_file (ST_AsSPNG (
ST_AsRaster (ST_Buffer (ST_Point (1,5), j*5, ’quad_segs=2"),150%j, 150«7j, ’8BUI’,100)),
"C:/temp/slices’ || J || ’.png’)
FROM generate_series(1,5) As j;

write_file
C:/temp/slicesl.png
C:/temp/slices2.png
C:/temp/slices3.png
C:/temp/slices4.png
C:/temp/slices5.png

5.3.5 Outputting Rasters with PSQL

Sadly PSQL doesn’t have easy to use built-in functionality for outputting binaries. This is a bit of a hack and based on one of the
suggestions outlined in Clever Trick Challenge -- Outputting bytea with psql that piggy backs on PostgreSQL somewhat legacy
large object support. To use first launch your psql commandline connected to your database.

Unlike the python approach, this approach creates the file on your local computer.

SELECT oid, lowrite(lo_open(oid, 131072), png) As num_bytes
FROM
(VALUES (lo_create(0),
ST_AsPNG((SELECT rast FROM aerials.boston WHERE rid=1l))
)) As v(oid,png);
—-— you’ll get an output something like —-—
oid | num_bytes
_________ e
2630819 | 74860

—— next note the oid and do this replacing the c:/test.png to file path location

http://people.planetpostgresql.org/andrew/index.php?/archives/196-Clever-trick-challenge.html

PostGIS 2.1.0 Manual
69 /671

—-— on your local computer
\lo_export 2630819 ’'C:/temp/aerial_samp.png’

—— this deletes the file from large object storage on db
SELECT lo_unlink (2630819);

PostGIS 2.1.0 Manual
70/ 671

Chapter 6

Using PostGIS Geometry: Building Applications

6.1 Using MapServer

The Minnesota MapServer is an internet web-mapping server which conforms to the OpenGIS Web Mapping Server specification.

* The MapServer homepage is at http://mapserver.org.

* The OpenGIS Web Map Specification is at http://www.opengeospatial.org/standards/wms.

6.1.1 Basic Usage

To use PostGIS with MapServer, you will need to know about how to configure MapServer, which is beyond the scope of this
documentation. This section will cover specific PostGIS issues and configuration details.

To use PostGIS with MapServer, you will need:

¢ Version 0.6 or newer of PostGIS.

* Version 3.5 or newer of MapServer.

MapServer accesses PostGIS/PostgreSQL data like any other PostgreSQL client -- using the 1ibpq interface. This means that
MapServer can be installed on any machine with network access to the PostGIS server, and use PostGIS as a source of data. The
faster the connection between the systems, the better.

1. Compile and install MapServer, with whatever options you desire, including the "--with-postgis" configuration option.

2. In your MapServer map file, add a PostGIS layer. For example:

LAYER
CONNECTIONTYPE postgis
NAME "widehighways"
Connect to a remote spatial database
CONNECTION "user=dbuser dbname=gisdatabase host=bigserver"
PROCESSING "CLOSE_CONNECTION=DEFER"
Get the lines from the ’'geom’ column of the ’roads’ table
DATA "geom from roads using srid=4326 using unique gid"

STATUS ON

TYPE LINE

Of the lines in the extents, only render the wide highways
FILTER "type = 'highway’ and numlanes >= 4"

CLASS

Make the superhighways brighter and 2 pixels wide

http://mapserver.org
http://www.opengeospatial.org/standards/wms

PostGIS 2.1.0 Manual

71 /671

EXPRESSION ([numlanes] >= 6)
STYLE
COLOR 255 22 22
WIDTH 2
END
END
CLASS
All the rest are darker and only 1 pixel wide
EXPRESSION ([numlanes] < 6)
STYLE
COLOR 205 92 82
END
END
END

In the example above, the PostGIS-specific directives are as follows:

CONNECTIONTYPE For PostGIS layers, this is always "postgis".

CONNECTION The database connection is governed by the a ’connection string’ which is a standard set of keys and
values like this (with the default values in <>):
user=<username> password=<password> dbname=<username> hostname=<server> port=<5432>
An empty connection string is still valid, and any of the key/value pairs can be omitted. At a minimum you will
generally supply the database name and username to connect with.

DATA The form of this parameter is "<geocolumn> from <tablename> using srid=<srid> using unique <primary key>"
where the column is the spatial column to be rendered to the map, the SRID is SRID used by the column and the
primary key is the table primary key (or any other uniquely-valued column with an index).

You can omit the "using srid" and "using unique" clauses and MapServer will automatically determine the correct
values if possible, but at the cost of running a few extra queries on the server for each map draw.

PROCESSING Putting in a CLOSE_CONNECTION=DEFER if you have multiple layers reuses existing connections
instead of closing them. This improves speed. Refer to for MapServer PostGIS Performance Tips for a more detailed
explanation.

FILTER The filter must be a valid SQL string corresponding to the logic normally following the "WHERE" keyword in
a SQL query. So, for example, to render only roads with 6 or more lanes, use a filter of "num_lanes >= 6".

. In your spatial database, ensure you have spatial (GiST) indexes built for any the layers you will be drawing.

CREATE INDEX [indexname] ON [tablename] USING GIST ([geometrycolumn]);

. If you will be querying your layers using MapServer you will also need to use the "using unique" clause in your DATA
statement.

MapServer requires unique identifiers for each spatial record when doing queries, and the PostGIS module of MapServer
uses the unique value you specify in order to provide these unique identifiers. Using the table primary key is the best
practice.

6.1.2 Frequently Asked Questions

1. When I use an EXPRESSION in my map file, the condition never returns as true, even though I know the values exist in

my table.
Unlike shape files, PostGIS field names have to be referenced in EXPRESSIONS using lower case.

EXPRESSION ([numlanes] >= 6)

. The FILTER I use for my Shape files is not working for my PostGIS table of the same data.

Unlike shape files, filters for PostGIS layers use SQL syntax (they are appended to the SQL statement the PostGIS con-
nector generates for drawing layers in MapServer).

http://blog.cleverelephant.ca/2008/10/mapserverpostgis-performance-tips.html

PostGIS 2.1.0 Manual
72 /671

FILTER "type = ’'highway’ and numlanes >= 4"

3. My PostGIS layer draws much slower than my Shape file layer, is this normal?

In general, the more features you are drawing into a given map, the more likely it is that PostGIS will be slower than
Shape files. For maps with relatively few features (100s), PostGIS will often be faster. For maps with high feature density
(1000s), PostGIS will always be slower. If you are finding substantial draw performance problems, it is possible that you
have not built a spatial index on your table.

postgis# CREATE INDEX geotable_gix ON geotable USING GIST (geocolumn);
postgis# VACUUM ANALYZE;

4. My PostGIS layer draws fine, but queries are really slow. What is wrong?

For queries to be fast, you must have a unique key for your spatial table and you must have an index on that unique key. You
can specify what unique key for mapserver to use with the USING UNIQUE clause in your DATA line:

DATA "geom FROM geotable USING UNIQUE gid"

5. Can I use "geography" columns (new in PostGIS 1.5) as a source for MapServer layers?

Yes! MapServer understands geography columns as being the same as geometry columns, but always using an SRID of
4326. Just make sure to include a "using srid=4326" clause in your DATA statement. Everything else works exactly the
same as with geometry.

DATA "geog FROM geogtable USING SRID=4326 USING UNIQUE gid"

6.1.3 Advanced Usage

The USING pseudo-SQL clause is used to add some information to help mapserver understand the results of more complex
queries. More specifically, when either a view or a subselect is used as the source table (the thing to the right of "FROM" in a
DATA definition) it is more difficult for mapserver to automatically determine a unique identifier for each row and also the SRID
for the table. The USING clause can provide mapserver with these two pieces of information as follows:

DATA "geom FROM (
SELECT
tablel.geom AS geom,
tablel.gid AS gid,
table2.data AS data
FROM tablel
LEFT JOIN table2
ON tablel.id = table2.id
) AS new_table USING UNIQUE gid USING SRID=4326"

USING UNIQUE <uniqueid> MapServer requires a unique id for each row in order to identify the row when doing map
queries. Normally it identifies the primary key from the system tables. However, views and subselects don’t automatically
have an known unique column. If you want to use MapServer’s query functionality, you need to ensure your view or
subselect includes a uniquely valued column, and declare it with USING UNIQUE. For example, you could explicitly
select nee of the table’s primary key values for this purpose, or any other column which is guaranteed to be unique for the
result set.

N:’w Note

"Querying a Map" is the action of clicking on a map to ask for information about the map features in that location.
Don’t confuse "map queries” with the SQL query in a DATA definition.

USING SRID=<srid> PostGIS needs to know which spatial referencing system is being used by the geometries in order to
return the correct data back to MapServer. Normally it is possible to find this information in the "geometry_columns" table
in the PostGIS database, however, this is not possible for tables which are created on the fly such as subselects and views.
So the USING SRID= option allows the correct SRID to be specified in the DATA definition.

PostGIS 2.1.0 Manual

73 /671

6.1.4 Examples

Lets start with a simple example and work our way up. Consider the following MapServer layer definition:

LAYER
CONNECTIONTYPE postgis
NAME "roads"

CONNECTION "user=theuser password=thepass dbname=thedb host=theserver"

DATA "geom from roads"
STATUS ON
TYPE LINE
CLASS

STYLE

COLOR 0 0 O

END

END
END

This layer will display all the road geometries in the roads table as black lines.

Now lets say we want to show only the highways until we get zoomed in to at least a 1:100000 scale - the next two layers will

achieve this effect:

LAYER
CONNECTIONTYPE postgis

CONNECTION "user=theuser password=thepass dbname=thedb host=theserver"

PROCESSING "CLOSE_CONNECTION=DEFER"
DATA "geom from roads"
MINSCALE 100000

STATUS ON
TYPE LINE
FILTER "road_type = "highway’"
CLASS
COLOR 0 0 O
END
END
LAYER

CONNECTIONTYPE postgis

CONNECTION "user=theuser password=thepass dbname=thedb

PROCESSING "CLOSE_CONNECTION=DEFER"
DATA "geom from roads"
MAXSCALE 100000
STATUS ON
TYPE LINE
CLASSITEM road_type
CLASS
EXPRESSION "highway"
STYLE
WIDTH 2
COLOR 255 0 O
END
END
CLASS
STYLE
COLOR 0 0 O
END
END
END

host=theserver"

The first layer is used when the scale is greater than 1:100000, and displays only the roads of type "highway" as black lines. The

FILTER option causes only roads of type "highway" to be displayed.

PostGIS 2.1.0 Manual
74 /671

The second layer is used when the scale is less than 1:100000, and will display highways as double-thick red lines, and other
roads as regular black lines.

So, we have done a couple of interesting things using only MapServer functionality, but our DATA SQL statement has remained
simple. Suppose that the name of the road is stored in another table (for whatever reason) and we need to do a join to get it and
label our roads.

LAYER
CONNECTIONTYPE postgis
CONNECTION "user=theuser password=thepass dbname=thedb host=theserver"
DATA "geom FROM (SELECT roads.gid AS gid, roads.geom AS geom,
road_names.name as name FROM roads LEFT JOIN road_names ON
roads.road_name_id = road_names.road_name_id)
AS named_roads USING UNIQUE gid USING SRID=4326"
MAXSCALE 20000
STATUS ON
TYPE ANNOTATION
LABELITEM name
CLASS
LABEL
ANGLE auto
SIZE 8
COLOR 0 192 0
TYPE truetype
FONT arial
END
END
END

This annotation layer adds green labels to all the roads when the scale gets down to 1:20000 or less. It also demonstrates how to
use an SQL join in a DATA definition.

6.2 Java Clients (JDBC)

Java clients can access PostGIS "geometry" objects in the PostgreSQL database either directly as text representations or using
the JDBC extension objects bundled with PostGIS. In order to use the extension objects, the "postgis.jar" file must be in your
CLASSPATH along with the "postgresql.jar" JDBC driver package.

import java.sqgl.x;
import java.util.x;
import java.lang.x;
import org.postgis.x;
public class JavaGIS {

public static void main (String[] args) {

java.sqgl.Connection conn;

try {
/ *
* Load the JDBC driver and establish a connection.
*/
Class.forName ("org.postgresqgl.Driver") ;
String url = "jdbc:postgresqgl://localhost:5432/database";
conn = DriverManager.getConnection (url, "postgres", "");
/ *

* Add the geometry types to the connection. Note that you
+ must cast the connection to the pgsgl-specific connection
* implementation before calling the addDataType () method.

PostGIS 2.1.0 Manual
75/ 671

*/
((org.postgresqgl .PGConnection) conn) .addDataType ("geometry",Class.forName ("org.postgis. ¢

PGgeometry")) ;
((org.postgresqgl .PGConnection) conn) .addDataType ("box3d",Class.forName ("org.postgis. <«

PGbox3d")) ;

/ *
* Create a statement and execute a select query.
x/
Statement s = conn.createStatement () ;
ResultSet r = s.executeQuery("select geom,id from geomtable");
while(r.next ()) {
/ *

* Retrieve the geometry as an object then cast it to the geometry type.
* Print things out.

*/

PGgeometry geom = (PGgeometry)r.getObject (1);
int id = r.getInt(2);

System.out.println("Row " + id + ":");

System.out.println (geom.toString()) ;
}
s.close();
conn.close();
}
catch(Exception e) {
e.printStackTrace () ;

}

The "PGgeometry" object is a wrapper object which contains a specific topological geometry object (subclasses of the abstract
class "Geometry") depending on the type: Point, LineString, Polygon, MultiPoint, MultiLineString, MultiPolygon.

PGgeometry geom = (PGgeometry)r.getObject (1);
if(geom.getType () == Geometry.POLYGON) {
Polygon pl = (Polygon)geom.getGeometry () ;
for(int r = 0; r < pl.numRings(); r++) {
LinearRing rng = pl.getRing(r);
System.out.println("Ring: " + r);
for(int p = 0; p < rng.numPoints(); p++) {
Point pt = rng.getPoint (p);
System.out.println ("Point: " + p);
System.out.println (pt.toString());

The JavaDoc for the extension objects provides a reference for the various data accessor functions in the geometric objects.

6.3 C Clients (libpq)

6.3.1 Text Cursors

6.3.2 Binary Cursors

PostGIS 2.1.0 Manual
76 /671

Chapter 7

Performance tips

7.1 Small tables of large geometries

7.1.1 Problem description

Current PostgreSQL versions (including 8.0) suffer from a query optimizer weakness regarding TOAST tables. TOAST tables
are a kind of "extension room" used to store large (in the sense of data size) values that do not fit into normal data pages (like long
texts, images or complex geometries with lots of vertices), see the PostgreSQL Documentation for TOAST for more information).

The problem appears if you happen to have a table with rather large geometries, but not too much rows of them (like a table
containing the boundaries of all European countries in high resolution). Then the table itself is small, but it uses lots of TOAST
space. In our example case, the table itself had about 80 rows and used only 3 data pages, but the TOAST table used 8225 pages.

Now issue a query where you use the geometry operator && to search for a bounding box that matches only very few of those
rows. Now the query optimizer sees that the table has only 3 pages and 80 rows. He estimates that a sequential scan on such a
small table is much faster than using an index. And so he decides to ignore the GIST index. Usually, this estimation is correct.
But in our case, the && operator has to fetch every geometry from disk to compare the bounding boxes, thus reading all TOAST
pages, too.

To see whether your suffer from this bug, use the "EXPLAIN ANALYZE" postgresql command. For more information and
the technical details, you can read the thread on the postgres performance mailing list: http://archives.postgresql.org/pgsql-
performance/2005-02/msg00030.php

7.1.2 Workarounds

The PostgreSQL people are trying to solve this issue by making the query estimation TOAST-aware. For now, here are two
workarounds:

The first workaround is to force the query planner to use the index. Send "SET enable_seqscan TO off;" to the server before
issuing the query. This basically forces the query planner to avoid sequential scans whenever possible. So it uses the GIST index
as usual. But this flag has to be set on every connection, and it causes the query planner to make misestimations in other cases,
so you should "SET enable_seqscan TO on;" after the query.

The second workaround is to make the sequential scan as fast as the query planner thinks. This can be achieved by creating an
additional column that "caches" the bbox, and matching against this. In our example, the commands are like:

SELECT AddGeometryColumn ('myschema’, ’mytable’,’bbox’,’4326’,’ GEOMETRY’ ,"2");
UPDATE mytable SET bbox = ST_Envelope (ST_Force2D (the_geom)) ;

Now change your query to use the && operator against bbox instead of geom_column, like:

SELECT geom_column
FROM mytable
WHERE bbox && ST_SetSRID(’BOX3D(0 0,1 1)’ ::box3d,4326);

http://www.postgresql.org/docs/current/static/storage-toast.html

PostGIS 2.1.0 Manual
77 1671

Of course, if you change or add rows to mytable, you have to keep the bbox "in sync". The most transparent way to do this would
be triggers, but you also can modify your application to keep the bbox column current or run the UPDATE query above after
every modification.

7.2 CLUSTERing on geometry indices

For tables that are mostly read-only, and where a single index is used for the majority of queries, PostgreSQL offers the CLUS-
TER command. This command physically reorders all the data rows in the same order as the index criteria, yielding two
performance advantages: First, for index range scans, the number of seeks on the data table is drastically reduced. Second, if
your working set concentrates to some small intervals on the indices, you have a more efficient caching because the data rows
are spread along fewer data pages. (Feel invited to read the CLUSTER command documentation from the PostgreSQL manual
at this point.)

However, currently PostgreSQL does not allow clustering on PostGIS GIST indices because GIST indices simply ignores NULL
values, you get an error message like:

lwgeom=# CLUSTER my_geom_index ON my_table;
ERROR: cannot cluster when index access method does not handle null values
HINT: You may be able to work around this by marking column "the_geom" NOT NULL.

As the HINT message tells you, one can work around this deficiency by adding a "not null" constraint to the table:

lwgeom=# ALTER TABLE my_table ALTER COLUMN the_geom SET not null;
ALTER TABLE

Of course, this will not work if you in fact need NULL values in your geometry column. Additionally, you must use the above
method to add the constraint, using a CHECK constraint like "TALTER TABLE blubb ADD CHECK (geometry is not null);" will
not work.

7.3 Avoiding dimension conversion

Sometimes, you happen to have 3D or 4D data in your table, but always access it using OpenGIS compliant ST_AsText() or
ST_AsBinary() functions that only output 2D geometries. They do this by internally calling the ST_Force2D() function, which
introduces a significant overhead for large geometries. To avoid this overhead, it may be feasible to pre-drop those additional
dimensions once and forever:

UPDATE mytable SET the_geom = ST_Force2D (the_geom) ;
VACUUM FULL ANALYZE mytable;

Note that if you added your geometry column using AddGeometryColumn() there’ll be a constraint on geometry dimension. To
bypass it you will need to drop the constraint. Remember to update the entry in the geometry_columns table and recreate the
constraint afterwards.

In case of large tables, it may be wise to divide this UPDATE into smaller portions by constraining the UPDATE to a part of the
table via a WHERE clause and your primary key or another feasible criteria, and running a simple "VACUUM;" between your
UPDATEs. This drastically reduces the need for temporary disk space. Additionally, if you have mixed dimension geometries,
restricting the UPDATE by "WHERE dimension(the_geom)>2" skips re-writing of geometries that already are in 2D.

7.4 Tuning your configuration

These tips are taken from Kevin Neufeld’s presentation "Tips for the PostGIS Power User" at the FOSS4G 2007 conference.
Depending on your use of PostGIS (for example, static data and complex analysis vs frequently updated data and lots of users)
these changes can provide significant speedups to your queries.

For a more tips (and better formatting), the original presentation is at http://2007.foss4g.org/presentations/view.php?abstract_id=117.

http://2007.foss4g.org/presentations/view.php?abstract_id=117

PostGIS 2.1.0 Manual
78 /671

7.4.1 Startup

These settings are configured in postgresql.conf:

checkpoint_segments

e Maximum number of log file segments between automatic WAL checkpoints (each segment is normally 16MB); default is 3

* Set to at least 10 or 30 for databases with heavy write activity, or more for large database loads. Another article on the topic
worth reading Greg Smith: Checkpoint and Background writer

* Possibly store the xlog on a separate disk device
constraint_exclusion

* Default: off (prior to PostgreSQL 8.4 and for PostgreSQL 8.4+ is set to partition)

* This is generally used for table partitioning. If you are running PostgreSQL versions below 8.4, set to "on" to ensure the query
planner will optimize as desired. As of PostgreSQL 8.4, the default for this is set to "partition" which is ideal for PostgreSQL
8.4 and above since it will force the planner to only analyze tables for constraint consideration if they are in an inherited
hierarchy and not pay the planner penalty otherwise.

shared_buffers

e Default: ~32MB

e Set to about 1/3 to 3/4 of available RAM

7.4.2 Runtime

work_mem (the memory used for sort operations and complex queries)

* Default: IMB
* Adjust up for large dbs, complex queries, lots of RAM
* Adjust down for many concurrent users or low RAM.

* If you have lots of RAM and few developers:

SET work_mem TO 1200000;

maintenance_work_mem (used for VACUUM, CREATE INDEX, etc.)

* Default: 16MB
* Generally too low - ties up I/O, locks objects while swapping memory

* Recommend 32MB to 256MB on production servers w/lots of RAM, but depends on the # of concurrent users. If you have
lots of RAM and few developers:

SET maintainence_work_mem TO 1200000;

http://www.postgresql.org/docs/current/static/runtime-config-wal.html#GUC-CHECKPOINT-SEGMENTS
http://www.westnet.com/~gsmith/content/postgresql/chkp-bgw-83.htm
http://www.postgresql.org/docs/current/static/runtime-config-query.html#GUC-CONSTRAINT-EXCLUSION
http://www.postgresql.org/docs/current/static/runtime-config-resource.html#GUC-SHARED-BUFFERS
http://www.postgresql.org/docs/current/static/runtime-config-resource.html#GUC-WORK-MEM
http://www.postgresql.org/docs/current/static/runtime-config-resource.html#GUC-MAINTENANCE-WORK-MEM

PostGIS 2.1.0 Manual
79 /671

Chapter 8

PostGIS Reference

The functions given below are the ones which a user of PostGIS is likely to need. There are other functions which are required
support functions to the PostGIS objects which are not of use to a general user.

Note
E PostGIS has begun a transition from the existing naming convention to an SQL-MM-centric convention. As a result,
N"M most of the functions that you know and love have been renamed using the standard spatial type (ST) prefix. Previous
functions are still available, though are not listed in this document where updated functions are equivalent. The non
ST_ functions not listed in this documentation are deprecated and will be removed in a future release so STOP USING
THEM.

8.1 PostgreSQL PostGIS Geometry/Geography/Box Types

8.1.1 box2d

box2d — A box composed of x min, ymin, xmax, ymax. Often used to return the 2d enclosing box of a geometry.

Description

box2d is a spatial data type used to represent the enclosing box of a geometry or set of geometries. ST_Extent in earlier versions
prior to PostGIS 1.4 would return a box2d.

8.1.2 box3d

box3d — A box composed of x min, ymin, zmin, xmax, ymax, zmax. Often used to return the 3d extent of a geometry or
collection of geometries.

Description

box3d is a postgis spatial data type used to represent the enclosing box of a geometry or set of geometries. ST_3DExtent returns
a box3d object.

Casting Behavior

This section lists the automatic as well as explicit casts allowed for this data type

PostGIS 2.1.0 Manual

80 /671

Cast To Behavior

box automatic
box2d automatic
geometry automatic

8.1.3 geometry

geometry — Planar spatial data type.

Description

geometry is a fundamental postgis spatial data type used to represent a feature in the Euclidean coordinate system.

Casting Behavior

This section lists the automatic as well as explicit casts allowed for this data type

Cast To Behavior
box automatic
box2d automatic
box3d automatic
bytea automatic
geography automatic
text automatic

See Also

Section 4.1

8.1.4 geometry_dump

geometry_dump — A spatial datatype with two fields - geom (holding a geometry object) and path[] (a 1-d array holding the
position of the geometry within the dumped object.)

Description
geometry_dump is a compound data type consisting of a geometry object referenced by the .geom field and path[] a 1-dimensional
integer array (starting at 1 e.g. path[1] to get first element) array that defines the navigation path within the dumped geometry to

find this element. It is used by the ST_Dump* family of functions as an output type to explode a more complex geometry into
its constituent parts and location of parts.

See Also

Section 13.5

8.1.5 geography

geography — Ellipsoidal spatial data type.

PostGIS 2.1.0 Manual
81/671

Description

geography is a spatial data type used to represent a feature in the round-earth coordinate system.

Casting Behavior

This section lists the automatic as well as explicit casts allowed for this data type

Cast To Behavior
geometry explicit
See Also

Section 13.3, Section 4.2

8.2 Management Functions

8.2.1 AddGeometryColumn

AddGeometryColumn — Adds a geometry column to an existing table of attributes. By default uses type modifier to define
rather than constraints. Pass in false for use_typmod to get old check constraint based behavior

Synopsis

text AddGeometryColumn(varchar table_name, varchar column_name, integer srid, varchar type, integer dimension, boolean
use_typmod=true);

text AddGeometryColumn(varchar schema_name, varchar table_name, varchar column_name, integer srid, varchar type, inte-
ger dimension, boolean use_typmod=true);

text AddGeometryColumn(varchar catalog_name, varchar schema_name, varchar table_name, varchar column_name, integer
srid, varchar type, integer dimension, boolean use_typmod=true);

Description

Adds a geometry column to an existing table of attributes. The schema_name is the name of the table schema. The srid
must be an integer value reference to an entry in the SPATTAL_REF _SYS table. The t ype must be a string corresponding to the
geometry type, eg, 'POLYGON’ or "MULTILINESTRING’ . An error is thrown if the schemaname doesn’t exist (or not visible
in the current search_path) or the specified SRID, geometry type, or dimension is invalid.

Note
. Changed: 2.0.0 This function no longer updates geometry_columns since geometry_columns is a view that reads from
N"‘l"! system catalogs. It by default also does not create constraints, but instead uses the built in type modifier behavior of
PostgreSQL. So for example building a wgs84 POINT column with this function is now equivalent to: ALTER TABLE
some_table ADD COLUMN geom geometry (Point, 4326);
Changed: 2.0.0 If you require the old behavior of constraints use the default use_t ypmod, but set it to false.

Note
B Changed: 2.0.0 Views can no longer be manually registered in geometry_columns, however views built against geome-
N"'M try typmod tables geometries and used without wrapper functions will register themselves correctly because they inherit
the typmod behavior of their parent table column. Views that use geometry functions that output other geometries will
need to be cast to typmod geometries for these view geometry columns to be registered correctly in geometry_columns.
Refer to Section 4.3.4.

PostGIS 2.1.0 Manual
82 /671

/ This method implements the OpenGIS Simple Features Implementation Specification for SQL 1.1.
/ This function supports 3d and will not drop the z-index.

/ This method supports Circular Strings and Curves

Enhanced: 2.0.0 use_typmod argument introduced. Defaults to creating typmod geometry column instead of constraint-based.

Examples

—-— Create schema to hold data

CREATE SCHEMA my_schema;

—— Create a new simple PostgreSQL table

CREATE TABLE my_schema.my_spatial_table (id serial);

—— Describing the table shows a simple table with a single "id" column.
postgis=# \d my_schema.my_spatial_table
Table "my_schema.my_spatial_table"
Column | Type | Modifiers

id | integer | not null default nextval ('my_schema.my_spatial_table_id_seq’::regclass)

—-— Add a spatial column to the table
SELECT AddGeometryColumn (’my_schema’,’my_spatial_table’,’geom’,4326,"POINT’,2);

—-— Add a point using the old constraint based behavior
SELECT AddGeometryColumn (’my_schema’,’my_spatial_table’,’geom_c’,4326,"POINT’,2, false);

—--Add a curvepolygon using old constraint behavior
SELECT AddGeometryColumn (’my_schema’,’my_spatial_table’,’geomcp_c’,4326,’' CURVEPOLYGON’,2, <>
false);

—— Describe the table again reveals the addition of a new geometry columns.
\d my_schema.my_spatial_table
addgeometrycolumn

my_schema.my_spatial_table.geomcp_c SRID:4326 TYPE:CURVEPOLYGON DIMS:2

(1 row)
Table "my_schema.my_spatial_table"
Column | Type | Modifiers
__________ +______________________+__
id | integer | not null default nextval ('my_schema. <
my_spatial_table_id_seq’ ::regclass)
geom | geometry (Point,4326) |
geom_cC | geometry |

geomcp_c | geometry |
Check constraints:

"enforce_dims_geom_c" CHECK (st_ndims(geom_c) = 2)

"enforce_dims_geomcp_c" CHECK (st_ndims (geomcp_c) = 2)

"enforce_geotype_geom_c" CHECK (geometrytype (geom_c) = ’'POINT’::text OR geom_c IS NULL)

"enforce_geotype_geomcp_c" CHECK (geometrytype (geomcp_c) = ’"CURVEPOLYGON’::text OR <
geomcp_c IS NULL)

"enforce_srid_geom_c" CHECK (st_srid(geom_c) = 4326)

"enforce_srid_geomcp_c" CHECK (st_srid(geomcp_c) = 4326)

—— geometry_columns view also registers the new columns —-—

http://www.opengeospatial.org/standards/sfs

PostGIS 2.1.0 Manual
83 /671

SELECT f_geometry_column As col_name, type, srid, coord_dimension As ndims
FROM geometry_columns

WHERE f_table_name = 'my_spatial_table’ AND f_table_schema = 'my_schema’;
col_name | type | srid | ndims
7777777777 B et
geom | Point | 4326 | 2
geom_cC | Point | 4326 | 2
geomcp_c | CurvePolygon | 4326 | 2
See Also

DropGeometryColumn, DropGeometryTable, Section 4.3.2, Section 4.3.4

8.2.2 DropGeometryColumn

DropGeometryColumn — Removes a geometry column from a spatial table.

Synopsis

text DropGeometryColumn(varchar table_name, varchar column_name);
text DropGeometryColumn(varchar schema_name, varchar table_name, varchar column_name);
text DropGeometryColumn(varchar catalog_name, varchar schema_name, varchar table_name, varchar column_name);

Description

Removes a geometry column from a spatial table. Note that schema_name will need to match the f_table_schema field of the
table’s row in the geometry_columns table.

/ This method implements the OpenGIS Simple Features Implementation Specification for SQL 1.1.
/ This function supports 3d and will not drop the z-index.

/ This method supports Circular Strings and Curves

. Note
Noted
Changed: 2.0.0 This function is provided for backward compatibility. Now that since geometry_columns is now a view
against the system catalogs, you can drop a geometry column like any other table column using ALTER TABLE

Examples

SELECT DropGeometryColumn (’'my_schema’,’my_spatial_table’,’geom’);
————-RESULT output ---
dropgeometrycolumn

my_schema.my_spatial_table.geom effectively removed.

—— In PostGIS 2.0+ the above is also equivalent to the standard
—— the standard alter table. Both will deregister from geometry_columns
ALTER TABLE my_schema.my_spatial_table DROP column geom;

http://www.opengeospatial.org/standards/sfs

PostGIS 2.1.0 Manual
84 /671

See Also

AddGeometryColumn, DropGeometryTable, Section 4.3.2

8.2.3 DropGeometryTable

DropGeometryTable — Drops a table and all its references in geometry_columns.

Synopsis
boolean DropGeometryTable(varchar table_name);

boolean DropGeometryTable(varchar schema_name, varchar table_name);
boolean DropGeometryTable(varchar catalog_name, varchar schema_name, varchar table_name);

Description

Drops a table and all its references in geometry_columns. Note: uses current_schema() on schema-aware pgsql installations if
schema is not provided.

:rti'! Note
N Changed: 2.0.0 This function is provided for backward compatibility. Now that since geometry_columns is now a view
against the system catalogs, you can drop a table with geometry columns like any other table using DROP TABLE

Examples

SELECT DropGeometryTable (’my_schema’,’my_spatial_table’);
————RESULT output —--——
my_schema.my_spatial_ table dropped.

—— The above is now equivalent to —--—
DROP TABLE my_schema.my_spatial_table;

See Also

AddGeometryColumn, DropGeometryColumn, Section 4.3.2

8.2.4 PostGIS_Full_Version

PostGIS_Full_Version — Reports full postgis version and build configuration infos.

Synopsis

text PostGIS_Full_Version();

Description

Reports full postgis version and build configuration infos. Also informs about synchronization between libraries and scripts
suggesting upgrades as needed.

PostGIS 2.1.0 Manual
85 /671

Examples

SELECT PostGIS_Full_Version();
postgis_full_version

POSTGIS="1.3.3" GEOS="3.1.0-CAPI-1.5.0" PROJ="Rel. 4.4.9, 29 Oct 2004"™ USE_STATS
(1 row)

See Also

Section 2.9, PostGIS_GEOS_ Version, PostGIS_Lib_Version, PostGIS_LibXML_ Version, PostGIS_PROJ_Version, PostGIS_ Version

8.2.5 PostGIS GEOS Version

PostGIS_GEOS_Version — Returns the version number of the GEOS library.

Synopsis

text PostGIS_GEQOS_Version();

Description

Returns the version number of the GEOS library, or NULL if GEOS support is not enabled.

Examples

SELECT PostGIS_GEOS_Version() ;
postgis_geos_version

3.1.0-CAPI-1.5.0
(1 row)

See Also

PostGIS_Full_Version, PostGIS_Lib_Version, PostGIS_LibXML_ Version, PostGIS_PROJ_Version, PostGIS_ Version

8.2.6 PostGIS_LibXML_Version

PostGIS_LibXML_ Version — Returns the version number of the libxml2 library.

Synopsis

text PostGIS_LibXML_Version();

Description

Returns the version number of the LibXML2 library.
Availability: 1.5

PostGIS 2.1.0 Manual
86 /671

Examples

SELECT PostGIS_LibXML_Version () ;
postgis_libxml_version

2.7.6
(1 row)

See Also

PostGIS_Full_Version, PostGIS_Lib_Version, PostGIS_PROJ_Version, PostGIS_GEOS_ Version, PostGIS_Version

8.2.7 PostGIS_Lib_Build_Date

PostGIS_Lib_Build_Date — Returns build date of the PostGIS library.

Synopsis

text PostGIS_Lib_Build_Date();

Description

Returns build date of the PostGIS library.

Examples

SELECT PostGIS_Lib_Build_Date();
postgis_lib_build_date

2008-06-21 17:53:21
(1 row)

8.2.8 PostGIS_Lib_Version

PostGIS_Lib_Version — Returns the version number of the PostGIS library.

Synopsis

text PostGIS_Lib_Version();

Description

Returns the version number of the PostGIS library.

Examples

SELECT PostGIS_Lib_Version();
postgis_lib_version

1.3.3
(1 row)

PostGIS 2.1.0 Manual
87 /671

See Also

PostGIS_Full_Version, PostGIS_GEOS_Version, PostGIS_LibXML_Version, PostGIS_PROJ_Version, PostGIS_Version

8.2.9 PostGIS_PROJ_Version

PostGIS_PROJ_Version — Returns the version number of the PROJ4 library.

Synopsis

text PostGIS_PROJ_Version();

Description

Returns the version number of the PROJ4 library, or NULL if PROJ4 support is not enabled.

Examples

SELECT PostGIS_PROJ_Version();
postgis_proj_version

See Also

PostGIS_Full_Version, PostGIS_GEOS_Version, PostGIS_Lib_Version, PostGIS_LibXML_ Version, PostGIS_Version

8.2.10 PostGIS_Scripts_Build_Date

PostGIS_Scripts_Build_Date — Returns build date of the PostGIS scripts.

Synopsis

text PostGIS_Scripts_Build_Date();

Description

Returns build date of the PostGIS scripts.
Auvailability: 1.0.0RC1

Examples

SELECT PostGIS_Scripts_Build_Date();
postgis_scripts_build_date

2007-08-18 09:09:26
(1 row)

PostGIS 2.1.0 Manual
88 /671

See Also

PostGIS_Full_Version, PostGIS_GEOS_Version, PostGIS_Lib_Version, PostGIS_LibXML_ Version, PostGIS_Version

8.2.11 PostGIS_Scripts_Installed

PostGIS_Scripts_Installed — Returns version of the postgis scripts installed in this database.

Synopsis

text PostGIS_Scripts_Installed();

Description

Returns version of the postgis scripts installed in this database.

o4 Note
N If the output of this function doesn’t match the output of PostGIS_Scripts_Released you probably missed to properly
upgrade an existing database. See the Upgrading section for more info.

Availability: 0.9.0

Examples

SELECT PostGIS_Scripts_Installed();
postgis_scripts_installed

1.5.0SVN
(1 row)

See Also

PostGIS_Full_Version, PostGIS_Scripts_Released, PostGIS_ Version

8.2.12 PostGIS_Scripts_Released

PostGIS_Scripts_Released — Returns the version number of the postgis.sql script released with the installed postgis lib.

Synopsis

text PostGIS_Scripts_Released();

Description

Returns the version number of the postgis.sql script released with the installed postgis lib.

N;R’! Note

Starting with version 1.1.0 this function returns the same value of PostGIS_Lib_Version. Kept for backward compatibil-
ity.

Availability: 0.9.0

PostGIS 2.1.0 Manual
89 /671

Examples

SELECT PostGIS_Scripts_Released();
postgis_scripts_released

1.3.4SVN
(1 row)

See Also

PostGIS_Full_Version, PostGIS_Scripts_Installed, PostGIS_Lib_Version

8.2.13 PostGIS Version

PostGIS_Version — Returns PostGIS version number and compile-time options.

Synopsis

text PostGIS_Version();

Description

Returns PostGIS version number and compile-time options.

Examples

SELECT PostGIS_Version();
postgis_version

1.3 USE_GEOS=1 USE_PROJ=1 USE_STATS=1
(1 row)

See Also

PostGIS_Full_Version, PostGIS_GEOS_ Version, PostGIS_Lib_Version, PostGIS_LibXML._Version, PostGIS_PROJ_Version

8.2.14 Populate_Geometry_Columns
Populate_Geometry_Columns — Ensures geometry columns are defined with type modifiers or have appropriate spatial con-

straints This ensures they will be registered correctly in geometry_columns view. By default will convert all geometry
columns with no type modifier to ones with type modifiers. To get old behavior set use_typmod=false

Synopsis

text Populate_Geometry_Columns(boolean use_typmod=true);
int Populate_Geometry_Columns(oid relation_oid, boolean use_typmod=true);

PostGIS 2.1.0 Manual
90 /671

Description

Ensures geometry columns have appropriate type modifiers or spatial constraints to ensure they are registered correctly in geo—
metry_columns table.

For backwards compatibility and for spatial needs such as tble inheritance where each child table may have different geometry
type, the old check constraint behavior is still supported. If you need the old behavior, you need to pass in the new optional
argument as false use_typmod=false. When this is done geometry columns will be created with no type modifiers but will
have 3 constraints defined. In particular, this means that every geometry column belonging to a table has at least three constraints:

* enforce_dims_the_geom - ensures every geometry has the same dimension (see ST_NDims)
* enforce_geotype_the_geom - ensures every geometry is of the same type (see GeometryType)

* enforce_srid_the_geom - ensures every geometry is in the same projection (see ST_SRID)

If a table oid is provided, this function tries to determine the srid, dimension, and geometry type of all geometry columns in the
table, adding constraints as necessary. If successful, an appropriate row is inserted into the geometry_columns table, otherwise,
the exception is caught and an error notice is raised describing the problem.

If the oid of a view is provided, as with a table oid, this function tries to determine the srid, dimension, and type of all
the geometries in the view, inserting appropriate entries into the geometry_columns table, but nothing is done to enforce
constraints.

The parameterless variant is a simple wrapper for the parameterized variant that first truncates and repopulates the geome-
try_columns table for every spatial table and view in the database, adding spatial constraints to tables where appropriate. It
returns a summary of the number of geometry columns detected in the database and the number that were inserted into the geo—
metry_columns table. The parameterized version simply returns the number of rows inserted into the geometry_columns
table.

Auvailability: 1.4.0

Changed: 2.0.0 By default, now uses type modifiers instead of check constraints to constrain geometry types. You can still use
check constraint behavior instead by using the new use_typmod and setting it to false.

Enhanced: 2.0.0 use_typmod optional argument was introduced that allows controlling if columns are created with typmodi-
fiers or with check constraints.

Examples

CREATE TABLE public.myspatial_table(gid serial, geom geometry) ;

INSERT INTO myspatial_table (geom) VALUES (ST_GeomFromText (' LINESTRING(1 2, 3 4)’,4326));
—— This will now use typ modifiers. For this to work, there must exist data

SELECT Populate_Geometry_Columns ('public.myspatial_table’::regclass);

populate_geometry_columns

1
\d myspatial_table
Table "public.myspatial_table"
Column | Type | Modifiers
77777777 +777777777777777777777777777+777
gid | integer | not null default nextval (‘myspatial_table_gid_seqg’::

regclass)
geom | geometry(LineString, 4326) |

PostGIS 2.1.0 Manual
91 /671

—— This will change the geometry columns to use constraints if they are not typmod or have <+
constraints already.

——For this to work, there must exist data

CREATE TABLE public.myspatial_table_cs(gid serial, geom geometry) ;

INSERT INTO myspatial_table_cs (geom) VALUES (ST_GeomFromText (' LINESTRING (1 2, 3 4)’,4326));

SELECT Populate_Geometry_Columns ('public.myspatial_table_cs’::regclass, false);

populate_geometry_columns

Table "public.myspatial_table_cs"

Column | Type | Modifiers
________ +__________+__
gid | integer | not null default nextval (‘myspatial_table_cs_gid_seq’ ::regclass)
geom | geometry |
Check constraints:
"enforce_dims_geom" CHECK (st_ndims (geom) = 2)
"enforce_geotype_geom" CHECK (geometrytype (geom) = 'LINESTRING’::text OR geom IS NULL)
"enforce_srid_geom" CHECK (st_srid(geom) = 4326)

8.2.15 UpdateGeometrySRID
UpdateGeometrySRID — Updates the SRID of all features in a geometry column, geometry_columns metadata and srid. If it

was enforced with constraints, the constraints will be updated with new srid constraint. If the old was enforced by type definition,
the type definition will be changed.

Synopsis

text UpdateGeometrySRID(varchar table_name, varchar column_name, integer srid);

text UpdateGeometrySRID(varchar schema_name, varchar table_name, varchar column_name, integer srid);

text UpdateGeometrySRID(varchar catalog_name, varchar schema_name, varchar table_name, varchar column_name, integer
srid);

Description

Updates the SRID of all features in a geometry column, updating constraints and reference in geometry_columns. Note: uses
current_schema() on schema-aware pgsql installations if schema is not provided.

/ This function supports 3d and will not drop the z-index.

/ This method supports Circular Strings and Curves

Examples

This will change the srid of the roads table to 4326 from whatever it was before

SELECT UpdateGeometrySRID (’roads’,’geom’,4326);

The prior example is equivalent to this DDL statement

ALTER TABLE roads
ALTER COLUMN geom TYPE geometry (MULTILINESTRING, 4326)
USING ST_SetSRID (geom,4326);

PostGIS 2.1.0 Manual
92 /671

If you got the projection wrong (or brought it in as unknown) in load and you wanted to transform to web mercator all in one
shot You can do this with DDL but there is no equivalent PostGIS management function to do so in one go.

ALTER TABLE roads
ALTER COLUMN geom TYPE geometry (MULTILINESTRING, 3857) USING ST_Transform(ST_SetSRID (geom <
,4326),3857) ;

See Also

ST_SetSRID , ST_Transform

8.3 Geometry Constructors

8.3.1 ST_BdPolyFromText

ST_BdPolyFromText — Construct a Polygon given an arbitrary collection of closed linestrings as a MultiLineString Well-Known
text representation.

Synopsis

geometry ST_BdPolyFromText(text WKT, integer srid);

Description

Construct a Polygon given an arbitrary collection of closed linestrings as a MultiLineString Well-Known text representation.

st¢} Note
N Throws an error if WKT is not a MULTILINESTRING. Throws an error if output is a MULTIPOLYGON; use

ST_BdMPolyFromText in that case, or see ST_BuildArea() for a postgis-specific approach.

/ This method implements the OpenGIS Simple Features Implementation Specification for SQL 1.1. s3.2.6.2
Availability: 1.1.0 - requires GEOS >=2.1.0.

Examples

Forthcoming

See Also

ST_BuildArea, ST_BdMPolyFromText

8.3.2 ST_BdMPolyFromText

ST_BdMPolyFromText — Construct a MultiPolygon given an arbitrary collection of closed linestrings as a MultiLineString text
representation Well-Known text representation.

http://www.opengeospatial.org/standards/sfs

PostGIS 2.1.0 Manual
93 /671

Synopsis

geometry ST_BdMPolyFromText(text WKT, integer srid);

Description

Construct a Polygon given an arbitrary collection of closed linestrings, polygons, MultiLineStrings as Well-Known text repre-
sentation.

. Note
N"H’! Throws an error if WKT is not a MULTILINESTRING. Forces MULTIPOLYGON output even when result is really only
composed by a single POLYGON; use ST_BdPolyFromText if you're sure a single POLYGON will result from operation,
or see ST_BuildArea() for a postgis-specific approach.

/ This method implements the OpenGIS Simple Features Implementation Specification for SQL 1.1. s3.2.6.2
Availability: 1.1.0 - requires GEOS >=2.1.0.
Examples

Forthcoming

See Also

ST_BuildArea, ST_BdPolyFromText

8.3.3 ST_Box2dFromGeoHash

ST_Box2dFromGeoHash — Return a BOX2D from a GeoHash string.

Synopsis

box2d ST_Box2dFromGeoHash(text geohash, integer precision=full_precision_of_geohash);

Description

Return a BOX2D from a GeoHash string.
If noprecisionis specficified ST_Box2dFromGeoHash returns a BOX2D based on full precision of the input GeoHash string.

If precision is specified ST_Box2dFromGeoHash will use that many characters from the GeoHash to create the BOX2D.
Lower precision values results in larger BOX2Ds and larger values increase the precision.

Availability: 2.1.0

http://www.opengeospatial.org/standards/sfs

PostGIS 2.1.0 Manual
94 /671

Examples

SELECT ST_Box2dFromGeoHash (' 9ggj7nmxncgyy4d0dbxgz0’) ;

st_geomfromgeohash

BOX (-115.172816 36.114646,-115.172816 36.114646)
SELECT ST_Box2dFromGeoHash (’ 9gqgj7nmxncgyy4d0dbxgz0’, 0);

st_box2dfromgeohash

BOX (-180 -90,180 90)

SELECT ST_Box2dFromGeoHash (’ 9ggqj7nmxncgyy4d0dbxgz0’, 10);
st_box2dfromgeohash

BOX (-115.17282128334 36.1146408319473,-115.172810554504 36.1146461963654)

See Also

ST _GeoHash, ST_GeomFromGeoHash, ST_PointFromGeoHash

8.3.4 ST_GeogFromText

ST_GeogFromText — Return a specified geography value from Well-Known Text representation or extended (WKT).

Synopsis

geography ST_GeogFromText(text EWKT);

Description

Returns a geography object from the well-known text or extended well-known representation. SRID 4326 is assumed. This is an
alias for ST_GeographyFromText. Points are always expressed in long lat form.

Examples

—-—— converting lon lat coords to geography
ALTER TABLE sometable ADD COLUMN geog geography (POINT, 4326) ;
UPDATE sometable SET geog = ST_GeogFromText (/ SRID=4326;POINT(’ || lon || " 7 || lat [] ")") <«

’

See Also

ST_AsText, ST_GeographyFromText

8.3.5 ST_GeographyFromText

ST_GeographyFromText — Return a specified geography value from Well-Known Text representation or extended (WKT).

PostGIS 2.1.0 Manual
95 /671

Synopsis

geography ST_GeographyFromText(text EWKT);

Description

Returns a geography object from the well-known text representation. SRID 4326 is assumed.

See Also

ST_GeogFromText, ST_AsText

8.3.6 ST_GeogFromWKB

ST_GeogFromWKB — Creates a geography instance from a Well-Known Binary geometry representation (WKB) or extended
Well Known Binary (EWKB).
Synopsis

geography ST_GeogFromWKB(bytea geom);

Description

The ST_GeogFromWKB function, takes a well-known binary representation (WKB) of a geometry or PostGIS Extended WKB
and creates an instance of the appropriate geography type. This function plays the role of the Geometry Factory in SQL.

If SRID is not specified, it defaults to 4326 (WGS 84 long lat).
/ This method supports Circular Strings and Curves

Examples

—-—Although bytea rep contains single \, these need to be escaped when inserting into a <
table

SELECT ST_AsText (

ST_GeogFromWKB (E/ \\001\\002\\000\\000\\000\\002\\000\\000\\000\\037\\205\\353Q
\\270~\\\\\\300\\323Mb\\020X\\231CR\\020X9\\264\\310~\\\\\\300) \\\\\\217\\302\\365\\230 <«
Ce")

st_astext

LINESTRING(-113.98 39.198,-113.981 39.195)
(1 row)

See Also

ST_GeogFromText, ST_AsBinary

8.3.7 ST_GeomCollFromText

ST_GeomCollFromText — Makes a collection Geometry from collection WKT with the given SRID. If SRID is not give, it
defaults to -1.

PostGIS 2.1.0 Manual
96 /671

Synopsis

geometry ST_GeomCollFromText(text WKT, integer srid);
geometry ST_GeomCollFromText(text WKT);

Description

Makes a collection Geometry from the Well-Known-Text (WKT) representation with the given SRID. If SRID is not give, it
defaults to -1.

OGC SPEC 3.2.6.2 - option SRID is from the conformance suite

Returns null if the WKT is not a GEOMETRYCOLLECTION

N:ﬂ"! Note

If you are absolutely sure all your WKT geometries are collections, don’t use this function. It is slower than
ST_GeomFromText since it adds an additional validation step.

/ This method implements the OpenGIS Simple Features Implementation Specification for SQL 1.1. s3.2.6.2

/ This method implements the SQL/MM specification.
Examples

SELECT ST_GeomCollFromText (GEOMETRYCOLLECTION (POINT (1 2),LINESTRING(1 2, 3 4))’);

See Also

ST _GeomFromText, ST SRID

8.3.8 ST_GeomFromEWKB

ST_GeomFromEWKB — Return a specified ST_Geometry value from Extended Well-Known Binary representation (EWKB).

Synopsis

geometry ST_GeomFromEWKB(bytea EWKB);

Description

Constructs a PostGIS ST_Geometry object from the OGC Extended Well-Known binary (EWKT) representation.

) Note
Note
The EWKB format is not an OGC standard, but a PostGIS specific format that includes the spatial reference system
(SRID) identifier

http://www.opengeospatial.org/standards/sfs

PostGIS 2.1.0 Manual
97 /671

Enhanced: 2.0.0 support for Polyhedral surfaces and TIN was introduced.
/ This function supports 3d and will not drop the z-index.

/ This method supports Circular Strings and Curves

/ This function supports Polyhedral surfaces.

/ This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).

Examples

line string binary rep Of LINESTRING(-71.160281 42.258729,-71.160837 42.259113,-71.161144 42.25932) in NAD 83 long lat
(4269).

st¢} Note
N NOTE: Even though byte arrays are delimited with \ and may have ’, we need to escape both out with \ and ” if
standard_conforming_strings is off. So it does not look exactly like its ASEWKB representation.

SELECT ST_GeomFromEWKB (E’\\001\\002\\000\\000 \\255\\020\\000\\000\\003\\000\\000\\000\\344 <«
J=

\\013BA\3120\\300n\\303 (\\010\\036!ER’""\\277E" 'K

\\3120\\300\\366{b\\235%x!EQ@\\225|\\354.P\\312Q

A\\300p\\231\\323el!ERQ");

. Note
NW"! In PostgreSQL 9.1+ - standard_conforming_strings is set to on by default, where as in past versions it was set to on.
You can change defaults as needed for a single query or at the database or server level. Below is how you would do it
with standard_conforming_strings = on. In this case we escape the * with standard ansi’, but slashes are not escaped

set standard_conforming_strings = on;
SELECT ST_GeomFromEWKB (/\001\002\000\000 \255\020\000\000\003\000\000\000\344J=\012\013B
\3120\300n\303 (\010\036!E@""\277E’"K\012\3120\300\366{b\235«!E@\225|\354.P\3120\012\300 <
p\231\323el")

See Also

ST_AsBinary, ST_ASsEWKB, ST_GeomFromWKB

8.3.9 ST _GeomFromEWKT

ST_GeomFromEWKT — Return a specified ST_Geometry value from Extended Well-Known Text representation (EWKT).

Synopsis

geometry ST_GeomFromEWKT (text EWKT);

PostGIS 2.1.0 Manual
98 /671

Description

Constructs a PostGIS ST_Geometry object from the OGC Extended Well-Known text (EWKT) representation.

o4t Note
N The EWKT format is not an OGC standard, but an PostGIS specific format that includes the spatial reference system
(SRID) identifier

Enhanced: 2.0.0 support for Polyhedral surfaces and TIN was introduced.
/ This function supports 3d and will not drop the z-index.

/ This method supports Circular Strings and Curves

/ This function supports Polyhedral surfaces.

/ This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).

Examples

SELECT ST_GeomFromEWKT (' SRID=4269; LINESTRING(-71.160281 42.258729,-71.160837 <«
42.259113,-71.161144 42.25932)");

SELECT ST_GeomFromEWKT (/ SRID=4269; MULTILINESTRING((-71.160281 42.258729,-71.160837 <>
42.259113,-71.161144 42.25932))");

SELECT ST_GeomFromEWKT (/' SRID=4269; POINT (-71.064544 42.28787)");

SELECT ST_GeomFromEWKT (/ SRID=4269; POLYGON ((-71.1776585052917 <+
42.3902909739571,-71.1776820268866 42.3903701743239,

-71.1776063012595 42.3903825660754,-71.1775826583081 42.3903033653531,-71.1776585052917 <>
42.3902909739571)) ") ;

SELECT ST_GeomFromEWKT (/' SRID=4269; MULTIPOLYGON (((-=71.1031880899493 42.3152774590236,
-71.1031627617667 42.3152960829043,-71.102923838298 42.3149156848307,
-71.1023097974109 42.3151969047397,-71.1019285062273 42.3147384934248,
—-71.102505233663 42.3144722937587,-71.10277487471 42.3141658254797,
—71.103113945163 42.3142739188902,-71.10324876416 42.31402489987,
—-71.1033002961013 42.3140393340215,-71.1033488797549 42.3139495090772,
—-71.103396240451 42.3138632439557,-71.1041521907712 42.3141153348029,
—-71.1041411411543 42.3141545014533,-71.1041287795912 42.3142114839058,
—71.1041188134329 42.3142693656241,-71.1041112482575 42.3143272556118,
—-71.1041072845732 42.3143851580048,-71.1041057218871 42.3144430686681,
-71.1041065602059 42.3145009876017,-71.1041097995362 42.3145589148055,
-71.1041166403905 42.3146168544148,-71.1041258822717 42.3146748022936,
—-71.1041375307579 42.3147318674446,-71.1041492906949 42.3147711126569,
-71.1041598612795 42.314808571739,-71.1042515013869 42.3151287620809,
-71.1041173835118 42.3150739481917,-71.1040809891419 42.3151344119048,
—-71.1040438678912 42.3151191367447,-71.1040194562988 42.3151832057859,
-71.1038734225584 42.3151140942995,-71.1038446938243 42.3151006300338,
—-71.1038315271889 42.315094347535,-71.1037393329282 42.315054824985,
—-71.1035447555574 42.3152608696313,-71.1033436658644 42.3151648370544,
—-71.1032580383161 42.3152269126061,-71.103223066939 42.3152517403219,
—71.1031880899493 42.3152774590236)),
((=71.1043632495873 42.315113108546,-71.1043583974082 42.3151211109857,
—71.1043443253471 42.3150676015829,-71.1043850704575 42.3150793250568,-71.1043632495873 <
42.315113108546)))");

PostGIS 2.1.0 Manual
99 /671

—--3d circular string
SELECT ST_GeomFromEWKT (/ CIRCULARSTRING (220268 150415 1,220227 150505 2,220227 150406 3)');

—-—Polyhedral Surface example
SELECT ST_GeomFromEWKT (' POLYHEDRALSURFACE (

((0 00, 001, 011, 010, 00 0)),
((000, 010, 110,100, 000)),
((000, 100, 101, 001, 00 0)),
((t10, 111, 101, 100, 110)),
((0 10, 011, 111, 110, 010)),
((0 01, 101, 111, 011, 00 1))
)")

See Also

ST_ASEWKT, ST_GeomFromText, ST GeomFromEWKT

8.3.10 ST_GeometryFromText

ST_GeometryFromText — Return a specified ST_Geometry value from Well-Known Text representation (WKT). This is an alias
name for ST_GeomFromText

Synopsis

geometry ST_GeometryFromText(text WKT);
geometry ST_GeometryFromText(text WKT, integer srid);

Description

/ This method implements the OpenGIS Simple Features Implementation Specification for SQL 1.1.

/ This method implements the SQL/MM specification. SQL-MM 3: 5.1.40

See Also

ST_GeomFromText

8.3.11 ST_GeomFromGeoHash

ST_GeomFromGeoHash — Return a geometry from a GeoHash string.

Synopsis

geometry ST _GeomFromGeoHash(text geohash, integer precision=full_precision_of _geohash);

http://www.opengeospatial.org/standards/sfs

PostGIS 2.1.0 Manual
100/ 671

Description

Return a geometry from a GeoHash string. The geometry will be a polygon representing the GeoHash bounds.
If no precision is specficified ST_GeomFromGeoHash returns a polygon based on full precision of the input GeoHash string.
If precision is specified ST_GeomFromGeoHash will use that many characters from the GeoHash to create the polygon.

Availability: 2.1.0

Examples

SELECT ST_AsText (ST_GeomFromGeoHash (’ 9gqqj7nmxncgyy4d0dbxgz0’)) ;
st_astext

POLYGON ((-115.172816 36.114646,-115.172816 36.114646,-115.172816 36.114646,-115.172816 <
36.114646,-115.172816 36.114646))

SELECT ST_AsText (ST_GeomFromGeoHash (’ 9gqgqj7nmxncgyy4d0dbxgz0’, 4));
st_astext

POLYGON ((-115.3125 36.03515625,-115.3125 36.2109375,-114.9609375 36.2109375,-114.9609375 <+
36.03515625,-115.3125 36.03515625))

SELECT ST_AsText (ST_GeomFromGeoHash (’ 9ggj7nmxncgyy4d0dbxgz0’, 10));
st_astext &

POLYGON ((-115.17282128334 36.1146408319473,-115.17282128334 <>
36.1146461963654,-115.172810554504 36.1146461963654,-115.172810554504 <>
36.1146408319473,-115.17282128334 36.1146408319473))

See Also

ST _GeoHash,ST Box2dFromGeoHash, ST PointFromGeoHash

8.3.12 ST _GeomFromGML

ST_GeomFromGML — Takes as input GML representation of geometry and outputs a PostGIS geometry object

Synopsis

geometry ST_GeomFromGML(text geomgml);
geometry ST_GeomFromGML(text geomgml, integer srid);

Description

Constructs a PostGIS ST_Geometry object from the OGC GML representation.
ST_GeomFromGML works only for GML Geometry fragments. It throws an error if you try to use it on a whole GML document.
OGC GML versions supported:

PostGIS 2.1.0 Manual
101 /671

* GML 3.2.1 Namespace
* GML 3.1.1 Simple Features profile SF-2 (with GML 3.1.0 and 3.0.0 backward compatibility)
* GML 2.1.2

OGC GML standards, cf: http://www.opengeospatial.org/standards/gml:
Auvailability: 1.5, requires libxml2 1.6+

Enhanced: 2.0.0 support for Polyhedral surfaces and TIN was introduced.
Enhanced: 2.0.0 default srid optional parameter added.

/ This function supports 3d and will not drop the z-index.
/ This function supports Polyhedral surfaces.

/ This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).

GML allow mixed dimensions (2D and 3D inside the same MultiGeometry for instance). As PostGIS geometries don’t,
ST_GeomFromGML convert the whole geometry to 2D if a missing Z dimension is found once.

GML support mixed SRS inside the same MultiGeometry. As PostGIS geometries don’t, ST_GeomFromGML, in this case,
reproject all subgeometries to the SRS root node. If no srsName attribute available for the GML root node, the function throw an
error.

ST_GeomFromGML function is not pedantic about an explicit GML namespace. You could avoid to mention it explicitly for
common usages. But you need it if you want to use XLink feature inside GML.

N;ﬂ"! Note

ST_GeomFromGML function not support SQL/MM curves geometries.

Examples - A single geometry with srsName

SELECT ST_GeomFromGML ('
<gml:LineString srsName="EPSG:4269">
<gml:coordinates>
-71.16028,42.258729 -71.160837,42.259112 -71.161143,42.25932
</gml:coordinates>
</gml:LineString>’);

Examples - XLink usage

SELECT ST_GeomFromGML (’
<gml:LineString xmlns:gml="http://www.opengis.net/gml"
xmlns:xlink="http://www.w3.0rg/1999/x1link"
srsName="urn:ogc:def:crs:EPSG: :4269">
<gml:pointProperty>
<gml:Point gml:id="pl"><gml:pos>42.258729 -71.16028</gml:pos></gml:Point>
</gml:pointProperty>
<gml:pos>42.259112 -71.160837</gml:pos>
<gml:pointProperty>
<gml:Point xlink:type="simple" xlink:href="#pl"/>
</gml:pointProperty>
</gml:LineString>"););

http://www.opengeospatial.org/standards/gml

PostGIS 2.1.0 Manual
102 /671

Examples - Polyhedral Surface

SELECT ST_AsSEWKT (ST_GeomFromGML ('
<gml:PolyhedralSurface>
<gml:polygonPatches>
<gml:PolygonPatch>
<gml:exterior>
<gml:LinearRing><gml:posList srsDimension="3">0 0 0 0 0 1 0 1 1 0 1 0 0 O O</gml: ¢
posList></gml:LinearRing>
</gml:exterior>
</gml:PolygonPatch>
<gml:PolygonPatch>
<gml:exterior>
<gml:LinearRing><gml:posList srsDimension="3">0 0 0 0 1 0 1 1 0 1 0 0 0 O O</gml: ¢
posList></gml:LinearRing>
</gml:exterior>
</gml:PolygonPatch>
<gml:PolygonPatch>
<gml:exterior>
<gml:LinearRing><gml:posList srsDimension="3">0 0 0 1 0 0 1 0 1 0 0 1 0 O O</gml: ¢
posList></gml:LinearRing>
</gml:exterior>
</gml:PolygonPatch>
<gml:PolygonPatch>
<gml:exterior>
<gml:LinearRing><gml:posList srsDimension="3">1 1 0 1 1 1 1 0 1 1 0 0 1 1 0</gml: ¢«
posList></gml:LinearRing>
</gml:exterior>
</gml:PolygonPatch>
<gml:PolygonPatch>
<gml:exterior>
<gml:LinearRing><gml:posList srsDimension="3">0 1 0 0 1 1 1 1 1 1 1 0 0 1 0</gml: ¢
posList></gml:LinearRing>
</gml:exterior>
</gml:PolygonPatch>
<gml:PolygonPatch>
<gml:exterior>
<gml:LinearRing><gml:posList srsDimension="3">0 0 1 1 0 1 1 1 1 0 1 1 0 0 1</gml: ¢«
posList></gml:LinearRing>
</gml:exterior>
</gml:PolygonPatch>
</gml:polygonPatches>
</gml:PolyhedralSurface>’));

-— result —-
POLYHEDRALSURFACE (((0 0 0,0 0 1,0 1 1,0 1 0,0 0 0)),
((0 00,01 0,1 10,100,000)),
((000,100,101,00 1,00 0)),
((1 10,111,171 01,1 00,1 10)),
((01 0,01 1,1 11,11 0,01 0)),
((0 01,1 01,111,011 1,0 0 1)))
See Also

Section 2.4.1, ST_AsGML, ST_GMLToSQL

8.3.13 ST_GeomFromGeoJSON

ST_GeomFromGeoJSON — Takes as input a geojson representation of a geometry and outputs a PostGIS geometry object

PostGIS 2.1.0 Manual
103 /671

Synopsis

geometry ST_GeomFromGeoJSON(text geomjson);

Description

Constructs a PostGIS geometry object from the GeoJSON representation.

ST_GeomFromGeoJSON works only for JSON Geometry fragments. It throws an error if you try to use it on a whole JSON
document.

Awailability: 2.0.0 requires - JSON-C >= 0.9

st¢} Note
N If you do not have JSSON-C enabled, support you will get an error notice instead of seeing an output. To enable JSON-C,
run configure --with-jsondir=/path/to/json-c. See Section 2.4.1 for details.

/ This function supports 3d and will not drop the z-index.

Examples

SELECT ST_AsText (ST_GeomFromGeoJSON (’ {"type":"Point", "coordinates":[-48.23456,20.12345]}")) ¢
As wkt;

POINT (-48.23456 20.12345)

—-— a 3D linestring
SELECT ST_AsText (ST_GeomFromGeoJSON (’ {"type":"LineString", "coordinates <>
":[[1,2,31,04,5,61,[7,8,911}")) As wkt;

LINESTRING(1 2,4 5,7 8)

See Also

ST _AsText, ST_AsGeoJSON, Section 2.4.1

8.3.14 ST_GeomFromKML

ST_GeomFromKML — Takes as input KML representation of geometry and outputs a PostGIS geometry object

Synopsis

geometry ST_GeomFromKML(text geomkml);

PostGIS 2.1.0 Manual
104 / 671

Description

Constructs a PostGIS ST_Geometry object from the OGC KML representation.
ST_GeomFromKML works only for KML Geometry fragments. It throws an error if you try to use it on a whole KML document.
OGC KML versions supported:

e KML 2.2.0 Namespace

OGC KML standards, cf: http://www.opengeospatial.org/standards/kml:
Availability: 1.5,libxml2 2.6+

/ This function supports 3d and will not drop the z-index.

N_ﬁﬂ’! Note

ST_GeomFromKML function not support SQL/MM curves geometries.

Examples - A single geometry with srsName

SELECT ST_GeomFromKML (’
<LineString>
<coordinates>-71.1663,42.2614
-71.1667,42.2616</coordinates>
</LineString>');

See Also

Section 2.4.1, ST _AsKML

8.3.15 ST_GMLToSQL

ST_GMLToSQL — Return a specified ST_Geometry value from GML representation. This is an alias name for ST_GeomFromGML

Synopsis
geometry ST_GMLToSQL(text geomgml);
geometry ST_GMLToSQL(text geomgml, integer srid);

Description

/ This method implements the SQL/MM specification. SQL-MM 3: 5.1.50 (except for curves support).
Awailability: 1.5, requires libxml2 1.6+
Enhanced: 2.0.0 support for Polyhedral surfaces and TIN was introduced.

Enhanced: 2.0.0 default srid optional parameter added.

http://www.opengeospatial.org/standards/kml

PostGIS 2.1.0 Manual
105/ 671

See Also

Section 2.4.1, ST _GeomFromGML, ST _AsGML

8.3.16 ST_GeomFromText

ST_GeomFromText — Return a specified ST_Geometry value from Well-Known Text representation (WKT).

Synopsis

geometry ST_GeomFromText(text WKT);
geometry ST_GeomFromText(text WKT, integer srid);

Description

Constructs a PostGIS ST_Geometry object from the OGC Well-Known text representation.

e Note
N"R’! There are 2 variants of ST_GeomFromText function, the first takes no SRID and returns a geometry with no defined

spatial reference system. The second takes a spatial reference id as the second argument and returns an ST_Geometry
that includes this srid as part of its meta-data. The srid must be defined in the spatial_ref_sys table.

/ This method implements the OpenGIS Simple Features Implementation Specification for SQL 1.1. §3.2.6.2 - option SRID
is from the conformance suite.

/ This method implements the SQL/MM specification. SQL-MM 3: 5.1.40

/ This method supports Circular Strings and Curves

Warning

. Changed: 2.0.0 In prior versions of PostGIS ST_GeomFromText(GEOMETRYCOLLECTION(EMPTY)’) was allowed.
This is now illegal in PostGIS 2.0.0 to better conform with SQL/MM standards. This should now be written as
ST_GeomFromText(GEOMETRYCOLLECTION EMPTY’)

Examples

SELECT ST_GeomFromText (' LINESTRING(-71.160281 42.258729,-71.160837 42.259113,-71.161144 <>

42.25932)");
SELECT ST_GeomFromText (' LINESTRING(-71.160281 42.258729,-71.160837 42.259113,-71.161144 <>

42.25932)',4269) ;

SELECT ST_GeomFromText ('MULTILINESTRING((-71.160281 42.258729,-71.160837 <>
42.259113,-71.161144 42.25932))");

SELECT ST_GeomFromText ("POINT (-71.064544 42.28787)");

SELECT ST_GeomFromText (' POLYGON ((-71.1776585052917 42.3902909739571,-71.1776820268866 <>

42.3903701743239,
-71.1776063012595 42.3903825660754,-71.1775826583081 42.3903033653531,-71.1776585052917 <«

42.3902909739571))");

http://www.opengeospatial.org/standards/sfs

PostGIS 2.1.0 Manual
106 /671

SELECT ST_GeomFromText ('MULTIPOLYGON (((-71.1031880899493 42.3152774590236,
-71.1031627617667 42.3152960829043,-71.102923838298 42.3149156848307,
-71.1023097974109 42.3151969047397,-71.1019285062273 42.3147384934248,
—71.102505233663 42.3144722937587,-71.10277487471 42.3141658254797,
—71.103113945163 42.3142739188902,-71.10324876416 42.31402489987,
—-71.1033002961013 42.3140393340215,-71.1033488797549 42.3139495090772,
-71.103396240451 42.3138632439557,-71.1041521907712 42.3141153348029,
—-71.1041411411543 42.3141545014533,-71.1041287795912 42.3142114839058,
—71.1041188134329 42.3142693656241,-71.1041112482575 42.3143272556118,
-71.1041072845732 42.3143851580048,-71.1041057218871 42.3144430686681,
-71.1041065602059 42.3145009876017,-71.1041097995362 42.3145589148055,
-71.1041166403905 42.3146168544148,-71.1041258822717 42.3146748022936,
—-71.1041375307579 42.3147318674446,-71.1041492906949 42.3147711126569,
—-71.1041598612795 42.314808571739,-71.1042515013869 42.3151287620809,
-71.1041173835118 42.3150739481917,-71.1040809891419 42.3151344119048,
—-71.1040438678912 42.3151191367447,-71.1040194562988 42.3151832057859,
—-71.1038734225584 42.3151140942995,-71.1038446938243 42.3151006300338,
—71.1038315271889 42.315094347535,-71.1037393329282 42.315054824985,
—71.1035447555574 42.3152608696313,-71.1033436658644 42.3151648370544,
—-71.1032580383161 42.3152269126061,-71.103223066939 42.3152517403219,
—71.1031880899493 42.3152774590236)),
((=71.1043632495873 42.315113108546,-71.1043583974082 42.3151211109857,
-71.1043443253471 42.3150676015829,-71.1043850704575 42.3150793250568,-71.1043632495873 <>
42.315113108546)))"’,4326);

SELECT ST_GeomFromText (' CIRCULARSTRING (220268 150415,220227 150505,220227 150406)");

See Also

ST_GeomFromEWKT, ST_GeomFromWKB, ST_SRID

8.3.17 ST _GeomFromWKB

ST_GeomFromWKB — Creates a geometry instance from a Well-Known Binary geometry representation (WKB) and optional
SRID.

Synopsis

geometry ST_GeomFromWKB(bytea geom);
geometry ST_GeomFromWKB(bytea geom, integer srid);

Description
The ST_GeomF romWKB function, takes a well-known binary representation of a geometry and a Spatial Reference System ID

(SRID) and creates an instance of the appropriate geometry type. This function plays the role of the Geometry Factory in SQL.
This is an alternate name for ST_WKBToSQL.

If SRID is not specified, it defaults to -1 (Unknown).

/ This method implements the OpenGIS Simple Features Implementation Specification for SQL 1.1. §3.2.7.2 - the optional
SRID is from the conformance suite

/ This method implements the SQL/MM specification. SQL-MM 3: 5.1.41

/ This method supports Circular Strings and Curves

http://www.opengeospatial.org/standards/sfs

PostGIS 2.1.0 Manual
107 /671

Examples

—-—-Although bytea rep contains single \, these need to be escaped when inserting into a <
table
—-— unless standard_conforming_strings is set to on.

SELECT ST_ASEWKT (

ST_GeomFromWKB (E” \\001\\002\\000\\000\\000\\002\\000\\000\\000\\037\\205\\3530Q «
\\270~\\\\\\300\\323Mb\\020X\\231CR\\020X9\\264\\310~\\\\\\300) \\\\\\217\\302\\365\\230 +
CQ’,4326)

st_asewkt

SRID=4326; LINESTRING (-113.98 39.198,-113.981 39.195)
(1 row)

SELECT
ST_AsText (
ST_GeomFromWKB (
ST_ASEWKB (' POINT (2 5)’ ::geometry)
)
)
st_astext

POINT (2 5)
(1 row)

See Also

ST_WKBToSQL, ST_AsBinary, ST_GeomFromEWKB

8.3.18 ST _LineFromMultiPoint

ST_LineFromMultiPoint — Creates a LineString from a MultiPoint geometry.

Synopsis

geometry ST_LineFromMultiPoint(geometry aMultiPoint);

Description

Creates a LineString from a MultiPoint geometry.

/ This function supports 3d and will not drop the z-index.

Examples

—-—Create a 3d line string from a 3d multipoint

SELECT ST_ASEWKT (ST_LineFromMultiPoint (ST_GeomFromEWKT (' MULTIPOINT (1 2 3, 4 5 6, 7 8 9)7))) <«
7

——result—-

LINESTRING(1 2 3,4 5 6,7 8 9)

PostGIS 2.1.0 Manual
108 /671

See Also

ST_ASEWKT, ST_Collect, ST_MakeLine

8.3.19 ST_LineFromText

ST_LineFromText — Makes a Geometry from WKT representation with the given SRID. If SRID is not given, it defaults to -1.

Synopsis

geometry ST_LineFromText(text WKT);
geometry ST_LineFromText(text WKT, integer srid);

Description

Makes a Geometry from WKT with the given SRID. If SRID is not give, it defaults to -1. If WKT passed in is not a LINESTRING,
then null is returned.

Not Note
OGC SPEC 3.2.6.2 - option SRID is from the conformance suite.

o4 Note
N If you know all your geometries are LINESTRINGS, its more efficient to just use ST_GeomFromText. This just calls
ST_GeomFromText and adds additional validation that it returns a linestring.

/ This method implements the OpenGIS Simple Features Implementation Specification for SQL 1.1. s3.2.6.2

/ This method implements the SQL/MM specification. SQL-MM 3: 7.2.8

Examples

SELECT ST_LineFromText (' LINESTRING(1 2, 3 4)’) AS aline, ST_LineFromText ('POINT (1l 2)’) AS <+
null_return;

aline | null_return
010200000002000000000000000000F ... | t
See Also

ST _GeomFromText

8.3.20 ST LineFromWKB

ST_LineFromWKB — Makes a LINESTRING from WKB with the given SRID

http://www.opengeospatial.org/standards/sfs

PostGIS 2.1.0 Manual
109 /671

Synopsis

geometry ST_LineFromWKB(bytea WKB);
geometry ST_LineFromWKB(bytea WKB, integer srid);

Description

The ST_LineFromWKB function, takes a well-known binary representation of geometry and a Spatial Reference System ID
(SRID) and creates an instance of the appropriate geometry type - in this case, a LINESTRING geometry. This function plays
the role of the Geometry Factory in SQL.

If an SRID is not specified, it defaults to -1. NULL is returned if the input bytea does not represent a LINESTRING.

Not Note
OGC SPEC 3.2.6.2 - option SRID is from the conformance suite.

o4 Note
N If you know all your geometries are LINESTRINGS, its more efficient to just use ST_GeomFromWKB. This function
just calls ST_GeomFromWKB and adds additional validation that it returns a linestring.

/ This method implements the OpenGIS Simple Features Implementation Specification for SQL 1.1. s3.2.6.2

/ This method implements the SQL/MM specification. SQL-MM 3: 7.2.9

Examples

SELECT ST_LineFromWKB (ST_AsBinary (ST_GeomFromText (' LINESTRING(1 2, 3 4)’))) AS aline,

ST_LineFromWKB (ST_AsBinary (ST_GeomFromText ("POINT (1 2)’))) IS NULL AS null_return;
aline | null_return
010200000002000000000000000000F ... | t
See Also

ST_GeomFromWKB, ST_LinestringFromWKB

8.3.21 ST_LinestringFromWKB

ST_LinestringFromWKB — Makes a geometry from WKB with the given SRID.

Synopsis

geometry ST_LinestringFromWKB(bytea WKB);
geometry ST_LinestringFromWKB(bytea WKB, integer srid);

http://www.opengeospatial.org/standards/sfs

PostGIS 2.1.0 Manual
110/ 671

Description

The ST_LinestringFromWKB function, takes a well-known binary representation of geometry and a Spatial Reference Sys-
tem ID (SRID) and creates an instance of the appropriate geometry type - in this case, a LINESTRING geometry. This function
plays the role of the Geometry Factory in SQL.

If an SRID is not specified, it defaults to -1. NULL is returned if the input bytea does not represent a LINESTRING geometry.
This an alias for ST _LineFromWKB.

Not Note
OGC SPEC 3.2.6.2 - optional SRID is from the conformance suite.

;R'! Note
N If you know all your geometries are LINESTRINGS, it's more efficient to just use ST_GeomFromWKB. This function
just calls ST_GeomFromWKB and adds additional validation that it returns a LINESTRING.

/ This method implements the OpenGIS Simple Features Implementation Specification for SQL 1.1. s3.2.6.2

/ This method implements the SQL/MM specification. SQL-MM 3: 7.2.9

Examples

SELECT
ST_LineStringFromWKB (
ST_AsBinary (ST_GeomFromText (' LINESTRING(1 2, 3 4)'))
) AS aline,
ST_LinestringFromWKB (
ST_AsBinary (ST_GeomFromText (' POINT (1 2)'))
) IS NULL AS null_return;

aline | null_return
010200000002000000000000000000F ... | t
See Also

ST _GeomFromWKB, ST LineFromWKB

8.3.22 ST_MakeBox2D

ST_MakeBox2D — Creates a BOX2D defined by the given point geometries.

Synopsis

box2d ST_MakeBox2D(geometry pointLowLeft, geometry pointUpRight);

Description

Creates a BOX2D defined by the given point geometries. This is useful for doing range queries

http://www.opengeospatial.org/standards/sfs

PostGIS 2.1.0 Manual
111 /671

Examples

——Return all features that fall reside or partly reside in a US national atlas coordinate <>
bounding box

——It is assumed here that the geometries are stored with SRID = 2163 (US National atlas <&
equal area)

SELECT feature_id, feature_name, the_geom

FROM features

WHERE the_geom && ST_SetSRID (ST_MakeBox2D (ST_Point (-989502.1875, 528439.5625),
ST_Point (-987121.375 ,529933.1875)),2163)

See Also

ST MakePoint, ST_Point, ST_SetSRID, ST_SRID

8.3.23 ST_3DMakeBox

ST_3DMakeBox — Creates a BOX3D defined by the given 3d point geometries.

Synopsis

box3d ST_3DMakeBox(geometry point3DLowLeftBottom, geometry point3DUpRightTop);

Description

Creates a BOX3D defined by the given 2 3D point geometries.

/ This function supports 3d and will not drop the z-index.

Changed: 2.0.0 In prior versions this used to be called ST_MakeBox3D

Examples

SELECT ST_3DMakeBox (ST_MakePoint (-989502.1875, 528439.5625, 10),
ST_MakePoint (-987121.375 ,529933.1875, 10)) As abb3d

==lglo3el==

BOX3D (-989502.1875 528439.5625 10,-987121.375 529933.1875 10)

See Also

ST_MakePoint, ST_SetSRID, ST_SRID

8.3.24 ST_MakelLine

ST_MakeLine — Creates a Linestring from point or line geometries.

Synopsis

geometry ST_MakeLine(geometry set geoms);
geometry ST_MakeLine(geometry geoml, geometry geom2);
geometry ST_MakeLine(geometry[] geoms_array);

PostGIS 2.1.0 Manual
112 /671

Description

ST_MakeLine comes in 3 forms: a spatial aggregate that takes rows of point-or-line geometries and returns a line string, a
function that takes an array of point-or-lines, and a regular function that takes two point-or-line geometries. You might want to
use a subselect to order points before feeding them to the aggregate version of this function.

When adding line components a common node is removed from the output.

/ This function supports 3d and will not drop the z-index.

Auwailability: 1.4.0 - ST_MakeLine(geomarray) was introduced. ST_MakeLine aggregate functions was enhanced to handle more
points faster.

Availability: 2.0.0 - Support for linestring input elements was introduced

Examples: Spatial Aggregate version

This example takes a sequence of GPS points and creates one record for each gps travel where the geometry field is a line string
composed of the gps points in the order of the travel.

—-— For pre-PostgreSQL 9.0 - this usually works,
—— but the planner may on occasion choose not to respect the order of the subquery
SELECT gps.gps_track, ST_MakelLine (gps.the_geom) As newgeom
FROM (SELECT gps_track,gps_time, the_geom
FROM gps_points ORDER BY gps_track, gps_time) As gps
GROUP BY gps.gps_track;

—-— If you are using PostgreSQL 9.0+

—-— (you can use the new ORDER BY support for aggregates)

—— this is a guaranteed way to get a correctly ordered linestring

—— Your order by part can order by more than one column if needed

SELECT gps.gps_track, ST_MakelLine (gps.the_geom ORDER BY gps_time) As newgeom
FROM gps_points As gps
GROUP BY gps.gps_track;

Examples: Non-Spatial Aggregate version

First example is a simple one off line string composed of 2 points. The second formulates line strings from 2 points a user draws.
The third is a one-off that joins 2 3d points to create a line in 3d space.

SELECT ST_AsText (ST_MakeLine (ST_MakePoint (1,2), ST_MakePoint (3,4)));
st_astext

LINESTRING(1 2,3 4)

SELECT userpoints.id, ST_Makeline (startpoint, endpoint) As drawn_line
FROM userpoints ;

SELECT ST_ASEWKT (ST_MakeLine (ST_MakePoint (1,2,3), ST_MakePoint (3,4,5)));
st_asewkt

LINESTRING(1 2 3,3 4 5)

Examples: Using Array version

PostGIS 2.1.0 Manual
113 /671

SELECT ST_MakeLine (ARRAY (SELECT ST_Centroid(the_geom) FROM visit_locations ORDER BY <«
visit_time));

—--Making a 3d line with 3 3-d points
SELECT ST_ASEWKT (ST_MakeLine (ARRAY [ST_MakePoint (1,2, 3),

ST_MakePoint (3,4,5), ST_MakePoint (6,6,6)]1));
st_asewkt

LINESTRING(1 2 3,3 4 5,6 6 6)

See Also

ST _ASEWKT, ST _AsText, ST _GeomFromText, ST MakePoint

8.3.25 ST_MakeEnvelope

ST_MakeEnvelope — Creates a rectangular Polygon formed from the given minimums and maximums. Input values must be in
SRS specified by the SRID.

Synopsis

geometry ST_MakeEnvelope(double precision xmin, double precision ymin, double precision xmax, double precision ymax,
integer srid=unknown);

Description

Creates a rectangular Polygon formed from the minima and maxima. by the given shell. Input values must be in SRS specified
by the SRID. If no SRID is specified the unknown spatial reference system is assumed

Availability: 1.5
Enhanced: 2.0: Ability to specify an envelope without specifying an SRID was introduced.
Example: Building a bounding box polygon

SELECT ST_AsText (ST_MakeEnvelope (10, 10, 11, 11, 4326));

st_asewkt

POLYGON((10 10, 10 11, 11 11, 11 10, 10 10))

See Also

ST_MakePoint, ST_MakeLine, ST_MakePolygon

8.3.26 ST_MakePolygon

ST_MakePolygon — Creates a Polygon formed by the given shell. Input geometries must be closed LINESTRINGS.

PostGIS 2.1.0 Manual
114 /671

Synopsis

geometry ST_MakePolygon(geometry linestring);

geometry ST_MakePolygon(geometry outerlinestring, geometry[] interiorlinestrings);

Description

Creates a Polygon formed by the given shell. Input geometries must be closed LINESTRINGS. Comes in 2 variants.
Variant 1: takes one closed linestring.

Variant 2: Creates a Polygon formed by the given shell and array of holes. You can construct a geometry array using ST_Accum
or the PostgreSQL ARRAY[] and ARRAY() constructs. Input geometries must be closed LINESTRINGS.

Not¥ Note
This function will not accept a MULTILINESTRING. Use ST_LineMerge or ST_Dump to generate line strings.

/ This function supports 3d and will not drop the z-index.

Examples: Single closed LINESTRING

--2d line

SELECT ST_MakePolygon (ST_GeomFromText (LINESTRING (75.15 29.53,77 29,77.6 29.5, 75.15 29.53) <>
"))

——If linestring is not closed

—--you can add the start point to close it

SELECT ST_MakePolygon (ST_AddPoint (foo.open_line, ST_StartPoint (foo.open_line)))

FROM (

SELECT ST_GeomFromText (/' LINESTRING(75.15 29.53,77 29,77.6 29.5)’) As open_line) As foo;

—--3d closed line
SELECT ST_MakePolygon (ST_GeomFromText (' LINESTRING(75.15 29.53 1,77 29 1,77.6 29.5 1, 75.15 <>
29.53 1)7));

st_asewkt

POLYGON ((75.15 29.53 1,77 29 1,77.6 29.5 1,75.15 29.53 1))

—--measured line —-—
SELECT ST_MakePolygon (ST_GeomFromText (/ LINESTRINGM (75.15 29.53 1,77 29 1,77.6 29.5 2, 75.15 ¢
29.53 2)7));

st_asewkt

POLYGONM ((75.15 29.53 1,77 29 1,77.6 29.5 2,75.15 29.53 2))

Examples: Outter shell with inner shells

Build a donut with an ant hole

SELECT ST_MakePolygon (
ST_ExteriorRing (ST_Buffer (foo.line, 10)),
ARRAY [ST_Translate(foo.line,1,1),
ST_ExteriorRing (ST_Buffer (ST_MakePoint (20,20),1))]

PostGIS 2.1.0 Manual
115/ 671

)
FROM
(SELECT ST_ExteriorRing (ST_Buffer (ST_MakePoint (10,10),10,10))
As line)
As foo;

Build province boundaries with holes representing lakes in the province from a set of province polygons/multipolygons and water
line strings this is an example of using PostGIS ST_Accum

Not? Note
The use of CASE because feeding a null array into ST_MakePolygon results in NULL

i

Not? Note

the use of left join to guarantee we get all provinces back even if they have no lakes

SELECT p.gid, p.province_name,

CASE WHEN
ST_Accum(w.the_geom) IS NULL THEN p.the_geom
ELSE ST_MakePolygon (ST_LineMerge (ST_Boundary (p.the_geom)), ST_Accum(w.the_geom)) END
FROM

provinces p LEFT JOIN waterlines w
ON (ST_Within(w.the_geom, p.the_geom) AND ST_IsClosed(w.the_geom))
GROUP BY p.gid, p.province_name, p.the_geom;

——Same example above but utilizing a correlated subquery
——and PostgreSQL built-in ARRAY () function that converts a row set to an array

SELECT p.gid, p.province_name, CASE WHEN
EXISTS (SELECT w.the_geom
FROM waterlines w
WHERE ST_Within (w.the_geom, p.the_geom)
AND ST_IsClosed(w.the_geom))
THEN
ST_MakePolygon (ST_LineMerge (ST_Boundary (p.the_geom)),
ARRAY (SELECT w.the_geom
FROM waterlines w
WHERE ST _Within (w.the_geom, p.the_geom)
AND ST_IsClosed(w.the_geom)))
ELSE p.the_geom END As the_geom
FROM
provinces pj;

See Also

ST_Accum, ST_AddPoint, ST_GeometryType, ST_IsClosed, ST_LineMerge, ST_BuildArea

8.3.27 ST_MakePoint

ST_MakePoint — Creates a 2D,3DZ or 4D point geometry.

PostGIS 2.1.0 Manual
116 /671

Synopsis

geometry ST_MakePoint(double precision x, double precision y);
geometry ST_MakePoint(double precision x, double precision y, double precision z);

geometry ST_MakePoint(double precision x, double precision y, double precision z, double precision m);
Description
Creates a 2D,3DZ or 4D point geometry (geometry with measure). ST_MakePoint while not being OGC compliant is generally

faster and more precise than ST_GeomFromText and ST_PointFromText. It is also easier to use if you have raw coordinates rather
than WKT.

&

Not? Note

Note x is longitude and y is latitude

Not? Note

Use ST_MakePointM if you need to make a point with x,y,m.

/ This function supports 3d and will not drop the z-index.

Examples

—-Return point with unknown SRID
SELECT ST_MakePoint (-71.1043443253471, 42.3150676015829) ;

—-—-Return point marked as WGS 84 long lat
SELECT ST_SetSRID (ST_MakePoint (-71.1043443253471, 42.3150676015829),4326);

—-—-Return a 3D point (e.g. has altitude)
SELECT ST_MakePoint (1, 2,1.5);

-—Get z of point
SELECT ST_Z (ST_MakePoint (1, 2,1.5));
result

See Also

ST _GeomFromText, ST PointFromText, ST SetSRID, ST MakePointM

8.3.28 ST_MakePointM

ST_MakePointM — Creates a point geometry with an x y and m coordinate.

Synopsis

geometry ST_MakePointM(float x, float y, float m);

PostGIS 2.1.0 Manual
117 /671

Description

Creates a point with x, y and measure coordinates.

N;ﬂ"’! Note

Note x is longitude and y is latitude.

Examples
We use ST_ASEWKT in these examples to show the text representation instead of ST_AsText because ST_AsText does not
support returning M.

—-—Return EWKT representation of point with unknown SRID
SELECT ST_ASEWKT (ST_MakePointM(-71.1043443253471, 42.3150676015829, 10));

—-—result
st_asewkt

POINTM(-71.1043443253471 42.3150676015829 10)

——-Return EWKT representation of point with measure marked as WGS 84 long lat
SELECT ST_ASEWKT (ST_SetSRID (ST_MakePointM(-71.1043443253471, 42.3150676015829,10),4326));

st_asewkt

SRID=4326;POINTM(-71.1043443253471 42.3150676015829 10)

—-—Return a 3d point (e.g. has altitude)
SELECT ST_MakePoint (1, 2,1.5);

——Get m of point
SELECT ST_M(ST_MakePointM(-71.1043443253471, 42.3150676015829,10)) ;
result

See Also

ST_AsEWKT, ST_MakePoint, ST_SetSRID

8.3.29 ST_MLineFromText

ST_MLineFromText — Return a specified ST_MultiLineString value from WKT representation.

Synopsis

geometry ST_MULineFromText(text WKT, integer srid);
geometry ST_MLineFromText(text WKT);

PostGIS 2.1.0 Manual
118 /671

Description

Makes a Geometry from Well-Known-Text (WKT) with the given SRID. If SRID is not give, it defaults to -1.
OGC SPEC 3.2.6.2 - option SRID is from the conformance suite
Returns null if the WKT is not a MULTILINESTRING

N;*"! Note

If you are absolutely sure all your WKT geometries are points, don’t use this function. It is slower than
ST_GeomFromText since it adds an additional validation step.

/ This method implements the OpenGIS Simple Features Implementation Specification for SQL 1.1. s3.2.6.2

/ This method implements the SQL/MM specification.SQL-MM 3: 9.4.4

Examples

SELECT ST_MLineFromText (MULTILINESTRING ((1 2, 3 4), (4 5, 6 7))');

See Also

ST_GeomFromText

8.3.30 ST _MPointFromText

ST_MPointFromText — Makes a Geometry from WKT with the given SRID. If SRID is not give, it defaults to -1.

Synopsis

geometry ST_MPointFromText(text WKT, integer srid);
geometry ST_MPointFromText(text WKT);

Description

Makes a Geometry from WKT with the given SRID. If SRID is not give, it defaults to -1.
OGC SPEC 3.2.6.2 - option SRID is from the conformance suite
Returns null if the WKT is not a MULTIPOINT

N;“’! Note

If you are absolutely sure all your WKT geometries are points, don't use this function. It is slower than
ST_GeomFromText since it adds an additional validation step.

/ This method implements the OpenGIS Simple Features Implementation Specification for SQL 1.1. 3.2.6.2

/ This method implements the SQL/MM specification. SQL-MM 3: 9.2.4

http://www.opengeospatial.org/standards/sfs
http://www.opengeospatial.org/standards/sfs

PostGIS 2.1.0 Manual
119/ 671

Examples

SELECT ST_MPointFromText (MULTIPOINT (1 2, 3 4)');
SELECT ST_MPointFromText ("MULTIPOINT (-70.9590 42.1180, -70.9611 42.1223)’, 4326);

See Also

ST _GeomFromText

8.3.31 ST_MPolyFromText

ST_MPolyFromText — Makes a MultiPolygon Geometry from WKT with the given SRID. If SRID is not give, it defaults to -1.

Synopsis

geometry ST_MPolyFromText(text WKT, integer srid);
geometry ST_MPolyFromText(text WKT);

Description

Makes a MultiPolygon from WKT with the given SRID. If SRID is not give, it defaults to -1.
OGC SPEC 3.2.6.2 - option SRID is from the conformance suite
Throws an error if the WKT is not a MULTIPOLY GON

o4 Note
N If you are absolutely sure all your WKT geometries are multipolygons, don’t use this function. It is slower than
ST_GeomFromText since it adds an additional validation step.

/ This method implements the OpenGIS Simple Features Implementation Specification for SQL 1.1. s3.2.6.2

/ This method implements the SQL/MM specification. SQL-MM 3: 9.6.4

Examples

SELECT ST_MPolyFromText (MULTIPOLYGON(((0 0 1,20 0 1,20 20 1,0 20 1,0 0 1),(5 5 3,5 7 3,7 7 «
3,7 53,55 3)))7);

SELECt ST _MPolyFromText (' MULTIPOLYGON (((-70.916 42.1002,-70.9468 42.0946,-70.9765 <+
42.0872,-70.9754 42.0875,-70.9749 42.0879,-70.9752 42.0881,-70.9754 42.0891,-70.9758
42.0894,-70.9759 42.0897,-70.9759 42.0899,-70.9754 42.0902,-70.9756 42.0906,-70.9753
42.0907,-70.9753 42.0917,-70.9757 42.0924,-70.9755 42.0928,-70.9755 42.0942,-70.9751
42.0948,-70.9755 42.0953,-70.9751 42.0958,-70.9751 42.0962,-70.9759 42.0983,-70.9767
42.0987,-70.9768 42.0991,-70.9771 42.0997,-70.9771 42.1003,-70.9768 42.1005,-70.977
42.1011,-70.9766 42.1019,-70.9768 42.1026,-70.9769 42.1033,-70.9775 42.1042,-70.9773
42.1043,-70.9776 42.1043,-70.9778 42.1048,-70.9773 42.1058,-70.9774 42.1061,-70.9779
42.1065,-70.9782 42.1078,-70.9788 42.1085,-70.9798 42.1087,-70.9806 42.109,-70.9807
42.1093,-70.9806 42.1099,-70.9809 42.1109,-70.9808 42.1112,-70.9798 42.1116,-70.9792
42.1127,-70.979 42.1129,-70.9787 42.1134,-70.979 42.1139,-70.9791 42.1141,-70.9987 <+
42.1116,-71.0022 42.1273,

-70.9408 42.1513,-70.9315 42.1165,-70.916 42.1002)))’,4326);

U

http://www.opengeospatial.org/standards/sfs

PostGIS 2.1.0 Manual

120/ 671

See Also

ST _GeomFromText, ST _SRID

8.3.32 ST_Point

ST_Point — Returns an ST_Point with the given coordinate values. OGC alias for ST_MakePoint.

Synopsis

geometry ST_Point(float x_lon, float y_lat);

Description

Returns an ST_Point with the given coordinate values. MM compliant alias for ST_MakePoint that takes just an x and y.

/ This method implements the SQL/MM specification. SQL-MM 3: 6.1.2

Examples: Geometry

SELECT ST_SetSRID(ST_Point (-71.1043443253471, 42.3150676015829),4326)

Examples: Geography

SELECT CAST (ST_SetSRID (ST_Point (-71.1043443253471, 42.3150676015829),4326) As geography);

—— the :: is PostgreSQL short-hand for casting.
SELECT ST_SetSRID(ST_Point (-71.1043443253471, 42.3150676015829),4326) : :geography;

—-—If your point coordinates are in a different spatial reference from WGS-84 long
you need to transform before casting
—— This example we convert a point in Pennsylvania State Plane feet to WGS 84 and

geography
SELECT ST_Transform(ST_SetSRID(ST_Point (3637510, 3014852),2273),4326) ::geography;

See Also

Section 4.2.1, ST_MakePoint, ST_SetSRID, ST_Transform

8.3.33 ST_PointFromGeoHash

ST_PointFromGeoHash — Return a point from a GeoHash string.

Synopsis

point ST_PointFromGeoHash(text geohash, integer precision=full_precision_of_geohash);

lat,

then

then <«

P

PostGIS 2.1.0 Manual
121 /671

Description

Return a point from a GeoHash string. The point represents the center point of the GeoHash.
If no precision is specficified ST_PointFromGeoHash returns a point based on full precision of the input GeoHash string.
If precision is specified ST_PointFromGeoHash will use that many characters from the GeoHash to create the point.

Availability: 2.1.0

Examples

SELECT ST_AsText (ST_PointFromGeoHash (' 9qqj7nmxncgyy4d0dbxqgz0’)) ;
st_astext

POINT (-115.172816 36.114646)

SELECT ST_AsText (ST_PointFromGeoHash (! 9ggqj7nmxncgyy4d0dbxgz0’, 4));
st_astext

POINT (-115.13671875 36.123046875)

SELECT ST_AsText (ST_PointFromGeoHash (' 9ggj7nmxncgyy4d0dbxgz0’, 10));
st_astext

POINT (-115.172815918922 36.1146435141563)

See Also

ST_GeoHash, ST _Box2dFromGeoHash, ST GeomFromGeoHash

8.3.34 ST _PointFromText

ST_PointFromText — Makes a point Geometry from WKT with the given SRID. If SRID is not given, it defaults to unknown.

Synopsis

geometry ST_PointFromText(text WKT);
geometry ST_PointFromText(text WKT, integer srid);

Description

Constructs a PostGIS ST_Geometry point object from the OGC Well-Known text representation. If SRID is not give, it defaults
to unknown (currently -1). If geometry is not a WKT point representation, returns null. If completely invalid WKT, then throws
an error.

. Note
Nﬁ'“’! There are 2 variants of ST_PointFromText function, the first takes no SRID and returns a geometry with no defined
spatial reference system. The second takes a spatial reference id as the second argument and returns an ST_Geometry
that includes this srid as part of its meta-data. The srid must be defined in the spatial_ref_sys table.

PostGIS 2.1.0 Manual
122 /671

Note

No-lfv! If you are absolutely sure all your WKT geometries are points, don’t use this function. It is slower than
ST_GeomFromText since it adds an additional validation step. If you are building points from long lat coordinates
and care more about performance and accuracy than OGC compliance, use ST_MakePoint or OGC compliant alias
ST _Point.

/ This method implements the OpenGIS Simple Features Implementation Specification for SQL 1.1. s3.2.6.2 - option SRID
is from the conformance suite.

/ This method implements the SQL/MM specification. SQL-MM 3: 6.1.8

Examples

SELECT ST_PointFromText (' POINT (-71.064544 42.28787)");
SELECT ST_PointFromText (' POINT (-71.064544 42.28787)’, 4326);

See Also

ST_GeomFromText, ST_MakePoint, ST_Point, ST_SRID

8.3.35 ST PointFromWKB

ST_PointFromWKB — Makes a geometry from WKB with the given SRID

Synopsis

geometry ST_GeomFromWKB(bytea geom);
geometry ST_GeomFromWKB(bytea geom, integer srid);

Description

The ST_PointFromWKB function, takes a well-known binary representation of geometry and a Spatial Reference System ID
(SRID) and creates an instance of the appropriate geometry type - in this case, a POINT geometry. This function plays the role
of the Geometry Factory in SQL.

If an SRID is not specified, it defaults to -1. NULL is returned if the input bytea does not represent a POINT geometry.

/ This method implements the OpenGIS Simple Features Implementation Specification for SQL 1.1. s3.2.7.2

/ This method implements the SQL/MM specification. SQL-MM 3: 6.1.9

/ This function supports 3d and will not drop the z-index.

/ This method supports Circular Strings and Curves

http://www.opengeospatial.org/standards/sfs
http://www.opengeospatial.org/standards/sfs

PostGIS 2.1.0 Manual
123 /671

Examples

SELECT
ST _AsText (
ST_PointFromWKB (
ST_ASEWKB (' POINT (2 5)’ ::geometry)
)
)
st_astext

POINT (2 5)
(1 row)

SELECT
ST_AsText (
ST_PointFromWKB (
ST_ASEWKB (' LINESTRING (2 5, 2 6)’::geometry)
)
)
st_astext

See Also

ST_GeomFromWKB, ST _LineFromWKB

8.3.36 ST_Polygon

ST_Polygon — Returns a polygon built from the specified linestring and SRID.

Synopsis

geometry ST _Polygon(geometry aLineString, integer srid);

Description

Returns a polygon built from the specified linestring and SRID.

& Note
Nﬂ‘l"! ST_Polygon is similar to first version 0ST_MakePolygon except it also sets the spatial ref sys (SRID) of the polygon.
Will not work with MULTILINESTRINGS so use LineMerge to merge multilines. Also does not create polygons with
holes. Use ST_MakePolygon for that.

/ This method implements the OpenGIS Simple Features Implementation Specification for SQL 1.1.
/ This method implements the SQL/MM specification. SQL-MM 3: 8.3.2

/ This function supports 3d and will not drop the z-index.

http://www.opengeospatial.org/standards/sfs

PostGIS 2.1.0 Manual
124 /671

Examples

—-—a 2d polygon

SELECT ST_Polygon (ST_GeomFromText (' LINESTRING(75.15 29.53,77 29,77.6 29.5, 75.15 29.53)"), <+
4326) ;

——result—-

POLYGON ((75.15 29.53,77 29,77.6 29.5,75.15 29.53))

-—a 3d polygon

SELECT ST_ASEWKT (ST_Polygon (ST_GeomFromEWKT (" LINESTRING(75.15 29.53 1,77 29 1,77.6 29.5 1, —
75.15 29.53 1)"), 4326));

result

SRID=4326;POLYGON((75.15 29.53 1,77 29 1,77.6 29.5 1,75.15 29.53 1))

See Also

ST_AsEWKT, ST_AsText, ST_GeomFromEWKT, ST_GeomFromText, ST_LineMerge, ST_MakePolygon

8.3.37 ST_PolygonFromText

ST_PolygonFromText — Makes a Geometry from WKT with the given SRID. If SRID is not give, it defaults to -1.

Synopsis

geometry ST_PolygonFromText(text WKT);
geometry ST_PolygonFromText(text WKT, integer srid);

Description

Makes a Geometry from WKT with the given SRID. If SRID is not give, it defaults to -1. Returns null if WKT is not a polygon.
OGC SPEC 3.2.6.2 - option SRID is from the conformance suite

N;'l"! Note

If you are absolutely sure all your WKT geometries are polygons, don’t use this function. It is slower than
ST_GeomFromText since it adds an additional validation step.

/ This method implements the OpenGIS Simple Features Implementation Specification for SQL 1.1. s3.2.6.2

/ This method implements the SQL/MM specification. SQL-MM 3: 8.3.6

Examples

SELECT ST_PolygonFromText (/ POLYGON ((=71.1776585052917 42.3902909739571,-71.1776820268866 <+
42.3903701743239,

-71.1776063012595 42.3903825660754,-71.1775826583081 42.3903033653531,-71.1776585052917 <+
42.3902909739571)) ") ;

st_polygonfromtext

http://www.opengeospatial.org/standards/sfs

PostGIS 2.1.0 Manual
125/ 671

010300000001000000050000006. ..
SELECT ST_PolygonFromText (POINT (1 2)’) IS NULL as point_is_notpoly;

point_is_not_poly

See Also

ST_GeomFromText

8.3.38 ST WKBToSQL

ST_WKBToSQL — Return a specified ST_Geometry value from Well-Known Binary representation (WKB). This is an alias
name for ST _GeomFromWXKB that takes no srid

Synopsis

geometry ST_WKBToSQL(bytea WKB);

Description

/ This method implements the SQL/MM specification. SQL-MM 3: 5.1.36

See Also

ST _GeomFromWKB

8.3.39 ST WKTToSQL

ST_WKTToSQL — Return a specified ST_Geometry value from Well-Known Text representation (WKT). This is an alias name
for ST _GeomFromText

Synopsis

geometry ST_WKTToSQL(text WKT);

Description

/ This method implements the SQL/MM specification. SQL-MM 3: 5.1.34

See Also

ST_GeomFromText

PostGIS 2.1.0 Manual
126 /671

8.4 Geometry Accessors

8.4.1 GeometryType

GeometryType — Returns the type of the geometry as a string. Eg: "LINESTRING’, "’POLYGON’, "MULTIPOINT’, etc.

Synopsis

text GeometryType(geometry geomA);

Description

Returns the type of the geometry as a string. Eg: "LINESTRING’, ’POLYGON’, "MULTIPOINT’, etc.

OGC SPEC s2.1.1.1 - Returns the name of the instantiable subtype of Geometry of which this Geometry instance is a member.
The name of the instantiable subtype of Geometry is returned as a string.

N;‘l"! Note

This function also indicates if the geometry is measured, by returning a string of the form 'POINTM’.

Enhanced: 2.0.0 support for Polyhedral surfaces, Triangles and TIN was introduced.

/ This method implements the OpenGIS Simple Features Implementation Specification for SQL 1.1.
/ This method supports Circular Strings and Curves

/ This function supports 3d and will not drop the z-index.

/ This function supports Polyhedral surfaces.

/ This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).

Examples

SELECT GeometryType (ST_GeomFromText (' LINESTRING (77.29 29.07,77.42 29.26,77.27 29.31,77.29 <+
29.07)"));
geometrytype

LINESTRING

SELECT ST_GeometryType (ST_GeomFromEWKT (/ POLYHEDRALSURFACE(((O 0 0O, 0 01, 01 1, 010, 0 <
0 0)),
((0 00, 010,
((r 10, 111,
((001 0, 011
——-result
POLYHEDRALSURFACE

0o, 000)), ((000, 200, 101, 001, 00 0)),
0, 1.10)),
0, 010)), ((001, 101, 111, 011, 001)))"));

o e
= o K
=)

~ ~
e e
- o o

~

’ ’

http://www.opengeospatial.org/standards/sfs

PostGIS 2.1.0 Manual
127 /671

SELECT GeometryType (geom) as result

FROM
(SELECT
ST_GeomFromEWKT (" TIN (((
0 0 O,
00 1,
01 0,
00O
)) . ((
00 O,
010,
110,
00O
))
) ') AS geom
) AS g;
result
TIN
See Also

ST_GeometryType

8.4.2 ST_Boundary

ST_Boundary — Returns the closure of the combinatorial boundary of this Geometry.

Synopsis

geometry ST_Boundary(geometry geomA);

Description

Returns the closure of the combinatorial boundary of this Geometry. The combinatorial boundary is defined as described in
section 3.12.3.2 of the OGC SPEC. Because the result of this function is a closure, and hence topologically closed, the resulting
boundary can be represented using representational geometry primitives as discussed in the OGC SPEC, section 3.12.2.

Performed by the GEOS module

N:’""! Note

Prior to 2.0.0, this function throws an exception if used with GEOMETRYCOLLECTION. From 2.0.0 up it will return
NULL instead (unsupported input).

/ This method implements the OpenGIS Simple Features Implementation Specification for SQL 1.1. OGC SPEC s2.1.1.1
/ This method implements the SQL/MM specification. SQL-MM 3: 5.1.14

/ This function supports 3d and will not drop the z-index.

Enhanced: 2.1.0 support for Triangle was introduced

http://www.opengeospatial.org/standards/sfs

PostGIS 2.1.0 Manual
128 /671

Examples

SELECT ST_AsText (ST_Boundary (ST_GeomFromText (' LINESTRING(1 1,0 0, -1 1)7)));
st_astext

MULTIPOINT (1 1,-1 1)

SELECT ST_AsText (ST_Boundary (ST_GeomFromText (' POLYGON((1 1,0 0, -1 1, 1 1))")));
st_astext

LINESTRING(1 1,0 O0,-1 1,1 1)

--Using a 3d polygon
SELECT ST_ASEWKT (ST_Boundary (ST_GeomFromEWKT (" POLYGON((1 1 1,0 0 1, -1 1 1, 1 1 1))")));

st_asewkt

LINESTRING(1 1 1,0 0 1,-1 1 1,1 1 1)

—-Using a 3d multilinestring
SELECT ST_ASEWKT (ST_Boundary (ST_GeomFromEWKT (' MULTILINESTRING((1 1 1,0 0 0.5, -1 1 1), (1 1 <
0.5,0 0 0.5, -1 1 0.5, 1 10.5)")));

st_asewkt

MULTIPOINT (-1 1 1,1 1 0.75)

See Also

ST_ExteriorRing, ST_MakePolygon

8.4.3 ST CoordDim

ST_CoordDim — Return the coordinate dimension of the ST_Geometry value.

Synopsis

integer ST_CoordDim(geometry geomA);

Description

Return the coordinate dimension of the ST_Geometry value.

This is the MM compliant alias name for ST_NDims

/ This method implements the OpenGIS Simple Features Implementation Specification for SQL 1.1.
/ This method implements the SQL/MM specification. SQL-MM 3: 5.1.3

/ This method supports Circular Strings and Curves

/ This function supports 3d and will not drop the z-index.

/ This function supports Polyhedral surfaces.

http://www.opengeospatial.org/standards/sfs

PostGIS 2.1.0 Manual
129 /671

/ This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).

Examples
SELECT ST_CoordDim(’CIRCULARSTRING(1 2 3, 1 3 4, 56 7, 8 9 10, 11 12 13)7");
———result—-—
3
SELECT ST_CoordDim(ST_Point (1,2));

——result—-
2

See Also

ST _NDims

8.4.4 ST_Dimension

ST_Dimension — The inherent dimension of this Geometry object, which must be less than or equal to the coordinate dimension.

Synopsis

integer ST_Dimension(geometry g);

Description

The inherent dimension of this Geometry object, which must be less than or equal to the coordinate dimension. OGC SPEC
s2.1.1.1 - returns O for POINT, 1 for LINESTRING, 2 for POLYGON, and the largest dimension of the components of a GEOM~—
ETRYCOLLECTION. If unknown (empty geometry) null is returned.

/ This method implements the SQL/MM specification. SQL-MM 3: 5.1.2

Enhanced: 2.0.0 support for Polyhedral surfaces and TINs was introduced. No longer throws an exception if given empty
geometry.

N:"R’! Note

Prior to 2.0.0, this function throws an exception if used with empty geometry.

/ This function supports Polyhedral surfaces.
/ This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).

Examples

SELECT ST_Dimension (! GEOMETRYCOLLECTION (LINESTRING(1 1,0 0),POINT (0 0))");
ST_Dimension

PostGIS 2.1.0 Manual
130/ 671

See Also

ST _NDims

8.4.5 ST_EndPoint

ST_EndPoint — Returns the last point of a LINESTRING geometry as a POINT.

Synopsis

boolean ST_EndPoint(geometry g);

Description

Returns the last point of a LINESTRING geometry as a POINT or NULL if the input parameter is not a LINESTRING.
/ This method implements the SQL/MM specification. SQL-MM 3: 7.1.4

/ This function supports 3d and will not drop the z-index.

Note

N;H’! Changed: 2.0.0 no longer works with single geometry multilinestrings. In older versions of PostGIS -- a single line
multilinestring would work happily with this function and return the start point. In 2.0.0 it just returns NULL like any other
multilinestring. The older behavior was an undocumented feature, but people who assumed they had their data stored
as LINESTRING may experience these returning NULL in 2.0 now.

Examples

postgis=# SELECT ST_AsText (ST_EndPoint (' LINESTRING(1 1, 2 2, 3 3)’::geometry));
st_astext

POINT (3 3)
(1 row)

postgis=# SELECT ST_EndPoint (POINT(1 1)’::geometry) IS NULL AS is_null;
is_null

—--3d endpoint
SELECT ST_ASEWKT (ST_EndPoint (LINESTRING(1 1 2, 1 2 3, 0 0 5)7));
st_asewkt

POINT (O 0 5)
(1 row)

See Also

ST PointN, ST_StartPoint

PostGIS 2.1.0 Manual
131/671

8.4.6 ST_Envelope

ST_Envelope — Returns a geometry representing the double precision (float8) bounding box of the supplied geometry.

Synopsis

geometry ST_Envelope(geometry gl);

Description

Returns the float§ minimum bounding box for the supplied geometry, as a geometry. The polygon is defined by the corner
points of the bounding box ((MINX, MINY), (MINX, MAXY), (MAXX, MAXY), (MAXX, MINY), (MINX, MINY)). (PostGIS will add
a ZMIN/ZMAX coordinate as well).

Degenerate cases (vertical lines, points) will return a geometry of lower dimension than POLYGON, ie. POINT or LINESTRING.

Awailability: 1.5.0 behavior changed to output double precision instead of float4
/ This method implements the OpenGIS Simple Features Implementation Specification for SQL 1.1. s2.1.1.1

/ This method implements the SQL/MM specification. SQL-MM 3: 5.1.15

Examples

SELECT ST_AsText (ST_Envelope ('POINT (1 3)’::geometry));
st_astext

POINT (1 3)
(1 row)

SELECT ST_AsText (ST_Envelope (' LINESTRING(0 0, 1 3)’::geometry));
st_astext

POLYGON((O 0,0 3,1 3,1 0,0 0))
(1 row)

SELECT ST_AsText (ST_Envelope ('POLYGON((O O, O 1, 1.0000001 1, 1.0000001 0, O 0))'::geometry <
)) i
st_astext
POLYGON((O 0,0 1,1.00000011920929 1,1.00000011920929 0,0 0))
(1 row)
SELECT ST_AsText (ST_Envelope (' POLYGON((O O, O 1, 1.0000000001 1, 1.0000000001 O, 0 0))’:: ¢
geometry));
st_astext
POLYGON((0O 0,0 1,1.00000011920929 1,1.00000011920929 0,0 0))
(1 row)

SELECT Box3D (geom), Box2D (geom), ST_AsText (ST_Envelope (geom)) As envelopewkt
FROM (SELECT ’'POLYGON((O 0, 0 1000012333334.34545678, 1.0000001 1, 1.0000001 0, O 0))":: ¢
geometry As geom) As foo;

http://www.opengeospatial.org/standards/sfs

PostGIS 2.1.0 Manual
132 /671

See Also

Box2D, Box3D

8.4.7 ST_ExteriorRing

ST_ExteriorRing — Returns a line string representing the exterior ring of the POLYGON geometry. Return NULL if the geometry
is not a polygon. Will not work with MULTIPOLY GON

Synopsis

geometry ST _ExteriorRing(geometry a_polygon);

Description

Returns a line string representing the exterior ring of the POLYGON geometry. Return NULL if the geometry is not a polygon.

Not Note
Only works with POLYGON geometry types

/ This method implements the OpenGIS Simple Features Implementation Specification for SQL 1.1. 2.1.5.1
/ This method implements the SQL/MM specification. SQL-MM 3: 8.2.3, 8.3.3

/ This function supports 3d and will not drop the z-index.

Examples

—-—If you have a table of polygons
SELECT gid, ST_ExteriorRing(the_geom) AS ering
FROM sometable;

—-—If you have a table of MULTIPOLYGONs
—-—and want to return a MULTILINESTRING composed of the exterior rings of each polygon
SELECT gid, ST_Collect (ST_ExteriorRing(the_geom)) AS erings
FROM (SELECT gid, (ST_Dump (the_geom)) .geom As the_geom
FROM sometable) As foo
GROUP BY gid;

—--3d Example

SELECT ST_ASEWKT (
ST_ExteriorRing (
ST_GeomFromEWKT (/ POLYGON((O O 1, 1 11, 1 2 1, 1 11, 0 0 1))")
)

)

st_asewkt

LINESTRING(O O 1,1 1 1,1 2 1,1 1 1,0 0 1)

http://www.opengeospatial.org/standards/sfs

PostGIS 2.1.0 Manual
133 /671

See Also

ST_InteriorRingN, ST_Boundary, ST_NumlInteriorRings

8.4.8 ST_GeometryN

ST_GeometryN — Return the 1-based Nth geometry if the geometry is a GEOMETRYCOLLECTION, (MULTDPOINT, (MULTID)LINE
MULTICURVE or (MULTI)POLY GON, POLYHEDRALSURFACE Otherwise, return NULL.

Synopsis

geometry ST _GeometryN(geometry geomA, integer n);

Description

Return the 1-based Nth geometry if the geometry is a GEOMETRYCOLLECTION, (MULTIDPOINT, (MULTI)LINESTRING,
MULTICURVE or (MULTI)POLYGON, POLYHEDRALSURFACE Otherwise, return NULL

Not? Note

Index is 1-based as for OGC specs since version 0.8.0. Previous versions implemented this as 0-based instead.

Not? Note

If you want to extract all geometries, of a geometry, ST_Dump is more efficient and will also work for singular geoms.

Enhanced: 2.0.0 support for Polyhedral surfaces, Triangles and TIN was introduced.

Changed: 2.0.0 Prior versions would return NULL for singular geometries. This was changed to return the geometry for
ST_GeometryN(..,1) case.

/ This method implements the OpenGIS Simple Features Implementation Specification for SQL 1.1.

/ This method implements the SQL/MM specification. SQL-MM 3: 9.1.5

/ This function supports 3d and will not drop the z-index.

/ This method supports Circular Strings and Curves

/ This function supports Polyhedral surfaces.

/ This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).

http://www.opengeospatial.org/standards/sfs

PostGIS 2.1.0 Manual
134 /671

Standard Examples

—-—-Extracting a subset of points from a 3d multipoint

SELECT n, ST_ASEWKT (ST_GeometryN (the_geom, n)) As geomewkt

FROM (

VALUES (ST_GeomFromEWKT (’MULTIPOINT(1I 2 7, 3 4 7, 56 7, 8 9 10)")),

(ST_GeomFromEWKT (' MULTICURVE (CIRCULARSTRING (2.5 2.5,4.5 2.5, 3.5 3.5), (10 11, 12 11))"))
)As foo (the_geom)
CROSS JOIN generate_series(1,100) n

WHERE n <= ST_NumGeometries (the_geom) ;

POINT (8 9 10)
CIRCULARSTRING (2.5 2.5,4.5 2.5,3.5 3.5)
LINESTRING(10 11,12 11)

n | geomewkt
e
| POINT (1 2 7)
| POINT(3 4 7)
| POINT(5 6 7)
I
|
I

——Extracting all geometries (useful when you want to assign an id)
SELECT gid, n, ST_GeometryN (the_geom, n)

FROM sometable CROSS JOIN generate_series(1,100) n

WHERE n <= ST_NumGeometries (the_geom) ;

Polyhedral Surfaces, TIN and Triangle Examples

—— Polyhedral surface example

—— Break a Polyhedral surface into its faces

SELECT ST_ASEWKT (ST_GeometryN (p_geom, 3)) As geom_ewkt
FROM (SELECT ST_GeomFromEWKT (' POLYHEDRALSURFACE (

(¢<0o o0, 001, 011, 010, 000,
(¢<0o 00, 010, 1120, 100, 000,
(¢<0o 00, 100, 1201, 001, 000y,
(¢210, 111, 101, 100, 110y,
(¢0 2 0, 011, 1211, 110, 010)),
(¢0 01, 1201, 111, 011, 00 1))
)y') AS p_geom) AS a;

geom_ewkt

POLYGON((O O 0,1 0 0,1 O 1,0 0 1,0 O 0))

-—— TIN —-
SELECT ST_ASEWKT (ST_GeometryN (geom,2)) as wkt
FROM
(SELECT
ST_GeomFromEWKT (/ TIN (((
00 O,

I4

1
0,
0

o = O

~

~

~

O OO ~ O O O
o = P O
o O O O

~

PostGIS 2.1.0 Manual

135/ 671

) AS g;
-— result —-—

TRIANGLE((O O 0,0 1 0,1 1 0,0 0 0))

See Also

ST_Dump, ST_NumGeometries

8.4.9 ST_GeometryType

ST_GeometryType — Return the geometry type of the ST_Geometry value.

Synopsis

text ST_GeometryType(geometry gl);

Description

Returns the type of the geometry as a string. EG: ST_Linestring’, ’ST_Polygon’,’ST_MultiPolygon’ etc. This function differs
from GeometryType(geometry) in the case of the string and ST in front that is returned, as well as the fact that it will not indicate

whether the geometry is measured.

Enhanced: 2.0.0 support for Polyhedral surfaces was introduced.

/ This method implements the SQL/MM specification. SQL-MM 3: 5.1.4

/ This function supports 3d and will not drop the z-index.

/ This function supports Polyhedral surfaces.

Examples

SELECT ST_GeometryType (ST_GeomFromText (' LINESTRING(77.29 29.07,77.42 29.26,77.27 <

29.31,77.29 29.07)"));
——result
ST_LineString

SELECT ST_GeometryType (ST_GeomFromEWKT (' POLYHEDRALSURFACE (

00)),
((0 0 0,
((10,
((0 10,
——result
ST_PolyhedralSurface

010,
111,
011

14

o e
= o K
= = o
~ ~

~

SELECT ST_GeometryType (ST_GeomFromEWKT (' POLYHEDRALSURFACE (

0 0)),
((0 0 O,
((L 10,
((0 1 0,
——result
ST_PolyhedralSurface

010,
111,
011

14

= e
- o P
e

S

~

o e

e e

= O O

= o O

0
0
0

0
0
0

’

’

’

’

’

’

((0 0 0,

((0 0 1,

((0 0 0O,

((0 01,

1

1

1

1

0

0

0

0

0,

1,

0,

1,

PostGIS 2.1.0 Manual
136 /671

SELECT ST_GeometryType (geom) as result

FROM
(SELECT
ST_GeomFromEWKT (" TIN (((
00 0,
001,
010,
000
)) . ((
00 0,
010,
110,
000
))
)y') AS geom
) AS g;
result
ST _Tin
See Also
GeometryType

8.4.10 ST_lInteriorRingN

ST_InteriorRingN — Return the Nth interior linestring ring of the polygon geometry. Return NULL if the geometry is not a
polygon or the given N is out of range.

Synopsis

geometry ST_InteriorRingN(geometry a_polygon, integer n);

Description

Return the Nth interior linestring ring of the polygon geometry. Return NULL if the geometry is not a polygon or the given N is
out of range. index starts at 1.

Not? Note
This will not work for MULTIPOLYGONSs. Use in conjunction with ST_Dump for MULTIPOLYGONS

/ This method implements the OpenGIS Simple Features Implementation Specification for SQL 1.1.
/ This method implements the SQL/MM specification. SQL-MM 3: 8.2.6, 8.3.5

/ This function supports 3d and will not drop the z-index.

http://www.opengeospatial.org/standards/sfs

PostGIS 2.1.0 Manual
137 /671

Examples

SELECT ST_AsText (ST_InteriorRingN(the_geom, 1)) As the_geom
FROM (SELECT ST_BuildArea (
ST_Collect (ST_Buffer (ST_Point (1,2), 20,3),
ST_Buffer (ST_Point (1, 2), 10,3))) As the_geom
) as foo

See Also

ST_ExteriorRing ST_BuildArea, ST_Collect, ST_Dump, ST_NumlInteriorRing, ST_NumlInteriorRings

8.4.11 ST IsClosed

ST_IsClosed — Returns TRUE if the LINESTRING’s start and end points are coincident. For Polyhedral surface is closed
(volumetric).

Synopsis

boolean ST_IsClosed(geometry g);

Description

Returns TRUE if the LINESTRING’s start and end points are coincident. For Polyhedral Surfaces, it tells you if the surface is
areal (open) or volumetric (closed).

/ This method implements the OpenGIS Simple Features Implementation Specification for SQL 1.1.

/ This method implements the SQL/MM specification. SQL-MM 3: 7.1.5,9.3.3

N;'“’! Note

SQL-MM defines the result of ST_IsClosed (NULL) to be 0, while PostGIS returns NULL.

/ This function supports 3d and will not drop the z-index.

/ This method supports Circular Strings and Curves

Enhanced: 2.0.0 support for Polyhedral surfaces was introduced.

/ This function supports Polyhedral surfaces.

Line String and Point Examples

postgis=# SELECT ST_IsClosed(’LINESTRING(0 0, 1 1)’::geometry);
st_isclosed

http://www.opengeospatial.org/standards/sfs

PostGIS 2.1.0 Manual
138 /671

postgis=# SELECT ST_IsClosed(’LINESTRING(O O, 0 1, 1 1, 0 0)’::geometry);
st_isclosed

postgis=# SELECT ST_IsClosed(’MULTILINESTRING((O O, 0 1, 1 1, 0 0), (0 0, 1 1))’::geometry);
st_isclosed

postgis=# SELECT ST_IsClosed(’POINT (0 0)’::geometry);
st_isclosed

postgis=# SELECT ST_IsClosed (’MULTIPOINT((0 0), (1 1))’::geometry);
st_isclosed

Polyhedral Surface Examples

-— A cube —-

SELECT ST_IsClosed(ST_GeomFromEWKT (' POLYHEDRALSURFACE(((O 0 0, 0 01, 01 1, 0 1 0, 0 <
0 0)),

((<0 00, 010, 1210, 100, 000O0)), (COOO0CB, 100, 101, 001, 000,

(210, 211, 1201, 100, 11 0)),

(¢<0 2 0,011,111, 110, 010)), (COO0C1, 1201, 111, 011, 0011)))

—-— Same as cube but missing a side —-
SELECT ST_IsClosed(ST_GeomFromEWKT (' POLYHEDRALSURFACE(((O O O, 0 01, 011, 010, 00 <

0)),

(<000, 010,110,100, 000)), (¢(OOO0CG, 100, 101, 001, 00 0)),
(210,111, 101, 100, 1 1 0)),

(010,011, 111, 110, 010)))"));

See Also

ST_IsRing

8.4.12 ST lIsCollection

ST_IsCollection — Returns TRUE if the argument is a collection (MULT I, GEOMETRYCOLLECTION, ...)

PostGIS 2.1.0 Manual

139 /671

Synopsis

boolean ST_IsCollection(geometry g);

Description

Returns TRUE if the geometry type of the argument is either:

* GEOMETRYCOLLECTION

* MULTI{POINT,POLYGON,LINESTRING,CURVE,SURFACE}

« COMPOUNDCURVE

N;*"! Note

This function analyzes the type of the geometry. This means that it will return TRUE on collections that are empty or
that contain a single element.

/ This function supports 3d and will not drop the z-index.

/ This method supports Circular Strings and Curves

Examples

postgis=# SELECT
st_iscollection

postgis=# SELECT
st_iscollection

postgis=# SELECT
st_iscollection

postgis=# SELECT
st_iscollection

postgis=# SELECT
st_iscollection

ST_IsCollection (/LINESTRING(0O 0, 1 1)’::geometry);

ST_IsCollection ('MULTIPOINT EMPTY' ::geometry) ;

ST_IsCollection ("MULTIPOINT((0 0))’::geometry);

ST_IsCollection ("MULTIPOINT((0 0), (42 42))’::geometry);

ST_IsCollection (" GEOMETRYCOLLECTION (POINT (0O 0))’ ::geometry) ;

PostGIS 2.1.0 Manual
140/ 671

See Also

ST _NumGeometries

8.4.13 ST_IsEmpty

ST_IsEmpty — Returns true if this Geometry is an empty geometrycollection, polygon, point etc.

Synopsis

boolean ST_IsEmpty(geometry geomA);

Description

Returns true if this Geometry is an empty geometry. If true, then this Geometry represents an empty geometry collection,
polygon, point etc.

Not? Note
SQL-MM defines the result of ST_IsEmpty(NULL) to be 0, while PostGIS returns NULL.

/ This method implements the OpenGIS Simple Features Implementation Specification for SQL 1.1. s2.1.1.1
/ This method implements the SQL/MM specification. SQL-MM 3: 5.1.7

/ This method supports Circular Strings and Curves

Warning
. Changed: 2.0.0 In prior versions of PostGIS ST_GeomFromText(GEOMETRYCOLLECTION(EMPTY)’) was allowed.
This is now illegal in PostGIS 2.0.0 to better conform with SQL/MM standards

Examples

SELECT ST_IsEmpty (ST_GeomFromText (' GEOMETRYCOLLECTION EMPTY’));
st_isempty

SELECT ST_IsEmpty (ST_GeomFromText (POLYGON EMPTY’));
st_isempty

SELECT ST_IsEmpty (ST_GeomFromText ('POLYGON((1 2, 3 4, 56, 1 2))’));

st_isempty

http://www.opengeospatial.org/standards/sfs

PostGIS 2.1.0 Manual
141 /671

f
(1 row)

SELECT ST_IsEmpty (ST_GeomFromText ("POLYGON((1 2, 3 4, 56, 1 2))")) = false;
?column?

SELECT ST_IsEmpty (ST_GeomFromText (' CIRCULARSTRING EMPTY'));
st_isempty

8.4.14 ST_lIsRing

ST_IsRing — Returns TRUE if this LINESTRING is both closed and simple.

Synopsis

boolean ST_IsRing(geometry g);

Description

Returns TRUE if this LINESTRING is both ST_IsClosed (ST_StartPoint ((g)) ~= ST_Endpoint ((g))) and ST_IsSimple
(does not self intersect).

/ This method implements the OpenGIS Simple Features Implementation Specification for SQL 1.1. 2.1.5.1

/ This method implements the SQL/MM specification. SQL-MM 3: 7.1.6

Not? Note
SQL-MM defines the result of ST_IsRing (NULL) to be 0, while PostGIS returns NULL.

Examples

SELECT ST_IsRing(the_geom), ST_IsClosed(the_geom), ST_IsSimple (the_geom)
FROM (SELECT ’LINESTRING(O O, 0 1, 1 1, 1 0, O 0)’::geometry AS the_geom) AS foo;
st_isring | st_isclosed | st_issimple

SELECT ST_IsRing(the_geom), ST_IsClosed(the_geom), ST_IsSimple (the_geom)
FROM (SELECT ’LINESTRING(O O, 0 1, 1 0, 1 1, O 0)’::geometry AS the_geom) AS foo;
st_isring | st_isclosed | st_issimple

http://www.opengeospatial.org/standards/sfs

PostGIS 2.1.0 Manual
142 /671

See Also

ST_IsClosed, ST_IsSimple, ST_StartPoint, ST_EndPoint

8.4.15 ST_IsSimple

ST_IsSimple — Returns (TRUE) if this Geometry has no anomalous geometric points, such as self intersection or self tangency.

Synopsis

boolean ST_IsSimple(geometry geomA);

Description

Returns true if this Geometry has no anomalous geometric points, such as self intersection or self tangency. For more information
on the OGC'’s definition of geometry simplicity and validity, refer to "Ensuring OpenGIS compliancy of geometries"

Net? Note
SQL-MM defines the result of ST_IsSimple(NULL) to be 0, while PostGIS returns NULL.

/ This method implements the OpenGIS Simple Features Implementation Specification for SQL 1.1. s2.1.1.1
/ This method implements the SQL/MM specification. SQL-MM 3: 5.1.8

/ This function supports 3d and will not drop the z-index.

Examples

SELECT ST_IsSimple (ST_GeomFromText (POLYGON((1 2, 3 4, 5 6, 1 2))"));
st_issimple

SELECT ST_IsSimple (ST_GeomFromText (' LINESTRING(1 1,2 2,2 3.5,1 3,1 2,2 1)7));
st_issimple

See Also

ST_IsValid

8.4.16 ST_lIsValid

ST_IsValid — Returns t rue if the ST_Geometry is well formed.

http://www.opengeospatial.org/standards/sfs

PostGIS 2.1.0 Manual
143 /671

Synopsis

boolean ST_IsValid(geometry g);
boolean ST _IsValid(geometry g, integer flags);

Description

Test if an ST_Geometry value is well formed. For geometries that are invalid, the PostgreSQL NOTICE will provide details
of why it is not valid. For more information on the OGC’s definition of geometry simplicity and validity, refer to "Ensuring
OpenGIS compliancy of geometries"

Not Note
SQL-MM defines the result of ST_IsValid(NULL) to be 0, while PostGIS returns NULL.

The version accepting flags is available starting with 2.0.0 and requires GEOS >= 3.3.0. Such version does not print a NOTICE
explaining the invalidity. Allowed f1lags are documented in ST_IsValidDetail.

/ This method implements the OpenGIS Simple Features Implementation Specification for SQL 1.1.
/ This method implements the SQL/MM specification. SQL-MM 3: 5.1.9

Examples
SELECT ST_IsValid(ST_GeomFromText (' LINESTRING(O 0, 1 1)’
ST_IsValid(ST_GeomFromText (/POLYGON((O O, 1 1, 1 2, 1
—-—results
NOTICE: Self-intersection at or near point 0 0
good_1line | bad_poly
___________ e
t | £

) As good_line,
’

)
1, 0 0))")) As bad_poly

See Also

ST_IsSimple, ST_IsValidReason, ST_IsValidDetail, ST_Summary

8.4.17 ST IsValidReason

ST_IsValidReason — Returns text stating if a geometry is valid or not and if not valid, a reason why.

Synopsis

text ST_IsValidReason(geometry geomA);
text ST_IsValidReason(geometry geomA, integer flags);

Description

Returns text stating if a geometry is valid or not an if not valid, a reason why.

Useful in combination with ST_IsValid to generate a detailed report of invalid geometries and reasons.
Allowed f£1ags are documented in ST_IsValidDetail.

Availability: 1.4 - requires GEOS >=3.1.0.

Awailability: 2.0 - requires GEOS >= 3.3.0 for the version taking flags.

http://www.opengeospatial.org/standards/sfs

PostGIS 2.1.0 Manual
144 /671

Examples

——First 3 Rejects from a successful quintuplet experiment
SELECT gid, ST_IsValidReason (the_geom) as validity_info
FROM
(SELECT ST_MakePolygon (ST_ExteriorRing(e.buff), ST_Accum(f.line)) As the_geom, gid
FROM (SELECT ST_Buffer (ST_MakePoint (x1%x10,y1l), zl) As buff, x1x10 + ylx100 + z1x1000 As gid
FROM generate_series(-4,6) x1
CROSS JOIN generate_series(2,5) vyl
CROSS JOIN generate_series(1,8) =zl
WHERE x1 > y1%x0.5 AND zl < xlxyl) As e
INNER JOIN (SELECT ST_Translate (ST_ExteriorRing (ST_Buffer (ST_MakePoint (x1x10,yl), zl)),yl ¢
*1, zl1l%x2) As line
FROM generate_series(-3,6) x1
CROSS JOIN generate_series(2,5) vyl
CROSS JOIN generate_series (1,10) =zl
WHERE x1 > y1x0.75 AND zl < xlxyl) As £
ON (ST_Area(e.buff) > 78 AND ST_Contains (e.buff, f.line))
GROUP BY gid, e.buff) As quintuplet_experiment

WHERE ST_IsValid(the_geom) = false
ORDER BY gid

LIMIT 3;

gid | validity_info

______ o
5330 | Self-intersection [32 5]
5340 | Self-intersection [42 5]
5350 | Self-intersection [52 5]

——-simple example
SELECT ST_IsValidReason (/' LINESTRING (220227 150406,2220227 150407,222020 150410)");

st_isvalidreason

Valid Geometry

See Also

ST_IsValid, ST_Summary

8.4.18 ST lIsValidDetail

ST_IsValidDetail — Returns a valid_detail (valid,reason,location) row stating if a geometry is valid or not and if not valid, a
reason why and a location where.

Synopsis

valid_detail ST_IsValidDetail(geometry geom);
valid_detail ST_IsValidDetail(geometry geom, integer flags);

Description

Returns a valid_detail row, formed by a boolean (valid) stating if a geometry is valid, a varchar (reason) stating a reason why it
is invalid and a geometry (location) pointing out where it is invalid.

PostGIS 2.1.0 Manual
145/ 671

Useful to substitute and improve the combination of ST_IsValid and ST_IsValidReason to generate a detailed report of invalid
geometries.

The *flags’ argument is a bitfield. It can have the following values:

* 1: Consider self-intersecting rings forming holes as valid. This is also know as "the ESRI flag". Note that this is against the
OGC model.

Awailability: 2.0.0 - requires GEOS >=3.3.0.

Examples

—-First 3 Rejects from a successful quintuplet experiment
SELECT gid, reason(ST_IsValidDetail (the_geom)), ST_AsText (location(ST_IsValidDetail (¢
the_geom))) as location
FROM
(SELECT ST_MakePolygon (ST_ExteriorRing(e.buff), ST_Accum(f.line)) As the_geom, gid
FROM (SELECT ST_Buffer (ST_MakePoint (x1x10,y1l), zl) As buff, x1x10 + yl1%x100 + z1%x1000 As gid
FROM generate_series(-4,6) x1
CROSS JOIN generate_series(2,5) vyl
CROSS JOIN generate_series(1,8) =zl
WHERE x1 > y1%x0.5 AND zl < xlxyl) As e
INNER JOIN (SELECT ST_Translate (ST_ExteriorRing(ST_Buffer (ST_MakePoint (x1+x10,yl), zl)),yl &
*1, zl1%x2) As line
FROM generate_series(-3,6) x1
CROSS JOIN generate_series (2,5) vyl
CROSS JOIN generate_series(1,10) =zl
WHERE x1 > y1%x0.75 AND zl1l < xlxyl) As f
ON (ST_Area(e.buff) > 78 AND ST_Contains (e.buff, f.line))
GROUP BY gid, e.buff) As quintuplet_experiment

WHERE ST_IsValid(the_geom) = false

ORDER BY gid

LIMIT 3;
gid | reason | location
______ +___________________+_____________
5330 | Self-intersection | POINT (32 5)
5340 | Self-intersection | POINT (42 5)
5350 | Self-intersection | POINT (52 5)

—--simple example
SELECT » FROM ST_IsValidDetail (' LINESTRING (220227 150406,2220227 150407,222020 150410)");

valid | reason | location

See Also

ST IsValid, ST_IsValidReason

8.419 ST M

ST_M — Return the M coordinate of the point, or NULL if not available. Input must be a point.

PostGIS 2.1.0 Manual
146 /671

Synopsis

float ST_M(geometry a_point);

Description

Return the M coordinate of the point, or NULL if not available. Input must be a point.

N;'l"! Note

This is not (yet) part of the OGC spec, but is listed here to complete the point coordinate extractor function list.

/ This method implements the OpenGIS Simple Features Implementation Specification for SQL 1.1.
/ This method implements the SQL/MM specification.

/ This function supports 3d and will not drop the z-index.

Examples

SELECT ST_M(ST_GeomFromEWKT (POINT (1 2 3 4)7));
st_m

See Also

ST_GeomFromEWKT, ST_X, ST_Y, ST_Z

8.4.20 ST_NDims

ST_NDims — Returns coordinate dimension of the geometry as a small int. Values are: 2,3 or 4.

Synopsis

integer ST_NDims(geometry gl);

Description

Returns the coordinate dimension of the geometry. PostGIS supports 2 - (x,y) , 3 - (X,y,z) or 2D with measure - x,y,m, and 4 - 3D
with measure space X,y,z,m

/ This function supports 3d and will not drop the z-index.

http://www.opengeospatial.org/standards/sfs

PostGIS 2.1.0 Manual
147 /671

Examples

SELECT ST_NDims (ST_GeomFromText ("POINT(1 1)’)) As d2point,
ST_NDims (ST_GeomFromEWKT (" POINT (1 1 2)’)) As d3point,
ST_NDims (ST_GeomFromEWKT (' POINTM(1 1 0.5)")) As d2pointm;

d2point | d3point | d2pointm

See Also

ST _CoordDim, ST_Dimension, ST _GeomFromEWKT

8.4.21 ST_NPoints

ST_NPoints — Return the number of points (vertexes) in a geometry.

Synopsis

integer ST_NPoints(geometry gl);

Description

Return the number of points in a geometry. Works for all geometries.

Enhanced: 2.0.0 support for Polyhedral surfaces was introduced.

N:"""! Note

Prior to 1.3.4, this function crashes if used with geometries that contain CURVES. This is fixed in 1.3.4+

/ This function supports 3d and will not drop the z-index.
/ This method supports Circular Strings and Curves

/ This function supports Polyhedral surfaces.

Examples

SELECT ST_NPoints (ST_GeomFromText (' LINESTRING(77.29 29.07,77.42 29.26,77.27 29.31,77.29 <+
29.07)7));

—-—-result

4

—-—-Polygon in 3D space

SELECT ST_NPoints (ST_GeomFromEWKT (/ LINESTRING(77.29 29.07 1,77.42 29.26 0,77.27 29.31 <+
=-1,77.29 29.07 3)"))

—-—result

4

PostGIS 2.1.0 Manual
148 /671

See Also

ST_NumPoints

8.4.22 ST_NRings

ST_NRings — If the geometry is a polygon or multi-polygon returns the number of rings.

Synopsis

integer ST_NRings(geometry geomA);

Description

If the geometry is a polygon or multi-polygon returns the number of rings. Unlike NumlInteriorRings, it counts the outer rings as
well.

/ This function supports 3d and will not drop the z-index.

/ This method supports Circular Strings and Curves

Examples

SELECT ST_NRings (the_geom) As Nrings, ST_NumInteriorRings (the_geom) As ninterrings

FROM (SELECT ST_GeomFromText ("POLYGON((1 2, 3 4, 5 6, 1 2))’) As the_geom) As foo ¢
7
nrings | ninterrings
________ e
1| 0
(1 row)
See Also

ST_NumlInteriorRings

8.4.23 ST_NumGeometries

ST_NumGeometries — If geometry is a GEOMETRYCOLLECTION (or MULTT*) return the number of geometries, for single
geometries will return 1, otherwise return NULL.

Synopsis

integer ST_NumGeometries(geometry geom);

PostGIS 2.1.0 Manual
149 /671

Description

Returns the number of Geometries. If geometry is a GEOMETRYCOLLECTION (or MULTI*) return the number of geometries,
for single geometries will return 1, otherwise return NULL.

Enhanced: 2.0.0 support for Polyhedral surfaces, Triangles and TIN was introduced.

Changed: 2.0.0 In prior versions this would return NULL if the geometry was not a collection/MULTI type. 2.0.0+ now returns
1 for single geometries e.g POLYGON, LINESTRING, POINT.

/ This method implements the SQL/MM specification. SQL-MM 3: 9.1.4
/ This function supports 3d and will not drop the z-index.
/ This function supports Polyhedral surfaces.

/ This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).

Examples

—-—Prior versions would have returned NULL for this -- in 2.0.0 this returns 1

SELECT ST_NumGeometries (ST_GeomFromText (! LINESTRING(77.29 29.07,77.42 29.26,77.27 <+
29.31,77.29 29.07)"));

—-—result

1

——Geometry Collection Example — multis count as one geom in a collection

SELECT ST_NumGeometries (ST_GeomFromEWKT (/ GEOMETRYCOLLECTION (MULTIPOINT (-2 3 , -2 2),

LINESTRING(5 5 ,10 10),

POLYGON ((=7 4.2,-7.1 5,-7.1 4.3,=-7 4.2)))"));

——result
3

See Also

ST_GeometryN, ST_Multi

8.4.24 ST_NuminteriorRings

ST_NumlnteriorRings — Return the number of interior rings of the first polygon in the geometry. This will work with both
POLYGON and MULTIPOLYGON types but only looks at the first polygon. Return NULL if there is no polygon in the geometry.

Synopsis

integer ST_NumlInteriorRings(geometry a_polygon);

Description

Return the number of interior rings of the first polygon in the geometry. This will work with both POLYGON and MULTIPOLY-
GON types but only looks at the first polygon. Return NULL if there is no polygon in the geometry.

/ This method implements the SQL/MM specification. SQL-MM 3: 8.2.5

PostGIS 2.1.0 Manual
150/ 671

Examples

—-—-If you have a regular polygon
SELECT gid, fieldl, field2, ST_NumInteriorRings (the_geom) AS numholes
FROM sometable;

—--If you have multipolygons
—-—-And you want to know the total number of interior rings in the MULTIPOLYGON
SELECT gid, fieldl, field2, SUM(ST_NumInteriorRings (the_geom)) AS numholes
FROM (SELECT gid, fieldl, field2, (ST_Dump (the_geom)) .geom As the_geom

FROM sometable) As foo
GROUP BY gid, fieldl,field2;

See Also

ST_NumlnteriorRing

8.4.25 ST_NuminteriorRing

ST_NumlInteriorRing — Return the number of interior rings of the first polygon in the geometry. Synonym to ST_NumlInteriorRings.

Synopsis

integer ST_NumlInteriorRing(geometry a_polygon);

Description

Return the number of interior rings of the first polygon in the geometry. Synonym to ST_NumlInteriorRings. The OpenGIS specs
are ambiguous about the exact function naming, so we provide both spellings.

/ This method implements the SQL/MM specification. SQL-MM 3: 8.2.5

See Also

ST_NumlInteriorRings

8.4.26 ST NumPatches

ST_NumPatches — Return the number of faces on a Polyhedral Surface. Will return null for non-polyhedral geometries.

Synopsis

integer ST_NumPatches(geometry gl);

PostGIS 2.1.0 Manual
151 /671

Description

Return the number of faces on a Polyhedral Surface. Will return null for non-polyhedral geometries. This is an alias for
ST_NumGeometries to support MM naming. Faster to use ST_NumGeometries if you don’t care about MM convention.
Availability: 2.0.0

/ This function supports 3d and will not drop the z-index.

/ This method implements the OpenGIS Simple Features Implementation Specification for SQL 1.1.

/ This method implements the SQL/MM specification. SQL-MM 3: ?

/ This function supports Polyhedral surfaces.

Examples

SELECT ST_NumPatches (ST_GeomFromEWKT (/ POLYHEDRALSURFACE(((O O 0, 0 01, 011, 01 0, 00 <«
0)),
((<0 00, 010,110,100, 0O0O0), ((COOCOD, 100G, 101, 001, 000,
((t10, 111, 101, 100, 11 0)),
(¢<012 0, 011, 1211, 110, 010), ((OO0C1, 101, 111, 011, 001)))"));
—-—result
6

See Also

ST _GeomFromEWKT, ST NumGeometries

8.4.27 ST_NumPoints

ST_NumPoints — Return the number of points in an ST_LineString or ST_CircularString value.

Synopsis

integer ST_NumPoints(geometry gl);

Description

Return the number of points in an ST_LineString or ST_CircularString value. Prior to 1.4 only works with Linestrings as the
specs state. From 1.4 forward this is an alias for ST_NPoints which returns number of vertexes for not just line strings. Consider
using ST_NPoints instead which is multi-purpose and works with many geometry types.

/ This method implements the OpenGIS Simple Features Implementation Specification for SQL 1.1.

/ This method implements the SQL/MM specification. SQL-MM 3: 7.2.4

http://www.opengeospatial.org/standards/sfs
http://www.opengeospatial.org/standards/sfs

PostGIS 2.1.0 Manual
152 /671

Examples

SELECT ST_NumPoints (ST_GeomFromText (' LINESTRING (77.29 29.07,77.42 29.26,77.27 29.31,77.29 <+
29.07)7));
—-—-result
4

See Also

ST_NPoints

8.4.28 ST_PatchN

ST_PatchN — Return the 1-based Nth geometry (face) if the geometry is a POLYHEDRALSURFACE, POLYHEDRALSUR-
FACEM. Otherwise, return NULL.

Synopsis

geometry ST_PatchN(geometry geomA, integer n);

Description

>Return the 1-based Nth geometry (face) if the geometry is a POLYHEDRALSURFACE, POLYHEDRALSURFACEM. Other-
wise, return NULL. This returns the same answer as ST_GeometryN for Polyhedral Surfaces. Using ST_GemoetryN is faster.

=

N"M Note

Index is 1-based.

i

Not? Note

If you want to extract all geometries, of a geometry, ST_Dump is more efficient.

Auwailability: 2.0.0
/ This method implements the SQL/MM specification. SQL-MM 3: ?
/ This function supports 3d and will not drop the z-index.

/ This function supports Polyhedral surfaces.

Examples

PostGIS 2.1.0 Manual

153 /671

—-—-Extract the 2nd face of the polyhedral surface
SELECT ST_ASEWKT (ST_PatchN (geom, 2)) As geomewkt
FROM (
VALUES (ST_GeomFromEWKT (' POLYHEDRALSURFACE(((O 0 0, 0 01, 011, 010, 00 0)),

(<0 00, 010,110,100, 000O0)), ((OOCO, 100G, 101, 0O01I, 000,

(¢t10,111, 1201, 100, 11 0)),

(¢<0>20,011, 111,110, 0110)), ((OO1, 101, 111, 011, 001)))"))) As <

foo (geom) ;

geomewkt
___+ ___
POLYGON((O O O,0 1 0,1 1 0,1 0 0,0 0O 0))

See Also

ST_AsEWKT, ST_GeomFromEWKT, ST_Dump, ST_GeometryN, ST_NumGeometries

8.4.29 ST_PointN

ST_PointN — Return the Nth point in the first linestring or circular linestring in the geometry. Return NULL if there is no
linestring in the geometry.

Synopsis

geometry ST_PointN(geometry a_linestring, integer n);

Description

Return the Nth point in a single linestring or circular linestring in the geometry. Return NULL if there is no linestring in the
geometry.

LS

Not? Note

Index is 1-based as for OGC specs since version 0.8.0. Previous versions implemented this as 0-based instead.

i

Not? Note

If you want to get the nth point of each line string in a multilinestring, use in conjunction with ST_Dump

/ This method implements the OpenGIS Simple Features Implementation Specification for SQL 1.1.
/ This method implements the SQL/MM specification. SQL-MM 3: 7.2.5, 7.3.5
/ This function supports 3d and will not drop the z-index.

/ This method supports Circular Strings and Curves

http://www.opengeospatial.org/standards/sfs

PostGIS 2.1.0 Manual
154 / 671

. Note
NO‘R’! Changed: 2.0.0 no longer works with single geometry multilinestrings. In older versions of PostGIS -- a single line
multilinestring would work happily with this function and return the start point. In 2.0.0 it just returns NULL like any other
multilinestring.

Examples

—— Extract all POINTs from a LINESTRING
SELECT ST_AsText (
ST_PointN(
columnl,
generate_series (1, ST_NPoints (columnl))
))
FROM (VALUES (/LINESTRING(O O, 1 1, 2 2)’::geometry)) AS foo;

st_astext

POINT (0 0)
POINT (1 1)
POINT (2 2)
(3 rows)

—-—-Example circular string
SELECT ST_AsText (ST_PointN (ST_GeomFromText (/ CIRCULARSTRING (1 2, 3 2, 1 2)7),2));

st_astext

POINT (3 2)

See Also

ST_NPoints

8.4.30 ST_SRID

ST_SRID — Returns the spatial reference identifier for the ST_Geometry as defined in spatial_ref_sys table.

Synopsis

integer ST_SRID(geometry gl);

Description

Returns the spatial reference identifier for the ST_Geometry as defined in spatial_ref_sys table. Section 4.3.1

= Note
N"R’! spatial_ref_sys table is a table that catalogs all spatial reference systems known to PostGIS and is used for transforma-
tions from one spatial reference system to another. So verifying you have the right spatial reference system identifier is
important if you plan to ever transform your geometries.

PostGIS 2.1.0 Manual
155/ 671

/ This method implements the OpenGIS Simple Features Implementation Specification for SQL 1.1. s2.1.1.1
/ This method implements the SQL/MM specification. SQL-MM 3: 5.1.5

/ This method supports Circular Strings and Curves

Examples

SELECT ST_SRID (ST_GeomFromText (" POINT (-71.1043 42.315)',4326));
—-—result
4326

See Also

Section 4.3.1, ST_GeomFromText, ST_SetSRID, ST_Transform

8.4.31 ST_StartPoint

ST_StartPoint — Returns the first point of a LINESTRING geometry as a POINT.

Synopsis

geometry ST_StartPoint(geometry geomA);

Description

Returns the first point of a LINESTRING geometry as a POINT or NULL if the input parameter is not a LINESTRING.
/ This method implements the SQL/MM specification. SQL-MM 3: 7.1.3

/ This function supports 3d and will not drop the z-index.

Note

N:rld Changed: 2.0.0 no longer works with single geometry multilinestrings. In older versions of PostGIS -- a single line
multilinestring would work happily with this function and return the start point. In 2.0.0 it just returns NULL like any other
multilinestring. The older behavior was an undocumented feature, but people who assumed they had their data stored
as LINESTRING may experience these returning NULL in 2.0 now.

Examples

SELECT ST_AsText (ST_StartPoint (' LINESTRING(0O 1, 0 2)’::geometry));
st_astext

POINT (0 1)
(1 row)

SELECT ST_StartPoint ('POINT(0 1)’ ::geometry) IS NULL AS is_null;
is_null

http://www.opengeospatial.org/standards/sfs

PostGIS 2.1.0 Manual

156 / 671

--3d line
SELECT ST_ASEWKT (ST_StartPoint (' LINESTRING(O 1 1, 0 2 2)’::geometry));
st_asewkt

POINT (O 1 1)
(1 row)

See Also

ST_EndPoint, ST_PointN

8.4.32 ST_Summary

ST_Summary — Returns a text summary of the contents of the geometry.

Synopsis

text ST_Summary(geometry g);
text ST_Summary(geography g);

Description

Returns a text summary of the contents of the geometry.

Flags shown square brackets after the geometry type have the following meaning:

e M: has M ordinate

e 7:has Z ordinate

B: has a cached bounding box
* G: is geodetic (geography)

* S: has spatial reference system
Availability: 1.2.2

Enhanced: 2.0.0 added support for geography

Enhanced: 2.1.0 S flag to denote if has a known spatial reference system

Examples
=# SELECT ST_Summary (ST_GeomFromText (' LINESTRING(0O 0, 1 1)’)) as geom,
ST_Summary (ST_GeogFromText (' POLYGON((O O, 1 1, 1 2, 1 1, 0 0))"))
geom \ geog

Polygon[BGS] with 1 rings
ring 0 has 5 points

LineString[B] with 2 points

(1 row)

PostGIS 2.1.0 Manual
157 /671

=# SELECT ST_Summary (ST_GeogFromText (' LINESTRING(0O O 1, 1 1 1)’)) As geog_line,
ST_Summary (ST_GeomFromText (' SRID=4326;POLYGON((O O 1, 1 1 2, 1 2 3, 1 11, 00 1)) ¢
")) As geom_poly;
geog_line | geom_poly

LineString[ZBGS] with 2 points | Polygon[ZBS] with 1 rings
ring 0 has 5 points

(1 row)

See Also

PostGIS_DropBBox, PostGIS_AddBBox, ST_Force3DM, ST_Force3DZ, ST_Force2D, geography
ST IsValid, ST _IsValid, ST IsValidReason, ST _IsValidDetail

8.433 ST_X

ST_X — Return the X coordinate of the point, or NULL if not available. Input must be a point.

Synopsis

float ST_X(geometry a_point);

Description

Return the X coordinate of the point, or NULL if not available. Input must be a point.

N;'H’! Note

If you want to get the max min x values of any geometry look at ST_XMin, ST_XMax functions.

/ This method implements the SQL/MM specification. SQL-MM 3: 6.1.3
/ This function supports 3d and will not drop the z-index.

Examples

SELECT ST_X(ST_GeomFromEWKT (' POINT(1 2 3 4)7));
st_x

SELECT ST_Y (ST_Centroid(ST_GeomFromEWKT (' LINESTRING(1 2 3 4, 1 1 1 1)")));
st_y

PostGIS 2.1.0 Manual
158 /671

See Also

ST_Centroid, ST_GeomFromEWKT, ST _M, ST_XMax, ST_XMin, ST Y, ST_Z

8.4.34 ST_XMax

ST_XMax — Returns X maxima of a bounding box 2d or 3d or a geometry.

Synopsis

float ST_XMax(box3d aGeomorBox2DorBox3D);

Description

Returns X maxima of a bounding box 2d or 3d or a geometry.

= Note
N"'R’! Although this function is only defined for box3d, it will work for box2d and geometry because of the auto-casting behavior
defined for geometries and box2d. However you can not feed it a geometry or box2d text representation, since that will
not auto-cast.

/ This function supports 3d and will not drop the z-index.

/ This method supports Circular Strings and Curves

Examples

SELECT ST_XMax ("BOX3D(1 2 3, 4 5 6)");
st_xmax

SELECT ST_XMax (ST_GeomFromText (' LINESTRING(1 3 4, 5 6 7)"));
st_xmax

SELECT ST_XMax (CAST ('BOX (-3 2, 3 4)’ As box2d));

st_xmax

3

——Observe THIS DOES NOT WORK because it will try to autocast the string representation to a ¢
BOX3D

SELECT ST_XMax (' LINESTRING(1 3, 5 6)7);
——ERROR: BOX3D parser - doesnt start with BOX3D (

SELECT ST_XMax (ST_GeomFromEWKT (" CIRCULARSTRING (220268 150415 1,220227 150505 2,220227 <
150406 3)"));
st_xmax

220288.248780547

PostGIS 2.1.0 Manual
159 /671

See Also

ST_XMin, ST_YMax, ST_YMin, ST_ZMax, ST_ZMin

8.4.35 ST_XMin

ST_XMin — Returns X minima of a bounding box 2d or 3d or a geometry.

Synopsis

float ST_XMin(box3d aGeomorBox2DorBox3D);

Description

Returns X minima of a bounding box 2d or 3d or a geometry.

= Note
N"'R’! Although this function is only defined for box3d, it will work for box2d and geometry because of the auto-casting behavior
defined for geometries and box2d. However you can not feed it a geometry or box2d text representation, since that will
not auto-cast.

/ This function supports 3d and will not drop the z-index.

/ This method supports Circular Strings and Curves

Examples

SELECT ST_XMin ("BOX3D(1 2 3, 4 5 6)");
st_xmin

SELECT ST_XMin (ST_GeomFromText (' LINESTRING(1 3 4, 5 6 7)"));
st_xmin

SELECT ST_XMin (CAST ("BOX (-3 2, 3 4)’ As box2d));
st_xmin

——Observe THIS DOES NOT WORK because it will try to autocast the string representation to a ¢
BOX3D
SELECT ST_XMin (' LINESTRING(1 3, 5 6)7);

——ERROR: BOX3D parser - doesnt start with BOX3D (

SELECT ST_XMin (ST_GeomFromEWKT (" CIRCULARSTRING (220268 150415 1,220227 150505 2,220227 <
150406 3)"));
st_xmin

220186.995121892

PostGIS 2.1.0 Manual

160 /671

See Also

ST_XMax, ST_YMax, ST_YMin, ST_ZMax, ST_ZMin

8.4.36 STY

ST_Y — Return the Y coordinate of the point, or NULL if not available. Input must be a point.

Synopsis

float ST_Y(geometry a_point);

Description

Return the Y coordinate of the point, or NULL if not available. Input must be a point.
/ This method implements the OpenGIS Simple Features Implementation Specification for SQL 1.1.
/ This method implements the SQL/MM specification. SQL-MM 3: 6.1.4

/ This function supports 3d and will not drop the z-index.

Examples

SELECT ST_Y (ST_GeomFromEWKT (' POINT(1 2 3 4)7));
st_y

SELECT ST_Y (ST_Centroid(ST_GeomFromEWKT (' LINESTRING(1 2 3 4, 1 1 1 1)")));
st_y

See Also

ST_Centroid, ST_GeomFromEWKT, ST_M, ST_X, ST_YMax, ST_YMin, ST_Z

8.4.37 ST_YMax

ST_YMax — Returns Y maxima of a bounding box 2d or 3d or a geometry.

Synopsis

float ST_YMax(box3d aGeomorBox2DorBox3D);

http://www.opengeospatial.org/standards/sfs

PostGIS 2.1.0 Manual
161 /671

Description

Returns Y maxima of a bounding box 2d or 3d or a geometry.

B Note
N"M Although this function is only defined for box3d, it will work for box2d and geometry because of the auto-casting behavior
defined for geometries and box2d. However you can not feed it a geometry or box2d text representation, since that will
not auto-cast.

/ This function supports 3d and will not drop the z-index.

/ This method supports Circular Strings and Curves

Examples

SELECT ST_YMax ("BOX3D(1 2 3, 4 5 6)");
st_ymax

SELECT ST_YMax (ST_GeomFromText (' LINESTRING(1 3 4, 5 6 7)"));
st_ymax

SELECT ST_YMax (CAST("BOX (-3 2, 3 4)’" As box2d));
st_ymax

——Observe THIS DOES NOT WORK because it will try to autocast the string representation to a «°
BOX3D

SELECT ST_YMax (' LINESTRING(1 3, 5 6)7);

—-—-ERROR: BOX3D parser - doesnt start with BOX3D (

SELECT ST_YMax (ST_GeomFromEWKT (' CIRCULARSTRING (220268 150415 1,220227 150505 2,220227 <

150406 3)7));
st_ymax

150506.126829327

See Also

ST_XMin, ST_XMax, ST_YMin, ST_ZMax, ST_ZMin

8.4.38 ST_YMin

ST_YMin — Returns Y minima of a bounding box 2d or 3d or a geometry.

Synopsis

float ST_YMin(box3d aGeomorBox2DorBox3D);

PostGIS 2.1.0 Manual
162 /671

Description

Returns Y minima of a bounding box 2d or 3d or a geometry.

B Note
N"'M Although this function is only defined for box3d, it will work for box2d and geometry because of the auto-casting behavior
defined for geometries and box2d. However you can not feed it a geometry or box2d text representation, since that will
not auto-cast.

/ This function supports 3d and will not drop the z-index.

/ This method supports Circular Strings and Curves

Examples

SELECT ST_YMin ("BOX3D(1 2 3, 4 5 6)");
st_ymin

SELECT ST_YMin (ST_GeomFromText (' LINESTRING(1L 3 4, 5 6 7)'));
st_ymin

SELECT ST_YMin (CAST ('BOX (-3 2, 3 4)’ As box2d));

st_ymin

2

——Observe THIS DOES NOT WORK because it will try to autocast the string representation to a «°
BOX3D

SELECT ST_YMin (' LINESTRING(1 3, 5 6)7);
—-—-ERROR: BOX3D parser - doesnt start with BOX3D (

SELECT ST_YMin (ST_GeomFromEWKT (" CIRCULARSTRING (220268 150415 1,220227 150505 2,220227 <+
150406 3)7));
st_ymin

150406

See Also

ST_GeomFromEWKT, ST_XMin, ST_XMax, ST_YMax, ST_ZMax, ST_ZMin

8.4.39 ST Z

ST_Z — Return the Z coordinate of the point, or NULL if not available. Input must be a point.

Synopsis

float ST_Z(geometry a_point);

PostGIS 2.1.0 Manual
163 /671

Description

Return the Z coordinate of the point, or NULL if not available. Input must be a point.
/ This method implements the SQL/MM specification.

/ This function supports 3d and will not drop the z-index.

Examples

SELECT ST_Z (ST_GeomFromEWKT (POINT (1 2 3 4)7));
st_z

See Also

ST_GeomFromEWKT, ST_M, ST_X, ST_Y, ST _ZMax, ST_ZMin

8.4.40 ST_ZMax

ST_ZMax — Returns Z minima of a bounding box 2d or 3d or a geometry.

Synopsis

float ST_ZMax(box3d aGeomorBox2DorBox3D);

Description

Returns Z maxima of a bounding box 2d or 3d or a geometry.

B Note
N“’“’! Although this function is only defined for box3d, it will work for box2d and geometry because of the auto-casting behavior
defined for geometries and box2d. However you can not feed it a geometry or box2d text representation, since that will
not auto-cast.

/ This function supports 3d and will not drop the z-index.

/ This method supports Circular Strings and Curves

Examples

PostGIS 2.1.0 Manual
164 /671

SELECT ST_ZMax ("BOX3D(1 2 3, 4 5 6)");
st_zmax

SELECT ST_ZMax (ST_GeomFromEWKT (" LINESTRING(1 3 4, 5 6 7)'));
st_zmax

SELECT ST_ZMax ("BOX3D(-3 2 1, 3 4 1)’);
st_zmax

——Observe THIS DOES NOT WORK because it will try to autocast the string representation to a «
BOX3D
SELECT ST_ZMax (' LINESTRING(1 3 4, 5 6 7)7);

——ERROR: BOX3D parser - doesnt start with BOX3D (

SELECT ST_ZMax (ST_GeomFromEWKT (" CIRCULARSTRING (220268 150415 1,220227 150505 2,220227 <
150406 3)7));
st_zmax

See Also

ST_GeomFromEWKT, ST_XMin, ST_XMax, ST_YMax, ST_YMin, ST_ZMax

8.4.41 ST_Zmflag

ST_Zmflag — Returns ZM (dimension semantic) flag of the geometries as a small int. Values are: 0=2d, 1=3dm, 2=3dz, 3=4d.

Synopsis

smallint ST_Zmflag(geometry geomA);

Description

Returns ZM (dimension semantic) flag of the geometries as a small int. Values are: 0=2d, 1=3dm, 2=3dz, 3=4d.
/ This function supports 3d and will not drop the z-index.

/ This method supports Circular Strings and Curves

Examples

SELECT ST_Zmflag (ST_GeomFromEWKT (' LINESTRING(1 2, 3 4)'));
st_zmflag

PostGIS 2.1.0 Manual
165/ 671

SELECT ST_Zmflag(ST_GeomFromEWKT (/ LINESTRINGM(1 2 3, 3 4 3)7));
st_zmflag

SELECT ST_Zmflag (ST_GeomFromEWKT (' CIRCULARSTRING(1 2 3, 3 4 3, 56 3)"));
st_zmflag

SELECT ST_Zmflag(ST_GeomFromEWKT (/POINT(1 2 3 4)’));
st_zmflag

See Also

ST _CoordDim, ST_NDims, ST_Dimension

8.4.42 ST_ZMin

ST_ZMin — Returns Z minima of a bounding box 2d or 3d or a geometry.

Synopsis

float ST_ZMin(box3d aGeomorBox2DorBox3D);

Description

Returns Z minima of a bounding box 2d or 3d or a geometry.

B Note
N”’“’! Although this function is only defined for box3d, it will work for box2d and geometry because of the auto-casting behavior
defined for geometries and box2d. However you can not feed it a geometry or box2d text representation, since that will
not auto-cast.

/ This function supports 3d and will not drop the z-index.

/ This method supports Circular Strings and Curves

Examples

SELECT ST_ZMin ("BOX3D(1 2 3, 4 5 6)");
st_zmin

SELECT ST_ZMin (ST_GeomFromEWKT (' LINESTRING(1 3 4, 5 6 7)'));
st_zmin

PostGIS 2.1.0 Manual
166 /671

SELECT ST_ZMin ('BOX3D(-3 2 1, 3 4 1)’);
st_zmin

——Observe THIS DOES NOT WORK because it will try to autocast the string representation to a ¢+
BOX3D

SELECT ST_ZMin (' LINESTRING(1 3 4, 5 6 7)");

——ERROR: BOX3D parser - doesnt start with BOX3D (

SELECT ST_ZMin (ST_GeomFromEWKT (" CIRCULARSTRING (220268 150415 1,220227 150505 2,220227 <+

150406 3)7));
st_zmin

See Also

ST _GeomFromEWKT, ST _GeomFromText, ST_XMin, ST XMax, ST YMax, ST _YMin, ST ZMax

8.5 Geometry Editors

8.5.1 ST_AddPoint

ST_AddPoint — Adds a point to a LineString before point <position> (0-based index).

Synopsis

geometry ST_AddPoint(geometry linestring, geometry point);

geometry ST_AddPoint(geometry linestring, geometry point, integer position);

Description

Adds a point to a LineString before point <position> (0-based index). Third parameter can be omitted or set to -1 for appending.

Awailability: 1.1.0

/ This function supports 3d and will not drop the z-index.

Examples

——guarantee all linestrings in a table are closed

—--by adding the start point of each linestring to the end of the line string
——only for those that are not closed

UPDATE sometable

SET the_geom = ST_AddPoint (the_geom, ST_StartPoint (the_geom))

FROM sometable

WHERE ST_TIsClosed(the_geom) = false;

—--Adding point to a 3-d line
SELECT ST_ASEWKT (ST_AddPoint (ST_GeomFromEWKT (/ LINESTRING(O 0 1, 1 1 1)’), ST_MakePoint <
(1, 2, 3)));

PostGIS 2.1.0 Manual
167 /671

—-—result
st_asewkt

LINESTRING(O 0 1,1 1 1,1 2 3)

See Also

ST RemovePoint, ST SetPoint

8.5.2 ST_Affine

ST_Affine — Applies a 3d affine transformation to the geometry to do things like translate, rotate, scale in one step.

Synopsis
geometry ST_Affine(geometry geomA, float a, float b, float ¢, float d, float e, float f, float g, float h, float i, float xoff, float yoff,

float zoff);
geometry ST_Affine(geometry geomA, float a, float b, float d, float e, float xoff, float yoff);

Description

Applies a 3d affine transformation to the geometry to do things like translate, rotate, scale in one step.
Version 1: The call

ST_Affine(geom, a, b, ¢, d, e, £, g, h, i, xoff, yoff, zoff)

represents the transformation matrix

/ a b c xoff \
| d e £ yoff |
| g h 1 zoff |
N0 0 O 1/

and the vertices are transformed as follows:

X’ = axx + bxy + cxz + xoff
vy’ = d«x + exy + fxz + yoff
z! = gxx + hxy + 1%z + zoff

All of the translate / scale functions below are expressed via such an affine transformation.
Version 2: Applies a 2d affine transformation to the geometry. The call

ST_Affine(geom, a, b, d, e, xoff, yoff)

represents the transformation matrix

/ a b 0 xoff \ / a b =xoff \
| d e 0 vyoff | rsp. | d e yoff

| 0 0 1 0 | N\ 0 O 1/
\ 0 0 O 1/

and the vertices are transformed as follows:

x’ = axx + bxy + xoff
d*x + exy + yoff
z

N
o

PostGIS 2.1.0 Manual
168 /671

This method is a subcase of the 3D method above.
Enhanced: 2.0.0 support for Polyhedral surfaces, Triangles and TIN was introduced.
Auvailability: 1.1.2. Name changed from Affine to ST_Affine in 1.2.2

N;"l"’! Note

Prior to 1.3.4, this function crashes if used with geometries that contain CURVES. This is fixed in 1.3.4+

/ This function supports Polyhedral surfaces.
/ This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).
/ This function supports 3d and will not drop the z-index.

/ This method supports Circular Strings and Curves

Examples

—--Rotate a 3d line 180 degrees about the z axis. Note this is long-hand for doing <+
ST_Rotate () ;
SELECT ST_ASEWKT (ST_Affine(the_geom, cos(pi()), —-sin(pi()), O, sin(pi()), cos(pi()), 0, <«
o, 0, 1, 0, 0, 0)) As using_affine,
ST_ASEWKT (ST_Rotate (the_geom, pi())) As using_rotate
FROM (SELECT ST_GeomFromEWKT (' LINESTRING(1 2 3, 1 4 3)’) As the_geom) As foo;
using_affine | using_rotate
_____________________________ +_____________________________
LINESTRING (-1 -2 3,-1 -4 3) | LINESTRING(-1 -2 3,-1 -4 3)
(1 row)

—-—Rotate a 3d line 180 degrees in both the x and z axis
SELECT ST_ASEWKT (ST_Affine(the_geom, cos(pi()), -sin(pi()), 0, sin(pi()), cos(pi()), —-sin(<
pi()), 0, sin(pi()), cos(pi()), 0, 0, 0))
FROM (SELECT ST_GeomFromEWKT (' LINESTRING(1 2 3, 1 4 3)’) As the_geom) As foo;
st_asewkt

LINESTRING (-1 -2 -3,-1 -4 -3)
(1 row)

See Also

ST Rotate, ST Scale, ST Translate, ST TransScale

8.5.3 ST Force2D

ST_Force2D — Forces the geometries into a "2-dimensional mode" so that all output representations will only have the X and Y
coordinates.

Synopsis

geometry ST _Force2D(geometry geomA);

PostGIS 2.1.0 Manual
169 /671

Description

Forces the geometries into a "2-dimensional mode" so that all output representations will only have the X and Y coordinates.
This is useful for force OGC-compliant output (since OGC only specifies 2-D geometries).

Enhanced: 2.0.0 support for Polyhedral surfaces was introduced.

Changed: 2.1.0. Up to 2.0.x this was called ST_Force_2D.
/ This method supports Circular Strings and Curves
/ This function supports Polyhedral surfaces.

/ This function supports 3d and will not drop the z-index.

Examples

SELECT ST_ASEWKT (ST_Force2D (ST_GeomFromEWKT (/ CIRCULARSTRING(1 1 2, 2 3 2, 45 2, 67 2, 56
2)")))
st_asewkt

CIRCULARSTRING(1 1,2 3,4 5,6 7,5 6)

SELECT ST_ASEWKT (ST_Force2D ('POLYGON((0 0 2,0 52,50 2,00 2),(112,312,132,112)) ¢
"))

st_asewkt

POLYGON((O 0,0 5,5 0,0 0),(1 1,3 1,1 3,1 1))

See Also

ST Force3D

8.5.4 ST _Force3D

ST_Force3D — Forces the geometries into XYZ mode. This is an alias for ST_Force3DZ.

Synopsis

geometry ST _Force3D(geometry geomA);

Description

Forces the geometries into XYZ mode. This is an alias for ST_Force_3DZ. If a geometry has no Z component, then a 0 Z
coordinate is tacked on.

Enhanced: 2.0.0 support for Polyhedral surfaces was introduced.

Changed: 2.1.0. Up to 2.0.x this was called ST_Force_3D.

/ This function supports Polyhedral surfaces.

PostGIS 2.1.0 Manual
170/ 671

/ This method supports Circular Strings and Curves

/ This function supports 3d and will not drop the z-index.

Examples

—-Nothing happens to an already 3D geometry
SELECT ST_ASEWKT (ST_Force3D (ST_GeomFromEWKT (/ CIRCULARSTRING(1 1 2, 2 3 2, 4 5 2, 6 7 2, &
562))));
st_asewkt

CIRCULARSTRING(1 1 2,2 3 2,4 5 2,6 7 2,5 6 2)

SELECT ST_ASEWKT (ST_Force3D (' POLYGON((O 0,0 5,5 0,0 0),(1 1,3 1,1 3,1 1))"));

st_asewkt

POLYGON((O O 0,0 5 0,5 0 0,0 0 O),(¢(1 10,3 160,13 0,11 0))

See Also

ST_ASEWKT, ST_Force2D, ST_Force3DM, ST_Force3DZ

8.5.5 ST _Force3DZ

ST_Force3DZ — Forces the geometries into XYZ mode. This is a synonym for ST_Force3D.

Synopsis
geometry ST_Force3DZ(geometry geomA);

Description

Forces the geometries into XYZ mode. This is a synonym for ST_Force3DZ. If a geometry has no Z component, then a 0 Z
coordinate is tacked on.

Enhanced: 2.0.0 support for Polyhedral surfaces was introduced.

Changed: 2.1.0. Up to 2.0.x this was called ST_Force_3DZ.
/ This function supports Polyhedral surfaces.
/ This function supports 3d and will not drop the z-index.

/ This method supports Circular Strings and Curves

PostGIS 2.1.0 Manual
171 /671

Examples
——Nothing happens to an already 3D geometry
SELECT ST_ASEWKT (ST_Force3DZ (ST_GeomFromEWKT (/ CIRCULARSTRING(1 1 2, 2 3 2, 452, 67 2, 5 ¢

6 2)")));
st_asewkt

CIRCULARSTRING(1 1 2,2 3 2,4 5 2,6 7 2,5 6 2)

SELECT ST _ASEWKT (ST _Force3DZ (' POLYGON((0 0,0 5,5 0,0 0),(1 1,3 1,1 3,1 1))’));

st_asewkt

POLYGON((O O 0,0 5 0,5 0 0,0 0 O),(¢(1 10,3 160,13 0,11 0))

See Also

ST _ASEWKT, ST _Force2D, ST Force3DM, ST_Force3D

8.5.6 ST Force3DM

ST_Force3DM — Forces the geometries into XYM mode.

Synopsis

geometry ST_Force3DM(geometry geomA);

Description

Forces the geometries into XYM mode. If a geometry has no M component, then a 0 M coordinate is tacked on. If it has a Z
component, then Z is removed

Changed: 2.1.0. Up to 2.0.x this was called ST_Force_3DM.

/ This method supports Circular Strings and Curves

Examples

—--Nothing happens to an already 3D geometry
SELECT ST_ASEWKT (ST_Force3DM(ST_GeomFromEWKT (/ CIRCULARSTRING(1 1 2, 2 3 2, 452, 67 2, 5 ¢
6.2)")));
st_asewkt

CIRCULARSTRINGM(1 1 0,2 3 0,4 5 0,6 7 0,5 6 0)
SELECT ST_ASEWKT (ST_Force3DM(’POLYGON((O O 1,0 51,50 1,00 1),(1 11,3 11,1 31,11 1)) ¢

st_asewkt

poOLYGONM((O O 0,0 5 0,50 0,0 0 O0),(1 10,310,113 0,11 0))

PostGIS 2.1.0 Manual
172 /671

See Also

ST_ASEWKT, ST _Force2D, ST _Force3DM, ST_Force3D, ST _GeomFromEWKT

8.5.7 ST_Force4D

ST_Force4D — Forces the geometries into XYZM mode.

Synopsis

geometry ST_Force4D(geometry geomA);

Description
Forces the geometries into XYZM mode. 0 is tacked on for missing Z and M dimensions.
Changed: 2.1.0. Up to 2.0.x this was called ST_Force_4D.

/ This function supports 3d and will not drop the z-index.

/ This method supports Circular Strings and Curves

Examples

——Nothing happens to an already 3D geometry

SELECT ST_ASEWKT (ST_Force4D (ST_GeomFromEWKT (" CIRCULARSTRING(1 1 2, 2 3 2, 452, 67 2, 5 6 ¢
2)")));

st_asewkt

CIRCULARSTRING(1 1 2 0,2 32 0,452 0,67 2 0,56 2 0)

SELECT ST_ASEWKT (ST_Force4D (' MULTILINESTRINGM((O 0 1,0 5 2,50 3,0 0 4),(1 11,31 1,1 3 <
1,11 1))

st_asewkt

MULTILINESTRING((O O O 1,0 50 2,500 3,000 4),¢(2x101,3101,1 301,110 1))

See Also

ST _ASEWKT, ST Force2D, ST Force3DM, ST Force3D

8.5.8 ST_ForceCollection

ST_ForceCollection — Converts the geometry into a GEOMETRYCOLLECTION.

Synopsis

geometry ST _ForceCollection(geometry geomA);

PostGIS 2.1.0 Manual
173 /671

Description

Converts the geometry into a GEOMETRYCOLLECTION. This is useful for simplifying the WKB representation.
Enhanced: 2.0.0 support for Polyhedral surfaces was introduced.

Awailability: 1.2.2, prior to 1.3.4 this function will crash with Curves. This is fixed in 1.3.4+

Changed: 2.1.0. Up to 2.0.x this was called ST_Force_Collection.

/ This function supports Polyhedral surfaces.
/ This function supports 3d and will not drop the z-index.

/ This method supports Circular Strings and Curves

Examples

SELECT ST_ASEWKT (ST_ForceCollection (' POLYGON((0O 0 1,0 51,5 0 1,0 0 1),(1 11,31 1,1 3 <
1,1.1.1))"));

st_asewkt

GEOMETRYCOLLECTION (POLYGON((O O 1,0 5 1,50 1,00 1),(¢(1 11,3 11,1 31,11 1)))

SELECT ST_AsText (ST_ForceCollection (/' CIRCULARSTRING (220227 150406,2220227 150407,220227 <
150406) ")) ;
st_astext

GEOMETRYCOLLECTION (CIRCULARSTRING (220227 150406,2220227 150407,220227 150406))
(1 row)

—— POLYHEDRAL example ——
SELECT ST_ASEWKT (ST_ForceCollection (! POLYHEDRALSURFACE (((0 0 0,0 0 1,0 1 1,0 1 0,0 0 0)),

(¢0 00,01 0,110,100,000)),
(¢0 0 0,1 00,101,0 1,0 0 0)),
(¢ 10,211,122 01,1 00,1 1 0)),
(¢00 1 0,01 1,2 11,1 10,01 0)),
(¢<0 01,101,121 1,01 1,00 LYy)")»
st_asewkt
GEOMETRYCOLLECTION (
POLYGON((O 0 0,0 0 1,0 1 1,0 1 0,0 0 0)),
POLYGON((O O 0,0 1 0,12 1 0,1 O 0,0 0 0)),
POLYGON((O 0 0,1 0 0,1 0 1,0 0 1,0 0 0)),
POLYGON((1 1 O,1 1 1,1 0 1,1 0 0,1 1 0)),
POLYGON((O 1 0,0 1 1,12 1 1,1 1 0,0 1 0)),
POLYGON((O O 1,1 O 1,12 1 1,0 1 1,0 0 1))
)
See Also

ST_ASEWKT, ST_Force2D, ST_Force3DM, ST_Force3D, ST_GeomFromEWKT

PostGIS 2.1.0 Manual
174 / 671

8.5.9 ST ForceSFS

ST_ForceSFS — Forces the geometries to use SFS 1.1 geometry types only.

Synopsis

geometry ST_ForceSFS(geometry geomA);
geometry ST_ForceSFS(geometry geomA, text version);

Description

/ This function supports Polyhedral surfaces.
/ This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).
/ This method supports Circular Strings and Curves

/ This function supports 3d and will not drop the z-index.

8.5.10 ST_ForceRHR

ST_ForceRHR — Forces the orientation of the vertices in a polygon to follow the Right-Hand-Rule.

Synopsis

boolean ST_ForceRHR(geometry g);

Description

Forces the orientation of the vertices in a polygon to follow the Right-Hand-Rule. In GIS terminology, this means that the area
that is bounded by the polygon is to the right of the boundary. In particular, the exterior ring is orientated in a clockwise direction
and the interior rings in a counter-clockwise direction.

Enhanced: 2.0.0 support for Polyhedral surfaces was introduced.
/ This function supports 3d and will not drop the z-index.

/ This function supports Polyhedral surfaces.

Examples

SELECT ST_AsSEWKT (
ST_ForceRHR (
"POLYGON((O O 2, 502, 052, 002),(1 12,132, 312, 112)"

st_asewkt

POLYGON((O O 2,0 5 2,50 2,00 2),(1 12,312,132,112))
(1 row)

PostGIS 2.1.0 Manual
175/ 671

See Also

ST_BuildArea, ST_Polygonize, ST_Reverse

8.5.11 ST_LineMerge

ST_LineMerge — Returns a (set of) LineString(s) formed by sewing together a MULTILINESTRING.

Synopsis

geometry ST_LineMerge(geometry amultilinestring);

Description

Returns a (set of) LineString(s) formed by sewing together the constituent line work of a MULTILINESTRING.

et Note
N Only use with MULTILINESTRING/LINESTRINGs. If you feed a polygon or geometry collection into this function, it will

return an empty GEOMETRYCOLLECTION

Auvailability: 1.1.0

Not? Note
requires GEOS >=2.1.0

Examples

SELECT ST_AsText (ST_LineMerge (

ST_GeomFromText (' MULTILINESTRING ((-29 -27,-30 -29.7,-36 -31,-45 -33), (=45 -33,-46 -32))")
)

)

st_astext

LINESTRING (=29 -27,-30 -29.7,-36 -31,-45 -33,-46 -32)
(1 row)

——If can’t be merged - original MULTILINESTRING is returned

SELECT ST_AsText (ST_LineMerge (

ST_GeomFromText ("MULTILINESTRING((-29 -27,-30 -29.7,-36 -31,-45 -33), (-45.2 -33.2,-46 -32)) <
")

)

)i

st_astext

MULTILINESTRING ((-45.2 -33.2,-46 -32), (-29 -27,-30 -29.7,-36 —-31,-45 -33))

See Also

ST_Segmentize, ST_LineSubstring

PostGIS 2.1.0 Manual
176 /671

8.5.12 ST_CollectionExtract

ST_CollectionExtract — Given a (multi)geometry, returns a (multi)geometry consisting only of elements of the specified type.

Synopsis

geometry ST_CollectionExtract(geometry collection, integer type);

Description
Given a (multi)geometry, returns a (multi)geometry consisting only of elements of the specified type. Sub-geometries that are

not the specified type are ignored. If there are no sub-geometries of the right type, an EMPTY geometry will be returned. Only
points, lines and polygons are supported. Type numbers are 1 == POINT, 2 == LINESTRING, 3 == POLYGON.

. Warning

When a multipolygon is returned the multipolygon may have shared edges. This results in an invalid multipolygon.

Auvailability: 1.5.0

N;’“’! Note

Prior to 1.5.3 this function returned non-collection inputs untouched, no matter type. In 1.5.3 non-matching single
geometries result in a NULL return. In of 2.0.0 every case of missing match results in a typed EMPTY return.

Examples

—-— Constants: 1 == POINT, 2 == LINESTRING, 3 == POLYGON

SELECT ST_AsText (ST_CollectionExtract (ST_GeomFromText (! GEOMETRYCOLLECTION (<
GEOMETRYCOLLECTION (POINT (O 0)))"),1));

st_astext

MULTIPOINT (O 0)
(1 row)

SELECT ST_AsText (ST_CollectionExtract (ST_GeomFromText (' GEOMETRYCOLLECTION (<

GEOMETRYCOLLECTION (LINESTRING(O 0, 1 1)),LINESTRING(2 2, 3 3))'),2));
st_astext

MULTILINESTRING((O O, 1 1), (2 2, 3 3))
(1 row)

See Also

ST_Multi, ST_Dump, ST_CollectionHomogenize

8.5.13 ST_CollectionHomogenize

ST_CollectionHomogenize — Given a geometry collection, returns the "simplest" representation of the contents.

PostGIS 2.1.0 Manual
177 /671

Synopsis

geometry ST_CollectionHomogenize(geometry collection);

Description

Given a geometry collection, returns the "simplest" representation of the contents. Singletons will be returned as singletons.
Collections that are homogeneous will be returned as the appropriate multi-type.

. Warning

When a multipolygon is returned the multipolygon may have shared edges. This results in an invalid multipolygon.

Availability: 2.0.0

Examples

SELECT ST_AsText (ST_CollectionHomogenize (! GEOMETRYCOLLECTION (POINT (O 0))'));

st_astext

POINT (0 0)
(1 row)

SELECT ST_AsText (ST_CollectionHomogenize (GEOMETRYCOLLECTION (POINT (O 0),POINT(1 1))"));

st_astext

MULTIPOINT (O 0,1 1)
(1 row)

See Also

ST _Multi, ST_CollectionExtract

8.5.14 ST_Multi

ST_Multi — Returns the geometry as a MULTI* geometry. If the geometry is already a MULTT¥, it is returned unchanged.

Synopsis

geometry ST_Multi(geometry gl);

Description

Returns the geometry as a MULTT* geometry. If the geometry is already a MULTT¥, it is returned unchanged.

PostGIS 2.1.0 Manual
178 /671

Examples

SELECT ST_AsText (ST_Multi (ST_GeomFromText (' POLYGON ((743238 2967416,743238 2967450,
743265 2967450,743265.625 2967416,743238 2967416))")));
st_astext

MULTIPOLYGON (((743238 2967416, 743238 2967450, 743265 2967450, 743265.625 2967416,
743238 2967416)))
(1 row)

See Also

ST _AsText

8.5.15 ST_RemovePoint

ST_RemovePoint — Removes point from a linestring. Offset is 0-based.

Synopsis

geometry ST_RemovePoint(geometry linestring, integer offset);

Description
Removes point from a linestring. Useful for turning a closed ring into an open line string

Availability: 1.1.0

/ This function supports 3d and will not drop the z-index.

Examples

——guarantee no LINESTRINGS are closed
—-by removing the end point. The below assumes the_geom is of type LINESTRING
UPDATE sometable

SET the_geom = ST_RemovePoint (the_geom, ST _NPoints(the_geom) - 1)

FROM sometable

WHERE ST_IsClosed(the_geom) = true;

See Also

ST _AddPoint, ST_NPoints, ST _NumPoints

8.5.16 ST_Reverse

ST_Reverse — Returns the geometry with vertex order reversed.

Synopsis

geometry ST_Reverse(geometry gl);

PostGIS 2.1.0 Manual
179 /671

Description

Can be used on any geometry and reverses the order of the vertexes.

Examples

SELECT ST_AsText (the_geom) as line, ST_AsText (ST_Reverse (the_geom)) As reverseline
FROM
(SELECT ST_MakeLine (ST_MakePoint (1,2),

ST_MakePoint (1,10)) As the_geom) as foo;

—-—-result

line | reverseline
_____________________ +______________________
LINESTRING(1 2,1 10) | LINESTRING(1 10,1 2)

8.5.17 ST _Rotate

ST_Rotate — Rotate a geometry rotRadians counter-clockwise about an origin.

Synopsis

geometry ST_Rotate(geometry geomA, float rotRadians);
geometry ST_Rotate(geometry geomA, float rotRadians, float x0, float y0);
geometry ST_Rotate(geometry geomA, float rotRadians, geometry pointOrigin);

Description

Rotates geometry rotRadians counter-clockwise about the origin. The rotation origin can be specified either as a POINT geome-
try, or as x and y coordinates. If the origin is not specified, the geometry is rotated about POINT(0 0).

Enhanced: 2.0.0 support for Polyhedral surfaces, Triangles and TIN was introduced.

Enhanced: 2.0.0 additional parameters for specifying the origin of rotation were added.

Availability: 1.1.2. Name changed from Rotate to ST_Rotate in 1.2.2
/ This function supports 3d and will not drop the z-index.

/ This method supports Circular Strings and Curves

/ This function supports Polyhedral surfaces.

/ This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).

Examples

—-—Rotate 180 degrees

SELECT ST_ASEWKT (ST_Rotate (' LINESTRING (50 160, 50 50, 100 50)’, pi()));
st_asewkt

LINESTRING (-50 -160,-50 -50,-100 -50)

(1 row)

PostGIS 2.1.0 Manual
180 /671

—-—-Rotate 30 degrees counter-clockwise at x=50, y=160
SELECT ST_ASEWKT (ST_Rotate (/ LINESTRING (50 160, 50 50, 100 50)’, pi()/6, 50, 160));
st_asewkt

LINESTRING (50 160,105 64.7372055837117,148.301270189222 89.7372055837117)
(1 row)

—-—Rotate 60 degrees clockwise from centroid
SELECT ST_ASEWKT (ST_Rotate (geom, -pi()/3, ST_Centroid(geom)))

FROM (SELECT ’'LINESTRING (50 160, 50 50, 100 50)’::geometry AS geom) AS foo;
st_asewkt

LINESTRING(116.4225 130.6721,21.1597 75.6721,46.1597 32.3708)
(1 row)

See Also

ST_Affine, ST_RotateX, ST_RotateY, ST_RotateZ

8.5.18 ST RotateX

ST_RotateX — Rotate a geometry rotRadians about the X axis.

Synopsis

geometry ST_RotateX(geometry geomA, float rotRadians);

Description

Rotate a geometry geomA - rotRadians about the X axis.

N;.lq}, Note

ST_RotateX (geomA, rotRadians) is short-hand for ST_Affine (geomaA, 1, 0, 0, 0, cos(rot-
Radians), —-sin(rotRadians), 0, sin(rotRadians), cos(rotRadians), 0, 0, 0).

Enhanced: 2.0.0 support for Polyhedral surfaces, Triangles and TIN was introduced.
Availability: 1.1.2. Name changed from RotateX to ST_RotateX in 1.2.2

/ This function supports Polyhedral surfaces.
/ This function supports 3d and will not drop the z-index.

/ This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).

Examples

—-—-Rotate a line 90 degrees along x-axis
SELECT ST_AsEWKT (ST_RotateX (ST_GeomFromEWKT (LINESTRING(1 2 3, 1 1 1)7), pi()/2));
st_asewkt

LINESTRING(1 -3 2,1 -1 1)

PostGIS 2.1.0 Manual

181 /671

See Also

ST_Affine, ST_RotateY, ST_RotateZ

8.5.19 ST RotateY

ST_RotateY — Rotate a geometry rotRadians about the Y axis.

Synopsis

geometry ST_RotateY(geometry geomA, float rotRadians);

Description

Rotate a geometry geomA - rotRadians about the y axis.

N;‘l"! Note

ST_RotateY (geomA, rotRadians) is short-hand for ST_Affine (geomA, cos (rotRadians),
sin(rotRadians), 0, 1, 0, -sin(rotRadians), 0, cos(rotRadians), 0, 0, 0).

0,

Auvailability: 1.1.2. Name changed from RotateY to ST_RotateY in 1.2.2
Enhanced: 2.0.0 support for Polyhedral surfaces, Triangles and TIN was introduced.

/ This function supports Polyhedral surfaces.
/ This function supports 3d and will not drop the z-index.

/ This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).

Examples

—-—-Rotate a line 90 degrees along y-axis
SELECT ST_ASEWKT (ST_RotateY (ST_GeomFromEWKT (LINESTRING(1 2 3, 1 1 1)7), pi()/2));
st_asewkt

LINESTRING(3 2 -1,1 1 -1)
See Also
ST Affine, ST RotateX, ST RotateZ

8.5.20 ST RotateZ

ST_RotateZ — Rotate a geometry rotRadians about the Z axis.

Synopsis

geometry ST_RotateZ(geometry geomA, float rotRadians);

PostGIS 2.1.0 Manual
182 /671

Description

Rotate a geometry geomA - rotRadians about the Z axis.

N;’*"! Note

This is a synonym for ST_Rotate

& Note

N"M ST_RotateZ (geomA, rotRadians) is short-hand for SELECT ST_Affine (geomA, cos (rotRadia-
ns), —-sin(rotRadians), 0, sin(rotRadians), cos(rotRadians), 0, 0, O, 1, 0, O,
0).

Enhanced: 2.0.0 support for Polyhedral surfaces, Triangles and TIN was introduced.
Availability: 1.1.2. Name changed from RotateZ to ST_RotateZ in 1.2.2

N;‘l"! Note

Prior to 1.3.4, this function crashes if used with geometries that contain CURVES. This is fixed in 1.3.4+

/ This function supports 3d and will not drop the z-index.

/ This method supports Circular Strings and Curves

/ This function supports Polyhedral surfaces.

/ This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).

Examples

—-—-Rotate a line 90 degrees along z-axis
SELECT ST_ASEWKT (ST_RotateZ (ST_GeomFromEWKT (/ LINESTRING(1 2 3, 1 1 1)7), pi()/2));
st_asewkt

LINESTRING(-2 1 3,-1 1 1)

——Rotate a curved circle around z-axis
SELECT ST_ASEWKT (ST_RotateZ (the_geom, pi()/2))
FROM (SELECT ST_LineToCurve (ST_Buffer (ST_GeomFromText ('POINT (234 567)"), 3)) As the_geom) —
As foo;

st_asewkt

CURVEPOLYGON (CIRCULARSTRING (=567 237,-564.87867965644 236.12132034356,-564 <>
234,-569.12132034356 231.87867965644,-567 237))

PostGIS 2.1.0 Manual
183 /671

See Also

ST Affine, ST RotateX, ST RotateY

8.5.21 ST _Scale

ST_Scale — Scales the geometry to a new size by multiplying the ordinates with the parameters. Ie: ST_Scale(geom, Xfactor,
Yfactor, Zfactor).

Synopsis

geometry ST_Scale(geometry geomA, float XFactor, float YFactor, float ZFactor);
geometry ST_Scale(geometry geomA, float XFactor, float YFactor);

Description

Scales the geometry to a new size by multiplying the ordinates with the parameters. Ie: ST_Scale(geom, Xfactor, Yfactor,
Zfactor).

N;R’! Note

ST_Scale (geomA, XFactor, YFactor, ZFactor) is short-hand for ST_Affine (geomA, XFacto-
r, 0, 0, 0, YFactor, 0, 0, 0, ZFactor, 0, 0, 0).

Not? Note

Prior to 1.3.4, this function crashes if used with geometries that contain CURVES. This is fixed in 1.3.4+

Availability: 1.1.0.

Enhanced: 2.0.0 support for Polyhedral surfaces, Triangles and TIN was introduced.
/ This function supports Polyhedral surfaces.

/ This function supports 3d and will not drop the z-index.

/ This method supports Circular Strings and Curves

/ This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).

Examples

--Version 1: scale X, Y, Z
SELECT ST_ASEWKT (ST_Scale (ST_GeomFromEWKT (’/ LINESTRING(1 2 3, 1 1 1)"), 0.5, 0.75, 0.8));
st_asewkt

LINESTRING(0.5 1.5 2.4,0.5 0.75 0.8)

—-—Version 2: Scale X Y
SELECT ST_ASEWKT (ST_Scale (ST_GeomFromEWKT (' LINESTRING(1 2 3, 1 1 1)’), 0.5, 0.75));

PostGIS 2.1.0 Manual
184 /671

st_asewkt

LINESTRING(0.5 1.5 3,0.5 0.75 1)

See Also

ST_Affine, ST TransScale

8.5.22 ST_Segmentize

ST_Segmentize — Return a modified geometry/geography having no segment longer than the given distance. Distance compu-
tation is performed in 2d only. For geometry, length units are in units of spatial reference. For geography, units are in meters.

Synopsis

geometry ST_Segmentize(geometry geom, float max_segment_length);
geometry ST _Segmentize(geography geog, float max_segment_length);

Description

Returns a modified geometry having no segment longer than the given max_segment_length. Distance computation is
performed in 2d only. For geometry, length units are in units of spatial reference. For geography, units are in meters.

Availability: 1.2.2
Enhanced: 2.1.0 support for geography was introduced.

Changed: 2.1.0 As a result of the introduction of geography support: The construct SELECT ST_Segmentize (' LIN-
ESTRING(1 2, 3 4)’,0.5); will result in ambiguous function error. You need to have properly typed object e.g. a
geometry/geography column, use ST_GeomFromText, ST_GeogFromText or SELECT ST_Segmentize (! LINESTRING-
(1 2, 3 4)’::geometry,0.5);

N;’R’! Note

This will only increase segments. It will not lengthen segments shorter than max length

Examples

SELECT ST_AsText (ST_Segmentize (

ST_GeomFromText (' MULTILINESTRING((-29 -27,-30 -29.7,-36 -31,-45 -33), (=45 -33,-46 -32))")
r9)

)

st_astext

MULTILINESTRING((-29 -27,-30 -29.7,-34.886615700134 -30.758766735029,-36 —-31,
-40.8809353009198 -32.0846522890933,-45 -33),

(=45 -33,-46 -32))

(1 row)

SELECT ST_AsText (ST_Segmentize (ST_GeomFromText (' POLYGON ((=29 28, -30 40, -29 28))'),10));
st_astext

PostGIS 2.1.0 Manual
185/ 671

POLYGON ((=29 28,-29.8304547985374 37.9654575824488,-30 40,-29.1695452014626 <+
30.0345424175512,-29 28))
(1 row)

See Also

ST_LineSubstring

8.5.23 ST_SetPoint

ST_SetPoint — Replace point N of linestring with given point. Index is 0-based.

Synopsis

geometry ST_SetPoint(geometry linestring, integer zerobasedposition, geometry point);

Description

Replace point N of linestring with given point. Index is O-based. This is especially useful in triggers when trying to maintain
relationship of joints when one vertex moves.

Availability: 1.1.0

/ This function supports 3d and will not drop the z-index.

Examples

——Change first point in line string from -1 3 to -1 1
SELECT ST_AsText (ST_SetPoint (' LINESTRING(-1 2,-1 3)’, 0, "POINT(-1 1)"));
st_astext

LINESTRING (-1 1,-1 3)

———-Change last point in a line string (lets play with 3d linestring this time)

SELECT ST_ASEWKT (ST_SetPoint (foo.the_geom, ST _NumPoints (foo.the_geom) - 1, ST_GeomFromEWKT <
("POINT (-1 1 3)7)))

FROM (SELECT ST_GeomFromEWKT (' LINESTRING(-1 2 3,-1 3 4, 5 6 7)’) As the_geom) As foo;
st_asewkt

LINESTRING(-1 2 3,-1 3 4,-1 1 3)

See Also

ST_AddPoint, ST_NPoints, ST_NumPoints, ST_PointN, ST_RemovePoint

8.5.24 ST_SetSRID

ST_SetSRID — Sets the SRID on a geometry to a particular integer value.

PostGIS 2.1.0 Manual
186 /671

Synopsis

geometry ST_SetSRID(geometry geom, integer srid);

Description

Sets the SRID on a geometry to a particular integer value. Useful in constructing bounding boxes for queries.

- Note
Nﬂ‘l"! This function does not transform the geometry coordinates in any way - it simply sets the meta data defining the spatial
reference system the geometry is assumed to be in. Use ST_Transform if you want to transform the geometry into a
new projection.

/ This method implements the OpenGIS Simple Features Implementation Specification for SQL 1.1.

/ This method supports Circular Strings and Curves

Examples

-- Mark a point as WGS 84 long lat --

SELECT ST_SetSRID(ST_Point (-123.365556, 48.428611),4326) As wgs84long_lat;
—— the ewkt representation (wrap with ST_ASEWKT) -
SRID=4326;POINT (-123.365556 48.428611)

-- Mark a point as WGS 84 long lat and then transform to web mercator (Spherical Mercator) --

SELECT ST_Transform(ST_SetSRID(ST_Point (-123.365556, 48.428611),4326),3785) As spere_merc;
—— the ewkt representation (wrap with ST_ASEWKT) -
SRID=3785;POINT (-13732990.8753491 6178458.96425423)

See Also

Section 4.3.1, ST_ASEWKT, ST_Point, ST_SRID, ST_Transform, UpdateGeometrySRID

8.5.25 ST_SnapToGrid

ST_SnapToGrid — Snap all points of the input geometry to a regular grid.

Synopsis

geometry ST_SnapToGrid(geometry geomA, float originX, float originY, float sizeX, float sizeY);

geometry ST_SnapToGrid(geometry geomA, float sizeX, float sizeY);

geometry ST_SnapToGrid(geometry geomA, float size);

geometry ST_SnapToGrid(geometry geomA, geometry pointOrigin, float sizeX, float sizeY, float sizeZ, float sizeM);

http://www.opengeospatial.org/standards/sfs

PostGIS 2.1.0 Manual
187 /671

Description

Variant 1,2,3: Snap all points of the input geometry to the grid defined by its origin and cell size. Remove consecutive points
falling on the same cell, eventually returning NULL if output points are not enough to define a geometry of the given type.
Collapsed geometries in a collection are stripped from it. Useful for reducing precision.

Variant 4: Introduced 1.1.0 - Snap all points of the input geometry to the grid defined by its origin (the second argument, must
be a point) and cell sizes. Specify 0 as size for any dimension you don’t want to snap to a grid.

N-ﬂ‘l"! Note

The returned geometry might loose its simplicity (see ST_IsSimple).

s Note
Nﬂ‘l"! Before release 1.1.0 this function always returned a 2d geometry. Starting at 1.1.0 the returned geometry will have same
dimensionality as the input one with higher dimension values untouched. Use the version taking a second geometry
argument to define all grid dimensions.

Availability: 1.0.0RC1
Availability: 1.1.0 - Z and M support

J This function supports 3d and will not drop the z-index.

Examples

——-Snap your geometries to a precision grid of 107-3
UPDATE mytable
SET the_geom = ST_SnapToGrid(the_geom, 0.001);

SELECT ST_AsText (ST_SnapToGrid (
ST_GeomFromText (' LINESTRING(1.1115678 2.123, 4.111111 3.2374897, 4.11112 3.23748667) <>
,)I
0.001)

st_astext

LINESTRING(1.112 2.123,4.111 3.237)

——Snap a 4d geometry
SELECT ST_ASEWKT (ST_SnapToGrid (

ST_GeomFromEWKT (' LINESTRING(-1.1115678 2.123 2.3456 1.11111,

4.111111 3.2374897 3.1234 1.1111, -1.11111112 2.123 2.3456 1.1111112)"),

ST_GeomFromEWKT ("POINT (1.12 2.22 3.2 4.4444)'),

0.1, 0.1, 0.1, 0.01));

st_asewkt

LINESTRING(-1.08 2.12 2.3 1.1144,4.12 3.22 3.1 1.1144,-1.08 2.12 2.3 1.1144)

—-With a 4d geometry - the ST_SnapToGrid(geom,size) only touches x and y coords but keeps m ¢
and z the same
SELECT ST_ASEWKT (ST_SnapToGrid (ST_GeomFromEWKT (/ LINESTRING(-1.1115678 2.123 3 2.3456,
4.111111 3.2374897 3.1234 1.1111)"),
0.01))
st_asewkt

PostGIS 2.1.0 Manual
188 /671

LINESTRING(-1.11 2.12 3 2.3456,4.11 3.24 3.1234 1.1111)

See Also

ST_Snap, ST_ASEWKT, ST_AsText, ST_GeomFromText, ST_GeomFromEWKT, ST_Simplify

8.5.26 ST_Snap

ST_Snap — Snap segments and vertices of input geometry to vertices of a reference geometry.

Synopsis

geometry ST_Snap(geometry input, geometry reference, float tolerance);

Description
Snaps the vertices and segments of a geometry another Geometry’s vertices. A snap distance tolerance is used to control where
snapping is performed.

Snapping one geometry to another can improve robustness for overlay operations by eliminating nearly-coincident edges (which
cause problems during noding and intersection calculation).

Too much snapping can result in invalid topology being created, so the number and location of snapped vertices is decided using
heuristics to determine when it is safe to snap. This can result in some potential snaps being omitted, however.

N;ﬂ"! Note

The returned geometry might loose its simplicity (see ST_IsSimple) and validity (see ST_IsValid).

Availability: 2.0.0 requires GEOS >= 3.3.0.

Examples

PostGIS 2.1.0 Manual

189 /671

A multipolygon shown with a linestring (before any snapping)

PostGIS 2.1.0 Manual

190/ 671

distance. The new multipolygon is shown with reference
linestring

SELECT ST_AsText (ST_Snap (poly,line,

<_)
ST_Distance (poly,line)*1.01))

P
AS polysnapped line)=*1.25)
FROM (SELECT) AS polysnapped
ST_GeomFromText (' MULTIPOLYGON (FROM (SELECT
((26 125, 26 200, 126 200, 126 125, <+ ST_GeomFromText (' MULTIPOLYGON (
26 125), ((26 125, 26 200, 126 200, 126 125, <«
(51 150, 101 150, 76 175, 51 150) <« 26 125),
), (51 150, 101 150, 76 175, 51 150) ¢«
((151 100, 151 200, 176 175, 151 <+),
100)))’) As poly, ((151 100, 151 200, 176 175, 151 <>
ST_GeomFromText (' LINESTRING (5 < 100)))’") As poly,
107, 54 84, 101 100)’") As line ST_GeomFromText (! LINESTRING (5 <
) As foo; 107, 54 84, 101 100)") As line
) As foo;
polysnapped
——— &~ polysnapped
MULTIPOLYGON (((26 125,26 200,126 200,126 <«
125,101 100,26 125), MULTIPOLYGON (((5 107,26 200,126 200,126 <+
(51 150,101 150,76 175,51 150)), ((151 <

100,151 200,176 175,151 100)))

A multipolygon snapped to linestring to tolerance: 1.01 of

distance. The new multipolygon is shown with reference
linestring

SELECT ST_AsText (

ST_Snap (poly,line, ST_Distance (poly,

125,101 100,54 84,5 107),
(51 150,101 150,76 175,51 150)), ((151

H
100,151 200,176 175,151 100)))

A multipolygon snapped to linestring to tolerance: 1.25 of

PostGIS 2.1.0 Manual
191 /671

The linestring snapped to the original multipolygon at
tolerance 1.01 of distance. The new linestring is shown
with reference multipolygon

The linestring snapped to the original multipolygon at
tolerance 1.25 of distance. The new linestring is shown
with reference multipolygon

SELECT ST_AsText (
ST_Snap(line, poly, ST_Distance(poly, <
line)*1.01)
) AS linesnapped
FROM (SELECT
ST_GeomFromText (' MULTIPOLYGON (
((26 125, 26 200, 126 200, 126 125, <+
26 125),
(51 150, 101 150, 76 175, 51 150)) <

SELECT ST_AsText (
ST_Snap(line, poly, ST_Distance(poly, <
line) *x1.25)
) AS linesnapped
FROM (SELECT
ST_GeomFromText (' MULTIPOLYGON (
((26 125, 26 200, 126 200, 126 125, <
26 125),
(51 150, 101 150, 76 175, 51 150)) <«

’

((151 100, 151 200, 176 175, 151 < ((151 100, 151 200, 176 175, 151
100)))") As poly,

100)))") As poly,
T FromText (' LINESTRIN -
1078 —5505“4 roinofxfo(o)r) :S life © ST_GeomFromText (LINESTRING (5 ¢
’ ' 107, 54 84, 101 100)’) As line
) As foo;
) As foo;
linesnapped

P

linesnapped

LINESTRING (26 125,54 84,101 100)

LINESTRING(5 107,26 125,54 84,101 100)

See Also

ST_SnapToGrid

8.5.27 ST_Transform

ST_Transform — Returns a new geometry with its coordinates transformed to the SRID referenced by the integer parameter.

Synopsis

geometry ST_Transform(geometry g1, integer srid);

PostGIS 2.1.0 Manual
192 /671

Description
Returns a new geometry with its coordinates transformed to spatial reference system referenced by the SRID integer parameter.
The destination SRID must exist in the SPATIAL_REF_SYS table.

ST_Transform is often confused with ST_SetSRID(). ST_Transform actually changes the coordinates of a geometry from one
spatial reference system to another, while ST_SetSRID() simply changes the SRID identifier of the geometry

Note! Note
Requires PostGIS be compiled with Proj support. Use PostGIS_Full_Version to confirm you have proj support compiled
in.

N"R’! Note

If using more than one transformation, it is useful to have a functional index on the commonly used transformations to
take advantage of index usage.

Not? Note

Prior to 1.3.4, this function crashes if used with geometries that contain CURVES. This is fixed in 1.3.4+

Enhanced: 2.0.0 support for Polyhedral surfaces was introduced.
/ This method implements the SQL/MM specification. SQL-MM 3: 5.1.6
/ This method supports Circular Strings and Curves

/ This function supports Polyhedral surfaces.

Examples

Change Mass state plane US feet geometry to WGS 84 long lat

SELECT ST_AsText (ST_Transform(ST_GeomFromText (' POLYGON ((743238 2967416,743238 2967450,
743265 2967450, 743265.625 2967416,743238 2967416))’,2249),4326)) As wgs_geom;

wgs_geom

POLYGON ((=71.1776848522251 42.3902896512902,-71.1776843766326 42.3903829478009,
—-71.1775844305465 42.3903826677917,-71.1775825927231 42.3902893647987,-71.177684
8522251 42.3902896512902)) ;

(1 row)

—-3D Circular String example
SELECT ST_ASEWKT (ST_Transform(ST_GeomFromEWKT (/ SRID=2249; CIRCULARSTRING (743238 2967416 <+
1,743238 2967450 2,743265 2967450 3,743265.625 2967416 3,743238 2967416 4)’),4326));

st_asewkt
SRID=4326; CIRCULARSTRING (-71.1776848522251 42.3902896512902 1,-71.1776843766326 <+
42.3903829478009 2,
-71.1775844305465 42.3903826677917 3,
-71.1775825927231 42.3902893647987 3,-71.1776848522251 42.3902896512902 4)

PostGIS 2.1.0 Manual
193 /671

Example of creating a partial functional index. For tables where you are not sure all the geometries will be filled in, its best to use
a partial index that leaves out null geometries which will both conserve space and make your index smaller and more efficient.

CREATE INDEX idx_the_geom 26986_parcels
ON parcels
USING gist
(ST_Transform(the_geom, 26986))
WHERE the_geom IS NOT NULL;

Configuring transformation behaviour

Sometimes coordinate transformation involving a grid-shift can fail, for example if PROJ.4 has not been built with grid-shift files
or the coordinate does not lie within the range for which the grid shift is defined. By default, PostGIS will throw an error if a
grid shift file is not present, but this behaviour can be configured on a per-SRID basis by altering the proj4text value within the
spatial_ref_sys table.

For example, the proj4text parameter +datum=NADS7 is a shorthand form for the following +nadgrids parameter:

+nadgrids=@conus, @alaska, @ntv2_0.gsb, @ntvl_can.dat

The @ prefix means no error is reported if the files are not present, but if the end of the list is reached with no file having been
appropriate (ie. found and overlapping) then an error is issued.

If, conversely, you wanted to ensure that at least the standard files were present, but that if all files were scanned without a hit a
null transformation is applied you could use:

+nadgrids=Q@conus, @alaska, @ntv2_0.gsb, @ntvl_can.dat,null

The null grid shift file is a valid grid shift file covering the whole world and applying no shift. So for a complete example, if you
wanted to alter PostGIS so that transformations to SRID 4267 that didn’t lie within the correct range did not throw an ERROR,
you would use the following:

UPDATE spatial_ref_sys SET projdtext = ’+proj=longlat +ellps=clrk66 +nadgrids=@conus, <
@alaska,@ntv2_0.gsb,@ntvl_can.dat,null +no_defs’ WHERE srid = 4267;

See Also

PostGIS_Full_Version, ST_AsText, ST_SetSRID, UpdateGeometrySRID

8.5.28 ST Translate

ST_Translate — Translates the geometry to a new location using the numeric parameters as offsets. Ie: ST_Translate(geom, X,
Y) or ST_Translate(geom, X, Y,Z).

Synopsis

geometry ST _Translate(geometry g1, float deltax, float deltay);
geometry ST_Translate(geometry g1, float deltax, float deltay, float deltaz);

Description

Returns a new geometry whose coordinates are translated delta x,delta y,delta z units. Units are based on the units defined in
spatial reference (SRID) for this geometry.

PostGIS 2.1.0 Manual
194 /671

N:"R’! Note

Prior to 1.3.4, this function crashes if used with geometries that contain CURVES. This is fixed in 1.3.4+

Availability: 1.2.2
/ This function supports 3d and will not drop the z-index.

/ This method supports Circular Strings and Curves

Examples

Move a point 1 degree longitude

SELECT ST_AsText (ST_Translate (ST_GeomFromText (' POINT (-71.01 42.37)'",4326),1,0)) As <+
wgs_transgeomtxt;

wgs_transgeomtxt

POINT (-70.01 42.37)

Move a linestring 1 degree longitude and 1/2 degree latitude

SELECT ST_AsText (ST_Translate (ST_GeomFromText (' LINESTRING(-71.01 42.37,-71.11 42.38)’,4326) <+
,1,0.5)) As wgs_transgeomtxt;
wgs_transgeomtxt

LINESTRING (-70.01 42.87,-70.11 42.88)

Move a 3d point

SELECT ST_ASEWKT (ST_Translate (CAST (’POINT(0 O 0)’” As geometry), 5, 12,3));
st_asewkt

POINT (5 12 3)

Move a curve and a point

SELECT ST_AsText (ST_Translate (ST_Collect (' CURVEPOLYGON (CIRCULARSTRING (4 3,3.12 0.878,1 <+
0,-1.121 5.1213,6 7, 8 9,4 3))',’POINT(1 3)"),1,2));
st_astext

GEOMETRYCOLLECTION (CURVEPOLYGON (CIRCULARSTRING (5 5,4.12 2.878,2 2,-0.121 7.1213,7 9,9 11,5 <«
5)),POINT (2 5))

See Also

ST_Affine, ST_AsText, ST _GeomFromText

8.5.29 ST TransScale

ST_TransScale — Translates the geometry using the deltaX and deltaY args, then scales it using the XFactor, YFactor args,
working in 2D only.

PostGIS 2.1.0 Manual
195/ 671

Synopsis

geometry ST_TransScale(geometry geomA, float deltaX, float deltay, float XFactor, float YFactor);

Description

Translates the geometry using the deltaX and deltaY args, then scales it using the XFactor, YFactor args, working in 2D only.

. Note

N"M ST_TransScale (geomA, deltaX, deltaY, XFactor, YFactor) is short-hand for ST_Affine (g-
eomA, XFactor, 0, 0, 0, YFactor, O, 0, 0, 1, deltaX*«XFactor, delta¥YxYFactor,
0).

Not? Note

Prior to 1.3.4, this function crashes if used with geometries that contain CURVES. This is fixed in 1.3.4+

Availability: 1.1.0.
/ This function supports 3d and will not drop the z-index.

/ This method supports Circular Strings and Curves

Examples

SELECT ST_ASEWKT (ST_TransScale (ST_GeomFromEWKT (/ LINESTRING(1 2 3, 1 1 1)"), 0.5, 1, 1, 2));
st_asewkt

LINESTRING (1.5 6 3,1.5 4 1)

—--Buffer a point to get an approximation of a circle, convert to curve and then translate <+
1,2 and scale it 3,4
SELECT ST_AsText (ST_Transscale (ST_LineToCurve (ST_Buffer ('POINT (234 567)', 3)),1,2,3,4));
st_astext

CURVEPOLYGON (CIRCULARSTRING (714 2276,711.363961030679 2267.51471862576,705 <=
2264,698.636038969321 2284.48528137424,714 2276))

See Also
ST Affine, ST Translate
8.6 Geometry Outputs

8.6.1 ST_AsBinary

ST_AsBinary — Return the Well-Known Binary (WKB) representation of the geometry/geography without SRID meta data.

PostGIS 2.1.0 Manual
196 /671

Synopsis

bytea ST_AsBinary(geometry gl);

bytea ST_AsBinary(geometry g1, text NDR_or_XDR);
bytea ST_AsBinary(geography gl);

bytea ST_AsBinary(geography gl, text NDR_or_XDR);

Description

Returns the Well-Known Binary representation of the geometry. There are 2 variants of the function. The first variant takes no
endian encoding parameter and defaults to server machine endian. The second variant takes a second argument denoting the
encoding - using little-endian NDR’) or big-endian (" XDR’) encoding.

This is useful in binary cursors to pull data out of the database without converting it to a string representation.

Not Note
The WKB spec does not include the SRID. To get the WKB with SRID format use ST_AsEWKB

Ntﬂ"! Note

ST_AsBinary is the reverse of ST_GeomFromWKB for geometry. Use ST_GeomFromWKB to convert to a postgis
geometry from ST_AsBinary representation.

* Note
N"'R’! The default behavior in PostgreSQL 9.0 has been changed to output bytea in hex encoding. ST_AsBinary is the reverse
of ST_GeomFromWKB for geometry. If your GUI tools require the old behavior, then SET bytea_output="escape’ in your
database.

Enhanced: 2.0.0 support for Polyhedral surfaces, Triangles and TIN was introduced.
Enhanced: 2.0.0 support for higher coordinate dimensions was introduced.
Enhanced: 2.0.0 support for specifying endian with geography was introduced.
Auwailability: 1.5.0 geography support was introduced.

Changed: 2.0.0 Inputs to this function can not be unknown -- must be geometry. Constructs such as ST_AsBinary (' POINT-
(1 2)') areno longer valid and you will getann st_asbinary (unknown) is not unique error. Code like that
needs to be changed to ST_AsBinary (' POINT (1 2) ' ::geometry) ;. If thatis not possible, then install legacy.sql.

/ This method implements the OpenGIS Simple Features Implementation Specification for SQL 1.1. s2.1.1.1
/ This method implements the SQL/MM specification. SQL-MM 3: 5.1.37

/ This method supports Circular Strings and Curves

/ This function supports Polyhedral surfaces.

/ This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).

/ This function supports 3d and will not drop the z-index.

http://www.opengeospatial.org/standards/sfs

PostGIS 2.1.0 Manual
197 /671

Examples

SELECT ST_AsBinary (ST_GeomFromText (' POLYGON((O 0,0 1,1 1,1 0,0 0))',4326));

st_asbinary

\001\003\000\000\000\N001\000\000\000\005
\000\000\000\000\000\000\000N\N000\000\000
\000\000\000\N000\N000\N000\N000\0O00\0O00N\0OO00
\000\000\000\N000\N000N\N000N\N000\N0O00\000N\0O00
\000\000\000\3602\000\000\000\000\000\000
\3602\000\000\000\000\000\000\3602\000\000
\000\000\N000\N000\3602\000\000\000\000\000
\000\000\000\000\000\000\000\000\N000\N000\O00
\000\000\000\N000\N000\N000\000\00O

(1 row)

SELECT ST_AsBinary (ST_GeomFromText (" POLYGON((O 0,0 1,1 1,1 0,0 0))’",4326), ’'XDR’);
st_asbinary

\000\000\N000\NO00\N003\000\N000N\N000\001\000\000\000\005\000\000\000\000\000
\000\000\000\000\000\N000\000\000N\N000\N000\N000\000\N000\000\000\000N\000\000
\N000?\360\000\000\000\000\N000\000?2\360\000\000\000\000\000\000?2\360\000\000
\000\000\000\0002\360\000\000\000\000\000\0O00ON\N0O00O\NO0O0ON\NO0O0O\N0O00O\NO0O0ONO0O0O\NO0OON\NOOO
\000\000\000\000\000\N000\000\000\N000\N000\000N\000N\N000\000\000\000

(1 row)

See Also

ST _GeomFromWKB ST _ASEWKB, ST_AsText,

8.6.2 ST_AsSEWKB

ST_AsEWKB — Return the Well-Known Binary (WKB) representation of the geometry with SRID meta data.

Synopsis

bytea ST_ASEWKB(geometry gl);
bytea ST_ASEWKB(geometry gl, text NDR_or_XDR);

Description

Returns the Well-Known Binary representation of the geometry with SRID metadata. There are 2 variants of the function.
The first variant takes no endian encoding parameter and defaults to little endian. The second variant takes a second argument
denoting the encoding - using little-endian CNDR’) or big-endian ("XDR’) encoding.

This is useful in binary cursors to pull data out of the database without converting it to a string representation.

Not Note
The WKB spec does not include the SRID. To get the OGC WKB format use ST_AsBinary

PostGIS 2.1.0 Manual
198 /671

;—R'! Note
N ST_AsEWKB is the reverse of ST_GeomFromEWKB. Use ST_GeomFromEWKB to convert to a postgis geometry from
ST_AsEWKB representation.

Enhanced: 2.0.0 support for Polyhedral surfaces, Triangles and TIN was introduced.
/ This function supports 3d and will not drop the z-index.

/ This method supports Circular Strings and Curves

/ This function supports Polyhedral surfaces.

/ This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).

Examples
SELECT ST_ASEWKB (ST_GeomFromText (' POLYGON((0 0,0 1,1 1,1 0,0 0))’,4326));

st_asewkb
\001\003\000\000 \346\020\000\000\001\000
\000\000\005\000\000\000\000
\000\000\N000\N000\N000N\N000\000\0O0O
\000\000\N000\000\0O00\0O0O0\NO00N\NOO0ON\NOOO
\000\000\000\N000\N000N\N000\N000\N0O00\0O00N\OOO
\000\000\360?\000\000\000\000\000\000\3607?
\000\000\000\000\000\N000\3602\000\000\000\000\000
\000\360?\000\000\000\000\000\000\000\000\N000N\N000\00O
\000\000\000\N000\N000N\N000N\N000\N000\000\000\000\000\000
(1 row)

SELECT ST_AsSEWKB (ST_GeomFromText (' POLYGON((O 0,0 1,1 1,1 0,0 0))’",4326), ’'XDR’);
st_asewkb

\N000 \000\000\003\000\000\020\346\000\000\000\001\000\000\000\005\000\000\000\000\
000\000\000\000\000\000\000\N000\N000\N000\N000\N000\N000\000\N000\000\000\000\000\000"?
\360\000\000\000\000\000\0002\360\000\000\000\000\000\0002\360\000\000\000\000
\N000\0002\360\000\000\000\000\000\000\000\000\000\000\000\000\N000\000\0O00N\000\000
\000\000\000\000\000\000\000\000\N000N\000\0O00N\000\000

See Also

ST_AsBinary, ST_ASEWKT, ST_AsText, ST_GeomFromEWKT, ST_SRID

8.6.3 ST_ASEWKT

ST_ASEWKT — Return the Well-Known Text (WKT) representation of the geometry with SRID meta data.

Synopsis

text ST_AsEWKT(geometry gl);
text ST_AsEWKT(geography gl);

PostGIS 2.1.0 Manual
199 /671

Description

Returns the Well-Known Text representation of the geometry prefixed with the SRID.

Not Note
The WKT spec does not include the SRID. To get the OGC WKT format use ST_AsText

. WKT format does not maintain precision so to prevent floating truncation, use ST_AsBinary or ST_AsEWKB format for
transport.

. Note
Note
ST_AsSEWKT is the reverse of ST_GeomFromEWKT. Use ST_GeomFromEWKT to convert to a postgis geometry from
ST_AsSEWKT representation.

Enhanced: 2.0.0 support for Geography, Polyhedral surfaces, Triangles and TIN was introduced.
/ This function supports 3d and will not drop the z-index.

/ This method supports Circular Strings and Curves

/ This function supports Polyhedral surfaces.

/ This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).

Examples

SELECT ST_AsEWKT (' 0103000020E61000000100000005000000000000
00
FO3F000000000000F03F000000000000F03F000000000000F03
F00" : : geometry) ;

st_asewkt

SRID=4326;POLYGON((0 0,0 1,1 1,1 0,0 0))
(1 row)

SELECT ST_AsSEWKT (' 0108000080030000000000000060 <
E30A4100000000785C0241000000000000F03F0000000018

E20A4100000000485F024100000000000000400000000018

E20A4100000000305C02410000000000000840")

——st_asewkt———
CIRCULARSTRING (220268 150415 1,220227 150505 2,220227 150406 3)

See Also

ST_AsBinaryST_AsEWKBST_AsText, ST_GeomFromEWKT

PostGIS 2.1.0 Manual
200/ 671

8.6.4 ST AsGeoJSON

ST_AsGeoJSON — Return the geometry as a GeoJSON element.

Synopsis

text ST_AsGeoJSON(geometry geom, integer maxdecimaldigits=15, integer options=0);
text ST_AsGeoJSON(geography geog, integer maxdecimaldigits=15, integer options=0);
text ST_AsGeoJSON(integer gj_version, geometry geom, integer maxdecimaldigits=135, integer options=0);
text ST_AsGeoJSON(integer gj_version, geography geog, integer maxdecimaldigits=15, integer options=0);

Description
Return the geometry as a Geometry Javascript Object Notation (GeoJSON) element. (Cf GeoJSON specifications 1.0). 2D and
3D Geometries are both supported. GeoJSON only support SES 1.1 geometry type (no curve support for example).

The gj_version parameter is the major version of the GeoJSON spec. If specified, must be 1. This represents the spec version of
GeoJSON.

The third argument may be used to reduce the maximum number of decimal places used in output (defaults to 15).

The last "options’ argument could be used to add Bbox or Crs in GeoJSON output:

* 0: means no option (default value)

1: GeoJSON Bbox
e 2: GeoJSON Short CRS (e.g EPSG:4326)

4: GeoJSON Long CRS (e.g urn:ogc:def:crs:EPSG::4326)

Version 1: ST_AsGeoJSON(geom) / precision=15 version=1 options=0
Version 2: ST_AsGeoJSON(geom, precision) / version=1 options=0
Version 3: ST_AsGeoJSON(geom, precision, options) / version=1
Version 4: ST_AsGeoJSON(gj_version, geom) / precision=15 options=0
Version 5: ST_AsGeoJSON(gj_version, geom, precision) /options=0
Version 6: ST_AsGeoJSON(gj_version, geom, precision,options)
Availability: 1.3.4

Auvailability: 1.5.0 geography support was introduced.

Changed: 2.0.0 support default args and named args.

J This function supports 3d and will not drop the z-index.

Examples

GeoJSON format is generally more efficient than other formats for use in ajax mapping. One popular javascript client that
supports this is Open Layers. Example of its use is OpenLayers GeoJSON Example

SELECT ST_AsGeoJSON (the_geom) from fe_edges limit 1;
st_asgeojson

{"type":"MultiLineString", "coordinates": [[[-89.734634999999997,31.4920720000000001,

http://geojson.org/geojson-spec.html
http://openlayers.org/dev/examples/vector-formats.html

PostGIS 2.1.0 Manual
201 /671

[-89.734955999999997,31.492237999999997111}

(1 row)

--3d point

SELECT ST_AsGeoJSON (' LINESTRING(1 2 3, 4 5 6)7);

st_asgeojson

{"type":"LineString", "coordinates":[[1,2,3],[4,5,6]]}

8.6.5 ST_AsGML

ST_AsGML — Return the geometry as a GML version 2 or 3 element.

Synopsis

text ST_AsGML(integer version, geometry geom, integer maxdecimaldigits=15, integer options=0, text nprefix=null, text id=null);
text ST_AsGML(integer version, geography geog, integer maxdecimaldigits=15, integer options=0, text nprefix=null, text
id=null);

Description

Return the geometry as a Geography Markup Language (GML) element. The version parameter, if specified, may be either 2 or
3. If no version parameter is specified then the default is assumed to be 2. The precision argument may be used to reduce the
maximum number of decimal places (maxdecimaldigits) used in output (defaults to 15).

GML 2 refer to 2.1.2 version, GML 3 to 3.1.1 version

The *options’ argument is a bitfield. It could be used to define CRS output type in GML output, and to declare data as lat/lon:

0: GML Short CRS (e.g EPSG:4326), default value

1: GML Long CRS (e.g urn:ogc:def:crs:EPSG::4326)

* 2: For GML 3 only, remove srsDimension attribute from output.

4: For GML 3 only, use <LineString> rather than <Curve> tag for lines.

* 16: Declare that datas are lat/lon (e.g srid=4326). Default is to assume that data are planars. This option is useful for GML
3.1.1 output only, related to axis order. So if you set it, it will swap the coordinates so order is lat lon instead of database lon
lat.

* 32: Output the box of the geometry (envelope).

The namespace prefix’ argument may be used to specify a custom namespace prefix or no prefix (if empty). If null or omitted
"gml’ prefix is used

Availability: 1.3.2
Availability: 1.5.0 geography support was introduced.

Enhanced: 2.0.0 prefix support was introduced. Option 4 for GML3 was introduced to allow using LineString instead of Curve
tag for lines. GML3 Support for Polyhedral surfaces and TINS was introduced. Option 32 was introduced to output the box.

Changed: 2.0.0 use default named args
Enhanced: 2.1.0 id support was introduced, for GML 3.

PostGIS 2.1.0 Manual
202/ 671

Nott Note
Only version 3+ of ST_AsGML supports Polyhedral Surfaces and TINS.

/ This function supports 3d and will not drop the z-index.
/ This function supports Polyhedral surfaces.
/ This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).

Examples: Version 2

SELECT ST_AsSGML (ST_GeomFromText (' POLYGON((O 0,0 1,1 1,1 0,0 0))",43206));
st_asgml
<gml:Polygon srsName="EPSG:4326"><gml:outerBoundaryIs><gml:LinearRing><gml:coordinates <
>0,0 0,1 1,1 1,0 0,0</gml:coordinates></gml:LinearRing></gml:outerBoundaryIs></gml: <
Polygon>

Examples: Version 3

—-— Flip coordinates and output extended EPSG (16 | 1)--
SELECT ST_AsSGML (3, ST_GeomFromText ('POINT (5.234234233242 6.34534534534)' ,4326), 5, 17);
st_asgml
<gml:Point srsName="urn:ogc:def:crs:EPSG::4326"><gml:pos>6.34535 5.23423</gml:pos></gml <
:Point>

—— Output the envelope (32) —-
SELECT ST_AsSGML (3, ST_GeomFromText (' LINESTRING(l1 2, 3 4, 10 20)’,4326), 5, 32);
st_asgml
<gml:Envelope srsName="EPSG:4326">
<gml:lowerCorner>1 2</gml:lowerCorner>
<gml:upperCorner>10 20</gml:upperCorner>
</gml:Envelope>

—— Output the envelope (32) , reverse (lat lon instead of lon lat) (16), long srs (l)= 32 | «
16 | 1 = 49 ——
SELECT ST_AsGML (3, ST_GeomFromText (' LINESTRING(1 2, 3 4, 10 20)’,4326), 5, 49);
st_asgml
<gml:Envelope srsName="urn:ogc:def:crs:EPSG::4326">
<gml:lowerCorner>2 1</gml:lowerCorner>
<gml :upperCorner>20 10</gml:upperCorner>
</gml:Envelope>

—— Polyhedral Example —-—
SELECT ST_AsSGML (3, ST_GeomFromEWKT (/ POLYHEDRALSURFACE(((0 0 0, 0 01, 011, 010, 00 0) ¢«

(¢<0 00, 010, 110 100, 000)), ((OOCO 100, 1201, 001, 000)),
(¢10, 1211, 101, 100, 110)),
(¢0>20, 011,111,110, 010), (¢cOO1, 101, 111, 011, 001))))):;

PostGIS 2.1.0 Manual
203 /671

<gml:PolyhedralSurface>
<gml:polygonPatches>
<gml:PolygonPatch>
<gml:exterior>
<gml:LinearRing>
<gml:posList srsDimension="3">0 0 0 0 0 1 0 1 1 0 1 0 O O 0O</gml:posList>
</gml:LinearRing>
</gml:exterior>
</gml:PolygonPatch>
<gml:PolygonPatch>
<gml:exterior>
<gml:LinearRing>
<gml:posList srsDimension="3">0 0 0 0 1 0 1 1 0 1 0 0 O O 0</gml:posList>
</gml:LinearRing>
</gml:exterior>
</gml:PolygonPatch>
<gml:PolygonPatch>
<gml:exterior>
<gml:LinearRing>
<gml:posList srsDimension="3">0 0 0 1 0 0 1 0 1 0 0 1 O O O</gml:posList>
</gml:LinearRing>
</gml:exterior>
</gml:PolygonPatch>
<gml:PolygonPatch>
<gml:exterior>
<gml:LinearRing>
<gml:posList srsDimension="3">1 1 0 1 1 1 1 0 1 1 0 0 1 1 0</gml:posList>
</gml:LinearRing>
</gml:exterior>
</gml:PolygonPatch>
<gml:PolygonPatch>
<gml:exterior>
<gml:LinearRing>
<gml:posList srsDimension="3">0 1 0 0 1 1 1 1 1 1 1 0 0 1 0</gml:posList>
</gml:LinearRing>
</gml:exterior>
</gml:PolygonPatch>
<gml:PolygonPatch>
<gml:exterior>
<gml:LinearRing>
<gml:posList srsDimension="3">0 0 1 1 0 1 1 1 1 0 1 1 0 0 1</gml:posList>
</gml:LinearRing>
</gml:exterior>
</gml:PolygonPatch>
</gml:polygonPatches>
</gml:PolyhedralSurface>

See Also

ST_GeomFromGML

8.6.6 ST_AsSHEXEWKB

ST_AsHEXEWKB — Returns a Geometry in HEXEWKB format (as text) using either little-endian (NDR) or big-endian (XDR)
encoding.

PostGIS 2.1.0 Manual
204 / 671

Synopsis

text ST_ASsHEXEWKB(geometry g1, text NDRorXDR);
text ST_AsHEXEWKB(geometry gl);

Description

Returns a Geometry in HEXEWKB format (as text) using either little-endian (NDR) or big-endian (XDR) encoding. If no
encoding is specified, then NDR is used.

Not? Note
Availability: 1.2.2

J This function supports 3d and will not drop the z-index.

/ This method supports Circular Strings and Curves

Examples

SELECT ST_AsSHEXEWKB (ST_GeomFromText (POLYGON((0 0,0 1,1 1,1 0,0 0))’,4326));
which gives same answer as

SELECT ST_GeomFromText ("POLYGON((O 0,0 1,1 1,1 0,0 0))’,4326) ::text;

st_ashexewkb

0103000020E6100000010000000500
00000000000000000000000000000000
00000000000000000000000000000000F03F
000000000000F03F000000000000F03F000000000000F03
F00

8.6.7 ST_AskKML

ST_AsKML — Return the geometry as a KML element. Several variants. Default version=2, default precision=15

Synopsis

text ST_AsKML(geometry geom, integer maxdecimaldigits=15);
text ST_AsKML(geography geog, integer maxdecimaldigits=15);
text ST_AsKML(integer version, geometry geom, integer maxdecimaldigits=15, text nprefix=NULL);
text ST_AsKML(integer version, geography geog, integer maxdecimaldigits=15, text nprefix=NULL);

Description

Return the geometry as a Keyhole Markup Language (KML) element. There are several variants of this function. maximum
number of decimal places used in output (defaults to 15), version default to 2 and default namespace is no prefix.

Version 1: ST_AsKML(geom_or_geog, maxdecimaldigits) / version=2 / maxdecimaldigits=15

Version 2: ST_AsKML(version, geom_or_geog, maxdecimaldigits, nprefix) maxdecimaldigits=15 / nprefix=NULL

PostGIS 2.1.0 Manual

205 /671
N:ﬂ"! Note
Requires PostGIS be compiled with Proj support. Use PostGIS_Full_Version to confirm you have proj support compiled
in.
Nott Note

Availability: 1.2.2 - later variants that include version param came in 1.3.2

Not? Note

Enhanced: 2.0.0 - Add prefix namespace. Default is no prefix

Not? Note

Changed: 2.0.0 - uses default args and supports named args

Not? Note

AsKML output will not work with geometries that do not have an SRID

/ This function supports 3d and will not drop the z-index.

Examples

SELECT ST_AsKML (ST_GeomFromText (/ POLYGON ((0 0,0 1,1 1,1 0,0 0))’,4326));
st_askml

<Polygon><outerBoundaryIs><LinearRing><coordinates>0,0 0,1 1,1 1,0 0,0</coordinates></ ¢
LinearRing></outerBoundaryIs></Polygon>

—-3d linestring
SELECT ST_AsKML (/' SRID=4326; LINESTRING(1 2 3, 4 5 6)");
<LineString><coordinates>1,2,3 4,5, 6</coordinates></LineString>

See Also

ST_AsSVG, ST_AsGML

8.6.8 ST_AsSVG

ST_AsSVG — Returns a Geometry in SVG path data given a geometry or geography object.

PostGIS 2.1.0 Manual
206 / 671

Synopsis

text ST_AsSVG(geometry geom, integer rel=0, integer maxdecimaldigits=15);
text ST_AsSVG(geography geog, integer rel=0, integer maxdecimaldigits=15);

Description

Return the geometry as Scalar Vector Graphics (SVG) path data. Use 1 as second argument to have the path data implemented
in terms of relative moves, the default (or 0) uses absolute moves. Third argument may be used to reduce the maximum number
of decimal digits used in output (defaults to 15). Point geometries will be rendered as cx/cy when ’rel’” arg is 0, x/y when ’rel’ is

non

1. Multipoint geometries are delimited by commas (","), GeometryCollection geometries are delimited by semicolons (";").

st¢} Note
N Availability: 1.2.2. Availability: 1.4.0 Changed in PostGIS 1.4.0 to include L command in absolute path to conform to
http://www.w3.0rg/TR/SVG/paths.html#PathDataBNF

Changed: 2.0.0 to use default args and support named args

Examples

SELECT ST_AsSVG(ST_GeomFromText (" POLYGON((O 0,0 1,1 1,1 0,0 0))’,4326));

MOOLO-11-110 2

8.6.9 ST_AsX3D

ST_AsX3D — Returns a Geometry in X3D xml node element format: ISO-IEC-19776-1.2-X3DEncodings-XML

Synopsis

text ST_AsX3D(geometry gl, integer maxdecimaldigits=15, integer options=0);

Description

Returns a geometry as an X3D xml formatted node element http://web3d.org/x3d/specifications/ISO-IEC-19776-1.2-X3DEncodings-
XML/PartO1/EncodingOfNodes.html. If mnaxdecimaldigits (precision) is not specified then defaults to 15.

Note
. There are various options for translating PostGIS geometries to X3D since X3D geometry types don’t map directly
NG'H’! to PostGIS geometry types and some newer X3D types that might be better mappings we ahve avoided since most
rendering tools don’t currently support them. These are the mappings we have settled on. Feel free to post a bug ticket
if you have thoughts on the idea or ways we can allow people to denote their preferred mappings.
Below is how we currently map PostGIS 2D/3D types to X3D types

http://www.w3.org/TR/SVG/paths.html#PathDataBNF
http://web3d.org/x3d/specifications/ISO-IEC-19776-1.2-X3DEncodings-XML/Part01/EncodingOfNodes.html
http://web3d.org/x3d/specifications/ISO-IEC-19776-1.2-X3DEncodings-XML/Part01/EncodingOfNodes.html

PostGIS 2.1.0 Manual
207 / 671

| PostGIS Type | 2D X3D Type | 3D X3D Type
PostGIS Type 2D X3D Type 3D X3D Type
not yet implemented - will be .
LINESTRING PolyLine2D LineSet
MULTILINESTRING not yet implemented - will be IndexedLineSet
PolyLine2D
MULTIPOINT Polypoint2D PointSet
outputs the space delimited outputs the space delimited
POINT . .
coordinates coordinates
(MULTI) POLYGON, . IndexedFaceSet (inner rings currently
POLYHEDRALSURFACE Tnvalid X3D markup output as another faceset)
TIN TriangleSet2D (Not Yet Implemented) | IndexedTriangleSet
N;’H’! Note
2D geometry support not yet complete. Inner rings currently just drawn as separate polygons. We are working on
these.

Lots of advancements happening in 3D space particularly with X3D Integration with HTMLS5

There is also a nice open source X3D viewer you can use to view rendered geometries. Free Wrl http://freewrl.sourceforge.net/
binaries available for Mac, Linux, and Windows. Use the FreeWRL_Launcher packaged to view the geometries.

Availability: 2.0.0: ISO-IEC-19776-1.2-X3DEncodings-XML
/ This function supports 3d and will not drop the z-index.
/ This function supports Polyhedral surfaces.

/ This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).

Example: Create a fully functional X3D document - This will generate a cube that is viewable in FreeWrl and other X3D
viewers.

SELECT ’<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE X3D PUBLIC "ISO//Web3D//DTD X3D 3.0//EN" "http://www.web3d.org/specifications/x3d <«

-3.0.dtd">
<X3D>

<Scene>
<Transform>
<Shape>
<Appearance>
<Material emissiveColor=''0 0 1''/>
</Appearance> ' ||

ST_AsX3D(ST_GeomFromEWKT (' POLYHEDRALSURFACE(((0 0 0, 0 0 1, O 010, 000)),
101, 001, O

((<0 oo, 010,110, 100, 000)), ((0OO0OO0O, 100, o o
((010, 111, 1 01, 100, 11 0)),
((<0120,011, 111,110, 010)), ((OO0C1, 101, 111, 011, 00 1)))K"y Il
' </Shape>
</Transform>
</Scene>

</X3D>" As x3ddoc;

x3ddoc

http://www.web3d.org/x3d/wiki/index.php/X3D_and_HTML5#Goals:_X3D_and_HTML5
http://freewrl.sourceforge.net/

PostGIS 2.1.0 Manual
208 / 671

<?xml version="1.0" encoding="UTF-8"7?>
<!DOCTYPE X3D PUBLIC "ISO//Web3D//DTD X3D 3.0//EN" "http://www.web3d.org/specifications/x3d
-3.0.dtd">
<X3D>
<Scene>
<Transform>
<Shape>
<Appearance>
<Material emissiveColor="0 0 1’/>
</Appearance>
<IndexedFaceSet coordIndex='0 1 2 3 -1 4 5 6 7 -1 8 9 10 11 -1 12 13 14 15 -1 16 17 <
18 19 -1 20 21 22 23'>
<Coordinate point="0 0 0 0 0 1 0 1 1 01 00000101101 00000100 <«
1010011101111 0110001001111111000110111 <«
1011 />
</IndexedFaceSet>
</Shape>
</Transform>
</Scene>
</X3D>

Example: An Octagon elevated 3 Units and decimal precision of 6

SELECT ST_AsX3D (
ST_Translate (
ST_Force_3d(
ST_Buffer (ST_Point (10,10),5, ’'quad_segs=2")), 0,0,
3)
,6) As x3dfrag;

x3dfrag
<IndexedFaceSet coordIndex="0 1 2 3 4 5 6 7">
<Coordinate point="15 10 3 13.535534 6.464466 3 10 5 3 6.464466 6.464466 3 5 10 3 <
6.464466 13.535534 3 10 15 3 13.535534 13.535534 3 " />
</IndexedFaceSet>

Example: TIN

SELECT ST_AsX3D (ST_GeomFromEWKT (TIN (((
0,

I4

1
0,
0

o~ o o]

~

~

s
O OO ~O O O O
O)—'HOA
O?OO

)) As x3dfrag;

<IndexedTriangleSet 1index="0 1 2 3 4 5’'><Coordinate point="0 0 0 0 01 01 0 0 0 0 0101 ¢«
1 0’ /></IndexedTriangleSet>

PostGIS 2.1.0 Manual
209/ 671

Example: Closed multilinestring (the boundary of a polygon with holes)

SELECT ST_AsX3D(
ST_GeomFromEWKT (' MULTILINESTRING((20 0 10,16 -12 10,0 -16 10,-12 -12 10,-20 0 <«
10,-12 16 10,0 24 10,16 16 10,20 0 10),
(12 0 10,8 8 10,0 12 10,-8 8 10,-8 O 10,-8 -4 10,0 -8 10,8 -4 10,12 0 10))")
) As x3dfrag;

<IndexedLineSet coordIndex='0 1 2 3 4 5 6 7 0 -1 8 9 10 11 12 13 14 15 8'>
<Coordinate point='20 0 10 16 -12 10 0 -16 10 -12 -12 10 -20 0 10 -12 16 10 0 24 10 16 <
16 10 12 0 10 8 8 10 0 12 10 -8 8 10 -8 0 10 -8 -4 10 O -8 10 8 -4 10 " />
</IndexedLineSet>

8.6.10 ST GeoHash

ST_GeoHash — Return a GeoHash representation of the geometry.

Synopsis

text ST_GeoHash(geometry geom, integer maxchars=full_precision_of_point);

Description

Return a GeoHash representation (http://en.wikipedia.org/wiki/Geohash) of the geometry. A GeoHash encodes a point into a text
form that is sortable and searchable based on prefixing. A shorter GeoHash is a less precise representation of a point. It can also
be thought of as a box, that contains the actual point.

If nomaxchars is specficified ST_GeoHash returns a GeoHash based on full precision of the input geometry type. Points return
a GeoHash with 20 characters of precision (about enough to hold the full double precision of the input). Other types return a
GeoHash with a variable amount of precision, based on the size of the feature. Larger features are represented with less precision,
smaller features with more precision. The idea is that the box implied by the GeoHash will always contain the input feature.

If maxchars is specified ST_GeoHash returns a GeoHash with at most that many characters so a possibly lower precision
representation of the input geometry. For non-points, the starting point of the calculation is the center of the bounding box of the
geometry.

Awailability: 1.4.0

N;ﬂ"! Note

ST_GeoHash will not work with geometries that are not in geographic (lon/lat) coordinates.

/ This method supports Circular Strings and Curves

Examples

SELECT ST_GeoHash (ST_SetSRID (ST_MakePoint (-126,48),4326));

st_geohash

cOw3hfls70w3hfls70w3

http://en.wikipedia.org/wiki/Geohash

PostGIS 2.1.0 Manual
210/ 671

SELECT ST_GeoHash (ST_SetSRID (ST_MakePoint (-126,48),4326),5);

st_geohash

See Also

ST _GeomFromGeoHash

8.6.11 ST_AsText

ST_AsText — Return the Well-Known Text (WKT) representation of the geometry/geography without SRID metadata.

Synopsis

text ST_AsText(geometry gl);
text ST_AsText(geography gl);

Description

Returns the Well-Known Text representation of the geometry/geography.

. Note
Note!
The WKT spec does not include the SRID. To get the SRID as part of the data, use the non-standard PostGIS

ST_AsEWKT

. WKT format does not maintain precision so to prevent floating truncation, use ST_AsBinary or ST_AsEWKB format for
transport.

4 Note
N ST_AsText is the reverse of ST_GeomFromText. Use ST_GeomFromText to convert to a postgis geometry from
ST_AsText representation.

Auvailability: 1.5 - support for geography was introduced.
/ This method implements the OpenGIS Simple Features Implementation Specification for SQL 1.1. s2.1.1.1
/ This method implements the SQL/MM specification. SQL-MM 3: 5.1.25

/ This method supports Circular Strings and Curves

http://www.opengeospatial.org/standards/sfs

PostGIS 2.1.0 Manual

211/671

Examples

SELECT ST_AsText (01030000000100000005000000000000000000
00
FO3F000000000000F03F000000000000F03F000000000000F03
F00") ;

st_astext

POLYGON((O 0,0 1,1 1,1 0,0 0))
(1 row)

See Also

ST_AsBinary, ST_ASEWKB, ST_ASEWKT, ST_GeomFromText

8.6.12 ST_AsLatLonText

ST_AsLatLonText — Return the Degrees, Minutes, Seconds representation of the given point.

Synopsis

text ST_AsLatLonText(geometry pt);
text ST_AsLatLonText(geometry pt, text format);

Description

Returns the Degrees, Minutes, Seconds representation of the point.

N:ﬂ"’! Note

It is assumed the point is in a lat/lon projection. The X (lon) and Y (lat) coordinates are normalized in the output to the

"normal” range (-180 to +180 for lon, -90 to +90 for lat).

The text parameter is a format string containing the format for the resulting text, similar to a date format string. Valid tokens
are "D" for degrees, "M" for minutes, "S" for seconds, and "C" for cardinal direction (NSEW). DMS tokens may be repeated to

indicate desired width and precision ("SSS.SSSS" means " 1.0023").

"M", "S", and "C" are optional. If "C" is omitted, degrees are shown with a

sign if south or west. If "S" is omitted, minutes

will be shown as decimal with as many digits of precision as you specify. If "M" is also omitted, degrees are shown as decimal

with as many digits precision as you specify.
If the format string is omitted (or zero-length) a default format will be used.

Availability: 2.0

Examples

Default format.

SELECT (ST_AsLatLonText ("POINT (-3.2342342 -2.32498)"));
st_aslatlontext

2\textdegree{}19729.928"S 3\textdegree{}14’3.243"W

PostGIS 2.1.0 Manual

212/671

Providing a format (same as the default).

SELECT (ST_AsLatLonText ('POINT (-3.2342342 -2.32498)’, ’'D\textdegree{}M’’S.SSS"C’));
st_aslatlontext

2\textdegree{}19729.928"S 3\textdegree{}14’3.243"W

Characters other than D, M, S, C and . are just passed through.

SELECT (ST_AsLatLonText ('POINT (-3.2342342 -2.32498)’, ’'D degrees, M minutes, S seconds to
the C’));
st_aslatlontext

2 degrees, 19 minutes, 30 seconds to the S 3 degrees, 14 minutes, 3 seconds to the W

Signed degrees instead of cardinal directions.

SELECT (ST_AsLatLonText ('POINT (-3.2342342 -2.32498)’, ’'D\textdegree{}M’’S.SSS"’));
st_aslatlontext

-2\textdegree{}19729.928" -3\textdegree{}14’3.243"

Decimal degrees.

SELECT (ST_AsLatLonText ('POINT (-3.2342342 -2.32498)’, ’'D.DDDD degrees C’));
st_aslatlontext

2.3250 degrees S 3.2342 degrees W

Excessively large values are normalized.

SELECT (ST_AsLatLonText ('POINT (-302.2342342 -792.32498)"));
st_aslatlontext

72\textdegree{}19729.928"S 57\textdegree{}45’'56.757"E

8.7 Operators

8.71 &&

&& — Returns TRUE if A’s 2D bounding box intersects B’s 2D bounding box.

Synopsis

boolean &&(geometry A , geometry B);
boolean &&(geography A , geography B);

Description

The & & operator returns TRUE if the 2D bounding box of geometry A intersects the 2D bounding box of geometry B.

<o

N;ﬂd Note

This operand will make use of any indexes that may be available on the geometries.

PostGIS 2.1.0 Manual
213 /671

Enhanced: 2.0.0 support for Polyhedral surfaces was introduced.

Availability: 1.5.0 support for geography was introduced.
/ This method supports Circular Strings and Curves

/ This function supports Polyhedral surfaces.

Examples

SELECT tbll.columnl, tbl2.columnl, tbll.column2 && tbl2.column2 AS overlaps
FROM (VALUES

(1, "LINESTRING(0O 0, 3 3)’::geometry),

(2, '"LINESTRING(0 1, O 5)’::geometry)) AS tbll,
(VALUES

(3, "LINESTRING(1 2, 4 6)’::geometry)) AS tbl2;

columnl | columnl | overlaps
_________ B
1| 31t
2 3 | £
(2 rows)
See Also

&>, &>, &<, &<, ~, @

8.7.2 &&&

&&& — Returns TRUE if A’s 3D bounding box intersects B’s 3D bounding box.

Synopsis

boolean & & &(geometry A , geometry B);

Description

The & & & operator returns TRUE if the n-D bounding box of geometry A intersects the n-D bounding box of geometry B.

N;ﬂ"! Note

This operand will make use of any indexes that may be available on the geometries.

Availability: 2.0.0

/ This method supports Circular Strings and Curves

/ This function supports Polyhedral surfaces.

/ This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).

/ This function supports 3d and will not drop the z-index.

PostGIS 2.1.0 Manual
214 /671

Examples: 3D LineStrings

SELECT tbll.columnl, tbl2.columnl, tbll.column2 &&& tbl2.column2 AS overlaps_3d,
tbll.column2 && tbl2.column2 AS overlaps_2d
FROM (VALUES
(1, "LINESTRING Z(
(2, "LINESTRING Z (
(VALUES
(3, "LINESTRING Z(1 2 1, 4 6 1)’::geometry)) AS tbl2;

0 , 3 3 2)’::geometry),
1 05

01
2 0, -1)’::geometry)) AS tbll,

Examples: 3M LineStrings

SELECT tbll.columnl, tbl2.columnl, tbll.column2 &&& tbl2.column2 AS overlaps_3zm,
tbll.column2 && tbl2.column2 AS overlaps_2d
FROM (VALUES
(1, "LINESTRING M/
(2, '"LINESTRING M (
(VALUES
(3, "LINESTRING M(1 2 1, 4 6 1)’::geometry)) AS tbl2;

, 3 3 2)’::geometry),

001
120, 05 -1)"::geometry)) AS tbll,

columnl | columnl | overlaps_3zm | overlaps_2d
777777777 4+t
1] 3] t |t
2 | 3 | £ |t
See Also
&&
8.7.3 &<

&< — Returns TRUE if A’s bounding box overlaps or is to the left of B’s.

Synopsis

boolean &<(geometry A , geometry B);

Description

The &< operator returns TRUE if the bounding box of geometry A overlaps or is to the left of the bounding box of geometry B,
or more accurately, overlaps or is NOT to the right of the bounding box of geometry B.

N;ﬂ"’! Note

This operand will make use of any indexes that may be available on the geometries.

PostGIS 2.1.0 Manual
215/ 671

Examples

SELECT tbll.columnl, tbl2.columnl, tbll.column2 &< tbl2.column2 AS overleft
FROM
(VALUES
1, 'LINESTRING(1 2, 4 6)’::geometry)) AS tbll,
VALUES
2, "LINESTRING(O 0, 3 3)’::geometry),
3, '"LINESTRING(O0 1, 0 5)’::geometry)
4

(
(
(
(’

(4, "LINESTRING(6 0, 6 1)’::geometry)) AS tbl2;

columnl | columnl | overleft
_________ B
1 | 2 | £
1 | 3 | f
1 | 4 | t
(3 rows)
See Also

&&, 1&>, &>, &<

8.7.4 &<|

&<l — Returns TRUE if A’s bounding box overlaps or is below B’s.

Synopsis

boolean &<I(geometry A , geometry B);

Description

The &< | operator returns TRUE if the bounding box of geometry A overlaps or is below of the bounding box of geometry B, or
more accurately, overlaps or is NOT above the bounding box of geometry B.

/ This method supports Circular Strings and Curves

/ This function supports Polyhedral surfaces.

N;‘l"! Note

This operand will make use of any indexes that may be available on the geometries.

Examples

SELECT tbll.columnl, tbl2.columnl, tbll.column2 &<| tbl2.column2 AS overbelow
FROM

(VALUES

(1, 'LINESTRING(6 0, 6 4)’::geometry)) AS tbll,

(VALUES

(2, '"LINESTRING(0O 0, 3 3)’::geometry),

PostGIS 2.1.0 Manual
216 /671

(3, "LINESTRING(0 1, 0 5)’::geometry),
(4, 'LINESTRING(1 2, 4 6)’::geometry)) AS tbl2;

columnl | columnl | overbelow
_________ +_________+___________
1 | 2 | £
1 | 31t
1 | 4 | t
(3 rows)
See Also

&&, 1&>, &>, &<

8.75 &>

&> — Returns TRUE if A’ bounding box overlaps or is to the right of B’s.

Synopsis

boolean &>(geometry A , geometry B);

Description

The &> operator returns TRUE if the bounding box of geometry A overlaps or is to the right of the bounding box of geometry B,
or more accurately, overlaps or is NOT to the left of the bounding box of geometry B.

N:’M Note

This operand will make use of any indexes that may be available on the geometries.

Examples

SELECT tbll.columnl, tbl2.columnl, tbll.column2 &> tbl2.column2 AS overright
FROM
(VALUES
1, 'LINESTRING(1 2, 4 6)’::geometry)) AS tbll,
VALUES
2, "LINESTRING(O 0, 3 3)’::geometry),
3, "LINESTRING(O 1, 0 5)’::geometry),
4, "LINESTRING(6 0, 6 1)’::geometry)) AS tbl2;

columnl | columnl | overright
,,,,,,,,, oy
1 | 2 | t
1] 31t
1 | 4 | f
(3 rows)
See Also

&&, 1&>, &<, &<

PostGIS 2.1.0 Manual

217 /671

8.7.6 <<

<< — Returns TRUE if A’s bounding box is strictly to the left of B’s.

Synopsis

boolean <<(geometry A , geometry B);

Description

The << operator returns TRUE if the bounding box of geometry A is strictly to the left of the bounding box of geometry B.

N;ﬂ"! Note

This operand will make use of any indexes that may be available on the geometries.

Examples
SELECT tbll.columnl,
FROM
(VALUES
(1, "LINESTRING (1
(VALUES
(2, "LINESTRING (0
(3, "LINESTRING (6
(4, 'LINESTRING (2
columnl | columnl |
————————— Fm————
1] 2 | £
1 | 3]t
1] 4 | t
(3 rows)
See Also
>> >>, <<|
8.7.7 <<|

tbl2.

columnl, tbll.column2 << tbl2.column2 AS left

5)’::geometry)) AS tbll,

3)’::geometry),
5)’ ::geometry),
6)’::geometry)) AS tbl2;

<<| — Returns TRUE if A’s bounding box is strictly below B’s.

Synopsis

boolean <<I(geometry A , geometry B);

PostGIS 2.1.0 Manual
218 /671

Description

The << | operator returns TRUE if the bounding box of geometry A is strictly below the bounding box of geometry B.

N;*'l"! Note

This operand will make use of any indexes that may be available on the geometries.

Examples

SELECT tbll.columnl, tbl2.columnl, tbll.column2 <<| tbl2.column2 AS below
FROM
(VALUES
1, "LINESTRING (0 0, 4 3)’::geometry)) AS tbll,
VALUES
2, '"LINESTRING (1 4, 1 7)’::geometry),
3, 'LINESTRING (6 1, 6 5)’::geometry),
4

(
(
(
(
(4, "LINESTRING (2 3, 5 6)’::geometry)) AS tbl2;

columnl | columnl | below

777777777 +777777777+7777777
1 | 2 |t
1 3 | f
1 | 4 | f

(3 rows)

See Also

<, >>, >>

878 =

= — Returns TRUE if A’s bounding box is the same as B’s. Uses double precision bounding box.

Synopsis

boolean =(geometry A , geometry B);
boolean =(geography A , geography B);

Description

The = operator returns TRUE if the bounding box of geometry/geography A is the same as the bounding box of geometry/geog-
raphy B. PostgreSQL uses the =, <, and > operators defined for geometries to perform internal orderings and comparison of
geometries (ie. in a GROUP BY or ORDER BY clause).

Warning

This is cause for a lot of confusion. When you compare geometryA = geometryB it will return true even when the
geometries are clearly different IF their bounding boxes are the same. To check for true equality use ST_OrderingEquals
or ST_Equals

PostGIS 2.1.0 Manual
219/671

1 h, + Caution
This operand will NOT make use of any indexes that may be available on the geometries.

/ This method supports Circular Strings and Curves

/ This function supports Polyhedral surfaces.

Changed: 2.0.0 , the bounding box of geometries was changed to use double precision instead of float4 precision of prior. The
side effect of this is that in particular points in prior versions that were a little different may have returned true in prior versions
and false in 2.0+ since their float4 boxes would be the same but there float8 (double precision), would be different.

Examples

SELECT ’LINESTRING(O 0, 0 1, 1 0)’::geometry = 'LINESTRING(1 1, 0 0)’::geometry;
?column?

SELECT ST_AsText (columnl)
FROM (VALUES
(" LINESTRING (0O 0, 1 1)’::geometry),
(" LINESTRING (1 1, O 0)’::geometry)) AS foo;
st_astext
LINESTRING(O 0,1 1)
LINESTRING(1 1,0 0)
(2 rows)

—— Note: the GROUP BY uses the "=" to compare for geometry equivalency.
SELECT ST_AsText (columnl)
FROM (VALUES

(" LINESTRING (0O 0, 1 1)’::geometry),

("LINESTRING(1 1, 0 0)’::geometry)) AS foo
GROUP BY columnl;

st_astext

LINESTRING(O 0,1 1)
(1 row)

—— In versions prior to 2.0, this used to return true —--
SELECT ST_GeomFromText ("POINT (1707296.37 4820536.77)") =
ST_GeomFromText (" POINT (1707296.27 4820536.87)’) As pt_intersect;

—-—pt_intersect —-—
f

See Also
ST_Equals, ST_OrderingEquals

8.79 >>

>> — Returns TRUE if A’s bounding box is strictly to the right of B’s.

PostGIS 2.1.0 Manual
220/ 671

Synopsis

boolean >>(geometry A , geometry B);

Description

The >> operator returns TRUE if the bounding box of geometry A is strictly to the right of the bounding box of geometry B.

N;ﬂ"! Note

This operand will make use of any indexes that may be available on the geometries.

Examples

SELECT tbll.columnl, tbl2.columnl, tbll.column2 >> tbl2.column2 AS right
FROM
(VALUES
1, "LINESTRING (2 3, 5 6)’::geometry)) AS tbll,
VALUES
2, '"LINESTRING (1 4, 1 7)’::geometry),
3, 'LINESTRING (6 1, 6 5)’::geometry),
4

(
(
(
(
(4, "LINESTRING (0 0, 4 3)’::geometry)) AS tbl2;

columnl | columnl

See Also

<<, I>>, <<l

8710 @

@ — Returns TRUE if A’s bounding box is contained by B’s.

Synopsis

boolean @(geometry A , geometry B);

Description

The @ operator returns TRUE if the bounding box of geometry A is completely contained by the bounding box of geometry B.

N;ﬂ"! Note

This operand will make use of any indexes that may be available on the geometries.

PostGIS 2.1.0 Manual
221 /671

Examples

SELECT tbll.columnl, tbl2.columnl, tbll.column2 @ tbl2.column2 AS contained
FROM
(VALUES
1, "LINESTRING (1 1, 3 3)’::geometry)) AS tbll,
VALUES
2, "LINESTRING (0 0, 4 4)’::geometry),
3, 'LINESTRING (2 2, 4 4)’::geometry),
4, 'LINESTRING (1 1, 3 3)’::geometry)) AS tbl2;

columnl | columnl | contained

777777777 +777777777+77777777777
1| 2 | t
1| 3 | f
1| 4 | t

(3 rows)

See Also

~, &&

8.7.11 |&>

|&> — Returns TRUE if A’s bounding box overlaps or is above B’s.

Synopsis

boolean |&>(geometry A , geometry B);

Description

The | &> operator returns TRUE if the bounding box of geometry A overlaps or is above the bounding box of geometry B, or
more accurately, overlaps or is NOT below the bounding box of geometry B.

N;ﬂ"! Note

This operand will make use of any indexes that may be available on the geometries.

Examples

SELECT tbll.columnl, tbl2.columnl, tbll.column2 |&> tbl2.column2 AS overabove
FROM
(VALUES
1, 'LINESTRING(6 0, 6 4)’::geometry)) AS tbll,
VALUES
2, "LINESTRING(O 0, 3 3)’::geometry),
3, 'LINESTRING (0 1, 5)’ ::geometry),
4, 'LINESTRING(1 2, 4 6)’::geometry)) AS tbl2;

(@]

PostGIS 2.1.0 Manual

222 /671

See Also

&&, &>, &<, &<

8.712 |>>

[>> — Returns TRUE if A’s bounding box is strictly above B’s.

Synopsis

boolean [>>(geometry A , geometry B);

Description

The | >> operator returns TRUE if the bounding box of geometry A is strictly to the right of the bounding box of geometry B.

N;l"! Note

This operand will make use of any indexes that may be available on the geometries.

Examples

SELECT tbll.columnl,

FROM

(VALUES
1, 'LINESTRING
VALUES
2, "LINESTRING
3, "LINESTRING
4, "LINESTRING

columnl | columnl

777777777 +777777777
1 | 2 |
1| 3 |
1 | 4 |

(3 rows)

See Also

<<, >>, <<

8.7.13 -~

(1

(0
(6
(2

|
+
t
£
£

tbl2.columnl, tbll.column2 |>> tbl2.column2 AS above

4, 1 7)’::geometry)) AS tbll,
0, 4 2)’::geometry),

1, 6 5)’"::geometry),
3, 5 6)’::geometry)) AS tbl2;

~— Returns TRUE if A’s bounding box contains B’s.

PostGIS 2.1.0 Manual
223 /671

Synopsis

boolean ~(geometry A , geometry B);

Description

The ~ operator returns TRUE if the bounding box of geometry A completely contains the bounding box of geometry B.

N;*'M Note

This operand will make use of any indexes that may be available on the geometries.

Examples

SELECT tbll.columnl, tbl2.columnl, tbll.column2 ~ tbl2.column2 AS contains
FROM
(VALUES
1, "LINESTRING (0 0, 3 3)’::geometry)) AS tbll,
VALUES
2, "LINESTRING (0 O, 4 4)’::geometry),
3, "LINESTRING (1 1, ::geometry),
4, "LINESTRING (0 0, 3 3)’::geometry)) AS tbl2;

N
N
~

(
(
(
(
(

columnl | columnl

8.714 -~=

~=— Returns TRUE if A’s bounding box is the same as B’s.

Synopsis

boolean ~=(geometry A , geometry B);

Description

The ~= operator returns TRUE if the bounding box of geometry/geography A is the same as the bounding box of geometry/geog-
raphy B.

N;ﬂd Note

This operand will make use of any indexes that may be available on the geometries.

PostGIS 2.1.0 Manual
224 / 671

Auwailability: 1.5.0 changed behavior

/ This function supports Polyhedral surfaces.

Warning

. This operator has changed behavior in PostGIS 1.5 from testing for actual geometric equality to only checking for
bounding box equality. To complicate things it also depends on if you have done a hard or soft upgrade which behavior
your database has. To find out which behavior your database has you can run the query below. To check for true
equality use ST_OrderingEquals or ST_Equals and to check for bounding box equality =; operator is a safer option.

Examples

select 'LINESTRING(0 0, 1 1)’ ::geometry ~= 'LINESTRING(O 1, 1 0)’::geometry as equality;
equality

The above can be used to test if you have the new or old behavior of ~= operator.

See Also

ST_Equals, ST_OrderingEquals, =

8.7.15 <->
<->— Returns the distance between two points. For point / point checks it uses floating point accuracy (as opposed to the double

precision accuracy of the underlying point geometry). For other geometry types the distance between the floating point bounding
box centroids is returned. Useful for doing distance ordering and nearest neighbor limits using KNN gist functionality.

Synopsis

double precision <->(geometry A , geometry B);

Description

The <—> operator returns distance between two points read from the spatial index for points (float precision). For other geometries
it returns the distance from centroid of bounding box of geometries. Useful for doing nearest neighbor approximate distance
ordering.

Ntﬂ‘l"! Note

This operand will make use of any indexes that may be available on the geometries. It is different from other operators
that use spatial indexes in that the spatial index is only used when the operator is in the ORDER BY clause.

ot Note
N Index only kicks in if one of the geometries is a constant (not in a subquery/cte). e.g. 'SRID=3005;POINT(1011102

450541)’::geometry instead of a.geom

Refer to OpenGeo workshop: Nearest-Neighbour Searching for real live example.
Availability: 2.0.0 only available for PostgreSQL 9.1+

http://workshops.opengeo.org/postgis-intro/knn.html

PostGIS 2.1.0 Manual

225/671
Examples
SELECT ST_Distance (geom, ’'SRID=3005;POINT (1011102 450541)’::geometry) as d,edabbr, vaabbr
FROM va2005
ORDER BY d limit 10;
d | edabbr | wvaabbr
__________________ +________+________
0 | ALQ | 128
5541.57712511724 | ALQ | 129A
5579.67450712005 | ALQ | 001
6083.4207708641 | ALQ | 131
7691.2205404848 | ALQ | 003
7900.75451037313 | ALQ | 122
8694.20710669982 | ALQ | 129B
9564.24289057111 | ALQ | 130
12089.665931705 | ALQ | 127
18472.5531479404 | ALQ | 002
(10 rows)
Then the KNN raw answer:
SELECT st_distance (geom, ’'SRID=3005;POINT (1011102 450541)’ ::geometry) as d,edabbr, vaabbr
FROM va2005
ORDER BY geom <-> ’SRID=3005;POINT (1011102 450541)’::geometry limit 10;
d | edabbr | vaabbr
__________________ I
0 | ALQ | 128
5579.67450712005 | ALQ | 001
5541.57712511724 | ALQ | 129A
8694.20710669982 | ALQ | 129B
9564.24289057111 | ALQ | 130
6083.4207708641 | ALQ | 131
12089.665931705 | ALQ | 127
24795.264503022 | ALQ | 124
24587.6584922302 | ALQ | 123
26764.2555463114 | ALQ | 125
(10 rows)
Note the misordering in the actual distances and the different entries that actually show up in the top 10.
Finally the hybrid:
WITH index_query AS (
SELECT ST_Distance (geom, ’'SRID=3005;POINT (1011102 450541)’::geometry) as d,edabbr, wvaabbr

FROM vaz2005
ORDER BY geom <-
SELECT «*

>

" SRID=3005; POINT (1011102 450541)’ ::geometry LIMIT 100)

FROM index_query
ORDER BY d limit 10;

5541.57712511724
5579.67450712005

6083.4207708641

7691.2205404848
7900.75451037313
8694.20710669982
9564.24289057111

vaabbr

PostGIS 2.1.0 Manual
226/ 671

12089.665931705 | ALQ | 127
18472.5531479404 | ALQ | 002
(10 rows)
See Also

ST _DWithin, ST_Distance, <#>

8.7.16 <it>
<#> — Returns the distance between bounding box of 2 geometries. For point / point checks it’s almost the same as distance

(though may be different since the bounding box is at floating point accuracy and geometries are double precision). Useful for
doing distance ordering and nearest neighbor limits using KNN gist functionality.

Synopsis

double precision <#>(geometry A , geometry B);

Description

The <#> KNN GIST operator returns distance between two floating point bounding boxes read from the spatial index if available.
Useful for doing nearest neighbor approximate distance ordering.

N:"R’! Note

This operand will make use of any indexes that may be available on the geometries. It is different from other operators
that use spatial indexes in that the spatial index is only used when the operator is in the ORDER BY clause.

i

ot Note
N Index only kicks in if one of the geometries is a constant e.g. ORDER BY (ST_GeomFromText('POINT(1 2)’) <#> geom)

instead of g1.geom <#>.

Auvailability: 2.0.0 only available for PostgreSQL 9.1+

Examples

SELECT «

FROM (

SELECT b.tlid, b.mtfcc,

b.geom <#> ST_GeomFromText (' LINESTRING (746149 2948672,745954 2948576,

745787 2948499, 745740 2948468, 745712 2948438,
745690 2948384, 745677 2948319)’,2249) As b_dist,
ST_Distance (b.geom, ST_GeomFromText (' LINESTRING (746149 2948672, 745954 2948576,
745787 2948499, 745740 2948468, 745712 2948438,
745690 2948384, 745677 2948319)’,2249)) As act_dist
FROM bos_roads As b
ORDER BY b_dist, b.tlid
LIMIT 100) As foo
ORDER BY act_dist, tlid LIMIT 10;

PostGIS 2.1.0 Manual
227 / 671

tlid | mtfcc | b_dist | act_dist

——————————— e e Mt
85732027 | S1400 | 0 | 0
85732029 | S1400 | 0 | 0
85732031 | S1400 | 0 | 0
85734335 | S1400 | 0 | 0
85736037 | S1400 | 0 | 0
624683742 | S1400 | 0 | 128.528874268666
85719343 | S1400 | 260.839270432962 | 260.839270432962
85741826 | S1400 | 164.759294123275 | 260.839270432962
85732032 | S1400 | 277.75 | 311.830282365264
85735592 | S1400 | 222.25 | 311.830282365264

(10 rows)

See Also

ST DWithin, ST_Distance, <->

8.8 Spatial Relationships and Measurements

8.8.1 ST 3DClosestPoint

ST_3DClosestPoint — Returns the 3-dimensional point on g1 that is closest to g2. This is the first point of the 3D shortest line.

Synopsis

geometry ST_3DClosestPoint(geometry g1, geometry g2);

Description

Returns the 3-dimensional point on gl that is closest to g2. This is the first point of the 3D shortest line. The 3D length of the
3D shortest line is the 3D distance.

/ This function supports 3d and will not drop the z-index.

/ This function supports Polyhedral surfaces.
Availability: 2.0.0

Examples

PostGIS 2.1.0 Manual

228 /671

linestring and point -- both 3d and 2d closest point

SELECT ST_ASEWKT (ST_3DClosestPoint (line,pt)) AS cp3d_line_pt,
ST_ASEWKT (ST_ClosestPoint (line,pt)) As cp2d_line_pt
FROM (SELECT ’POINT (100 100 30)’::geometry As pt,

POINT (54.6993798867619 128.935022917228 11.5475869506606) |
115.384615384615)

50 75

1000) " :: <«

"LINESTRING (20 80 20, 98 190 1, 110 180 3,
geometry As line
) As foo;
cp3d_line_pt
cp2d_line_pt
___ +________________________________

POINT (73.0769230769231 <«

linestring and multipoint -- both 3d and 2d closest point

SELECT ST_ASEWKT (ST_3DClosestPoint (line,pt)) AS cp3d_line_pt,
ST_ASEWKT (ST_ClosestPoint (line,pt)) As cp2d_line_pt
FROM (SELECT ’'MULTIPOINT (100 100 30,
"LINESTRING (20 80 20, 98 190 1, 110 180 3,
geometry As line

) As foo;

cp3d_line_pt |

POINT (54.6993798867619 128.935022917228 11.5475869506606) |

50 74 1000)’ ::geometry As pt,
50 75 900)":: ¢«

cp2d_line_pt
___ +____________
POINT (50 75)

Multilinestring and polygon both 3d and 2d closest point

SELECT ST_ASEWKT (ST_3DClosestPoint (poly, mline)) As cp3d,
ST_ASEWKT (ST_ClosestPoint (poly, mline)) As cp2d
FROM (SELECT ST_GeomFromEWKT (' POLYGON((175 150 5, 20 40 5,

100 100 5, 175 150 5))’) As poly,
ST_GeomFromEWKT (' MULTILINESTRING ((175 155 2, 20 40 20,
100 1, 175 155 1),
(1 10 2, 520 1))’) As mline) As foo;
cp3d | cp2d

777 +77777777777777
POINT (39.993580415989 54.1889925532825 5) | POINT (20 40)

35 45

5, 50 60 5, <«

60 -2, 125 <«

See Also

ST _ASEWKT, ST ClosestPoint, ST 3DDistance, ST _3DShortestLine

8.8.2 ST_3DDistance

ST_3DDistance — For geometry type Returns the 3-dimensional cartesian minimum distance (based on spatial ref) between two

geometries in projected units.

Synopsis

float ST_3DDistance(geometry g1, geometry g2);

PostGIS 2.1.0 Manual
229 /671

Description

For geometry type returns the 3-dimensional minimum cartesian distance between two geometries in projected units (spatial ref
units).

/ This function supports 3d and will not drop the z-index.
/ This function supports Polyhedral surfaces.
/ This method implements the SQL/MM specification. SQL-MM ?

/ This method is also provided by SFCGAL backend.
Availability: 2.0.0

Examples

—— Geometry example - units in meters (SRID: 2163 US National Atlas Equal area) (3D point <+
and line compared 2D point and line)
—— Note: currently no vertical datum support so Z is not transformed and assumed to be same <
units as final.
SELECT ST_3DDistance (
ST_Transform(ST_GeomFromEWKT (’ SRID=4326; POINT (-72.1235 42.3521 4)'"),2163),
ST_Transform(ST_GeomFromEWKT (SRID=4326; LINESTRING (-72.1260 42.45 15, -72.123 42.1546 «
20)’),2163)
) As dist_3d,
ST_Distance (
ST _Transform(ST_GeomFromText (' POINT (-72.1235 42.3521)",4326),2163),
ST_Transform(ST_GeomFromText (' LINESTRING (-72.1260 42.45, -72.123 42.1546)’, 4326) <
,2163)
) As dist_2d;

dist_3d | dist_2d
__________________ +_________________
127.295059324629 | 126.66425605671

—— Multilinestring and polygon both 3d and 2d distance
—— Same example as 3D closest point example
SELECT ST_3DDistance (poly, mline) As dist3d,
ST_Distance (poly, mline) As dist2d
FROM (SELECT ST_GeomFromEWKT ('POLYGON((175 150 5, 20 40 5, 35 45 5, 50 60 5, 100 <>
100 5, 175 150 5))’) As poly,
ST_GeomFromEWKT (" MULTILINESTRING ((175 155 2, 20 40 20, 50 60 -2, 125 100 1, <
175 155 1),
(1 10 2, 5 20 1))’) As mline) As foo;

dist3d | dist2d
___________________ +________
0.716635696066337 | 0
See Also

ST _Distance, ST_3DClosestPoint, ST_3DDWithin, ST_3DMaxDistance, ST_3DShortestLine, ST_Transform

8.8.3 ST_3DDWithin

ST_3DDWithin — For 3d (z) geometry type Returns true if two geometries 3d distance is within number of units.

PostGIS 2.1.0 Manual
230/ 671

Synopsis

boolean ST_3DDWithin(geometry g1, geometry g2, double precision distance_of_srid);

Description

For geometry type returns true if the 3d distance between two objects is within distance_of_srid specified projected units (spatial
ref units).

/ This function supports 3d and will not drop the z-index.
/ This function supports Polyhedral surfaces.

/ This method implements the SQL/MM specification. SQL-MM ?
Availability: 2.0.0

Examples

—— Geometry example - units in meters (SRID: 2163 US National Atlas Equal area) (3D point <
and line compared 2D point and line)
—— Note: currently no vertical datum support so Z is not transformed and assumed to be same <
units as final.
SELECT ST_3DDWithin (
ST _Transform(ST_GeomFromEWKT (/ SRID=4326; POINT (=72.1235 42.3521 4)’),2163),
ST_Transform (ST_GeomFromEWKT (/ SRID=4326; LINESTRING (-72.1260 42.45 15, -72.123 42.1546 ¢
20)"),2163),
126.8
) As within_dist_3d,
ST_DWithin (
ST _Transform(ST_GeomFromEWKT (/ SRID=4326; POINT (=72.1235 42.3521 4)’),2163),
ST_Transform (ST_GeomFromEWKT (/ SRID=4326; LINESTRING (-72.1260 42.45 15, -72.123 42.1546 <
20)"),2163),
126.8
) As within_dist_2d;

within_dist_3d | within_dist_2d
7777777777777777 +7777777777777777
il | €

See Also

ST 3DDistance, ST Distance, ST _DWithin, ST _3DMaxDistance, ST Transform

8.8.4 ST_3DDFullyWithin

ST_3DDFullyWithin — Returns true if all of the 3D geometries are within the specified distance of one another.

Synopsis

boolean ST_3DDFullyWithin(geometry g1, geometry g2, double precision distance);

PostGIS 2.1.0 Manual
231 /671

Description

Returns true if the 3D geometries are fully within the specified distance of one another. The distance is specified in units defined
by the spatial reference system of the geometries. For this function to make sense, the source geometries must both be of the
same coordinate projection, having the same SRID.

. Note
Note ot
This function call will automatically include a bounding box comparison that will make use of any indexes that are
available on the geometries.

Awailability: 2.0.0
/ This function supports 3d and will not drop the z-index.

/ This function supports Polyhedral surfaces.

Examples

—— This compares the difference between fully within and distance within as well
—-— as the distance fully within for the 2D footprint of the line/point vs. the 3d fully ¢«
within
SELECT ST_3DDFullyWithin (geom_a, geom_b, 10) as D3DFullyWithinl0O, ST_3DDWithin (geom_a, <+
geom_pb, 10) as D3DWithinlO,
ST_DFullyWithin (geom_a, geom_b, 20) as D2DFullyWithin20,
ST_3DDFullyWithin (geom_a, geom_b, 20) as D3DFullyWithin20 from
(select ST_GeomFromEWKT (/POINT(1 1 2)’) as geom_a,
ST_GeomFromEWKT (/ LINESTRING(1 5 2, 2 7 20, 1 9 100, 14 12 3)’) as geom_b) tl;
d3dfullywithinl0 | d3dwithinlO | d2dfullywithin20 | d3dfullywithin20

See Also

ST_3DMaxDistance, ST_3DDWithin, ST_DWithin, ST_DFullyWithin

8.8.5 ST_3DIntersects

ST_3DIntersects — Returns TRUE if the Geometries "spatially intersect" in 3d - only for points and linestrings

Synopsis

boolean ST_3DIntersects(geometry geomA , geometry geomB);

Description

Overlaps, Touches, Within all imply spatial intersection. If any of the aforementioned returns true, then the geometries also
spatially intersect. Disjoint implies false for spatial intersection.

Awailability: 2.0.0

PostGIS 2.1.0 Manual
232 /671

. Note
Note O . . o
This function call will automatically include a bounding box comparison that will make use of any indexes that are
available on the geometries.

/ This function supports 3d and will not drop the z-index.
/ This function supports Polyhedral surfaces.

/ This method implements the SQL/MM specification. SQL-MM 3: ?

Geometry Examples

SELECT ST_3DIntersects(pt, line), ST_Intersects(pt,line)
FROM (SELECT ’"POINT(0 O 2)’::geometry As pt,
"LINESTRING (0 0 1, 0 2 3)’::geometry As line) As foo;

st_3dintersects | st_intersects
_________________ +_______________
£ t
(1 row)
See Also

ST_Intersects

8.8.6 ST_3DLongestLine

ST_3DLongestLine — Returns the 3-dimensional longest line between two geometries

Synopsis

geometry ST_3DLongestLine(geometry gl, geometry g2);

Description
Returns the 3-dimensional longest line between two geometries. The function will only return the first longest line if more than

one. The line returned will always start in gl and end in g2. The 3D length of the line this function returns will always be the
same as ST_3DMaxDistance returns for gl and g2.

Availability: 2.0.0
/ This function supports 3d and will not drop the z-index.

/ This function supports Polyhedral surfaces.

PostGIS 2.1.0 Manual

233 /671

Examples

linestring and point -- both 3d and 2d longest line

SELECT ST_ASEWKT (ST_3DLongestLine (line,pt))

"LINESTRING
geometry As line
) As foo;

lol3d_line_pt |

LINESTRING (50 75 1000,100 100 30) |

ST_ASEWKT (ST_LongestLine (line, pt))
FROM (SELECT ’POINT (100 100 30)’::geometry As pt,
(20 80 20,

AS 1lo0l3d_line_pt,
As lol2d_line_pt

98 190 1, 110 180 3, 50 75 1000)":: ¢

lol2d_line_pt
___________________________________ +________

LINESTRING (98 190,100 100)

linestring and multipoint -- both 3d and 2d longest line

SELECT ST_ASEWKT (ST_3DLongestLine (line,pt))

FROM (SELECT 'MULTIPOINT (100 100 30,

ST_ASEWKT (ST_LongestLine (line, pt))

AS 1lo0l3d_line_pt,
As lol2d_line_pt
50 74 1000)’ ::geometry As pt,

"LINESTRING (20 80 20, 98 190 1, 110 180 3, 50 75 900)':: <«
geometry As line

) As foo;

lol3d_line_pt | lol2d_line_pt
_________________________________ +__________________________
LINESTRING (98 190 1,50 74 1000) | LINESTRING(98 190,50 74)

Multilinestring and polygon both 3d and 2d longest line

SELECT ST_ASEWKT (ST_3DLongestLine (poly,
ST_ASEWKT (ST_LongestLine (poly,
FROM (SELECT

100 100 5,

mline)) As lol3d,
mline)) As lol2d
ST_GeomFromEWKT (' POLYGON ((175 150 5,
175 150 5))’) As poly,
ST_GeomFromEWKT (' MULTILINESTRING ((175 155 2,
175 155 1),
(1 10 2, 5 20 1))’) As mline)

lol3d | lol2d
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, e
LINESTRING (175 150 5,1 10 2) | LINESTRING(175 150,1 10)

20 40 5, 35 45 5, 50 60 5, <

20 40 20, 50 60 -2, 125 <

100 1,
As foo;

See Also

ST_3DClosestPoint, ST_3DDistance, ST_LongestLine, ST_3DShortestLine, ST_3DMaxDistance

8.8.7 ST_3DMaxDistance

ST_3DMaxDistance — For geometry type Returns the 3-dimensional cartesian maximum distance (based on spatial ref) between
two geometries in projected units.

Synopsis

float ST_3DMaxDistance(geometry g1, geometry g2);

PostGIS 2.1.0 Manual
234 /671

Description

For geometry type returns the 3-dimensional maximum cartesian distance between two geometries in projected units (spatial ref
units).

/ This function supports 3d and will not drop the z-index.

/ This function supports Polyhedral surfaces.
Availability: 2.0.0

Examples

—— Geometry example - units in meters (SRID: 2163 US National Atlas Equal area) (3D point <+
and line compared 2D point and line)
—— Note: currently no vertical datum support so Z is not transformed and assumed to be same <+
units as final.
SELECT ST_3DMaxDistance (
ST _Transform(ST_GeomFromEWKT (’/ SRID=4326; POINT (-72.1235 42.3521 10000)"),2163),
ST _Transform (ST_GeomFromEWKT (’/ SRID=4326; LINESTRING (-72.1260 42.45 15, -72.123 42.1546 <
20)"),2163)
) As dist_3d,
ST_MaxDistance (
ST_Transform (ST_GeomFromEWKT (SRID=4326; POINT (-72.1235 42.3521 10000)"),2163),
ST _Transform (ST_GeomFromEWKT (’/ SRID=4326; LINESTRING (-72.1260 42.45 15, -72.123 42.1546 <+
20)7),2163)
) As dist_2d;

24383.7467488441 | 22247.8472107251

See Also

ST Distance, ST_3DDWithin, ST _3DMaxDistance, ST_Transform

8.8.8 ST 3DShortestLine

ST_3DShortestLine — Returns the 3-dimensional shortest line between two geometries

Synopsis

geometry ST_3DShortestLine(geometry gl, geometry g2);

Description

Returns the 3-dimensional shortest line between two geometries. The function will only return the first shortest line if more than
one, that the function finds. If gl and g2 intersects in just one point the function will return a line with both start and end in that
intersection-point. If g1 and g2 are intersecting with more than one point the function will return a line with start and end in the
same point but it can be any of the intersecting points. The line returned will always start in gl and end in g2. The 3D length of
the line this function returns will always be the same as ST_3DDistance returns for gl and g2.

Auwailability: 2.0.0

PostGIS 2.1.0 Manual
235 /671

/ This function supports 3d and will not drop the z-index.

/ This function supports Polyhedral surfaces.

Examples

linestring and point -- both 3d and 2d shortest line

SELECT ST_ASEWKT (ST_3DShortestLine(line,pt)) AS shl3d_line_pt,
ST_ASEWKT (ST_ShortestLine (line,pt)) As shl2d_line_pt
FROM (SELECT ’POINT (100 100 30)’::geometry As pt,
"LINESTRING (20 80 20, 98 190 1, 110 180 3, 50 75 1000)’:: <
geometry As line
) As foo;

shl3d_line_pt <=

| shl2d_line_pt
__ +_______________,______

LINESTRING (54.6993798867619 128.935022917228 11.5475869506606,100 100 30) [
LINESTRING(73.0769230769231 115.384615384615,100 100)

linestring and multipoint -- both 3d and 2d shortest line

SELECT ST_ASEWKT (ST_3DShortestLine(line,pt)) AS shl3d_line_pt,
ST_ASEWKT (ST_ShortestLine(line,pt)) As shl2d_line_pt
FROM (SELECT ’"MULTIPOINT (100 100 30, 50 74 1000)’::geometry As pt,
"LINESTRING (20 80 20, 98 190 1, 110 180 3, 50 75 900)":: <«
geometry As line
) As foo;

sh13d_line_pt | <«

shl2d_line_pt
___ +________________,______

LINESTRING (54.6993798867619 128.935022917228 11.5475869506606,100 100 30) | LINESTRING <
(50 75,50 74)

Multilinestring and polygon both 3d and 2d shortest line

SELECT ST_ASEWKT (ST_3DShortestLine (poly, mline)) As shl3d,
ST_ASEWKT (ST_ShortestLine (poly, mline)) As shl2d
FROM (SELECT ST_GeomFromEWKT (/POLYGON((175 150 5, 20 40 5, 35 45 5, 50 60 5, <«

100 100 5, 175 150 5))’") As poly,

ST_GeomFromEWKT (' MULTILINESTRING((175 155 2, 20 40 20, 50 60 -2, 125 <+
100 1, 175 155 1),

(1 10 2, 520 1))’") As mline) As foo;

shl3d <

LINESTRING(39.993580415989 54.1889925532825 5,40.4078575708294 53.6052383805529 <+
5.03423778139177) | LINESTRING (20 40,20 40)

PostGIS 2.1.0 Manual
236/ 671

See Also

ST_3DClosestPoint, ST_3DDistance, ST_LongestLine, ST_ShortestLine, ST_3DMaxDistance

8.8.9 ST Area

ST_Area — Returns the area of the surface if it is a polygon or multi-polygon. For "geometry” type area is in SRID units. For
"geography" area is in square meters.

Synopsis

float ST_Area(geometry gl);
float ST_Area(geography geog, boolean use_spheroid=true);

Description
Returns the area of the geometry if it is a polygon or multi-polygon. Return the area measurement of an ST_Surface or
ST_MultiSurface value. For geometry Area is in the units of the srid. For geography area is in square meters and defaults

to measuring about the spheroid of the geography (currently only WGS84). To measure around the faster but less accurate sphere
-- ST_Area(geog,false).

Enhanced: 2.0.0 - support for 2D polyhedral surfaces was introduced.
/ This method implements the OpenGIS Simple Features Implementation Specification for SQL 1.1.

/ This method implements the SQL/MM specification. SQL-MM 3: 8.1.2, 9.5.3

/ This function supports Polyhedral surfaces.

Note
For polyhedral surfaces, only supports 2D polyhedral surfaces (not 2.5D). For 2.5D, may give a non-zero answer, but
only for the faces that sit completely in XY plane.

/ This method is also provided by SFCGAL backend.

Examples

Return area in square feet for a plot of Massachusetts land and multiply by conversion to get square meters. Note this is in square
feet because 2249 is Mass State Plane Feet

SELECT ST_Area(the_geom) As sqgft, ST_Area(the_geom)*POWER(0.3048,2) As sgm
FROM (SELECT
ST_GeomFromText (" POLYGON ((743238 2967416,743238 2967450,
743265 2967450,743265.625 2967416,743238 2967416))’,2249)) As foo(the_geom);
sgft | sgm

928.625 | 86.27208552

Return area square feet and transform to Massachusetts state plane meters (26986) to get square meters. Note this is in square
feet because 2249 is Mass State Plane Feet and transformed area is in square meters since 26986 is state plane mass meters

http://www.opengeospatial.org/standards/sfs

PostGIS 2.1.0 Manual
237/ 671

SELECT ST_Area(the_geom) As sqgft, ST_Area(ST_Transform(the_geom,26986)) As sgm
FROM (SELECT
ST_GeomFromText (POLYGON ((743238 2967416, 743238 2967450,
743265 2967450,743265.625 2967416,743238 2967416))’,2249)) As foo(the_geom);
sgft | sqm

928.625 | 86.2724304199219

Return area square feet and square meters using Geography data type. Note that we transform to our geometry to geography
(before you can do that make sure your geometry is in WGS 84 long lat 4326). Geography always measures in meters. This is
just for demonstration to compare. Normally your table will be stored in geography data type already.

SELECT ST_Area (the_geog) /POWER (0.3048,2) As sqgft_spheroid, ST_Area (the_geog, false) /POWER <«
(0.3048,2) As sgft_sphere, ST_Area(the_geog) As sgm_spheroid
FROM (SELECT
geography (
ST_Transform/(
ST_GeomFromText (" POLYGON ((743238 2967416,743238 2967450,743265 2967450, 743265.625 <+
2967416,743238 2967416)) "',
2249
) ,4326

)
) As foo(the_geoq);
sqgft_spheroid | sgft_sphere | sqgm_spheroid
77777777777777777 +777777777777777777+777777777777777777
928.684405217197 | 927.186481558724 | 86.2776044452694

-—if your data is in geography already
SELECT ST_Area (the_geog) /POWER(0.3048,2) As sqgft, ST_Area(the_geog) As sgm
FROM somegeogtable;

See Also

ST_GeomFromText, ST_GeographyFromText, ST_SetSRID, ST_Transform

8.8.10 ST_Azimuth

ST_Azimuth — Returns the north-based azimuth as the angle in radians measured clockwise from the vertical on pointA to
pointB.

Synopsis

float ST_Azimuth(geometry pointA, geometry pointB);

float ST_Azimuth(geography pointA, geography pointB);

Description

Returns the azimuth in radians of the segment defined by the given point-geometries, or NULL if the two points are coincident.
The azimuth is north-based and is measured clockwise: North = 0; East = PI/2; South = PI; West = 3PI1/2.

The Azimuth is mathematical concept defined as the angle, in this case measured in radian, between a reference plane and a
point.

PostGIS 2.1.0 Manual
238 /671

Availability: 1.1.0
Enhanced: 2.0.0 support for geography was introduced.

Azimuth is especially useful in conjunction with ST_Translate for shifting an object along its perpendicular axis. See up-
gis_lineshift Plpgsqlfunctions PostGIS wiki section for example of this.

Examples

Geometry Azimuth in degrees

SELECT ST_Azimuth (ST_Point (25,45), ST_Point (75,100))/(2xpi())*360 as degA_B,
ST_Azimuth (ST_Point (75,100), ST _Point (25,45))/(2+«pi())*360 As degB_A;

—— NOTE easier to remember syntax using PostgreSQL built-in degrees function --

—— Both yield same answer —-—

SELECT degrees(ST_Azimuth (ST_Point (25,45), ST_Point (75,100))) as degA_ B,
degrees (ST_Azimuth (ST_Point (75,100), ST_Point (25,45))) As degB_A;

42.2736890060937 | 222.273689006094

Green: the start Point(25,45) with its vertical. Yellow: Green: the start Point(75,100) with its vertical. Yellow:
degA_B as the path to travel (azimuth). degB_A as the path to travel (azimuth).

See Also

ST_Point, ST_Translate, ST_Project, PostgreSQL Math Functions

8.8.11 ST_Centroid

ST_Centroid — Returns the geometric center of a geometry.

http://trac.osgeo.org/postgis/wiki/UsersWikiplpgsqlfunctions
http://www.postgresql.org/docs/current/interactive/functions-math.html

PostGIS 2.1.0 Manual
239/ 671

Synopsis

geometry ST_Centroid(geometry gl);

Description

Computes the geometric center of a geometry, or equivalently, the center of mass of the geometry as a POINT. For [MULTI]P-
OINTs, this is computed as the arithmetric mean of the input coordinates. For [MULTI]LINESTRINGS, this is computed as the
weighted length of each line segment. For [MULTI]JPOLYGONSs, "weight" is thought in terms of area. If an empty geometry is
supplied, an empty GEOMETRYCOLLECTION is returned. If NULL is supplied, NULL is returned.

The centroid is equal to the centroid of the set of component Geometries of highest dimension (since the lower-dimension
geometries contribute zero "weight" to the centroid).

Not¢ Note

Computation will be more accurate if performed by the GEOS module (enabled at compile time).

/ This method implements the OpenGIS Simple Features Implementation Specification for SQL 1.1.

/ This method implements the SQL/MM specification. SQL-MM 3: 8.1.4,9.5.5

Examples

In each of the following illustrations, the blue dot represents the centroid of the source geometry.

LR
.

o
e

°"w v o

Centroid of a MULTIPOINT Centroid of a LINESTRING

http://www.opengeospatial.org/standards/sfs

PostGIS 2.1.0 Manual

240 /671

Centroid of a POLYGON

Centroid of a GEOMETRYCOLLECTION

SELECT ST_AsText (ST_Centroid(’MULTIPOINT (-1 0, -1 2,
0, 6 0, 78, 98, 10 6)"));
st_astext

POINT (2.30769230769231 3.30769230769231)
(1 row)

See Also

ST_PointOnSurface

8.8.12 ST_ClosestPoint

ST_ClosestPoint — Returns the 2-dimensional point on g1 that is closest to g2. This is the first point of the shortest line.

Synopsis

geometry ST_ClosestPoint(geometry g1, geometry g2);

Description

Returns the 2-dimensional point on g1 that is closest to g2. This is the first point of the shortest line.

&
Nﬂd Note

If you have a 3D Geometry, you may prefer to use ST_3DClosestPoint.

Availability: 1.5.0

Examples

PostGIS 2.1.0 Manual

241 /671

Closest between point and linestring is the point itself, but
closest point between a linestring and point is the point on
line string that is closest.

SELECT ST_AsText (ST_ClosestPoint (pt, line)
) AS cp_pt_line,
ST_AsText (ST_ClosestPoint (line,pt <
)) As cp_line_pt
FROM (SELECT ’'POINT (100 100)’::geometry <
As pt,

<o

"LINESTRING
110 180, 50 75
) As foo;

(20 80, 98 <
)’ ::geometry As line

190,

cp_pt_line |

POINT (100 100) | POINT(73.0769230769231
115.384615384615)

<

closest point on polygon A to polygon B

SELECT ST_AsText (
ST_ClosestPoint (

ST_GeomFromText (! <
POLYGON ((175 150, 20 40, 50 60, 125 100,
ST_Buffer(«
ST_GeomFromText (POINT (110 170)"), 20)
)
) As ptwkt;
ptwkt

]

175 150

See Also

ST_3DClosestPoint,ST_Distance, ST_LongestLine, ST_ShortestLine, ST_MaxDistance

8.8.13 ST _Contains

ST_Contains — Returns true if and only if no points of B lie in the exterior of A, and at least one point of the interior of B lies

in the interior of A.

Synopsis

boolean ST_Contains(geometry geomA, geometry geomB);

PostGIS 2.1.0 Manual
242 / 671

Description

Geometry A contains Geometry B if and only if no points of B lie in the exterior of A, and at least one point of the interior of B
lies in the interior of A. An important subtlety of this definition is that A does not contain its boundary, but A does contain itself.
Contrast that to ST_ContainsProperly where geometry A does not Contain Properly itself.

Returns TRUE if geometry B is completely inside geometry A. For this function to make sense, the source geometries must both
be of the same coordinate projection, having the same SRID. ST_Contains is the inverse of ST_Within. So ST_Contains(A,B)
implies ST_Within(B,A) except in the case of invalid geometries where the result is always false regardless or not defined.

Performed by the GEOS module

I Important
) Do not call with a GEOMETRYCOLLECTION as an argument

I Important
) Do not use this function with invalid geometries. You will get unexpected results.

This function call will automatically include a bounding box comparison that will make use of any indexes that are available on
the geometries. To avoid index use, use the function _ST_Contains.

NOTE: this is the "allowable" version that returns a boolean, not an integer.

/ This method implements the OpenGIS Simple Features Implementation Specification for SQL 1.1. s2.1.1.2 // s2.1.13.3 -
same as within(geometry B, geometry A)

/ This method implements the SQL/MM specification. SQL-MM 3: 5.1.31

There are certain subtleties to ST_Contains and ST_Within that are not intuitively obvious. For details check out Subtleties of
OGC Covers, Contains, Within

Examples

The ST_Contains predicate returns TRUE in all the following illustrations.

http://www.opengeospatial.org/standards/sfs
http://lin-ear-th-inking.blogspot.com/2007/06/subtleties-of-ogc-covers-spatial.html
http://lin-ear-th-inking.blogspot.com/2007/06/subtleties-of-ogc-covers-spatial.html

PostGIS 2.1.0 Manual
243/ 671

LINESTRING/MULTIPOINT POLYGON/POINT

POLYGON/LINESTRING POLYGON/POLYGON

The ST_Contains predicate returns FALSE in all the following illustrations.

PostGIS 2.1.0 Manual

244 /671

POLYGON/MULTIPOINT POLYGON/ LINESTRING

—— A circle within a circle
SELECT ST_Contains(smallc, bigc) As smallcontainsbig,
ST_Contains (bigc,smallc) As bigcontainssmall,
ST_Contains (bigc, ST_Union(smallc, bigc)) as bigcontainsunion,
ST_Equals (bigc, ST _Union(smallc, bigc)) as bigisunion,
ST_Covers (bigc, ST_ExteriorRing(bigc)) As bigcoversexterior,
ST_Contains (bigc, ST_ExteriorRing(bigc)) As bigcontainsexterior
FROM (SELECT ST _Buffer (ST_GeomFromText ('POINT (1 2)’), 10) As smallc,
ST_Buffer (ST_GeomFromText ('POINT (1 2)’), 20) As bigc) As foo;

-— Result

smallcontainsbig | bigcontainssmall | bigcontainsunion | bigisunion | bigcoversexterior | <=

bigcontainsexterior

—-— Example demonstrating difference between contains and contains properly
SELECT ST_GeometryType (geomA) As geomtype, ST_Contains (geomA,geomA) AS acontainsa,
ST_ContainsProperly (geomA, geomA) AS acontainspropa,
ST_Contains (geomA, ST_Boundary (geomA)) As acontainsba, ST_ContainsProperly (geomA,
ST_Boundary (geomA)) As acontainspropba
FROM (VALUES (ST_Buffer(ST_Point(1,1), 5,1)),
(ST_MakeLine (ST_Point(1,1), ST_Point (-1,-1))),
(ST_Point(1,1))
) As foo (geomd) ;

geomtype | acontainsa | acontainspropa | acontainsba | acontainspropba
—————————————— R B
ST_Polygon | t | £ | £ | £
ST_LineString | t | £ | £ | £
ST_Point | t | t | £ | £

P

PostGIS 2.1.0 Manual
245/ 671

See Also

ST_Boundary, ST_ContainsProperly, ST_Covers, ST_CoveredBy, ST_Equals, ST_Within

8.8.14 ST_ContainsProperly

ST_ContainsProperly — Returns true if B intersects the interior of A but not the boundary (or exterior). A does not contain
properly itself, but does contain itself.

Synopsis

boolean ST_ContainsProperly(geometry geomA, geometry geomB);

Description

Returns true if B intersects the interior of A but not the boundary (or exterior).
A does not contain properly itself, but does contain itself.

Every point of the other geometry is a point of this geometry’s interior. The DE-9IM Intersection Matrix for the two geometries
matches [T**FF*FF*] used in ST_Relate

Note

From JTS docs slightly reworded: The advantage to using this predicate over ST_Contains and ST_Intersects is that it
No'ld can be computed efficiently, with no need to compute topology at individual points.

An example use case for this predicate is computing the intersections of a set of geometries with a large polygonal

geometry. Since intersection is a fairly slow operation, it can be more efficient to use containsProperly to filter out test

geometries which lie wholly inside the area. In these cases the intersection is known a priori to be exactly the original

test geometry.

Auvailability: 1.4.0 - requires GEOS >=3.1.0.

I Important
) Do not call with a GEOMETRYCOLLECTION as an argument

I Important
) Do not use this function with invalid geometries. You will get unexpected results.

This function call will automatically include a bounding box comparison that will make use of any indexes that are available on
the geometries. To avoid index use, use the function _ST_ContainsProperly.

Examples

PostGIS 2.1.0 Manual
246/ 671

——a circle within a circle

SELECT ST_ContainsProperly(smallc, bigc) As smallcontainspropbig,

ST_ContainsProperly (bigc,smallc) As bigcontainspropsmall,

ST_ContainsProperly (bigc, ST_Union(smallc, bigc)) as bigcontainspropunion,

ST_Equals (bigc, ST _Union(smallc, bigc)) as bigisunion,

ST_Covers (bigc, ST_ExteriorRing(bigc)) As bigcoversexterior,

ST_ContainsProperly (bigc, ST_ExteriorRing(bigc)) As bigcontainsexterior

FROM (SELECT ST_Buffer (ST_GeomFromText (POINT (1 2)’), 10) As smallc,

ST_Buffer (ST_GeomFromText ('POINT (1 2)’), 20) As bigc) As foo;

——Result

smallcontainspropbig | bigcontainspropsmall | bigcontainspropunion | bigisunion | <
bigcoversexterior | bigcontainsexterior

——example demonstrating difference between contains and contains properly
SELECT ST_GeometryType (geomA) As geomtype, ST_Contains (geomA,geomA) AS acontainsa, <+
ST_ContainsProperly (geomA, geomA) AS acontainspropa,
ST_Contains (geomA, ST_Boundary (geomA)) As acontainsba, ST_ContainsProperly(geomA, <=
ST_Boundary (geomA)) As acontainspropba
FROM (VALUES (ST_Buffer (ST Point (1,1), 5,1)),
(ST_MakeLine (ST_Point (1,1), ST_Point (-1,-1))),
(ST_Point (1,1))
) As foo (geomd) ;

geomtype | acontainsa | acontainspropa | acontainsba | acontainspropba
—————————————— f——_
ST_Polygon | t | £ | £ | £
ST_LineString | t | £ | £ | £
ST_Point | t | t | £ | £
See Also

ST_GeometryType, ST_Boundary, ST_Contains, ST_Covers, ST_CoveredBy, ST_Equals, ST_Relate, ST_Within

8.8.15 ST Covers

ST_Covers — Returns 1 (TRUE) if no point in Geometry B is outside Geometry A

Synopsis

boolean ST_Covers(geometry geomA, geometry geomB);
boolean ST_Covers(geography geogpolyA, geography geogpointB);

Description

Returns 1 (TRUE) if no point in Geometry/Geography B is outside Geometry/Geography A
Performed by the GEOS module

I ' Important
" Do not call with a GEOMETRYCOLLECTION as an argument

PostGIS 2.1.0 Manual
247 / 671

I Important
) For geography only Polygon covers point is supported.

I Important
) Do not use this function with invalid geometries. You will get unexpected results.

This function call will automatically include a bounding box comparison that will make use of any indexes that are available on
the geometries. To avoid index use, use the function _ST_Covers.

Auvailability: 1.2.2 - requires GEOS >= 3.0

Availability: 1.5 - support for geography was introduced.

NOTE: this is the "allowable" version that returns a boolean, not an integer.
Not an OGC standard, but Oracle has it too.

There are certain subtleties to ST_Contains and ST_Within that are not intuitively obvious. For details check out Subtleties of
OGC Covers, Contains, Within

Examples

Geometry example

—-—-a circle covering a circle
SELECT ST_Covers(smallc,smallc) As smallinsmall,
ST_Covers (smallc, bigc) As smallcoversbig,

ST_Covers (bigc, ST_ExteriorRing(bigc)) As bigcoversexterior,
ST_Contains (bigc, ST_ExteriorRing(bigc)) As bigcontainsexterior
FROM (SELECT ST _Buffer (ST_GeomFromText ('POINT (1 2)’), 10) As smallc,

ST_Buffer (ST_GeomFromText ("POINT (1 2)’), 20) As bigc) As foo;

—-—Result

smallinsmall | smallcoversbig | bigcoversexterior | bigcontainsexterior
77777777777777 e __
t | £ | t | £
(1 row)
Geeography Example

—-— a point with a 300 meter buffer compared to a point, a point and its 10 meter buffer
SELECT ST_Covers (geog_poly, geog_pt) As poly_covers_pt,
ST_Covers (ST_Buffer (geog_pt,10), geog_pt) As buff_10m_covers_cent
FROM (SELECT ST_Buffer (ST_GeogFromText (' SRID=4326;POINT (-99.327 31.4821)"), 300) As <>
geog_poly,
ST_GeogFromText (" SRID=4326;POINT (-99.33 31.483)’) As geog_pt) As foo;

poly_covers_pt | buff_10m_covers_cent
________________ +__________________
f |t

See Also

ST_Contains, ST_CoveredBy, ST_Within

http://lin-ear-th-inking.blogspot.com/2007/06/subtleties-of-ogc-covers-spatial.html
http://lin-ear-th-inking.blogspot.com/2007/06/subtleties-of-ogc-covers-spatial.html

PostGIS 2.1.0 Manual
248 / 671

8.8.16 ST_CoveredBy

ST_CoveredBy — Returns 1 (TRUE) if no point in Geometry/Geography A is outside Geometry/Geography B

Synopsis

boolean ST_CoveredBy(geometry geomA, geometry geomB);
boolean ST_CoveredBy(geography geogA, geography geogB);

Description

Returns 1 (TRUE) if no point in Geometry/Geography A is outside Geometry/Geography B
Performed by the GEOS module

I Important
) Do not call with a GEOMETRYCOLLECTION as an argument

I Important
) Do not use this function with invalid geometries. You will get unexpected results.

Availability: 1.2.2 - requires GEOS >= 3.0

This function call will automatically include a bounding box comparison that will make use of any indexes that are available on
the geometries. To avoid index use, use the function _ST_CoveredBy.

NOTE: this is the "allowable" version that returns a boolean, not an integer.
Not an OGC standard, but Oracle has it too.

There are certain subtleties to ST_Contains and ST_Within that are not intuitively obvious. For details check out Subtleties of
OGC Covers, Contains, Within

Examples

—-—a circle coveredby a circle

SELECT ST_CoveredBy (smallc,smallc) As smallinsmall,
ST_CoveredBy (smallc, bigc) As smallcoveredbybig,
ST_CoveredBy (ST_ExteriorRing(bigc), bigc) As exteriorcoveredbybig,
ST_Within (ST_ExteriorRing (bigc),bigc) As exeriorwithinbig

FROM (SELECT ST _Buffer (ST_GeomFromText ("POINT (1 2)’), 10) As smallc,
ST_Buffer (ST_GeomFromText (' POINT (1 2)’), 20) As bigc) As foo;

——Result

smallinsmall | smallcoveredbybig | exteriorcoveredbybig | exeriorwithinbig
77777777777777 et e
t | t | t | £
(1 row)
See Also

ST_Contains, ST_Covers, ST_ExteriorRing, ST_Within

http://lin-ear-th-inking.blogspot.com/2007/06/subtleties-of-ogc-covers-spatial.html
http://lin-ear-th-inking.blogspot.com/2007/06/subtleties-of-ogc-covers-spatial.html

PostGIS 2.1.0 Manual
249/ 671

8.8.17 ST _Crosses

ST_Crosses — Returns TRUE if the supplied geometries have some, but not all, interior points in common.

Synopsis

boolean ST_Crosses(geometry g1, geometry g2);

Description

ST_Crosses takes two geometry objects and returns TRUE if their intersection "spatially cross", that is, the geometries have
some, but not all interior points in common. The intersection of the interiors of the geometries must not be the empty set and
must have a dimensionality less than the the maximum dimension of the two input geometries. Additionally, the intersection of
the two geometries must not equal either of the source geometries. Otherwise, it returns FALSE.

In mathematical terms, this is expressed as: E

a. Crosses(h) = fdimilia) — feh)) = maxidimifia)), dimihpg) ~ia ~bh=a)~ {a b =h)
The DE-9IM Intersection Matrix for the two geometries is:

o T*T***kx* (for Point/Line, Point/Area, and Line/Area situations)
o Te¥**xT*% (for Line/Point, Area/Point, and Area/Line situations)

o (rdxdddx (for [ine/Line situations)

For any other combination of dimensions this predicate returns false.

The OpenGIS Simple Features Specification defines this predicate only for Point/Line, Point/Area, Line/Line, and Line/Area
situations. JTS / GEOS extends the definition to apply to Line/Point, Area/Point and Area/Line situations as well. This makes
the relation symmetric.

I Important
) Do not call with a GEOMETRYCOLLECTION as an argument

Nfﬂ"’! Note

This function call will automatically include a bounding box comparison that will make use of any indexes that are
available on the geometries.

/ This method implements the OpenGIS Simple Features Implementation Specification for SQL 1.1. s2.1.13.3

/ This method implements the SQL/MM specification. SQL-MM 3: 5.1.29

TODO: Insert appropriate MathML markup here or use a gif. Simple HTML markup does not work well in both IE and Firefox.

http://www.opengeospatial.org/standards/sfs

PostGIS 2.1.0 Manual
250/ 671

Examples

The following illustrations all return TRUE.

-

- -

MULTIPOINT/LINESTRING MULTIPOINT/POLYGON

LINESTRING/POLYGON LINESTRING/LINESTRING

Consider a situation where a user has two tables: a table of roads and a table of highways.

PostGIS 2.1.0 Manual

road_id)
)i

road_id)
)i

251 /671
CREATE TABLE roads (CREATE TABLE highways (
id serial NOT NULL, id serial NOT NULL,
the_geom geometry, the_gem geometry,
CONSTRAINT roads_pkey PRIMARY KEY (<« CONSTRAINT roads_pkey PRIMARY KEY (<«

To determine a list of roads that cross a highway, use a query similiar to:

SELECT roads.id
FROM roads, highways

WHERE ST_Crosses (roads.the_geom, highways.the_geom) ;

8.8.18 ST_LineCrossingDirection

ST_LineCrossingDirection — Given 2 linestrings, returns a number between -3 and 3 denoting what kind of crossing behavior.

0 is no crossing.

Synopsis

integer ST_LineCrossingDirection(geometry linestringA, geometry linestringB);

Description

Given 2 linestrings, returns a number between -3 and 3 denoting what kind of crossing behavior. 0 is no crossing. This is only

supported for LINESTRING

Definition of integer constants is as follows:

0: LINE NO CROSS

-1: LINE CROSS LEFT

1: LINE CROSS RIGHT

e -2: LINE MULTICROSS END LEFT

2: LINE MULTICROSS END RIGHT
e -3: LINE MULTICROSS END SAME FIRST LEFT

3: LINE MULTICROSS END SAME FIRST RIGHT

Availability: 1.4

Examples

PostGIS 2.1.0 Manual
252/ 671

Line 1 (green), Line 2 (blue) ball is start point, triangle are

Line 1 (green), Line 2 ball is start point, triangle are end
end points. Query below.

points. Query below.
SELECT ST_LineCrossingDirection(foo.linel <«

SELECT ST_LineCrossingDirection(foo.linel <
foo.line2) As 11_cross_12 ,

, foo.line2) As 11_cross_12 , ,
ST_LineCrossingDirection (foo. <« ST_LineCrossingDirection (foo. <
line2, foo.linel) As 12_cross_11 line2, foo.linel) As 12_cross_11
FROM (FROM (
SELECT SELECT
ST_GeomFromText (' LINESTRING (25 169,89 <« ST_GeomFromText (LINESTRING (25 169,89 <«
114,40 70,86 43)’) As linel, 114,40 70,86 43)’) As linel,
ST_GeomFromText (' LINESTRING (171 154,20 < ST_GeomFromText (' LINESTRING (171 154, <
140,71 74,161 53)’) As line2 20 140, 71 74, 2.99 90.16)") As line2
) As foo;) As foo;
11 _cross_12 | 12_cross_11 11 cross_12 | 12_cross_11
_____________ +____________— _____________+_____________
2 -2

PostGIS 2.1.0 Manual

253 /671

Line I (green), Line 2 (blue) ball is start point, triangle are
end points. Query below.

SELECT
ST_LineCrossingDirection (foo. <«
linel, foo.line2) As 11_cross_12 ,
ST_LineCrossingDirection (foo. <
line2, foo.linel) As 12_cross_11
FROM (
SELECT

ST_GeomFromText (! LINESTRING (25 169,89 <+
114,40 70,86 43)’) As linel,

Line I (green), Line 2 (blue) ball is start point, triangle are
end points. Query below.

SELECT ST_LineCrossingDirection(foo.linel <«
, foo.line2) As 11_cross_12 ,
ST_LineCrossingDirection (foo. <
line2, foo.linel) As 12_cross_11
FROM (SELECT
ST_GeomFromText (' LINESTRING (25 <«
169,89 114,40 70,86 43)’) As linel,
ST_GeomFromText (' LINESTRING(2.99 <+

ST_GeomFromText (' LINESTRING (20 140, 71 <« 90.16,71 74,20 140,171 154)’) As line2
74, 161 53)’) As line2) As foo;
) As foo;

11l_cross_12 12_cross_11

11_cross_12 | 12_cross_11 | e
————————————— t-—— -2 | 2

-1 | 1
SELECT sl.gid, s2.gid, ST_LineCrossingDirection(sl.the_geom, s2.the_geom)

FROM streets sl CROSS JOIN streets s2 ON

)
WHERE ST_CrossingDirection(sl.the_geom,

See Also

ST_Crosses

8.8.19 ST_Disjoint

(sl.gid

!= s2.gid AND sl.the_geom && s2.the_geom ¢«

s2.the_geom) > 0;

ST_Disjoint — Returns TRUE if the Geometries do not "spatially intersect" - if they do not share any space together.

PostGIS 2.1.0 Manual
254 / 671

Synopsis

boolean ST_Disjoint(geometry A , geometry B);

Description

Overlaps, Touches, Within all imply geometries are not spatially disjoint. If any of the aforementioned returns true, then the
geometries are not spatially disjoint. Disjoint implies false for spatial intersection.

I ' Important
Do not call with a GEOMETRYCOLLECTION as an argument

Performed by the GEOS module

L

No'ld Note

This function call does not use indexes

Not? Note

NOTE: this is the "allowable" version that returns a boolean, not an integer.

/ This method implements the OpenGIS Simple Features Implementation Specification for SQL 1.1. s2.1.1.2 //s2.1.13.3 -
a.Relate(b, "FF*FF###%")

/ This method implements the SQL/MM specification. SQL-MM 3: 5.1.26

Examples

SELECT ST_Disjoint (POINT(0 0)’::geometry, ’LINESTRING (2 0, 0 2)’::geometry);
st_disjoint

(1 row)
SELECT ST_Disjoint ("POINT(0 0)’::geometry, ’'LINESTRING (0 0, 0 2)’::geometry);
st_disjoint

See Also

ST IntersectsST Intersects

http://www.opengeospatial.org/standards/sfs

PostGIS 2.1.0 Manual
255/ 671

8.8.20 ST Distance

ST_Distance — For geometry type Returns the 2-dimensional cartesian minimum distance (based on spatial ref) between two
geometries in projected units. For geography type defaults to return spheroidal minimum distance between two geographies in
meters.

Synopsis

float ST_Distance(geometry g1, geometry g2);
float ST_Distance(geography ggl, geography gg2);
float ST_Distance(geography ggl, geography gg2, boolean use_spheroid);

Description

For geometry type returns the 2-dimensional minimum cartesian distance between two geometries in projected units (spatial ref
units). For geography type defaults to return the minimum distance around WGS 84 spheroid between two geographies in meters.
Pass in false to return answer in sphere instead of spheroid.

/ This method implements the OpenGIS Simple Features Implementation Specification for SQL 1.1.
/ This method implements the SQL/MM specification. SQL-MM 3: 5.1.23
/ This method supports Circular Strings and Curves

/ This method is also provided by SFCGAL backend.

Auvailability: 1.5.0 geography support was introduced in 1.5. Speed improvements for planar to better handle large or many vertex
geometries

Enhanced: 2.1.0 improved speed for geography. See Making Geography faster for details.

Enhanced: 2.1.0 - support for curved geometries was introduced.

Basic Geometry Examples

—-—Geometry example - units in planar degrees 4326 is WGS 84 long lat unit=degrees
SELECT ST_Distance (
ST_GeomFromText (' POINT (-72.1235 42.3521)’,4326),
ST_GeomFromText (' LINESTRING (-72.1260 42.45, -72.123 42.1546)", 4326)
)i
st_distance

0.00150567726382282

—— Geometry example - units in meters (SRID: 26986 Massachusetts state plane meters) (most <+
accurate for Massachusetts)
SELECT ST_Distance (
ST_Transform(ST_GeomFromText (' POINT (-72.1235 42.3521)'’,4326),26986),
ST _Transform(ST_GeomFromText (' LINESTRING (-72.1260 42.45, -72.123 42.1546)’, 4326) <+
,26986)
)i
st_distance

123.797937878454

http://www.opengeospatial.org/standards/sfs
http://blog.opengeo.org/2012/07/12/making-geography-faster/

PostGIS 2.1.0 Manual
256 / 671

—— Geometry example - units in meters (SRID: 2163 US National Atlas Equal area) (least <
accurate)
SELECT ST_Distance (
ST _Transform(ST_GeomFromText (' POINT (-72.1235 42.3521)'’,4326),2163),
ST_Transform(ST_GeomFromText (/! LINESTRING (-72.1260 42.45, -72.123 42.1546)’, 4326) <
,2163)
)i

st_distance

126.664256056812

Geography Examples

—-— same as geometry example but note units in meters - use sphere for slightly faster less <+
accurate
SELECT ST_Distance(ggl, gg2) As spheroid_dist, ST_Distance(ggl, gg2, false) As sphere_dist
FROM (SELECT
ST_GeographyFromText (' SRID=4326;POINT (-72.1235 42.3521)") As ggl,
ST_GeographyFromText (' SRID=4326; LINESTRING (-72.1260 42.45, -72.123 42.1546)’) As gg2
) As foo ;

spheroid_dist | sphere_dist

__________________ +__________________
123.802076746848 | 123.475736916397

See Also

ST_3DDistance, ST_DWithin, ST_Distance_Sphere, ST_Distance_Spheroid, ST_MaxDistance, ST_Transform

8.8.21 ST_HausdorffDistance

ST_HausdorffDistance — Returns the Hausdorff distance between two geometries. Basically a measure of how similar or
dissimilar 2 geometries are. Units are in the units of the spatial reference system of the geometries.

Synopsis

float ST_HausdorffDistance(geometry g1, geometry g2);
float ST_HausdorffDistance(geometry g1, geometry g2, float densifyFrac);

Description

Implements algorithm for computing a distance metric which can be thought of as the "Discrete Hausdorff Distance". This is the
Hausdorff distance restricted to discrete points for one of the geometries. Wikipedia article on Hausdorff distance Martin Davis
note on how Hausdorff Distance calculation was used to prove correctness of the CascadePolygonUnion approach.

When densifyFrac is specified, this function performs a segment densification before computing the discrete hausdorff distance.
The densifyFrac parameter sets the fraction by which to densify each segment. Each segment will be split into a number of
equal-length subsegments, whose fraction of the total length is closest to the given fraction.

1) Note
Note!
The current implementation supports only vertices as the discrete locations. This could be extended to allow an arbitrary
density of points to be used.

http://en.wikipedia.org/wiki/Hausdorff_distance
http://lin-ear-th-inking.blogspot.com/2009/01/computing-geometric-similarity.html
http://lin-ear-th-inking.blogspot.com/2009/01/computing-geometric-similarity.html

PostGIS 2.1.0 Manual
257 /1 671

. Note
NO‘R’! This algorithm is NOT equivalent to the standard Hausdorff distance. However, it computes an approximation that is
correct for a large subset of useful cases. One important part of this subset is Linestrings that are roughly parallel to
each other, and roughly equal in length. This is a useful metric for line matching.

Auvailability: 1.5.0 - requires GEOS >=3.2.0

Examples

postgis=# SELECT st_HausdorffDistance (
"LINESTRING (0 0, 2 0)’::geometry,
"MULTIPOINT (O 1, 1 0O, 2 1)’::geometry);
st_hausdorffdistance

postgis=# SELECT st_hausdorffdistance (' LINESTRING (130 0, 0 0, 0 150)’::geometry, ' <4
LINESTRING (10 10, 10 150, 130 10)’::geometry, 0.5);
st_hausdorffdistance

8.8.22 ST_MaxDistance

ST_MaxDistance — Returns the 2-dimensional largest distance between two geometries in projected units.

Synopsis

float ST_MaxDistance(geometry g1, geometry g2);

Description

Some useful description here.

N;'R’! Note

Returns the 2-dimensional maximum distance between two linestrings in projected units. If g1 and g2 is the same
geometry the function will return the distance between the two vertices most far from each other in that geometry.

Availability: 1.5.0

Examples

postgis=# SELECT ST_MaxDistance ('POINT (0 0)’::geometry, ’'LINESTRING (2 0, 0 2)’::geometry <
)i
st_maxdistance

PostGIS 2.1.0 Manual
258 / 671

postgis=# SELECT ST_MaxDistance ('POINT (0 0)’::geometry, ’'LINESTRING (2 2, 2 2)’::geometry <
)i
st_maxdistance

2.82842712474619
(1 row)

See Also

ST_Distance, ST_LongestLine

8.8.23 ST_Distance_Sphere
ST_Distance_Sphere — Returns minimum distance in meters between two lon/lat geometries. Uses a spherical earth and radius

of 6370986 meters. Faster than ST_Distance_Spheroid ST_Distance_Spheroid, but less accurate. PostGIS versions prior to 1.5
only implemented for points.

Synopsis

float ST_Distance_Sphere(geometry geomlonlatA, geometry geomlonlatB);

Description

Returns minimum distance in meters between two lon/lat points. Uses a spherical earth and radius of 6370986 meters. Faster
than ST_Distance_Spheroid, but less accurate. PostGIS Versions prior to 1.5 only implemented for points.

) Note
Note!
This function currently does not look at the SRID of a geometry and will always assume its in WGS 84 long lat. Prior
versions of this function only support points.

Auvailability: 1.5 - support for other geometry types besides points was introduced. Prior versions only work with points.

Examples

SELECT round (CAST (ST_Distance_Sphere (ST_Centroid(the_geom), ST_GeomFromText (POINT(-118 38) <>
’,4326)) As numeric),2) As dist_meters,
round (CAST (ST_Distance (ST_Transform(ST_Centroid(the_geom),32611),
ST_Transform(ST_GeomFromText (POINT (-118 38)’, 4326),32611)) As numeric),2) As <+
dist_utmll_meters,
round (CAST (ST_Distance (ST_Centroid(the_geom), ST_GeomFromText (POINT (-118 38)’, 4326)) As <
numeric),5) As dist_degrees,
round (CAST (ST_Distance (ST_Transform(the_geom, 32611),
ST _Transform(ST_GeomFromText (POINT (-118 38)’, 4326),32611)) As numeric),2) As <+
min_dist_line_point_meters

FROM
(SELECT ST_GeomFromText (' LINESTRING(-118.584 38.374,-118.583 38.5)’, 4326) As the_geom) —
as foo;
dist_meters | dist_utmll_meters | dist_degrees | min_dist_line_point_meters

————————————— e e ettt e
70424.47 | 70438.00 | 0.72900 | 65871.18

PostGIS 2.1.0 Manual
259 /671

See Also

ST_Distance, ST_Distance_Spheroid

8.8.24 ST_Distance_Spheroid

ST_Distance_Spheroid — Returns the minimum distance between two lon/lat geometries given a particular spheroid. PostGIS
versions prior to 1.5 only support points.

Synopsis

float ST_Distance_Spheroid(geometry geomlonlatA, geometry geomlonlatB, spheroid measurement_spheroid);

Description

Returns minimum distance in meters between two lon/lat geometries given a particular spheroid. See the explanation of spheroids
given for ST_Length_Spheroid. PostGIS version prior to 1.5 only support points.

1) Note
Noteh ot
This function currently does not look at the SRID of a geometry and will always assume its represented in the coordi-
nates of the passed in spheroid. Prior versions of this function only support points.

Awailability: 1.5 - support for other geometry types besides points was introduced. Prior versions only work with points.

Examples

SELECT round (CAST (
ST_Distance_Spheroid (ST_Centroid(the_geom), ST_GeomFromText (POINT(-118 38)’,4326), ' <+
SPHEROID["WGS 84",6378137,298.257223563]")
As numeric),2) As dist_meters_spheroid,
round (CAST (ST_Distance_Sphere (ST_Centroid(the_geom), ST_GeomFromText ('POINT(-118 38) <«
",4326)) As numeric),2) As dist_meters_sphere,
round (CAST (ST_Distance (ST_Transform(ST_Centroid(the_geom),32611),
ST _Transform(ST_GeomFromText (' POINT (-118 38)’, 4326),32611)) As numeric),2) As <+
dist_utmll_meters

FROM
(SELECT ST_GeomFromText (' LINESTRING(-118.584 38.374,-118.583 38.5)’, 4326) As the_geom) —
as foo;
dist_meters_spheroid | dist_meters_sphere | dist_utmll_meters
______________________ o
70454.92 | 70424 .47 | 70438.00
See Also

ST_Distance, ST_Distance_Sphere

8.8.25 ST_DFullyWithin

ST_DFullyWithin — Returns true if all of the geometries are within the specified distance of one another

PostGIS 2.1.0 Manual
260/ 671

Synopsis

boolean ST_DFullyWithin(geometry g1, geometry g2, double precision distance);

Description

Returns true if the geometries is fully within the specified distance of one another. The distance is specified in units defined by
the spatial reference system of the geometries. For this function to make sense, the source geometries must both be of the same
coordinate projection, having the same SRID.

) Note
Note O
This function call will automatically include a bounding box comparison that will make use of any indexes that are
available on the geometries.

Availability: 1.5.0

Examples

postgis=# SELECT ST_DFullyWithin (geom_a, geom_b, 10) as DFullyWithinl0, ST_DWithin (geom_a, <>
geom_b, 10) as DWithinl0, ST_DFullyWithin(geom_a, geom_b, 20) as DFullyWithin20 from
(select ST_GeomFromText ("POINT(1 1)’) as geom_a,ST_GeomFromText (' LINESTRING(1 5, 2 7, 1 ¢
9, 14 12)") as geom_b) tl;

DFullyWithinlO | DWithinlO | DFullyWithin20 |

See Also

ST_MaxDistance, ST_DWithin

8.8.26 ST_DWithin

ST_DWithin — Returns true if the geometries are within the specified distance of one another. For geometry units are in those
of spatial reference and For geography units are in meters and measurement is defaulted to use_spheroid=true (measure around
spheroid), for faster check, use_spheroid=false to measure along sphere.

Synopsis

boolean ST_DWithin(geometry g1, geometry g2, double precision distance_of_srid);
boolean ST_DWithin(geography ggl, geography gg2, double precision distance_meters);
boolean ST_DWithin(geography ggl, geography gg2, double precision distance_meters, boolean use_spheroid);

Description

Returns true if the geometries are within the specified distance of one another.

For Geometries: The distance is specified in units defined by the spatial reference system of the geometries. For this function to
make sense, the source geometries must both be of the same coordinate projection, having the same SRID.

For geography units are in meters and measurement is defaulted to use_spheroid=true (measure around WGS 84 spheroid), for
faster check, use_spheroid=false to measure along sphere.

PostGIS 2.1.0 Manual

261/671

Nfﬂ"! Note

This function call will automatically include a bounding box comparison that will make use of any indexes that are

available on the geometries.

. Note

Nﬁ'“’! Prior to 1.3, ST_Expand was commonly used in conjunction with && and ST_Distance to achieve the same effect and
in pre-1.3.4 this function was basically short-hand for that construct. From 1.3.4, ST_DWithin uses a more short-circuit
distance function which should make it more efficient than prior versions for larger buffer regions.

Not? Note
Use ST_3DDWithin if you have 3D geometries.

/ This method implements the OpenGIS Simple Features Implementation Specification for SQL 1.1.

Awailability: 1.5.0 support for geography was introduced
Enhanced: 2.1.0 improved speed for geography. See Making Geography faster for details.

Enhanced: 2.1.0 support for curved geometries was introduced.

Examples

—-—Find the nearest hospital to each school
——that is within 3000 units of the school.
—— We do an ST_DWithin search to utilize indexes to limit our search list
—— that the non-indexable ST_Distance needs to process
——If the units of the spatial reference is meters then units would be meters
SELECT DISTINCT ON (s.gid) s.gid, s.school_name, s.the_geom, h.hospital_name
FROM schools s
LEFT JOIN hospitals h ON ST _DWithin(s.the_geom, h.the_geom, 3000)
ORDER BY s.gid, ST _Distance(s.the_geom, h.the_geom) ;

——The schools with no close hospitals
—-Find all schools with no hospital within 3000 units
—-—away from the school. Units is in units of spatial ref (e.g. meters, feet,
SELECT s.gid, s.school_name
FROM schools s
LEFT JOIN hospitals h ON ST _DWithin(s.the_geom, h.the_geom, 3000)
WHERE h.gid IS NULL;

See Also

ST_Distance, ST_Expand

8.8.27 ST_Equals

degrees)

ST_Equals — Returns true if the given geometries represent the same geometry. Directionality is ignored.

Synopsis

boolean ST_Equals(geometry A, geometry B);

http://www.opengeospatial.org/standards/sfs
http://blog.opengeo.org/2012/07/12/making-geography-faster/

PostGIS 2.1.0 Manual
262/ 671

Description

Returns TRUE if the given Geometries are "spatially equal”. Use this for a ’better’ answer than ’=". Note by spatially equal we
mean ST_Within(A,B) = true and ST_Within(B,A) = true and also mean ordering of points can be different but represent the same
geometry structure. To verify the order of points is consistent, use ST_OrderingEquals (it must be noted ST_OrderingEquals is
a little more stringent than simply verifying order of points are the same).

I Important
" This function will return false if either geometry is invalid even if they are binary equal.

/ This method implements the OpenGIS Simple Features Implementation Specification for SQL 1.1. s2.1.1.2
/ This method implements the SQL/MM specification. SQL-MM 3: 5.1.24

Examples
SELECT ST_Equals (ST_GeomFromText (/ LINESTRING (0 0, 10 10)’),

ST_GeomFromText (' LINESTRING(O 0, 5 5, 10 10)’));
st_equals

SELECT ST_Equals (ST_Reverse (ST_GeomFromText (' LINESTRING(O 0, 10 10)")),
ST_GeomFromText (' LINESTRING(O 0, 5 5, 10 10)"));
st_equals

See Also

ST_IsValid, ST_OrderingEquals, ST_Reverse, ST_Within

8.8.28 ST_HasArc

ST_HasArc — Returns true if a geometry or geometry collection contains a circular string

Synopsis

boolean ST_HasArc(geometry geomA);

Description

Returns true if a geometry or geometry collection contains a circular string

Availability: 1.2.3?7
/ This function supports 3d and will not drop the z-index.

/ This method supports Circular Strings and Curves

http://www.opengeospatial.org/standards/sfs

PostGIS 2.1.0 Manual
263 /671

Examples
SELECT ST_HasArc (ST_Collect (' LINESTRING(1 2, 3 4, 5 6)’, 'CIRCULARSTRING(1 1, 2 3, 4 5, 6 <+

7, 56)"));
st_hasarc

See Also

ST_CurveToLine, ST _LineToCurve

8.8.29 ST Intersects

ST_Intersects — Returns TRUE if the Geometries/Geography "spatially intersect in 2D" - (share any portion of space) and
FALSE if they don’t (they are Disjoint). For geography -- tolerance is 0.00001 meters (so any points that close are considered to
intersect)

Synopsis

boolean ST_Intersects(geometry geomA , geometry geomB);
boolean ST_Intersects(geography geogA , geography geogB);

Description
If a geometry or geography shares any portion of space then they intersect. For geography -- tolerance is 0.00001 meters (so any
points that are close are considered to intersect)

Overlaps, Touches, Within all imply spatial intersection. If any of the aforementioned returns true, then the geometries also
spatially intersect. Disjoint implies false for spatial intersection.

Important
-~ Do not call with a GEOMETRYCOLLECTION as an argument for geometry version. The geography version supports
GEOMETRYCOLLECTION since its a thin wrapper around distance implementation.

Performed by the GEOS module (for geometry), geography is native

Awailability: 1.5 support for geography was introduced.

N:"“’! Note

This function call will automatically include a bounding box comparison that will make use of any indexes that are
available on the geometries.

Note! Note

For geography, this function has a distance tolerance of about 0.00001 meters and uses the sphere rather than spheroid
calculation.

PostGIS 2.1.0 Manual
264 / 671

N;’R’! Note

NOTE: this is the "allowable" version that returns a boolean, not an integer.

/ This method implements the OpenGIS Simple Features Implementation Specification for SQL 1.1. s2.1.1.2 //s2.1.13.3 -
ST_Intersects(gl, g2) --> Not (ST_Disjoint(g1, g2))

/ This method implements the SQL/MM specification. SQL-MM 3: 5.1.27

/ This method is also provided by SFCGAL backend.

Geometry Examples

SELECT ST_Intersects (’POINT(0 0)’::geometry, ’'LINESTRING (2 0, 0 2)’::geometry);
st_intersects

(1 row)
SELECT ST_Intersects (’POINT(0 0)’::geometry, ’'LINESTRING (O 0, 0O 2)’::geometry);
st_intersects

Geography Examples

SELECT ST_Intersects
ST_GeographyFromText (' SRID=4326; LINESTRING (-43.23456 72.4567,-43.23456 72.4568)"),
ST_GeographyFromText (' SRID=4326; POINT (-43.23456 72.4567772)")
)i

st_intersects

See Also

ST_3DlIntersects, ST_Disjoint

8.8.30 ST_Length

ST_Length — Returns the 2d length of the geometry if it is a linestring or multilinestring. geometry are in units of spatial
reference and geography are in meters (default spheroid)

Synopsis

float ST_Length(geometry a_2dlinestring);
float ST_Length(geography geog, boolean use_spheroid=true);

http://www.opengeospatial.org/standards/sfs

PostGIS 2.1.0 Manual
265/ 671

Description

For geometry: Returns the cartesian 2D length of the geometry if it is a linestring, multilinestring, ST_Curve, ST_MultiCurve. 0
is returned for areal geometries. For areal geometries use ST_Perimeter. Geometry: Measurements are in the units of the spatial
reference system of the geometry. Geography: Units are in meters and also acts as a Perimeter function for areal geogs.

Currently for geometry this is an alias for ST_Length2D, but this may change to support higher dimensions.

Warning

Changed: 2.0.0 Breaking change -- in prior versions applying this to a MULTI/POLYGON of type geography would give
you the perimeter of the POLYGON/MULTIPOLYGON. In 2.0.0 this was changed to return 0 to be in line with geometry
behavior. Please use ST_Perimeter if you want the perimeter of a polygon

N;‘R’! Note

For geography measurement defaults spheroid measurement. To use the faster less accurate sphere use
ST_Length(gg,false);

/ This method implements the OpenGIS Simple Features Implementation Specification for SQL 1.1. s2.1.5.1

/ This method implements the SQL/MM specification. SQL-MM 3: 7.1.2,9.3.4
Availability: 1.5.0 geography support was introduced in 1.5.

/ This method is also provided by SFCGAL backend.

Geometry Examples

Return length in feet for line string. Note this is in feet because 2249 is Mass State Plane Feet

SELECT ST_Length (ST_GeomFromText (' LINESTRING (743238 2967416,743238 2967450,743265 2967450,
743265.625 2967416,743238 2967416)',2249));
st_length

122.630744000095

——Transforming WGS 84 linestring to Massachusetts state plane meters
SELECT ST_Length (
ST _Transform (
ST_GeomFromEWKT (/ SRID=4326; LINESTRING (-72.1260 42.45, -72.1240 42.45666, -72.123 <
42.1546)"),
26986
)
)i
st_length

34309.4563576191

Geography Examples

Return length of WGS 84 geography line

http://www.opengeospatial.org/standards/sfs

PostGIS 2.1.0 Manual
266 / 671

—— default calculation is using a sphere rather than spheroid
SELECT ST_Length (the_geog) As length_spheroid, ST_Length (the_geog, false) As length_sphere
FROM (SELECT ST_GeographyFromText (
"SRID=4326; LINESTRING (-72.1260 42.45, -72.1240 42.45666, -72.123 42.1546)’) As the_geoq)
As foo;

length_spheroid | length_sphere
__________________ +__________________
34310.5703627305 | 34346.2060960742
(1 row)
See Also

ST_GeographyFromText, ST_GeomFromEWKT, ST_Length_Spheroid, ST_Perimeter, ST_Transform

8.8.31 ST_Length2D

ST_Length2D — Returns the 2-dimensional length of the geometry if it is a linestring or multi-linestring. This is an alias for
ST_Length

Synopsis

float ST_Length2D(geometry a_2dlinestring);

Description

Returns the 2-dimensional length of the geometry if it is a linestring or multi-linestring. This is an alias for ST_Length

See Also

ST_Length, ST_3DLength

8.8.32 ST_3DLength

ST_3DLength — Returns the 3-dimensional or 2-dimensional length of the geometry if it is a linestring or multi-linestring.

Synopsis

float ST_3DLength(geometry a_3dlinestring);

Description

Returns the 3-dimensional or 2-dimensional length of the geometry if it is a linestring or multi-linestring. For 2-d lines it will
just return the 2-d length (same as ST_Length and ST_Length2D)

/ This function supports 3d and will not drop the z-index.
Changed: 2.0.0 In prior versions this used to be called ST_Length3D

PostGIS 2.1.0 Manual
267 / 671

Examples

Return length in feet for a 3D cable. Note this is in feet because 2249 is Mass State Plane Feet

SELECT ST_3DLength (ST_GeomFromText (' LINESTRING (743238 2967416 1,743238 2967450 1,743265 <+
2967450 3,

743265.625 2967416 3,743238 2967416 3)’,2249));

ST_3DLength

122.704716741457

See Also

ST_Length, ST_Length2D

8.8.33 ST_Length_Spheroid

ST_Length_Spheroid — Calculates the 2D or 3D length of a linestring/multilinestring on an ellipsoid. This is useful if the
coordinates of the geometry are in longitude/latitude and a length is desired without reprojection.

Synopsis

float ST_Length_Spheroid(geometry a_linestring, spheroid a_spheroid);

Description

Calculates the length of a geometry on an ellipsoid. This is useful if the coordinates of the geometry are in longitude/latitude and
a length is desired without reprojection. The ellipsoid is a separate database type and can be constructed as follows:

SPHEROID [<NAME>, <SEMI-MAJOR
AXIS>,<INVERSE FLATTENING>]

SPHEROID["GRS_1980",6378137,298.257222101]

Not? Note
Will return 0 for anything that is not a MULTILINESTRING or LINESTRING

/ This function supports 3d and will not drop the z-index.

Examples

SELECT ST_Length_Spheroid(geometry_column,
/" SPHEROID["GRS_1980",6378137,298.257222101]")
FROM geometry_table;

SELECT ST_Length_Spheroid(the_geom, sph_m) As tot_len,
ST_Length_Spheroid (ST_GeometryN (the_geom,1l), sph_m) As len_linel,
ST_Length_Spheroid (ST_GeometryN (the_geom,2), sph_m) As len_line2
FROM (SELECT ST_GeomFromText ('MULTILINESTRING((-118.584 38.374,-118.583 38.5),
(=71.05957 42.3589 , -71.061 43))’) As the_geom,

PostGIS 2.1.0 Manual
268/ 671

CAST (' SPHEROID["GRS_1980", 6378137,298.257222101]" As spheroid) As sph_m) as foo;
tot_len | len_linel | len_line2

,,,,,,,,,,,,,,,,,, 1
85204.5207562955 | 13986.8725229309 | 71217.6482333646

--3D
SELECT ST_Length_Spheroid(the_geom, sph_m) As tot_len,
ST_Length_Spheroid (ST_GeometryN (the_geom,1l), sph_m) As len_linel,

ST_Length_Spheroid (ST_GeometryN (the_geom,2), sph_m) As len_line2
FROM (SELECT ST_GeomFromEWKT (' MULTILINESTRING((-118.584 38.374 20,-118.583 38.5 30) <«

’

(=71.05957 42.3589 75, -71.061 43 90))’) As the_geom,
CAST (' SPHEROID["GRS_1980", 6378137,298.257222101]" As spheroid) As sph_m) as foo;

tot_len | len_linel | len_line2
__________________ +_________________+__________________
85204.5259107402 | 13986.876097711 | 71217.6498130292

See Also

ST_GeometryN, ST_Length, ST_3DLength_Spheroid

8.8.34 ST_Length2D_Spheroid

ST_Length2D_Spheroid — Calculates the 2D length of a linestring/multilinestring on an ellipsoid. This is useful if the coordi-
nates of the geometry are in longitude/latitude and a length is desired without reprojection.

Synopsis

float ST_Length2D_Spheroid(geometry a_linestring, spheroid a_spheroid);

Description

Calculates the 2D length of a geometry on an ellipsoid. This is useful if the coordinates of the geometry are in longitude/latitude
and a length is desired without reprojection. The ellipsoid is a separate database type and can be constructed as follows:

SPHEROID [<NAME>, <SEMI-MAJOR
AXIS>,<INVERSE FLATTENING>]

SPHEROID["GRS_1980",6378137,298.257222101]

Not? Note
Will return 0 for anything that is not a MULTILINESTRING or LINESTRING

No.l-g,! Note
This is much like ST_Length_Spheroid and ST_3DLength_Spheroid except it will throw away the Z coordinate in calcu-

lations.

PostGIS 2.1.0 Manual
269 /671

Examples

SELECT ST_Length2D_Spheroid(geometry_column,
" SPHEROID["GRS_1980",6378137,298.257222101]1")
FROM geometry_table;

SELECT ST_Length2D_Spheroid(the_geom, sph_m) As tot_len,
ST_Length2D_Spheroid (ST_GeometryN (the_geom,1), sph_m) As len_linel,
ST_Length2D_Spheroid (ST_GeometryN (the_geom,2), sph_m) As len_line2
FROM (SELECT ST_GeomFromText ('MULTILINESTRING((-118.584 38.374,-118.583 38.5),
(=71.05957 42.3589 , -71.061 43))’) As the_geom,
CAST (' SPHEROID["GRS_1980",6378137,298.257222101]" As spheroid) As sph_m) as foo;
tot_len | len_linel | len_line?2
__________________ O
85204.5207562955 | 13986.8725229309 | 71217.6482333646

——3D Observe same answer
SELECT ST_Length2D_Spheroid(the_geom, sph_m) As tot_len,
ST_Length2D_Spheroid (ST_GeometryN (the_geom,1l), sph_m) As len_linel,
ST_Length2D_Spheroid (ST_GeometryN (the_geom,2), sph_m) As len_line2
FROM (SELECT ST_GeomFromEWKT ('MULTILINESTRING((-118.584 38.374 20,-118.583 38.5 30) <«

’

(=71.05957 42.3589 75, -71.061 43 90))’) As the_geom,
CAST (SPHEROID["GRS_1980",6378137,298.257222101]" As spheroid) As sph_m) as foo;

tot_len | len_1linel | len_1line?2
777777777777777777 +7777777777777777774,777777777777777777
85204.5207562955 | 13986.8725229309 | 71217.6482333646

See Also

ST_GeometryN, ST_Length_Spheroid, ST_3DLength_Spheroid

8.8.35 ST_3DLength_Spheroid

ST_3DLength_Spheroid — Calculates the length of a geometry on an ellipsoid, taking the elevation into account. This is just an
alias for ST_Length_Spheroid.

Synopsis

float ST_3DLength_Spheroid(geometry a_linestring, spheroid a_spheroid);

Description

Calculates the length of a geometry on an ellipsoid, taking the elevation into account. This is just an alias for ST_Length_Spheroid.

st¢} Note
N Changed: 2.0.0 In prior versions this used to return 0 for anything that is not a MULTILINESTRING or LINESTRING

and in 2.0.0 on returns the perimeter of if given a polgon.

Not? Note

This function is just an alias for ST_Length_Spheroid.

PostGIS 2.1.0 Manual
270/ 671

/ This function supports 3d and will not drop the z-index.
Changed: 2.0.0 In prior versions this used to be called ST_Length3d_Spheroid
Examples

See ST_Length_Spheroid

See Also

ST_GeometryN, ST_Length, ST_Length_Spheroid

8.8.36 ST_LongestLine
ST_LongestLine — Returns the 2-dimensional longest line points of two geometries. The function will only return the first

longest line if more than one, that the function finds. The line returned will always start in gl and end in g2. The length of the
line this function returns will always be the same as st_maxdistance returns for gl and g2.

Synopsis

geometry ST _LongestLine(geometry g1, geometry g2);

Description

Returns the 2-dimensional longest line between the points of two geometries.

Auvailability: 1.5.0

Examples

PostGIS 2.1.0 Manual

271 /671

Longest line between point and line

SELECT ST_AsText (

ST_LongestLine ("POINT (100 100)”

geometry,

"LINESTRING (20 80, 98
110 180, 50 75)’ ::geometry)
) As lline;

190,

LINESTRING (100 100,98 190)

<o

<

longest line between polygon and polygon

SELECT ST_AsText (
ST_LongestLine (
ST_GeomFromText (' POLYGON <
((175 150, 20 40,
50 60, 125 100, <
175 150)) "),
ST _Buffer (ST_GeomFromText <
("POINT (110 170)"), 20)
)

) As llinewkt;

LINESTRING (20 40,121.111404660392 <«
186.629392246051)

PostGIS 2.1.0 Manual
272/ 671

longest straight distance to travel from one part of an elegant city to the other Note the max distance = to the length of the
line.

SELECT ST_AsText (ST_LongestLine (c.the_geom, c.the_geom)) As llinewkt,
ST_MaxDistance (c.the_geom, c.the_geom) As max_dist,
ST_Length (ST_LongestLine (c.the_geom, c.the_geom)) As lenll
FROM (SELECT ST_BuildArea (ST_Collect (the_geom)) As the_geom
FROM (SELECT ST_Translate (ST_SnapToGrid(ST_Buffer (ST_Point (50 ,generate_series <«

(50,190, 50)

),40, ’'quad_segs=2'),1), x, 0) As the_geom
FROM generate_series(1,100,50) As x) AS foo

) As c;

llinewkt | max_dist | lenll
___________________________ +__________________+__________________
LINESTRING (23 22,129 178) | 188.605408193933 | 188.605408193933
See Also

ST_MaxDistance, ST_ShortestLine, ST_LongestLine

8.8.37 ST_OrderingEquals

ST_OrderingEquals — Returns true if the given geometries represent the same geometry and points are in the same directional
order.

Synopsis

boolean ST_OrderingEquals(geometry A, geometry B);

Description

ST_OrderingEquals compares two geometries and returns t (TRUE) if the geometries are equal and the coordinates are in the
same order; otherwise it returns f (FALSE).

PostGIS 2.1.0 Manual
273 /671

N:ﬂ"! Note
This function is implemented as per the ArcSDE SQL specification rather than SQL-MM.
http://edndoc.esri.com/arcsde/9.1/sql_api/sqlapi3.htm#ST_OrderingEquals

/ This method implements the SQL/MM specification. SQL-MM 3: 5.1.43

Examples
SELECT ST_OrderingEquals (ST_GeomFromText (' LINESTRING(O 0, 10 10)’),

ST_GeomFromText (! LINESTRING(O 0, 5 5, 10 10)"));
st_orderingequals

SELECT ST_OrderingEquals (ST_GeomFromText (' LINESTRING(O 0, 10 10)"),
ST_GeomFromText (' LINESTRING(O 0, 0 0, 10 10)’));
st_orderingequals

SELECT ST_OrderingEquals (ST_Reverse (ST_GeomFromText (/' LINESTRING(0O 0, 10 10)7)),
ST_GeomFromText (' LINESTRING(O 0, 0 0, 10 10)’));
st_orderingequals

See Also

ST_Equals, ST_Reverse

8.8.38 ST_Overlaps

ST_Overlaps — Returns TRUE if the Geometries share space, are of the same dimension, but are not completely contained by
each other.

Synopsis

boolean ST_Overlaps(geometry A, geometry B);

Description

Returns TRUE if the Geometries "spatially overlap". By that we mean they intersect, but one does not completely contain another.

Performed by the GEOS module

N;ﬂd Note

Do not call with a GeometryCollection as an argument

PostGIS 2.1.0 Manual
274 / 671

This function call will automatically include a bounding box comparison that will make use of any indexes that are available on
the geometries. To avoid index use, use the function _ST_Overlaps.
NOTE: this is the "allowable" version that returns a boolean, not an integer.

/ This method implements the OpenGIS Simple Features Implementation Specification for SQL 1.1. s2.1.1.2 //s2.1.13.3

/ This method implements the SQL/MM specification. SQL-MM 3: 5.1.32

Examples

The following illustrations all return TRUE.

-

-

MULTIPOINT/MULTIPOINT LINESTRING/LINESTRING POLYGON/POLYGON

——a point on a line is contained by the line and is of a lower dimension, and therefore <+
does not overlap the line
nor crosses

SELECT ST_Overlaps(a,b) As a_overlap_b,
ST_Crosses(a,b) As a_crosses_Db,
ST _Intersects(a, b) As a_intersects_b, ST_Contains(b,a) As b_contains_a

FROM (SELECT ST_GeomFromText ('POINT(1 0.5)’) As a, ST_GeomFromText (/LINESTRING(1 0, 1 1, 3 <
5)’) As b)
As foo

a_overlap_b | a_crosses_b | a_intersects_b | b_contains_a

—--a line that is partly contained by circle, but not fully is defined as intersecting and <+
crossing,
—— but since of different dimension it does not overlap
SELECT ST_Overlaps(a,b) As a_overlap_b, ST_Crosses(a,b) As a_crosses_b,
ST_Intersects(a, b) As a_intersects_b,
ST_Contains(a,b) As a_contains_b

FROM (SELECT ST _Buffer (ST_GeomFromText ('POINT (1 0.5)7), 3) As a, ST_GeomFromText (/! <=
LINESTRING(1 O, 1 1, 3 5)") As b)
As foo;

a_overlap_b | a_crosses_b | a_intersects_b | a_contains_Db
————————————— B e

http://www.opengeospatial.org/standards/sfs

PostGIS 2.1.0 Manual
275/ 671

£ | € | € | £

—— a 2-dimensional bent hot dog (aka buffered line string) that intersects a circle,

—— but is not fully contained by the circle is defined as overlapping since they are of <
the same dimension,

-— Dbut it does not cross, because the intersection of the 2 is of the same dimension

—-— as the maximum dimension of the 2

SELECT ST_Overlaps(a,b) As a_overlap_b, ST_Crosses(a,b) As a_crosses_b, ST_Intersects(a, b) <
As a_intersects_Db,
ST_Contains (b,a) As b_contains_a,
ST_Dimension(a) As dim_a, ST_Dimension(b) as dim_b, ST_Dimension(ST_Intersection(a,b)) As <+
dima_intersection_b
FROM (SELECT ST _Buffer (ST_GeomFromText ('POINT (1 0.5)’), 3) As a,
ST_Buffer (ST_GeomFromText (' LINESTRING(1 0, 1 1, 3 5)’),0.5) As b)

As foo;
a_overlap_b | a_crosses_b | a_intersects_b | b_contains_a | dim_a | dim_b | <
dima_intersection_b
————————————— B e e e it
t | £ | € | £ | 2 | 2 | 2

See Also

ST Contains, ST_Crosses, ST_Dimension, ST_Intersects

8.8.39 ST Perimeter

ST_Perimeter — Return the length measurement of the boundary of an ST_Surface or ST_MultiSurface geometry or geography.
(Polygon, Multipolygon). geometry measurement is in units of spatial reference and geography is in meters.

Synopsis

float ST_Perimeter(geometry gl);

float ST_Perimeter(geography geog, boolean use_spheroid=true);

Description

Returns the 2D perimeter of the geometry/geography if it is a ST_Surface, ST_MultiSurface (Polygon, Multipolygon). 0 is
returned for non-areal geometries. For linestrings use ST_Length. Measurements for geometry are in the units of the spatial
reference system of the geometry. Measurements for geography are in meters. If use_spheroid is set to false, then will
model earth as a sphere instead of a spheroid.

Currently this is an alias for ST_Perimeter2D, but this may change to support higher dimensions.

/ This method implements the OpenGIS Simple Features Implementation Specification for SQL 1.1. s2.1.5.1

/ This method implements the SQL/MM specification. SQL-MM 3: 8.1.3,9.5.4
Availability 2.0.0: Support for geography was introduced

http://www.opengeospatial.org/standards/sfs

PostGIS 2.1.0 Manual
276/ 671

Examples: Geometry

Return perimeter in feet for polygon and multipolygon. Note this is in feet because 2249 is Mass State Plane Feet

SELECT ST_Perimeter (ST_GeomFromText (' POLYGON ((743238 2967416,743238 2967450, 743265 2967450,
743265.625 2967416,743238 2967416))", 2249));
st_perimeter
122.630744000095
(1 row)

SELECT ST_Perimeter (ST_GeomFromText (' MULTIPOLYGON(((763104.471273676 2949418.44119003,
763104.477769673 2949418.42538203,
763104.189609677 2949418.22343004,763104.471273676 2949418.44119003)),
((763104.471273676 2949418.44119003,763095.804579742 2949436.33850239,
763086.132105649 2949451.46730207,763078.452329651 2949462.11549407,
763075.354136904 2949466.17407812,763064.362142565 2949477.64291974,
763059.953961626 2949481.28983009,762994.637609571 2949532.04103014,
762990.568508415 2949535.06640477,762986.710889563 2949539.61421415,
763117.237897679 2949709.50493431,763235.236617789 2949617.95619822,
763287.718121842 2949562.20592617,763111.553321674 2949423.91664605,
763104.471273676 2949418.44119003)))", 2249));
st_perimeter

845.227713366825

(1 row)

Examples: Geography

Return perimeter in meters and feet for polygon and multipolygon. Note this is geography (WGS 84 long lat)

SELECT ST_Perimeter (geog) As per_meters, ST _Perimeter (geog)/0.3048 As per_ft

FROM ST_GeogFromText (' POLYGON ((-71.1776848522251 42.3902896512902,-71.1776843766326 <
42.3903829478009,

—=71.1775844305465 42.3903826677917,-71.1775825927231 42.3902893647987,-71.1776848522251 <>
42.3902896512902))") As geog;

per_meters | per_ft

_________________ +__________________
37.3790462565251 | 122.634666195949

—-— Multipolygon example —-

SELECT ST_Perimeter (geog) As per_meters, ST _Perimeter (geog, false) As per_sphere_meters, —
ST_Perimeter (geog) /0.3048 As per_ft
FROM ST_GeogFromText ("MULTIPOLYGON (((—=71.1044543107478 42.340674480411,-71.1044542869917 <

42.3406744369506,

—71.1044553562977 42.340673886454,-71.1044543107478 42.340674480411)),

((=71.1044543107478 42.340674480411,-71.1044860600303 42.3407237015564,-71.1045215770124 <«
42.3407653385914,

—71.1045498002983 42.3407946553165,-71.1045611902745 42.3408058316308,-71.1046016507427 <
42.340837442371,

-71.104617893173 42.3408475056957,-71.1048586153981 42.3409875993595,-71.1048736143677 <
42.3409959528211,

-71.1048878050242 42.3410084812078,-71.1044020965803 42.3414730072048,

—-71.1039672113619 42.3412202916693,-71.1037740497748 42.3410666421308,

—71.1044280218456 42.3406894151355,-71.1044543107478 42.340674480411)))") As geog;

per_meters | per_sphere_meters | per_ft
__________________ +___________________+__________________
257.634283683311 | 257.412311446337 | 845.256836231335

PostGIS 2.1.0 Manual
277 1 671

See Also

ST_GeogFromText, ST_GeomFromText, ST_Length

8.8.40 ST_Perimeter2D

ST_Perimeter2D — Returns the 2-dimensional perimeter of the geometry, if it is a polygon or multi-polygon. This is currently
an alias for ST_Perimeter.

Synopsis

float ST_Perimeter2D(geometry geomA);

Description

Returns the 2-dimensional perimeter of the geometry, if it is a polygon or multi-polygon.

N:rld Note

This is currently an alias for ST_Perimeter. In future versions ST_Perimeter may return the highest dimension perimeter
for a geometry. This is still under consideration

See Also

ST Perimeter

8.8.41 ST _3DPerimeter

ST_3DPerimeter — Returns the 3-dimensional perimeter of the geometry, if it is a polygon or multi-polygon.

Synopsis

float ST_3DPerimeter(geometry geomA);

Description

Returns the 3-dimensional perimeter of the geometry, if it is a polygon or multi-polygon. If the geometry is 2-dimensional, then
the 2-dimensional perimeter is returned.

/ This function supports 3d and will not drop the z-index.
Changed: 2.0.0 In prior versions this used to be called ST_Perimeter3D

PostGIS 2.1.0 Manual
278/ 671

Examples

Perimeter of a slightly elevated polygon in the air in Massachusetts state plane feet

SELECT ST_3DPerimeter (the_geom), ST_Perimeter2d(the_geom), ST _Perimeter (the_geom) FROM
(SELECT ST_GeomFromEWKT (’/ SRID=2249; POLYGON ((743238 2967416 2,743238 2967450 1,
743265.625 2967416 1,743238 2967416 2))’) As the_geom) As foo;
ST_3DPerimeter | st_perimeter2d | st_perimeter

777777777777777777 +777777777777777777+777777777777777777
105.465793597674 | 105.432997272188 | 105.432997272188

See Also

ST_GeomFromEWKT, ST_Perimeter, ST_Perimeter2D

8.8.42 ST_PointOnSurface

ST_PointOnSurface — Returns a POINT guaranteed to lie on the surface.

Synopsis

geometry ST_PointOnSurface(geometry gl);

Description

Returns a POINT guaranteed to intersect a surface.
/ This method implements the OpenGIS Simple Features Implementation Specification for SQL 1.1. s3.2.14.2 // s3.2.18.2

/ This method implements the SQL/MM specification. SQL-MM 3: 8.1.5, 9.5.6. According to the specs, ST_PointOnSurface
works for surface geometries (POLYGONs, MULTIPOLYGONS, CURVED POLYGONS). So PostGIS seems to be extending
what the spec allows here. Most databases Oracle,DB II, ESRI SDE seem to only support this function for surfaces. SQL Server
2008 like PostGIS supports for all common geometries.

/ This function supports 3d and will not drop the z-index.

Examples

SELECT ST_AsText (ST_PointOnSurface ('POINT (0 5)’::geometry));
st_astext

POINT (0O 5)
(1 row)

SELECT ST_AsText (ST_PointOnSurface (' LINESTRING(0 5, 0 10)’::geometry));
st_astext

POINT (0O 5)
(1 row)

SELECT ST_AsText (ST_PointOnSurface (' POLYGON((O O, 0 5, 55, 5 0, 0 0))’::geometry));

http://www.opengeospatial.org/standards/sfs

PostGIS 2.1.0 Manual
279 /671

st_astext

POINT (2.5 2.5)
(1 row)

SELECT ST_ASEWKT (ST_PointOnSurface (ST_GeomFromEWKT (! LINESTRING(O 5 1, 0 0 1, 0 10 2)7)));
st_asewkt

POINT (0 O 1)
(1 row)

See Also

ST_Centroid, ST_Point_Inside_Circle

8.8.43 ST_Project

ST_Project — Returns a POINT projected from a start point using a distance in meters and bearing (azimuth) in radians.

Synopsis

geography ST_Project(geography gl, float distance, float azimuth);

Description

Returns a POINT projected from a start point using an azimuth (bearing) measured in radians and distance measured in meters.

Distance, azimuth and projection are all aspects of the same operation, describing (or in the case of projection, constructing) the
relationship between two points on the world.

The azimuth is sometimes called the heading or the bearing in navigation. It is measured relative to true north (azimuth zero).
East is azimuth 90 (pi /2), south is azimuth 180 (pi), west is azimuth 270 (pi*1.5).

The distance is given in meters.

Availability: 2.0.0

Example: Using degrees - projected point 100,000 meters and bearing 45 degrees

SELECT ST_AsText (ST_Project (POINT (0 0)’::geography, 100000, radians(45.0)));
st_astext

POINT (0.63523102912532 0.63947233472882)
(1 row)

Example: Using radians - projected point 100,000 meters and bearing pi/4 (45 degrees)

SELECT ST_AsText (ST_Project ('POINT (0 0)’::geography, 100000, pi()/4));
st_astext

POINT (0.63523102912532 0.63947233472882)
(1 row)

PostGIS 2.1.0 Manual
280/ 671

See Also

ST_Azimuth, ST_Distance, PostgreSQL Math Functions

8.8.44 ST_Relate

ST_Relate — Returns true if this Geometry is spatially related to anotherGeometry, by testing for intersections between the
Interior, Boundary and Exterior of the two geometries as specified by the values in the intersectionMatrixPattern. If no intersec-
tionMatrixPattern is passed in, then returns the maximum intersectionMatrixPattern that relates the 2 geometries.

Synopsis

boolean ST_Relate(geometry geomA, geometry geomB, text intersectionMatrixPattern);
text ST_Relate(geometry geomA, geometry geomB);
text ST_Relate(geometry geomA, geometry geomB, int BoundaryNodeRule);

Description

Version 1: Takes geomA, geomB, intersectionMatrix and Returns 1 (TRUE) if this Geometry is spatially related to anotherGe-
ometry, by testing for intersections between the Interior, Boundary and Exterior of the two geometries as specified by the values
in the DE-9IM matrix pattern.

This is especially useful for testing compound checks of intersection, crosses, etc in one step.

Do not call with a GeometryCollection as an argument

N_ﬁ“’! Note

This is the "allowable" version that returns a boolean, not an integer. This is defined in OGC spec

:ﬂd Note
N This DOES NOT automagically include an index call. The reason for that is some relationships are anti e.g. Disjoint. If
you are using a relationship pattern that requires intersection, then include the && index call.

Version 2: Takes geomA and geomB and returns the Section 4.3.6

Version 3: same as version 2 bu allows to specify a boundary node rule (1:0GC/MOD?2, 2:Endpoint, 3:MultivalentEndpoint,
4:MonovalentEndpoint)

N_ﬁ'l"! Note

Do not call with a GeometryCollection as an argument

not in OGC spec, but implied. see s2.1.13.2
Performed by the GEOS module

/ This method implements the OpenGIS Simple Features Implementation Specification for SQL 1.1. s2.1.1.2 //s2.1.13.3

/ This method implements the SQL/MM specification. SQL-MM 3: 5.1.25
Enhanced: 2.0.0 - added support for specifying boundary node rule (requires GEOS >= 3.0).

http://www.postgresql.org/docs/current/interactive/functions-math.html
http://en.wikipedia.org/wiki/DE-9IM
http://www.opengeospatial.org/standards/sfs

PostGIS 2.1.0 Manual
281 /671

Examples

—-—-Find all compounds that intersect and not touch a poly (interior intersects)
SELECT 1.%x , b.name As poly_name
FROM polys As b
INNER JOIN compounds As 1
ON (p.the_geom && b.the_geom
AND ST_Relate(l.the_geom, b.the_geom,’ Txxxxxx*x*x’));

SELECT ST_Relate (ST_GeometryFromText (POINT (1 2)’), ST_Buffer (ST_GeometryFromText ("POINT (1 <>
2)"),2));
st_relate

OFFFFF212

SELECT ST_Relate (ST_GeometryFromText (' LINESTRING(1 2, 3 4)’), ST_GeometryFromText (/ <
LINESTRING(5 6, 7 8)'));
st_relate

FF1FF0102

SELECT ST_Relate (ST_GeometryFromText (POINT(1 2)’), ST_Buffer (ST_GeometryFromText ('POINT (1 <=
2)"),2), "OFFFFF212");
st_relate

SELECT ST_Relate (ST_GeometryFromText (POINT (1 2)’), ST_Buffer (ST_GeometryFromText ('POINT (1 <>
2)"),2), "«FF%xFF212");
st_relate

See Also

ST_Crosses, Section 4.3.6, ST_Disjoint, ST_Intersects, ST_Touches

8.8.45 ST RelateMatch

ST_RelateMatch — Returns true if intersectionMattrixPattern] implies intersectionMatrixPattern2

Synopsis

boolean ST_RelateMatch(text intersectionMatrix, text intersectionMatrixPattern);

Description

Takes intersectionMatrix and intersectionMatrixPattern and Returns true if the intersectionMatrix satisfies the intersectionMa-
trixPattern. For more information refer to Section 4.3.6.

Availability: 2.0.0 - requires GEOS >=3.3.0.

PostGIS 2.1.0 Manual

282 /671

Examples

SELECT ST_RelateMatch(’101202FFF’, ’TTTITITFFF’) ;
-— result —-
t
——example of common intersection matrix patterns and example matrices
—-— comparing relationships of involving one invalid geometry and (a line and polygon that
intersect at interior and boundary)
SELECT mat.name, pat.name, ST_RelateMatch (mat.val, pat.val) As satisfied
FROM
(VALUES (’Equality’, ’T1FF1FFF1’),
("Overlaps’, 'TxT*x*xxTxx'),
("Within’, ’'T*F*xxFxxx'),
("Disjoint’, "FEXFFxxxx’) As pat (name,val)
CROSS JOIN
(VALUES (’Self intersections (invalid)’, ’1111111117"),
("IE2_BI1_BBO_BE1_EI1 EE2’, ’'FF2101102'),
("IB1_TIE1_BBO_BEO_EI2_EIl1_EE2’, 'F11F00212")
) As mat (name,val);

See Also

Section 4.3.6, ST_Relate

8.8.46 ST_ShortestLine

ST_ShortestLine — Returns the 2-dimensional shortest line between two geometries

Synopsis

geometry ST_ShortestLine(geometry g1, geometry g2);

Description

<+

Returns the 2-dimensional shortest line between two geometries. The function will only return the first shortest line if more than
one, that the function finds. If gl and g2 intersects in just one point the function will return a line with both start and end in that
intersection-point. If gl and g2 are intersecting with more than one point the function will return a line with start and end in the
same point but it can be any of the intersecting points. The line returned will always start in gl and end in g2. The length of the

line this function returns will always be the same as st_distance returns for gl and g2.

Availability: 1.5.0

Examples

PostGIS 2.1.0 Manual
283 /671

Shortest line between point and linestring shortest line between polygon and polygon

SELECT ST_AsText (
ST_ShortestLine ('POINT (100 100) <
’::geometry,
"LINESTRING (20 80, 98 <
190, 110 180, 50 75)’ ::geometry)
) As sline;

SELECT ST_AsText (

ST_ShortestLine (
ST_GeomFromText (! <«

POLYGON ((175 150, 20 40, 50 60, 125
ST_Buffer (<

ST_GeomFromText (POINT (110 17¢)"), 2
)

) As slinewkt;

LINESTRING (100 100,73.0769230769231 <=
115.384615384615)

LINESTRING (140.752120669087 <=
125.695053378061,121.111404660392 15

See Also

ST_ClosestPoint, ST_Distance, ST_LongestLine, ST_MaxDistance

8.8.47 ST _Touches

ST_Touches — Returns TRUE if the geometries have at least one point in common, but their interiors do not intersect.

Synopsis

boolean ST_Touches(geometry gl, geometry g2);

Description

Returns TRUE if the only points in common between g1 and g2 lie in the union of the boundaries of g1 and g2. The ST_To-
uches relation applies to all Area/Area, Line/Line, Line/Area, Point/Area and Point/Line pairs of relationships, but not to the
Point/Point pair.

In mathematical terms, this predicate is expressed as:

PostGIS 2.1.0 Manual
284 / 671

a.Touchesfh) = (Ha)i(b) = &) A fan b) =

The allowable DE-9IM Intersection Matrices for the two geometries are:

o Pkt
o FrrsTkkkk

o [ksksk koK

@ Important

Do not call with a GEOMETRYCOLLECTION as an argument

€
Nm Note
This function call will automatically include a bounding box comparison that will make use of any indexes that are
available on the geometries. To avoid using an index, use _ST_Touches instead.

/ This method implements the OpenGIS Simple Features Implementation Specification for SQL 1.1. s2.1.1.2 //s2.1.13.3

/ This method implements the SQL/MM specification. SQL-MM 3: 5.1.28

Examples

The ST_Touches predicate returns TRUE in all the following illustrations.

POLYGON/POLYGON POLYGON/POLYGON POLYGON/ LINESTRING

http://www.opengeospatial.org/standards/sfs

PostGIS 2.1.0 Manual
285/ 671

LINESTRING/LINESTRING LINESTRING/LINESTRING POLYGON/POINT

SELECT ST_Touches (' LINESTRING(O 0, 1 1, 0 2)’::geometry, "POINT(l 1)’::geometry);
st_touches

SELECT ST_Touches (' LINESTRING(O 0, 1 1, 0 2)’::geometry, "POINT (0 2)’::geometry);
st_touches

8.8.48 ST_Within

ST_Within — Returns true if the geometry A is completely inside geometry B

Synopsis

boolean ST_Within(geometry A, geometry B);

Description

Returns TRUE if geometry A is completely inside geometry B. For this function to make sense, the source geometries must both
be of the same coordinate projection, having the same SRID. It is a given that if ST_Within(A,B) is true and ST_Within(B,A) is
true, then the two geometries are considered spatially equal.

Performed by the GEOS module

Important
Do not call with a GEOMETRYCOLLECTION as an argument

Important
Do not use this function with invalid geometries. You will get unexpected results.

PostGIS 2.1.0 Manual
286 / 671

This function call will automatically include a bounding box comparison that will make use of any indexes that are available on
the geometries. To avoid index use, use the function _ST_Within.

NOTE: this is the "allowable" version that returns a boolean, not an integer.

/ This method implements the OpenGIS Simple Features Implementation Specification for SQL 1.1. s2.1.1.2 // s2.1.13.3 -
a.Relate(b, "T*F**F#**")

/ This method implements the SQL/MM specification. SQL-MM 3: 5.1.30

Examples

—-—a circle within a circle

SELECT ST _Within(smallc,smallc) As smallinsmall,
ST_Within(smallc, bigc) As smallinbig,
ST_Within (bigc, smallc) As biginsmall,
ST_Within (ST_Union(smallc, bigc), bigc) as unioninbig,
ST_Within(bigc, ST_Union(smallc, bigc)) as biginunion,
ST_Equals (bigc, ST_Union(smallc, bigc)) as bigisunion

FROM

(

SELECT ST_Buffer (ST_GeomFromText (' POINT (50 50)’), 20) As smallc,
ST_Buffer (ST_GeomFromText (' POINT (50 50)"), 40) As bigc) As foo;

—-—Result

smallinsmall | smallinbig | biginsmall | unioninbig | biginunion | bigisunion
—————————————— o
t | t | £ | t | t | t

(1 row)

See Also

ST_Contains, ST_Equals, ST_IsValid

8.9 Using SFCGAL Advanced 2D/3D functions

TODO Introduction part
TODO Install part

http://www.opengeospatial.org/standards/sfs

PostGIS 2.1.0 Manual

287 /671

8.9.1 ST _Extrude

ST_Extrude — Extrude a surface to a related volume

Synopsis

geometry ST_Extrude(geometry geom, float x, float y, float z);

Description

Availability
/ This method needs SFECGAL backend.

/ This function supports 3d and will not drop the z-index.

/ This function supports Polyhedral surfaces.

/ This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).

8.9.2 ST_StraightSkeleton

ST_StraightSkeleton — Compute a straight skeleton from a geometry

Synopsis

geometry ST_StraightSkeleton(geometry geom);

Description

Availability
/ This method needs SFECGAL backend.

/ This function supports 3d and will not drop the z-index.

/ This function supports Polyhedral surfaces.

/ This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).

8.9.3 ST_lIsPlanar

ST_IsPlanar — Check if a surface is or not planar

Synopsis

boolean ST_IsPlanar(geometry geom);

PostGIS 2.1.0 Manual

288 /671

Description

Availability
/ This method needs SFECGAL backend.

/ This function supports 3d and will not drop the z-index.

/ This function supports Polyhedral surfaces.

/ This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).

8.9.4 ST Orientation

ST_Orientation — Determine surface orientation

Synopsis

integer ST_Orientation(geometry geom);

Description

Availability
/ This method needs SFCGAL backend.

/ This function supports 3d and will not drop the z-index.

/ This function supports Polyhedral surfaces.

/ This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).

8.9.5 ST ForceLHR

ST _ForceLHR — Force LHR orientation

Synopsis

geometry ST_ForceLHR(geometry geom);

Description

Availability
/ This method needs SFCGAL backend.

/ This function supports 3d and will not drop the z-index.

/ This function supports Polyhedral surfaces.

/ This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).

PostGIS 2.1.0 Manual
289 /671

8.9.6 ST MinkowskiSum

ST _MinkowskiSum — Perform Minkowski sum

Synopsis

geometry ST_Minkowski(geometry geom1, geometry geom?2);

Description

Availability
/ This method needs SFECGAL backend.

/ This function supports 3d and will not drop the z-index.
/ This function supports Polyhedral surfaces.

/ This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).

8.9.7 ST Tesselate

ST _Tesselate — Perform surface Tesselation

Synopsis

geometry ST_Tesselate(geometry geom);

Description

Availability

/ This method needs SFCGAL backend.

/ This function supports 3d and will not drop the z-index.

/ This function supports Polyhedral surfaces.

/ This function supports Triangles and Triangulated Irregular Network Surfaces (TIN).

8.10 Geometry Processing

8.10.1 ST_Buffer

ST_Buffer — (T) For geometry: Returns a geometry that represents all points whose distance from this Geometry is less
than or equal to distance. Calculations are in the Spatial Reference System of this Geometry. For geography: Uses a planar
transform wrapper. Introduced in 1.5 support for different end cap and mitre settings to control shape. buffer_style options:
quad_segs=#,endcap=roundlflatlsquare,join=roundmitrelbevel,mitre_limit=#.#

PostGIS 2.1.0 Manual
290/ 671

Synopsis

geometry ST _Buffer(geometry g1, float radius_of_buffer);

geometry ST_Buffer(geometry g1, float radius_of_buffer, integer num_seg_quarter_circle);
geometry ST_Buffer(geometry g1, float radius_of_buffer, text buffer_style_parameters);
geography ST_Buffer(geography g1, float radius_of_buffer_in_meters);

Description
Returns a geometry/geography that represents all points whose distance from this Geometry/geography is less than or equal to
distance.

Geometry: Calculations are in the Spatial Reference System of the geometry. Introduced in 1.5 support for different end cap and
mitre settings to control shape.

N;?'l"! Note

Negative radii: For polygons, a negative radius can be used, which will shrink the polygon rather than expanding it.

Note

NO‘R’! Geography: For geography this is really a thin wrapper around the geometry implementation. It first determines the
best SRID that fits the bounding box of the geography object (favoring UTM, Lambert Azimuthal Equal Area (LAEA)
north/south pole, and falling back on mercator in worst case scenario) and then buffers in that planar spatial ref and
retransforms back to WGS84 geography.

. For geography this may not behave as expected if object is sufficiently large that it falls between two UTM zones or