PostgreSQL 9.0.7 Documentation

The PostgreSQL Global Development Group

PostgreSQL 9.0.7 Documentation
by The PostgreSQL Global Development Group
Copyright © 1996-2010 The PostgreSQL Global Development Group

Legal Notice

PostgreSQL is Copyright © 1996-2010 by the PostgreSQL Global Development Group and is distributed under the terms of the license of the
University of California below.

Postgres95 is Copyright © 1994-5 by the Regents of the University of California.

Permission to use, copy, modify, and distribute this software and its documentation for any purpose, without fee, and without a written
agreement is hereby granted, provided that the above copyright notice and this paragraph and the following two paragraphs appear in all
copies.

IN NO EVENT SHALL THE UNIVERSITY OF CALIFORNIA BE LIABLE TO ANY PARTY FOR DIRECT, INDIRECT, SPECIAL,
INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING LOST PROFITS, ARISING OUT OF THE USE OF THIS SOFTWARE
AND ITS DOCUMENTATION, EVEN IF THE UNIVERSITY OF CALIFORNIA HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

THE UNIVERSITY OF CALIFORNIA SPECIFICALLY DISCLAIMS ANY WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE SOFTWARE PRO-
VIDED HEREUNDER IS ON AN “AS-IS” BASIS, AND THE UNIVERSITY OF CALIFORNIA HAS NO OBLIGATIONS TO PROVIDE
MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR MODIFICATIONS.

Table of Contents

Preface 1
1. What iS POStZIESQLT ..ccuviiiiiiiiiiiieetee ettt sttt 1
2. A Brief History of POStreSQLu.....c..cioiiiiiieriiiiieiieite ettt ettt e st sveesiee e sbeesseenane e li

2.1. The Berkeley POSTGRES Projectcceeeveriieiienienieeiieneeeteeieeniee sttt sene s li
2.2, POSEEIESOS ..ottt ettt et sttt et e et et e et e e naaenaaesaren li
2.3, POSEEIESQLou. ittt st ettt esat et e st esaaenareeats lii
3. COMNVEINTIONS ...ttt ettt ettt ettt st est et e et e bt et saeeat e bt sas et esbeestesneeueenaesueennenseens lii
4. Further INfOrmation........cocoeeriiririiniinieie ettt sttt liii
5. Bug Reporting GUIAEIINES.eeoueeriieriieiieiierieeieeite sttt sttt st esbeeste e enbeas liii
5.1, Tdentifying BUgSoovuiiriiiiiiiieieet ettt et liv
5.2, WAL t0 TEPOT..cuueeiuiiiiieiie ittt ettt sttt ettt e st st et esbtesabeebe e bt e sateeseebeesaee liv
5.3. WheEre tO TEPOTE DUZSeevuiiriiiiiieiieiiiteieeite sttt sttt sttt sbe e s e b e b e Ivi
I. Tutorial 1
1. GEttING STATTEAeeeniiiieieieeiieeee ettt st e 1
1.1 INSEALIALION ..ottt et sttt st sttt et en 1
1.2. Architectural Fundamentals............ccoceriiriiriiiniiiieiieeceeceee e 1
1.3. Creating a Databasececueiuieieriieiieerie ettt ettt ettt et saeesaesbeeneens 2
1.4. Accessing @ Databasecooeeriiriiiriiiiiiieetee ettt 3
2. The SQL LaNGUAZEcovveiriiiiiieieenite ettt ettt st sa e st sttt e sbe e saneesbeenbee e 5
2.1, INEEOAUCTION 1ttt ettt et sttt e bttt et e e st e st e s be et e beeaeenes 5
2.2, COMCEPLS .uveeneeeiieeieeieeeite ettt e et st e b e bt e sat e e bt e sbtesate e bt e s bt esaeesabe e bt esbeesabeenbeesaeesaneen 5
2.3. Creating @ NeW Tablecccoviiiiiiiieieeee ettt 5
2.4. Populating a Table With ROWScccoeiiiiiiiiiiiiiiieeeecee e 6
2.5. QUErying @ TaDIEcc.coiiiiiiiiiiiiiee et st 7
2.6. Joins Between Tables........cocoviiiiiiiiiiiiieeeceereeesest et 9
2.7. Aggregate FUNCHIONS......ccccoviiiiiiieeteteeitete ettt sttt 11
2.8 UPAALES ..ottt sttt et sttt ettt b ettt et sa e bbbt ettt eae e 12
2.9, DCIETIONS ...conveeeenieieeiteteettete sttt ettt sttt sttt b ettt ebt et st sbe et et ebeenees 13
3. AdVANCEd FRATUIES ...c..eeiiiiiiiiiieiietceitctee ettt ettt ettt ettt s ennens 14
3.1 INTOAUCTION «.nveiiiiiiieiieitete ettt ettt ettt ettt eb s 14
3.2 VIBWS ittt ettt sttt ettt et sttt ettt na e sttt et eae e 14
3.3, FOTEIZN KEYS...uiiiiiiiiiiiieeie ettt ettt sttt ettt e bt e sbeeseneenbeenbeesene 14
3.4, TTANSACHIONS ..c.eevveniieiieteeitete sttt ettt ettt et sttt e st e e sbtebeesaesaeesbesbeeesemteeaeenees 15
3.5. WIndow FUNCHONSccuiiiiriiiiiiinieiececeteeceteste ettt st 17
3.6. INNETILANCE ...c.eeiiiiiiiciiecc ettt sttt 20
3.7 CONCIUSION ...ttt ettt ettt ettt sa et esae st e bt eneeaeemnes 21

I1. The SQL Language 22

4. SQL SYNEAX .eontiiieiieiieiete ettt ettt ettt ettt et e ae st h e n et ae e e nesreeanenee 24

4.1, LeXiCal SIUCLUTE.eivuiiiiiiiieteeitt ettt ettt ettt st sbe et e st e sbeesaee st ens 24
4.1.1. Identifiers and Key Words.........ccccceeveeriiiiniiniiniineeeeneeeieeeeiee e 24
1.2, CONSLANLS .e.uveeutieiteeieetee sttt ettt et st e bt e bt e st e e bt e bt e sbeesbe e bt enbeesanesaeeenbeas 26
4.1.2.1. String CONSLANESeeouervereietierieieeeeeeenteeeeete et eee et eesee s eeeseeeneenes 26

4.1.2.2. String Constants with C-Style Escapesc.cccccevirreereneeneneennnn 26

4.1.2.3. String Constants with Unicode Escapes.......c..ccccoecvrreenereenenennnnne. 28

4.1.2.4. Dollar-Quoted String CONStANtSccveeeererrereneereeenereneeeeneneene 29

4.1.2.5. Bit-String CONSTANLS ...c..eveureuirierienrerereteeterenieneeeeeee e 29

4.1.2.6. NUMEIIC CONSLANLSovereieniietieienieeieniesiteie ettt sttt sbe e 30

4.1.2.7. Constants of Other TYPEScccevereerererienenieieneeee e 30

iii

1.3, OPCTALOTSeeuvieiieeieeiiesite et et e sitesteeabte bt e satesabeesbeesasesateebeesseesssesnseeseenaees 31

4.1.4. SPecial CharaClers........cevueruersiieriieriestiesieeste st et esiteseesbeesbeesbeesaresnseenbeas 32
4.1.5. COMMENLS ...t 32
4.1.6. Lexical PreCedencec..cocevverieieniieieniinieieneeteeeeereeeceeese st 33

4.2, Value EXPIESSIONS......eiiuiiriiiiiieiienite ettt ettt ettt sttt et e st e bt e st e sateesbeesaeesaeeens 34
4.2.1. Column References..........coceoerieieriinieninieneneeieeeeeteeee et 35
4.2.2. Positional Parameters.........cceevueerierieriiiinienienieeieeitesee et 35
4.2.3. SUDSCIIPLS ..ottt ettt et 35
4.2.4. Field SEIECHONooueiiiiiiieiieiieeiteetee ettt st 36
4.2.5. Operator INVOCAtIONSc..coueevuiriiiiiiieiieie et 36
4.2.6. FUNCHON CallSeoiiiiiiiiiiieeiietete ettt s 36
4.2.77. Aggregate EXPreSSIONS.cccueiviiiiiirieriierieentenite ettt st 37
4.2.8. Window Function Calls...........cceeruiririeninierieieeeeeeee e 38
4.2.9. TYPE CaSS .. s 39
4.2.10. Scalar SUDQUETIES.........ccueeierieriieietieierie ettt 40
4.2.11. Array CONSLIUCLOTSveeveeeniertienieenitenteeteeerte st et eseeesieesreesreesbeesaresaeeebees 41
4.2.12. ROW CONSIIUCLOTS ...cuveeiieeuierteenieenitenteenieesiee st et esreesieesseeneesseesmresaneenees 42
4.2.13. Expression Evaluation RuUlesccccocovvivininiininiieeeccee 43

4.3. Calling FUNCHONS.couteieiieietteterie ettt ettt st b ettt st e b sbeeae b e 44
4.3.1. Using positional NOtAtioNc..cecueruerieniireenienenienieniteieseete et 45
4.3.2. Using named NOTAtIONco.eeueruieieniiniienienieeie ettt ettt 45
4.3.3. Using miXed NOTAtIONc..erueerieriiriiiieiteienieeie sttt sttt et 46

5. Data DefINItIONc.coiiiiiiiiiiiiicieicee et 47
5.1, Table BaSICSoouiiiiiiiiiieicicieiserecec et e 47
5.2. Default ValUESccovuiviiiiiiiiiiiiiiiccee ettt e 48
5.3 CONSLIAINES ...ttt sttt 49
5.3.1. Check CONSLIAINEScocueruerureiirieeienieeienienitetesteeite st ettt ettt b enee e 49
5.3.2. NOt-NUII CONSIIAINES ...c.eveenriiieiienieeienienieerenteeeete et sie et sreeeeenees 51
5.3.3. UnNiqUe CONSLIAINES. ..c.uverieeiieriierieeiienteeteeieesitesteeteesbeestesteenbeesaaesaseenseas 52
5.3.4. Primary KEYS....ocueeiuieriieiieiiesiteeteetest ettt ettt ettt st 52
5.3.5. FOT@ign KEYS ...ccuviiiiiiiieiiiiiesteeeetest ettt ettt 53
5.3.6. EXClusion CONSIAINLScceecveriieiiniirieienieereieeeete e eieere s sreeneennes 56

5.4, SyStem COIUMIS ...c..veiiiiiiiiiieieeee ettt ettt sttt sabe e bt e bt e saneebeebeesaee 56
5.5. MOAIfying TabIes......ccceeriiriiiiieniieiiteteeteee ettt sttt sttt e 57
5.5.1. Adding @ COIUMNcccoiiiiiiiiiiieieceeeeeereee e 58
5.5.2. Removing @ COIUMNcocoeciiiiiiiiiniiiieieneeieteee e 58
5.5.3. Adding @ COnSLraintcceecuiriieiiiriiiieieneeeeteeeeee e 59
5.5.4. Removing @ CONSIAINEccuevuieiiiniiiieienieicte et 59
5.5.5. Changing a Column’s Default Value..............ccccceeiiiiiininiiiiniieen. 59
5.5.6. Changing a Column’s Data TYPEccceveruieieniieieeeeee e 60
5.5.7. Renaming @ COIUMNc.oeuiiiiiieiiriieiee e 60
5.5.8. Renaming @ Tablecccoeieiiiiiiiiinieiee e 60

5.6, PLIVIIEZES ..ttt ettt et sttt et 60
5.7 SCREIMAS ...ttt ettt b et b ettt b ettt 61
5.7.1. Creating @ SCheMAccueiiiiiiiiiie e 62
5.7.2. The Public SChemaccccoevieiiiiininiiieicicieieercsceeeee e 63
5.7.3. The Schema Search Path..........cc.cccocviniiiniiiinicceeeee 63
5.7.4. Schemas and Privileges..........coceevuiririeneniniiniiniee et 64
5.7.5. The System Catalog SChemac.cceceveririiininienineeeneeeeeeeeeeeee 64
5.7.6. USAZE PALEINIS ...ccuveveiiiiiiriieiieieetestcetete ettt sttt 65
577 POIabIlity ... 65

5.8 INNETILANCE ..ottt s 65

v

5.8 1. CAVEALS ...uvveeeeeeirieeeeeetreee ettt eete e ee et e e e ee b e e e e eetaeeeeeenaareeeeeeataeeeeennnees 68

5.9, PartitIONING ..ccuveereieiiiieiienie sttt sttt ettt et e s bte st e bt e saeesabe e bt esbeesaneenbeenseesane 69
5.9 10 OVEIVIEW ..t 69

5.9.2. Implementing Partitioningc.ceevueerieriieniienienieeieesieeeeeeeeiee e 70
5.9.3. Managing Partitionscoceevierieriieenienieeieesite ettt 72
5.9.4. Partitioning and Constraint EXCIUSIONcccccceeveeviniieiencnienenicicceeenne. 73
5.9.5. Alternative Partitioning Methods.........c..coceecveiiinieniniiicniicecceeeeee. 74
5.9.6. CAVEALS ...eouvieiieeiieeiteet ettt ettt et ettt et ettt et s et ebeas 75

5.10. Other Database ObDJECLScccueruirieriirieiiniieierieeeeeeeete et 76
5.11. Dependency Tracking.........coccooeiiiiiiiiiiiiiiiniiieneeeceeeeee et 76
6. Data Manipulation.........cccooiiiiiiiiiiiiiieieeeeeeee et s 78
6.1. INSErting DAtaocueiieiieiiee ettt ettt st 78
6.2. Updating Data.........c.oeuevierieiiirininiicteteeeeeeesesetetet ettt s 79
6.3. DEleting DAta.......ccueeieriieiieieeieeieste ettt ettt ettt et st sttt et 80
T QUBTIES ..veeeeeee ettt eet et e et e e et e e et e e et e e e et e e eeateeeeate e e taeeeeaaeeeetteeeteeeeaaeeeeteaeeteeeeteeeeanes 81
T 1 OVEIVIEBW ..ttt ettt ettt b ettt ettt s bt et e b e ea et eat e et sbeenaeebeeneenes 81
7.2. TabIe EXPIESSIONScuviuiiiieiintieieeteete ettt ettt ettt st et b et e et st enaesbeesae b eneenee 81
7.2.1. The FROM CLAUSE......cooueriiriieiiniieienteeiteie sttt ettt ettt 82
7.2.1.1. Joined Tablescccceueiririniniiieieieere e 82

7.2.1.2. Table and Column ALASES........cccccueeririrrinenieieieieese e 85

7.2.1.3. SUDQUETIES ...ttt ettt 86

7.2.1.4. Table FUNCHONSccoooveuiiiieiiiiiniiicicieenieeteeeeeeeeee e 86

7.2.2. The WHERE ClaUSE.....c.ccoiviiiiiiiiiiiiiiiiiicic 87
7.2.3. The GROUP BY and HAVING ClaUSeS........cccccueirirerenienieieininiieieieieeenas 88
7.2.4. Window Function ProCessingcceecueeeveeriienieniieesiienienieeieeniee e sve e 90

7.3 SEIECE LSS ..ottt e 91
7.3.1. Select-List ItEMScc.ccceviiiiiniiiiiiiiiiiiiecee e 91
7.3.2. Column Labelscccciiiiiiiniiiiiiiiiiiiccee e 92

733 DISTINCT tuiiiiiieieieietteie ettt s st 92

7.4, COMDINING QUETIESceveeruiieiieriieriteettenite sttt et esteesitesbeesbeesseesateesseesatesaseenbeesseesaseens 93
7.5, SOTtING ROWS .ttt ettt sttt st e sbeesaee st en 93
7.6. LIMIT ANd OFFSET.c.uiiiiiiiiiiiiiiiiitiieieieiierceie st s 94
T7.VALUES LISES .ttt 95
7.8. wITH Queries (Common Table EXPIressions)c..ceccevereevrenieeceeniinieeneneenneneenenn. 96
8. DALA TYPES ..ottt ettt ettt et ettt eae 100
8.1 NUMETIC TYPES...einriiiiniiriieieieeeeeet ettt 101
8L 1. INtEZET TYPES ..ottt st 102
8.1.2. Arbitrary Precision NUMDErsc.cccooiiiiniiiiiiiiiiiccccceeecee 102
8.1.3. Floating-Point TYPESccccouiriiiiiiiiiiiieieseeecieseee e 103
814, SErial TYPES . ..eeueeeieuieeietiesie ettt ettt ettt ettt st ettt et sae e sae b enee e ene 104

8.2. MONELATY TYPES ..ottt ettt et ettt ete b e sanesaee e 105
8.3, CRAraCter TYPES -.eeneiemiieieeniie ettt sttt sttt ettt e esanesaee e 106
8.4. BINary Data TYPES .. .cevueruieieriieieieeicete sttt ettt sttt et 108
8.4.1. bytea heX fOrmatcc.oooiiiiiiiiiieeeee e e e 108
8.4.2. bytea €5cape fOrMALlc.cceveriiriiriiiiiiirtieietcecceee e 109

8.5, DAte/TImME TYPES....eueeneireieieiieiieieet ettt ettt ettt et be e et et nee e 110
8.5.1. Date/Time INPULc.cooiiiiiiiiiieieeteerceece ettt 112

8.5, 1.1 DALES ..ot 112

8.5. 1.2 THMES vttt 113

8.5.1.3. TIME StAMPS .cenveriieieriieieniietenteeterte sttt ettt nieene 114

8.5.1.4. Special ValUesccccoeevierieiiniiiiiniiiienieneeieeetesee e 115

8.5.2. Date/Time OULPUL ...c.veerereeiieiieriieeieeitesteete et estesteebeesaeesssesbeenaeesaeesnnas 115

8.5.3. TIME ZIOMESvvveeeeeiireiee e eeeteee e eeeette e e eeette e e e eeeare e e e eetaeeeeeenareeeeeenanres 116

8.5.4. INterval INPUL......oociiiiiiiieiie ettt 118

8.5.5. INterval OULPUL ...ecuviiiieiieiiieieeteee ettt et ettt st e 119

8.5.6. INterNals.......coouiiiiiiiiiiiiiiii s 120

8.6. BOOICAN TYPE ..cueiiiiiiiiiiieitie ettt ettt et sttt e e st s 120
8.7. ENUMETAEd TYPES ..eeouveenrieriieiiiiieenite sttt ettt sttt et st e e sbe e st sane e 121
8.7.1. Declaration of Enumerated TYPes..........cccceverienienieiiininieenineeenecreiene 121
8.7 2. OTAETING ...ttt st 122
8.7.3. TYPE SALELY ... 122
8.7.4. Implementation Details.............ccoeoiiiiiiiiiniiiiicee 123

8.8. GEOMELIIC TYPESviiniiiiieiieiiiiieteete ettt st e 123
881 POINLS ..ttt sttt st e 124
8.8.2. LN SEZMENLS......eouiiiiieieiiitieiesteet ettt sttt ettt see e sbeenee e ene 124
883, BOXES . cuutiiutteiteeiteet ettt sttt 124
884 PathS .. e 125
8.8.5. POLYZOMNS. ...ttt 125
8810, CIICIES ...ttt ettt 125

8.9. Network Address TYPES.c.coveveiriririinieieieteteteesteseee ettt sttt 125
IR B I o 1Y PSSP 126
8.0, 2 LA AT ittt e e 126
8.0.3. 1NET V8. CoAT ttttiiiiiiitieeieeie ettt ettt e e sttt e s aaeebeesteesaeesabaeneenseeennas 127
8.9.4. MACAAAT ttteriieeieeieeitieete ettt et et se e e te st e e teesateenbeesaaessaesnseenseenseenneas 127

8.10. Bit StrNG TYPES ..ttt sttt e 127
B 11, TeXt SEATCH TYPES..ceveerteerieeieeieente st erieeste et ete et esiteeaeebeesbaessbeenseesbeesssesnseenee 128
Bl L. L. £ SVECEOT totteeieeiteieeete ettt ettt et et e sttt e st e et esbaesate st e ebeenaeeeneas 128

Bl 1.2, ESUETY teitetreiee ettt et eeere e et e e eee e e e e et e e e e eeaae e e e e enareeeeeeanres 129

812, UUID TYPE ..ttt st e 130
813 XML TYPE vttt s 131
8.13.1. Creating XML ValUesccccevueriiiriienienieeitesteste ettt 131
8.13.2. Encoding Handlingcccccevueriiiniiinieniieiiieneeste ettt 132
8.13.3. Accessing XML ValUes.........covueriiiriienienieiieeiterteeeesiteste et 133

Bl ATTAYS ..ottt ettt sttt ettt ettt e s bt e st et e s bt e sabeeate e beesabesabe et 133
8.14.1. Declaration of Array TYPES....cccceecveeriierieriieiiieiterteee ettt 133
8.14.2. Array Value INPUL.........ccceiiiiiiiiiniiiiiicicccceeeeee e 134
8.14.3. ACCESSING ATTAYS ...cevivieriieeieieeiiete ettt ettt ettt 135
8.14.4. MOAIfYING ATTAYS...c.oirueeririeeieieeiieteeie ettt sttt 137
8.14.5. Searching in ATTAYS.......ccccoieieiiirieiiiieiere ettt 140
8.14.6. Array Input and Output SYNtaX.........cccecerieierienieiienieeene e 140

8.15. ComPOSItE TYPES ...eeoueiiieiiiiiiieiieieeee e e 142
8.15.1. Declaration of COmMPOSIte TYPES....ccuerueereereerierierrieieeieeiene e 142
8.15.2. Composite Value INPuL........ccceiuieieiinieiiieeeee et 143
8.15.3. Accessing Composite TYPESc.eeeereiruieriiriiiierieniieieee et 143
8.15.4. Modifying CompoSite TYPES......ceveruiruierierieeienieniieiesieeteneeeeeee s eee e 144
8.15.5. Composite Type Input and Output SYNtaX.......cceeeeveereeienereeneneeieniene 144

8.16. Object IAentifier TYPES ...ccvevueeierieriieienieeierie sttt sttt et 145
817, PSCUAO-TYPES ..ottt et sttt sttt 147
9. FUNctions and OPETaAtOrSceceereruierieniieienieetene sttt ettt et st esaesbe et e st saeeneesaeeaesaeas 149
0.1. LOZICAl OPEIALOLS «.....eeuviiieuieiiriieiesitete sttt eete e sttt be ettt e ste st ebesbeesnenaeene 149
0.2. ComPAriSON OPETALOTS......ccuerueruierieriieienieeitenteeteerte st eetenteettetesteeseessesseensesbeessenseene 149
9.3. Mathematical Functions and OpPerators...........ceccevereeuerieneerienennieneneenieneenenieene 151
9.4. String Functions and OPEratorscc.ceeeieriireeniererienentetenieeeeseseeseesieenenieene 154
9.5. Binary String Functions and OPEeratorsceccevereeienieneerrenenneeneneeneneenenienne 166

Vi

9.6. Bit String Functions and OPeratorsceeveerueerierieriieeniientesieeieenieesreeieeneeens 168

9.7. Pattern MatChiNgccceeviiiiiiiiienieiie ettt et ettt ettt e e b 169
0.7 1. LIKE ittt 169
9.7.2. SIMILAR TO Regular EXPressionsccecceevveenierieriieeniienienieenieesieeieenne 170
9.7.3. POSIX Regular EXPressionsco.eeeerierieinieenienienieenieesieeieesiee e sneenne 171

9.7.3.1. Regular Expression Detailscccccceeceevirienenincieninieencncenennen. 175
9.7.3.2. Bracket EXPressionscocceceveeieriinieninieneneerenieeeere e 177
9.7.3.3. Regular Expression ESCapes........ccccccoeceevirieneninicnineccicerenene 178
9.7.3.4. Regular Expression Metasyntax........cccccoeeveeveneeienieeeeneeneennennens 180
9.7.3.5. Regular Expression Matching Rulesccccoccoceiiiiininenennn. 181
9.7.3.6. Limits and Compatibilitycccccooiivieriiiiiiininiiiceiiceee 183
9.7.3.7. Basic Regular EXpressionsccccccceeeviiieieniniicnicecncseeeeene 183

9.8. Data Type Formatting FUnCtionscccccceceeirienenenieieininineseneeeeeeiesie e 184

9.9. Date/Time Functions and OPErators.........c..ccceceeereruerueeeteenenreneneeneeeeenessesuennes 190
9.9.1. EXTRACT, AT E_PATE ttteiieiiiieeeeiiieeeeeeiteeeeeeettereeeeeeteeeeesessesseeessresseesnnnnes 194
LS e N o= o o U b o L T RRTRUTRRRR RN 198
9.9.3. AT TIME ZONE....ciiiiiiiiiiiiiiiiieiti ettt st s s 198
9.9.4. Current Date/Timecoceevuerieerieniiiieiesiteese ettt 199
9.9.5. Delaying EXECULION.cc.ceiuiririiinieiieiesitetesieetese sttt 201

9.10. Enum Support FUNCHONSc..cocteriiriiieniiniienientete sttt st 201

9.11. Geometric Functions and OPerators...........c.cceceevererienienienieneeeeneneeneneeeenieene 202

9.12. Network Address Functions and Operators..........c.ccecuevereerueneenieneneeneneenenenne 206

9.13. Text Search Functions and OpPerators............ceceevererierenienieneerieneneeneneerenienne 208

9.14. XML FUNCLIONS ..ottt sttt 212
9.14.1. Producing XML CONLENLt.........cccuerriierreeieeiiienireeieeiieesieesreesreenieesvesaeenne 212

9.14.1.1. XIMLCOMMENT wveeuveerurieieeiieniieeteesteenieeeteesseesseesbeesseeseesnseenseenseens 212
9.14.1.2. XINLCONCAL teuveeteeriiieieeieeniteeieesieestaesteesteenbeesbeebeenseessseeseeseens 213
9.14.1.3. XINLELEMENT weertieriiieiieieeniieeteerieeniee et ete e beesbeebeenbeesabeeseeaeens 213
0.14.1.4. XINLEOTESE terteetieriieieeiee st et et e site ettt et e sbe e bt e beesateebeebee s 215
0. 14.1.5. KIMLPL cuiiiiriiiiiiicieiiciieee et s 215
9.14.1.6. XINLT OO terueieutieiieriieeie ettt et ettt et eb et steebe e beesabeebeebee s 216
D.14.1.7. XIMLAGG ttttiiieitrrieeeeeireeeeeeeireeeeeetiareeeeeeireeeeeesiareeeeeesrreeeeeseareeeeeens 216
9.14.1.8. XML PrediCates.cccooueiiiiiiiiiniiiiiiinciicieeecececsee e 217
9.14.2. Processing XMLcoocuiiiiiiniiniiiiieniteeie ettt ettt et 217
9.14.3. Mapping Tables to XMLccccccooieiiiriiiinieieneieeieneeree e e 218

9.15. Sequence Manipulation FUNCHONScccccouirieiiiniiiiiniiiiciccceeceseeee 221

9.16. Conditional EXPreSSIOnS........cccceouiiieieniieiieniiiieiencereieee ettt 223
0.10.1. CASE ettt sttt ettt s ettt 223
9.16.2. COALESCE vttt sttt s 225
9.16.3. NULLIF .ttt et e s e s 225
9.16.4. GREATEST AN LEAST ..eeutruiriiteierentereerenrenseneenteseesesreseessensenseneenessessensens 225

9.17. Array Functions and OPETatorscceeueeruirirrenenieeeieenrensensenseeeeeresnessesaenees 225

9.18. Aggregate FUNCHONS.....c..ccuccuriririiniiteietetetteere ettt s s 227

0.19. WiIndoW FUNCHONSoouiiiiitiiiiieiiee ettt 231

9.20. Subquery EXPIESSIONS ..c..cceeveuiruiriiniiieieieteiteese sttt e e eve e sae e 233
9.20. 1. EXISTS ittt e e s s s 233
9.20.2. TNttt s ettt et 233
9.20.3. NOT INuiiiiiiiiiiiiiiiiiiieiciic ittt 234
9.20.4. ANY/SOME ...cvviiimiiiiniiiiiiiiiiiiieic ittt 234
9.20.5. ALL ittt 235
9.20.6. ROW-WiS€ COMPATISONeveruiiiiriieieniietenteeitenienieetenieeesenteeaeeneesreeaenaeas 235

9.21. Row and Array COMPATISONS ...cveerurierueeriierereerieenieenresiseesseesseessseesseesseesseessessseens 236

Vii

92110 IN e 236

9. 212 NOT INuiioiiiiiiiiieiiiiiteiccieictetcte ettt r e eaene 236
9.21.3. ANY/SOME (QITAY) .veerurerurerreeruiereersieenieestesteesseessessseesseesssesssessseessesssesnne 237
0.21.4. ALL (AITAY) cvveeuveereeriieeieeteesitesteeteesttesatesbeesbtessbesteesbeesssesaseenbeesssesnseenne 237
9.21.5. ROW-Wise COMPATISOM ...cuvieiieriiiriieniieniieeieeniteeteeieesbeesteeteesbeesresaneenne 237

9.22. Set Returning FUNCHONSc..cocueviiiieiieniiiieiiieeenectetcee ettt 238
9.23. System Information FUNCHONSccccoieiiriiiiiiiniiieieeiciececc e 241
9.24. System Administration FUNCtionscccccoocieviniiiiininiiiinieenc e 250
9.25. Trig@er FUNCHIONScc.oouiiiiiiiieiiiicieeec et 257
10. TYPE CONVEISION. ...ttt ettt ettt ettt e sae e snesaeeaneneene 259
TO 1. OVETVIEW ..ttt ettt ettt et sttt et s it st e bt satesateebeenaee s 259
1.2, OPETALOLSeeuvieeieieeeeeteeteeteste et et ete et e ste et esbe et e et eae et e saeeseebesseenseneeeneenaesneensesnean 260
10.3. FUNCHIONS ...ttt sttt sttt et a e et e b s b et et eneesaesaeeaesnean 263
10.4. ValUE STOTAZEccveeueeieitieiiesieet ettt ettt ettt ettt ettt et be st e e teeseeseesaeeaesnean 265
10.5. UNION, CASE, and Related CONSIITCES.uveeens 266
L1 TIAEXES ..ttt ettt b ettt e a et e et e e s bt et e b e eb e et e ebeeneesbeestebesbeentenbeane 269
T1.1. INEPOAUCHION ..ttt ettt sttt et s sbe s 269
L1.2. TACK TYPES.cutieiantieiieieitteteste et ettt ettt ettt sttt st b ettt esee bt et eaesbeas 270
11.3. Multicolumn INAEXES.......coeruivueieiririiiiieicieiere ettt 271
11.4. Indexes and ORDER BYccceiiiiuiiiniiiiniiiniiiiieiiieniieescseess st 272
11.5. Combining Multiple INdEXESc..ceceereirerieniirieienietereeteeseeeeeee e 273
11.6. UNIQUeE INAEXESveveenieiiiiieiieiteiericet ettt sttt ettt s 274
11.7. Indexes on EXPreSSIONScceeeeriireeriinerienieniteienieetenie sttt 274
11.8. Partial INAEXES ...c..coveiiuiiiriiiiiiiicicieieecee e 275
11.9. Operator Classes and Operator FAmMiliesccoecvervierriienieniieniienienie e 277
11.10. Examining INdeX USAZE.......c.ceveeriirriirriieniieeieenieeniiesieeieesieesreesieesieessseesseenaeens 278
12, Full Text SEArchc.coiiiiiiiiiiiiiiiicicici e 280
12,1, INErOAUCTHION w..viiiiiiiiicicicccs et 280
12.1.1. What Is @ DOCUmMent?..........ccccoueoiiiiiniiiniiiiiiiiiccie e 281
12.1.2. Basic Text MatChingccocueiviierienieiiieieeeesieeeeeieesee et 281
12.1.3. CONTIGUIALIONSueeriiiiiieiieniie ettt sttt st et eb e e st e st enbeesaeesaees 282

12.2. Tables and INAEXES...........ccueiiiiiiiiiiiiiiiicic e 283
12.2.1. Searching @ Table..........cooieriiiiiiiniinieieeeeeee et 283
12.2.2. Creating INAEXEScc.coueeieriieiiniiiieierieeecte ettt 284

12.3. Controlling Text SEarch..........cccccceeieviiririieniinieieneeceeeeeseeee e 285
12.3.1. Parsing DOCUMENLSccoeouieiiriiiieieniieieiieeeie et 285
12.3.2. Parsing QUETIESccuevueeiiruieienieieeresieeeete ettt s 286
12.3.3. Ranking Search Resultsc.ocoiiiiiiiniiiiicceccce e 288
12.3.4. Highlighting Resultsccccccoiiiiiiiiiiiii e 290

12.4. Additional FEaturesccocieieiiiieiiieeeiee ettt 291
12.4.1. Manipulating DOCUMENLES...........ccuecvririrrinenieieieinenesretereeeeeresresrenaene 291
12.4.2. Manipulating QUETIES.......c..coerverereinrinrinienieieeeeee ettt ereeressenaens 292
12.4.2.1. Query REWIItINGcccovevveieieiniiriiieieeeeeeeene et 293

12.4.3. Triggers for Automatic UPdatesccceeervereeererierenienienieieiereneneneens 294
12.4.4. Gathering Document StatiStICSccceceerererieriererinierenreteieneeereeresreneens 295

12,5, PATSEIS ..ttt sttt ettt st et a e st b ettt eat et st nbe s 296
12.6. DICHONALIES......c.veuveneeiieiieiirie sttt ettt ettt ettt sae s enes 298
12.6.1. STOP WOIAS ..ttt sttt s 299
12.6.2. SIMPIe DICHONATY ..ccvvevieiiiiieiieniiiieiesieeeeete ettt 299
12.6.3. Synonym DiCtONALYcc.eoeeieririenieniieieneetene sttt 301
12.6.4. Thesaurus DICHONATYccc.evuerteririenieniieieneetene ettt 302
12.6.4.1. Thesaurus Configurationc..cocceeuererveneneenieneneeneneesenenne 303

viii

12.6.4.2. Thesaurus EXampleccceeviieniieniieniiiiienienieeieeieesiee e 304

12.6.5. ISpell DICHONATY....cc..ieiuieiieniieiieeieerte sttt et 305
12.6.6. SNOWDAIl DICHONATYeevieiiiiiieiieiie ettt 306

12.7. Configuration EXample.........cccoviiriiiriiriiinieiieeieeieeeecesee et 306
12.8. Testing and Debugging Text Searchccccoeveevieniiiiieniiiniiiieeceec e 308
12.8.1. Configuration TeStING........ccceceeririenieriieieniieeee et 308
12.8.2. Parser TeStINEcceecueruieiiiieieeeeereseeeete et s 310
12.8.3. Dictionary TeStNG......c..ccceeuieienirieieniieeee e e 311

12.9. GiST and GIN INdeX TYPESccueeuiruieiiiriiiieiecieeiee e 312
12.10. PSQL SUPPOTLL.....oiiiiiiiiiieieeeee et s s 313
12,11 LAMIEALIONSeeuveetteriteeieetee sttt ettt ettt sat e st e bt e satesate st e sbeesaeesateebeennee s 316
12.12. Migration from Pre-8.3 Text Search..........cccoeieiirieiinineieeeee e 316
13. ConcurrenCy CONLIOL.....cocuiiiiieiiiiiirieeeeee ettt ettt e e e s e 317
13,1, TNErOAUCHION ..ttt ettt sttt aesaeas 317
13.2. Transaction ISOIAtioNc.cceeieriiiiiiiiiieieee e 317
13.2.1. Read Committed Isolation Levelcccooeeiiniiiinininiiieececeeee 318
13.2.2. Serializable Isolation Level..........ccoocoiieiiniiiiniiiienieeceec e 319
13.2.2.1. Serializable Isolation versus True Serializabilityccceueee 320

13.3. EXPLCIt LOCKING ..ottt 321
13.3.1. Table-Level LOCKS......cctiiiriiieiieeiesieeecetee e 321
13.3.2. ROW-LeVel LOCKSc..couieiiiiiiiniiieeieniececetee et 323
13.3.3. DEAdIOCKS. . ..euienieiiieieiieieteetee ettt s 324
13.3.4. AdVISOTY LOCKS ...cuiiiiiiiiiiiiieciteest ettt 325

13.4. Data Consistency Checks at the Application Level..........ccoecevvienieniiiiieeneennnnn. 325
13.5. Locking and INAEXES........coeveriirriieniieniienieeieeniiesteete et estesiressbeesaeesanessseeseenaee s 326
14, PerfOrmance TIPS ..eecveeeveeruierieeiieiienteete et e steete et e sitesaesbeesbaessbessbeesbeesssesnseenseesnsesnseenne 328
14.1. USING EXPLATN tetvveerteerueerreerieerieessteeseesseesssesssessseesssesssessseessesssesssesssessssesssessseess 328
14.2. Statistics Used by the Plannerccccevieviiiiiiinienieiieeicenic et 333
14.3. Controlling the Planner with Explicit JOIN Clauses.........ccccceceevvererveeneneecrennene 334
14.4. Populating @ Databaseccceevieriirriieniieniieeieeieesite ettt st st ae e 336
14.4.1. Disable AULOCOMMIULccuevuirueriirieieniietentieeenieneere et eeeeaesaeenenaee 336
14.4.2. USE COPY.uiuiiiiiieieieiiiiirie sttt s 336
14.4.3. ReMOVE INAEXEScovvevieiiiiieiiiiiiieienieeeteee et 337
14.4.4. Remove Foreign Key Constraintsccccoceeceerereenieneeneeneeneeneneennennens 337
14.4.5. Increase maintenance_WOTK_MEM..uueeeeeeeeeeeeeeeieieiiirnsrereeeeeeeeeeeeeens 337
14.4.6. Increase checkpoint _SegmMENT S civiiieeriieerieeeiieeeieeesreeesreeessseeeeneas 337
14.4.77. Disable WAL archival and streaming replicationc..cccceceeeereennennen. 337
14.4.8. Run ANALYZE Afterwards........ccceveereiriennieiiienieeieeieeneeeeeeeeeee e 338
14.4.9. Some Notes About pg_dUmpcccceririiiiiiiiniiieeece e 338

14.5. Non-Durable SEetNEScccceeiirrierriiniinieeieeriteeteee ettt st 339
II1. Server Administration 340
15. Installation from SOUICE COARoviriiriiriiiiniieiieie ettt 342
15.1. SROTE VEISION ...ttt ettt et 342
15.2. REQUITEIMEGIIES ..c..coneetienietieiteteettete ettt sttt ettt et sttt et s et e bt et esee b saeeaesbeas 342
15.3. Getting The SOUICE....c..oiuiiiiiieiieiiiceere ettt s 344
15,4, UPGLAQING c..vonviieiiiieiieieiteeteeee ettt ettt st et b ettt sae s ae b 344
15.5. Installation Procedure..........c..coceeviiieniiniiiiniinieieeceee ettt 345
15.6. Post-Installation SEUP.........coeeeeviireiriiririeieriteteseetese ettt 355
15.6.1. Shared Librariescoeecuererienirienieniieienieeeenie et 355
15.6.2. Environment Variables............coevieriiririienenienenieieneeeenie e 356

15.7. Supported PIatfOrmscovieriieiieeiieriie ettt ettt sttt e enaee e 356

ix

15.8. Platform-Specific NOLES.......cevviiriiiriieiieiiesite ettt st 357

I5.8.10 ALX o 357
I5.8.1.1. GCC ISSUES ...uvniiiiiieicieeeic e 358

15.8.1.2. Unix-domain sockets broken.......c..cccccoceecvevieneencncneeneneecienncne 358

15.8.1.3. Internet address ISSUESco.eeverrereerienrereenieneerenieeeeresieenennene 358

15.8.1.4. Memory management............occeeuereerrenreeeenreneeneerseneenseneesnennenne 359

References and r€SOUICES.eevueirierrieiniienieeieetente et 360

15.8.2. CYZWIN..oiiiiiiiiiiiiiieieeee ettt s 360
I5.8.3. HP-UX ..ttt ettt sttt 361
I5.8.4 TRIX ettt ettt s sttt ettt 362
15.8.5. MINGW/Native WINAOWSoovueeveieriiriieieiiienieeie ettt esiee s 362
15.8.6. SCO OpenServer and SCO UnixWare.........ccccoeoueevernieenienneensieeneeneennne. 362
15.8.6.1. SKUNKWALEooueitieiieieieieiesteeiie ettt sttt 363

15.8.6.2. GNU MaKEcocviuiiiiiieiciiiinesetecteeeeeeese et 363

15.8.6.3. REAALINE......evieiieiieeieie ettt 363

15.8.6.4. Using the UDK 0n OpenServer..........ccoeeoerereeneneeseeneneenennens 363

15.8.6.5. Reading the PostgreSQL man pagescccceeeevvenieeeeneneenuennen. 364

15.8.6.6. C99 Issues with the 7.1.1b Feature Supplementcccc...... 364

15.8.6.7. Threading on UnixXWareccoceveevienienienieneenienenienieneeienieae 364

I5.8.7. SOLAIIS ..ttt st 364
15.8.7.1. ReqUired tOOIScccoueriieieniirienienieeienieeiteie ettt 364

15.8.7.2. Problems with OpenSSLccoceiiiviininiiiiniiencneeneneeeiene 364

15.8.7.3. configure complains about a failed test program...........c..ccceeneeee 365

15.8.7.4. 64-bit build sometimes Crashescocceceevererrienereeneneenienenne 365

15.8.7.5. Compiling for optimal performance...........ccoeeueevveeveenvencvencuennne 365

15.8.7.6. Using DTrace for tracing PostgreSQLccccevvveevienieriienienns 366

16. Installation from Source Code on WINdOWScccoereeriirernienenienieneeieneeeene e 367
16.1. Building with Visual C++ or the Platform SDKccocciiiiiiiiiniiniiieeeeee 367
16. 1.1, REQUITEIMENLS ...eeuvveiiieiiieiieniieeieeitesite sttt sttt ee et sateesbeesanesaees 368
16.1.2. Special considerations for 64-bit Windowsccccceceereervieniieeneeneennne. 369
16.1.3. BUIIAINGoviiiiiiiiiiiiiiice e 369
16.1.4. Cleaning and inStallingccooveevieriiiiiiriiiienieeeeeeee e 370
16.1.5. Running the re@reSsion eSSceveeriiriierierriienienieeieeneeeee e eniee s 370
16.1.6. Building the docUmMentation............ccceeevueriievienereeneneerereeeeee e 370

16.2. Building libpq with Visual C++ or Borland CH++......ccooeoiiiiiiiiiiiiiceee 371
16.2.1. Generated fIlEsccc.oovuiiriiriiiieeiiete ettt 371

17. Server Setup and OPErationc..coccecueruirieiieniieieniieteie et eee et eee s see e s eneneene 373
17.1. The PostgreSQL USer ACCOUNLcccueruiriiiiriiiiiiiceeie et 373
17.2. Creating a Database CIUSLETcccceciiiiiiiiiiiiiiicccceeece e 373
17.2.1. Network File SYStemSccouiiierriiiiiiiieieiieenteeeeeeee et 374

17.3. Starting the Database SEIVeT..........cccceviririererieireeeee et 374
17.3.1. Server Start-up Failuresccocovoieiiiieiinieee e 376
17.3.2. Client Connection Problemscccooeeiieririeniiieneneeieeeee e 377

17.4. Managing Kernel ReSOUICES..........coceeriiiiriiriiiieiineeeeeeeseee e 377
17.4.1. Shared Memory and Semaphoresccccoeeeeerereeneneeienineene e 377
17.4.2. ReSOUICEe LIMILS ..c..eeiiitiiiiiieieniiiteiest ettt 383
17.4.3. Linux Memory OVEIrCOMMIL.......cceevuertieieniirienieiieienieetente e sieeee e 384

17.5. Shutting DOWN the SEIVET.......cccccoiiiiiiiriiieieniteese ettt 385
17.6. Preventing Server SPOOfINGccoeveerieririenienieienieetenieeteteste et 386
17.7. ENCIYPION OPLONS. ..couvetiriiiiiniieiinieetenieeiteie sttt sttt st et sttt ebee e saeeaesrees 386
17.8. Secure TCP/IP Connections With SSLc..ccccivininiiniiiinniiiiineiciccceecneeee 387
17.8.1. Using client CErtifiCates..........ueremieruinerrienenienienieteneeeenie e 388

17.8.2. SSL Server File USagecccuviviievieniiiiieiieiiesieeieeieesee et 388

17.8.3. Creating a Self-Signed Certificatecccceeveerieriierrieenienieeeeneeneeen 389

17.9. Secure TCP/IP Connections with SSH Tunnelsc..cocecevievencniencnninccnenne 389
18. Server CONTIGUIATIONeecviiriieriietienieete ettt ettt et et e st e st esbeesbeesatesateesbeesanesnneenne 391
18.1. Setting Parametersccoueeieirienieeieeieeste ettt sttt e be e 391
18.2. File LOCALIONSeouviiieiiiiieiieiieiecieetcet ettt e 392
18.3. Connections and AUthentiCatioN........c..ceeuerrueerienieriieiieerteeee et 393
18.3.1. Connection SELHNEScceeuieeeririenieniieierieeeee et 393
18.3.2. Security and AuthentiCation............ccceeecueriieieneieenieneeiee e 395

18.4. Resource CONSUMPLION.........cc.eeuiioiiruieiieniiereie ettt ettt ne e 397
I8.4. 1. MBIMOTY ...t sttt s 397
18.4.2. Kernel Resource USage.........ccccoiiieiieiiiiciiiiiiiie e 398
18.4.3. Cost-Based Vacuum Delayccccooiiiiiiiiiiiiiiiiiiiccccceee 399
18.4.4. Background WIIter.........ccevuieieniiieieitieieieee et 400
18.4.5. Asynchronous Behavior..........cccccoceeieiieiiininiiene e 401

18.5. Write Ahead LOZ ...cviiiiiiiieieeee et s 401
I8.5. 1. SEUNES ..cueetieiieieiiieteet ettt ettt et e s b et e e s eee b 401
18.5.2. CheCKPOINES. ... corteruienietieiieteetestt ettt sttt st s 404
18.5.3. ATCRIVINE vttt e 405
18.5.4. Streaming Replication...........cccevereerieriiiieninienieieeiesieeeeeeee e 405
18.5.5. Standby SEIVETSccuerrieiiriiriiniiniteenteeteteete ettt e 406

18.6. QUETY PIANNINGeevieiiiiiiiiiiieiteiricet ettt s 407
18.6.1. Planner Method Configuration...........c..ceceveeienereenenensieneneenienceeennens 407
18.6.2. Planner Cost CONSLANESceververieeiireerienieniienienieetenieeeeseesieeeesieenenienne 408
18.6.3. Genetic QUETY OPtMIZETcoveriiriieeriieniieeiieneenteeteeneeseesreesseeseeesnnas 409
18.6.4. Other PIanner OPtions.........c.eereerveerieeneeniesieeneentesreeneeseesseesseesseesnes 410

18.7. Error Reporting and LOZZINGccccueeuieriiiiieeiieeiienie ettt sve e 411
18.7.1. WHEre TO LOZ ..coouveeiiiiieiieeie ettt 412
18.7.2. WHen TO LOZ c..eeeieiiiiieieee ettt 414
18.7.3. WHat TO LLOZ «..veeiieeiiiiiieiieete ettt ettt 415
18.7.4. Using CSV-Format Log OUtPULccceeviieriiiiiiniinieeieeriteeeeeieeieesiee e 419

18.8. RUN-TIME StAtISLICS ...verviruriiiriieiirieeienieeieete ettt st et ste e e st ne s eeneneene 420
18.8.1. Query and Index StatisticS COIECLOTcc.eevueereeriierriieniieeieeieeieeeeeae 420
18.8.2. StatisticS MONILOTINGcccueeruierieerieeniterieeieeiee ettt ete b e saee e 421

18.9. Automatic VaCUUMINGccueeieriiriiiiniiiieieetetese et 421
18.10. Client Connection Defaultscccooierieriiiniinieriiiietcceeeeeee e 423
18.10.1. Statement BEhaVvior.........ccocueiviiiiiiniiiiiiiiiiecceeeeeeeeeeeee e 423
18.10.2. Locale and FOrmattingc..cocoeeerieiiininieniiieeneceeeeeeee e 426
18.10.3. Other Defaults.........coceeviiriiiiieiiiieiieeceeee e 427
18.11. LOCK MaANaQZEeMENLcocueeiueiriiiiiieieeniteeieeteesite sttt st see et st be i s 428
18.12. Version and Platform Compatibilityc.cccecevvereninienieninininenceeeeeeneneenee 429
18.12.1. Previous PostgreSQL VEISIONSccceeververieerinerenenieieeeeeesenennens 429
18.12.2. Platform and Client Compatibility..........cccoecererierenenienieeeecee e 430
18.13. PreSet OPtiONS. ..cueeuieieitieiieteetieteetee sttt ettt ettt e bt st ebe s bt et e beeseeneesaeeaesbeas 431
18.14. CuStOmMIZEd OPLIONS ...e.verueeiieiieiieiieie ettt ettt ettt et ettt e e saeeae b 432
18.15. DEVElOPEr OPLIONS ..c.ueeuviriieiieiieiirieeterte ettt ettt ettt ettt beeaeeseesaeeaesbeas 433
18.16. SHOIT OPLIONS ...coueiiienietieiiesteeti ettt ettt sttt ettt e bbb eaee et saeeaesbeas 435
19. Client AUtRENTICALIONc.eeiiuiiiiriiiiieieieeeere ettt st s s aee 437
19.1. The pg_hba . conf fIle ..ot et 437
19.2. USET NAIME INAPS «.uvevveemrenreeiteienttetesteete st eitestesteestesteeseessesstebesbeessenseeseessesueesessens 442
19.3. Authentication MethodS..........cccueviiiiiiiniiniiiiiice e 443
19.3.1. Trust authentiCation..........c.ccecverierieriinieienienteeneetese et 443

Xi

19.3.2. Password authentiCation...........cccvveeeeeriureeeeeriieeeeeeeireeeeeeereeeeeeeiareeeeeeennnes 444

19.3.3. GSSAPT authenticationccocceeerrereecienieseeneneenieneerenreeeeneeseeae e 444
19.3.4. SSPI authentiCation........cc.coueeeerireenienieieniieeee ettt 445
19.3.5. Kerberos authenticationc..coceeevereecieniieieeneneenenenrenieeeeie e 445
19.3.6. Ident-based authentiCationccceeeecieniieeeneniieneneereeeeee e 447
19.3.6.1. Ident Authentication over TCP/IP.........cccccccovieviniiiinininienene 447

19.3.6.2. Ident Authentication over Local SOCKetscccceeveeviiriennuenne 447

19.3.7. LDAP authentiCation..........cccueevueerueerieriieieeiee et eieesiee ettt 448
19.3.8. RADIUS authentiCationcceeeerierieenieinieenienieeieeseeeie e 449
19.3.9. Certificate authentiCationceceereiriierieiiienieeieeieeneeeeeee e 450
19.3.10. PAM authentiCation..........cccueevueerueenterieenieerieenieeieeieesieeeee et e esiee e 450

19.4. Authentication Problemscccoocieiiiiiiiiiiiiii e 451
20. Database Roles and Privile@esccoceeiiriiriereiieiesiieiee ettt 452
20.1. Database ROIESccceeriiriiiiiiieiiieeetete ettt st 452
20.2. ROIE ALIITDULES ...ttt sttt ettt et et e ae b neenaeeae 453
20.3. PLIVIIBZES .ttt sttt ettt ettt et ettt et esbe st ebesbeentenaeeae 454
20.4. ROIE MEMDEISHIPeoviiieiieiieiieieeieeiest ettt 454
20.5. Function and Trigger SECUTILYc.ceouirerieririenienieetenieeieete sttt 456
21. Managing Databasescoeeeereiienieniieienie ettt ettt bttt et et 457
211 OVEIVIEW ittt ettt ettt st sttt s 457
21.2. Creating @ Database........ccceverienieiieieniieiieieetee ettt ettt 457
21.3. Template Databasescccceeeieririeiieniinieie ettt st 458
21.4. Database COonfigurationcoceeeeuerierieniineeneneeteniesieete st sieesiesbeesnenieene 459
21.5. Destroying a Databasecocuevereeieniiriiniinienieneetenieet ettt 460
21.6. TADIESPACES ...veeereeuiieieeriieeieeritesite st eteesate sttt ebeeteesabesabeesseesseesaseenseenseesaseensesnseens 460
22, LOCAIZATION ..c..eenteieeiieieeiteteetete sttt ettt sttt et ettt et st sbe et ebe et st eaesae s 463
22.1. LLOCALE SUPPOTIT...ciitiiiieriieeiieitenite st eritesiteseteebeesteesitesbeesaeesseesabeenseenseesaseenseenseens 463
22,11 OVEIVIBW ..ottt ettt ettt ettt ae sttt s sae vt nae e 463
22.1.2. BERAVIOT ..ottt ettt s 464
22.1.3. PTODICINS ..ottt sttt ettt 465

22.2. Character SEt SUPPOTL......ceveeruieriieriierieertesteerieesttesttesbeesieesseesbeesseesseesseenseenseens 465
22.2.1. Supported Character SELS........ccceeveerieriieriiienienieeieenite et et esreesreseeenne 465
22.2.2. Setting the Character Set.........cocceevierieriieiiiienienieeieenite et e 468
22.2.3. Automatic Character Set Conversion Between Server and Client........... 469
22.2.4. Further Readingcccccovuieiiiriiiiiiiiniieeieeieesiteeteee ettt 471

23. Routine Database Maintenance TasKs.........ccoceevuerriiiniiniienieenienieeeesiteeeee et 472
23.1. ROUtINE VACUUMNGoviiiiiiiiiieiiniieieieeiete ettt 472
23.1.1. Vacuuming BasiCscc.cccuiruiiiiiniiiiiiiiieiei e e 472
23.1.2. Recovering DisK SPaceccceeueriiiiiiiiiiiiiinierieeieeeeeeeeeeee e 473
23.1.3. Updating Planner StatiStiCsceeveruerrierienieiereeieriesteeiesie e see e 474
23.1.4. Preventing Transaction ID Wraparound Failures..........c.cccccoeceniniennnnen. 475
23.1.5. The Autovacuum DaCmOmncoceerierieriiienienienieenieeeteeie et 477

23.2. ROUtiNE REINAEKINGeveeuiiriieiieieiiieiesteeite ettt ettt et st ee e eae 478
23.3. Log File MaiNtenance............ccecererrerienieieiniinenieneeeeeeteeseessesseseeeeneenessesaesaennes 479
24. Backup and RESTOTEccuiiuiiiiiiiieieitieiee ettt s 480
24.1. SQL DUMIP ..ottt sttt sttt s e 480
24.1.1. Restoring the dUumpccooeeviiniriiiinieieeeee e 481
24.1.2. Using pg_dumpall.........cccoviriiininiininieieneeteneeteiesieeese et 481
24.1.3. Handling large databasescoceeverieiinirienenieienieeieneecenee e 482

24.2. File System Level Backupccocevieieririiniiiiiieieienienteeeetesee et 483
24.3. Continuous Archiving and Point-In-Time Recovery (PITR)ccccoceveniniinenne 484
24.3.1. Setting up WAL archiving.......c..cecevveveerienenienenieieneneeneseenesieereniene 485

Xii

24.3.2. Making a Base BaCKUDcoocveriiriiiinieiiiciieiteeecieetee et 487

24.3.3. Recovering using a Continuous Archive Backupccecceeveevieniiennnnns 489
24.3.4. TIMEINES.......ooviiiiiiiiiiiiiccce e 490
24.3.5. Tips and EXaMPIEScccceervieriiriiiiiieniieeie ettt 491
24.3.5.1. Standalone hot backupsccceeveeriiriienieinieiieeceeeseeeeeene 491

24.3.5.2. archive_command SCIPLS ..ccceereerieriierrieeniienieeieeniee e eieenieens 492

24.3.0. CAVEALS ...uveeeeeiieeieeeiteete ettt ettt e sbt e et e st e sbeesabe st e sbe e st e s bt e beesabesaneenne 492

24.4. Migration Between Releasescceviiiiriiiieiiniiieninciceece e 493
24.4.1. Migrating data via pg_dump.......c..ccceeieiiniiieniiieeneceeee e 494
24.4.2. Other data migration methods............cccceceviiiiiniiiieninieecee e 495

25. High Availability, Load Balancing, and Replication..............cccccccovieiininiininicnineencnnn. 496
25.1. Comparison of different SOIUtIONScc.coveceeuirirerenieieireneeeeeeeeeeee e 496
25.2. Log-Shipping Standby SETIVETS.........cccceerieiririrenienieieieenetsteseseeeeieeieeie e 499
25.2.1. PIANNING ..ottt ettt sttt st eaean 500
25.2.2. Standby Server OPerationcecceceeeeruerueeriererieniesieeesieeee e seeeeesneas 500
25.2.3. Preparing the Master for Standby Serversccccoeveveeeenencencncenennen. 501
25.2.4. Setting Up a Standby SEIVer.........ccoevierieneeieneiieiesieeese e 501
25.2.5. Streaming Replication..........ccceveruierienieiiinieienerteiesiceese e 502
25.2.5.1. AUthentiCationcceeuevuerieiruinininieicretee ettt 503

25.2.5.2. MONIEOTING . c..veuterureniirieetenieeienteeiteieeite et seeetesbe et ebee st saeeaesbeas 503

25,3 FaIlOVET ...ttt s 503
25.4. Alternative method for 10g Shipping.......cccceeereevereriiininiiieeeneeeeseeeee 504
25.4.1. IMPIeMENTATION «..c.vveutiiieiiiieeiteieritetestt ettt sttt eeee e see e i 505
25.4.2. Record-based Log Shipping.......cccceeeveeviererienenienienenieneneenenieereniene 506

25.5. HOt Standbycccoceeuiiiiiiiiiiiiiiiicceee s 506
25.5.1. USEI’S OVEIVIEW...c.ecuiiuiiiiiiiiiiiiiiciciccee ettt e 506
25.5.2. Handling query CONTIICESeevveriiiriienienieeieeteste ettt 508
25.5.3. Administrator’s OVEIVIEWcccccuvivuiiiiiiiniiiiiiiiiic e 510
25.5.4. Hot Standby Parameter Reference..........cecvevverieriieeniienienieeniiesieeieene 512
25.5.5. CAVEALS ...ttt e 513

26. Recovery CONfIGUIALIONeevuieriieriieieeiie st eieetee st ettt et ste e bt e bt e sateseeesbeesabesaneenne 514
26.1. ATChiVe TECOVETY SEUNGZSeevieeieriiieiieiteniie et eite sttt et et e st e bt esbeesteebeebee s 514
26.2. RECOVETY tarZEt SELLINES . ..evuveerreeruieriieerieeniieniteeieerieesiteebeesteesteesbeebeesbeesiteenseenbeens 515
26.3. Standby SEIVET SEINEScoueeueriiriereniieietieeere et ettt sae st eresieeenenneene 515
27. Monitoring Database ACHVILYc.ccecuerieieriirierienieieneerete et 517
27.1. Standard UniX TOOLScc.cevuirriiriiniiiieeitenie ettt st 517
27.2. The StatiStics COIECTOTc...eivuiiriiiriieieeterite ettt ettt st 517
27.2.1. Statistics Collection CONfigUIrationc.cceceeverierieniecienieneereeeenennens 518
27.2.2. Viewing Collected StatiStiCscccerieriirieiieniiieienieiee e 518

27.3. VIEWING LOCKS ...ttt ettt sttt ene 526
27.4. DYNAMIC TIACINE -.e.vveutitieieriieiieite ettt ettt sttt ettt e sae st esbesbeeneenaeene 527
27.4.1. Compiling for Dynamic Tracing.........ccceceveereenerienieneeieneeeesee e 527
27.4.2. BUIlt-in PrODESceeeiiiiieiiiieeee et 527
27.4.3. USING PrODESc.eeiieniiiieieeieeee ettt 535
27.4.4. Defining New Probescccccceviiiiiiniiiiinieiereeeesieeeee e 536

28. Monitoring DiSK USAZEcc.eeuiiriiriiiiiieiieieeterie ettt sttt 538
28.1. Determining Disk USAZecoceevuiiieiiniiiiiiiiieie st 538
28.2. Disk Full Failure........cccouevieiiiiiniiiiicicicieceseeetee s 539
29. Reliability and the Write-Ahead Log.........coerieririiniiniiiiiineeceeeseeeeecee e 540
29.1. REHADIIILY ..vovviieiiiiieiiiericcee et s 540
29.2. Write-Ahead Log@ing (WAL)cocoeviiriiiiniiiieneeteetceseeeese et 541
29.3. ASyNnchronous COMIMIL.........cceerieriierienienieesieestesteeieesieeseeesbeeseesseesbeenseenseens 542

xiii

29.4. WAL CONfIGUIALION «...eevviiriiieiieiiesiieeieesite sttt esitesite st esieesaeesabeeseesseesateenseenseens 543

29.5. WAL INEEINALS «..ouviriieiiieiieiinieetetesitet ettt sttt ettt sae s s nneeae 545
30. REGIESSION TESLS ..ccuuiieuieeiieiiieeieeieertte et ett et s e et et e st e st e sabeesbtesabesabeesbeesaeesateebeesaeesanas 547
30.1. RUNNING the TESES ...eevieriiiriiiiiieriie ittt ettt ettt sttt e e b 547
30.2. Test EVAlUAtIONco.viiieiieiiiieieieneeiececte ettt s 549
30.2.1. Error message differences.........coecueevieenieniieiniienienieeieeiteseeeeeeeee e 549
30.2.2. Locale differencCeseeervieeeieeiiieeeiiieeieeesieeeeiee e e esree e eesereeeeneas 549
30.2.3. Date and time differencesccecveeeriieeciiiecciieeeie e 550
30.2.4. Floating-point differences..........ccccocevieieniiieninieienieececeeeseeeene 550
30.2.5. Row ordering differences...........cocecuivieieniiiciiinieiiniceceeeceseceee 550
30.2.6. Insufficient stack depth ..o 550
30.2.7. The “Tandom’ tESE.......c.eeervueeeeieeeiieeeieeeieeeeteeeeieeeeeaeesseeesereesnnseesneens 551

30.3. Variant CompariSOn Filescccoiiiiiiiiriiiiiee e 551
30.4. Test Coverage EXamination..........ccccecuerueeienienieneneeiesieeieete et st neeene 552
IV. Client Interfaces 553
31 HDPQ = C LIDIATY ittt sttt et s ae b nae e 555
31.1. Database Connection Control FUnctionscc.ccoceevuererierenennienenienenceienene 555
31.2. Connection Status FUNCHONSc..coeeiiriiriiniiiieienienteeeeecete et 563
31.3. Command Execution FUNCHIONScoeevieriiiiinininieniiniciceeeeseeeesieeeee 567
31.3.1. Main FUNCHONS ..c..covuiiiiiiniirieiiniteiesicete ettt 567
31.3.2. Retrieving Query Result Informationcccceeeevvenenieneniencnencencnne 573
31.3.3. Retrieving Other Result Informationcc.ccoceeeevieninvincnencnencencne 577
31.3.4. Escaping Strings for Inclusion in SQL Commands.........c.cceceveneerenncnne 577

31.4. Asynchronous Command ProCesSingc.eeveereerierrieeneenieeieenieeneesveesieeneeens 580
31.5. Cancelling Queries in PrOZresscoovvevieriiriiienienie ettt s 584
31.6. The Fast-Path INterface..........cccccoerieiieniniiiniiieniinecieesectceecene e 585
31.7. Asynchronous NOtHICAIONeevuieriiiriierienie ettt s 586
31.8. Functions Associated with the COPY Commandcccecceeveiriieneeneenieenieeieen. 586
31.8.1. Functions for Sending COPY Data.......cccceecueriienienienieinienieeieeieesee e 587
31.8.2. Functions for Receiving COPY Data........cccevvveerienieniiienienienieeieeeeee, 588
31.8.3. Obsolete Functions for COPYcccecuirievieniriieninieienieecneeeeeseereiene 589

31.9. CoNtrol FUNCHONS ...c...eevuiiriiiiiieiteiieeieeteste ettt ettt st 590
31.10. Miscellaneous FUNCLIONScc.eeiiuiieeiireeiieerieeesrieeereeeiveeeireesseeesreeeseseeeeneas 591
31.11. NOtICE PrOCESSINGovieuiiiieiieiiiiieienieeeete ettt ettt 593
3112, EVENE SYSIBIM c..ouiiiiiiiieieieeeee ettt sttt 595
31121 EVENt TYPES ..ottt 595
31.12.2. Event Callback Procedure...........ccceevuiierciiieiciiieeiie et 597
31.12.3. Event Support FUNCHONSc..coveoveieiririinieiciceeeeeneneeeeeeee e 597
31.12.4. Event EXamplecccccoiiiiiiiiiiiiiiiiiiciceeeeee e 598
31.13. Environment Variablesccccceeciieiieniiesiieieeeie et esiee e eve e eseeesveeveeeee s 601
31.14. The PassWOIrd FIlecccuieiiiiiiiiieieeciecie ettt ve et s ae e 602
31.15. The Connection Service FIleccoviirieriieiieiiesie et 603
31.16. LDAP Lookup of Connection Parameters...........ccecuevereerienieenienenienenieienene 603
3117, SSL SUPPOIT...eiintiitieiietietesteete ettt et et sttt et et sbe et e st st ebesbeesnenaeeae 604
31.17.1. Certificate VerifiCation...........ccceeeevuereerienerienienieiese et 604
31.17.2. Client CertifiCateScoeevueruerieriiniieieeieete ettt 605
31.17.3. Protection provided in different modes.........c..coceevveverveencnienenencienenne 605
31.17.4. SSL File USAZE ...ccoverveeiiriiriieieniieieeieeteneeetetesitete sttt 607
31.17.5. SSL library initialiZation.......c..cecvevvereerienenienenieieneeteneeeene e 608
31.18. Behavior in Threaded Programs............ccoecveevieenienieeiieenienieeieeeesiee e 608
31.19. Building libpq Programs...........cccecuveriierieniiiiiieiienie ettt st 609

Xiv

31.20. EXample Programs.........ccceevierieriieniienienieeieeite st ettt eaeesieesteeseenaee s 610

32, LarZ8 ODJECLS ..eeuvieiieiiieeiieiite ettt ettt ettt e st et e bt e st e s it e st e e sbbesabesabe e bt esabesateebeenatesaeas 619
321 INrOAUCTHION ..viiiiiiiiiciciii et 619
32.2. Implementation FEaturesccccevvuieiiirieniiiiieiiesie ettt 619
32.3. Client INterfaces..........ccooueviiiiiiiiiniiiiiiiicce e 619

32.3.1. Creating a Large ODBJectcc.ccuevieviinieiieniiieieniereeeeeee e 619
32.3.2. Importing a Large ODbJect........ccceveviirieiiiniiiiieniceeeeeeeeeseerene 620
32.3.3. Exporting a Large ODbJect........cccecueviirieiiiniiiiiinicieeeeceeeceseereiene 620
32.3.4. Opening an Existing Large ODJect...........cocoecveviiririiininieninecenecieieene 621
32.3.5. Writing Data to a Large Object..........ccccceriiiiiiiniiiiiniicnieeceneciene 621
32.3.6. Reading Data from a Large Objectccccocveiiiiiiiniiiiniiicciccieee 621
32.3.7. Seeking in a Large ObJect........coeieiirieriinieieieeieeeeeee e 622
32.3.8. Obtaining the Seek Position of a Large Object.........cccecevvreeneneecennenne 622
32.3.9. Truncating a Large ODJECtc..coeevreririiniinieieeeieiineneeeeeee e 622
32.3.10. Closing a Large Object DeSCIIPLOrc.coeeterieriierienieeieneecenesieeieneene 622
32.3.11. Removing a Large ODJECtceeeriirierieriiieieniieesieeene e 622
32.4. Server-Side FUNCHONS.cc.oiiriiiiieiertee ettt 623
32.5. EXample Programccccoviriiniiiieiiniieieieecee ettt 623

33. ECPG - Embedded SQL N C.....ooouiiiiiiiiiiieicieieie ettt 629
33.1. THE CONCEPL...cueeiiriieniiiieiierieeitete ettt ettt ettt ettt st e b sbe e e i eae 629
33.2. Connecting to the Database SeIrVer.........ccccooirierereriieninieieneeeseeeeesieeieeae 629
33.3. CloSINg @ CONNECHIONeeuveiiriienieniieienieeiteteeieete e eete st sttt eateseesbeenbesbeennenaeene 630
33.4. Running SQL Commands..........c.cceceevuerierienieneenenenienieneetesieeee e sieeneesieenenieene 631
33.5. ChooSINg @ CONNECHION.couerieieriieteniieiieteeeeete ettt eaeesaesbeestesbeesnenaeene 632
33.6. USING HOSt VAT iablescccueevuieriiiiiiiiieniecie ettt sttt sve e st eaeeaee s 632

33.6.1. OVEIVIEW ettt s 632
33.6.2. Declare SECHONS.ccccveuiiuiiiiiiiiiicieie et e 633
33.6.3. Different types of host variablescccccoecerviiinieniieniiienieniecieeeeseee, 633
33.6.4. SELECT INTO and FETCH INTO .cooooviviiiiiiiiiniiiiirincinencenencenenc e 634
33.6.5. INICALOLS.ccuiriiiiiiiiicicc s 635
33.7. Dynamic SQL.....cccueoiiiiiiiiieitete ettt sttt st et 636
33.8. PELYPES LIDTATY ...ttt ettt sttt st e 637
33.8.1. The NUIMETIC LYPE .eeuveeereriiieiieniieniie ettt ettt ettt ettt st e e e e 637
33.8.2. The date LYPE...ceecveerieriieriieiieniteete ettt ettt st ettt st ebe e e s 640
33.8.3. The tiMeStampP LYPE......cecveruerreririieiiniiererieeteresie et eee e et ene s enennene 643
33.8.4. The INterval LYPEcceeeueeiiriieieiieiieieeeeeese ettt 647
33.8.5. The decimal tyPe........ccceoueruirieniiiieiieieieseeteese e 647
33.8.6. errno values of pgtypeslib.......cccocoviiiiiiniiiiiiiee 648
33.8.7. Special constants of pgtypeslib.........ccceceriririenierireninieneneeeeneeeenne 648
33.9. USING DESCIIPLOT ATEASeuverruiruirrirenrententeienienteneetentesteseseestessesseseeseenessesuesaennes 649
33.9.1. Named SQL DeSCIriptor AT€ascccecerueruirrerrerreeeenrenereneeeeeeessensennene 649
33.9.2. SQLDA DeSCIIPtOr ATEaScoverveveureuiriiriinrenreienteneeresiesieneeeenreesuessessenne 651
33.10. Informix compatibility MOdE..........ccuevuiriiriirierierieiereeeee e 653
33.10.1. Additional £YPES ...cverueeeerieriieiietieie ettt ettt ettt 653
33.10.2. Additional/missing embedded SQL statements............cceceeceereereeuenncnne 654
33.10.3. Informix-compatible SQLDA Descriptor Areas........cc.cceceeeereneeuennenne 654
33.10.4. Additional funCtionS.........ccceverierieiriniriineccteeeee e 657
33.10.5. Additional CONSLANLS.......c.eeiruiriiieieiniiriiietcreteeeteee e 665
33.11. Error Handlingc..ccoueveeieninieeiieieeeee ettt 666
33.11.1. Setting CallDaCKScovvererieriiniieiiniieieneetetesttetese et 667
33.11.2. SALCA ettt 668
33.11.3. SQLSTATE VS SQLCODE....ciiiiiiiiiiiiiiiiiiiiiieisie e 669

XV

33.12. PreproCeSSOr QITECHIVESuieuieriieriiieieenitesiieeieeitesitesbeesieesieesbeeaeesaeesateeseeseens 672

33.12.1. INCIUAING fIl@S....ueiiieiieiiiiiieiieeeeeeteete ettt 672
33.12.2. The #define and #undef dir€Ctivescocervvierienieriiienienieeeeeeseeene, 672
33.12.3. ifdef, ifndef, else, elif, and endif directivesccoevvvvvvvrvrvevreeeeennennnn. 673
33.13. Processing Embedded SQL Programs.............cccceevierieeneeneinienneeneesieeieeeeene 673
33.14. Library FUNCHONScooiiriiiiiiiieiieeitesitesite ettt ettt st e 674
R JC T8 B TR 031155 3 1 = SRR 675
34. The Information SCREMA...........cceeeiiiieiiie et eee et e e ereeeeneas 678
7 T N o TR o] 54 - SR 678
34.2. Data TYPES ..o s s 678
34.3. information_schema_catalog_NAME ..cieeeeeiirieeeeeeirreeeeeeireeeeeeerreeeeeeennreeens 678
34.4. administrable_role_authorizationsS .o eeeeeeesensaeeeeeeees 679
R Y o SNk TV o Y Y oo N Y= SRS 679
T TN o ok I o1 Aot =Y - OSSNSO 680
34.7. check_constraint_roULine_USAGE .cciiieeeiiiiieieeieiieeeeeeireee e e eerreeeeeeaveee s 682
3 8. C N C K COMSE T AITIT S tuueteeteteee ettt e e et e e e et e e e e ea e e e eeeaaeseeeanaeeeeeneaeseenaaaaaeee 683
34.9. ColUMN_dOMAIN_TUSAGE tuurieeieiririeeieiirreeeeeitreeeeeeitreeeeeeetreeeesssssaseeeassreseessssseses 683
34.10. COLUMN_PTiViLEgeS uiiiiiiieiiieeitieeeiteeeeiteeeeteeeeteeeeeeeeeteeeeeteeeeeaeeeeteeeeaseseeaneas 684
34,11, COLUMN_ UL TS AT ctttiieitiieeiteeeeiteeeeteeeeiteeeeaeeeetseseeaaeeeeteeeenseeeesseeasseseesreseesnens 685
34,12, COLUIMIIS tiieutieiettieeeeteeeeteeeetteeeeteeeeteeeeteeeeaaeeeeaseeeetseseeaseeessseensseeenssesessesenssesennseas 685
34.13. consStraint_COLUMN_USATE wiiiiireerrreeeireeeireeeetreeeereeeeteeeesseeessseesssesesssesensnens 690
34,14, conStraint_table USATe.iiiieiiieeeiieeeereeeereeeeteeeetaeeesseeesesseessesasaseseesnens 690
34,15, data LYPE PrivVileges ciiiiieiiiieeieeeieiereeeeeeiteeeeeeerreeeeeentaeeeeesareeeeeenaeeeees 691
34.16. AOMAIN. CONSETAINTES tteteettttiteeeeeeeeeeeeeeeeeeeeeeeeeaeeeeeaaeeeeeeeeeeeereeeeaea—aaaaaaaaaees 692
34.17. AOMain_ UL _USATC i iiiiurieeierrereeeeeitreeeeeeitereeeeeeteeeeeeetreeeeeserareeeentreeeeeenrreeees 692
34,18, OMAIIIS tieetrieiiiieeeiieeeree ettt e etteeetteeeteeeeaaeeesabee e abeseaseeestaeaessseesssseesssesansseseanens 693
R R S 1=) o Nl o4 o 1= 1= S ORI 695
34,20 ENIAD L A, T O LS wuteeeeeeee e e e e e e e et —————————————aeeeteeteea————————as 698
34.21. foreign_data_ WrapPer OPtiONS i iieeeeeiireeeeeieitreeeeeeereeeeeenareeeeenerreeees 698
34,22, fOreign_data WIAPPEILS cieetrrreeeeeirreeeeeeirrreeeeeiireeeeeeeitreeeeeeeireeeeeesisreseeensrreees 699
34,23, foreign._ SerVer _OPLiONS i iiiiieieeeeeitreeeeeeereeeeeeeitreeeeeeeraeeeeeetreeeeeeerreeees 699
RIS oy al=b Ko po N 1= Y on 4= of - DU USRS OO SRR PR ORI 700
34,25, Ky COLUMN _USATC i iiitrieeieetreeeeeeirreeeeeeitrreeeeeeteeeeeeeitreeseeearareeeeesreeeeenerreeees 700
3,20, P AT AMEE T S uuiiiiieiirieeeeeitireeeeeeitee e e e eeete e e e eetre e e e eeetae e e e eetaaeeeeeearaaeeeeattaeeeeeaarraeeas 701
34.27. referential CONSTTAINES wiririiiiiiiieiiieieeeeeeeeiirrirrree e e e e e e e e e eessessasarseeeeeees 704
34.28. r0le_COLUMN__GIANTS tiriieeieeireeeeeeireeeeeeeitrreeeeeireeeeeeeisreeeeseaseseeeessreseeesessseeens 705
34.29. role_roULiNe_GrantS e ieiieeeeeeeceeeeeeeereeeeeeetreeeeeeearaeeeeeerreeeeeeenrreeeas 705
34.30. r0le_L£able_gLants wiieeieciieeeeieiieeeeeeeitreeeeeeireeeeeeetreeeeeeesraeeeeeerreeeeeeanrreeeas 706
34.3]. £O1Ee_USAGE_GTANES wutrerrieeerieerirreerireesteeesseeessseesasseesssseeassseessssesssseesnsseessnses 707
3432, roUtINE _PIrivVileges tiiiieeieiiieeeeeetee e e eeette e e e eetre e e e e eebae e e e eerre e e e e enraaea s 707
3.3, L OUE AN S ceittiiee ettt e ettt eeete e e ettt e e e et e e e et e e e e e eatra e e e e eabae e e e enrraeeeeanrraeaas 708
34,34, SCREMAT A ceitriieeieciiiee e ettt e e ettt e e ee e e e et e e e e e e e e eebae e e e e e ataeeeeeanbraeaeeanraaaaas 714
3.3 SO OUEIICE S cuttiieiieitiiee e ettt e e et e e e e et e e e e et e e e e e et e e e e e e ta e e e e e aataeeeeeanrraeaeeaarraaaas 714
34.36. SAL_fEATUTES witietieietieeettee et e et e et e et e et e e et e e eeaae e eetaeeeeteeeeaeeeeteeeeareeeeaneas 715
34.37. sql_implementation_INFO v eeiree e e e eirar e e eare e e e eaaaeae s 716
34.38. SAL_LANGUAGES ceurreeeeerireeeeeitteeeeeeirteeeesetareeeasisteseeesssressesssssaseesasssessessssseees 717
34,30, SOl _PACKAGES wireetieeetieeetieeeeteeeeeteeeeeteeeeeteeeeteeeeteeeeateeeetaeeeeteeeeaaeeebaeeeareeeeareas 717
3440, SOl AT E S uuiiiitieeetieeeteeeeteeeet e e et e e et e e et e et a e e et e e eeat e e eetaeeeteeeeaaeeeteeenareeeeaaeas 718
344, SOl S 1 ZA NG iiitiiieiieeetee ettt et e e et e et e e et e eta e e etaeeeaae e e baeenareeeareas 718
3442, Sl _51ZiNGg _PrOfiles ciiiieiiieeeitieeeiteeeeiteeeereeeeteeeetaeeetreeetae e ereeeeareeeeareas 719
3443, LAl CONSETAIINIES teetteeeeeeiit e e e e e e et eeaeeeeeeeeeeeeereeaaaraeaaaaaaeees 719
R ¥ S Y U RN o b ok v T =T £ Y- DUUU SRR 720

xvi

B34S, £ A LS wiiiiieteiee et e e e eet—a e e e e ar e e e eetraaeeeanrraaeas 721

34.46. triggered_UPdate_COLUMNS .iiuiiriieeeierreeeeeeitreeeeeeetreeeeeeeareeeeeensreeeeeenrreeees 721
RZ A % N o 1= of = S RO USSP UTRRRRRTT 722
34,48, USAGE PIAVI OGS iiiiitiieeieetieeeeeecteeeeeeeere e e e eeete e e e e eetre e e e e e eraeeeeeetreeeeeenrraee s 724
34.49. User_MapPPing _OPLLONS iiiiiiiieeeeeitieie e e ettt e e eeeree e e et e e e eearaee e e eetreeeeeearaeee s 724
34.50. USET_MAPPINGS teeerrrerrrrerrieerreeeirreesteeessseeesseeessseesssseesssssesssseessssesssseesssessssses 725
34.5]. VieW_COLUMN_USAGE tiirrieeieeirreeeeeeitrreeeeeeitreeeeeeireeeeeeesreeeesesrsseeeesssreseeesssseeens 725
34.52. VieW _roOULINE_USEGE tiiiiieeiiiiee ettt e eeetee e e e eeeree e e e eetaeeeeeeearaeeeeeerreeeeeenreeeeas 726
34,53, VieW LA USAG i iiiiiieeieetieee e ettt e e e ettt eeeeete e e e e ette e e e e e eabae e e e eetreeeeeearraaeas 726
7 B o USSR 727
V. Server Programming 729
35. EXtending SQL.......oo ittt sttt naeeae 731
35.1. How EXtensibility WOTKS........cccooiiiiiiiiiiieie et 731
35.2. The PostgreSQL TYpe SYSIEML.....cccuiiriiiriiriiiiieitenteeieeeesec et 731
35.2.1. BASE TYPES weeuventienieiiniieie sttt ettt sttt b e ettt sae st st eae 731
35.2.2. COMPOSILE TYPES ...eeuvieienieriirienientieieeitete sttt ettt ettt sbe e e e 731
35.2.3. DOMAINS ..veiiiiiiieieieiteteeten ettt sttt ettt st s s eaee 732
35.2.4. PSEUAO-TYPES ..cuveeieniiriieienieeiteieeitete sttt ettt st 732
35.2.5. POlymOrphic TYPES ...ccueerveruerieniiniieienieetenieeiteteste ettt 732

35.3. User-Defined FUNCHONSccoeiriniiiiiiieiiinieseeeeeee e 733
35.4. Query Language (SQL) FUNCHONSc..ooveriiniirieniineniinientctesieeteneeseeiesieereneae 733
35.4.1. SQL Functions on Base TYPeScccuevreriuiriiierienienieenireneeeieenieesenesenes 734
35.4.2. SQL Functions on Composite TYPESeecvervrierierieriiienienrenieenieeneenenes 736
35.4.3. SQL Functions with Parameter Names...........ccccccevveeeeiveerciieenrieeeree e, 739
35.4.4. SQL Functions with Output Parameterscc.ccoeceeevivenienciercieeneeneennne. 739
35.4.5. SQL Functions with Variable Numbers of Arguments.............cccceevueenee. 740
35.4.6. SQL Functions with Default Values for Arguments.........c.ccceceerueenneenee. 741
35.4.7. SQL Functions as Table SOUICESc..cccevieriieeriiieeeiie e eeree e 742
35.4.8. SQL Functions Returning Setsccoceeecuerrieenieniienieeniienienieenieeseeeneees 742
35.4.9. SQL Functions Returning TABLEccccueriuerriieniienienieeniieneeseeesieesieenanes 744
35.4.10. Polymorphic SQL FUNCHONSoovuiiriiiriiiiieiienieeieeitesteeie e 744

35.5. Function OVerloading.........c..cecevereeieniinieniinieneneeeesieeeeresie st enesneene 746
35.6. Function Volatility CateZOTIiescecuerririeriirieriereeienieeeeteete st sieenenneene 747
35.7. Procedural Language FUnCtionsc..cccccoieieniinieiieniinieieneeeeseeeee e 748
35.8. Internal FUNCHONS ...ccc.eiriiiiiiiiiiieriieecetee ettt st 748
35.9. C-Language FUNCHONS........c.ccociiiiiiiiiiiiiiei et 749
35.9.1. Dynamic Loading.........ccccoiiiiiiiiiiiiiiiiiiccieeeee e 749
35.9.2. Base Types in C-Language Functions..........c.ccccceeeveeenenenreieenncnennennenn. 750
35.9.3. Version 0 Calling CONVENLIONScccecereruinrenienreeeinreneneneeeeeeesaesrenene 753
35.9.4. Version 1 Calling CONVENLIONScccecereruinrenrenreeeieineneneeeereeneesnenene 755
35.9.5. WIItING COAE.....ooviiiieieiieiieieriertceceetee sttt s 758
35.9.6. Compiling and Linking Dynamically-Loaded Functionsc.cc...... 758
35.9.7. Extension Building Infrastructure............c.ccoceverienininiieninieneneeenene 761
35.9.8. Composite-TYPe ATZUMENLScceerueruierierierienieniieienieeeeneeeeeseesreeneeneeene 763
35.9.9. Returning Rows (Composite TYPES)cccververierierieienienieniereenenieeieniene 764
35.9.10. RELUINING SELSeeruiruieiiriiriieieetieieeieete ettt ettt e st eseesbeeene i e 766
35.9.11. Polymorphic Arguments and Return TYpesccccevevveenereencnenienenne 771
35.9.12. Shared Memory and LWLOCKScccceceririeniniiiinenieneneeicneeeee 772
35.10. User-Defined AZEIrEZatescocereeieriirieniiniieienieeteniesitetesieetesiesieentesieenenieene 773
35.11. USEr-DefiNed TYPES ..cecvveeerieiiiriieriieieeniesteeieesitesitesreesaeeseeesseeseesseessseensesnseens 775
35.12. User-Defined OPeratorsS.........cocverveerieereerieesieeniiestesieesieesseesseesseesseessesssessseens 778

xVii

35.13. Operator Optimization Information............cceceerieriiirieenienieeeeeeee e 779

35.13.1. COMMUTATOR c.vevirevinieiinietisietesc ettt 779
35.13.2. NEGATOR «veviiiniieieietcietest ettt 780
35133 RESTRICT oovioieeiieicietcietesc et eresc ettt 780
351304, JOIN ittt s 781
35.13.5. HASHES ittt s 782
35.13.6. MERGES ..eutetetieuietinieetesieeeresteeteeeesatessesaeessessesseessessesneesaesueenesueennennene 783
35.14. Interfacing Extensions To INdeXes.........ccccoveieviriiiiiniinieiiiniccncceceseeieee 783
35.14.1. Index Methods and Operator CIasSesccceeeeveriieeenenieeneneerennenne 784
35.14.2. Index Method Strategiescccecerieieriiieniinieieieece e 784
35.14.3. Index Method Support ROUINESccccoeiiiiiiiiiiiiiiiiiniiccccee 786
35.14.4. An EXAMPIE ..covviiiiiiiiiiiiieeteeet e 787
35.14.5. Operator Classes and Operator Families..........ccccccecerveneneneeinccnennennenn 790
35.14.6. System Dependencies on Operator Classescoceevererveveeeenuennennenn 792
35.14.7. Special Features of Operator Classes...........ccoeeeeeeerenenuereeeenennennenns 793
35.15. Using C4++ for EXtensibilitycccoevveeieieiininininicicicieereseeceeeecec e 794
36, TIIZEETS .ttt ettt ettt et sttt ebt bbb e et eaesae e ne e 795
36.1. Overview of Trigger BEhavior..........ccccoeiiiiiiiiniiinieeeeeeeee e 795
36.2. Visibility of Data Changes............ccceevuererieniinieneneeenieeiteeeeete et 796
36.3. Writing Trigger Functions in Cccccoeeoiiiiiiinininienenieceeeese st 797
36.4. A Complete Trigger EXample.........cccceveiiininiinininienienieieeieeteseeeeesieeenieae 799
37. The RUIE SYSTEIMcouviiiiiiiiiiiiiieeiteteseete ettt ettt sttt ettt st s eane i ene 804
37.1. The QUETY TIEC.....coueeiiiieiirieeiteieeeetest ettt ettt ettt eae 804
37.2. Views and the Rule SYSIEMcovviviiiiiierieiiieieeitesie ettt st eae e 806
37.2.1. How SELECT Rules Workccccocooviiiiniii 806
37.2.2. View Rules in Non-SELECT Statementsccccceeeeererenieieieenennenenns 811
37.2.3. The Power of Views in PostgreSQLcccecverienieriiinienieeieeeeneene, 812
37.2.4. UPAAtiNg @ VIBW...cocueeruieiiiiiieniieeieeieesite ettt site sttt e st esatesateeaeesaeeseeas 812

37.3. Rules on INSERT, UPDATE, ad DELETEccceevtvuiruiieieiiiniisteieseeeeeeneene e saenne 812
37.3.1. How Update Rules WOTKccccoecuiiriiiniiniiiiiieienieceeteseeee e 812
37.3.1.1. A First Rule Step by Step.....covueeveiniiiiiiiieieiieeeeeeeeeeee 814

37.3.2. Cooperation With VIEWS........ccocueriiiriiinienieiieeitesieeeeiteste et 817

37.4. Rules and Privil€EESccocuerviiiriiriiiiieriiesieeieete sttt st 822
37.5. Rules and Command StatUs..........coccecueriieieriinieneneeienieneereseeeesee oo seenenneene 824
37.6. Rules Versus TIIZEETSccovirieriiiieieiieiete ettt 824
38. Procedural LangUagesccceouieieiiiniiiiniiieeeeeee et s 828
38.1. Installing Procedural Languagescccccoveieviniiieniniiieneeeesececeseeeeene 828
39. PL/pgSQL - SQL Procedural Languagecccceceeieiieniiienenieienieeeie e 831
3.1 OVETVIEW ..ottt ettt sttt ettt ettt e sbt e st e bt e s bt st e e bt e bt e sateebeebee s 831
39.1.1. Advantages of Using PL/PZSQLccccovimininerinineneceeeeeeeeeeenne 831
39.1.2. Supported Argument and Result Data Types.........cccccceeeviiiininiiicnnne 831

39.2. Structure of PL/PZSQL......cviiiiririiiiieieiniineneseteeetee sttt 832
39.3. DECIATALIONS ..ottt ettt ettt et sbe et e s b et e tesbeeneenaeeae 833
39.3.1. Declaring Function Parameters...........ccccoeevevverieeeinenienenieieneenennenenne 834
30,302, ALTAS cttteteteeee ettt sttt st s 836
39.3.3. COPYING TYPES .veuieniiriieienieeiiesieet ettt sttt ettt eae 837
30.3.4. ROW TYPES ..ttt ettt ettt sttt st sbe et nee e 837
39.3.5. RECOTA TYPES -.cuvevieneirieeienieeiteieettete sttt ettt ettt sbe e e e 838

30,4, EXPIESSIONSeeuveniiitentintiententeeitentesteestesteettenteeteeaesbeestenbesbtenbesbeeaeenbesbeesesbeessensenae 838
39.5. BaSIC StALEIMENLS.ccueiuiieieiieiiiiiriietetetet ettt sttt s s 839
39.5.1. ASSIZIMENLeeuiiiiiiirieeienieetenteettet ettt sttt sbe ettt estesaesbeenaesbeeanenteene 839
39.5.2. Executing a Command With No Result..........ccccoceevinniininiininnncncnne 839

XViii

39.5.3. Executing a Query with a Single-Row Resultcccccoovvevieriiiininneennen. 840

39.5.4. Executing Dynamic Commandsceecuerrveeneeniiennieenienienieeneeneennnes 841
39.5.5. Obtaining the Result Status........ccceevierieriieiiiienienieeeeeeseee e 844
39.5.6. Doing Nothing At Allcooiiriiiiiiiieeeeeeee e 845

39.6. CONLIOL STIUCLUIES......c.veuieiriiiriieieeitetenteeeete ettt sttt nesaeesnenneeae 845
39.6.1. Returning From a FUNCHIONccceiviiiniiniiiiiiiicicececceeeecee 845
39.6.1. 1. RETURN .ottt sttt et e e s sae e ne e enesaeennenaeen 846

39.6.1.2. RETURN NEXT and RETURN QUERY ...ccccoceevueruerrenreeeenencenennens 846

39.6.2. CONAItIONALSeeruvieiieiieeiieieeite ettt ettt 847
39.6.2. 1. IF-THEN ...ttt sttt et ae e s s 848

39.6.2.2. TF—THEN=ELSE ..ectetetirrenrereneereeerienseseseneesessessensenseneesessessensenses 848

39.6.2.3. TF—THEN-ELSTE cttetirtereutererienienienteeeeeeesessessessenseneeneesessessesuennes 848

39.6.2.4. SIMPIE CASE .uvieuieieieiieieeteeieete ettt s s 849

39.6.2.5. Searched CASE...ccceoirieriieeeeteeee ettt 850

39.6.3. SIMPIE LOOPS ...vevierieienieiieiieieiertctceeet ettt 850
39.0.3.1. LOOP ..ttt ettt sttt ettt st sttt ettt abe s 851

39.0.3.2. EXIT weeutereruerieienteiteiteresrestesteseeie et saesaeses et ese st se s e e st esesaesaennen 851

39.6.3.3. CONTINUE ..cuerteureuteuietintetenreneeteetesressesenentesesresbessesseneeneenesaesaennen 852

39.60.3.4. WHILE cueeuiruerieieneeiteteeteetestereeete et se et et st se e eve v saesnes 852

39.6.3.5. FOR (INtEZET VATIANL)....ccuerueeierieriieieeiienie ettt saeeee e 852

39.6.4. Looping Through Query Resultscccccoerieniniiiininiiniiienenecienee 853
39.6.5. Trapping EITOTSccouiiiiiiiiiiieiiniteicsceter ettt 854

30,7, CULSOIS.c.eeutiieeuteientteteetteite st ettt st e sttt e bttt ebeetesbeebte bt ebeesbesbeeatenbesbeenbesbeesnenseene 856
39.7.1. Declaring Cursor Variablescccceceevererienienienienenieneneenenieereniene 856
39.7.2. OPENING CUISOTS ..eeuvvererereieeiierireeteeieesresisesseesseesuesseesseessessseessesseessees 857
30.7.2.1. OPEN FOR QUEL Y eerurreeeeerirreeeeeeiiareeeeesiiseeeseesisresesssssssesesesssssssesenns 857

39.7.2.2. OPEN FOR EXECUTE .ioivieieieiieiiiienieieeeeeie st 858

39.7.2.3. Opening a Bound CUrSOT..........coceerieriieenieenienieenieeniee e eieeiens 858

39.7.3. USING CULSOTS...ccuvtetieruierieerieeniienteettestesitesteesseesitesteesseesssessseenseesseesnees 858
3973 1 FETCH tuieiiiiiieiiccteeeeee et s 859

39.7.3.2. MOVE vttt s 859

39.7.3.3. UPDATE/DELETE WHERE CURRENT OF ..cccceviirrenrireenreneennennens 860

39.7.3.4. CLOSE ottt s 860

39.7.3.5. Returning CUISOTSeevueeruierieiieeniienieeieeniee st eieesieesiteereeniee s 860

39.7.4. Looping Through a Cursor’s Result.........c..ccceeeviiiiininiininnencniiienene 862

39.8. Errors and MESSAZES.........ccueruieieriirieieniieieieeeeee ettt st sae e s 862
39.9. Trig@er ProCedUresccccoieieiiiiiiiinieiiit et 863
39.10. PL/pgSQL Under the HOOdc..cccoiiiiiiiiiiiiiiiicicece e 869
39.10.1. Variable SubStItULIONccc.eerieriiiiienierieeeetete et 869
39.10.2. Plan Cachingc.cccooiiiiiiiiiiiiiiiiceecceseee e 871
39.11. Tips for Developing in PL/PESQL.....c..ccccceiminininiiiiiiinineneeceeeeene e 873
39.11.1. Handling of Quotation Marksc.cccceeverieriereneninienenieiereeneseenenne 873
39.12. Porting from Oracle PL/SQL..........ccccoerieiininininiicieieencseeeeeeeeeee e 875
39.12.1. Porting EXamPIesccccvveririeniiiiininiinieicieeeeeese e 875
39.12.2. Other Things to Watch FOr...........cccoooiiiiiiiiiiiiieeceeseee 880
39.12.2.1. Implicit Rollback after EXCeptions..........ccccecevevuevveeeerenennennee 881

39.12.2.2. EXECUTE ttteuteteeuteteettentesttetesteeitentesieeseesbeesesbesssenseeseensesaeensensens 881

39.12.2.3. Optimizing PL/pgSQL Functions............cceceveevvenienveencncenennen. 881

39.12.3. APPENAIX...iiuiiiiiiiiiiiiieierieetet ettt 881

40. PL/Tcl - Tcl Procedural Language..........coceeeruereeienienieniieeeienieeteniesitetesie et 885
40. 1. OVEIVIBW ..ttt ettt ettt ettt et et sbe st besbe et st eaee et saeenaenbeas 885
40.2. PL/Tcl Functions and ATZUMENTS.........c..ceueruereerieneeeenentenienieerenieeseensesseensennens 885

Xix

40.3. Data Values in PL/ITCl.....coooiiiiiiiieie et 886

40.4. Global Data in PLITCL ..cc.coiiiiiiiiiiiiieiee ettt et 887
40.5. Database Access from PL/TClcooiiviiiiiiiiieieniccieetee et 887
40.6. Trigger Procedures in PL/TCLcc..oooiiiiiiiiiiiieiceeteeceetee e 889
40.7. Modules and the unknown COMMANA.........cocueerieriiriiienienierieereenee e 891
40.8. Tcl Procedure NAMESccceevieriiiiiiiiienie ettt sttt st 891
41. PL/Perl - Perl Procedural Language.............cccocereeieniinieniinieenceieieeeerenieeeeee e 893
41.1. PL/Perl Functions and ATZUMENLtS...........cocueruireerieniereenenienieneerenreeeesneseeenesneen 893
41.2. Data Values in PL/PeTL..........ccooeiiiiiiieieees ettt 896
41.3. BUIlt-in FUNCHONSeviiiiiieeiieeeiie ettt e e et sare e st e e eneaeesnseeesnseeennns 896
41.3.1. Database Access from PL/Perl.............cccovveiiieiiiiiiieeeeeee e 896
41.3.2. Utility functions in PL/Perl........ccccccoovvinininiiininininceeeceeeeeneeeee 899

41.4. Global Values in PL/PEI]ccccoouiiiiiiiiecii ettt 900
41.5. Trusted and Untrusted PL/Per]ccceeiiiiiieiieeiiceeseeee et 901
41.6. PL/PEI] TIIZZEIS ..eovevinieieiieiieiietietetetcteiteie st sttt ettt ee 902
41.7. PL/Perl Under the HOOdcoocveiiiiiieiiecie ettt 904
41.7.1. CONTIGUIALION «..outiiienieitieieteeite ettt ettt ettt et s te b et et eaeeneeeees 904
41.7.2. Limitations and Missing Features..........cc.ccoccecininiininieneniccnceceee 905

42. PL/Python - Python Procedural Language............cccceeeeeriineenienenienenieienieeeene e 906
42.1. Python 2 vs. Python 3......cccoiiiiiiiiiiiieeceeeeetee e 906
42.2. PL/Python FUNCHONSc..eeiiitiiieiiiieienieeteeeeteescetese ettt 907
42.3.DAtA VAIUCS ...c..eveineiiiiieieeteeetet ettt 908
42.3.1. Data TyPe Mapping........cccceeeeiererieninienienieetenieeiteneesieenie st nee e 908
42.3.2. NUIL NODE.....eeieiieiieiierieeie ettt ettt e st beesaeesibesbeesaeessaessesnseenee 909
42.3.3. ATTAYS, LISIS ueirtieiiiiieriieeieeitesteste ettt ettt et et e sieesbeesaeesbeesbeenneenee 910
42.3.4, COMPOSILE TYPES..uverrierireeieriieriienieeieenteesitesiteesseesieessresseesseesseessessseenne 910
42.3.5. Set-Returning FUNCHONSc.coviiriiriiieniieiienieeieeseesee et 912

42.4. SRATING DALA ...eoiiiiiiieiieiieeeeteee ettt sttt sttt et e e saees 913
42.5. Anonymous Code BIOCKScccevuiiiiinieniiiiieniesie ettt st 913
42.6. Trig@Er FUNCLIONSeovuiiiiiiiiieiieiiie ettt ettt et st e e e s 914
42.7. DAtADASE ACCESS ..eeuveeuieruiieiieniiesiteeieesite sttt ebeesitesatesabeesseesatesateesbeesseesaseebeesseesanes 914
42.8. ULIILY FUNCHONS ..c.uveeiieiiiieiieiieeite ettt ettt sttt st e 915
42.9. Environment VariabIesccccceviieiiiinieniiiiiierieneeseesiteste ettt 916
43. Server Programming INEETTACEoeoveeiiiiiiiiiiiiiiiieieeeetc ettt 917
43.1. Interface FUNCHONSccccviiiiiiieeiii ettt ettt re e st e e e esereeeseseeenene 917
N &4 BeT0) 111 (= AR 917

SPL_ ISR ..ttt sttt ene 919
SPIPUSI .ttt 920
SPL_POP e e e s 921

N & B o) 1 LT 922

N & o OO 925
SPL_eXecute_With_argsccceceeriirieieiiieiieieeeee ettt 926
SPI_PIEPATE. ...ttt e e 928
SPI_PIEPATE_CUISOTeeiuiiiiieiieeiiieiteeiteete ettt ettt et sttt st e e e 930
SPI_PIepare_Paramscccceeeeeriieniienienieeieeniteete et ettt ettt st sneesree e 931
SPI_ZELATZCOUNL ...c..teeiieriieiieeiieeieet ettt ettt sttt ettt e e b e 932
SPL_getargtyPeid.....ccueruieieriiiieieieeteteet ettt 933
SPI_iS_CUISOT_PIAN ..ottt 934
SPI_eXECULE_PIAN....eiuiiiieiiiiiriieieieete ettt 935
SPI_execute_plan_with_paramliSt............ccccevveeviirerienenienienenieneeeeneseereniene 937
SPI_EXECP ettt sttt ettt ettt ettt et b ettt st st eae 938

S P CUISOT_OPEI.c.uieeieeiiieiieeite ettt e site et et e st e saesbe e seesaaeenbeesseesssesaseenseanseennnas 939

XX

SPI_cursor_open_with_argscceceerieriieiienienie ettt ettt 941

SPI_cursor_open_with_paramliSt..........cccccevvierieriieriienienienieeniesee e 943
SPI_cursor_find........cccoiiieiiie ettt et e e b eenaas 944
SPI_CUISOT_fELCH ... viiiiiiieiie ettt e e e e e eeaeas 945
SPI_CUISOT_INOVEeeciiiieiiieeiiieeieeeeiveeeieeeeteeeetaeesbeeessseeeessaeessseeessseeensseeessens 946
SPI_Scroll_cursor_fEetCh........cociiieiiieeiie et 947
SPI_SCIOll_CUISOI_INOVE ...vvvviiiiiiiiieeeeeeeeeeeeeeeitrreee e e e e e e e e e e e e eesssasasrareeeeeeeseeaeenas 948

N &4 e 5 T0) A o] (o 1< TR 949
SPI_SAVEPIAN ...ttt 950

43.2. Interface Support FUNCHONScc.cocieviiiiiiiiiiiiiiicce e 951
N &4 I T ' o T 951

N 2 5 5010000101 G RRRRRRRPRRRRRRPRN 952
SPI_ZELVALUE ...ttt 953
SPL_gethinvalcc.oeiiiiiiiiiieiee et 954
SPI_GELEYPE ... e e 955
SPL_EttYPEIA....neitieiieiieitee ettt 956
SPL_EtrEINAMEc..eeutiiieiieiieitete ettt ettt st 957
SPL_ZENSPNAIME.ceeeiieiieiieieete ettt ettt ettt ettt et see st aesbeenne e eae 958

43.3. MemoOory Managementcc.cecueruereeriererienienienienieeeeniesitestesueetesteeseenaeseeesesnens 959
SPI_PALLOC ...ttt ettt ettt st 959
SPL_1EPallOCiiiiiiiiieieete et 961
SPIPITEE .ttt st 962
SPL_COPYLUPLE ...ttt ettt s 963

N o I (00141100 o) (PSR URU SRS 964
SPI_MOAITYTUPIE ..ottt et ettt e saee e 965
SPI_fTEEIUPIE. ..cevieiieeiieeieeteeete ettt sttt et ettt e e seeas 967
SPI_freetuptable.......cccueeiiiiiieiieeieeieeteee ettt st e 968
SPI_rEePIaN....cceiiiieeieeieeeeceee et st 969

43.4. Visibility of Data Changes.........cccccevveerieriiiniienienie ettt esiee st esieesiee e 970
43.5. EXAMPIES ...eeeniiiiiieiieiieeie ettt ettt sttt sttt st e enane e 970
VI. Reference 974
1. SQL COMMANGS....cutiiiiiiieiiieeiieectee ettt eeiteeette e st e esaee e aeeetbeeesseessseessseeesssseessseeesssesnnsn 976
ABORT ...t e e e e e e e e et e e e e enaeeereeennns 977
ALTER AGGREGATEo oo 979
ALTER CONVERSIONot eeans 981
ALTER DATABASE ...t eaeeeeans 983
ALTER DEFAULT PRIVILEGESoooooiieeeee e 985
ALTER DOMAIN ...ttt e et e e e e eaeeeeneeeeans 988
ALTER FOREIGN DATA WRAPPERooooiiiiieeee e 991
ALTER FUNCTIONooiiiiieeee ettt e e e eae e e eaeeeeaes 993
ALTER GROUP ...t ettt e e et e e eveeeeans 996
ALTER INDEX ...ttt e et e et e e et e e eaeeeeareeeans 998
ALTER LANGUAGEttt 1000
ALTER LARGE OBJECT ...ttt 1001
ALTER OPERATORooontiiiiie ettt ettt eaaa e evae e 1002
ALTER OPERATOR CLASS ...t et et 1004
ALTER OPERATOR FAMILYouviiiiiiieiee ettt 1005
ALTER ROLE ...ttt ettt et et e e as e e e vae e eavaeean 1009
ALTER SCHEMA ...t ettt ettt et e e an e e e aae e eavaeean 1013
ALTER SEQUENC Eoiiiiiiiiiieee ettt ettt e et eaae e eaaeeeaveeeeaes 1014
ALTER SERVER.......cotiiiiie ettt ettt et e e as e e aae e eavaeean 1017

xxi

ALTER TABLEoiiiiiiiiiiiieccee et 1019

ALTER TABLESPACEccoooiiiiiiiiiiiiiiicctec e 1028
ALTER TEXT SEARCH CONFIGURATIONcccccoviniiniiiiiiiiiiiiciciciccncne 1030
ALTER TEXT SEARCH DICTIONARYcccccoiiiiiiiiiiiniiiicinieceeciecncne 1032
ALTER TEXT SEARCH PARSERccccciiiiiiiiiiiiiicecce 1034
ALTER TEXT SEARCH TEMPLATEc..cocoeoiiiiiiiieieneeeeteeeeeene e 1035
ALTER TRIGGERcocoiiiiiiiiiiiieiitcteeeeteeteteete ettt s 1036
ALTER TYPE.....oiiiieeet ettt ettt et s 1038
ALTER USER ..ottt 1040
ALTER USER MAPPINGc.oooiiiiiiiiiiiiiiiniceeteese ettt 1041
ALTER VIEW ...ttt ettt s 1043
ANALYZE ...ttt st et e 1045
BEGIN ...t st e 1047
CHECKPOINT ..ot 1049
CLOSE ... e 1050
CLUSTER ... e 1052
COMMENT ... e e 1055
COMMIT ... e 1058
COMMIT PREPARED........cccooiiiiiiiiiititeeeeteese ettt 1059
COPY .ottt ettt e b et s 1060
CREATE AGGREGATEcouioiiiiiiiitieceeteese ettt 1069
CREATE CAST ...ttt 1072
CREATE CONSTRAINT TRIGGERcccccceoiiiiiiiniiiiiiieiiicieeieiceeeeeeee e 1076
CREATE CONVERSIONccoiiiiiiiiiiieeeeteene ettt 1078
CREATE DATABASE ...ttt 1080
CREATE DOMAIN......cciiiiiiiiiiiieistteeete ettt 1083
CREATE FOREIGN DATA WRAPPER.........ccccccociiiiiiiiiiiicieiceccece e 1085
CREATE FUNCTION........cooiiiiiiiiiiiitiiciccteeee et 1087
CREATE GROUP........cooiiiiiiiiiiiiiiiiteee et 1095
CREATE INDEX.....c.oooiiiiiiiiiiiiiiiii ettt 1096
CREATE LANGUAGEccooiiiiiiiiiiiicccc e 1102
CREATE OPERATORoooiiiiiiiiiiiiiiiiicicciec e 1105
CREATE OPERATOR CLASS ..ot 1108
CREATE OPERATOR FAMILYcoooiiiiiiiiiiiineeieneercteeeereeeeee e 1111
CREATE ROLE.......cooiiiiiii ettt 1113
CREATE RULE ..ottt 1118
CREATE SCHEMA ..ottt s 1121
CREATE SEQUENCEc..oooiiiiiiiieieieteee ettt 1123
CREATE SERVERc.oiiiiiiee e 1127
CREATE TABLE ...t 1129
CREATE TABLE AS ...t e 1143
CREATE TABLESPACE.........cooiiiiiiie e 1146
CREATE TEXT SEARCH CONFIGURATION.........cccccoiiiiiiiiiiiiiiiicieeceee 1148
CREATE TEXT SEARCH DICTIONARYcccoooiiiiiiiiiiiccccecee 1150
CREATE TEXT SEARCH PARSERcccooiiiiiiee 1152
CREATE TEXT SEARCH TEMPLATE..........cccoooiiiiiiiccee 1154
CREATE TRIGGER........ccocoiiiiiiiiiiiii e 1156
CREATE TYPE ...ttt ettt s 1160
CREATE USER ..ottt ettt et s 1168
CREATE USER MAPPING........cciiiiiitiiieicieeee ettt 1169
CREATE VIEW. ..ottt 1171
DEALLOCATEooiiiiiiiiiieeeceeeee ettt 1174

XXii

DELETE ..ottt 1179
DISCARD. ...t 1182
DO e 1183
DROP AGGREGATE.......ccoccoiiiiiiiiiiiiiiiicce e 1185
DROP CAST ..o 1187
DROP CONVERSION ... oottt sttt e sne s 1189
DROP DATABASE ...ttt sttt et 1190
DROP DOMALINooiiitiiiitiieeeeee ettt ettt nesreas 1191
DROP FOREIGN DATA WRAPPER ..o 1192
DROP FUNCTION ...ttt sttt e s 1193
DROP GROUP ...t s 1195
DROP INDEX ...ttt s et s 1196
DROP LANGUAGE ..ot s 1197
DROP OPERATOR ..ot s 1198
DROP OPERATOR CLASSo 1200
DROP OPERATOR FAMILYoooiiiiiiiiiiiiiiii e 1202
DROP OWNED ..o 1204
DROP ROLEooiiiiiiiiiii e s 1206
DROP RULE ..ottt sttt ettt s 1208
DROP SCHEMA ...ttt sttt ettt s 1210
DROP SEQUENCE.......cocoiiiiiiiniiicicieteiieteiesteeeet ettt ettt s 1212
DROP SERVER.......ociiiiiiiiiiiiicctctetteteeeeet sttt s 1213
DROP TABLE ...ttt sttt ettt s 1214
DROP TABLESPACEocoiiiiiiiiiieicieieccetse sttt 1216
DROP TEXT SEARCH CONFIGURATIONccccceiiiiniiiiiiiiiicieiceeeceeceeans 1218
DROP TEXT SEARCH DICTIONARYc.cccoiiiiiiiiiiiiniiicicieieeeeeeeeceeee s 1220
DROP TEXT SEARCH PARSER.........ccccoiiiiiiiiiiiiiniicciccieeeeeee s 1221
DROP TEXT SEARCH TEMPLATEccccooiiiiiiiiiiiiiiiiiciciceceeeeec e 1222
DROP TRIGGERccoiiiiiiiiiiiiiiiicicicieieeee et 1223
DROP TYPE.......oiiiiiiiiiiiiiicce e 1225
DROP USER ...ttt 1226
DROP USER MAPPINGcccooiiiiiiiiiiiiiicicccce e 1227
DROP VIEW ..ot 1229
EIND L.ttt st et 1230
EXECUTE ...ttt ettt ettt s 1231
EXPLAIN ...ttt ettt sttt sae s saea 1233
FETCH ..ottt et st 1238
GRANT .ttt e s 1242
INSERT ..ot et sttt s 1249
LISTEN ..ottt st s et s 1252
LIOAD ..o e 1254
LOCK . et 1255
MOVE. ... et 1258
NOTIFY ..o e 1260
PREPARE ... 1263
PREPARE TRANSACTIONoouiiiiiiieiiintinienieeetetse sttt 1265
REASSIGN OWNED ..ottt sttt s 1267
REINDEXot e 1269
RELEASE SAVEPOINTc.ooiiiiiiiiiiiiicieeeeetee sttt 1272
RESET ..ot sttt s 1274
REVOKE ...ttt s 1276

XXiil

ROLLBACKcoiiiiiiiiiiiieienetec ettt s 1280

ROLLBACK PREPAREDccotiiieiieiieiesieetete ettt ettt saesnesessans 1281
ROLLBACK TO SAVEPOINToootiiieiereeieieeiiete ettt sie st esee e esee e snensassaens 1282
SAVEPOINT ...ttt ettt sttt et sttt e be e st esabe e bt e sbtesaneeates 1284
SELECT ...ttt ettt ettt e b e st et e be e s bt e st s beesbtesanesates 1286
SELECT INTO ...ttt sttt ettt essesnaesesseensenseenes 1303
SE T ettt b e tb e b e e b e e baeebe et e e baeetbeeabeebeesraenaaeenres 1305
SET CONSTRAINTS ..ottt sttt s e e e 1308
SET ROLE......cctiitieii ettt ettt et ettt ae e ve e taessaeeabaebeassbeesseenbeesssassseensas 1310
SET SESSION AUTHORIZATION......cccotiieieiteiee sttt 1312
SET TRANSACTIONoootiiiieeteeeetee ettt ettt te et e e tee s ae et e esteessbeeaseebeesssessaeennas 1314
SHOW .ottt ettt st e ettt s e e b e e b e et b e ssbeesbeesbeessbassseenbaesssensseenss 1316
START TRANSACTION ...ttt ettt ettt aeeve et s taeeaveebeessaassseennas 1318
TRUNCATE ...ttt ettt et ettt e s veeste e taesebeesseesseesssesnsaeseesssasnseenseenes 1319
UNLISTEN.....ot ottt ettt ettt ettt ttesveesteestaessbaessaessaesssasssaesseesssessseesseenes 1322
UPDATE ...ttt ettt ettt e s ve e bt e tae s abaesbeestaessbaenseeseesssaenseenseenes 1324
VACUUM ...ttt sttt ettt s te e bt e s bt e s be e bt e baessbeesseesseesssesnsaeseesssessseesseees 1328
VALUES ...ttt ettt sttt et ste e bt e taessbeesbeessaessbesnseenseesssasssasseenns 1331
II. PostgreSQL Client APPIICALIONScoeerueriieiiriieiienieniteiesiteteste ettt st 1334
CIUSEEIAD ..ttt ettt et ste et e st e et e e beessbeenbeenseesaseenseenseenes 1335
CIEALEAD ..ottt ettt ettt et e bt e bt e st e et e e taesabeenbeesteessbeenbeeseesnbeenbeebeees 1338
CIEALCLANZ ...ttt ettt bt ettt et be bt et sb et b e ebtenaesbeeaenbeeas 1341
CTEALEUSET 1.vvveeveeuveeneeesereeteenueessseesseenseessseasseenseessessseenseensaessseenseenseesssesnsessseesssesssesnseenns 1344
1610 16 Lo T OO UPRRRURRRIPRINt 1348
AIOPIANG ..ttt ettt st et este e st e et e e beesebeenbeeteesabeenbeebeens 1351
AIOPUSET ..ttt ettt ettt ettt stt e st e e bt e s bt e st e e bt ebeesabeesseenseesssesnbeenseesasesnseeseenns 1354
P e euveenreeueesuteeteestte s bt e bt e ttesut e et e e h e e bt et e e bt e bte st e e bt e bt sab e e b e e beesabeenbeebeesateenbeebeenns 1357
PE_CONIIG ittt ettt ettt bt e st e et e e bt e st e e b e ebeesabesnbeebeesasesnseenseenes 1359
PE_QUINP ittt ettt ettt et st e et e bt e st e et e e bt e sabeenbeebeesabeenbeebeees 1362
PE_AUMPALL...eiiiiiiiiiiiiii et sttt st ettt s e e b e 1371
PE_TESTOTE .eiteentieniie ettt et e et e sbt e et e e bt e s bt e sabe e bt e beesabeenbeenbeesaseenbeebeesnsesnseeseenns 1376
PSGL ettt sttt b e st e bt e bt e st e e be e bt e st e ebeebee e 1384
TEINAEXAD .ttt st ettt st ettt eae e 1411
VACUUITIAD ...ttt ettt sttt e b e st et e bt e satesabeebeesbteenseebee e 1414
II1. PostgreSQL Server APpliCAtionsc..coceecveriieieriinienienieieieeeere e 1418
INEEAD ..ottt e b e et e e e et e e tae et e ebe e baesebeenbeebeesabeenbeebeenns 1419
PE_CONLIOLAALAeiiiiiieieeieee ettt sttt st s e be e 1422
P Ctl e st 1423
PETESEEXIOR ..o s 1428
POSEETES ettt ettt ettt et et sbt e st e bt e bt st e e bt e bt e sabeeabeebeesab e et e e bt e sbbeenbeebeene 1430
POSTIMASTET ...ttt ettt ettt ettt et e bt st e bt e bt sat e et e e bt e sabeembeebeesbneenseenbeenne 1437
VILI. Internals 1438
44. Overview of PostgreSQL INternalscccoceiirierinieninieieeeieeee e 1440
44.1. The Path of @ QUETY ...cc.eouiiiiiiieieieeetee ettt st 1440
44.2. How Connections are Establishedccccooieeiiiiiiiiiiiiiiceiecceceeeee e 1440
44.3. The Parser STAZEcoeeieriirieiiniietenieeiteiest ettt sttt st et sae st e e sbeeas 1441
AA. 3.1 PaISET...ei ittt ettt et e e e et e et e et e e e tb e e e aaeeeareaans 1441
44.3.2. Transformation PrOCESS........cc.eeicuiieeiiiieiie et 1442

44.4. The PostgreSQL Rule SyStemccccoerieriiniiiiiniiienieniteientetenieeeene e 1442
44.5. Planner/OPMIZETcc.ccevierueereerieeiteenieenitesreesseesseesseesseesseesssesssessseesssesssessseenes 1442
44.5.1. Generating Possible Plans..........cccoccveveiivciienienieniicieneeeie e 1443

XXV

¥ S = e 110) U USSP UURRR PP 1444

45. SYSEM CALAlOZS .. .veeuiieiieiieeieette ettt ettt ettt e st e st be e st e st e et eesaaesabeeats 1446
A5.1. OVEIVIBW ..ttt sttt ettt ettt et st be st sateneesaesaeesnesieas 1446
Vi ST Yo H-Yo fo b ot =Yo 1= L ol = SRS U SO OO U UP PPN 1447
S 3 DO AN ceeetirieeeeecteee e eeeae e e ettt e e e e e e e e e e eabaeeeea—aaeeeea——aaeeeaabraeeeeaaraeeeeearraeaeaans 1448
S . DG AINOD ctrreeeeeeitrreeeeeeirteeeeesireeeeeetiareeeeeeetrreeeeeataraeeeeeaaraeeeeaarraeeeeaaraeaeeearraeeeaans 1450
/S TR T o¥e BN (1o Yiate Yo SRR 1450
/S T T ¥ HE= X ol ot L= PSS 1451
/ST o¥e BE= Y ol ook o Y ot =SOSR 1451
VIR TR T 0¥ B oL ulo B« DS USR 1454
45.9. DG _AUL N _MEMDET S ciiiiieeiieeriieeeiteeeiteesteeeeteeesteeesbeeessseesnsseeensseessseesssessnseeens 1455
A5 .10, PG CASE trtreiieiriieeeeeitee e e eeere e e e eeetr e e e e e eette e e e eeetteeeeeeatraeeeeaaataaaeeeaataeaeeeanrraaaaaas 1456
A5 L L. PG CLaASS ieiieiuriieeeeeittieeeeecttt e e e eeere e e e e et e e e e e e aa e e e e eeaataaeeeaataaaeeeartaeaeeeanrraaaaans 1457
45.12. PG_CONSEIAINT tiittiiiieeieiiitieeeeeiiteeeeeeeteeeeeestreeeeeestreeeeesessreeeeesnsraeeeeeansreeaeanns 1461
45,13, PG CONVETSIOMN tiitittiieeieiitieeeeeiiteeeeeetteeeeeestreeeeeeatreseeesssseeeeeansraeseeeansreeeeans 1463
45,14, PG_AALADASE wurieieeeiiieeeeeiiteeeeeeeree e e eete e e e e estree e e e etreaeeeaaraeaeeeaaraeaeeenrraaaaans 1464
45.15. Pg_AD_ 101 SEEEANG ttiiiiiieeitiieeitieeeiteeeeteeeeteeeeteeeeteeeeeaaeeeetaeeeeteeeeeaeeeereeeas 1466
45.16. PG_AeFAULE_ACL ciiiiiieiieeeiiee ettt et et e et e et e e e ae e e ette e eeaae e eetaeeeetaeeetaaeeraeean 1466
45,17, PG _AEPEN utiiiitiieeeieee ettt e et e e e e e et e et e eeta e e e ete e e etaaeeraeeas 1467
45.18. PG _AES T i Pt IO ciiiiiieiie et eeit ettt et e e e ete e ettt et et e e etr e e etaaeearaeaas 1468
5.1, PO ENUM .tiiiiiiiiciiieeciiee ettt e et e e et e e ete e e ettt e eeateeeeaaeeeetseeeaseeetaeeesseeesseeanreeens 1469
45.20. pg_foreign_data_WIaPDEOT e ieeeeieeeeireeeereeeereeeereeestreeessseeeesseesreeens 1469
45.2]. PG _FOTEIGN_SEIVET wiiitrtreeeeeeiitreeeeeeeteeeeeesiaeeeeeesiareeeeeeireeeeeessareeseeenisreeeeeans 1470
VR < Ye B I oL L= 5 U USROS 1471
Vi IR T oY B I o U o U= 0 ok s oif= TR UURUR PPN 1473
45,24, DG _LANIGUAGE trreeeeeeitreeeeeeritreeeeeeiireeeeeeiaeeeeeestreeeeeesisreseeessreseeeessrseseeesssrrseesans 1474
Vi ST oY R =S ol 1=Ye) o 3y 1= Yo) cINUUN RSP URUR PPN 1475
45.26. pg_largeobject _Metadata eeeeireeeeeeiireeeeeenirreeeeeeireeeeeenireeeeeeerreeeeeens 1476
45, 2] PG _NAMESPACE wereeeeitreeeeeesitreeeeeeiireeeeeeirreeeeestreeeeeesiareseeesirseeeeessreseeeenirreeeeeans 1476
Vi o Ye He) < Yo R =X =T TSSO UUUUR P PPRTN 1476
45,20, DG OPETATOT trreeeeeeitrieeeeeiireeeeeectreeeeeeereeeeeeetreeeeeesareeeeeeerreeeeeniareeeeeeerreeeeeans 1477
45.30. PG _OPEAMILY trrieiieiiriieeeeiireeeeeeiireeeeeeereeeeeesitreeeeeeeareeeeeeerreeeeesiareeeeeeerreeeeeaas 1478
45, 3], PG Pl eMPLALE ciiiiitriieeeeiirieeeeeiireeeeeeireeeeeeetre e e e eeetreeeeeeerraeeeeearaeeeeeerraaaeaaas 1479
Vi TR Y <Ye B o} ot e Yo R U U U O USSR USSP OO PPN 1479
VR TRC 1 T oo R =8 ok I ot =Y PRSI 1483
45.34. PG_SNACPENA teureeeeiieeiiieeriee et e eereesteeesbeeesseeessseeessseeesssaeesseeasseeeseeesnreeens 1484
/ST Io T oTo J=Y o Yo (ST ohah 1y o) ok I o s SURU USSR 1486
VST [O T oTo H=R =R ol =0 i o PSSP 1486
T T B oTe B oY SR =YY o T F ot USSR 1488
/ST T T oTo J ot o e fo 1= oSN USRS 1489
I 1° ' eTo S ot eTe o B e (PN URUUSR 1490
45.40. PG_t S _CONT LG _MAP ttettterrieeerireeaireesatteeateeeateeesseeassseesasseesssseesssseessssesssseeens 1491
Y Y e Yo J o =T« &) NSO OO U UURURUPPPPPRN 1491
VAR I R oTe B =T o Y- oy =1 ol USRS 1492
45,43, PGt LMD LAT @ ciiiiieiiieeiiee ettt eeiteeeite e et e et e e st e ettt e st e e ebbeeeateeebaeeenraeens 1492
544, DG _LYDE totteeeieeiiesieeste et et et e st e e te et et e st e e bt e tae s beebe e tteesbeebeeteesnteeseebeens 1493
45,45, PG ST MADDING utiiietieeeiieeeetieeeette e et e e eteeeeteeeeteeeetreeeeaeeeeeteeeentseeeseeeereeeas 1501
45.46. SYSLEIM VIEWS ..eouviiuiiiiiiieiinieetesttete ettt ettt ettt st et sb et seeestenaesbeenaesbeens 1501
S A DG CUT SO T Suuiiiitieeeteeeeteeeeeeeeetteeeeteeeeeteeeeteeeeaeeesaseeeetsesenssesetseeessseessaesareeans 1502
S A . DO GTOUD eieeutiieeitieeeiteeeetee ettt e ettt e ettt e e eteeeebeeeeasaeeeaaee e treeeeareeetaeeetseeebaeeearaeans 1503
L o Ye B I oo 1= 5 4= Y= T RSP PPPRN 1503
R [oY B Yo 4= USRS PPPRN 1504

XXV

45.5]1. pg_prepared _StatemMent S i reeeeeeiireeeeeeiirreeeeesiireeeeeesireeeeeeeirreeeeeans 1506

45,52, PG _PrePATEa_XACES tiiitrirreeeeeeiirreeeeeeirreeeeesiireeeeeesireeeeesiirreeeeesireeeeeeesrreeeesans 1507
Y 1 I o Ye B e Y K=Y DU USROS UERUUUP PPN 1508
S S, DG TULES teeiieitueeeeeeecreee e eeere e e eeere e e e e ettt e e eee e e e e eeareeeeeeetrraeeeeaaraaeeeeerraaaeeaas 1509
Vi ST IO I oYe B 1= Y ok o B o L 1= TN RO RO UTURURPPPRTN 1510
45,56, PG_SNAAOW cuteiesirieerrieesreeesteeetreeeeteesrteeasseeesssaeessseeessseesassaeesseeassseessseessseeens 1511
T B oTe B = o= o SRS 1512
TR T T T oTe B oY < 1 =Y USSR 1515
45.59. Pg_tiMEZONE_ADDIEVS tiiiiiieeieiieeieiiertieeetieesteeesseeessteessssesesseessseesssseenseeens 1515
45.60. Pg_t iMEZONE_NAMES teveeerureeeiirieeiereerieeeateeesreeesseeessseessssesessseeassseesssseessseeens 1516
IO Y B e Yo B S =TS oSS 1516
45.602. PG _USET_MAPPIINIGS tiieiiiiiirieeeeeiirreeeeeeitreeeeeeireeeeeestreeeeesesreeeeeeaasreeseeeasreeeeaans 1517
S .03, PO VA EWS teeiieitriieeeeeitiee e eeette e e e eeet e e e e ettt e e e e e et aa e e e e e traeeeeaeataeaeeeaataeaeeeanrraaaaaas 1517
46. Frontend/Backend ProtoCol..........ccueiiiiiiiiiiiiiiieiieeieeceeeeee et 1519
40.1. OVEIVIEW ...ttt ettt ettt ettt ettt et eb et s bt et e s bt s st e besbeentesaeeneenbesmeensenseans 1519
46.1.1. Messaging OVEIVIEW..........couevueueieirinenenieeeeereeeieesesresseseeeeneesessesaens 1519
46.1.2. Extended QUEry OVEIVIEWccuevueeieriirienienieeienieeiteie e eee e seeenieniens 1520
46.1.3. Formats and Format Codescccceceririineninieniinieiescee e 1520

46.2. MeSSAZE FLOW ..ottt ettt st 1521
40.2. 1. STATt-UD..eouiiiiiiieieeiee ettt 1521
46.2.2. SIMPIE QUETY ...eoniiieiiiiieiieiesieeteste ettt st et sbe e 1523
46.2.3. Extended QUETYcoceevirienieniieiinieeienie ettt 1524
46.2.4. FUNCHON Call....cccuiviiiiiiiiiienieiiieetesc ettt 1527
46.2.5. COPY OPETALIONS ..eevveeuiieirenireeieenieenteeieesieesresseesseessessesseessessesnses 1528
46.2.6. ASynchronous OPErationsS.........eceereerverrieeriieriueriueeneesiressessseeseesssesnnes 1529
46.2.7. Cancelling Requests in Progress.......o.c.eecverieriencieeneenienieeieeseeeeeenes 1529
46.2.8. TermMINAtION ...c.eeviriieiiiirieeniieteeetet ettt eas 1530
46.2.9. SSL Session ENCIyPtioN.......cccueecveerierienieeiienieeie et 1530

46.3. Streaming Replication Protocol..........cccceviiiiiiniieniiiiieieeicsieeicece e 1531
46.4. MeSSaZe Data TYPES ...veeruvieieeiieiiiiieeiterite sttt sttt ettt et e st esibesbeenbee e 1532
46.5. MeSSaZE FOTINALSeeuieiiiiiieiierite ettt ettt sttt e st e beenbee e 1533
46.6. Error and Notice Message Fieldscccoviirviirnieniiiiinieienieeieeeeseeeeeieee 1548
46.7. Summary of Changes since Protocol 2.0........cccceviiriiriieniiinieiieeeenieeieeieee 1549
47. PostgreSQL Coding CONVENLIONSccceeeieriieieniinieteniterenieeneresieeneseeeeesaeseenesseens 1551
47.1. FOIMAHNG ...coeeoiiiieiieieeiciieeet ettt ettt e nesaeeas 1551
47.2. Reporting Errors Within the Server............ccccociviiiiiiiieiiniiinccncceeeeee 1551
47.3. Error Message Style GUIde.........cococeriiiiiiniiiiiniiieneeeeeeeeeee e 1553
47.3.1. What 088 WHETE......cc.coiiiiiiiiiiiiiiieieic e 1554
47.3.2. FOrMAtNZoouiiiiiiiiiiiieceeeee et 1554
47.3.3. QuUOtation MATKS.......cccviiiiieiiiiee et et 1554
47.3.4. USE Of QUOLES. c..eeueetieiieiteeieite et eeteete et et e e et e e st st e te et eeesbeeneeaesreens 1555
47.3.5. Grammar and PUNCIUALION.c..eeuirueeiertieiieierieeie e etee e eee e eeee e seens 1555
47.3.6. Upper case VS. LOWET CASEecueeueirueeienieriieienieeie st eice et 1555
47.3.7. AVOid PASSIVE VOICL.....everuieiertieiieniieiientesitete st eeee st etee e et eeesbesatenaeseeens 1555
47.3.8. Present VS PaSt tENISE....ccueruveruerrieieniieientesieeiesteetenteeueeneeseeeeesiesseenaesreens 1555
47.3.9. Type Of the ODJECT....cccueririiiiitieiiieeie e 1556
47.3.10. BIaCKELS....cuveuieniiiieierieeteest ettt st 1556
47.3.11. Assembling error MESSAZES.....c..evveeueertereeruerierienienieentenieeeesieseeniesieens 1556
47.3.12. REASONS fOI BITOLSeeuviiienieniieiiinieeitenie sttt 1556
47.3.13. FUNCLION NAMESevveneiiienieniieiteieeitente ettt eteete e eeesiesiae e nieeas 1557
47.3.14. Tricky words t0 avoidc..coceevvereeiieninienieninieneeeeeeceee e 1557
47.3.15. Proper SPEIliNgccccoeeeerieriieiiniieienieniceesieetenieeieete et 1558

XXVi

47.3.16. LOCALIZALION.vveeieeeirieeeeeeireeeeeeeireeeeeere e e eeeareeeeeeerreeeeeearaeeeeeenreeeas 1558

48. Native Language SUPPOTL......c.cocieriiriierriienieeieeieeniteete et esieesresseesbeesatesteebeesssesasesases 1559
48.1. For the Translatorccccoiviiiiiiiiiiiiiiciicceeeee 1559
48.1.1. REQUITEMENLSeeuvieiieriieeiieiteeieeite sttt et et sttt e st e sateebeesaeesaeeeanes 1559

A8.1.2. CONCEPLS . c.veeeeeeutieiieeite ettt et ettt sat e sb e st st e be e st e sabeeabeesaeesaeesans 1559

48.1.3. Creating and maintaining message catalogsccevveevververrieeneeneennne. 1560

48.1.4. Editing the PO fIlescccoevuimienieiiinininenecctececeeseeeeeeeeie s 1561

48.2. For the Programmer.............cccocuiiiiiiiiiiieiinieeesceeere ettt 1561
48.2.1. MECRANICSviuiiiniieiieeiieeitete ettt ettt 1562

48.2.2. Message-writing guidelinesccccoivieiiniiiiiiinieiiniceneceeeee 1563

49. Writing A Procedural Language Handlerc.cccooiiiiiiniiiiiiiiccceceee 1565
50. Genetic QUETY OPLIMIZEToeuteierueeierieeteeieeteeiesteeeteste it eete et eseeee st eeesaeeseentesseeneeseeenes 1568
50.1. Query Handling as a Complex Optimization Problem.............cccccocerenieinnnnne. 1568

50.2. Genetic AIZOTItRMSc.coiuiiiiiiiitieieeee et 1568

50.3. Genetic Query Optimization (GEQO) in PostgreSQLccccovirieienieenenne. 1569
50.3.1. Generating Possible Plans with GEQO...........ccccoocerviinininiininieeee 1570

50.3.2. Future Implementation Tasks for PostgreSQL GEQOcccccueneee. 1570

50.4. Further REaAdIiNgcoeeieriiiiiieiieieiieee ettt 1571

51. Index Access Method Interface Definitionc.ccceeveveriniinienienieininenenceeeeeee e 1572
51.1. Catalog Entries for INAEXESc..cecueririeniiniiienienieieeiteeseete et 1572

51.2. Index Access Method FUNCLIONS..........ccecveiiiiiniiiicicicecceeeceeeeeee e 1573

51.3. INAEX SCANNINEZ ..c..evviniiiiiiiriieienieeteeet ettt ettt sttt sae e 1576

51.4. Index Locking Considerations..........c..ceceevuereeriererienieneenieneeeenieseenienseeeenseenes 1578

51.5. Index Uniqueness CRECKS........cooveriiiiieriienieeieeieesite et e eve e e sene e 1579

51.6. Index Cost Estimation FUNCHONS......c..coceeviirerrienerieniinieieneeeenieeeeeseeeeeee e 1580

52, GIST INAEXES....cuiuiiiiiiiiicicec et e 1583
521 INrOAUCHION ..ttt s 1583

52.2. EXteNSIDIIILY ...oouiiiiiiiiiiiicicici e 1583

52.3. IMPIEMENTALIONeeitieiiiriiieieeiee sttt ettt ste st e bt e st e sateebeesaeesanesanes 1583

52,4, EXAMPIES ...eeuvieiiiiiiiiiieiie sttt ettt ettt et te st e b e s te st ebe e st e st s be e et e sanesats 1589

52.5. Crash RECOVETY......ceevuiiiiiiiiiiiieiteste ettt sttt ettt 1590
53.GIN INAEXES .. 1591
53,1 INErOAUCHION ..ttt 1591

53.2. EXIENSIDIIILY ...couteiiiiiiieiieic ettt 1591

53.3. IMPIeMENtAtiON.....cceecuieiieiiiiieieieetete ettt 1592
53.3.1. GIN fast update techniquec.cceceeverieiiininieniieeeeeeeeeeee 1592

53.3.2. Partial match algorithm............ccocoiiiiiiiiiii e 1593

53.4. GIN tips and triCKS........ccccouiiiiiiiiiiiiiece e 1593

53.5. LIMILATIONS .e.utteutieiiteenieetee st et ettt et e e sb e st e e b e e sate st e bt e sbbesateeabeesbeesanesanes 1594

53.6. EXAMPIES ..ot 1594

54. Database PhySiCal StOTAZEcoceevirrerieieiriinententceetet ettt st eae s 1596
54.1. Database File LayOUL..........cccccueviririinienienieieinine ettt eeneene e saens 1596

S54.2. TOAST .ottt sttt ettt sttt naen 1598

54.3. Free Space Mapcciiiiiiiiiiiiiicic e 1599

54.4. VISIDIIEY MAD ..ottt sttt 1600

54.5. Database Page Layoutccccooeiiriiniinieniieeeseeteicee et 1600

55. BKI Backend INterface..........ccceiviriiieieieiniiiinicsiceccteeetecteeeeeee et 1604
55.1. BKI File FOIMALcc.ooiniiiiiiiiiiiiniiiciceeeene ettt 1604

55.2. BKT COMMANGSooviriiiiiiiiiiiiiniesiieieteeeeese ettt 1604

55.3. Structure of the Bootstrap BKI File........ccccoceevininiininiiiiniicnciececieee 1605

55.4. EXAMPLE ..conviiiiniiiiiiieiieitee sttt sttt sttt ettt 1606

56. How the Planner Uses StatiStICS.......ccevueieiririniiniiieiiieiietiteteeeeeeee s 1607

XXVii

56.1. Row Estimation EXamples........ccccevuirviirriiiniinieiieeniesiecieeiee e 1607

VIII. Appendixes 1613
A. POStEreSQL EITOr COAES......ooviiiiiriiieiieiieniteeteee ettt sttt st 1614
B. Date/Time SUPPOIT ...cc..oouiruieiiriieieiieteieeit ettt sttt et e sae e e ne s enesneeae 1623

B.1. Date/Time Input INterpretationcoeeveeieeieienienieneneeieneerene e 1623
B.2. Date/Time Key WOTdS........cc.cociiiiriiiiiiiiciieiceccere et 1624
B.3. Date/Time Configuration Filesc..cocooiiiiiininiiniiiiinceeceee e 1625
B.4. HiStory Of UNILScoouiiiiiiiiiieieecceeeeeeeeete et 1626
C. SQL KeY WOIAS.....ouiiiiiiiiieieieee ettt st 1628
D. SQL CONFOIMEANCEoeoevviieeieeeeeee ettt eee e e et eeeaae e e aaeeeeteeeeeneeeeneas 1654
D.1. Supported FEAtUIESeeuveiiieiieiieiieieceeiteeet ettt st saens 1655
D.2. Unsupported FEAtUIEscceeveiriiiiiiiiiiiiiieeieeiee sttt 1670
E. REIEASE INOLESeeuiineieiieiieiiee sttt ettt st et b e et e b et sae et esbesaeebeebeens 1684
E 1L REICASE 9.0.7 ..ottt ettt et 1684
E.1.1. Migration to Version 9.0.7.......c..cccccevrinimineneneiinene e 1684

E 1.2, CRANGES ..ottt sttt 1684
E.2.RelEase 9.0.0oviiiiiiiiiiiieicceceteeee sttt 1687
E.2.1. Migration to Version 9.0.0........ccccocevieriiinniininieniicene et 1688
E.2.2. CRANZES ..cvviiieiieieieetetee ettt et 1688
E.3.Release 9.0.5 ..o 1690
E.3.1. Migration to Version 9.0.5........cccccoeriinininiininiienineencneetenieeeeenenee 1690
E.3.2. CRANEES ..cvviniiieeieriecteteeee ettt ettt 1690
E.4.Release 9.0.4 ..o 1694
E.4.1. Migration to Version 9.0.4........ccccoevierieriiiniiieieniesieeieesee e siee s 1694
Ei4.2. CRANEES .oovveeeieeiiieiteeteett ettt ettt sttt e sttt e s e sabesabeenaeesaee s 1694
E.5.Release 9.0.3 ..o 1696
E.5.1. Migration to Version 9.0.3........cociiiiiiiiniiiniieieneesieeieeree et 1696
E.5.2. CRANEES .ouveeiieeiiieieesteete ettt sttt st ettt st saee s 1696
E.6.Release 9.0.2 ..o 1697
E.6.1. Migration to Version 9.0.2........ccccovviiinieniiniienienienieeieesee et 1697
E.6.2. CRANZES ..uveeiieeiiieiteiteee ettt ettt sttt ettt et e i s 1698
E.7.REIASE 9.0.1 ..ottt 1700
E.7.1. Migration to Version 9.0.1.........ccccoceoviiiiniiniininiieeeceeeeeeeeeee 1700

E. 7.2, CRANEES ..ceeoiieiiiiiieeeeeeee ettt s e 1700

E.8. REIEASE 9.0 ...cniiiiiiiieeieee ettt ettt st st 1701
E.8.1. OVETVIEW ..ottt ettt ettt st et 1701
E.8.2. Migration to Version 9.0...........ccccooiiiiiiiiiiiiiii e 1702
E.8.2.1. Server SEttNScocueevueerierierieiiienieeeeie et 1703

E.8.2.2. QUETIES ...uveeeeeieeeeee ettt eaee e 1703

E.8.2.3. DAt TYPES .eeeeteeiiieieeieenieeeteeteeiee sttt 1703

E.8.2.4. Object ReNamingccceveeierienienieneeieieeiee et 1704

E.8.2.5. PL/PESQL ...oniiiiiiiieiencceetet ettt 1704

E.8.2.6. Other Incompatibilitiescccereeriererienienieiereeieneneeieneee 1705

E.8.3. CRANEES ...uveeeieiiieieeeee ettt s 1705
E.8.3.1. SEIVET ..ottt 1705

E.8.3.1.1. Continuous Archiving and Streaming Replication......... 1705

E.8.3.1.2. Performanceccceeeecerivenienienieinenenieeeeeeeenenene 1705

E.8.3.1.3. OPtiMIZEr......cooueriiiiiniiiiiniieienieniteeseetese et 1706

E.8.3.1.4. GEQOcoiiiiiiiiiiieicieeeceee e 1706

E.8.3.1.5. Optimizer StatiStiCseevvervrerueereerieerieenieesresieenieenanens 1706

E.8.3.1.6. Authenticationccccceeivininiecieinininiiiciceeeeeene 1707

XXVili

E.8.3.1.7. MONItOTING....veertiiriiiiieiienieeieeiee sttt 1707

E.8.3.1.8. StatistiCsS COUNLELSccceevuereerreriereniierenreeeeneeeereniens 1707

E.8.3.1.9. Server Settings.......ccceeeereeriirrieenienieeieenieesee e 1707

E.8.3.2. QUETICS ...uveieiiieeiiieeiiee ettt e et e ette et eesere e esereeeeveeeereesssaeesasaeennns 1708
E.8.3.2.1. Unicode StriNgSeeveereeriirriieniienieeieenieeneesieenieenaeenn 1708

E.8.3.3. Object Manipulationc..ceceeeeerieneneniienienieienceieneneenenieens 1709
E.8.3.3.1. ALTER TABLE ..erctecterieerereeeeresieeresteeenesneeseessesneennesneens 1709

E.8.3.3.2. CREATE TABLE ...eeitiiuieiirieeenresieeresieeeesneeeesaeseenesnens 1709

E.8.3.3.3. CONSIIaAINTS.eorueiriieieeniieriieeieeriee sttt 1709

E.8.3.3.4. Object Permissions.........ccceceeueriecieniecieneeieeneseenenneene 1710

E.8.3.4. Utility OPerationsc.ccccceveeeuerierienenieieneeeese e 1710
E.8.3.4. 1. COPY ttieiiteeee ettt 1710

E.8.3.4.2. EXPLATIN ..ttt e 1711

E.8.3.4.3. VACUUM...ooiiiiiiiiiiiiicct e 1711

E.8.3.4.4. INAEXES....couieuieieiiieieeteeeeieete ettt 1711

E.8.3.5. Data TYPES ...eeueeeeruieieniieiieieeieeie sttt ettt st 1712
E.8.3.5.1. Full Text Search..........ccccoverieniniininieineeieneeeeeee 1712

E.8.3.6. FUNCHONS...c..eitiiiiiiiiieiieieeeiee ettt 1712
E.8.3.6.1. AGEIregates.....cccevieieriieiiniirienieniieesiee et 1713

E.8.3.6.2. Bit StrINES...c.ceveriiiiiniieiiniertenerteesieete et 1713

E.8.3.6.3. Object Information FUnctionsc..ceceeeverveenereeniennenne 1713

E.8.3.6.4. Function and Trigger Creationcecceeeeveenereenuennenne 1714

E.8.3.7. Server-Side Languagescc.cccceveevenerienienienieneeicneneenieneene 1714
E.8.3.7.1. PL/pgSQL Server-Side Languagecc.cccerereeruennenne 1714

E.8.3.7.2. PL/Perl Server-Side Languageccccevvevvervieeneeennnen. 1715

E.8.3.7.3. PL/Python Server-Side Languageccccceecvervieenueennnn. 1715

E.8.3.8. Client APPlICAtIONScccveeiuierieeiieiiiesieeieeitesveeeeesiee e eaeeiee e 1716
E.8.3.8. 1. PSQL.uiieiiiiiieiieiie ettt 1716
E.8.3.8.1.1. psql Displaycccceevueevieriieiiinienieeieesieeeeeae 1716

E.8.3.8.1.2. psql \d Commandscceeveerueruerrreereennennne 1716

E.8.3.8.2. PZ_dUMP....cooiiiiiiiiiiiiieieneeeetee et 1717

E.8.3.8.3. PZCtluciiiiiiieiieieeeeeet et 1717

E.8.3.9. Development TOOIScoouerierriiiiiiiieeieeieeseeieeeese e 1717
E.8.3.9. 1. lIDPQ..cueteieieiriirietceeceeen ettt 1717

E.8.3.0.2. €CPEZ wevieieieieieeeeeee e 1718
E.8.3.9.2.1. ecpg CUISOLS ...c.eeruieiiieiieiieiieienieeeese e 1718

E.8.3.10. BUild Optionsc.cecevveruerieieiririinienieieieeeienesteseeeeeee e enenes 1718
E.8.3.10.1. MaKEfIlescuerviruiriieiiininienieececieceeerereeeeceveie e 1719

E.8.3.10.2. WINAOWScoiuiiiiiiiiieiieieeieseeeee et 1719

E.8.3.11. SoUrce Code.....cc.eovieriieniiiiienieeieeiieeeeee sttt 1719
E.8.3.11.1. New Build Requirementscccccceevuererreenenceniennenne 1720

E.8.3.11.2. Portabilitycccceiueiuieiiieieieeeesiee e 1720

E.8.3.11.3. Server Programmingcccceceerereenieneniienenienienneene 1721

E.8.3.11.4. Server HOOKS ..c..ccouoiuiiiiiiiiinieeeeceee e 1721

E.8.3.11.5. Binary Upgrade Support.........cccceeerveeruenerseenenieniennenns 1721

E.8.3.12. CONLLID ..ottt 1722

E.9. ReEIEaSE 8.4 11 ..ottt ettt 1722
E.9.1. Migration to Version 8.4. 11ccccoocerieriiieiiiniinienieicene et 1723
E.9.2. CRANGES ..cvviiiiiieieieeteteei ettt sttt 1723
E.10. Release 8.4.10cueoiiriiiiiiiniieiieiceteneeiteest ettt s s 1725
E.10.1. Migration to Version 8.4.10........ccccecuererievieniinienineenienenrenieneeeseeenee 1725
E.10.2. CHANZES ...eevveeiiieiieniieeieeieertteeite ettt e st e st e beesaeesabeebeessaesasesnseenseesnnen 1726

XXIX

E. 11 REICASE 8.4.9 ..ottt sttt s 1727
E.11.1. Migration to Version 8.4.9........cccocceeriiriiriiiiniinienieeieeneeeee e 1728

E 11,2, Changes ...ccc.eeeiieiieniieeieeieeitesite ettt sttt ettt e be et be s e saee s 1728
E.12.Release 8.4.8 ...ttt ettt s 1730
E.12.1. Migration to Version 8.4.8........cccoceiviiriiiriiiinienienieeieesee et 1731
E.12.2. Changescc.ooceevuiriieieniieieieeeeeeste ettt st 1731

E 13, REIEASE 847 ..ottt ettt ettt sttt 1732
E.13.1. Migration to Version 8.4.7.......ccccoccevueririiriiininienineeeneeeeeeeeeeene e 1732
E.13.2. Changesc..oocveiiiiiiiiieieieeeeeeseeeee ettt 1732

E .14, REIEASE 846 ..ottt sttt sttt st 1733
E.14.1. Migration to Version 8.4.6..........ccccocueririiiiiiiiiiniiiceneceeeeeeee e 1733
E.14.2. Chan@escc.eeeuieiiinieiiieieeeteete ettt ettt ettt 1733

E 15, RIS 8.4.5 ..ottt ettt st 1735
E.15.1. Migration to Version 8.4.5.......cccviriiriiieiiinieeienie e 1735
E.15.2. Changes ...ccc.eeeuieiieniieniieieetesteee ettt sttt 1735

E.16. RelCASE 8.4.4 ...ttt sttt et st 1739
E.16.1. Migration to Version 8.4.4........ccccccevririninenienieieinenesiereeeeeneeeniene 1739
E.16.2. ChaNEESeoveviiiieieieiieiieie sttt sttt 1739
E.17.ReICASE 8.4.3 ..ottt ettt ettt 1741
E.17.1. Migration to Version 8.4.3.......ccccoceviiriririininienieeeeie et 1741
E.17.2. ChanEES ..coveiieniiiieeieieeeteeeee sttt ettt 1741

E.18. ReICASE 8.4.2 ..ottt ettt st 1743
E.18.1. Migration to Version 8.4.2......cccccoceevuererieniinenienineenienenreniesieeee e 1744
E.18.2. CHANGZES ...eevveeeiieiiieriieeie ettt ete ettt ettt e be et esateebeesaaesateenbaenseesnne s 1744

E.19. RelaSE 8.4.1 ..cniiiiiiiiiiiceieetee ettt sttt 1747
E.19.1. Migration to Version 8.4.1......ccccoevirvieriiniiieiienienieeieesee st 1747
E.19.2. ChanGESs ...coovveeuiiiiieiieeie ettt ettt st ettt sate et et e st sbeenaeesaee s 1747

E.20. RelCASE 8.4 ..ottt ettt sttt ettt st 1749
E.20. 1. OVEIVIEW ..ottt sttt sttt st sr e 1749
E.20.2. Migration to VErsion 8.4ccccevvuierierieriiieniienienieenieeseeseeesreesieesiee s 1749
E.20.2.1. General....c..coccoouirieniinieiiiineeienceeeneeeeesitere et 1750

E.20.2.2. Server SETHNES «...eeevverrveeriierieeieeriee ettt ettt e st e e 1750

E.20.2.3. QUETIES ...eieivieeiiieeiiieeiieeeiteeetteestteesire e esereeeeveeeereesssaeesaseeennns 1750

E.20.2.4. Functions and OPEratorscceceerueereeenieerieesieeseeseessueeneenns 1751

E.20.2.4.1. Temporal Functions and Operatorsccc.cceceeeuenee 1751

E.20.3. Changescccoeouiiieieiieieiieeceeseeeee ettt 1752
E.20.3.1. Performancecoceerierieriieinienieeeeieeseeeie et 1752

E.20.3.2. SEIVET .ottt 1753

E.20.3.2.1. SEttNES .eveeueeieriieieeiieeeeie et 1753

E.20.3.2.2. Authentication and SECUIILY........ccceeveeruereereererieiennenne 1753

E.20.3.2.3. pg_hba.CoNnT ittt e 1754

E.20.3.2.4. Continuous Archivingccccceceevereenieneeieenenienenneene 1754

E.20.3.2.5. MONITOTING.....veiuiiiiriieiinieeiere ettt 1755

E.20.3.3. QUETIES «.oeeieiie ettt et et eaee e 1755

E.20.3.3.1. TRUNCATE .coutruirtireienreiteieniesienteteie et ene e ee 1756

E.20.3.3.2. EXPLATIN .cititririiteiereteteee ettt e 1756

E.20.3.3.3. LIMIT/OFESET coveoteieeeiieienienieeeeeieeie e steneneseeneenesne e 1757

E.20.3.4. Object Manipulationcccceceveevererienienienieneeieneneenienieane 1757

E.20.3.4.1. ALTER teeiiietriteteiceceeeetc ettt e 1757

E.20.3.4.2. Database Manipulation...........cccceeeveevuenerneeneneenenene 1758

E.20.3.5. Utility OPerationsccocceveevuereeriererienieneeneeneeeenseseesseneens 1758

E.20.3.5.1. INAEXES.....coueeieriieienieeienieeeeniesitetesieetesee et 1758

XXX

E.21.

E.22.

E.23.

E.24.

E.25.

E.26.

E.27.

E.28.

E.29.

E.30.

E.20.3.5.2. Full TeXt INdEXESvveeeeevreieeeeireiieeeeieeeeeeereeee e 1758

E.20.3.5.3. VACUUM....cciiiiiiiiiiicicicieeceecse e 1759

E.20.3.6. Data TYPES ..eoveeriierieeieeniieeieeieeite sttt et 1759
E.20.3.6.1. Temporal Data TyPes......c.cceevveereeriernieenieniesieenieenanenn 1759

E.20.3.6.2. ATTAYS c.eeruieiiieiieiieeitesiee sttt ettt st 1760

E.20.3.6.3. Wide-Value Storage (TOAST) ...ccocvevveevieniinnieineeneen. 1760

E.20.3.7. FUNCHONSceoutteiiieiieeieeite ettt st 1761
E.20.3.7.1. Object Information Functionsccccccceceenerienenncne 1761

E.20.3.7.2. Function Creation..........ccocveevveereeniennieeneeneesieeseeenneenn 1762

E.20.3.7.3. PL/pgSQL Server-Side Language............ccccoceeeeuenne 1762

E.20.3.8. Client APPlCALIONScccoouieueeeiiniieieniiiieiesieeee e 1763
E.20.3.8.1. PSAL.cuviiiiiieinieieceeeeee e 1763

E.20.3.8.2. psql \d* commands........cc..cceceeveeriirnenneeniineeneeneenn 1763

E.20.3.8.3. PE_dUmpcoiiiiiiiiieiieeeeeee e 1764

E.20.3.9. Programming TOOIS........cccccecuririminienienieeninenenecereeeeeeene 1765
E.20.3.9.1. IIDPQ..veecieieiiiiniiicieeceeeereceee e 1765

E.20.3.9.2. libpq SSL (Secure Sockets Layer) support 1765

E.20.3.9.3. €CPZ cvevereieiiiiietiiceeetet e e 1766

E.20.3.9.4. Server Programming Interface (SPI).......c.cccccocenence. 1766

E.20.3.10. Build OPtiOnSccevuerieieieiiiiniinieiceceeeeieeesieseeeenee e 1766
E.20.3.11. Source Code........ccceverieieiiiniriiniiieeeieeeeeesieseeeeeee e 1767
E.20.3.12. CONLLID ..o 1768
Release 8.3.18 ..o 1769
E.21.1. Migration to Version 8.3.18........ccccevuiriririiininiinineenieneeteneseeeeeenee 1769
E.21.2. CHANZES ...eevveeiiieiieiieeie ettt sttt ettt te et esate bt e saaesabesnbeenseesnne s 1769
Release 8.3.17 ..o 1771
E.22.1. Migration to Version 8.3.17cccecierieriiiriiieiieniesieeieesee st 1771
E.22.2. ChANZES ...eevieeiiiiiieniieeie ettt ettt ettt ettt sete et et e st sbeenaeesaee s 1771
Release 8.3.16coueiiiiiiiiiiiiiicicc 1773
E.23.1. Migration to Version 8.3.16........cccceevieriiriiienieienieeieeseesie e 1773
E.23.2. Chan@ES ...covvveeuiiiiieiieeie ettt ettt ettt ettt ettt et s saeesaee s 1773
Release 8.3.15 ..o 1775
E.24.1. Migration to Version 8.3.15....cccccoiiiiiiniiriiiieieeieeieeeeeee e 1775
E.24.2. Changesc.ooceeriirieieiieieieeectesteeeee ettt 1775
REIASE 8.3.14 ...ttt 1776
E.25.1. Migration to Version 8.3.14........c.ccoceiiiiiiinininiieeeeceeeeeeeeee 1776
E.25.2. Changesc..coceeouiiiiiiiieieiieeeeeseeeee ettt 1776
ReIase 8.3.13 ...ttt e 1777
E.26.1. Migration to Version 8.3.13........cccociiiiiiiiiiiiii e 1777
E.26.2. CHANEZES ..ottt ettt ettt et eae s 1777
REIASE 8.3.12 .ottt e 1779
E.27.1. Migration to Version 8.3.12......ccccccecvvirininenenieinincnesecrereeeneeneniene 1779
E.27.2. Changesccooouiiiiiiiiiiiciice e 1779
REIEASE 8.3. 11 ettt 1781
E.28.1. Migration to Version 8.3.11.....ccccoceriiiiiiiiiiiiiene e 1782
E.28.2. CHANEZES ..ottt st sttt 1782
ReElEase 8.3.10 c..cuiieiiiiiiiriiieeete e 1783
E.29.1. Migration to Version 8.3.10.......cccccvvueriririieninienineee et 1783
E.20.2. ChanEeScoveeueeiirieeieieeiteeettee sttt sttt 1783
RElEase 8.3.9 ..o 1785
E.30.1. Migration to Version 8.3.9......cccccoceviiririniiininieniieencneeteieeeeeeaee 1785
E.30.2. CHANZES ...eevvveeiiieiieriieeie ettt eite ettt et e st tae et e sateebeessaesasesnbaenseesnnenn 1786

XXXI

E.31.Release 8.3.8 ..o 1787
E.31.1. Migration to Version 8.3.8.......ccccecviriiriiiriiiiniienienieeitesee et 1788
E.31.2. Changes ...ccc.eeeuieiiiniieeieeieesitesite ettt sttt st ettt s e i s 1788

E.32.Release 8.3.7 ..o 1789
E.32.1. Migration to Version 8.3.7......ccccceceerieriiriiiiniienienieeiteste st 1789
E.32.2. Changescc.ooeeieriieiiiieieiieitetesteetee ettt 1790

E.33. RIS 8.3.0 ..couuiiiiiiiiiiie ettt st e 1791
E.33.1. Migration to Version 8.3.6.......ccccoceevueriirieiieniiniiiineeieneceeeee e 1791
E.33.2. Changesc..coceeoiiiiiiiiieieieeeeeseeeeee et 1791

E.34. Release 8.3.5 ..ottt ettt st st 1793
E.34.1. Migration to Version 8.3.5.......ccccociriiiiiiiiiiiiiii e 1793
E.34.2. Changesccooouiiiiiiiiiieicere e e 1793

E.35. Release 8.3.4 ...ttt ettt st 1795
E.35.1. Migration to Version 8.3.4........cccccevrinininenenieieenenesrerereeeneenennene 1795
E.35.2. Changesocooouiiiiiiiiiicce e 1795

E.36. Release 8.3.3 ...ttt et st 1797
E.36.1. Migration to Version 8.3.3........ccccevirinininenieieieene e 1797
E.30.2. ChaNEEScoveiuiiiieieieiieiinie sttt sttt 1797

E.37. Release 8.3.2 ..ottt sttt s 1797
E.37.1. Migration to Version 8.3.2.......ccccoceriiririinieninienieeeee et 1798
E.37.2. ChANEES ..ottt sttt ettt 1798

E.38. Release 8.3.1 oo 1800
E.38.1. Migration to Version 8.3.1......cccccoceriiriniriiininienineeieneetenieseeee e 1800
E.38.2. CHANZES ...eeovveeiiieiieriieeie ettt ettt ettt e te et esebeebeesaaesateenbaenseennne s 1800

E.39.Release 8.3 ..ot 1802
E.39.1. OVEIVIBW ..ttt e 1802
E.39.2. Migration to Version 8.3........cccccevviierieniiriiieiieniesieeieesieesteeveesiee s 1803

E.39.2.1. General........cccooiiiiiniiniiiiiiiicce e 1803
E.39.2.2. Configuration Parameters..........cccceevueevueenieeniennieeneenieeieenieens 1805
E.39.2.3. Character Encodingsc.cceevueereerieniiienienieeieeseesieeieeieens 1805
E.39.3. Changescc.ceeuiriuienieeiieitesitesite ettt sttt ettt e b ettt e esaee s 1806
E.39.3.1. Performancec..ccccecuevirieniinienieniniccneceenceecnee e 1806
E.39.3.2. SEIVET c.coviiiiiiiiiiiicccc e 1807
E.39.3.3. MONITOTINGcovviiieiiiieiieiinieetenieetene et saeene e 1808
E.39.3.4. AUthentiCation..........ccceeiierieriieiniieiieeieeiee et 1809
E.39.3.5. Write-Ahead Log (WAL) and Continuous Archiving 1809
E.30.3.6. QUETIES ...eeeuvieeeiieeiiie et eeieeeteeette et e eseree et eeenreesnaeesnsaeennns 1810
E.39.3.7. Object Manipulationcccceeveeveninieiienieiieneeeeneeeeneeeene 1810
E.39.3.8. Utility Commands............c.ccceeirieiininiieniiniiieneeeeeeeeneeeene 1811
E.39.3.9. Data TYPEScoouiriiiiiiiiieiciicieee et 1812
E.39.3.10. FUNCHONS.....coittiiieiiiiieiieieeiee et 1812
E.39.3.11. PL/pgSQL Server-Side Language.........ccccecceveruerveveveenennennen 1813
E.39.3.12. Other Server-Side Languagescccccceeeeererenenvecreenennennen 1814
E.39.3.13. PSQLaciiiiiiieieieieeiesccet e 1814
E.39.3.14. pE UMD w.coiuiiiiiiiieiiieiteeeecceceeeee e 1814
E.39.3.15. Other Client AppliCationscevueruereerierierieneeienieneenienieans 1815
E.39.3.16. 1IDPQ c.veviveiieieieiiieieceeee st 1815
B 30,317, @CPZ ueeueetieitee ettt 1815
E.39.3.18. WIndows POrt.........ccccoueviiiiinininiiicicieeeeneseceeeeee e 1816
E.39.3.19. Server Programming Interface (SPI)cc.cccceoeeviinincncnnnns 1816
E.39.3.20. Build OPtionSccceoverieieiiininiiniiieieieeeeeesieseeeeeee e 1816
E.39.3.21. Source Code........cccevirieiiiiininiiniiicieieieeesieeeeee e 1816

XXXIT

E.39.3.22. Contribccocoiiiiiiiiiiiiiiiic e 1817

E.40. Release 8.2.23 ..o 1818
E.40.1. Migration to Version 8.2.23........cccceevieriiriiiinienienieeieesee st 1818
E.40.2. ChAnES ...ccouvevuiiiiieiieeiieeieeiteeite ettt ettt ettt st e b e et e st st esaeesaee s 1818

E.41. Release 8.2.22c.coiiiiiiiiiiiciiiiciie e 1819
E.41.1. Migration to Version 8.2.22........cccceceverieiieniinieenineeneneeresreseeeeeaeenee 1820
E.41.2. Changescc.coceevuirieieiieieieeeeieste ettt st 1820

E.42. Release 8.2.21 ...coueiiieiiiiiiiieicieteceitetese ettt sttt ettt ettt 1821
E.42.1. Migration to Version 8.2.21........c.coceiiiiiiiniiiiniiicceceeeeeeee 1821
E.42.2. Changesccccoouiiiiiiiieieiieeeese et 1822

E.43. Release 8.2.20) ...cc.coueieuieiririiieieieiteitetesteseetet ettt ettt ettt e 1822
E.43.1. Migration to Version 8.2.20........ccceecueiirieiieniieiene e 1822
E.43.2. Chan@Es ...cccueeeuieiieniieeiieieeiteete ettt sttt ettt ettt e saee s 1823

E.44. Release 8.2.19 ..ottt et 1823
E.44.1. Migration to Version 8.2.19......ccccccecuvinininenierieiiienenesiereeeeeeeeiene 1823
E.44.2. Chan@ES ...cccvveeuiiiiiiiieiieeieeteete ettt sttt ettt e 1824

E.45. Release 8.2.18 ..ottt st 1825
E.45.1. Migration to Version 8.2.18........cccovieriiiiiininieniieee et 1825
E.45.2. ChANEES ..ottt sttt 1825

E.46. Release 8.2.17 ...ccciiiiiiiiiiiiieiceteiteeseeeee sttt s 1827
E.46.1. Migration to Version 8.2.17.......cccccevuevirieniininienineenie et 1827
E.46.2. CHaNEES ...eoviiieniirieiieieeiteteettee sttt st 1827

E.47. Release 8.2.16c.coucieiiiiiiiiiiicicicieteeeeeeee sttt 1828
E.47.1. Migration to Version 8.2.10........ccccecuererirvieneniienineenieneeienieneeeeseeenee 1829
E.47.2. CHANZES ...eevveeiiieiieiieeit ettt sttt ettt te et esateebeesaeesaseenbaenseesnnen 1829

E.48. Release 8.2.15 ..o 1830
E.48.1. Migration to Version 8.2.15......cccecverieriiiniieiieniesieeieesee st 1830
E.48.2. CHANZES ...eevvvieuiiiiieiieeit ettt ettt sttt sttt ettt st s beenaeesaee s 1831

E.49. Release 8.2.14 ..o 1832
E.49.1. Migration to Version 8.2.14........cccceevieriiniiiinienienieeieenee st 1832
E.49.2. ChanGES ...cccuvevuiiiiieiieeieeieestesite ettt st ettt st e be ettt saeesaee s 1832

E.50. Release 8.2.13 ..o 1833
E.50.1. Migration to Version 8.2.13........ccceiviiriiiiiiiiinienieeieeeesee e 1834
E.50.2. Changesc..coceevuirieiiniieieiieieetenieetete ettt 1834

E.5T.RelEase 8.2.12 ..ottt ettt ettt 1835
E.51.1. Migration to Version 8.2.12........ccccoceviiiiiiininiinineeieneeeeeseeeeeeeeee 1835
E.51.2. Changesc.ooeeiiiieiiiieieieeecese ettt 1835

E.52. Release 8.2.11 c..cuiiiiiiiiiiitiieictecettetesestetee ettt ettt ettt 1836
E.52.1. Migration to Version 8.2.11........ccccociiiiiiiiiiiiiiiicicecceeeeee 1836
E.52.2. CHANEZES ..ottt ettt et 1836

E.53. Release 8.2.10 ...ccucoueieiiiiiriiieicieeeitetenereeeetet sttt ettt e 1837
E.53.1. Migration to Version 8.2.10.......ccccevieririerienieieneeeee e 1837
E.53.2. CHaNEES ..ottt sttt 1838

E.54.Release 8.2.9 ...ttt 1839
E.54.1. Migration to Version 8.2.9........cccccevrinininenicieininenesierereeeieeeiee 1839
E.54.2. CHANEZES ...eoviiieniiiiteieiee ettt st 1839

E.55. Release 8.2.8ccuoiiiiiiiiirieeieeteteeseeeee ettt 1839
E.55.1. Migration to Version 8.2.8.......ccccocerieririiiiininienieneenie et 1840
E.55.2. ChanEeSooveeueeiiriiiieniieiteeeeee sttt sttt 1840

E.56. RElEASE 8.2.7 ..ottt 1841
E.56.1. Migration to Version 8.2.7......cccccocevvueririrnienenieniineeneneeeeniesieeee e 1841
E.56.2. CHANZES ...eeovveeuiieiieniieeie ettt ste ettt et e st te et e seteebeesaaesnsesnbaenseesnnen 1841

XXXi11

E.57. ReIEASE 8.2.0 ..ottt sttt et 1843
E.57.1. Migration to Version 8.2.0.........cceceevierieriiieniienienieenieenee st esveesiee s 1843
E.57.2. ChANZES ...eovvieiiiiiieiieete ettt sttt ettt ettt st e i s 1843

E.58. RelEASE 8.2.5 ..ottt s 1845
E.58.1. Migration to Version 8.2.5......ccccceciiriiriiriiiiniienienieeieeste et 1845
E.58.2. Changesc.coceeiirieiiiieiieieeeeesteeeee ettt 1845

E.59. Relase 8.2.4 ..ottt sttt st 1846
E.59.1. Migration to Version 8.2.4..........ccccocueiiririiininieniieeeneeeeeeeeeeeeeeeee 1846
E.59.2. Changescccceouiiiiiiiieieieeeeeereeeeee et 1846

E.60. Release 8.2.3 ..ottt ettt sttt st st ae e 1847
E.60.1. Migration to Version 8.2.3........c.cccooiiiiiiiiiiiiiii e 1847
E.00.2. CRANGZESoveenieieeiieieeteee ettt sttt ettt ettt et eeae s 1847

E.61. Release 8.2.2 ...c..uoiiiiiiiieeeeet ettt sttt 1847
E.61.1. Migration to Version 8.2.2.......ccccocerieririenienieeienie e 1847
E.O1.2. CHANEES ...eouvieieieiiieieieei ettt sttt et 1847

E.02. RelEaSE 8.2.1 ..cueiiiiieiieieeeeee ettt st 1848
E.62.1. Migration to Version 8.2.1.......cccoverieriiierieniieienie et 1848
E.02.2. CHANEES ...eotiiienieiiieieieee ettt st sttt st 1848

E.03. REICASE 8.2 ..ttt sttt sttt 1849
EL.03.1. OVEIVIEW ..ueiiiiniiiiiieitieiteteeteete sttt ettt sttt 1849
E.63.2. Migration to Version 8.2.........cccceverienerieiienienienieneeie et 1850
E.03.3. Chan@es ...coueeueeiiriiiieieeiteteetee ettt ettt 1852

E.63.3.1. Performance Improvements.........c..ccocceeeevverienieneenieneneenenenns 1852
E.63.3.2. Server Changesc.ccecuevuereenieneenienenienienieeienieeeesiesieenienieens 1853
E.63.3.3. QUEry Changes.........cccceerueerieerieeniienieeieenieesiessieesieeseessaeenseenns 1854
E.63.3.4. Object Manipulation Changescccceeveerieerieeneeniessieeneenns 1855
E.63.3.5. Utility Command Changes............ccocueevueerieerieenieeneesvessieeneenns 1856
E.63.3.6. Date/Time Changes...........cocceevueerieerieenieeniienieerieenieeseeeieenieenns 1857
E.63.3.7. Other Data Type and Function Changesc.cccoeceevvervieenieens 1857
E.63.3.8. PL/pgSQL Server-Side Language Changes........c..cccoeveevueenueene 1858
E.63.3.9. PL/Perl Server-Side Language Changes.........c..ccoeceervervieenieene 1858
E.63.3.10. PL/Python Server-Side Language Changes..........ccccceevueeuenne 1859
E.63.3.11. pSQlL Changesccceeecueeiiierieriieiierieeeeeee ettt 1859
E.63.3.12. pg_dump Changes.........c..ceceeuereevenerienienieieneereneneenenieens 1860
E.63.3.13. libpq Changesc..cccceeueeeeviinienenenieieneeeeseeeese e 1860
E.63.3.14. ecpg Changesccccecvevuieieriinieieneeeeeeeeeeee e 1860
E.63.3.15. WIndows POTt.....c...cociiiiiiiiiniiiiciieeeeeceeceeeeeeeee e 1860
E.63.3.16. Source Code Changesccccoceevvereriecienieceeneeienieneeneneens 1861
E.63.3.17. Contrib Changescccceceeeuirieieniiieiinieieneeeese e 1862

E.04. Release 8.1.23 ...ttt ettt 1863
E.64.1. Migration to Version 8.1.23........ccceeiiiiiieiiiniieiee et 1863
E.04.2. CHANEESovieiieieeiieieeteee ettt et sttt et 1863

E.05. Release 8.1.22 ..ottt et st 1864
E.65.1. Migration to Version 8.1.22........ccceeiiiiiienieniniene et 1865
E.05.2. CHANEES ..ottt st sttt 1865

E.06. Release 8.1.21 ...couiiuiiiiiiieiieieeeetete ettt sttt st 1866
E.66.1. Migration to Version 8.1.21c.ccocevviiriiiiiiniiienineee et 1866
E.06.2. CHANEES ..ottt sttt 1866

E.07. Release 8.1.20cc.eoiiriiiiiiiniieiieceteseetetee ettt st 1867
E.67.1. Migration to Version 8.1.20........ccccecuererieiiinenienineenieneetenieseeeeenee 1868
E.07.2. CHANEES ...eovieieiiiieeieieeiteteetee ettt sttt 1868

E.08. Release 8.1.19oouiiiiiiiiiiieeeteeetce ettt 1869

XXXIV

E.69.

E.70.

E.71.

E.72.

E.73.

E.74.

E.75.

E.76.

E.77.

E.78.

E.79.

E.80.

E.81.

E.82.

E.83.

E.84.

E.85.

E.68.1. Migration to Version 8.1.19......ccccccevviiriiiiiiiiiiniinieeeteee e 1869

E.68.2. CHANZES ...coouveeuiiiiieniieiieeieesiteste ettt sttt sttt et st s be e s e saee s 1869
Release 8.1.18 ..o 1870
E.69.1. Migration to Version 8.1.18.......cccceeviiriiniiiiiiiienieeieeeeeie e 1870
E.69.2. ChanESscc.eevuiiiiieniienieeieeiteete ettt ettt ettt ettt et st esaee s 1870
REIEASE 8.1.17 ..ouieieeeeee et 1871
E.70.1. Migration to Version 8.1.17.....c..cccceceviriiriiininiiniiieeneeeereeeeeeeeeeee 1871
E.70.2. Changesc..ccceeouiiiiieniieieiieeetesteeeee ettt 1871
REICASE 8. 1. 16 ..ottt st 1872
E.71.1. Migration to Version 8.1.16........ccccoceiiiiriiiniiiiniiiceneceeeeeeee 1872
E.71.2. Chan@Es ...cccueeeuiiiiiiiieiieeieeteete ettt ettt ettt et 1873
REIASE 8.1.15 .ottt e 1873
E.72.1. Migration to Version 8.1.15.......cccceriiiiiiriiieee e 1873
E.72.2. ChanES ...cecuveeuiiiiiiiieeie ettt ettt ettt et 1873
REIEASE B.1.14 ...ttt 1874
E.73.1. Migration to Version 8.1.14........ccccooiiiiiiiiiiniiiene e 1874
E.73.2. CHANEZES ..ottt st sttt et 1874
ReIEase 8.1.13 ..ottt 1875
E.74.1. Migration to Version 8.1.13c.cociviiiiiiiiiniiiene et 1876
E.74.2. CHANEZES ..ottt sttt 1876
Release 8.1.12 ...cuoiiiiiiiiiiiecee e 1876
E.75.1. Migration to Version 8.1.12.....c.cccccevueririiiiininienineenieneeienieseeeeeenee 1876
E.75.2. ChANEES ..ottt st 1876
Release 8.1.11 ..ot 1878
E.76.1. Migration to Version 8.1.11.....cccecievieriiniiieiienienieeieeree e 1878
E.76.2. CHANZES ...eovvveeiiieiieiieeie ettt ettt ettt sete et esaeesatesnbeenseesane s 1878
Release 8.1.10 ...cc.ooiiiiiiiiiiiiiicc e 1880
E.77.1. Migration to Version 8.1.10.......ccccceevieriiiriiiiniinienieeieeneeeie e 1880
E.77.2. CHANZES ...eevieiiieiieiieett ettt st ettt st ettt s beesaeesaee s 1880
Release 8.1.9 ..o 1880
E.78.1. Migration to Version 8.1.9......ccccceciiriiriiiniiiiniiiieniteieeseesee e 1881
E.78.2. CHANZES ...eovveiiieiiieiieeite ettt ettt st ettt st st e i s 1881
Release 8.1.8 ... 1881
E.79.1. Migration to Version 8.1.8.......ccccoceevieririiiiininenineeenecrereeeeeeeeeee 1881
E.79.2. Changesc..ccceeouiiieiiiieieiieeeeeseeeeee ettt s 1881
REICASE 8. 1.7 ettt sttt 1882
E.80.1. Migration to Version 8.1.7.......ccccocevvieiiririiiniiieiineccneceeeeeeeeeeee 1882
E.80.2. Changesccceoouiiiiiiiieiieiieeeeere ettt 1882
REICASE 8. 1.6 ..ttt e 1882
E.81.1. Migration to Version 8.1.6.......ccccocerieiirieiiiiieiene e 1883
E.81.2. Changescc.ceeuiriiiniieniieieeiteete ettt ettt 1883
REIEASE 8. 1.5 .ottt et 1883
E.82.1. Migration to Version 8.1.5......ccccoviriiiiiieieieiee e 1884
E.82.2. Changes ...cccveeuuiiiiiriieiiieieeteete ettt ettt e 1884
REIEASE 8. 1.4 ..ottt 1885
E.83.1. Migration to Version 8.1.4.......ccccocerieriiiiiiininiene et 1885
E.83.2. CHANEES ...eotieiieniiiiieieieeieeete ettt 1885
ReElEase 8.1.3 ..ot 1886
E.84.1. Migration to Version 8.1.3......cccccoeriiniririiiniiienieneee et 1886
E.84.2. CHANEES ...eoviruieniiriiiieieeiteeeteee sttt sttt 1887
ReElEase 8.1.2 ..o 1887
E.85.1. Migration to Version 8.1.2......cccccocervieririeiienenienineenieneerenieneeeeseeenee 1888

XXXV

E.86.

E.87.

E.88.

E.89.

E.90.

E.91.

E.92.

E.93.

E.94.

E.95.

E.96.

E.97.

E.85.2. CHANZES ...eovviieiiiiiieiieeit ettt ettt ettt ettt et st s beenaeesaee s 1888

Release 8.1.1 .cc.ooiiiiiiiiiicc 1889
E.86.1. Migration to Version 8.1.1.....cccccovvuiinieniiniiiiieieeieeieeeeeee e 1889
E.860.2. ChaNES ...cccuveruiiiiiiiieniteeieeiteete ettt st ettt st e be et st st esaee s 1889
Release 8.1ocoviiiiiiiiiiiic 1890
E.87. 1. OVEIVIEW ..ottt et 1890
E.87.2. Migration to Version 8.1.........cccccoirieniiiiieiieninieineeene e 1891
E.87.3. Additional Changescc.ceceeceririeninieieniieeee e 1894

E.87.3.1. Performance Improvementsc.ccoceeeueriecienieicncneennennnns 1894

E.87.3.2. Server Changesc..ccceeuieieiinieiienieicieseeeeee e 1895

E.87.3.3. Query Changes.........ccccecuevuieieiiiniiieniiieieseeeeee e 1896

E.87.3.4. Object Manipulation Changesccccceeeeerverenenueceeenennennen 1896

E.87.3.5. Utility Command Changes...........cccceeeveveerenienenvenueneeenennene 1897

E.87.3.6. Data Type and Function Changesc.ccccecevverenevvecenencnnennes 1897

E.87.3.7. Encoding and Locale Changes...........cccccevevererencneecneencnnennen 1899

E.87.3.8. General Server-Side Language Changes...........c.ccecevereenuennnn. 1900

E.87.3.9. PL/pgSQL Server-Side Language Changes........c..ccccceceruenenne. 1900

E.87.3.10. PL/Perl Server-Side Language Changes............cccccocereeruennenn. 1900

E.87.3.11. pSQl Changesc..coeeverierienieniieienieeteieetee et 1901

E.87.3.12. pg_dump Changes.........c..ceceevuereerienerienienieieneeeenienieenieniens 1902

E.87.3.13. libpq Changesccccecuerierienieneenienenieieniteieseete e 1902

E.87.3.14. Source Code Changescccceceevuerereenieneenieneeienieneenienens 1902

E.87.3.15. Contrib Changesc.cccoveeeeviereenienenienieneeienieeeenieseenieniens 1903
Release 8.0.26ccocueiiiiiiiiiiicieicece e 1903
E.88.1. Migration to Version 8.0.26..........ccceeeeriirciieniienienieenieeneeseeesieenieesenens 1904
E.88.2. CHANGZES ...cecuveeuiiiiieiieeie ettt ettt ettt ettt ste et e s e e s abesbeenseesane s 1904
Release 8.0.25 ..o 1905
E.89.1. Migration to Version 8.0.25......ccccceeriiriiiriiieniienienieeieesee st 1905
E.89.2. CHaNGES ...ceouveeuiiiiieriieeit ettt ettt sttt ettt et st st esaeesaee s 1905
Release 8.0.24 ... 1906
E.90.1. Migration to Version 8.0.24........cccceovieriiriiiinienieniteieeree st 1907
E.90.2. ChaNGES ...cccueevuiiiiieniieniieeieesitesite ettt ettt st ettt et e beesaeesaee s 1907
Release 8.0.23 ..o 1908
E.91.1. Migration to Version 8.0.23........ccccccceviririiininieninieneneereeseeeeeeeee 1908
E.91.2. Changesccceeouirieiiiieieiieeceenieeeeese ettt 1908
Release 8.0.22 ..ottt 1909
E.92.1. Migration to Version 8.0.22........c..ccceeiiiriiininiiniiiceneereeeeeeeeee 1909
E.92.2. Changescccoeouiiiiiiiieieieeeese et 1909
Release 8.0.21 ..ot 1910
E.93.1. Migration to Version 8.0.21......cccccecririninenenieininenesrerereeeneeenene 1910
E.93.2. Changesccocouiiiiiiiiiieicese e 1910
Re1Ease 8.0.20 ...ttt 1911
E.94.1. Migration to Version 8.0.20.........cccccvirininienienieiininenenieereeeeeeeniene 1911
E.94.2. Changesccooiiiiiiiiiiiic e 1911
Re1ease 8.0.19 ...t 1911
E.95.1. Migration to Version 8.0.19......ccccccecuvirinineneiiniiincnecceeceeeeee 1912
E.95.2. ChaNEES ..ottt sttt 1912
Release 8.0.18 ..o 1912
E.96.1. Migration to Version 8.0.18........ccceceriiiiiiininiieninieeneeteeeeeeeeee 1912
E.96.2. CHaNEESoviriieniiiieeiieieeiteeeteee sttt sttt 1913
Release 8.0.17 ..o 1913
E.97.1. Migration to Version 8.0.17........ccccovueririrnieninienineeneneeieneneeeeeeenee 1913

XXXVI

E.O7.2. CHANZES ...eovtiiiieiieiieeie ettt sttt sttt et et st st esaeesaee s 1914

E.98. Release 8.0.16ccccciiiiiiiiiiiiiiiiiiicccce e 1914
E.98.1. Migration to Version 8.0.16........cccceeveeriiriiiinienieniieieereeseceieesee e 1914
E.08.2. ChANGES ...coovveeuiiiiieiieeiie ettt ettt ettt st ettt st et saee i s 1914

E.99. Release 8.0.15 ..o 1915
E.99.1. Migration to Version 8.0.15........ccccoceviiiiiininiininieenecreeneeeeeeeee 1916
E.99.2. Changescceeouirieiiniieieiieeeesteeeeee ettt 1916

E.100. Release 8.0.14c.ciiiriririiicieieeetetentestetet ettt ettt et s 1917
E.100.1. Migration to Version 8.0.14.........ccccccciiiiiiiiiiiniiccecceeeeeeee 1917
E.100.2. Changesccoeiiiiiiiiiieiieeeeeneeeee et 1917

E.101. Release 8.0.13 ..ottt sttt ev et s 1918
E.101.1. Migration to Version 8.0.13 ... 1918
E.101.2. Changescoooiiiiiiiiieiiceeeceee e 1918

E.102. Release 8.0.12 ..ottt sttt ev st e et e 1918
E.102.1. Migration to Version 8.0.12.......ccccceviriminenenieiinienenenierereeeeeeeniene 1919
E.102.2. ChANEESveoviveieienicieeiieierestetetet ettt sttt e 1919

E.103. Release 8.0.11 .ottt sttt ettt s 1919
E.103.1. Migration to Version 8.0.11.......cccccevirininineiniininininceeececeeee 1919
E.103.2. CRANGESveveeneiieeieieeiteeee ettt sttt 1919

E.104. Release 8.0.10c.coiiiiiiiiiiieicieieiieieeeeeeeeee ettt 1920
E.104.1. Migration to Version 8.0.10......c..cccceviiiiiiiniiniiiniinienieneniencneeeee 1920
E.104.2. ChANGESooveeiiieeiieieeiteeeteee ettt ettt 1920

E.105. Release 8.0.9 ..cuoiiiiiiiiiiiicicicceceee st 1920
E.105.1. Migration to Version 8.0.9........ccccocuereririiininiienineeninenieneneeeeene 1921
E.105.2. CRANEES ..cuvveeiiieiieiieeieeiteteee ettt st tee st sete et esaeesateenbaenseesnne s 1921

E.106. Release 8.0.8cooiiiiiiiiiiiiciccieeceee e 1921
E.106.1. Migration to Version 8.0.8........ccccevieriiriiieniieniesieeieesee e 1921
E.106.2. CRANEES ..cuvveveiiiiiieiieeieeieeteste sttt sttt sete et e s e st sbeenaeesaee s 1922

E.107. Release 8.0.7 ...c.oiiiiiiiiiiiicicicicictcec e 1922
E.107.1. Migration to Version 8.0.7.......ccccceeriiriiiriiienienienieeritesee st 1923
E.107.2. CRANEES .eouvveiiiiiieiteeteeieeteste ettt ettt st e be et st esaee s 1923

E.108. Release 8.0.6ccccoeuiiiiiiiiiiiiiiiiiiiccee e 1924
E.108.1. Migration to Version 8.0.6........c.cceevieriiriiinienienieeieereeeee e 1924
E.108.2. Changesccooueruieieniieieiieieceenieeeeeee et 1924

E.109. Release 8.0.5 ...couiiiiiiiiiiitiietcee ettt ettt ettt s 1925
E.109.1. Migration to Version 8.0.5........ccccoceviiiiiininiiniiieeneceeeeeeeeeee 1925
E.109.2. Changesccoeiieiieiiieieiieieeeneeeeee et 1925

E.110. Release 8.0.4 ..c.cviuieiiiiiitiieeeetetetentestetee ettt ettt e 1926
E.110.1. Migration to Version 8.0.4........c..cocooiiiiiiiiiiiniiicenececeeeeeeee 1926
E.110.2. Changesc.coouiiiiiiiiiiieiieccse e e 1926

E. 111 Release 8.0.3 ..ottt sttt ettt e 1927
E.111.1. Migration to Version 8.0.3......cc.cccccrvirininenenieiininenenrerereeeneerennene 1927
E.1T1.2. ChANEES «.c.veoviieieieiciieitee ettt st 1928

E. 112, Release 8.0.2ouiouiiiiiieieeieeee ettt ettt et st 1928
E.112.1. Migration to Version 8.0.2.........ccccceviriminienienieiiniinenenierereeeneenennene 1929
E 1122, ChANGESooveeneiiieieieeiteeee ettt sttt 1929

E.1T13. Release 8.0.1 ..ottt s 1930
E.113.1. Migration to Version 8.0.1.......ccccoveririiniiniiniiniiiencneeeeeeeeeee 1931
E 1132, Chanescoueeviiieeieiieiteieeieetesteetee sttt sttt 1931

E.114. Release 8.0 ...cc.oouiiiiiiiiiiiiiicieeceteteeeee sttt 1931
E 1141 OVEIVIEW ..ottt e 1931
E.114.2. Migration to Version 8.0.......cc.ccocevviererierienieniienincenieneeteniesieeeeneeenee 1932

XXXVii

E.114.3. Deprecated FEaturesccoueviiriienienieniieieeneesie ettt 1934

E 1144, CRANEES .oouvveiiieiieiieetteeeteee ettt ettt ettt st e e s 1934
E.114.4.1. Performance IMprovementscceceerueerierrierneeneessieeneenne 1934

E.114.4.2. Server Changescccoovevierrieeieenieeieeieesie e esiee e sie e 1936

E.114.4.3. Query Changes.......ccccevierierrieeniienienieesiee st eieesiee st 1937

E.114.4.4. Object Manipulation Changesccccccceeveevveneecencnieennennens 1938

E.114.4.5. Utility Command Changes..........c..c.cceeeeeuereeceeneeceenenneennenenns 1939

E.114.4.6. Data Type and Function Changescccccccevveeceencnieennennnns 1940

E.114.4.7. Server-Side Language Changescccceceeveveevencneennennnns 1942

E.114.4.8. psql Changesccccecveviieiiiiinieieniciceeieeeeeeeee e 1943

E.114.4.9. pg_dump Changes............ccceeuirieiininiciiiniiieieeecseeeeieeeene 1943
E.114.4.10. libpg Changesc..coceeveveeririnrenienieieeeienenieseeeeeeeeneenenes 1944
E.114.4.11. Source Code Changesc.cccccvirieiiiiiiiinieiicnicnicienee 1944
E.114.4.12. Contrib Changesc.ccceeeeerinenrenieneeeneneneneeseereeeneenenes 1945

E.115. Release 7.4.30 ..ottt sttt et s 1946
E.115.1. Migration to Version 7.4.30......ccccecceriiiiiininienieee e 1946

E 1152, ChanGESooueeieiiieieieei ettt sttt 1946
E.116. Release 7.4.29 ..ottt sttt s 1947
E.116.1. Migration to Version 7.4.29......ccccoceviriiiininienineene et 1947
E.116.2. ChANGESooveeniiiieiieiieiteeeeee ettt sttt 1947
E.117. Release 7.4.28 ..ottt s 1948
E.117.1. Migration to Version 7.4.28......c.ccoccevirievieninienineenieneereneseeeeseenes 1948

E 1172, CRANGES ..ottt st 1948
E.118. ReIEASE 7.4.27 ..ottt 1949
E.118.1. Migration to Version 7.4.27ccceveeeieeciieneenienieenieeseesveenseesseesenes 1949
E.118.2. CRANEES ..cueveiiiiiieiieeie ettt ettt sttt ettt et e s atesbeenaeesaee s 1949
E.119. ReleaSE 7.4.20 ..ottt 1950
E.119.1. Migration to Version 7.4.26........ccceecuereeriiieneenienieenieeneesieenieesieeseeen 1950
E.119.2. CRANEES ..ouvteeiiieiiieiieeie ettt sttt ettt et st s e naeesaee s 1950
E.120. Release 7.4.25 ..o 1951
E.120.1. Migration to Version 7.4.25......cccceevieriiriienienienieeieeeeesee e 1951
E.120.2. CRANEES .couvveviiiiiieiieeieeieeiteste ettt sttt ettt ettt st esaee s 1951
E.121. Release 7.4.24 ... 1952
E.121.1. Migration to Version 7.4.24.........cccccccevvievininieninieneneeresreseeeeaeeeee 1952
E.121.2. Changescccoveiiieieiieieiieeeeneeeeeee et 1952
E.122. ReIEASE 7.4.23 ..ottt sttt sttt e 1952
E.122.1. Migration to Version 7.4.23........cccccoviiiiiininieniiieneneeeeeeeeeeee e 1953
E.122.2. Changesc.cooviiiiiiiiieieiieeeeseeee et 1953

E 1230 REIEASE 7.4.22 .ottt sttt ettt et e 1953
E.123.1. Migration to Version 7.4.22......c..cccccccciviiiiiiiiiniiiencieeeeeeeeeeee 1953
E.123.2. Changesc.coouiiiiiiiiiieiiccreeceee e 1953

E 124 ReIEASE 7.4.21 .ottt sttt ettt e 1954
E.124.1. Migration to Version 7.4.21ccccccevimiminenenieinienenenieeneeeneeennene 1954
E.124.2. CRANGES -...veoveeneiiieieieee ettt sttt et 1954
E.125. ReIEASE 7.4.20 ..ttt ettt st saea 1954
E.125.1. Migration to Version 7.4.20........ccccceririeiininiienineene et 1955
E.125.2. ChANGESeoveeniiiieieieei ettt sttt 1955
E.126. Release 7.4.19 ..ottt s 1955
E.126.1. Migration to Version 7.4.19......c.ccoceiiiiiiininiieninecneeeeeeeeeee 1956
E.126.2. ChANGESooveeieiieiieieeiteieeicee sttt sttt 1956
E.127. Release 7.4.18 ..ottt 1957
E.127.1. Migration to Version 7.4.18......ccccccceriririiininiienineenicneeieneneeeceaee 1957

XXXVIil

EL127.2. CRANEES .oouvveeiiiiiieiieeie ettt st ettt ettt st e naeesaee s 1957

E.128. Release 7.4. 17 ..ot 1957
E.128.1. Migration to Version 7.4.17cccceeviereiniiiinienienieeieesee st 1957
E.128.2. CRANEES .eouveeiiieiiieiieete ettt ettt ettt st e s s 1958

E.129. Release 7.4. 16cccuiiiiiiiiiiiiiiiiciiiicc e 1958
E.129.1. Migration to Version 7.4.16......c..cccccocevieiiininieniniencneeieieneeeeene 1958
E.129.2. Changesccccoueiuieieniieieiieeciesieceeeee et 1958

E.130. ReIEaSE 7.4.15 .ottt sttt ettt et 1959
E.130.1. Migration to Version 7.4.15. ...t 1959
E.130.2. Changesccooueiuiiiiiiieieiieeeeseeeeee e 1959

E 131 ReIEASE 7414 .ottt sttt ettt e 1959
E.131.1. Migration to Version 7.4.14.........cccccociiiiiiiiiiiiiieeeeeeeee 1959
E.131.2. Changesc.coouiiuiiiiiiiieiieceseeeeee e 1960

E.132. Release 7.4.13 .ottt sttt ettt e 1960
E.132.1. Migration to Version 7.4.13.......cccccvvimimineneneiininenesrereeeeeneeennene 1960
E.132.2. ChANGESvooueenieiieieieei ettt sttt 1960

E 133, ReICASE 7.4 12 .ottt sttt et s st sbe 1961
E.133.1. Migration to Version 7.4.12.......ccoceviiiinininienineee et 1961
E.133.2. ChanEscoueeiiiiieieiieiteieeteete sttt sttt 1961

E.134. Release 7.4. 11 oottt s 1962
E.134.1. Migration to Version 7.4.11......ccccoveviiiniininiininieneneeeeeeeeeeee 1962
E.134.2. Changescoeevuiriiiieieeiieieeicee sttt ettt 1962

E.135. Release 7.4.10 ..ottt 1963
E.135.1. Migration to Version 7.4.10......c..cccceveiiriininiinineinenenieneneeeenee 1963
E.135.2. CRANEES ..ouvveeiiiiiieiieeieeiteteete ettt sttt sttt be e e e st sbeenaeesnee s 1963

E.136. Release 7.4.9 ...cooiiiiiiiice s 1963
E.136.1. Migration to Version 7.4.9.......cccccevieriiriiienieniesieeieesee st 1963
E.136.2. CRANEES ..ouvveeiiiiiieiieeie ettt sttt ettt et et s enaeesaee s 1964

E.137.Release 7.4.8 ..o 1964
E.137.1. Migration to Version 7.4.8......ccceccverieriiriieniienienieenieenee st eveesiee s 1964
E.137.2. CRANEES .eouveeiiiiiieiieeteeeete sttt sttt st ettt st e i s 1966

E.138. Release 7.4.7 ..ot 1967
E.138.1. Migration to VErSion 7.4.7cccoeceivieriiniieneeneesie ettt 1967
E.138.2. Changescccooueiuieieniieieiieecieneceeeet ettt 1967

E.139. REICASE 7.4.60 .ttt sttt ettt 1967
E.139.1. Migration to Version 7.4.0........cccocevirieiieninienineeneneeeeeseeeeeeenee 1968
E.139.2. Changesccoouiiiiiiiiiieiieecereeeeee et 1968

E.140. REIEASE 7.4.5 .ottt sttt ettt s 1968
E.140.1. Migration to Version 7.4.5........cccoceiiiiiiiiniiiiiieeeneceeeeeeeeee 1969
E.140.2. Changescccoiiiiiiiiiiieiiiceseeece e 1969

E. 14T REIEASE 744 ..ottt ettt ettt st 1969
E.141.1. Migration to Version 7.4.4.......ccccceeevirimineneneeninenenenresreeeeeneenennenne 1969
E.141.2. CRANEES ..cveoviteieieieieeiieesesteetet ettt st e 1969

E. 142, ReIEASE T.4.3 ..ottt ettt ettt et st saen 1970
E.142.1. Migration to Version 7.4.3.......ccocieiriiiineniieiene e 1970
E.142.2. ChANGESooueeiiiieieieeeeee ettt st 1970

E.143. REILASE 7.4.2 ..ottt sttt s 1971
E.143.1. Migration to Version 7.4.2.......cccccoveririenieninieneneene et 1971
E.143.2. ChangEscoeeueriiiieieeiteieeieete ettt sttt 1972

E.144. Release 7.4.1 ..ottt 1973
E.144.1. Migration to Version 7.4.1....cccccocvviniriiiininienineeneneeteeeeeeeeenee 1973
E.144.2. ChANGES ..c.veoveeiiiiiieieeiteeeicetesteetee ettt sttt 1973

XXXIX

E 145, REIEASE 7.4 ...ttt eea e e et e e e eara e e e e eetreeeeeens 1974

E.145.1. OVEIVIEW ..ottt e 1974
E.145.2. Migration to VErSION 7.4cccueviiiiriieniiiiieniieniee sttt st 1976

B 145.3. CRAnges ..c..cevuviiiiiiieeiteieeiteete ettt sttt ettt ettt st st e s s 1977
E.145.3.1. Server Operation Changescceceevveerieenienierneeniessieenieenns 1977

E.145.3.2. Performance Improvementsc.cceceeeveveeceenceecncneennennees 1978

E.145.3.3. Server Configuration Changes..........c..ccccceceeevinieceencnceenennnns 1979

E.145.3.4. Query Changes.........ccccceeeieeuinienenenieieeeeeeseeeesre e 1980

E.145.3.5. Object Manipulation Changescc.ccccceceecenievencnieecennens 1981

E.145.3.6. Utility Command Changes.............c.ccecuecerieciniericncnieenneneens 1982

E.145.3.7. Data Type and Function Changesccccccceeieicncniencnnenn. 1983

E.145.3.8. Server-Side Language Changescccececevieicniniencnens 1985

E.145.3.9. psql Changesccccccueiiiiiiiniiiiniiccseceeeceee e 1985
E.145.3.10. pg_dump Changes...........ccccceeieviriniiiiiniiiiiiicicicnecieeeee 1986
E.145.3.11. libpg Changesc..cocceueveueririnienienieieieienenieseeeenee e 1986
E.145.3.12. JDBC Changesccccoueeveeririnienieieieeeienenieneeeeneeeneevenes 1987
E.145.3.13. Miscellaneous Interface Changesccccecceveeveenenienienncnns 1987
E.145.3.14. Source Code Changesccoccevuererienienienieneeienieneenienieans 1987
E.145.3.15. Contrib Changesc.cceceevereerenerienienieieneeienieseenienieens 1988

E.146. Release 7.3.21 ..ottt ettt s 1989
E.146.1. Migration to Version 7.3.21ccceoeviriiniininienineenieneeeeiceeeeeeeee 1989
E.146.2. CRANGESooveeniiieeiieieeiteeetcee sttt st 1989
E.147. Release 7.3.20cooiiiiiiiiiiieicictcieteeeeees ettt 1989
E.147.1. Migration to Version 7.3.20......c.cccceverieiinennienineenenenieneneeeeeeeenee 1990
E.147.2. CRANZES ..ovveeiiieiieiieeie ettt sttt ste et esaaesabesbaenseesane s 1990
E.148. Release 7.3.19 ..ot 1990
E.148.1. Migration to Version 7.3.19......ccccevieriiriiinieiesieeieeneeeie e 1990
E.148.2. CRANEES ..cuvveeiiiiiieiieeie ettt ettt ettt st ettt st saeesaee s 1990
E.149. Release 7.3.18 ..o 1991
E.149.1. Migration to Version 7.3.18......ccccoeviiriiniiinieniinieeitereeeee e 1991
E.149.2. CRANEES ..ouvveiiieiieiieete ettt ettt ettt et ettt esaee s 1991
E.150. Release 7.3.17 ..ot 1991
E.150.1. Migration to Version 7.3.17ccccceevieriiniiiinienienieeieeseeeee e 1991
E.150.2. Changescccooueiuieieniiiieiieieeieneeeeeet ettt 1991

E 15T REICASE 7.3.16 ittt ettt et 1992
E.151.1. Migration to Version 7.3.16......c..cccccoeriieiiininiininiecneceeeeeeeee 1992
E.151.2. Changesccoouiiiiiiiiieieiieceseeeee et 1992
E.152. ReIEASE 7.3.15 .ottt sttt ettt e 1992
E.152.1. Migration to Version 7.3.15 ... 1992
E.152.2. Changesccoouiiiiiiiiiiiiciieccreceee e 1993
E.153. Release 7.3.14 ..ottt sttt ettt 1993
E.153.1. Migration to Version 7.3.14.......ccccccevirimineneneiinincnenrereneeeneeneniene 1994
E.153.2. ChanEES «....ooveeveieieieiieiiniestesteceetee ettt sttt 1994

E 154, Release 7.3.13 ...ttt sttt ettt et st saen 1994
E.154.1. Migration to Version 7.3.13.......ccccceviriminenenniininenesrerereeeeeesiene 1994
E.154.2. CRANGESvooviieieieieiieiteeretcetet ettt st 1994
E.155. ReIEASE 7.3.12 .ottt sttt s 1995
E.155.1. Migration to Version 7.3.12......ccccoceviiiiiininieniieeieneeeeeeeeeeeee 1995
E.155.2. ChanEscoueeiiriiiieiieiteeeeee sttt 1995
E.156. Release 7.3.11 .ottt 1995
E.156.1. Migration to Version 7.3.11.....ccoccooenininiininiinineencneeecicneecee 1996
E.156.2. ChaNESeoveeiiiieiieieeiteieeieetesteetee ettt sttt 1996

xl

E.157. REIEASE 7.3.10 ceviiiieieeiee et ere e e e e e e e eenreeeeens 1996

E.157.1. Migration to Version 7.3.10......ccccoevieriiriiiinienienieeieeneesee e 1996
EL157.2. CRANEES .oouvveiiieiieiieeie ettt ettt ettt et et s e i s 1997
E.158. REIEASE 7.3.9 ..ottt 1998
E.158.1. Migration to Version 7.3.9.......ccociiriiriiiniiiieieeieeieeeesee e 1998
E.158.2. Changescccooveiuieiiiieieiieectereceeee et 1998
E.159. REIEASE 7.3.8 ..cuiiniiieiieieiertictce ettt sttt ettt et 1998
E.159.1. Migration to Version 7.3.8........ccccoceriririiininienineeieneceeieee e 1999
E.159.2. Changesccooueiuiiiiiiiiieiieeccsececee et 1999
E.160. REICASE 7.3.7 .ottt ettt ettt e 1999
E.160.1. Migration to Version 7.3.7........ccccoceiiiiiiiiniiiiniieceneceeeeeeeeeeee 1999
E.160.2. CRANEESeoveeverenienieiieiiniesteetetetet ettt sttt 1999
E.161. REICASE 7.3.60 ..ottt sttt et s s 2000
E.161.1. Migration to Version 7.3.0.......cccceerieririenienieiene e 2000
E.161.2. CRANGES -...veoeeenieieeieteee et sttt 2000
E.162. ReIEASE 7.3.5 .ottt ettt sttt 2000
E.162.1. Migration to Version 7.3.5.....ccccocriiriiiininieieneeee e 2001
E.162.2. ChANGESooueeniiiieiieieeiteeeeee sttt sttt 2001
E.163. REIEASE 7.3.4 ..ottt s 2001
E.163.1. Migration to Version 7.3.4.......ccccevieririineninieneneene et 2002
E.163.2. Chan@ESooueeiiiieieieeiteeeteee sttt sttt 2002
E.164. Release 7.3.3 ..ottt 2002
E.164.1. Migration to Version 7.3.3c.ccocvviirinirnininieneneene et 2002
E.164.2. ChaNESooveeiiiiiieiieiteieeicetesteetee sttt sttt 2002
E.165. REIEASE 7.3.2 ..ottt sttt s 2004
E.165.1. Migration to Version 7.3.2......cccecierieriiriiieniieniesieeieeseesneeseenieesene s 2004
E.165.2. CRANEES ..cuvveeiiieiieiieeie ettt sttt et ettt e beenaeesaee s 2004
E.166. REIEASE 7.3.1 .ottt sttt et 2005
E.166.1. Migration to Version 7.3.1....cccccocierieniiiniiiiniieniesieeieesee st 2006
E.166.2. CRANEES ..cuvveviiieiiieiieiie ettt ettt ettt ettt s beesaeesaee s 2006
E.167. REICASE 7.3 ..ottt et st 2006
E.167.1. OVEIVIBW ..ottt st 2006
E.167.2. Migration to VErSIOn 7.3ccociriiiinieniiniienieerte sttt 2007
E.167.3. Changesccccoueiieiiniieiieiieiecieniecteeee ettt 2008
E.167.3.1. Server Operationcccceceeeuerievieneneenieneeieneeeeneeeenenieens 2008

E.167.3.2. PerfOrmancecocueereerieriieinieeiieeiceieestee et 2008

E.167.3.3. PrivIle@es......ccueoieiiiiiiiiiieicieeeceereeeeeeeeee e 2009

E.167.3.4. Server Configuration...........ccccceveevuereriecieniecieneeienieneeneneens 2009

E.167.3.5. QUETIES ..ccuevieeeiieeiiee ettt etee e e e sereesneeesnaeennee 2010

E.167.3.6. Object Manipulationcecceeeeriererienenieieeeeie e 2010

E.167.3.7. Utility COMMANGScceeruiruieiiriieieneeieieeieie e 2011

E.167.3.8. Data Types and Functions.............cccceeeeeruerieneneeseneneeenees 2012

E.167.3.9. InternationaliZationcccceeereerienerienienieie et 2013
E.167.3.10. Server-side Languagesc.ccecereeienenienieneeieneneeieeneee 2014
E.167.3. 11, PSALueiiiiiiiieieiieeerccecee et 2014
E.167.3.12. 1IDPQ cevenvenieieieiiiesiencceeee sttt 2014
E.167.3.13. JDBC ...ttt 2015
E.167.3.14. Miscellaneous Interfaces..........c.ccoceeveevevivinincncniccnecncnnenne. 2015
E.167.3.15. Source Code.......ccooerieiiirinininiiieieieieinesieseeeeeee e 2015
E.167.3.16. CONLIID ...ceviiiiiiiiiiccccecceeeeeeeeee e 2017

E.168. Release 7.2.8 ...cooviuiiiiiiiiiiieiceeteeceet ettt 2017
E.168.1. Migration to Version 7.2.8........ccccocuererienienenienineenenentenenieeeeseeenee 2017

xli

E.168.2. CRANEES ..cuvvevuiiiiieiieeie ettt ettt sttt sttt st s saeesaee s 2018

E.169. REICASE T.2.7 .ottt sttt ettt et e 2018
E.169.1. Migration to VErsion 7.2.7cceceerieriieriiieniientenieesieeseesee e siee s 2018
E.169.2. CRANEES ..cuvveieieiiieiieeie ettt ettt ettt st n 2018

E.170. REIEASE T.2.6 ...ttt ettt 2019
E.170.1. Migration to VEersion 7.2.0........cccceceverievieninieenineeneneerenreseeeeseeenes 2019
E.170.2. Changesccoouiiiieieniieieieeeeieneeeeeee ettt 2019

E. 171, REICASE 7.2.5 .ottt ettt ettt sttt s e e sae e nneenens 2019
E.171.1. Migration to Version 7.2.5.....ccccccoceviriiriiininiinineeene e 2019
E.171.2. Changesccoooviiiiiiiiieiciecese et 2020

E. 172, REICASE T.2.4 ..ottt ettt et ettt et sae et saesnens 2020
E.172.1. Migration to VErsion 7.2.4ccccceerieriiiriieneeneenieeieeseesee e 2020
E 1722, CRANEES .couveeiiiiiieiteeie ettt ettt 2020

E.173. ReIEASE 7.2.3 ..ottt sttt ettt et s st saen 2021
E.173.1. Migration to Version 7.2.3.......ccocoiiiiiieiiniieiene e 2021
E.173.2. CRANGES ..ottt sttt 2021

E. 174, REICASE T.2.2 .ottt ettt sttt st saen 2021
E.174.1. Migration to Version 7.2.2.......ccccceveriiienieniniene et 2021
E.174.2. CRANGESveveenieieeiieieee ettt sttt 2021

E.175. REIEASE T.2.1 .ottt sttt sttt st 2022
E.175.1. Migration to Version 7.2.1.....c.ccocvvieriiieiininienineeeneeeeieeeeeeeee 2022
E.175.2. ChANGES ...veoveeniiiieiieieeiteeceest ettt et 2022

E.176. REICASE 7.2 ..ottt ettt st 2023
E.176.1. OVEIVIEW ..ottt sttt 2023
E.176.2. Migration to VErSION 7.2.......cccceeiiierienieeiieniieniesieenieeseesreeseenaeesanes 2023
E.176.3. CRANEES ..cuveeeiiieiieiieeie ettt sttt ettt aesatesbeenaeesane s 2024

E.176.3.1. Server OPerationcccueecveevueerieerieesueenieesieesieesieesressueesseenns 2024
E.176.3.2. Performancec..coccecverereenieneenienenieieneeteseeeeeniesieennenieens 2024
E.176.3.3. PriVIIEZES...cctieiieeieeiieiieeieeieeite ettt 2025
E.176.3.4. Client AuthentiCationccccoceevuerereenieneenueneeeenieneenneneens 2025
E.176.3.5. Server Configuration...........ceceerveerieenieenieenieniieeneeseessieesieenns 2025
E.176.3.6. QUETIES ...c.evieeeiieeiiie et ettt e ettt e eeive e esireeeseveeeereesssaeesareeennns 2026
E.176.3.7. Schema Manipulationcccceerueeveeniiniennienneenieeieeieene 2026
E.176.3.8. Utility Commands.........c..ceceeeuereevenerieenienieieneeeenieneenenieens 2026
E.176.3.9. Data Types and Functions.............c.cceceeeueveeceinieccncneennennens 2027
E.176.3.10. InternationaliZationc.ccceveerieerieinieenienienseenieeieeieene 2028
E.176.3.11. PL/PESQL ..ottt 2028
E.176.3.12. PL/PEIL ..ottt 2029
E.176.3.13. PLITCL ittt 2029
E.176.3.14. PL/PYhON ..ottt 2029
Eo176.3.15. PSQLatiiiiiieiee ettt 2029
E.176.3.16. 1IDPQ c.eeeniieiieieeeeeeeeee et 2029
E.176.3.17. JDBC ..ttt 2029
E.176.3.18. ODBC ...ttt 2030
E.176.3.19. ECPG ..ottt 2031
E.176.3.20. MisC. INterfaces........ccceoerieniereenienenieicnceiesceteee e 2031
E.176.3.21. Build and Install..........ccccecoeviniinininiiiinieeceeieeeeeeee 2031
E.176.3.22. S0Urce Code......cc.couerieriiniiiinieeieneeteieeitee et 2032
E.176.3.23. CONLLID ..ottt 2032

E. 177, REILASE T.1.3 .ottt st ettt st 2032
E.177.1. Migration to Version 7.1.3 . ..cc.ccocvviirininnininiinineeneneeteiceeeeeeeeee 2032
E.177.2. CRANZES ..coveveeniiieeiieieeiteeceeste ettt sttt 2033

xlii

E 178, REIEASE 7. 1.2 ..ottt e e e e e e e e e eetreaeeeens 2033

E.178.1. Migration to Version 7.1.2.......ccccceeviiriiiniiiiniienienie ettt 2033
E.178.2. CRANEES .ecuvteiiieiieiieete ettt ettt st ettt s e s s 2033
E.179.RelEaSe T.1.1 oottt et 2033
E.179.1. Migration to Version 7.1.1....ccccociiriiniiniiiieieeieeieeeeeee e 2034
E.179.2. Chan@Esooeeiiriieieiieeeieeeceeceee et 2034
E.180. REIEASE 7.1 ..ottt ettt st ettt 2034
E.180.1. Migration to Version 7.1ccccoceevieririiiiieninieniieeeneereeeeeeeeeeee 2035
E.180.2. Changescccouiiuiiiiiiieieiieecieneeeeee et 2035
E.181. Release 7.0.3 c..cuoiiiiiiiierieetce ettt sttt ettt et e 2038
E.181.1. Migration to Version 7.0.3........cccoceiiiiiiiiiiiiiiiceneceeeeeceee 2038
E.181.2. Changesccoouiiiiiiiiiiieiicccreecee e 2039
E.182. Release 7.0.2 c..cueieuieieiiiierieicicteitettetesestet ettt ettt ettt e 2039
E.182.1. Migration to Version 7.0.2.......cccceeceiiiieienieiene e 2040
E.182.2. CRANGES -...veveenieiieiieieee ettt st 2040
E.183. Release 7.0.1 c..couieiiiiiiieieeiee ettt sttt et s st 2040
E.183.1. Migration to Version 7.0.1.......ccocoeoiiiiiiiiniiieniee e 2040
E.183.2. CRANGESveveeniiiieiieieei ettt sttt 2040
E.184. ReIEASE 7.0 ..ottt sttt s 2041
E.184.1. Migration to Version 7.0.......cccccocevvieririenienienienieneenie et 2041
E.184.2. CRANGESooveenieiieiieieeiteeee sttt 2042
E.185. ReleaSE 6.5.3 ..ottt 2047
E.185.1. Migration to Version 6.5.3........ccccoceririrniininiienineeneneetenieeeeeeeeenee 2048
E.185.2. CRANGES ..c.veoveiniiiieiieieeieeeetceeste ettt et 2048
E.186. REIEASE 0.5.2 c..coniiiiiiiiieiiieeteceteestetest ettt ettt st 2048
E.186.1. Migration to Version 6.5.2........cccceeveeriiriiienieenienieenieeneesieeveesiee e 2048
E.186.2. CRANEES ..cuveeeiiieiiieiieete ettt sttt ettt e e st b e saeesane s 2048
E.187. REIEASE 6.5.1 .ottt ettt et s 2049
E.187.1. Migration to Version 6.5.1......ccceccvevieriiniiieniiiienieeieesee et 2049
E.187.2. CRANEES ..ouveeiiieiiieiieete ettt sttt ettt s e s s 2049
E.188. REICASE 6.5 ...ceeiiiiiiiiiiieiieeteec ettt ettt sttt et 2050
E.188.1. Migration to VErSion 6.5.......cccceeviiiriieniiniiiiieneesieeieesee e 2051
E.188.1.1. Multiversion Concurrency COntrolcceceevveeveeriersienneenne 2051

E.188.2. Changescccoouiriieiiiieiiciieeceeneeceeeet ettt 2051
E.189. REICASE 60.4.2 ..ottt ettt ettt 2054
E.189.1. Migration to Version 6.4.2........c..cccccoerieiieniniienineeneneeeeseseeeeeeeeee 2055
E.189.2. Changesccoouiiiiiiiieieiieeceeseeeeee et 2055
E.190. RElEaSE 60.4.1 ..cveniinieiieiiiiriiieictecetetestesteteeei ettt ettt e 2055
E.190.1. Migration to Version 6.4.1........c.ccccooiiiiiiiiiiiniiiiceceeeeeeee 2055
E.190.2. Changesccooiiiiiiiiiieiieceseeceee e 2055

E. 191, ReICASE 0.4 ...ttt ettt sttt et s st saens 2056
E.191.1. Migration to Version 0.4.........ccccceeueirinenenienieieeneniestesrereeeneenennenee 2056
E.191.2. CRANEES «...veviieieieieieeiteeseetcetet ettt st 2057
E.192. ReIEaSE 0.3.2 ..ottt ettt et st 2060
E.192.1. CRANEESooviviienieiciieiiniesieteetet ettt 2061
E.193. ReIEASE 0.3.1 ..ottt sttt et s st 2061
E.193.1. CRANGES ..cuveveenieieeieieei ettt st 2061
E.194. REIEASE 6.3 ...ttt sttt s 2062
E.194.1. Migration to Version 6.3.......cc.ccoceevuererienieneniienineeie et 2063
E.194.2. Changescoeevuiriiiieieeiieieeieetese ettt ettt 2063
E.195. RelEaSE 6.2.1 ..cuvoniiiiiiiiiiiccecteeeee et 2066
E.195.1. Migration from version 6.2 to version 6.2.1.......c.cccocerervienenennencne. 2067

xliii

E.195.2. CRANEES ..ouvteviiiiiieiieete ettt sttt ettt et st st saeesaee s 2067

E.196. REleaSe 6.2cuoiiiiiiiiiiiiiiiciciciciiece e 2067
E.196.1. Migration from version 6.1 to version 6.2..........c.cceveeveereeenieeneennnenn 2068
E.196.2. Migration from version 1.x to version 6.2c..ccccceceveecvenienveuenncnne. 2068
E.196.3. CRANEES ..cuveeeiiiiiieiieeie ettt ettt sttt ettt n 2068

E.197.Release 6.1.1c.ooiiiiiiiiiieieteeeeeteeteet ettt et 2070
E.197.1. Migration from version 6.1 to version 6.1.1........c..cccccoeeininnnnnnne. 2070
E.197.2. Changesccoouiiiiiiiiieieieeeeeseeeeee et 2070

E.198. REIEASE 6.1 ..ottt sttt 2071
E.198.1. Migration to Version 6.1c.ccoceiiiiiiiiiiiiniiiceneceeceeeeeee 2071
E.198.2. Changescooiiuiiiiiiiiiiiieereeee e 2071

E.199. RelEas 0.0c.eoiuieiiiieiieieeteee ettt ettt sttt et s enen 2073
E.199.1. Migration from version 1.09 to version 6.0.........c.ccccoevvevverveenenennenn 2073
E.199.2. Migration from pre-1.09 to version 6.0ccccceceverinrenrenveceenennenn 2073
E.199.3. ChanEEscoveeveieieieiieiinierietcetete ettt st 2074

E.200. Release 1.09c.ooiiiiiiiieeeeeetete ettt sttt st 2076

E.201. Release 1.02ouioiiiiiieiieeeee ettt ettt st sbe 2076
E.201.1. Migration from version 1.02 to version 1.02.1.......cccccocervienininnencnne. 2076
E.201.2. Dump/Reload Procedureccocvererieiieniinienineeneneeeieeeee e 2076
E.201.3. ChanGEScoueeieriieieieeiteieeicee sttt e et 2077

E.202. Release 1071 ..ottt 2077
E.202.1. Migration from version 1.0 to version 1.01......c..coccevenerienininnencnne. 2077
E.202.2. CRANGESveoveeniiieeiieieeiteieeieetesteetee sttt sttt 2079

E.203. Release 1.0 ...cc.oiiiiiiiiiiiiiiciciccteeeee ettt 2080
E.203.1. CRANEES .oouvveeiiieiieiieeie ettt ettt et e sete et esaeesabesbeenseesane s 2080

E.204. Postgres95 Release 0.03......cc.ooiiiiiieniiiieiieeiteite ettt st 2081
E.204. 1. CRANEES ..cvveeiiieiieiieeie ettt ettt ettt ettt e sttt e st esatesbeenaeesaee s 2081

E.205. Postgres95 Release 0.02......cc.coiiiiiiiiiinieiieeeeiie sttt 2083
E.205.1. CRANEES .eouveeviiiiiieiieeie ettt ettt ettt e be et e st st esaeesaee s 2083

E.206. Postgres95 Release 0.01.....cocioiiiiiiiiiiiiiiieeieeie ettt 2084

F. Additional Supplied MOAUIEScccceeruiriiiniinieeiteniieeieeeeite sttt 2085

Fol. adminpack.....coo.coviiiiiiiiiieieeet ettt st 2085
F.1.1. Functions implemented............ccoceriiinienieniiieniieneenieeieeeeeee e 2085

F.2. QUtO_eXPlaiN...c.cociiiiiiiiiiiciieiecieecceee ettt s 2086
F.2.1. Configuration parameters...........ccccoeeeerrerueeuenreneenueneennenueenenseseenesseenne 2086
F2.2.BXAMPIE ..ot 2087
F2.30 AUNOT ..ttt ettt e 2088

B3 DO _IN .ottt st 2088
F3.1. EXamPle USAZE ...c..ooueiiiiiiieiiiicicreeceee e 2088
FL3.20 AUNOTS .ottt 2088

Fld. DIEE_@IST .ttt ettt sttt et sb et e et et sae et e neenens 2088
F4.1. EXQMPIE USAZEeouveevieriiiiieeiieeiteeieeteeite sttt sttt s 2088
Fid.2. AUNOTS .ottt 2089

LS. ChKPASS. .. cueiiiiciitee e et s 2089
F5. 10 AUNOT .t 2090

FLB. CIEEXT .ottt b ettt e b bt e sttt e st e nbe s bt ebenbeens 2090
F.6.1. RAtIONAIE «....ooviiiiiiiiciciiiiecccceete et 2090
F.6.2. HOW to USE It ..o e 2090
F.6.3. String Comparison Behavior.........c..coceverieiininiiininencneniencneeeee 2091
F.6.4. LIMIALIONSvooviiiieieieieiieiesetceeree ettt st 2091
Fi6.5. AULNOT ...cviiiiiiiiiccccrcee et e 2092

BT, CUDE ... 2092

xliv

FU7. 1L SYNEAX ittt sttt sttt st st saee s 2092

FL7.2. PrECISION....cccciiiiiiiieciie ettt et et e e eeebeeestbeeeebeeeasaeesssaeenns 2093
B30 USAZE.ceiiiiiieiteee ettt ettt st ettt st e b et st et esaee s 2093
F7.4. DEfaultsccccuiiiciiiiiiieeeie ettt ettt e e et eeeb e e saraeeenraaenes 2095
FL7.5. INOEES «.viectieeeiee ettt et e et e e e tb e e s tae e s bt e e sbeeeeseaesbeaensseesnssessssaaennes 2095
FL7.6. CIedits .ooeuiieeiiiceiieeeieeette ettt ettt vee e st e e s ae e eebeeestbeeesseesnsaaesnsaeennes 2096
LRSI L) 1101 RS 2096
ADINK _COMMECT ...vvviiiiiiieieieeeeeeee e et e e e e e e e e e e s e s seanassaaaeeees 2096
ADIINK_CONMECE_U..eiiiiiiiiiiiiiiiieeee et e e e e e e e e e e e s e e s eansasraaeeees 2099
ADINK_AISCONMMECT ..ooiiiiiiiiiiiiieeeteeeeee e e e e e e e e e e e s e e e eanaaraeeeeees 2100
ADINK ..ot e e et e et e e 2101
ADIIIIK EXEC et e e e e e e e e e e e e e et eeeeeeeeeeeresaeeeaesseneneeeee 2104
ADINK_OPCN....eutiiiiiieiee ettt sttt 2106
ADINK_FELCI ..ot 2108
ALK CLOSE ettt e e et e e e eeeeeeeseseeeeesesnaaeeees 2110
dblink_ZEt_CONNECTIONSeeuvetieiieiietieie sttt ettt 2112
AblINK_@ITOT_MESSAZEvenveeueeniiiieiieiceie sttt ettt ettt see e 2113
AbIINK_SENA_QUETY ...evieniiiiiieiieiteeece ettt 2114
ADINK_IS_DUSY ..evteniiiiieiiiieetet ettt sttt 2115
ABINK_GEt_ MO ..ottt 2116
ABINK_GEt_TESUIL...c.eiiiiiniiiiiieietee ettt 2117
dblink_CanCel_qUETY ...cooueruieiiiiriieiieiceterieeteetet et 2119
ADINK_ GOt PKEY ...ttt e 2120
dblink_build_SQl_iNSeTt.....cccverrieiieiienieeiieiteet ettt sre et esee e e beenaeeseee s 2122
dblink_build_Sql_delete.........cccviriieriierieiiieiieete ettt 2124
dblink_build_Sql_update........cccueeviierierieiiieieeie ettt 2126
FLO. ICE N .ttt e e e e e b e et e e e tb e e e ta e e e baeeearaeans 2128
F.O.1. CONfigUIAtionc.eevieriiiiieiienie ettt ettt e e e e e s 2128
FLO. 2. TUSAZE.cc.uiiiiieiieeiit ettt sttt ettt st e e naee s 2128
Fo10. QIO _XSYMtuiiiiiiiiiieieetece ettt ettt sttt st ettt st sbe e b e satesnbeebee e 2128
Fo10. 1. CONAGUIATION «..eiiiiiiiieiiiiieeiieste ettt ettt et n 2128
FL10.2. USAZE...etitieiieeiit ettt sttt ettt et st st e b e saee s 2129
F.11. @arthdiStanCeeeeiuviieeiie ettt et eetee et e et e e etveeeeaeeeeaeeeasaeesnseeens 2130
F.11.1. Cube-based earth diStancCescccuveecuieeriiirenciie e esieeesveeseeeeeiee e 2130
F.11.2. Point-based earth diStancCesc.cceeevieeeieiiieeeeeecieeee e e 2131
F12. fuzzystrmatCh.........cccooiiiiiiiiiiiieeeeeeet e 2132
Fo12.1. SOUNAEX...ooiiiiiiiieiceceee ettt e et e et e e e e eavaaeeeea 2132
F12.2. LeVenSheIncccooiiiiiiiieiiiiee ettt 2133
F.12.3. MEtaphone........ccooiiiiiiiieiiceseecee et 2133
F.12.4. Double Metaphone...........ccovieriirieenienieniieeeeceeeieesete st 2133
FLIBURSTOTE .t et e ettt e e e et e e e e ettt e e e e e ara e e e e eenrraeaaeans 2134
F.13.1. hstore External Representationc..ceceveeeieneneenenenienieseeeeeene 2134
F.13.2. hstore Operators and FUNCHONSccceeiiiriieieninieieieeeeeceeeee 2135
Fo13.3. INAEXES «.vviiiieiiiee ettt e e e e e et e e e e stvae e e e earaaeeeeans 2137
F13.4. EXAMPIES ..couiiiiiiiiiiiieiieeeteste ettt 2138
FL13.5. StAtISHICS .viieeuriiieiiieeciiie ettt ettt et e vt e e et e eeaveeeeateeeeaaeeeteeeeveeeeaes 2139
F.13.6. COmMPAtiDILIty ...cvevveeieiieiieiieieeienieeteetee et 2139
Fo13.7. AULNOTS ...oiiiiiiciie e ettt et et eear e et e e e vee e 2140
FilL ANTAZE ettt ettt sttt et et nae st 2140
Fol4.1. FUNCHONS ...ttt ettt e vt e et e e eareeeeaseeetaeeenveeeenns 2140
Fo14.2. SamPle USES....cccuerueeiiriiriieiinieeienieeiteniesiteteste et sttt 2140
L BT 111 21 4 OO P OO UPURURRRIPINt 2141

xly

F.15.1. intarray Functions and Operatorscccceereercieenieeneeneeesieeneennnenn 2141

Fo15.2. INAEX SUPPOTL...ciiiiiiiiiiiiiiieiieeie ettt ettt st ettt e n 2143
FIIS5.30 EXAMPIE ..ottt ettt st e 2143
F15.4. Benchmarkccooooiiiiiiiiiiiiiiiicccccc 2144
FI5.5. AUhOrS .o 2144
FLLO. ASMutiiceeet ettt ettt ettt 2144
FiI16.1. Data tYPeS...c..ceeeiirieeieiieiieieeieeteste ettt ettt 2144
FLL0.2. CaSES euveuiiieiirieeteteteteetet ettt ettt ettt sttt 2145
F.16.3. Functions and OPEratorsccoceeeeruerieieniieienieneeee e 2146
F16.4. EXAMPIESoooiiiiiiiiiiiiciieeeeseee e 2146
F.16.5. Bibliography........c.cccoooiiiiiiiiiiiiiceece e 2147
Fo16.6. AUNOT ...ooviiiiiiiiciccircceteee ettt e 2147
FLI7. 00 ittt ettt ettt s 2148
FoI17.1. RAtONALE ..ottt et 2148
F17.2. HOW t0 USE Tt ..ttt 2148
Fo17.3. LIMIEAtIONS ...ttt sttt st 2148
Fo17.4 AUNOT ..ot e 2149
LB IEIE .ttt sttt st s b et bt et sbe st e b nben 2149
F 18, 1. DEfINItIONScviiiienienieiieiieiisiestetetet ettt 2149
F.18.2. Operators and FUNCHIONScoceviriinenieiiiniiiiencecee et 2150
FI8.3 INAEXES ..ttt st e 2153
FoI8.4. EXAMPIE ..ottt 2153
FoI8.5. AUNOTSviiiiiiiiiicicicce e 2155
Fo19. 01d2NAMEoviiiiiiiiiiciieect e 2156
FLL1O. 1. OVEIVIEW ..ttt e 2156
F.19.2. 01d2namMe OPLIONS ..cuvveevieniieiieniieeiieniiestesteenieeseeesteesseeseesaseeseenseesanes 2156
Fi19.3. EXAMPIES ..couuiiriiiiiieiieeie ettt sttt sttt et naee e s 2157
F.19.4. LIMItAtiONS ...cvovviiiiiiiiiiiiiiiiiicieeete et 2159
F19.5. AUNOT ..o 2159
F.20. PAZEINSPECL vttt ettt ettt sttt et st ettt e st ebeenbeesabeenbeebee e 2159
F20.1. FUNCHONS ...ttt e 2160
F.21. passWOTACRECKeovuiiiiiiiieiieic ettt st 2161
F.22. pg_archiVeClBanuUpcovueevuiiiiiiiiiiieniie ettt st 2162
F22. 1. USAZE .ottt st s 2162
F.22.2. pg_archivecleanup OPtions.........coccecvevueriecieniinieneneeiene e 2163
F22.3. EXAMPIES ...ttt 2163
F.22.4. Supported SEIVET VEISIONScccoereeruiriieieiieieeeeseene e eresre e 2163
F22.5. ATNOT ..ottt e 2163
FL23. PEDENCH ...t 2163
F23.1. OVEIVIEW ..onieieieeieeeteee ettt ettt ettt ae s 2164
F.23.2. pgbench Initialization OPtions...........ccceeeevuerieerienenieneseeieseeeee e 2165
F.23.3. pgbench Benchmarking Options...........cccceevuereeienenieneneeieneeeeee e 2165
F.23.4. pgbench Common OPtionsc.cceceererierieniinieneneenee et 2166
F.23.5. What is the “transaction” actually performed in pgbench?.................... 2167
F.23.6. CUStOM SCIIPLS c..venvieieeiieiieieeieeie sttt ettt sttt 2167
F.23.7. Per-transaction IOZZINgccoeeveveiriniinenienieieieene oo 2169
F.23.8. GOOd PractiCescc.ccueiruiririiniiieieieiiniisiesteteeeeee et 2169
F24. pg_ DUuffercache..........ooeiieiiiiiiiiieeectce ettt 2170
F.24.1. The pg_buffercache VIEWccceiieiiieeiieeeiee e eeereeeeieeeeveeeeveeeeans 2170
F.24.2. Sample OULPULoueiiiriiriieiinicetesieeteesteeteete et 2171
F24.3. AUNOTS ... e 2171
FL25. PECIYPLO ettt sttt et 2171

xlvi

F.26.

F27.

F.29.

F.25.1. General hashing functions............ccceeeeriiriiienieniienieeeeseesie e 2171

Fo25.1. 1. AiGESEt () wieeeeeieieeeeeieee ettt e 2171

B2 1.2 NIMAC () eeeieeeeeeeeeeeeee e e e e e e e e e e e e e ee e reeeenaeneaaaees 2172
F.25.2. Password hashing functionscccceeveerviienienieniienieneesiceceee e 2172
Fo25.2. 1. CTYPE () rttieeeeiieee ettt et 2173
F25.2.2. Gen_Sa1E () tooreeeeeeiieee ettt e 2173
F.25.3. PGP encryption functionsc.cceceeereevieniinieninceneneeeereseeeeeeeeeee 2174
F.25.3.1. DgP_SYM_ENCTYDE () reeerrrrercrireririeenreeesseeesreeesereessneessseeennns 2175
F.25.3.2. pgp_sSyM_deCTYDE () eeeeererreriieeniieesreeesreeesveesssreessneesseeennns 2175
F.25.3.3. Dgp_PUD_ENCTYPE () rrreerrreririeeniieesreeenreeesveesssreessneessseeennns 2175
F.25.3.4. pgp_pub_deCTyPE () eeeeereeeeecieeniieesieeesreeenveessereesssneesnseeennns 2175
F.25.3.5. pgp_Key_ 1A () ettt e 2176
F.25.3.6. armor (), AEATMOTL () teens 2176
F.25.3.7. Options for PGP functionscccccoceeeieiinieninieieneneeee 2176
F.25.3.7.1. Cipher-algoccccoeeeiiinirieneeieeeeee e 2177

F.25.3.7.2. compPress-algococeeveiriirnieeneenienneeneeneeeieeseeenneenn 2177

F.25.3.7.3. compress-1eVelcccoveriienenienenieieneeieneeeeieieane 2177

F.25.3.7.4. convert-Crlf.......c.ccovevieniiiiieiecie et 2177

F.25.3.7.5. disable-mdC........ccouerueriiniriininieeneeecetee e 2177

F.25.3.7.6. enable-session-Keycccocerereeneninieneniiencnieienene 2177

F.25.3.7.7. S2K-MOdE......coeriiiiiiiiinirienenteeeeeee e 2178

F.25.3.7.8. s2k-digest-algo.......cccevuemerieneniiiinieieneeeeneeeeee 2178

F.25.3.7.9. s2k-cipher-algoc.cccevvereininienienieiinceeenceeeeee 2178
F.25.3.7.10. unicode-mode..........cccceoerruerenienienieieneneeneneenienene 2178

F.25.3.8. Generating PGP keys with GnuPG.........cccccoooieiiiniiniiiieeieens 2178
F.25.3.9. Limitations of PGP codeccccocceviniriiininiiininieicncniccnees 2179
F.25.4. Raw encryption fUnCtionscceceereerieriienieenienieeieeneesreeveesieesene s 2179
F.25.5. Random-data fUnCHONSccccecuemirienierieiiniinieencee et 2180
FL25.6. INOTES ..cuveeiiiiieieeierieetesteeet ettt ettt st st sb s 2180
F.25.6.1. Configuration............eeceeiuierieerieenieenieeieeiee st esiee e eie e 2181
F.25.6.2. NULL handlingc..cccceeeeeeniinieneneneeieneerenceeenie e 2181
F.25.6.3. Security [HMitations........cccuerveerieerieerieniieenieenieeieesiee e eieeniee e 2181
F.25.6.4. Useful 1€adingcccveevveeriierierieeiierieeieeieesee e 2182
F.25.6.5. Technical referencescoceevereeveenerienieneecienceeeneeeerenieens 2182
N T N 11 1 o) RS 2182
PE_LTEESPACEMAD ...ttt 2183
FL26. 1. FUNCHONS ..couvteiiieiieeiteete ettt st e 2183
F.26.2. Sample OULPULcc.eeiiiiiiiiiicieeeeee e 2183
F.26.3. AUNOT ..ot 2184
PEIOWIOCKS ...ttt ettt sttt sttt e e e n 2184
FL27. 1. OVEIVIBW ..ottt ettt et e et eeate e ssaeesnsaeeenes 2184
F.27.2. Sample OULPUL ...cc.veiiiiiiiiiieeieeeeeeet ettt 2185
F27.3. AUNOT ..o et 2185
PESTANADY ...ttt 2185
FL28. 1. USAZE. .ttt st sttt et 2186
F.28.2. pg_standby OPLionscccceeeerierinienieiieienieete et 2186
F.28.3. EXAMPIES ..ottt st 2187
F.28.4. Supported SEIVer VEISIONScccuerereerieriieienieniienienieenienieeieeniesieeeesieenee 2188
F28.5. AUNOT ...ttt 2188
PE_STAL_STALEIMCIILSeveneieateieenteeteeit ettt ettt ettt sae st e e bt et st eneesaesbeeaenbeens 2188
F.29.1. The pg_stat_statements VIEWcoveeieeeeiuveeeeeiiieeeeeeiiireeeeeeesneeeeeens 2189
F.29.2. FUNCHOMNS ...ttt sttt 2190

xlvii

F.30.

F31.

F.32.

F.33.

F.34.

F.35.

F.36.

F.37.

F.38.

F.39.

F.29.3. Configuration Parameters.........ocueeveereereerieenieeneeseeenieeseesseenseesseesanens 2190

F.20.4. Sample OULPUL ...ccveeriieiiieiieiieeie ettt sttt e n 2191
F29.5. AUNOT «..cviiiiiiiiicieee et 2192
PESTALLUPIL....eeeieiit ettt ettt e b e st st e be e st e sat e e beesaeesane s 2192
F30.1. FUNCHONS ..ottt 2192
F.30.2. AUTNOTIS......oiiiiieiiieeee et 2194
PELIEIMh ittt s e 2194
F.31.1. Trigram (or Trigraph) CONCepLs.......cccereecvenrieieniirieeneerereeeeeeeenee 2194
F.31.2. Functions and OPEratorsccoceeceeruerieieniieienieneeee e 2194
F.31.3. INdeX SUPPOTIT...coeiiiiiiiiiiiiieicereeeeee e 2195
F.31.4. Text Search INteZrationccccoceeieiiiiiiiiniiiei e 2195
F31.5. REfEIONCESceieneeiieieeieee et 2196
F31.6. AUNOTS ..ottt 2196
PEUPZTAAE ...t s 2196
F.32.1. Supported VEISIONSccocererieieieininiinenienieeeeeene et 2197
F.32.2. pg_upgrade OPLiONSc.coveruerveieieieiniinienteneeeetee ettt ene e ee 2197
F.32.3. UPZIade SIEPSeveuveuieiiiiiiierieteteteteie ettt et 2198
F.32.4. Limitations in Migrating from PostgreSQL 8.3cccccocerieninienenenne. 2200
FL32.5. NOTES .ottt sttt ettt st bt nb et 2201
S ettt ettt ettt ettt bt h et b e a e h e bttt e h e b bt e a e e bt eh e et e h e et e s bt e bt et bt et bt eatenaeeaean 2201
F.33.1. RAtIONALE «..neiieniiiieiieieeetee ettt st 2202
F33.20 SYNEAX coeeiiiiiieieeieeet ettt et 2202
F.33.3. PreCISION ..cetiiuiiiiriieiieieeiteecete sttt et 2203
Fl33.4. USAZE ..ottt st e sttt 2203
FL33.5. NOLES .ttt sttt ettt s sttt 2204
F.33.0. Credits c..couveniiiieiirieeieieeitetcetccte ettt st 2205
] 01 FO OO OO TUU R PRTUPRRPRRRINt 2205
F.34.1. refint.c — functions for implementing referential integrity................... 2205
F.34.2. timetravel.c — functions for implementing time travel.............c.......... 2205
F.34.3. autoinc.c — functions for autoincrementing fields...........cceceevveeneennen. 2206
F.34.4. insert_username.c — functions for tracking who changed a table 2207
F.34.5. moddatetime.c — functions for tracking last modification time 2207
SSIINTO. et e 2207
F.35.1. Functions Providedcooieviiiiiiniiniinieeteecseeieeeeeee e 2207
G T TN 11 4 Lo SRS 2209
EADIETUIIC ..ottt ettt sttt ettt 2209
F.36.1. Functions Providedcooieviiiiiiniiniiiiieeecceeceeeeeeeee i 2209

F.36.1.1. NOTMAL_TANA tiiiiiiiiiiieieeeeeeee ettt ee e e e e e 2210

Fo30.1. 2. CroSStal (£OXE) cooeeieeeeeeeeeeeeeeeeeeee e e e e e et e e e e e aeees 2210

FL36.1.3. CrOSSTADN (EEXE) atteeeeeeeeeeeeeeeeeeeee e e e e e e e e e e et e eeaaaeeaaaaaes 2212

F36.1.4. Crosstab (LXK, TEXE) teetrrooeeens 2213

F.36.1.5. CONNECEDY ittt e 2216
F30.2. AUNOT ...t 2218
EEST_PATSET ..enveenteeiteeieetee it et ettt sat e et e bt e sbtesate st e e bt e sbeesateebeesbeesbneeneebeene 2218
F37. 1. USAZE ..o 2219
ESEATCHIZ ...ttt ettt sb et 2220
F.38.1. POrtability ISSUEScccuevuiruieiiniiiieniieiteiesitetet e 2220
F.38.2. Converting a pre-8.3 Installation........c..ccceevuererienincenenenienieneeenene 2221
F.38.3. REEICNCEScueemiiiiiiiiieeitecee ettt 2221
UNACCENE ..ttt ettete bt et sbeebt et e ebteatesbeestesbe et b e te e bt estesbeestenbesbeenbesbeessenseene 2221
F.39.1. CONfIGUIALION ..covveiiiiiiiiriieiinieeienieeiteese ettt 2221
Fl30.2. USAZE .ttt sttt 2222

xIviii

F.40.

F41.

F.39.3. FUNCHONSviiiiiieeiiie ettt ettt et e e ve e etveeesebeeeebeeeavaeasssaeenns
UL OSSP vt enttenitesiteeteette st e e te e bt esbeesate et e eabeesatesabessbeesaeesaeesateenbaenseesasesnseenseanns
F40.1. uuid-05sp FUNCHIONS ...cccvviiiieiiiieic et
Fld0.2. AULNOT ...oiiiiiiicee ettt ettt e e e et e e et e e sasaeesnsaeenns
VACUUINO. 1. c.tieeitieeiieeetee e vt e etteeeteeeseteeessseeesabeeessseeesseesssseeassseessseessseessseeennes
FiAT. 1. USAZE..cuioiiiiieeeieneceeeeet ettt
) N Y 71T T OO TO

F.42.1. Deprecation NOLICEcovveerueerierieenitente sttt st esiee st veeseeesaee s
F.42.2. Description Of fUNCHONSccc.certirieirienierieeeeteseeieesee st
Fid2. 3. At LAl it cectee ettt e eete e e e et e et e e e e arraee e

F.42.3.1. Multivalued 1€SUILSc.cocuveiieeiieiieeieeie et eie et e e eve e
Fi42.4. XSLT fUNCHONSveeiieeiiieieeciie e et et e eeteeteesteesaeeseveeteesseessseessaenseessnens

FA2.4. 1. X8 1t _PrOCESS ittt ettt
Fid2.5. AULNOT ..ottt e e e e

G. EXtErNal PrOJECES ...oueiuiiiiiiieiieiieteste ettt sttt
G.1. CHENt INEEITACES ... eeuteiieeieieitieie ittt sttt
G.2. Procedural Lan@uages..........c.cceeueruerienienienienieeienientenie ettt ettt
G.3. EXIENSIONS ..ottt sttt sttt et ea et s
H. The Source Code REPOSILOIYcccecvuerieriiriiiiiniiiienienitetesieeitenteeit ettt
H.1. Getting The Source Via Gitcccccevererierienieiinieieneeteesieetese et
L. DOCUMENEALION.eeuiiiiiiiiiieieiieit ettt ettt s st e
L1 DOCBOOK ...ttt ettt s
LL2. TOOL SELS ..ttt ettt ettt ettt ettt sttt et saeebtenaesbeennenbeens

L.2.1. Linux RPM INStallationc.cceecueriieenienieniienieeniesieeieeseeseeeveesiee s
1.2.2. FreeBSD InsStallationcccoevierciiriiienienienieeeeneesie et
1.2.3. Debian Packages.......cocueeuieiieniieniiiieeiteste ettt
1.2.4. Manual Installation from SOUTICEceeceeriiiniiniiniiieiieieeiceeeee e
1.2.4.1. Installing OpenJade............cooueruiriiiinienieniieiierieeeeee e
1.2.4.2. Installing the DocBook DTD Kit........ccccevciiiniiniiniiiiienienienne,
1.2.4.3. Installing the DocBook DSSSL Style Sheets........ccccceceevvennennne.
1.2.4.4. Installing JadeTeX.......cocceeiiiriiniiiinieeeeeeree e
[.2.5. Detection by CONELGUTE woveiirieiierieieieritcteteeeete e

1.3. Building The DOCUMENtAtiON........cc.cocuiriirieiiniiiiniieeere et

L30T HTML ettt ettt ettt
L3.2. MANPAZES.....cviiieiiiieieieeieteete ettt st s
1.3.3. Print Output via JadeTeXccccoviriiiiiiiiiiiiicceeeeeeeeee
L.3.4. OVerflow TeXt.....ccuiiuiiiiiiiiiiiiceeeeeee e
L.3.5. Print Output via RTFc.oooiiiiiieeeeee e
1.3.6. Plain Text FIleScc.cocvueirinininiiicieieeeieesteeeeetee et e
L.3.7. Syntax ChecK ...c...ooiiiiiiiiiiiieieeeeeeee ettt

L.4. Documentation AUthOTING.......c.cecuiriiriiienieieetiee ettt st

T4.1. EMACS/PSGML ...t
1.4.2. Other EMAcCS MOAESveiiiiiiiiiiiiiiieie ettt e ns

L5 SEYIE GUIAC. ...ttt sttt et st

L.5.1. Reference Pages.ccocovieieiiniiiiniiiieeceetee e

T ACTOMYIMIS ...ttt ettt et et e sa e st e e sane st e b e e sbaesaaeeane

Bibliography

Index

xlix

Preface

This book is the official documentation of PostgreSQL. It has been written by the PostgreSQL devel-
opers and other volunteers in parallel to the development of the PostgreSQL software. It describes all
the functionality that the current version of PostgreSQL officially supports.

To make the large amount of information about PostgreSQL manageable, this book has been orga-
nized in several parts. Each part is targeted at a different class of users, or at users in different stages
of their PostgreSQL experience:

« Part I is an informal introduction for new users.

« Part II documents the SQL query language environment, including data types and functions, as well
as user-level performance tuning. Every PostgreSQL user should read this.

« Part III describes the installation and administration of the server. Everyone who runs a PostgreSQL
server, be it for private use or for others, should read this part.

« Part IV describes the programming interfaces for PostgreSQL client programs.

+ Part V contains information for advanced users about the extensibility capabilities of the server.
Topics include user-defined data types and functions.

« Part VI contains reference information about SQL commands, client and server programs. This part
supports the other parts with structured information sorted by command or program.

« Part VII contains assorted information that might be of use to PostgreSQL developers.

1. What is PostgreSQL?

PostgreSQL is an object-relational database management system (ORDBMS) based on POSTGRES,
Version 4.2', developed at the University of California at Berkeley Computer Science Department.
POSTGRES pioneered many concepts that only became available in some commercial database sys-
tems much later.

PostgreSQL is an open-source descendant of this original Berkeley code. It supports a large part of
the SQL standard and offers many modern features:

« complex queries

- foreign keys

. triggers

. views

« transactional integrity

« multiversion concurrency control

Also, PostgreSQL can be extended by the user in many ways, for example by adding new

« data types

« functions

+ operators

« aggregate functions
« index methods

1.

http://db.cs.berkeley.edu/postgres.html

Preface

« procedural languages

And because of the liberal license, PostgreSQL can be used, modified, and distributed by anyone free
of charge for any purpose, be it private, commercial, or academic.

2. A Brief History of PostgreSQL

The object-relational database management system now known as PostgreSQL is derived from the
POSTGRES package written at the University of California at Berkeley. With over two decades of
development behind it, PostgreSQL is now the most advanced open-source database available any-
where.

2.1. The Berkeley POSTGRES Project

The POSTGRES project, led by Professor Michael Stonebraker, was sponsored by the Defense Ad-
vanced Research Projects Agency (DARPA), the Army Research Office (ARO), the National Science
Foundation (NSF), and ESL, Inc. The implementation of POSTGRES began in 1986. The initial con-
cepts for the system were presented in The design of POSTGRES , and the definition of the initial
data model appeared in The POSTGRES data model . The design of the rule system at that time was
described in The design of the POSTGRES rules system. The rationale and architecture of the storage
manager were detailed in The design of the POSTGRES storage system .

POSTGRES has undergone several major releases since then. The first “demoware” system became
operational in 1987 and was shown at the 1988 ACM-SIGMOD Conference. Version 1, described in
The implementation of POSTGRES , was released to a few external users in June 1989. In response to
a critique of the first rule system (A commentary on the POSTGRES rules system), the rule system
was redesigned (On Rules, Procedures, Caching and Views in Database Systems), and Version 2
was released in June 1990 with the new rule system. Version 3 appeared in 1991 and added support
for multiple storage managers, an improved query executor, and a rewritten rule system. For the most
part, subsequent releases until Postgres95 (see below) focused on portability and reliability.

POSTGRES has been used to implement many different research and production applications. These
include: a financial data analysis system, a jet engine performance monitoring package, an aster-
oid tracking database, a medical information database, and several geographic information systems.
POSTGRES has also been used as an educational tool at several universities. Finally, Illustra Infor-
mation Technologies (later merged into Informix?, which is now owned by IBM?) picked up the code
and commercialized it. In late 1992, POSTGRES became the primary data manager for the Sequoia
2000 scientific computing project®.

The size of the external user community nearly doubled during 1993. It became increasingly obvious
that maintenance of the prototype code and support was taking up large amounts of time that should
have been devoted to database research. In an effort to reduce this support burden, the Berkeley
POSTGRES project officially ended with Version 4.2.

2. http://www.informix.com/

3.

http://www.ibm.com/

4. http://meteora.ucsd.edu/s2k/s2k_home.html

li

Preface

2.2. Postgres95

In 1994, Andrew Yu and Jolly Chen added an SQL language interpreter to POSTGRES. Under a
new name, Postgres95 was subsequently released to the web to find its own way in the world as an
open-source descendant of the original POSTGRES Berkeley code.

Postgres95 code was completely ANSI C and trimmed in size by 25%. Many internal changes im-
proved performance and maintainability. Postgres95 release 1.0.x ran about 30-50% faster on the
Wisconsin Benchmark compared to POSTGRES, Version 4.2. Apart from bug fixes, the following
were the major enhancements:

+ The query language PostQUEL was replaced with SQL (implemented in the server). Subqueries
were not supported until PostgreSQL (see below), but they could be imitated in Postgres95 with
user-defined SQL functions. Aggregate functions were re-implemented. Support for the GROUP BY
query clause was also added.

+ A new program (psql) was provided for interactive SQL queries, which used GNU Readline. This
largely superseded the old monitor program.

« A new front-end library, 1ibpgtcl, supported Tcl-based clients. A sample shell, pgtclsh, pro-
vided new Tcl commands to interface Tcl programs with the Postgres95 server.

« The large-object interface was overhauled. The inversion large objects were the only mechanism
for storing large objects. (The inversion file system was removed.)

+ The instance-level rule system was removed. Rules were still available as rewrite rules.

« A short tutorial introducing regular SQL features as well as those of Postgres95 was distributed
with the source code

+ GNU make (instead of BSD make) was used for the build. Also, Postgres95 could be compiled
with an unpatched GCC (data alignment of doubles was fixed).

2.3. PostgreSQL

By 1996, it became clear that the name “Postgres95” would not stand the test of time. We chose a new
name, PostgreSQL, to reflect the relationship between the original POSTGRES and the more recent
versions with SQL capability. At the same time, we set the version numbering to start at 6.0, putting
the numbers back into the sequence originally begun by the Berkeley POSTGRES project.

Many people continue to refer to PostgreSQL as “Postgres” (now rarely in all capital letters) because
of tradition or because it is easier to pronounce. This usage is widely accepted as a nickname or alias.

The emphasis during development of Postgres95 was on identifying and understanding existing prob-
lems in the server code. With PostgreSQL, the emphasis has shifted to augmenting features and capa-
bilities, although work continues in all areas.

Details about what has happened in PostgreSQL since then can be found in Appendix E.

3. Conventions

This book uses the following typographical conventions to mark certain portions of text: new terms,
foreign phrases, and other important passages are emphasized in italics. Everything that represents

lii

Preface

input or output of the computer, in particular commands, program code, and screen output, is shown
in a monospaced font (example). Within such passages, italics (example) indicate placeholders;
you must insert an actual value instead of the placeholder. On occasion, parts of program code are
emphasized in bold face (example), if they have been added or changed since the preceding example.

The following conventions are used in the synopsis of a command: brackets ([and 1) indicate optional
parts. (In the synopsis of a Tcl command, question marks (?) are used instead, as is usual in Tcl.)
Braces ({ and }) and vertical lines (|) indicate that you must choose one alternative. Dots (. . .) mean
that the preceding element can be repeated.

Where it enhances the clarity, SQL commands are preceded by the prompt =>, and shell commands
are preceded by the prompt $. Normally, prompts are not shown, though.

An administrator is generally a person who is in charge of installing and running the server. A user
could be anyone who is using, or wants to use, any part of the PostgreSQL system. These terms
should not be interpreted too narrowly; this book does not have fixed presumptions about system
administration procedures.

4. Further Information

Besides the documentation, that is, this book, there are other resources about PostgreSQL.:

Wiki
The PostgreSQL wiki® contains the project’s FAQ® (Frequently Asked Questions) list, TODO’
list, and detailed information about many more topics.

Web Site

The PostgreSQL web site® carries details on the latest release and other information to make your
work or play with PostgreSQL more productive.

Mailing Lists
The mailing lists are a good place to have your questions answered, to share experiences with
other users, and to contact the developers. Consult the PostgreSQL web site for details.
Yourself!

PostgreSQL is an open-source project. As such, it depends on the user community for ongoing
support. As you begin to use PostgreSQL, you will rely on others for help, either through the
documentation or through the mailing lists. Consider contributing your knowledge back. Read
the mailing lists and answer questions. If you learn something which is not in the documentation,
write it up and contribute it. If you add features to the code, contribute them.

5. Bug Reporting Guidelines

When you find a bug in PostgreSQL we want to hear about it. Your bug reports play an important part
in making PostgreSQL more reliable because even the utmost care cannot guarantee that every part

PN

http://wiki.postgresql.org
http://wiki.postgresql.org/wiki/Frequently_Asked_Questions
http://wiki.postgresql.org/wiki/Todo
http://www.postgresql.org

liii

Preface

of PostgreSQL will work on every platform under every circumstance.

The following suggestions are intended to assist you in forming bug reports that can be handled in an
effective fashion. No one is required to follow them but doing so tends to be to everyone’s advantage.

We cannot promise to fix every bug right away. If the bug is obvious, critical, or affects a lot of users,
chances are good that someone will look into it. It could also happen that we tell you to update to a
newer version to see if the bug happens there. Or we might decide that the bug cannot be fixed before
some major rewrite we might be planning is done. Or perhaps it is simply too hard and there are
more important things on the agenda. If you need help immediately, consider obtaining a commercial
support contract.

5.1. Identifying Bugs

Before you report a bug, please read and re-read the documentation to verify that you can really do
whatever it is you are trying. If it is not clear from the documentation whether you can do something
or not, please report that too; it is a bug in the documentation. If it turns out that a program does
something different from what the documentation says, that is a bug. That might include, but is not
limited to, the following circumstances:

« A program terminates with a fatal signal or an operating system error message that would point to
a problem in the program. (A counterexample might be a “disk full” message, since you have to fix
that yourself.)

+ A program produces the wrong output for any given input.
+ A program refuses to accept valid input (as defined in the documentation).

« A program accepts invalid input without a notice or error message. But keep in mind that your idea
of invalid input might be our idea of an extension or compatibility with traditional practice.

+ PostgreSQL fails to compile, build, or install according to the instructions on supported platforms.
Here “program” refers to any executable, not only the backend server.

Being slow or resource-hogging is not necessarily a bug. Read the documentation or ask on one of
the mailing lists for help in tuning your applications. Failing to comply to the SQL standard is not
necessarily a bug either, unless compliance for the specific feature is explicitly claimed.

Before you continue, check on the TODO list and in the FAQ to see if your bug is already known.
If you cannot decode the information on the TODO list, report your problem. The least we can do is
make the TODO list clearer.

5.2. What to report

The most important thing to remember about bug reporting is to state all the facts and only facts. Do
not speculate what you think went wrong, what “it seemed to do”, or which part of the program has a
fault. If you are not familiar with the implementation you would probably guess wrong and not help
us a bit. And even if you are, educated explanations are a great supplement to but no substitute for
facts. If we are going to fix the bug we still have to see it happen for ourselves first. Reporting the bare
facts is relatively straightforward (you can probably copy and paste them from the screen) but all too
often important details are left out because someone thought it does not matter or the report would be
understood anyway.

The following items should be contained in every bug report:

liv

Preface

« The exact sequence of steps from program start-up necessary to reproduce the problem. This should
be self-contained; it is not enough to send in a bare SELECT statement without the preceding
CREATE TABLE and INSERT statements, if the output should depend on the data in the tables.
We do not have the time to reverse-engineer your database schema, and if we are supposed to make
up our own data we would probably miss the problem.

The best format for a test case for SQL-related problems is a file that can be run through the psql
frontend that shows the problem. (Be sure to not have anything in your ~/ .psqglrc start-up file.)
An easy way to create this file is to use pg_dump to dump out the table declarations and data
needed to set the scene, then add the problem query. You are encouraged to minimize the size of
your example, but this is not absolutely necessary. If the bug is reproducible, we will find it either
way.

If your application uses some other client interface, such as PHP, then please try to isolate the
offending queries. We will probably not set up a web server to reproduce your problem. In any case
remember to provide the exact input files; do not guess that the problem happens for “large files”
or “midsize databases”, etc. since this information is too inexact to be of use.

« The output you got. Please do not say that it “didn’t work” or “crashed”. If there is an error message,
show it, even if you do not understand it. If the program terminates with an operating system error,
say which. If nothing at all happens, say so. Even if the result of your test case is a program crash
or otherwise obvious it might not happen on our platform. The easiest thing is to copy the output
from the terminal, if possible.

Note: If you are reporting an error message, please obtain the most verbose form of the mes-
sage. In psql, say \set VERBOSITY verbose beforehand. If you are extracting the message
from the server log, set the run-time parameter log_error_verbosity to verbose so that all de-
tails are logged.

Note: In case of fatal errors, the error message reported by the client might not contain all the
information available. Please also look at the log output of the database server. If you do not
keep your server’s log output, this would be a good time to start doing so.

« The output you expected is very important to state. If you just write “This command gives me that
output.” or “This is not what I expected.”, we might run it ourselves, scan the output, and think it
looks OK and is exactly what we expected. We should not have to spend the time to decode the
exact semantics behind your commands. Especially refrain from merely saying that “This is not
what SQL says/Oracle does.” Digging out the correct behavior from SQL is not a fun undertaking,
nor do we all know how all the other relational databases out there behave. (If your problem is a
program crash, you can obviously omit this item.)

» Any command line options and other start-up options, including any relevant environment variables
or configuration files that you changed from the default. Again, please provide exact information.
If you are using a prepackaged distribution that starts the database server at boot time, you should
try to find out how that is done.

+ Anything you did at all differently from the installation instructions.

« The PostgreSQL version. You can run the command SELECT version () ; to find out the version
of the server you are connected to. Most executable programs also support a ——version option; at
least postgres —--versionand psql —--version should work. If the function or the options do

lv

Preface

not exist then your version is more than old enough to warrant an upgrade. If you run a prepackaged
version, such as RPMs, say so, including any subversion the package might have. If you are talking
about a Git snapshot, mention that, including the commit hash.

If your version is older than 9.0.7 we will almost certainly tell you to upgrade. There are many bug
fixes and improvements in each new release, so it is quite possible that a bug you have encountered
in an older release of PostgreSQL has already been fixed. We can only provide limited support
for sites using older releases of PostgreSQL; if you require more than we can provide, consider
acquiring a commercial support contract.

« Platform information. This includes the kernel name and version, C library, processor, memory
information, and so on. In most cases it is sufficient to report the vendor and version, but do not
assume everyone knows what exactly “Debian” contains or that everyone runs on i386s. If you have
installation problems then information about the toolchain on your machine (compiler, make, and
so on) is also necessary.

Do not be afraid if your bug report becomes rather lengthy. That is a fact of life. It is better to report
everything the first time than us having to squeeze the facts out of you. On the other hand, if your
input files are huge, it is fair to ask first whether somebody is interested in looking into it. Here is an
article’ that outlines some more tips on reporting bugs.

Do not spend all your time to figure out which changes in the input make the problem go away. This
will probably not help solving it. If it turns out that the bug cannot be fixed right away, you will still
have time to find and share your work-around. Also, once again, do not waste your time guessing why
the bug exists. We will find that out soon enough.

When writing a bug report, please avoid confusing terminology. The software package in total is
called “PostgreSQL”, sometimes “Postgres” for short. If you are specifically talking about the back-
end server, mention that, do not just say “PostgreSQL crashes”. A crash of a single backend server
process is quite different from crash of the parent “postgres” process; please don’t say “the server
crashed” when you mean a single backend process went down, nor vice versa. Also, client programs
such as the interactive frontend “psql” are completely separate from the backend. Please try to be
specific about whether the problem is on the client or server side.

5.3. Where to report bugs

In general, send bug reports to the bug report mailing list at <pgsgl-bugs@postgresqgl.org>. You
are requested to use a descriptive subject for your email message, perhaps parts of the error message.

Another method is to fill in the bug report web-form available at the project’s web site'’. Entering a
bug report this way causes it to be mailed to the <pgsgql-bugs@postgresqgl.org> mailing list.

If your bug report has security implications and you’d prefer that it not become immediately vis-
ible in public archives, don’t send it to pgsgl-bugs. Security issues can be reported privately to
<security@postgresqgl.org>.

Do not send bug reports to any of the user mailing lists, such as <pgsql-sgl@postgresql.org>
or <pgsgl-general@postgresqgl.org>. These mailing lists are for answering user questions, and
their subscribers normally do not wish to receive bug reports. More importantly, they are unlikely to
fix them.

Also, please do not send reports to the developers’ mailing list
<pgsgl-hackers@postgresqgl.org>. This list is for discussing the development of PostgreSQL,

9. http://www.chiark.greenend.org.uk/~sgtatham/bugs.html
10. http://www.postgresql.org/

i

Preface

and it would be nice if we could keep the bug reports separate. We might choose to take up a
discussion about your bug report on pgsgl-hackers, if the problem needs more review.

If you have a problem with the documentation, the best place to report it is the documentation mailing
list <pgsgl-docs@postgresqgl . org>. Please be specific about what part of the documentation you
are unhappy with.

If your bug is a portability problem on a non-supported platform, send mail to
<pgsgl-hackers@postgresqgl.org>, so we (and you) can work on porting PostgreSQL to your
platform.

Note: Due to the unfortunate amount of spam going around, all of the above email addresses
are closed mailing lists. That is, you need to be subscribed to a list to be allowed to post on it.
(You need not be subscribed to use the bug-report web form, however.) If you would like to send
mail but do not want to receive list traffic, you can subscribe and set your subscription option to
nomail. For more information send mail to <majordomo@postgresql .org> with the single word
help in the body of the message.

vii

l. Tutorial

Welcome to the PostgreSQL Tutorial. The following few chapters are intended to give a simple in-
troduction to PostgreSQL, relational database concepts, and the SQL language to those who are new
to any one of these aspects. We only assume some general knowledge about how to use computers.
No particular Unix or programming experience is required. This part is mainly intended to give you
some hands-on experience with important aspects of the PostgreSQL system. It makes no attempt to
be a complete or thorough treatment of the topics it covers.

After you have worked through this tutorial you might want to move on to reading Part II to gain a
more formal knowledge of the SQL language, or Part IV for information about developing applica-
tions for PostgreSQL. Those who set up and manage their own server should also read Part III.

Chapter 1. Getting Started

1.1. Installation

Before you can use PostgreSQL you need to install it, of course. It is possible that PostgreSQL is
already installed at your site, either because it was included in your operating system distribution
or because the system administrator already installed it. If that is the case, you should obtain infor-
mation from the operating system documentation or your system administrator about how to access
PostgreSQL.

If you are not sure whether PostgreSQL is already available or whether you can use it for your ex-
perimentation then you can install it yourself. Doing so is not hard and it can be a good exercise.
PostgreSQL can be installed by any unprivileged user; no superuser (root) access is required.

If you are installing PostgreSQL yourself, then refer to Chapter 15 for instructions on installation,
and return to this guide when the installation is complete. Be sure to follow closely the section about
setting up the appropriate environment variables.

If your site administrator has not set things up in the default way, you might have some more work to
do. For example, if the database server machine is a remote machine, you will need to set the PGHOST
environment variable to the name of the database server machine. The environment variable PGPORT
might also have to be set. The bottom line is this: if you try to start an application program and it
complains that it cannot connect to the database, you should consult your site administrator or, if
that is you, the documentation to make sure that your environment is properly set up. If you did not
understand the preceding paragraph then read the next section.

1.2. Architectural Fundamentals

Before we proceed, you should understand the basic PostgreSQL system architecture. Understanding
how the parts of PostgreSQL interact will make this chapter somewhat clearer.

In database jargon, PostgreSQL uses a client/server model. A PostgreSQL session consists of the
following cooperating processes (programs):

+ A server process, which manages the database files, accepts connections to the database from client
applications, and performs database actions on behalf of the clients. The database server program
is called postgres.

« The user’s client (frontend) application that wants to perform database operations. Client applica-
tions can be very diverse in nature: a client could be a text-oriented tool, a graphical application, a
web server that accesses the database to display web pages, or a specialized database maintenance
tool. Some client applications are supplied with the PostgreSQL distribution; most are developed
by users.

As is typical of client/server applications, the client and the server can be on different hosts. In that
case they communicate over a TCP/IP network connection. You should keep this in mind, because
the files that can be accessed on a client machine might not be accessible (or might only be accessible
using a different file name) on the database server machine.

The PostgreSQL server can handle multiple concurrent connections from clients. To achieve this
it starts (“forks™) a new process for each connection. From that point on, the client and the new

Chapter 1. Getting Started

server process communicate without intervention by the original postgres process. Thus, the master
server process is always running, waiting for client connections, whereas client and associated server
processes come and go. (All of this is of course invisible to the user. We only mention it here for
completeness.)

1.3. Creating a Database

The first test to see whether you can access the database server is to try to create a database. A running
PostgreSQL server can manage many databases. Typically, a separate database is used for each project
or for each user.

Possibly, your site administrator has already created a database for your use. He should have told you
what the name of your database is. In that case you can omit this step and skip ahead to the next
section.

To create a new database, in this example named mydb, you use the following command:

$ createdb mydb

If this produces no response then this step was successful and you can skip over the remainder of this
section.

If you see a message similar to:
createdb: command not found

then PostgreSQL was not installed properly. Either it was not installed at all or your shell’s search
path was not set to include it. Try calling the command with an absolute path instead:

$ /usr/local/pgsql/bin/createdb mydb

The path at your site might be different. Contact your site administrator or check the installation
instructions to correct the situation.

Another response could be this:

createdb: could not connect to database postgres: could not connect to server: No such f
Is the server running locally and accepting
connections on Unix domain socket "/tmp/.s.PGSQL.5432"?

This means that the server was not started, or it was not started where createdb expected it. Again,
check the installation instructions or consult the administrator.

Another response could be this:

createdb: could not connect to database postgres: FATAL: role "Jjoe" does not exist

where your own login name is mentioned. This will happen if the administrator has not created a
PostgreSQL user account for you. (PostgreSQL user accounts are distinct from operating system user
accounts.) If you are the administrator, see Chapter 20 for help creating accounts. You will need to
become the operating system user under which PostgreSQL was installed (usually postgres) to
create the first user account. It could also be that you were assigned a PostgreSQL user name that is
different from your operating system user name; in that case you need to use the —U switch or set the
PGUSER environment variable to specify your PostgreSQL user name.

If you have a user account but it does not have the privileges required to create a database, you will
see the following:

Chapter 1. Getting Started

createdb: database creation failed: ERROR: permission denied to create database

Not every user has authorization to create new databases. If PostgreSQL refuses to create databases
for you then the site administrator needs to grant you permission to create databases. Consult your
site administrator if this occurs. If you installed PostgreSQL yourself then you should log in for the
purposes of this tutorial under the user account that you started the server as. '

You can also create databases with other names. PostgreSQL allows you to create any number of
databases at a given site. Database names must have an alphabetic first character and are limited to 63
bytes in length. A convenient choice is to create a database with the same name as your current user
name. Many tools assume that database name as the default, so it can save you some typing. To create
that database, simply type:

$ createdb

If you do not want to use your database anymore you can remove it. For example, if you are the owner
(creator) of the database mydb, you can destroy it using the following command:

$ dropdb mydb

(For this command, the database name does not default to the user account name. You always need to
specify it.) This action physically removes all files associated with the database and cannot be undone,
so this should only be done with a great deal of forethought.

More about createdb and dropdb can be found in createdb and dropdb respectively.

1.4. Accessing a Database

Once you have created a database, you can access it by:

» Running the PostgreSQL interactive terminal program, called psqgl, which allows you to interac-
tively enter, edit, and execute SQL commands.

» Using an existing graphical frontend tool like pgAdmin or an office suite with ODBC or JDBC
support to create and manipulate a database. These possibilities are not covered in this tutorial.

« Writing a custom application, using one of the several available language bindings. These possibil-
ities are discussed further in Part IV.

You probably want to start up psql to try the examples in this tutorial. It can be activated for the mydb
database by typing the command:

$ psql mydb

If you do not supply the database name then it will default to your user account name. You already
discovered this scheme in the previous section using createdb.

In psql, you will be greeted with the following message:

1. As an explanation for why this works: PostgreSQL user names are separate from operating system user accounts. When
you connect to a database, you can choose what PostgreSQL user name to connect as; if you don’t, it will default to the same
name as your current operating system account. As it happens, there will always be a PostgreSQL user account that has the
same name as the operating system user that started the server, and it also happens that that user always has permission to
create databases. Instead of logging in as that user you can also specify the —U option everywhere to select a PostgreSQL user
name to connect as.

Chapter 1. Getting Started

psgl (9.0.7)
Type "help" for help.

mydb=>
The last line could also be:
mydb=+#

That would mean you are a database superuser, which is most likely the case if you installed Post-
greSQL yourself. Being a superuser means that you are not subject to access controls. For the purposes
of this tutorial that is not important.

If you encounter problems starting psqgl then go back to the previous section. The diagnostics of
createdb and psql are similar, and if the former worked the latter should work as well.

The last line printed out by psql is the prompt, and it indicates that psql is listening to you and that
you can type SQL queries into a work space maintained by psgl. Try out these commands:

mydb=> SELECT version();
version

PostgreSQL 9.0.7 on i586-pc-linux-gnu, compiled by GCC 2.96, 32-bit
(1 row)

mydb=> SELECT current_date;
date

2002-08-31
(1 row)

mydb=> SELECT 2 + 2;

?column?

The psgl program has a number of internal commands that are not SQL commands. They begin with
the backslash character, “\”. For example, you can get help on the syntax of various PostgreSQL SQL
commands by typing:

mydb=> \h

To get out of psql, type:
mydb=> \q

and psgl will quit and return you to your command shell. (For more internal commands, type \ 2 at
the psql prompt.) The full capabilities of psgl are documented in psql. If PostgreSQL is installed
correctly you can also type man psqgl at the operating system shell prompt to see the documentation.
In this tutorial we will not use these features explicitly, but you can use them yourself when it is
helpful.

Chapter 2. The SQL Language

2.1. Introduction

This chapter provides an overview of how to use SQL to perform simple operations. This tutorial
is only intended to give you an introduction and is in no way a complete tutorial on SQL. Numer-
ous books have been written on SQL, including Understanding the New SQL and A Guide to the
SQL Standard. You should be aware that some PostgreSQL language features are extensions to the
standard.

In the examples that follow, we assume that you have created a database named mydb, as described in
the previous chapter, and have been able to start psql.

Examples in this manual can also be found in the PostgreSQL source distribution in the directory
src/tutorial/. (Binary distributions of PostgreSQL might not compile these files.) To use those
files, first change to that directory and run make:

$ ed/src/tutorial
S make

This creates the scripts and compiles the C files containing user-defined functions and types. Then, to
start the tutorial, do the following:

S ed/tutorial
$ psql -s mydb

mydb=> \i basics.sql

The \ i command reads in commands from the specified file. psql’s —s option puts you in single step
mode which pauses before sending each statement to the server. The commands used in this section
are in the file basics.sql.

2.2. Concepts

PostgreSQL is a relational database management system (RDBMS). That means it is a system for
managing data stored in relations. Relation is essentially a mathematical term for zable. The notion
of storing data in tables is so commonplace today that it might seem inherently obvious, but there
are a number of other ways of organizing databases. Files and directories on Unix-like operating
systems form an example of a hierarchical database. A more modern development is the object-
oriented database.

Each table is a named collection of rows. Each row of a given table has the same set of named
columns, and each column is of a specific data type. Whereas columns have a fixed order in each row,
it is important to remember that SQL does not guarantee the order of the rows within the table in any
way (although they can be explicitly sorted for display).

Tables are grouped into databases, and a collection of databases managed by a single PostgreSQL
server instance constitutes a database cluster.

Chapter 2. The SQL Language

2.3. Creating a New Table

You can create a new table by specifying the table name, along with all column names and their types:

CREATE TABLE weather (

city varchar (80),

temp_lo int, -— low temperature
temp_hi int, —— high temperature
prcp real, —-— precipitation
date date

)

You can enter this into psgl with the line breaks. psgl will recognize that the command is not
terminated until the semicolon.

White space (i.e., spaces, tabs, and newlines) can be used freely in SQL commands. That means you
can type the command aligned differently than above, or even all on one line. Two dashes (“--") in-
troduce comments. Whatever follows them is ignored up to the end of the line. SQL is case insensitive
about key words and identifiers, except when identifiers are double-quoted to preserve the case (not
done above).

varchar (80) specifies a data type that can store arbitrary character strings up to 80 characters in
length. int is the normal integer type. real is a type for storing single precision floating-point num-
bers. date should be self-explanatory. (Yes, the column of type date is also named date. This might
be convenient or confusing — you choose.)

PostgreSQL supports the standard SQL types int, smallint, real, double precision,
char (N), varchar (N), date, time, timestamp, and interval, as well as other types of general
utility and a rich set of geometric types. PostgreSQL can be customized with an arbitrary number of
user-defined data types. Consequently, type names are not key words in the syntax, except where
required to support special cases in the SQL standard.

The second example will store cities and their associated geographical location:

CREATE TABLE cities (
name varchar (80),
location point

)i

The point type is an example of a PostgreSQL-specific data type.

Finally, it should be mentioned that if you don’t need a table any longer or want to recreate it differ-
ently you can remove it using the following command:

DROP TABLE tablename;

2.4. Populating a Table With Rows

The INSERT statement is used to populate a table with rows:

INSERT INTO weather VALUES (’San Francisco’, 46, 50, 0.25, 71994-11-27");

Chapter 2. The SQL Language

Note that all data types use rather obvious input formats. Constants that are not simple numeric values
usually must be surrounded by single quotes (), as in the example. The date type is actually quite
flexible in what it accepts, but for this tutorial we will stick to the unambiguous format shown here.

The point type requires a coordinate pair as input, as shown here:

INSERT INTO cities VALUES (’San Francisco’, ' (-194.0, 53.0)");

The syntax used so far requires you to remember the order of the columns. An alternative syntax
allows you to list the columns explicitly:

INSERT INTO weather (city, temp_lo, temp_hi, prcp, date)
VALUES (’San Francisco’, 43, 57, 0.0, 71994-11-29");

You can list the columns in a different order if you wish or even omit some columns, e.g., if the
precipitation is unknown:

INSERT INTO weather (date, city, temp_hi, temp_lo)
VALUES (’1994-11-29’, 'Hayward’, 54, 37);

Many developers consider explicitly listing the columns better style than relying on the order implic-
itly.

Please enter all the commands shown above so you have some data to work with in the following
sections.

You could also have used copy to load large amounts of data from flat-text files. This is usually
faster because the COPY command is optimized for this application while allowing less flexibility than
INSERT. An example would be:

COPY weather FROM ’ /home/user/weather.txt’;

where the file name for the source file must be available to the backend server machine, not the client,
since the backend server reads the file directly. You can read more about the CoOpY command in COPY.

2.5. Querying a Table

To retrieve data from a table, the table is queried. An SQL SELECT statement is used to do this. The
statement is divided into a select list (the part that lists the columns to be returned), a table list (the
part that lists the tables from which to retrieve the data), and an optional qualification (the part that
specifies any restrictions). For example, to retrieve all the rows of table weather, type:

SELECT % FROM weather;
Here = is a shorthand for “all columns”. ' So the same result would be had with:
SELECT city, temp_lo, temp_hi, prcp, date FROM weather;

The output should be:

1. While SELECT =« is useful for off-the-cuff queries, it is widely considered bad style in production code, since adding a
column to the table would change the results.

Chapter 2. The SQL Language

San Francisco | 46 | 50 | 0.25 | 1994-11-27
San Francisco | 43 | 57 | 0 | 1994-11-29
Hayward 37 | 54 | | 1994-11-29
(3 rows)

You can write expressions, not just simple column references, in the select list. For example, you can
do:

SELECT city, (temp_hi+temp_lo)/2 AS temp_avg, date FROM weather;

This should give:
city | temp_avg | date
_______________ e
San Francisco | 48 | 1994-11-27
San Francisco | 50 | 1994-11-29
Hayward | 45 | 1994-11-29
(3 rows)

Notice how the &S clause is used to relabel the output column. (The As clause is optional.)

A query can be “qualified” by adding a WHERE clause that specifies which rows are wanted. The WHERE
clause contains a Boolean (truth value) expression, and only rows for which the Boolean expression
is true are returned. The usual Boolean operators (AND, OR, and NOT) are allowed in the qualification.
For example, the following retrieves the weather of San Francisco on rainy days:

SELECT % FROM weather
WHERE city = ’San Francisco’ AND prcp > 0.0;

Result:
city | temp_lo | temp_hi | prcp | date
——————————————— B e At
San Francisco | 46 | 50 | 0.25 | 1994-11-27
(1 row)

You can request that the results of a query be returned in sorted order:

SELECT * FROM weather
ORDER BY city;

city | temp_lo | temp_hi | prcp | date
777777777777777 -t
Hayward \ 37 | 54 | | 1994-11-29
San Francisco | 43 | 57 | 0 | 1994-11-29
San Francisco | 46 | 50 | 0.25 | 1994-11-27

In this example, the sort order isn’t fully specified, and so you might get the San Francisco rows in
either order. But you’d always get the results shown above if you do:

SELECT » FROM weather
ORDER BY city, temp_lo;

You can request that duplicate rows be removed from the result of a query:

SELECT DISTINCT city
FROM weather;

Hayward
San Francisco
(2 rows)

Chapter 2. The SQL Language

Here again, the result row ordering might vary. You can ensure consistent results by using DISTINCT

and ORDER BY together:

SELECT DISTINCT city
FROM weather
ORDER BY city;

2.6. Joins Between Tables

Thus far, our queries have only accessed one table at a time. Queries can access multiple tables at
once, or access the same table in such a way that multiple rows of the table are being processed at the
same time. A query that accesses multiple rows of the same or different tables at one time is called
a join query. As an example, say you wish to list all the weather records together with the location
of the associated city. To do that, we need to compare the city column of each row of the weather
table with the name column of all rows in the cities table, and select the pairs of rows where these

values match.

Note: This is only a conceptual model. The join is usually performed in a more efficient manner
than actually comparing each possible pair of rows, but this is invisible to the user.

This would be accomplished by the following query:

SELECT «
FROM weather, cities
WHERE city = name;
city | temp_lo
_______________ [P
San Francisco | 46
San Francisco | 43

(2 rows)

Observe two things about the result set:

1994-11-27
1994-11-29

San Francisco
San Francisco

(-194,53)
(-194,53)

+ There is no result row for the city of Hayward. This is because there is no matching entry in the
cities table for Hayward, so the join ignores the unmatched rows in the weather table. We will
see shortly how this can be fixed.

2.

In some database systems, including older versions of PostgreSQL, the implementation of DISTINCT automatically orders

the rows and so ORDER BY is unnecessary. But this is not required by the SQL standard, and current PostgreSQL does not
guarantee that DISTINCT causes the rows to be ordered.

Chapter 2. The SQL Language

« There are two columns containing the city name. This is correct because the lists of columns from
the weather and cities tables are concatenated. In practice this is undesirable, though, so you
will probably want to list the output columns explicitly rather than using »:

SELECT city, temp_lo, temp_hi, prcp, date, location
FROM weather, cities
WHERE city = name;

Exercise: Attempt to determine the semantics of this query when the WHERE clause is omitted.

Since the columns all had different names, the parser automatically found which table they belong to.
If there were duplicate column names in the two tables you’d need to gualify the column names to
show which one you meant, as in:

SELECT weather.city, weather.temp_lo, weather.temp_hi,
weather.prcp, weather.date, cities.location
FROM weather, cities
WHERE cities.name = weather.city;

It is widely considered good style to qualify all column names in a join query, so that the query won’t
fail if a duplicate column name is later added to one of the tables.

Join queries of the kind seen thus far can also be written in this alternative form:

SELECT «
FROM weather INNER JOIN cities ON (weather.city = cities.name);

This syntax is not as commonly used as the one above, but we show it here to help you understand the
following topics.

Now we will figure out how we can get the Hayward records back in. What we want the query to do
is to scan the weather table and for each row to find the matching cities row(s). If no matching
row is found we want some “empty values” to be substituted for the cities table’s columns. This
kind of query is called an outer join. (The joins we have seen so far are inner joins.) The command
looks like this:

SELECT «
FROM weather LEFT OUTER JOIN cities ON (weather.city = cities.name);

city | temp_lo | temp_hi | prcp | date | name | location
——————————————— B E e e bt Tt e
Hayward | 37 | 54 | | 1994-11-29 | |
San Francisco | 46 | 50 | 0.25 | 1994-11-27 | San Francisco | (-194,53)
San Francisco | 43 | 57 | 0 | 1994-11-29 | San Francisco | (-194,53)

(3 rows)

This query is called a left outer join because the table mentioned on the left of the join operator will
have each of its rows in the output at least once, whereas the table on the right will only have those
rows output that match some row of the left table. When outputting a left-table row for which there is
no right-table match, empty (null) values are substituted for the right-table columns.

Exercise: There are also right outer joins and full outer joins. Try to find out what those do.

We can also join a table against itself. This is called a self join. As an example, suppose we wish to
find all the weather records that are in the temperature range of other weather records. So we need to
compare the temp_lo and temp_hi columns of each weather row to the temp_lo and temp_hi
columns of all other weather rows. We can do this with the following query:

10

Chapter 2. The SQL Language

SELECT Wl.city, Wl.temp_lo AS low, Wl.temp_hi AS high,
W2.city, W2.temp_lo AS low, W2.temp_hi AS high
FROM weather Wl, weather W2
WHERE Wl.temp_lo < W2.temp_lo
AND Wl.temp_hi > W2.temp_hi;

city | low | high | city | low | high
——————————————— s et e e Atk
San Francisco | 43 | 57 | San Francisco | 46 | 50
Hayward | 37 | 54 | San Francisco | 46 | 50
(2 rows)

Here we have relabeled the weather table as w1 and w2 to be able to distinguish the left and right side
of the join. You can also use these kinds of aliases in other queries to save some typing, e.g.:

SELECT «
FROM weather w, cities c¢
WHERE w.city = c.name;

You will encounter this style of abbreviating quite frequently.

2.7. Aggregate Functions

Like most other relational database products, PostgreSQL supports aggregate functions. An aggregate
function computes a single result from multiple input rows. For example, there are aggregates to
compute the count, sum, avg (average), max (maximum) and min (minimum) over a set of rows.

As an example, we can find the highest low-temperature reading anywhere with:

SELECT max (temp_lo) FROM weather;

If we wanted to know what city (or cities) that reading occurred in, we might try:

SELECT city FROM weather WHERE temp_lo = max(temp_1lo); WRONG

but this will not work since the aggregate max cannot be used in the WHERE clause. (This restriction
exists because the WHERE clause determines which rows will be included in the aggregate calculation;
so obviously it has to be evaluated before aggregate functions are computed.) However, as is often the
case the query can be restated to accomplish the desired result, here by using a subquery:

SELECT city FROM weather
WHERE temp_lo = (SELECT max (temp_lo) FROM weather);

San Francisco
(1 row)

11

Chapter 2. The SQL Language

This is OK because the subquery is an independent computation that computes its own aggregate
separately from what is happening in the outer query.

Aggregates are also very useful in combination with GROUP BY clauses. For example, we can get the
maximum low temperature observed in each city with:

SELECT city, max(temp_1lo)
FROM weather
GROUP BY city;

city | max
,,,,,,,,,,,,,,, I
Hayward | 37

San Francisco | 46

(2 rows)

which gives us one output row per city. Each aggregate result is computed over the table rows match-
ing that city. We can filter these grouped rows using HAVING:

SELECT city, max(temp_1lo)
FROM weather
GROUP BY city
HAVING max (temp_lo) < 40;

city | max
_________ b
Hayward | 37
(1 row)

which gives us the same results for only the cities that have all temp_1lo values below 40. Finally, if
we only care about cities whose names begin with “S”, we might do:

SELECT city, max(temp_1lo)
FROM weather
WHERE city LIKE ’'S%'@®
GROUP BY city
HAVING max (temp_lo) < 40;

© The LIKE operator does pattern matching and is explained in Section 9.7.

It is important to understand the interaction between aggregates and SQL’s WHERE and HAVING
clauses. The fundamental difference between WHERE and HAVING is this: WHERE selects input rows
before groups and aggregates are computed (thus, it controls which rows go into the aggregate com-
putation), whereas HAVING selects group rows after groups and aggregates are computed. Thus, the
WHERE clause must not contain aggregate functions; it makes no sense to try to use an aggregate to
determine which rows will be inputs to the aggregates. On the other hand, the HAVING clause al-
ways contains aggregate functions. (Strictly speaking, you are allowed to write a HAVING clause that
doesn’t use aggregates, but it’s seldom useful. The same condition could be used more efficiently at
the WHERE stage.)

In the previous example, we can apply the city name restriction in WHERE, since it needs no aggregate.
This is more efficient than adding the restriction to HAVING, because we avoid doing the grouping and
aggregate calculations for all rows that fail the WHERE check.

12

Chapter 2. The SQL Language

2.8. Updates

You can update existing rows using the UPDATE command. Suppose you discover the temperature
readings are all off by 2 degrees after November 28. You can correct the data as follows:

UPDATE weather

SET temp_hi = temp_hi - 2, temp_lo = temp_lo - 2
WHERE date > 71994-11-28';

Look at the new state of the data:

SELECT = FROM weather;

city | temp_lo | temp_hi | prcp | date
——————————————— B et B et T T e
San Francisco | 46 | 50 | 0.25 | 1994-11-27
San Francisco | 41 | 55 | 0 | 1994-11-29
Hayward \ 35 | 52 | | 1994-11-29
(3 rows)

2.9. Deletions

Rows can be removed from a table using the DELETE command. Suppose you are no longer interested
in the weather of Hayward. Then you can do the following to delete those rows from the table:

DELETE FROM weather WHERE city = ’'Hayward’;
All weather records belonging to Hayward are removed.

SELECT * FROM weather;

city | temp_lo | temp_hi | prcp | date
——————————————— B i B e et T T
San Francisco | 46 | 50 | 0.25 | 1994-11-27
San Francisco | 41 | 55 | 0 | 1994-11-29

(2 rows)

One should be wary of statements of the form

DELETE FROM tablename;

Without a qualification, DELETE will remove all rows from the given table, leaving it empty. The
system will not request confirmation before doing this!

13

Chapter 3. Advanced Features

3.1. Introduction

In the previous chapter we have covered the basics of using SQL to store and access your data in
PostgreSQL. We will now discuss some more advanced features of SQL that simplify management
and prevent loss or corruption of your data. Finally, we will look at some PostgreSQL extensions.

This chapter will on occasion refer to examples found in Chapter 2 to change or improve them, so
it will be useful to have read that chapter. Some examples from this chapter can also be found in
advanced. sql in the tutorial directory. This file also contains some sample data to load, which is
not repeated here. (Refer to Section 2.1 for how to use the file.)

3.2. Views

Refer back to the queries in Section 2.6. Suppose the combined listing of weather records and city
location is of particular interest to your application, but you do not want to type the query each time
you need it. You can create a view over the query, which gives a name to the query that you can refer
to like an ordinary table:

CREATE VIEW myview AS
SELECT city, temp_lo, temp_hi, prcp, date, location
FROM weather, cities
WHERE city = name;

SELECT * FROM myview;

Making liberal use of views is a key aspect of good SQL database design. Views allow you to en-
capsulate the details of the structure of your tables, which might change as your application evolves,
behind consistent interfaces.

Views can be used in almost any place a real table can be used. Building views upon other views is
not uncommon.

3.3. Foreign Keys

Recall the weather and cities tables from Chapter 2. Consider the following problem: You want
to make sure that no one can insert rows in the weather table that do not have a matching entry
in the cities table. This is called maintaining the referential integrity of your data. In simplistic
database systems this would be implemented (if at all) by first looking at the cities table to check
if a matching record exists, and then inserting or rejecting the new weather records. This approach
has a number of problems and is very inconvenient, so PostgreSQL can do this for you.

The new declaration of the tables would look like this:

CREATE TABLE cities (
city varchar (80) primary key,
location point

14

Chapter 3. Advanced Features

CREATE TABLE weather (
city varchar (80) references cities(city),
temp_lo int,
temp_hi int,
prcp real,
date date
)i

Now try inserting an invalid record:
INSERT INTO weather VALUES (’'Berkeley’, 45, 53, 0.0, ’1994-11-28");

ERROR: insert or update on table "weather" violates foreign key constraint "weather_cit
DETAIL: Key (city)=(Berkeley) 1is not present in table "cities".

The behavior of foreign keys can be finely tuned to your application. We will not go beyond this simple
example in this tutorial, but just refer you to Chapter 5 for more information. Making correct use of
foreign keys will definitely improve the quality of your database applications, so you are strongly
encouraged to learn about them.

3.4. Transactions

Transactions are a fundamental concept of all database systems. The essential point of a transaction is
that it bundles multiple steps into a single, all-or-nothing operation. The intermediate states between
the steps are not visible to other concurrent transactions, and if some failure occurs that prevents the
transaction from completing, then none of the steps affect the database at all.

For example, consider a bank database that contains balances for various customer accounts, as well
as total deposit balances for branches. Suppose that we want to record a payment of $100.00 from
Alice’s account to Bob’s account. Simplifying outrageously, the SQL commands for this might look
like:

UPDATE accounts SET balance = balance - 100.00
WHERE name = ’Alice’;
UPDATE branches SET balance = balance - 100.00
WHERE name = (SELECT branch_name FROM accounts WHERE name = ’'Alice’);
UPDATE accounts SET balance = balance + 100.00
WHERE name = ’Bob’;
UPDATE branches SET balance = balance + 100.00
WHERE name = (SELECT branch_name FROM accounts WHERE name = ’'Bob’);

The details of these commands are not important here; the important point is that there are several
separate updates involved to accomplish this rather simple operation. Our bank’s officers will want to
be assured that either all these updates happen, or none of them happen. It would certainly not do for
a system failure to result in Bob receiving $100.00 that was not debited from Alice. Nor would Alice
long remain a happy customer if she was debited without Bob being credited. We need a guarantee
that if something goes wrong partway through the operation, none of the steps executed so far will
take effect. Grouping the updates into a transaction gives us this guarantee. A transaction is said to
be atomic: from the point of view of other transactions, it either happens completely or not at all.

15

Chapter 3. Advanced Features

We also want a guarantee that once a transaction is completed and acknowledged by the database
system, it has indeed been permanently recorded and won’t be lost even if a crash ensues shortly
thereafter. For example, if we are recording a cash withdrawal by Bob, we do not want any chance that
the debit to his account will disappear in a crash just after he walks out the bank door. A transactional
database guarantees that all the updates made by a transaction are logged in permanent storage (i.e.,
on disk) before the transaction is reported complete.

Another important property of transactional databases is closely related to the notion of atomic up-
dates: when multiple transactions are running concurrently, each one should not be able to see the
incomplete changes made by others. For example, if one transaction is busy totalling all the branch
balances, it would not do for it to include the debit from Alice’s branch but not the credit to Bob’s
branch, nor vice versa. So transactions must be all-or-nothing not only in terms of their permanent
effect on the database, but also in terms of their visibility as they happen. The updates made so far by
an open transaction are invisible to other transactions until the transaction completes, whereupon all
the updates become visible simultaneously.

In PostgreSQL, a transaction is set up by surrounding the SQL commands of the transaction with
BEGIN and COMMIT commands. So our banking transaction would actually look like:

BEGIN;

UPDATE accounts SET balance = balance - 100.00
WHERE name = 'Alice’;

-— etc etc

COMMIT;

If, partway through the transaction, we decide we do not want to commit (perhaps we just noticed that
Alice’s balance went negative), we can issue the command ROLLBACK instead of COMMIT, and all our
updates so far will be canceled.

PostgreSQL actually treats every SQL statement as being executed within a transaction. If you do not
issue a BEGIN command, then each individual statement has an implicit BEGIN and (if successful)
coMMIT wrapped around it. A group of statements surrounded by BEGIN and COMMIT is sometimes
called a transaction block.

Note: Some client libraries issue BEcTN and comutT commands automatically, so that you might
get the effect of transaction blocks without asking. Check the documentation for the interface you
are using.

It’s possible to control the statements in a transaction in a more granular fashion through the use of
savepoints. Savepoints allow you to selectively discard parts of the transaction, while committing the
rest. After defining a savepoint with SAVEPOINT, you can if needed roll back to the savepoint with
ROLLBACK TO. All the transaction’s database changes between defining the savepoint and rolling
back to it are discarded, but changes earlier than the savepoint are kept.

After rolling back to a savepoint, it continues to be defined, so you can roll back to it several times.
Conversely, if you are sure you won’t need to roll back to a particular savepoint again, it can be
released, so the system can free some resources. Keep in mind that either releasing or rolling back to
a savepoint will automatically release all savepoints that were defined after it.

All this is happening within the transaction block, so none of it is visible to other database sessions.
When and if you commit the transaction block, the committed actions become visible as a unit to
other sessions, while the rolled-back actions never become visible at all.

16

Chapter 3. Advanced Features

Remembering the bank database, suppose we debit $100.00 from Alice’s account, and credit Bob’s
account, only to find later that we should have credited Wally’s account. We could do it using save-
points like this:

BEGIN;

UPDATE accounts SET balance = balance - 100.00
WHERE name = ’'Alice’;

SAVEPOINT my_savepoint;

UPDATE accounts SET balance = balance + 100.00
WHERE name = ’'Bob’;

-— oops ... forget that and use Wally’s account

ROLLBACK TO my_savepoint;

UPDATE accounts SET balance = balance + 100.00
WHERE name = ’"Wally’;

COMMIT;

This example is, of course, oversimplified, but there’s a lot of control possible in a transaction block
through the use of savepoints. Moreover, ROLLBACK TO is the only way to regain control of a transac-
tion block that was put in aborted state by the system due to an error, short of rolling it back completely
and starting again.

3.5. Window Functions

A window function performs a calculation across a set of table rows that are somehow related to the
current row. This is comparable to the type of calculation that can be done with an aggregate function.
But unlike regular aggregate functions, use of a window function does not cause rows to become
grouped into a single output row — the rows retain their separate identities. Behind the scenes, the
window function is able to access more than just the current row of the query result.

Here is an example that shows how to compare each employee’s salary with the average salary in his
or her department:

SELECT depname, empno, salary, avg(salary) OVER (PARTITION BY depname) FROM empsalary;

depname | empno | salary | avg
——————————— -t
develop | 11 | 5200 | 5020.0000000000000000
develop | 7 4200 | 5020.0000000000000000
develop | 9 | 4500 | 5020.0000000000000000
develop | 8 | 6000 | 5020.0000000000000000
develop | 10 | 5200 | 5020.0000000000000000
personnel | 5 | 3500 | 3700.0000000000000000
personnel | 2 | 3900 | 3700.0000000000000000
sales | 3 4800 | 4866.6666666666666667
sales | 1] 5000 | 4866.6666666666666667
sales | 4 | 4800 | 4866.6666666666666667
(10 rows)

The first three output columns come directly from the table empsalary, and there is one output row
for each row in the table. The fourth column represents an average taken across all the table rows that
have the same depname value as the current row. (This actually is the same function as the regular avg
aggregate function, but the OVER clause causes it to be treated as a window function and computed
across an appropriate set of rows.)

17

Chapter 3. Advanced Features

A window function call always contains an OVER clause following the window function’s name and
argument(s). This is what syntactically distinguishes it from a regular function or aggregate function.
The OVER clause determines exactly how the rows of the query are split up for processing by the
window function. The PARTITION BY list within OVER specifies dividing the rows into groups, or
partitions, that share the same values of the PARTITION BY expression(s). For each row, the window
function is computed across the rows that fall into the same partition as the current row.

Although avg will produce the same result no matter what order it processes the partition’s rows in,
this is not true of all window functions. When needed, you can control that order using ORDER BY
within OVER. Here is an example:

SELECT depname, empno, salary, rank() OVER (PARTITION BY depname ORDER BY salary DESC)

depname | empno | salary | rank
——————————— e e
develop | 8 | 6000 | 1
develop | 10 | 5200 | 2
develop | 11 | 5200 | 2
develop | 9 | 4500 | 4
develop | 7 4200 | 5
personnel | 2 3900 | 1
personnel | 5 3500 | 2
sales | 1 5000 | 1
sales | 4 | 4800 | 2
sales | 3 4800 | 2
(10 rows)

As shown here, the rank function produces a numerical rank within the current row’s partition for
each distinct ORDER BY value, in the order defined by the ORDER BY clause. rank needs no explicit
parameter, because its behavior is entirely determined by the OVER clause.

The rows considered by a window function are those of the “virtual table” produced by the query’s
FROM clause as filtered by its WHERE, GROUP BY, and HAVING clauses if any. For example, a row
removed because it does not meet the WHERE condition is not seen by any window function. A query
can contain multiple window functions that slice up the data in different ways by means of different
OVER clauses, but they all act on the same collection of rows defined by this virtual table.

We already saw that ORDER BY can be omitted if the ordering of rows is not important. It is also
possible to omit PARTITION BY, in which case there is just one partition containing all the rows.

There is another important concept associated with window functions: for each row, there is a set of
rows within its partition called its window frame. Many (but not all) window functions act only on
the rows of the window frame, rather than of the whole partition. By default, if ORDER BY is supplied
then the frame consists of all rows from the start of the partition up through the current row, plus any
following rows that are equal to the current row according to the ORDER BY clause. When ORDER BY
is omitted the default frame consists of all rows in the partition. ' Here is an example using sum:

SELECT salary, sum(salary) OVER () FROM empsalary;

salary | sum
________ b
5200 | 47100
5000 | 47100
3500 | 47100
4800 | 47100

1. There are options to define the window frame in other ways, but this tutorial does not cover them. See Section 4.2.8 for

details.

18

F

47100
47100
47100
47100
47100
47100

Chapter 3. Advanced Features

Above, since there is no ORDER BY in the OVER clause, the window frame is the same as the partition,
which for lack of PARTITION BY is the whole table; in other words each sum is taken over the whole
table and so we get the same result for each output row. But if we add an ORDER BY clause, we get
very different results:

SELECT sa

lary, sum(salary) OVER (ORDER BY salary) FROM empsalary;

Here the sum is taken from the first (lowest) salary up through the current one, including any dupli-
cates of the current one (notice the results for the duplicated salaries).

Window functions are permitted only in the SELECT list and the ORDER BY clause of the query. They
are forbidden elsewhere, such as in GROUP BY, HAVING and WHERE clauses. This is because they
logically execute after the processing of those clauses. Also, window functions execute after regular
aggregate functions. This means it is valid to include an aggregate function call in the arguments of a
window function, but not vice versa.

If there is a need to filter or group rows after the window calculations are performed, you can use a
sub-select. For example:

SELECT depname,

FROM
(SELECT

FROM
) AS ss
WHERE pos

empno,

salary, enroll_date

depname, empno, salary, enroll_date,

rank () OVER
empsalary
< 3;

(PARTITION BY depname ORDER BY salary DESC,

The above query only shows the rows from the inner query having rank less than 3.

empno)

AS pos

When a query involves multiple window functions, it is possible to write out each one with a separate
OVER clause, but this is duplicative and error-prone if the same windowing behavior is wanted for
several functions. Instead, each windowing behavior can be named in a WINDOW clause and then
referenced in OVER. For example:

SELECT sum(salary)

FROM empsalary

OVER w, avg(salary) OVER w

19

Chapter 3. Advanced Features

WINDOW w AS (PARTITION BY depname ORDER BY salary DESC);

More details about window functions can be found in Section 4.2.8, Section 9.19, Section 7.2.4, and
the SELECT reference page.

3.6. Inheritance

Inheritance is a concept from object-oriented databases. It opens up interesting new possibilities of
database design.

Let’s create two tables: A table cities and a table capitals. Naturally, capitals are also cities, so
you want some way to show the capitals implicitly when you list all cities. If you’re really clever you
might invent some scheme like this:

CREATE TABLE capitals (
name text,
population real,
altitude int, -— (in ft)
state char (2)
)

CREATE TABLE non_capitals (
name text,
population real,
altitude int -— (in ft)
)i

CREATE VIEW cities AS
SELECT name, population, altitude FROM capitals
UNION
SELECT name, population, altitude FROM non_capitals;

This works OK as far as querying goes, but it gets ugly when you need to update several rows, for one
thing.

A better solution is this:

CREATE TABLE cities (

name text,

population real,

altitude int —— (in ft)
)i

CREATE TABLE capitals (
state char (2)
) INHERITS (cities);

In this case, a row of capitals inherits all columns (name, population, and altitude) from its
parent, cities. The type of the column name is text, a native PostgreSQL type for variable length
character strings. State capitals have an extra column, state, that shows their state. In PostgreSQL,
a table can inherit from zero or more other tables.

20

Chapter 3. Advanced Features

For example, the following query finds the names of all cities, including state capitals, that are located
at an altitude over 500 feet:

SELECT name, altitude
FROM cities
WHERE altitude > 500;

which returns:

name | altitude
___________ b
Las Vegas | 2174
Mariposa | 1953
Madison | 845
(3 rows)

On the other hand, the following query finds all the cities that are not state capitals and are situated at
an altitude of 500 feet or higher:

SELECT name, altitude
FROM ONLY cities
WHERE altitude > 500;

name | altitude
,,,,,,,,,,, [P
Las Vegas | 2174
Mariposa | 1953
(2 rows)

Here the oNLY before cities indicates that the query should be run over only the cities table, and
not tables below cities in the inheritance hierarchy. Many of the commands that we have already
discussed — SELECT, UPDATE, and DELETE — support this ONLY notation.

Note: Although inheritance is frequently useful, it has not been integrated with unique constraints
or foreign keys, which limits its usefulness. See Section 5.8 for more detail.

3.7. Conclusion

PostgreSQL has many features not touched upon in this tutorial introduction, which has been oriented
toward newer users of SQL. These features are discussed in more detail in the remainder of this book.

If you feel you need more introductory material, please visit the PostgreSQL web site? for links to
more resources.

2. http://www.postgresql.org

21

Il. The SQL Language

This part describes the use of the SQL language in PostgreSQL. We start with describing the general
syntax of SQL, then explain how to create the structures to hold data, how to populate the database,
and how to query it. The middle part lists the available data types and functions for use in SQL
commands. The rest treats several aspects that are important for tuning a database for optimal perfor-
mance.

The information in this part is arranged so that a novice user can follow it start to end to gain a full
understanding of the topics without having to refer forward too many times. The chapters are intended
to be self-contained, so that advanced users can read the chapters individually as they choose. The
information in this part is presented in a narrative fashion in topical units. Readers looking for a
complete description of a particular command should see Part VI.

Readers of this part should know how to connect to a PostgreSQL database and issue SQL commands.
Readers that are unfamiliar with these issues are encouraged to read Part I first. SQL commands are
typically entered using the PostgreSQL interactive terminal psql, but other programs that have similar
functionality can be used as well.

Chapter 4. SQL Syntax

This chapter describes the syntax of SQL. It forms the foundation for understanding the following
chapters which will go into detail about how SQL commands are applied to define and modify data.

We also advise users who are already familiar with SQL to read this chapter carefully because it
contains several rules and concepts that are implemented inconsistently among SQL databases or that
are specific to PostgreSQL.

4.1. Lexical Structure

SQL input consists of a sequence of commands. A command is composed of a sequence of tokens,
6,9

terminated by a semicolon (“;”). The end of the input stream also terminates a command. Which
tokens are valid depends on the syntax of the particular command.

A token can be a key word, an identifier, a quoted identifier, a literal (or constant), or a special
character symbol. Tokens are normally separated by whitespace (space, tab, newline), but need not
be if there is no ambiguity (which is generally only the case if a special character is adjacent to some
other token type).

For example, the following is (syntactically) valid SQL input:

SELECT % FROM MY_TABLE;
UPDATE MY_TABLE SET A = 5;
INSERT INTO MY_TABLE VALUES (3, ’"hi there’);

This is a sequence of three commands, one per line (although this is not required; more than one
command can be on a line, and commands can usefully be split across lines).

Additionally, comments can occur in SQL input. They are not tokens, they are effectively equivalent
to whitespace.

The SQL syntax is not very consistent regarding what tokens identify commands and which are
operands or parameters. The first few tokens are generally the command name, so in the above ex-
ample we would usually speak of a “SELECT”, an “UPDATE”, and an “INSERT” command. But for
instance the UPDATE command always requires a SET token to appear in a certain position, and this
particular variation of INSERT also requires a VALUES in order to be complete. The precise syntax
rules for each command are described in Part VI.

4.1.1. Identifiers and Key Words

Tokens such as SELECT, UPDATE, or VALUES in the example above are examples of key words, that
is, words that have a fixed meaning in the SQL language. The tokens MY_TABLE and A are exam-
ples of identifiers. They identify names of tables, columns, or other database objects, depending on
the command they are used in. Therefore they are sometimes simply called “names”. Key words and
identifiers have the same lexical structure, meaning that one cannot know whether a token is an iden-
tifier or a key word without knowing the language. A complete list of key words can be found in
Appendix C.

SQL identifiers and key words must begin with a letter (a-z, but also letters with diacritical marks
and non-Latin letters) or an underscore (_). Subsequent characters in an identifier or key word can be
letters, underscores, digits (0-9), or dollar signs ($). Note that dollar signs are not allowed in identifiers
according to the letter of the SQL standard, so their use might render applications less portable. The

24

Chapter 4. SQL Syntax

SQL standard will not define a key word that contains digits or starts or ends with an underscore, so
identifiers of this form are safe against possible conflict with future extensions of the standard.

The system uses no more than NAMEDATALEN-1 bytes of an identifier; longer names can be written
in commands, but they will be truncated. By default, NAMEDATALEN is 64 so the maximum identifier
length is 63 bytes. If this limit is problematic, it can be raised by changing the NAMEDATALEN constant

in src/include/pg_config_manual.h.

Key words and unquoted identifiers are case insensitive. Therefore:

UPDATE MY_TABLE SET A = 5;

can equivalently be written as:

uPDaTE my_TabLE SeT a = 5;

A convention often used is to write key words in upper case and names in lower case, e.g.:

UPDATE my_table SET a = 5;

There is a second kind of identifier: the delimited identifier or quoted identifier. It is formed by en-
closing an arbitrary sequence of characters in double-quotes ("). A delimited identifier is always an
identifier, never a key word. So "select" could be used to refer to a column or table named “select”,
whereas an unquoted select would be taken as a key word and would therefore provoke a parse
error when used where a table or column name is expected. The example can be written with quoted
identifiers like this:

UPDATE "my_table" SET "a" = 5;

Quoted identifiers can contain any character, except the character with code zero. (To include a double
quote, write two double quotes.) This allows constructing table or column names that would otherwise
not be possible, such as ones containing spaces or ampersands. The length limitation still applies.

A variant of quoted identifiers allows including escaped Unicode characters identified by their code
points. This variant starts with Us (upper or lower case U followed by ampersand) immediately before
the opening double quote, without any spaces in between, for example Us"foo". (Note that this
creates an ambiguity with the operator &. Use spaces around the operator to avoid this problem.) Inside
the quotes, Unicode characters can be specified in escaped form by writing a backslash followed by
the four-digit hexadecimal code point number or alternatively a backslash followed by a plus sign
followed by a six-digit hexadecimal code point number. For example, the identifier "data" could be
written as

Us"d\0061t\+000061"
The following less trivial example writes the Russian word “slon” (elephant) in Cyrillic letters:

U&"\0441\043B\043E\043D"

If a different escape character than backslash is desired, it can be specified using the UESCAPE clause
after the string, for example:

U&"d!0061t!+000061" UESCAPE ' !’

25

Chapter 4. SQL Syntax

The escape character can be any single character other than a hexadecimal digit, the plus sign, a single
quote, a double quote, or a whitespace character. Note that the escape character is written in single
quotes, not double quotes.

To include the escape character in the identifier literally, write it twice.

The Unicode escape syntax works only when the server encoding is UTF8. When other server encod-
ings are used, only code points in the ASCII range (up to \007F) can be specified. Both the 4-digit
and the 6-digit form can be used to specify UTF-16 surrogate pairs to compose characters with code
points larger than U+FFFF, although the availability of the 6-digit form technically makes this unnec-
essary. (When surrogate pairs are used when the server encoding is UTF 8, they are first combined into
a single code point that is then encoded in UTF-8.)

Quoting an identifier also makes it case-sensitive, whereas unquoted names are always folded to lower
case. For example, the identifiers FOO, foo, and "foo" are considered the same by PostgreSQL, but
"Foo" and "FOO" are different from these three and each other. (The folding of unquoted names to
lower case in PostgreSQL is incompatible with the SQL standard, which says that unquoted names
should be folded to upper case. Thus, foo should be equivalent to "FOO" not "foo" according to the
standard. If you want to write portable applications you are advised to always quote a particular name
or never quote it.)

4.1.2. Constants

There are three kinds of implicitly-typed constants in PostgreSQL: strings, bit strings, and numbers.
Constants can also be specified with explicit types, which can enable more accurate representation and
more efficient handling by the system. These alternatives are discussed in the following subsections.

4.1.2.1. String Constants

A string constant in SQL is an arbitrary sequence of characters bounded by single quotes (), for
example ' This is a string’. To include a single-quote character within a string constant, write
two adjacent single quotes, e.g., ' Dianne”s horse’. Note that this is not the same as a double-quote
character (").

Two string constants that are only separated by whitespace with at least one newline are concatenated
and effectively treated as if the string had been written as one constant. For example:

SELECT '’ foo’
"bar’;

is equivalent to:

SELECT ' foobar’;

but:

SELECT ' foo’ "bar’;

is not valid syntax. (This slightly bizarre behavior is specified by SQL; PostgreSQL is following the
standard.)

26

Chapter 4. SQL Syntax

4.1.2.2. String Constants with C-Style Escapes

PostgreSQL also accepts “escape” string constants, which are an extension to the SQL standard.
An escape string constant is specified by writing the letter E (upper or lower case) just before the
opening single quote, e.g., E’ foo’. (When continuing an escape string constant across lines, write
E only before the first opening quote.) Within an escape string, a backslash character (\) begins a
C-like backslash escape sequence, in which the combination of backslash and following character(s)
represent a special byte value, as shown in Table 4-1.

Table 4-1. Backslash Escape Sequences

Backslash Escape Sequence Interpretation

\b backspace

\f form feed

\n newline

\r carriage return

\t tab

\o, \oo, \ooo (0c=0-7) octal byte value

\xh, \xhh (h=0-9,A-F) hexadecimal byte value

\uxxxx, \Uxxxxxxxx (x=0-9, A -F) 16 or 32-bit hexadecimal Unicode character
value

Any other character following a backslash is taken literally. Thus, to include a backslash character,
write two backslashes (\\). Also, a single quote can be included in an escape string by writing \’, in
addition to the normal way of ”.

It is your responsibility that the byte sequences you create, especially when using the octal or hex-
adecimal escapes, compose valid characters in the server character set encoding. When the server
encoding is UTF-8, then the Unicode escapes or the alternative Unicode escape syntax, explained in
Section 4.1.2.3, should be used instead. (The alternative would be doing the UTF-8 encoding by hand
and writing out the bytes, which would be very cumbersome.)

The Unicode escape syntax works fully only when the server encoding is UTF8. When other server
encodings are used, only code points in the ASCII range (up to \u007F) can be specified. Both the
4-digit and the 8-digit form can be used to specify UTF-16 surrogate pairs to compose characters
with code points larger than U+FFFF, although the availability of the 8-digit form technically makes
this unnecessary. (When surrogate pairs are used when the server encoding is UTF8, they are first
combined into a single code point that is then encoded in UTF-8.)

27

Chapter 4. SQL Syntax

Caution

If the configuration parameter standard_conforming_strings is off, then
PostgreSQL recognizes backslash escapes in both regular and escape
string constants. This is for backward compatibility with the historical
behavior, where backslash escapes were always recognized. Although
standard_conforming_strings currently defaults to off, the default
will change to on in a future release for improved standards compliance.
Applications are therefore encouraged to migrate away from using backslash
escapes. If you need to use a backslash escape to represent a special
character, write the string constant with an £ to be sure it will be handled the
same way in future releases.

In addition to standard_conforming_strings, the configuration parameters
escape_string_warning and backslash_quote govern treatment of backslashes
in string constants.

The character with the code zero cannot be in a string constant.

4.1.2.3. String Constants with Unicode Escapes

PostgreSQL also supports another type of escape syntax for strings that allows specifying arbitrary
Unicode characters by code point. A Unicode escape string constant starts with Us (upper or lower
case letter U followed by ampersand) immediately before the opening quote, without any spaces in
between, for example Us’ foo’ . (Note that this creates an ambiguity with the operator &. Use spaces
around the operator to avoid this problem.) Inside the quotes, Unicode characters can be specified
in escaped form by writing a backslash followed by the four-digit hexadecimal code point number
or alternatively a backslash followed by a plus sign followed by a six-digit hexadecimal code point
number. For example, the string * data’ could be written as

Us’d\0061t\+000061"
The following less trivial example writes the Russian word “slon” (elephant) in Cyrillic letters:

Us&’\0441\043B\043E\043D’

If a different escape character than backslash is desired, it can be specified using the UESCAPE clause
after the string, for example:

U&’d!0061t!+000061" UESCAPE 7!’

The escape character can be any single character other than a hexadecimal digit, the plus sign, a single
quote, a double quote, or a whitespace character.

The Unicode escape syntax works only when the server encoding is UTF8. When other server encod-
ings are used, only code points in the ASCII range (up to \007F) can be specified. Both the 4-digit
and the 6-digit form can be used to specify UTF-16 surrogate pairs to compose characters with code
points larger than U+FFFF, although the availability of the 6-digit form technically makes this unnec-
essary. (When surrogate pairs are used when the server encoding is UTF 8, they are first combined into
a single code point that is then encoded in UTF-8.)

Also, the Unicode escape syntax for string constants only works when the configuration parameter
standard_conforming_strings is turned on. This is because otherwise this syntax could confuse clients

28

Chapter 4. SQL Syntax

that parse the SQL statements to the point that it could lead to SQL injections and similar security
issues. If the parameter is set to off, this syntax will be rejected with an error message.

To include the escape character in the string literally, write it twice.

4.1.2.4. Dollar-Quoted String Constants

While the standard syntax for specifying string constants is usually convenient, it can be difficult to
understand when the desired string contains many single quotes or backslashes, since each of those
must be doubled. To allow more readable queries in such situations, PostgreSQL provides another
way, called “dollar quoting”, to write string constants. A dollar-quoted string constant consists of a
dollar sign ($), an optional “tag” of zero or more characters, another dollar sign, an arbitrary sequence
of characters that makes up the string content, a dollar sign, the same tag that began this dollar quote,
and a dollar sign. For example, here are two different ways to specify the string “Dianne’s horse”
using dollar quoting:

SSDianne’s horses
$SomeTag$Dianne’s horse$SomeTags$

Notice that inside the dollar-quoted string, single quotes can be used without needing to be escaped.
Indeed, no characters inside a dollar-quoted string are ever escaped: the string content is always writ-
ten literally. Backslashes are not special, and neither are dollar signs, unless they are part of a sequence
matching the opening tag.

It is possible to nest dollar-quoted string constants by choosing different tags at each nesting level.
This is most commonly used in writing function definitions. For example:

Sfunction$
BEGIN
RETURN ($1 ~ $qgS[\t\r\n\v\\1$qg$);
END;
Sfunction$

Here, the sequence g [\t\r\n\v\\1qg represents a dollar-quoted literal string [\t\r\n\v\\],
which will be recognized when the function body is executed by PostgreSQL. But since the sequence
does not match the outer dollar quoting delimiter $ functions, it is just some more characters within
the constant so far as the outer string is concerned.

The tag, if any, of a dollar-quoted string follows the same rules as an unquoted identifier, except that
it cannot contain a dollar sign. Tags are case sensitive, so tagString contentS$tags is correct,
but STAGSString contenttag is not.

A dollar-quoted string that follows a keyword or identifier must be separated from it by whitespace;
otherwise the dollar quoting delimiter would be taken as part of the preceding identifier.

Dollar quoting is not part of the SQL standard, but it is often a more convenient way to write com-
plicated string literals than the standard-compliant single quote syntax. It is particularly useful when
representing string constants inside other constants, as is often needed in procedural function defini-
tions. With single-quote syntax, each backslash in the above example would have to be written as four
backslashes, which would be reduced to two backslashes in parsing the original string constant, and
then to one when the inner string constant is re-parsed during function execution.

29

Chapter 4. SQL Syntax

4.1.2.5. Bit-String Constants

Bit-string constants look like regular string constants with a B (upper or lower case) immediately
before the opening quote (no intervening whitespace), e.g., B’ 1001’ . The only characters allowed
within bit-string constants are 0 and 1.

Alternatively, bit-string constants can be specified in hexadecimal notation, using a leading x (upper
or lower case), e.g., X’ 1FF’ . This notation is equivalent to a bit-string constant with four binary digits
for each hexadecimal digit.

Both forms of bit-string constant can be continued across lines in the same way as regular string
constants. Dollar quoting cannot be used in a bit-string constant.

4.1.2.6. Numeric Constants

Numeric constants are accepted in these general forms:

digits

digits. |[digits] [e[+-]digits]
[digits] .digits[e[+-]digits]
digitse[+-]digits

where digits is one or more decimal digits (O through 9). At least one digit must be before or
after the decimal point, if one is used. At least one digit must follow the exponent marker (e), if one
is present. There cannot be any spaces or other characters embedded in the constant. Note that any
leading plus or minus sign is not actually considered part of the constant; it is an operator applied to
the constant.

These are some examples of valid numeric constants:

42

35

4.

.001

5e2
1.925¢-3

A numeric constant that contains neither a decimal point nor an exponent is initially presumed to be
type integer if its value fits in type integer (32 bits); otherwise it is presumed to be type bigint
if its value fits in type bigint (64 bits); otherwise it is taken to be type numeric. Constants that
contain decimal points and/or exponents are always initially presumed to be type numeric.

The initially assigned data type of a numeric constant is just a starting point for the type resolution
algorithms. In most cases the constant will be automatically coerced to the most appropriate type de-
pending on context. When necessary, you can force a numeric value to be interpreted as a specific data
type by casting it. For example, you can force a numeric value to be treated as type real (float4)
by writing:

REAL ’1.23" —-- string style
1.23::REAL —-— PostgreSQL (historical) style

These are actually just special cases of the general casting notations discussed next.

30

Chapter 4. SQL Syntax

4.1.2.7. Constants of Other Types

A constant of an arbitrary type can be entered using any one of the following notations:

type ' string’
! string’ ::type
CAST ("string’ AS type)

The string constant’s text is passed to the input conversion routine for the type called ¢ ype. The result
is a constant of the indicated type. The explicit type cast can be omitted if there is no ambiguity as to
the type the constant must be (for example, when it is assigned directly to a table column), in which
case it is automatically coerced.

The string constant can be written using either regular SQL notation or dollar-quoting.

It is also possible to specify a type coercion using a function-like syntax:
typename (' string’)

but not all type names can be used in this way; see Section 4.2.9 for details.

The : :, CAST (), and function-call syntaxes can also be used to specify run-time type conversions of
arbitrary expressions, as discussed in Section 4.2.9. To avoid syntactic ambiguity, the type ’ string’
syntax can only be used to specify the type of a simple literal constant. Another restriction on the type
" string’ syntax is that it does not work for array types; use : : or CAST () to specify the type of an
array constant.

The caAsT () syntax conforms to SQL. The type ’string’ syntax is a generalization of the standard:
SQL specifies this syntax only for a few data types, but PostgreSQL allows it for all types. The syntax
with : : is historical PostgreSQL usage, as is the function-call syntax.

4.1.3. Operators

An operator name is a sequence of up to NAMEDATALEN-1 (63 by default) characters from the follow-
ing list:

+-F/<>=~1@# D "&I"?

There are a few restrictions on operator names, however:

« —-and / cannot appear anywhere in an operator name, since they will be taken as the start of a
comment.

« A multiple-character operator name cannot end in + or —, unless the name also contains at least one
of these characters:

~l@#DP &I ?

For example, @- is an allowed operator name, but «- is not. This restriction allows PostgreSQL to
parse SQL-compliant queries without requiring spaces between tokens.

When working with non-SQL-standard operator names, you will usually need to separate adjacent
operators with spaces to avoid ambiguity. For example, if you have defined a left unary operator

31

Chapter 4. SQL Syntax

named @, you cannot write Xx@Y; you must write X @Y to ensure that PostgreSQL reads it as two
operator names not one.

4.1.4. Special Characters

Some characters that are not alphanumeric have a special meaning that is different from being an
operator. Details on the usage can be found at the location where the respective syntax element is
described. This section only exists to advise the existence and summarize the purposes of these char-
acters.

« A dollar sign (s) followed by digits is used to represent a positional parameter in the body of
a function definition or a prepared statement. In other contexts the dollar sign can be part of an
identifier or a dollar-quoted string constant.

« Parentheses (()) have their usual meaning to group expressions and enforce precedence. In some
cases parentheses are required as part of the fixed syntax of a particular SQL command.

« Brackets ([1) are used to select the elements of an array. See Section 8.14 for more information on
arrays.

« Commas (,) are used in some syntactical constructs to separate the elements of a list.

« The semicolon (;) terminates an SQL command. It cannot appear anywhere within a command,
except within a string constant or quoted identifier.

» The colon (:) is used to select “slices” from arrays. (See Section 8.14.) In certain SQL dialects
(such as Embedded SQL), the colon is used to prefix variable names.

+ The asterisk (») is used in some contexts to denote all the fields of a table row or composite value.
It also has a special meaning when used as the argument of an aggregate function, namely that the
aggregate does not require any explicit parameter.

« The period (.) is used in numeric constants, and to separate schema, table, and column names.

4.1.5. Comments

A comment is a sequence of characters beginning with double dashes and extending to the end of the
line, e.g.:

—— This 1is a standard SQL comment

Alternatively, C-style block comments can be used:

/* multiline comment
* with nesting: /% nested block comment =/

*/

where the comment begins with /» and extends to the matching occurrence of = /. These block com-
ments nest, as specified in the SQL standard but unlike C, so that one can comment out larger blocks
of code that might contain existing block comments.

32

Chapter 4. SQL Syntax

A comment is removed from the input stream before further syntax analysis and is effectively replaced

by whitespace.

4.1.6. Lexical Precedence

Table 4-2 shows the precedence and associativity of the operators in PostgreSQL. Most operators have
the same precedence and are left-associative. The precedence and associativity of the operators is

hard-wired into the parser. This can lead to non-intuitive behavior; for example the Boolean operators

< and > have a different precedence than the Boolean operators <= and >=. Also, you will sometimes

need to add parentheses when using combinations of binary and unary operators. For instance:

SELECT 5 ! - 6;

will be parsed as:

SELECT 5 ! (- 6);

because the parser has no idea — until it is too late — that ! is defined as a postfix operator, not an

infix one. To get the desired behavior in this case, you must write:

SELECT (5 !) - 6;

This is the price one pays for extensibility.

Table 4-2. Operator Precedence (decreasing)

Operator/Element

Associativity

Description

left table/column name separator
left PostgreSQL-style typecast

[] left array element selection

- right unary minus

" left exponentiation

x /% left multiplication, division,
modulo

+ - left addition, subtraction

Is IS TRUE, IS FALSE, IS
UNKNOWN, IS NULL

ISNULL test for null

NOTNULL test for not null

(any other) left all other native and user-defined
operators

IN set membership

BETWEEN range containment

OVERLAPS time interval overlap

LIKE ILIKE SIMILAR string pattern matching

<> less than, greater than

= right equality, assignment

NOT right logical negation

33

Chapter 4. SQL Syntax

Operator/Element Associativity Description
AND left logical conjunction
OR left logical disjunction

Note that the operator precedence rules also apply to user-defined operators that have the same names
as the built-in operators mentioned above. For example, if you define a “+” operator for some custom
data type it will have the same precedence as the built-in “+” operator, no matter what yours does.

When a schema-qualified operator name is used in the OPERATOR syntax, as for example in:
SELECT 3 OPERATOR (pg_catalog.+) 4;

the OPERATOR construct is taken to have the default precedence shown in Table 4-2 for “any other”
operator. This is true no matter which specific operator appears inside OPERATOR () .

4.2. Value Expressions

Value expressions are used in a variety of contexts, such as in the target list of the SELECT command,
as new column values in INSERT or UPDATE, or in search conditions in a number of commands. The
result of a value expression is sometimes called a scalar, to distinguish it from the result of a table
expression (which is a table). Value expressions are therefore also called scalar expressions (or even
simply expressions). The expression syntax allows the calculation of values from primitive parts using
arithmetic, logical, set, and other operations.

A value expression is one of the following:

« A constant or literal value

+ A column reference

» A positional parameter reference, in the body of a function definition or prepared statement
+ A subscripted expression

+ A field selection expression
+ An operator invocation
A function call

- An aggregate expression

+ A window function call

« A type cast

« A scalar subquery

+ An array constructor

+ A row constructor

« Another value expression in parentheses (used to group subexpressions and override precedence)

In addition to this list, there are a number of constructs that can be classified as an expression but do
not follow any general syntax rules. These generally have the semantics of a function or operator and
are explained in the appropriate location in Chapter 9. An example is the IS NULL clause.

34

Chapter 4. SQL Syntax

We have already discussed constants in Section 4.1.2. The following sections discuss the remaining
options.

4.2.1. Column References
A column can be referenced in the form:

correlation.columnname

correlation is the name of a table (possibly qualified with a schema name), or an alias for a table
defined by means of a FROM clause. The correlation name and separating dot can be omitted if the
column name is unique across all the tables being used in the current query. (See also Chapter 7.)

4.2.2. Positional Parameters

A positional parameter reference is used to indicate a value that is supplied externally to an SQL
statement. Parameters are used in SQL function definitions and in prepared queries. Some client
libraries also support specifying data values separately from the SQL command string, in which case
parameters are used to refer to the out-of-line data values. The form of a parameter reference is:

Snumber

For example, consider the definition of a function, dept, as:

CREATE FUNCTION dept (text) RETURNS dept
AS $$ SELECT * FROM dept WHERE name = $1 $$
LANGUAGE SQL;

Here the $1 references the value of the first function argument whenever the function is invoked.

4.2.3. Subscripts

If an expression yields a value of an array type, then a specific element of the array value can be
extracted by writing

expression|subscript]
or multiple adjacent elements (an “array slice”) can be extracted by writing
expression|lower_subscript:upper_subscript]

(Here, the brackets [] are meant to appear literally.) Each subscript is itself an expression, which
must yield an integer value.

In general the array expression must be parenthesized, but the parentheses can be omitted when
the expression to be subscripted is just a column reference or positional parameter. Also, multiple
subscripts can be concatenated when the original array is multidimensional. For example:

mytable.arraycolumn([4]
mytable.two_d_column[17] [34]

35

Chapter 4. SQL Syntax

$1[10:42]
(arrayfunction(a,b)) [42]

The parentheses in the last example are required. See Section 8.14 for more about arrays.

4.2.4. Field Selection

If an expression yields a value of a composite type (row type), then a specific field of the row can be
extracted by writing

expression. fieldname

In general the row expression must be parenthesized, but the parentheses can be omitted when the
expression to be selected from is just a table reference or positional parameter. For example:

mytable.mycolumn
$1.somecolumn
(rowfunction(a,b)) .col3

(Thus, a qualified column reference is actually just a special case of the field selection syntax.) An
important special case is extracting a field from a table column that is of a composite type:

(compositecol) .somefield
(mytable.compositecol) .somefield

The parentheses are required here to show that compositecol is a column name not a table name,
or that mytable is a table name not a schema name in the second case.

4.2.5. Operator Invocations

There are three possible syntaxes for an operator invocation:

expression operator expression (binary infix operator)
operator expression (unary prefix operator)
expression operator (unary postfix operator)

where the operator token follows the syntax rules of Section 4.1.3, or is one of the key words AND,
OR, and NOT, or is a qualified operator name in the form:

OPERATOR (schema.operatorname)

Which particular operators exist and whether they are unary or binary depends on what operators have
been defined by the system or the user. Chapter 9 describes the built-in operators.

4.2.6. Function Calls

The syntax for a function call is the name of a function (possibly qualified with a schema name),
followed by its argument list enclosed in parentheses:

function_name ([expression [, expression ...]])

36

Chapter 4. SQL Syntax

For example, the following computes the square root of 2:

sqrt (2)

The list of built-in functions is in Chapter 9. Other functions can be added by the user.

The arguments can optionally have names attached. See Section 4.3 for details.

4.2.7. Aggregate Expressions

An aggregate expression represents the application of an aggregate function across the rows selected
by a query. An aggregate function reduces multiple inputs to a single output value, such as the sum or
average of the inputs. The syntax of an aggregate expression is one of the following:

aggregate_name (expression [, ...] [order_by clause])

aggregate_name (ALL expression [, ...] [order_by clause])

aggregate_name (DISTINCT expression [, ...] [order_by_clause])
(

aggregate_name *)

where aggregate_name is a previously defined aggregate (possibly qualified with a schema name),
expression is any value expression that does not itself contain an aggregate expression or a window
function call, and order_by_clause is a optional ORDER BY clause as described below.

The first form of aggregate expression invokes the aggregate once for each input row. The second
form is the same as the first, since ALL is the default. The third form invokes the aggregate once for
each distinct value of the expression (or distinct set of values, for multiple expressions) found in the
input rows. The last form invokes the aggregate once for each input row; since no particular input
value is specified, it is generally only useful for the count (x) aggregate function.

Most aggregate functions ignore null inputs, so that rows in which one or more of the expression(s)
yield null are discarded. This can be assumed to be true, unless otherwise specified, for all built-in
aggregates.

For example, count (x) yields the total number of input rows; count (£1) yields the number of
input rows in which £1 is non-null, since count ignores nulls; and count (distinct £1) yields
the number of distinct non-null values of £1.

Ordinarily, the input rows are fed to the aggregate function in an unspecified order. In many cases
this does not matter; for example, min produces the same result no matter what order it receives
the inputs in. However, some aggregate functions (such as array_agg and string_agg) produce
results that depend on the ordering of the input rows. When using such an aggregate, the optional
order_by_clause can be used to specify the desired ordering. The order_by_clause has the
same syntax as for a query-level ORDER BY clause, as described in Section 7.5, except that its expres-
sions are always just expressions and cannot be output-column names or numbers. For example:

SELECT array_agg(a ORDER BY b DESC) FROM table;

When dealing with multiple-argument aggregate functions, note that the ORDER BY clause goes after
all the aggregate arguments. For example, write this:

SELECT string_agg(a, ’,’ ORDER BY a) FROM table;

37

Chapter 4. SQL Syntax

not this:
SELECT string_agg(a ORDER BY a, ’,’) FROM table; -- incorrect

The latter is syntactically valid, but it represents a call of a single-argument aggregate function with
two ORDER BY keys (the second one being rather useless since it’s a constant).

If DISTINCT is specified in addition to an order_by_clause, then all the ORDER BY expressions
must match regular arguments of the aggregate; that is, you cannot sort on an expression that is not
included in the DISTINCT list.

Note: The ability to specify both prsTINCT and orDER BY in an aggregate function is a Post-
greSQL extension.

The predefined aggregate functions are described in Section 9.18. Other aggregate functions can be
added by the user.

An aggregate expression can only appear in the result list or HAVING clause of a SELECT command.
It is forbidden in other clauses, such as WHERE, because those clauses are logically evaluated before
the results of aggregates are formed.

When an aggregate expression appears in a subquery (see Section 4.2.10 and Section 9.20), the aggre-
gate is normally evaluated over the rows of the subquery. But an exception occurs if the aggregate’s
arguments contain only outer-level variables: the aggregate then belongs to the nearest such outer
level, and is evaluated over the rows of that query. The aggregate expression as a whole is then an
outer reference for the subquery it appears in, and acts as a constant over any one evaluation of that
subquery. The restriction about appearing only in the result list or HAVING clause applies with respect
to the query level that the aggregate belongs to.

4.2.8. Window Function Calls

A window function call represents the application of an aggregate-like function over some portion of
the rows selected by a query. Unlike regular aggregate function calls, this is not tied to grouping of the
selected rows into a single output row — each row remains separate in the query output. However the
window function is able to scan all the rows that would be part of the current row’s group according to
the grouping specification (PARTITION BY list) of the window function call. The syntax of a window

function call is one of the following:
function_name [expression [, expression ...]]) OVER (window_definition)
function_name [expression [, expression ...]]) OVER window_name
*) OVER (window definition)

*) OVER window_name

function_name

(
(
(
function_name (

where window_definition has the syntax

existing _window_name]

PARTITION BY expression [, ...]]

ORDER BY expression [ASC | DESC | USING operator] [NULLS { FIRST | LAST } 1 [,
frame_clause]

[
[
[
[

and the optional frame_clause can be one of

[RANGE | ROWS] frame_ start
[RANGE | ROWS] BETWEEN frame_ start AND frame_ end

38

Chapter 4. SQL Syntax

where frame_start and frame_end can be one of

UNBOUNDED PRECEDING
value PRECEDING
CURRENT ROW

value FOLLOWING
UNBOUNDED FOLLOWING

Here, expression represents any value expression that does not itself contain window function
calls. The PARTITION BY and ORDER BY lists have essentially the same syntax and semantics as
GROUP BY and ORDER BY clauses of the whole query, except that their expressions are always just
expressions and cannot be output-column names or numbers. window_name is a reference to a named
window specification defined in the query’s WINDOW clause. Named window specifications are usually
referenced with just OVER window_name, but it is also possible to write a window name inside the
parentheses and then optionally supply an ordering clause and/or frame clause (the referenced win-
dow must lack these clauses, if they are supplied here). This latter syntax follows the same rules as
modifying an existing window name within the wINDOW clause; see the SELECT reference page for
details.

The frame_clause specifies the set of rows constituting the window frame, for those window func-
tions that act on the frame instead of the whole partition. If frame end is omitted it defaults to
CURRENT ROW. Restrictions are that frame_start cannot be UNBOUNDED FOLLOWING, frame_end
cannot be UNBOUNDED PRECEDING, and the frame_end choice cannot appear earlier in the above
list than the frame start choice — for example RANGE BETWEEN CURRENT ROW AND value
PRECEDING is not allowed. The default framing option is RANGE UNBOUNDED PRECEDING, which
is the same as RANGE BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW; it sets the frame to
be all rows from the partition start up through the current row’s last peer in the ORDER BY ordering
(which means all rows if there is no ORDER BY). In general, UNBOUNDED PRECEDING means that the
frame starts with the first row of the partition, and similarly UNBOUNDED FOLLOWING means that the
frame ends with the last row of the partition (regardless of RANGE or ROWS mode). In ROWS mode,
CURRENT ROW means that the frame starts or ends with the current row; but in RANGE mode it means
that the frame starts or ends with the current row’s first or last peer in the ORDER BY ordering. The
value PRECEDING and value FOLLOWING cases are currently only allowed in ROWS mode. They
indicate that the frame starts or ends with the row that many rows before or after the current row.
value must be an integer expression not containing any variables, aggregate functions, or window
functions. The value must not be null or negative; but it can be zero, which selects the current row
itself.

The built-in window functions are described in Table 9-44. Other window functions can be added by
the user. Also, any built-in or user-defined aggregate function can be used as a window function.

The syntaxes using = are used for calling parameter-less aggregate functions as window functions, for
example count () OVER (PARTITION BY x ORDER BY y). is customarily not used for non-
aggregate window functions. Aggregate window functions, unlike normal aggregate functions, do not
allow DISTINCT or ORDER BY to be used within the function argument list.

Window function calls are permitted only in the SELECT list and the ORDER BY clause of the query.

More information about window functions can be found in Section 3.5, Section 9.19, Section 7.2.4.

39

Chapter 4. SQL Syntax

4.2.9. Type Casts

A type cast specifies a conversion from one data type to another. PostgreSQL accepts two equivalent
syntaxes for type casts:

CAST (expression AS type)

expression: :type

The caAsT syntax conforms to SQL; the syntax with : : is historical PostgreSQL usage.

When a cast is applied to a value expression of a known type, it represents a run-time type conversion.
The cast will succeed only if a suitable type conversion operation has been defined. Notice that this is
subtly different from the use of casts with constants, as shown in Section 4.1.2.7. A cast applied to an
unadorned string literal represents the initial assignment of a type to a literal constant value, and so it
will succeed for any type (if the contents of the string literal are acceptable input syntax for the data
type).

An explicit type cast can usually be omitted if there is no ambiguity as to the type that a value expres-
sion must produce (for example, when it is assigned to a table column); the system will automatically
apply a type cast in such cases. However, automatic casting is only done for casts that are marked
“OK to apply implicitly” in the system catalogs. Other casts must be invoked with explicit casting
syntax. This restriction is intended to prevent surprising conversions from being applied silently.

It is also possible to specify a type cast using a function-like syntax:
typename (expression)

However, this only works for types whose names are also valid as function names. For example,
double precision cannot be used this way, but the equivalent float8 can. Also, the names
interval, time, and t imestamp can only be used in this fashion if they are double-quoted, because
of syntactic conflicts. Therefore, the use of the function-like cast syntax leads to inconsistencies and
should probably be avoided.

Note: The function-like syntax is in fact just a function call. When one of the two standard cast
syntaxes is used to do a run-time conversion, it will internally invoke a registered function to
perform the conversion. By convention, these conversion functions have the same name as their
output type, and thus the “function-like syntax” is nothing more than a direct invocation of the
underlying conversion function. Obviously, this is not something that a portable application should
rely on. For further details see CREATE CAST.

4.2.10. Scalar Subqueries

A scalar subquery is an ordinary SELECT query in parentheses that returns exactly one row with one
column. (See Chapter 7 for information about writing queries.) The SELECT query is executed and
the single returned value is used in the surrounding value expression. It is an error to use a query that
returns more than one row or more than one column as a scalar subquery. (But if, during a particular
execution, the subquery returns no rows, there is no error; the scalar result is taken to be null.) The
subquery can refer to variables from the surrounding query, which will act as constants during any
one evaluation of the subquery. See also Section 9.20 for other expressions involving subqueries.

For example, the following finds the largest city population in each state:

SELECT name, (SELECT max (pop) FROM cities WHERE cities.state = states.name)
FROM states;

40

Chapter 4. SQL Syntax

4.2.11. Array Constructors

An array constructor is an expression that builds an array value using values for its member elements.
A simple array constructor consists of the key word ARRAY, a left square bracket [, a list of expressions
(separated by commas) for the array element values, and finally a right square bracket]. For example:

SELECT ARRAY[1,2,3+4];

By default, the array element type is the common type of the member expressions, determined using
the same rules as for UNION or CASE constructs (see Section 10.5). You can override this by explicitly
casting the array constructor to the desired type, for example:

SELECT ARRAY[1,2,22.7]::integer(];

{1,2,23}
(1 row)

This has the same effect as casting each expression to the array element type individually. For more
on casting, see Section 4.2.9.

Multidimensional array values can be built by nesting array constructors. In the inner constructors,
the key word ARRAY can be omitted. For example, these produce the same result:

SELECT ARRAY[ARRAY[1,2], ARRAY[3,4]];

{{1,2},{3,4}}
(1 row)

SELECT ARRAY[[1,2],[3,41];

{{1,2},{3,4}}
(1 row)

Since multidimensional arrays must be rectangular, inner constructors at the same level must pro-
duce sub-arrays of identical dimensions. Any cast applied to the outer ARRAY constructor propagates
automatically to all the inner constructors.

Multidimensional array constructor elements can be anything yielding an array of the proper kind, not
only a sub-ARRAY construct. For example:

CREATE TABLE arr(fl int[], £2 int[]);
INSERT INTO arr VALUES (ARRAY[[1,2],[3,41], ARRAY[[5,61,1[7,8]1);

SELECT ARRAY[fl, £2, "{{9,10},{11,12}}’::int[]] FROM arr;
array

41

Chapter 4. SQL Syntax

{{{1,2},{3,4}},{{5,6},{7,8}},{{9,10},{11,12}}}
(1 row)

You can construct an empty array, but since it’s impossible to have an array with no type, you must
explicitly cast your empty array to the desired type. For example:

SELECT ARRAY[]::integer([];

It is also possible to construct an array from the results of a subquery. In this form, the array construc-
tor is written with the key word ARRAY followed by a parenthesized (not bracketed) subquery. For
example:

SELECT ARRAY (SELECT oid FROM pg_proc WHERE proname LIKE ’'bytea%’);
?column?

{2011,1954,1948,1952,1951,1244,1950,2005,1949,1953,2006,31}
(1 row)

The subquery must return a single column. The resulting one-dimensional array will have an element
for each row in the subquery result, with an element type matching that of the subquery’s output
column.

The subscripts of an array value built with ARRAY always begin with one. For more information about
arrays, see Section 8.14.

4.2.12. Row Constructors

A row constructor is an expression that builds a row value (also called a composite value) using
values for its member fields. A row constructor consists of the key word Row, a left parenthesis, zero
or more expressions (separated by commas) for the row field values, and finally a right parenthesis.
For example:

SELECT ROW(1,2.5,"this is a test’);

The key word ROW is optional when there is more than one expression in the list.

A row constructor can include the syntax rowvalue. «, which will be expanded to a list of the ele-
ments of the row value, just as occurs when the . » syntax is used at the top level of a SELECT list. For
example, if table t has columns £1 and £2, these are the same:

SELECT ROW (t.x, 42) FROM t;
SELECT ROW(t.fl, t.f2, 42) FROM t;

Note: Before PostgreSQL 8.2, the .« syntax was not expanded, so that writing Row (t .+, 42)
created a two-field row whose first field was another row value. The new behavior is usually more
useful. If you need the old behavior of nested row values, write the inner row value without . «, for
instance row (t, 42).

42

Chapter 4. SQL Syntax

By default, the value created by a ROW expression is of an anonymous record type. If necessary, it can
be cast to a named composite type — either the row type of a table, or a composite type created with
CREATE TYPE AS. An explicit cast might be needed to avoid ambiguity. For example:

CREATE TABLE mytable(fl int, £f2 float, £3 text);

CREATE FUNCTION getfl (mytable) RETURNS int AS ’'SELECT $1.f1’ LANGUAGE SQL;

—— No cast needed since only one getfl() exists
SELECT getfl (ROW(1,2.5,"this is a test’));
getfl

1
(1 row)

CREATE TYPE myrowtype AS (f1 int, £f2 text, £3 numeric);
CREATE FUNCTION getfl (myrowtype) RETURNS int AS ’SELECT $1.f1’ LANGUAGE SQL;

-— Now we need a cast to indicate which function to call:
SELECT getfl (ROW(1,2.5,"this is a test’));
ERROR: function getfl (record) is not unique

SELECT getfl(ROW(1,2.5,"this is a test’) ::mytable);
getfl

SELECT getfl (CAST(ROW(11l,’this is a test’,2.5) AS myrowtype));
getfl

Row constructors can be used to build composite values to be stored in a composite-type table column,
or to be passed to a function that accepts a composite parameter. Also, it is possible to compare two
row values or test a row with IS NULL or IS NOT NULL, for example:

SELECT ROW(1,2.5,"this is a test’) = ROW(1l, 3, ’"not the same’);
SELECT ROW (table.x) IS NULL FROM table; —— detect all-null rows

For more detail see Section 9.21. Row constructors can also be used in connection with subqueries,
as discussed in Section 9.20.

4.2.13. Expression Evaluation Rules

The order of evaluation of subexpressions is not defined. In particular, the inputs of an operator or
function are not necessarily evaluated left-to-right or in any other fixed order.

43

Chapter 4. SQL Syntax

Furthermore, if the result of an expression can be determined by evaluating only some parts of it, then
other subexpressions might not be evaluated at all. For instance, if one wrote:

SELECT true OR somefunc();

then somefunc () would (probably) not be called at all. The same would be the case if one wrote:
SELECT somefunc () OR true;

Note that this is not the same as the left-to-right “short-circuiting” of Boolean operators that is found
in some programming languages.

As a consequence, it is unwise to use functions with side effects as part of complex expressions. It is
particularly dangerous to rely on side effects or evaluation order in WHERE and HAVING clauses, since
those clauses are extensively reprocessed as part of developing an execution plan. Boolean expressions
(AND/OR/NOT combinations) in those clauses can be reorganized in any manner allowed by the laws
of Boolean algebra.

When it is essential to force evaluation order, a CASE construct (see Section 9.16) can be used. For
example, this is an untrustworthy way of trying to avoid division by zero in a WHERE clause:

SELECT ... WHERE x > 0 AND y/x > 1.5;
But this is safe:

SELECT ... WHERE CASE WHEN x > 0 THEN y/x > 1.5 ELSE false END;

A CASE construct used in this fashion will defeat optimization attempts, so it should only be done
when necessary. (In this particular example, it would be better to sidestep the problem by writing y
> 1.5xx instead.)

4.3. Calling Functions

PostgreSQL allows functions that have named parameters to be called using either positional or named
notation. Named notation is especially useful for functions that have a large number of parameters,
since it makes the associations between parameters and actual arguments more explicit and reliable.
In positional notation, a function call is written with its argument values in the same order as they
are defined in the function declaration. In named notation, the arguments are matched to the function
parameters by name and can be written in any order.

In either notation, parameters that have default values given in the function declaration need not be
written in the call at all. But this is particularly useful in named notation, since any combination of
parameters can be omitted; while in positional notation parameters can only be omitted from right to
left.

PostgreSQL also supports mixed notation, which combines positional and named notation. In this
case, positional parameters are written first and named parameters appear after them.

The following examples will illustrate the usage of all three notations, using the following function
definition:

CREATE FUNCTION concat_lower_or_upper (a text, b text, uppercase boolean DEFAULT false)
RETURNS text

AS

$S

44

Chapter 4. SQL Syntax

SELECT CASE

WHEN $3 THEN UPPER(S1 || 7 7 || $2)
ELSE LOWER(S$S1 || 7 ' || $2)
END;

$$
LANGUAGE SQL IMMUTABLE STRICT;

Function concat_lower_or_upper has two mandatory parameters, a and b. Additionally there is
one optional parameter uppercase which defaults to false. The a and b inputs will be concatenated,
and forced to either upper or lower case depending on the uppercase parameter. The remaining
details of this function definition are not important here (see Chapter 35 for more information).

4.3.1. Using positional notation

Positional notation is the traditional mechanism for passing arguments to functions in PostgreSQL.
An example is:

SELECT concat_lower_or_upper ('Hello’, ’'World’, true);
concat_lower_or_upper

HELLO WORLD
(1 row)

All arguments are specified in order. The result is upper case since uppercase is specified as true.
Another example is:

SELECT concat_lower_or_upper ('Hello’, 'World’);
concat_lower_or_upper

hello world
(1 row)

Here, the uppercase parameter is omitted, so it receives its default value of false, resulting in
lower case output. In positional notation, arguments can be omitted from right to left so long as they
have defaults.

4.3.2. Using hamed notation

In named notation, each argument’s name is specified using := to separate it from the argument
expression. For example:

SELECT concat_lower_or_upper(a := "Hello’, b := ’"World’);
concat_lower_or_upper

hello world
(1 row)

Again, the argument uppercase was omitted so it is set to false implicitly. One advantage of using
named notation is that the arguments may be specified in any order, for example:

SELECT concat_lower_or_upper(a := 'Hello’, b := ’'World’, uppercase := true);
concat_lower_or_upper

HELLO WORLD

45

Chapter 4. SQL Syntax

(1 row)

SELECT concat_lower_or_upper(a := 'Hello’, uppercase := true, b := 'World’);
concat_lower_or_upper

HELLO WORLD
(1 row)

4.3.3. Using mixed notation

The mixed notation combines positional and named notation. However, as already mentioned, named
arguments cannot precede positional arguments. For example:

SELECT concat_lower_or_upper ('Hello’, ’'World’, uppercase := true);
concat_lower_or_upper

HELLO WORLD
(1 row)

In the above query, the arguments a and b are specified positionally, while uppercase is specified by
name. In this example, that adds little except documentation. With a more complex function having
numerous parameters that have default values, named or mixed notation can save a great deal of
writing and reduce chances for error.

46

Chapter 5. Data Definition

This chapter covers how one creates the database structures that will hold one’s data. In a relational
database, the raw data is stored in tables, so the majority of this chapter is devoted to explaining how
tables are created and modified and what features are available to control what data is stored in the
tables. Subsequently, we discuss how tables can be organized into schemas, and how privileges can
be assigned to tables. Finally, we will briefly look at other features that affect the data storage, such
as inheritance, views, functions, and triggers.

5.1. Table Basics

A table in a relational database is much like a table on paper: It consists of rows and columns. The
number and order of the columns is fixed, and each column has a name. The number of rows is
variable — it reflects how much data is stored at a given moment. SQL does not make any guarantees
about the order of the rows in a table. When a table is read, the rows will appear in an unspecified
order, unless sorting is explicitly requested. This is covered in Chapter 7. Furthermore, SQL does not
assign unique identifiers to rows, so it is possible to have several completely identical rows in a table.
This is a consequence of the mathematical model that underlies SQL but is usually not desirable.
Later in this chapter we will see how to deal with this issue.

Each column has a data type. The data type constrains the set of possible values that can be assigned
to a column and assigns semantics to the data stored in the column so that it can be used for com-
putations. For instance, a column declared to be of a numerical type will not accept arbitrary text
strings, and the data stored in such a column can be used for mathematical computations. By contrast,
a column declared to be of a character string type will accept almost any kind of data but it does not
lend itself to mathematical calculations, although other operations such as string concatenation are
available.

PostgreSQL includes a sizable set of built-in data types that fit many applications. Users can also
define their own data types. Most built-in data types have obvious names and semantics, so we defer
a detailed explanation to Chapter 8. Some of the frequently used data types are integer for whole
numbers, numeric for possibly fractional numbers, text for character strings, date for dates, t ime
for time-of-day values, and t imestamp for values containing both date and time.

To create a table, you use the aptly named CREATE TABLE command. In this command you specify
at least a name for the new table, the names of the columns and the data type of each column. For
example:

CREATE TABLE my_first_table (
first_column text,
second_column integer

)

This creates a table named my_first_table with two columns. The first column is named
first_column and has a data type of text; the second column has the name second_column and
the type integer. The table and column names follow the identifier syntax explained in Section
4.1.1. The type names are usually also identifiers, but there are some exceptions. Note that the
column list is comma-separated and surrounded by parentheses.

Of course, the previous example was heavily contrived. Normally, you would give names to your
tables and columns that convey what kind of data they store. So let’s look at a more realistic example:

CREATE TABLE products (

47

Chapter 5. Data Definition

product_no integer,
name text,
price numeric

)

(The numeric type can store fractional components, as would be typical of monetary amounts.)

Tip: When you create many interrelated tables it is wise to choose a consistent naming pattern
for the tables and columns. For instance, there is a choice of using singular or plural nouns for
table names, both of which are favored by some theorist or other.

There is a limit on how many columns a table can contain. Depending on the column types, it is
between 250 and 1600. However, defining a table with anywhere near this many columns is highly
unusual and often a questionable design.

If you no longer need a table, you can remove it using the DROP TABLE command. For example:

DROP TABLE my_first_table;
DROP TABLE products;

Attempting to drop a table that does not exist is an error. Nevertheless, it is common in SQL script files
to unconditionally try to drop each table before creating it, ignoring any error messages, so that the
script works whether or not the table exists. (If you like, you can use the DROP TABLE IF EXISTS
variant to avoid the error messages, but this is not standard SQL.)

If you need to modify a table that already exists, see Section 5.5 later in this chapter.

With the tools discussed so far you can create fully functional tables. The remainder of this chapter is
concerned with adding features to the table definition to ensure data integrity, security, or convenience.
If you are eager to fill your tables with data now you can skip ahead to Chapter 6 and read the rest of
this chapter later.

5.2. Default Values

A column can be assigned a default value. When a new row is created and no values are specified
for some of the columns, those columns will be filled with their respective default values. A data
manipulation command can also request explicitly that a column be set to its default value, without
having to know what that value is. (Details about data manipulation commands are in Chapter 6.)

If no default value is declared explicitly, the default value is the null value. This usually makes sense
because a null value can be considered to represent unknown data.

In a table definition, default values are listed after the column data type. For example:

CREATE TABLE products (
product_no integer,
name text,
price numeric DEFAULT 9.99
)i

The default value can be an expression, which will be evaluated whenever the default value is inserted
(not when the table is created). A common example is for a t imestamp column to have a default of

48

Chapter 5. Data Definition

CURRENT_TIMESTAMP, so that it gets set to the time of row insertion. Another common example is
generating a “serial number” for each row. In PostgreSQL this is typically done by something like:

CREATE TABLE products (
product_no integer DEFAULT nextval (' products_product_no_seq’),

)

where the nextval () function supplies successive values from a sequence object (see Section 9.15).
This arrangement is sufficiently common that there’s a special shorthand for it:

CREATE TABLE products (
product_no SERIAL,

)

The sERIAL shorthand is discussed further in Section 8.1.4.

5.3. Constraints

Data types are a way to limit the kind of data that can be stored in a table. For many applications,
however, the constraint they provide is too coarse. For example, a column containing a product price
should probably only accept positive values. But there is no standard data type that accepts only
positive numbers. Another issue is that you might want to constrain column data with respect to other
columns or rows. For example, in a table containing product information, there should be only one
row for each product number.

To that end, SQL allows you to define constraints on columns and tables. Constraints give you as
much control over the data in your tables as you wish. If a user attempts to store data in a column
that would violate a constraint, an error is raised. This applies even if the value came from the default
value definition.

5.3.1. Check Constraints

A check constraint is the most generic constraint type. It allows you to specify that the value in
a certain column must satisfy a Boolean (truth-value) expression. For instance, to require positive
product prices, you could use:

CREATE TABLE products (

product_no integer,

name text,

price numeric CHECK (price > 0)
)i

As you see, the constraint definition comes after the data type, just like default value definitions.
Default values and constraints can be listed in any order. A check constraint consists of the key word
CHECK followed by an expression in parentheses. The check constraint expression should involve the
column thus constrained, otherwise the constraint would not make too much sense.

You can also give the constraint a separate name. This clarifies error messages and allows you to refer
to the constraint when you need to change it. The syntax is:

49

Chapter 5. Data Definition

CREATE TABLE products (

product_no integer,

name text,

price numeric CONSTRAINT positive_price CHECK (price > 0)
)i

So, to specify a named constraint, use the key word CONSTRAINT followed by an identifier followed
by the constraint definition. (If you don’t specify a constraint name in this way, the system chooses a
name for you.)

A check constraint can also refer to several columns. Say you store a regular price and a discounted
price, and you want to ensure that the discounted price is lower than the regular price:

CREATE TABLE products (
product_no integer,
name text,
price numeric CHECK (price > 0),
discounted_price numeric CHECK (discounted_price > 0),
CHECK (price > discounted_price)

The first two constraints should look familiar. The third one uses a new syntax. It is not attached to a
particular column, instead it appears as a separate item in the comma-separated column list. Column
definitions and these constraint definitions can be listed in mixed order.

We say that the first two constraints are column constraints, whereas the third one is a table constraint
because it is written separately from any one column definition. Column constraints can also be writ-
ten as table constraints, while the reverse is not necessarily possible, since a column constraint is
supposed to refer to only the column it is attached to. (PostgreSQL doesn’t enforce that rule, but you
should follow it if you want your table definitions to work with other database systems.) The above
example could also be written as:

CREATE TABLE products (
product_no integer,
name text,
price numeric,
CHECK (price > 0),
discounted_price numeric,
CHECK (discounted_price > 0),
CHECK (price > discounted_price)
)i

or even:

CREATE TABLE products (

product_no integer,

name text,

price numeric CHECK (price > 0),

discounted_price numeric,

CHECK (discounted_price > 0 AND price > discounted_price)
)i

It’s a matter of taste.

Names can be assigned to table constraints in the same way as column constraints:

CREATE TABLE products (

50

Chapter 5. Data Definition

product_no integer,

name text,

price numeric,

CHECK (price > 0),

discounted_price numeric,

CHECK (discounted_price > 0),

CONSTRAINT valid_discount CHECK (price > discounted_price)

It should be noted that a check constraint is satisfied if the check expression evaluates to true or the
null value. Since most expressions will evaluate to the null value if any operand is null, they will not
prevent null values in the constrained columns. To ensure that a column does not contain null values,
the not-null constraint described in the next section can be used.

5.3.2. Not-Null Constraints

A not-null constraint simply specifies that a column must not assume the null value. A syntax example:

CREATE TABLE products (
product_no integer NOT NULL,
name text NOT NULL,
price numeric

)

A not-null constraint is always written as a column constraint. A not-null constraint is functionally
equivalent to creating a check constraint CHECK (column_name IS NOT NULL), but in PostgreSQL
creating an explicit not-null constraint is more efficient. The drawback is that you cannot give explicit
names to not-null constraints created this way.

Of course, a column can have more than one constraint. Just write the constraints one after another:

CREATE TABLE products (

product_no integer NOT NULL,

name text NOT NULL,

price numeric NOT NULL CHECK (price > 0)
)i

The order doesn’t matter. It does not necessarily determine in which order the constraints are checked.

The NOT NULL constraint has an inverse: the NULL constraint. This does not mean that the column
must be null, which would surely be useless. Instead, this simply selects the default behavior that the
column might be null. The NULL constraint is not present in the SQL standard and should not be used
in portable applications. (It was only added to PostgreSQL to be compatible with some other database
systems.) Some users, however, like it because it makes it easy to toggle the constraint in a script file.
For example, you could start with:

CREATE TABLE products (
product_no integer NULL,
name text NULL,
price numeric NULL

)i

and then insert the NOT key word where desired.

51

Chapter 5. Data Definition

Tip: In most database designs the majority of columns should be marked not null.

5.3.3. Unique Constraints

Unique constraints ensure that the data contained in a column or a group of columns is unique with
respect to all the rows in the table. The syntax is:

CREATE TABLE products (
product_no integer UNIQUE,
name text,
price numeric

)i
when written as a column constraint, and:

CREATE TABLE products (
product_no integer,
name text,
price numeric,
UNIQUE (product_no)

)i

when written as a table constraint.

If a unique constraint refers to a group of columns, the columns are listed separated by commas:

CREATE TABLE example (
a integer,
b integer,
c integer,
UNIQUE (a, c)
)i

This specifies that the combination of values in the indicated columns is unique across the whole
table, though any one of the columns need not be (and ordinarily isn’t) unique.

You can assign your own name for a unique constraint, in the usual way:

CREATE TABLE products (
product_no integer CONSTRAINT must_be_different UNIQUE,
name text,
price numeric

)i

Adding a unique constraint will automatically create a unique btree index on the column or group of
columns used in the constraint.

In general, a unique constraint is violated when there is more than one row in the table where the
values of all of the columns included in the constraint are equal. However, two null values are not
considered equal in this comparison. That means even in the presence of a unique constraint it is
possible to store duplicate rows that contain a null value in at least one of the constrained columns.
This behavior conforms to the SQL standard, but we have heard that other SQL databases might not
follow this rule. So be careful when developing applications that are intended to be portable.

52

Chapter 5. Data Definition

5.3.4. Primary Keys

Technically, a primary key constraint is simply a combination of a unique constraint and a not-null
constraint. So, the following two table definitions accept the same data:

CREATE TABLE products (
product_no integer UNIQUE NOT NULL,
name text,
price numeric

)

CREATE TABLE products (
product_no integer PRIMARY KEY,
name text,
price numeric

)i

Primary keys can also constrain more than one column; the syntax is similar to unique constraints:

CREATE TABLE example (
a integer,
b integer,
c integer,
PRIMARY KEY (a, c)
)i

A primary key indicates that a column or group of columns can be used as a unique identifier for
rows in the table. (This is a direct consequence of the definition of a primary key. Note that a unique
constraint does not, by itself, provide a unique identifier because it does not exclude null values.) This
is useful both for documentation purposes and for client applications. For example, a GUI application
that allows modifying row values probably needs to know the primary key of a table to be able to
identify rows uniquely.

Adding a primary key will automatically create a unique btree index on the column or group of
columns used in the primary key.

A table can have at most one primary key. (There can be any number of unique and not-null con-
straints, which are functionally the same thing, but only one can be identified as the primary key.)
Relational database theory dictates that every table must have a primary key. This rule is not enforced
by PostgreSQL, but it is usually best to follow it.

5.3.5. Foreign Keys

A foreign key constraint specifies that the values in a column (or a group of columns) must match the
values appearing in some row of another table. We say this maintains the referential integrity between
two related tables.

Say you have the product table that we have used several times already:

CREATE TABLE products (
product_no integer PRIMARY KEY,
name text,
price numeric

)

53

Chapter 5. Data Definition

Let’s also assume you have a table storing orders of those products. We want to ensure that the orders
table only contains orders of products that actually exist. So we define a foreign key constraint in the
orders table that references the products table:

CREATE TABLE orders (
order_id integer PRIMARY KEY,
product_no integer REFERENCES products (product_no),
quantity integer

)i

Now it is impossible to create orders with product_no entries that do not appear in the products
table.

We say that in this situation the orders table is the referencing table and the products table is the
referenced table. Similarly, there are referencing and referenced columns.

You can also shorten the above command to:

CREATE TABLE orders (
order_id integer PRIMARY KEY,
product_no integer REFERENCES products,
quantity integer

)i

because in absence of a column list the primary key of the referenced table is used as the referenced
column(s).

A foreign key can also constrain and reference a group of columns. As usual, it then needs to be
written in table constraint form. Here is a contrived syntax example:

CREATE TABLE tl (

a integer PRIMARY KEY,

b integer,

c integer,

FOREIGN KEY (b, c) REFERENCES other table (cl, c2)
)i

Of course, the number and type of the constrained columns need to match the number and type of the
referenced columns.

You can assign your own name for a foreign key constraint, in the usual way.

A table can contain more than one foreign key constraint. This is used to implement many-to-many
relationships between tables. Say you have tables about products and orders, but now you want to
allow one order to contain possibly many products (which the structure above did not allow). You
could use this table structure:

CREATE TABLE products (
product_no integer PRIMARY KEY,
name text,
price numeric

)
CREATE TABLE orders (

order_id integer PRIMARY KEY,
shipping_address text,

54

Chapter 5. Data Definition

CREATE TABLE order_items (
product_no integer REFERENCES products,
order_id integer REFERENCES orders,
quantity integer,
PRIMARY KEY (product_no, order_id)

)i

Notice that the primary key overlaps with the foreign keys in the last table.

We know that the foreign keys disallow creation of orders that do not relate to any products. But what
if a product is removed after an order is created that references it? SQL allows you to handle that as
well. Intuitively, we have a few options:

« Disallow deleting a referenced product
+ Delete the orders as well
» Something else?

To illustrate this, let’s implement the following policy on the many-to-many relationship example
above: when someone wants to remove a product that is still referenced by an order (via
order_items), we disallow it. If someone removes an order, the order items are removed as well:

CREATE TABLE products (
product_no integer PRIMARY KEY,
name text,
price numeric

)i

CREATE TABLE orders (
order_id integer PRIMARY KEY,
shipping_address text,

)

CREATE TABLE order_items (
product_no integer REFERENCES products ON DELETE RESTRICT,
order_id integer REFERENCES orders ON DELETE CASCADE,
quantity integer,
PRIMARY KEY (product_no, order_id)

Restricting and cascading deletes are the two most common options. RESTRICT prevents deletion of
a referenced row. NO ACTION means that if any referencing rows still exist when the constraint is
checked, an error is raised; this is the default behavior if you do not specify anything. (The essential
difference between these two choices is that NO ACTION allows the check to be deferred until later
in the transaction, whereas RESTRICT does not.) CASCADE specifies that when a referenced row is
deleted, row(s) referencing it should be automatically deleted as well. There are two other options:
SET NULL and SET DEFAULT. These cause the referencing columns to be set to nulls or default
values, respectively, when the referenced row is deleted. Note that these do not excuse you from
observing any constraints. For example, if an action specifies SET DEFAULT but the default value
would not satisfy the foreign key, the operation will fail.

Analogous to ON DELETE there is also ON UPDATE which is invoked when a referenced column is
changed (updated). The possible actions are the same.

55

Chapter 5. Data Definition

Since a DELETE of a row from the referenced table or an UPDATE of a referenced column will require
a scan of the referencing table for rows matching the old value, it is often a good idea to index the
referencing columns. Because this is not always needed, and there are many choices available on
how to index, declaration of a foreign key constraint does not automatically create an index on the
referencing columns.

More information about updating and deleting data is in Chapter 6.

Finally, we should mention that a foreign key must reference columns that either are a primary key or
form a unique constraint. If the foreign key references a unique constraint, there are some additional
possibilities regarding how null values are matched. These are explained in the reference documenta-
tion for CREATE TABLE.

5.3.6. Exclusion Constraints

Exclusion constraints ensure that if any two rows are compared on the specified columns or expres-
sions using the specified operators, at least one of these operator comparisons will return false or null.
The syntax is:

CREATE TABLE circles (

c circle,

EXCLUDE USING gist (c WITH &&)
)i

See also CREATE TABLE ... CONSTRAINT ... EXCLUDE for details.

Adding an exclusion constraint will automatically create an index of the type specified in the con-
straint declaration.

5.4. System Columns

Every table has several system columns that are implicitly defined by the system. Therefore, these
names cannot be used as names of user-defined columns. (Note that these restrictions are separate
from whether the name is a key word or not; quoting a name will not allow you to escape these
restrictions.) You do not really need to be concerned about these columns; just know they exist.

oid
The object identifier (object ID) of a row. This column is only present if the table was created
using WITH OIDS, or if the default_with_oids configuration variable was set at the time. This

column is of type oid (same name as the column); see Section 8.16 for more information about
the type.

tableoid

The OID of the table containing this row. This column is particularly handy for queries that
select from inheritance hierarchies (see Section 5.8), since without it, it’s difficult to tell which
individual table a row came from. The tableoid can be joined against the oid column of
pg_class to obtain the table name.

56

Chapter 5. Data Definition

xmin

The identity (transaction ID) of the inserting transaction for this row version. (A row version is
an individual state of a row; each update of a row creates a new row version for the same logical
row.)

cmin
The command identifier (starting at zero) within the inserting transaction.
Xmax

The identity (transaction ID) of the deleting transaction, or zero for an undeleted row version. It
is possible for this column to be nonzero in a visible row version. That usually indicates that the
deleting transaction hasn’t committed yet, or that an attempted deletion was rolled back.

cmax
The command identifier within the deleting transaction, or zero.
ctid

The physical location of the row version within its table. Note that although the ctid can be
used to locate the row version very quickly, a row’s ctid will change if it is updated or moved
by vacuuM FULL. Therefore ctid is useless as a long-term row identifier. The OID, or even
better a user-defined serial number, should be used to identify logical rows.

OIDs are 32-bit quantities and are assigned from a single cluster-wide counter. In a large or long-lived
database, it is possible for the counter to wrap around. Hence, it is bad practice to assume that OIDs
are unique, unless you take steps to ensure that this is the case. If you need to identify the rows in
a table, using a sequence generator is strongly recommended. However, OIDs can be used as well,
provided that a few additional precautions are taken:

« A unique constraint should be created on the OID column of each table for which the OID will
be used to identify rows. When such a unique constraint (or unique index) exists, the system takes
care not to generate an OID matching an already-existing row. (Of course, this is only possible if
the table contains fewer than 2*? (4 billion) rows, and in practice the table size had better be much
less than that, or performance might suffer.)

+ OIDs should never be assumed to be unique across tables; use the combination of tableoid and
row OID if you need a database-wide identifier.

« Of course, the tables in question must be created WITH OIDS. As of PostgreSQL 8.1, WITHOUT
01DS is the default.

Transaction identifiers are also 32-bit quantities. In a long-lived database it is possible for transaction
IDs to wrap around. This is not a fatal problem given appropriate maintenance procedures; see Chapter
23 for details. It is unwise, however, to depend on the uniqueness of transaction IDs over the long term
(more than one billion transactions).

Command identifiers are also 32-bit quantities. This creates a hard limit of 2*? (4 billion) SQL com-
mands within a single transaction. In practice this limit is not a problem — note that the limit is on
the number of SQL commands, not the number of rows processed. Also, as of PostgreSQL 8.3, only
commands that actually modify the database contents will consume a command identifier.

57

Chapter 5. Data Definition

5.5. Modifying Tables

When you create a table and you realize that you made a mistake, or the requirements of the appli-
cation change, you can drop the table and create it again. But this is not a convenient option if the
table is already filled with data, or if the table is referenced by other database objects (for instance a
foreign key constraint). Therefore PostgreSQL provides a family of commands to make modifications
to existing tables. Note that this is conceptually distinct from altering the data contained in the table:
here we are interested in altering the definition, or structure, of the table.

You can:

« Add columns

« Remove columns

« Add constraints

« Remove constraints

+ Change default values

+ Change column data types
« Rename columns

« Rename tables

All these actions are performed using the ALTER TABLE command, whose reference page contains
details beyond those given here.

5.5.1. Adding a Column

To add a column, use a command like:

ALTER TABLE products ADD COLUMN description text;

The new column is initially filled with whatever default value is given (null if you don’t specify a
DEFAULT clause).

You can also define constraints on the column at the same time, using the usual syntax:
ALTER TABLE products ADD COLUMN description text CHECK (description <> ”);

In fact all the options that can be applied to a column description in CREATE TABLE can be used here.
Keep in mind however that the default value must satisfy the given constraints, or the ADD will fail.
Alternatively, you can add constraints later (see below) after you’ve filled in the new column correctly.

Tip: Adding a column with a default requires updating each row of the table (to store the new
column value). However, if no default is specified, PostgreSQL is able to avoid the physical update.
So if you intend to fill the column with mostly nondefault values, it's best to add the column with
no default, insert the correct values using uppATE, and then add any desired default as described
below.

5.5.2. Removing a Column

To remove a column, use a command like:

ALTER TABLE products DROP COLUMN description;

58

Chapter 5. Data Definition

Whatever data was in the column disappears. Table constraints involving the column are dropped, too.
However, if the column is referenced by a foreign key constraint of another table, PostgreSQL will
not silently drop that constraint. You can authorize dropping everything that depends on the column
by adding CASCADE:

ALTER TABLE products DROP COLUMN description CASCADE;

See Section 5.11 for a description of the general mechanism behind this.

5.5.3. Adding a Constraint

To add a constraint, the table constraint syntax is used. For example:

ALTER TABLE products ADD CHECK (name <> ");
ALTER TABLE products ADD CONSTRAINT some_name UNIQUE (product_no);
ALTER TABLE products ADD FOREIGN KEY (product_group_id) REFERENCES product_groups;

To add a not-null constraint, which cannot be written as a table constraint, use this syntax:

ALTER TABLE products ALTER COLUMN product_no SET NOT NULL;

The constraint will be checked immediately, so the table data must satisfy the constraint before it can
be added.

5.5.4. Removing a Constraint

To remove a constraint you need to know its name. If you gave it a name then that’s easy. Otherwise the
system assigned a generated name, which you need to find out. The psql command \d tablename can
be helpful here; other interfaces might also provide a way to inspect table details. Then the command
is:

ALTER TABLE products DROP CONSTRAINT some_name;

(If you are dealing with a generated constraint name like $2, don’t forget that you’ll need to double-
quote it to make it a valid identifier.)

As with dropping a column, you need to add CASCADE if you want to drop a constraint that something
else depends on. An example is that a foreign key constraint depends on a unique or primary key
constraint on the referenced column(s).

This works the same for all constraint types except not-null constraints. To drop a not null constraint
use:

ALTER TABLE products ALTER COLUMN product_no DROP NOT NULL;

(Recall that not-null constraints do not have names.)

5.5.5. Changing a Column’s Default Value
To set a new default for a column, use a command like:

ALTER TABLE products ALTER COLUMN price SET DEFAULT 7.77;

59

Chapter 5. Data Definition

Note that this doesn’t affect any existing rows in the table, it just changes the default for future INSERT
commands.

To remove any default value, use:
ALTER TABLE products ALTER COLUMN price DROP DEFAULT;

This is effectively the same as setting the default to null. As a consequence, it is not an error to drop
a default where one hadn’t been defined, because the default is implicitly the null value.

5.5.6. Changing a Column’s Data Type
To convert a column to a different data type, use a command like:

ALTER TABLE products ALTER COLUMN price TYPE numeric(10,2);

This will succeed only if each existing entry in the column can be converted to the new type by an
implicit cast. If a more complex conversion is needed, you can add a USING clause that specifies how
to compute the new values from the old.

PostgreSQL will attempt to convert the column’s default value (if any) to the new type, as well as
any constraints that involve the column. But these conversions might fail, or might produce surprising
results. It’s often best to drop any constraints on the column before altering its type, and then add back
suitably modified constraints afterwards.

5.5.7. Renaming a Column

To rename a column:

ALTER TABLE products RENAME COLUMN product_no TO product_number;

5.5.8. Renaming a Table
To rename a table:

ALTER TABLE products RENAME TO items;

5.6. Privileges

When you create a database object, you become its owner. By default, only the owner of an object
can do anything with the object. In order to allow other users to use it, privileges must be granted.
(However, users that have the superuser attribute can always access any object.)

There are several different privileges: SELECT, INSERT, UPDATE, DELETE, TRUNCATE, REFERENCES,
TRIGGER, CREATE, CONNECT, TEMPORARY, EXECUTE, and USAGE. The privileges applicable to a par-
ticular object vary depending on the object’s type (table, function, etc). For complete information on

60

Chapter 5. Data Definition

the different types of privileges supported by PostgreSQL, refer to the GRANT reference page. The
following sections and chapters will also show you how those privileges are used.

The right to modify or destroy an object is always the privilege of the owner only.

Note: To change the owner of a table, index, sequence, or view, use the ALTER TABLE command.
There are corresponding ALTER commands for other object types.

To assign privileges, the GRANT command is used. For example, if joe is an existing user, and
accounts is an existing table, the privilege to update the table can be granted with:

GRANT UPDATE ON accounts TO joe;

Writing ALL in place of a specific privilege grants all privileges that are relevant for the object type.

The special “user” name PUBLIC can be used to grant a privilege to every user on the system. Also,
“group” roles can be set up to help manage privileges when there are many users of a database — for
details see Chapter 20.

To revoke a privilege, use the fittingly named REVOKE command:
REVOKE ALL ON accounts FROM PUBLIC;

The special privileges of the object owner (i.e., the right to do DROP, GRANT, REVOKE, etc.) are always
implicit in being the owner, and cannot be granted or revoked. But the object owner can choose to
revoke his own ordinary privileges, for example to make a table read-only for himself as well as
others.

Ordinarily, only the object’s owner (or a superuser) can grant or revoke privileges on an object. How-
ever, it is possible to grant a privilege “with grant option”, which gives the recipient the right to grant
it in turn to others. If the grant option is subsequently revoked then all who received the privilege
from that recipient (directly or through a chain of grants) will lose the privilege. For details see the
GRANT and REVOKE reference pages.

5.7. Schemas

A PostgreSQL database cluster contains one or more named databases. Users and groups of users are
shared across the entire cluster, but no other data is shared across databases. Any given client con-
nection to the server can access only the data in a single database, the one specified in the connection
request.

Note: Users of a cluster do not necessarily have the privilege to access every database in the
cluster. Sharing of user names means that there cannot be different users named, say, joe in
two databases in the same cluster; but the system can be configured to allow joe access to only
some of the databases.

A database contains one or more named schemas, which in turn contain tables. Schemas also contain
other kinds of named objects, including data types, functions, and operators. The same object name
can be used in different schemas without conflict; for example, both schemal and myschema can
contain tables named myt able. Unlike databases, schemas are not rigidly separated: a user can access
objects in any of the schemas in the database he is connected to, if he has privileges to do so.

61

Chapter 5. Data Definition

There are several reasons why one might want to use schemas:

+ To allow many users to use one database without interfering with each other.
« To organize database objects into logical groups to make them more manageable.

« Third-party applications can be put into separate schemas so they do not collide with the names of
other objects.

Schemas are analogous to directories at the operating system level, except that schemas cannot be
nested.

5.7.1. Creating a Schema

To create a schema, use the CREATE SCHEMA command. Give the schema a name of your choice.
For example:

CREATE SCHEMA myschema;

To create or access objects in a schema, write a qualified name consisting of the schema name and
table name separated by a dot:

schema.table

This works anywhere a table name is expected, including the table modification commands and the
data access commands discussed in the following chapters. (For brevity we will speak of tables only,
but the same ideas apply to other kinds of named objects, such as types and functions.)

Actually, the even more general syntax
database.schema.table

can be used too, but at present this is just for pro forma compliance with the SQL standard. If you
write a database name, it must be the same as the database you are connected to.

So to create a table in the new schema, use:

CREATE TABLE myschema.mytable (

)

To drop a schema if it’s empty (all objects in it have been dropped), use:
DROP SCHEMA myschema;

To drop a schema including all contained objects, use:

DROP SCHEMA myschema CASCADE;

See Section 5.11 for a description of the general mechanism behind this.

Often you will want to create a schema owned by someone else (since this is one of the ways to
restrict the activities of your users to well-defined namespaces). The syntax for that is:

CREATE SCHEMA schemaname AUTHORIZATION username;

62

Chapter 5. Data Definition
You can even omit the schema name, in which case the schema name will be the same as the user
name. See Section 5.7.6 for how this can be useful.

Schema names beginning with pg_ are reserved for system purposes and cannot be created by users.

5.7.2. The Public Schema

In the previous sections we created tables without specifying any schema names. By default such
tables (and other objects) are automatically put into a schema named “public”’. Every new database
contains such a schema. Thus, the following are equivalent:

CREATE TABLE products (...);
and:

CREATE TABLE public.products (...);

5.7.3. The Schema Search Path

Qualified names are tedious to write, and it’s often best not to wire a particular schema name into
applications anyway. Therefore tables are often referred to by unqualified names, which consist of
just the table name. The system determines which table is meant by following a search path, which is
a list of schemas to look in. The first matching table in the search path is taken to be the one wanted.
If there is no match in the search path, an error is reported, even if matching table names exist in other
schemas in the database.

The first schema named in the search path is called the current schema. Aside from being the first
schema searched, it is also the schema in which new tables will be created if the CREATE TABLE
command does not specify a schema name.

To show the current search path, use the following command:
SHOW search_path;
In the default setup this returns:

search_path

"Suser",public

The first element specifies that a schema with the same name as the current user is to be searched. If
no such schema exists, the entry is ignored. The second element refers to the public schema that we
have seen already.

The first schema in the search path that exists is the default location for creating new objects. That
is the reason that by default objects are created in the public schema. When objects are referenced
in any other context without schema qualification (table modification, data modification, or query
commands) the search path is traversed until a matching object is found. Therefore, in the default
configuration, any unqualified access again can only refer to the public schema.

To put our new schema in the path, we use:

SET search_path TO myschema,public;

63

Chapter 5. Data Definition

(We omit the Suser here because we have no immediate need for it.) And then we can access the
table without schema qualification:

DROP TABLE mytable;

Also, since myschema is the first element in the path, new objects would by default be created in it.

We could also have written:
SET search_path TO myschema;

Then we no longer have access to the public schema without explicit qualification. There is nothing
special about the public schema except that it exists by default. It can be dropped, too.

See also Section 9.23 for other ways to manipulate the schema search path.

The search path works in the same way for data type names, function names, and operator names as it
does for table names. Data type and function names can be qualified in exactly the same way as table
names. If you need to write a qualified operator name in an expression, there is a special provision:
you must write

OPERATOR (schema.operator)

This is needed to avoid syntactic ambiguity. An example is:
SELECT 3 OPERATOR (pg_catalog.+) 4;

In practice one usually relies on the search path for operators, so as not to have to write anything so
ugly as that.

5.7.4. Schemas and Privileges

By default, users cannot access any objects in schemas they do not own. To allow that, the owner of
the schema must grant the USAGE privilege on the schema. To allow users to make use of the objects
in the schema, additional privileges might need to be granted, as appropriate for the object.

A user can also be allowed to create objects in someone else’s schema. To allow that, the CREATE
privilege on the schema needs to be granted. Note that by default, everyone has CREATE and USAGE
privileges on the schema public. This allows all users that are able to connect to a given database to
create objects in its public schema. If you do not want to allow that, you can revoke that privilege:

REVOKE CREATE ON SCHEMA public FROM PUBLIC;

(The first “public” is the schema, the second “public” means “every user”. In the first sense it is an
identifier, in the second sense it is a key word, hence the different capitalization; recall the guidelines
from Section 4.1.1.)

5.7.5. The System Catalog Schema

In addition to public and user-created schemas, each database contains a pg_catalog schema,
which contains the system tables and all the built-in data types, functions, and operators. pg_catalog
is always effectively part of the search path. If it is not named explicitly in the path then it is implicitly
searched before searching the path’s schemas. This ensures that built-in names will always be findable.
However, you can explicitly place pg_catalog at the end of your search path if you prefer to have
user-defined names override built-in names.

64

Chapter 5. Data Definition

In PostgreSQL versions before 7.3, table names beginning with pg_ were reserved. This is no longer
true: you can create such a table name if you wish, in any non-system schema. However, it’s best
to continue to avoid such names, to ensure that you won’t suffer a conflict if some future version
defines a system table named the same as your table. (With the default search path, an unqualified
reference to your table name would then be resolved as the system table instead.) System tables will
continue to follow the convention of having names beginning with pg_, so that they will not conflict
with unqualified user-table names so long as users avoid the pg_ prefix.

5.7.6. Usage Patterns

Schemas can be used to organize your data in many ways. There are a few usage patterns that are
recommended and are easily supported by the default configuration:

« If you do not create any schemas then all users access the public schema implicitly. This simu-
lates the situation where schemas are not available at all. This setup is mainly recommended when
there is only a single user or a few cooperating users in a database. This setup also allows smooth
transition from the non-schema-aware world.

« You can create a schema for each user with the same name as that user. Recall that the default
search path starts with Suser, which resolves to the user name. Therefore, if each user has a
separate schema, they access their own schemas by default.

If you use this setup then you might also want to revoke access to the public schema (or drop it
altogether), so users are truly constrained to their own schemas.

« To install shared applications (tables to be used by everyone, additional functions provided by third
parties, etc.), put them into separate schemas. Remember to grant appropriate privileges to allow
the other users to access them. Users can then refer to these additional objects by qualifying the
names with a schema name, or they can put the additional schemas into their search path, as they
choose.

5.7.7. Portability

In the SQL standard, the notion of objects in the same schema being owned by different users does
not exist. Moreover, some implementations do not allow you to create schemas that have a different
name than their owner. In fact, the concepts of schema and user are nearly equivalent in a database
system that implements only the basic schema support specified in the standard. Therefore, many
users consider qualified names to really consist of username.tablename. This is how PostgreSQL
will effectively behave if you create a per-user schema for every user.

Also, there is no concept of a public schema in the SQL standard. For maximum conformance to
the standard, you should not use (perhaps even remove) the public schema.

Of course, some SQL database systems might not implement schemas at all, or provide namespace
support by allowing (possibly limited) cross-database access. If you need to work with those systems,
then maximum portability would be achieved by not using schemas at all.

65

Chapter 5. Data Definition

5.8. Inheritance

PostgreSQL implements table inheritance, which can be a useful tool for database designers.
(SQL:1999 and later define a type inheritance feature, which differs in many respects from the
features described here.)

Let’s start with an example: suppose we are trying to build a data model for cities. Each state has many
cities, but only one capital. We want to be able to quickly retrieve the capital city for any particular
state. This can be done by creating two tables, one for state capitals and one for cities that are not
capitals. However, what happens when we want to ask for data about a city, regardless of whether it
is a capital or not? The inheritance feature can help to resolve this problem. We define the capitals
table so that it inherits from cities:

CREATE TABLE cities (

name text,
population float,
altitude int -— in feet

)i

CREATE TABLE capitals (
state char (2)
) INHERITS (cities);

In this case, the capitals table inherits all the columns of its parent table, cities. State capitals
also have an extra column, state, that shows their state.

In PostgreSQL, a table can inherit from zero or more other tables, and a query can reference either all
rows of a table or all rows of a table plus all of its descendant tables. The latter behavior is the default.
For example, the following query finds the names of all cities, including state capitals, that are located
at an altitude over 500 feet:

SELECT name, altitude
FROM cities
WHERE altitude > 500;

Given the sample data from the PostgreSQL tutorial (see Section 2.1), this returns:

name | altitude
___________ b
Las Vegas | 2174
Mariposa | 1953
Madison | 845

On the other hand, the following query finds all the cities that are not state capitals and are situated at
an altitude over 500 feet:

SELECT name, altitude
FROM ONLY cities
WHERE altitude > 500;

name | altitude
___________ b
Las Vegas | 2174
Mariposa | 1953

66

Chapter 5. Data Definition

Here the oNLY keyword indicates that the query should apply only to cities, and not any tables
below cities in the inheritance hierarchy. Many of the commands that we have already discussed
— SELECT, UPDATE and DELETE — support the ONLY keyword.

In some cases you might wish to know which table a particular row originated from. There is a system
column called tableoid in each table which can tell you the originating table:

SELECT c.tableoid, c.name, c.altitude
FROM cities c
WHERE c.altitude > 500;

which returns:

tableoid | name | altitude

__________ oy
139793 | Las Vegas | 2174
139793 | Mariposa | 1953
139798 | Madison | 845

(If you try to reproduce this example, you will probably get different numeric OIDs.) By doing a join
with pg_class you can see the actual table names:

SELECT p.relname, c.name, c.altitude
FROM cities ¢, pg_class p
WHERE c.altitude > 500 AND c.tableoid = p.oid;

which returns:

relname | name | altitude
__________ e
cities | Las Vegas | 2174
cities | Mariposa | 1953
capitals | Madison | 845

Inheritance does not automatically propagate data from INSERT or COPY commands to other tables in
the inheritance hierarchy. In our example, the following INSERT statement will fail:

INSERT INTO cities (name, population, altitude, state)
VALUES (’New York’, NULL, NULL, ’NY’);

We might hope that the data would somehow be routed to the capitals table, but this does not
happen: INSERT always inserts into exactly the table specified. In some cases it is possible to redirect
the insertion using a rule (see Chapter 37). However that does not help for the above case because the
cities table does not contain the column state, and so the command will be rejected before the
rule can be applied.

All check constraints and not-null constraints on a parent table are automatically inherited by its chil-
dren. Other types of constraints (unique, primary key, and foreign key constraints) are not inherited.

A table can inherit from more than one parent table, in which case it has the union of the columns
defined by the parent tables. Any columns declared in the child table’s definition are added to these.
If the same column name appears in multiple parent tables, or in both a parent table and the child’s
definition, then these columns are “merged” so that there is only one such column in the child table.
To be merged, columns must have the same data types, else an error is raised. The merged column
will have copies of all the check constraints coming from any one of the column definitions it came
from, and will be marked not-null if any of them are.

67

Chapter 5. Data Definition

Table inheritance is typically established when the child table is created, using the INHERITS clause
of the CREATE TABLE statement. Alternatively, a table which is already defined in a compatible
way can have a new parent relationship added, using the INHERIT variant of ALTER TABLE. To do
this the new child table must already include columns with the same names and types as the columns
of the parent. It must also include check constraints with the same names and check expressions as
those of the parent. Similarly an inheritance link can be removed from a child using the NO INHERIT
variant of ALTER TABLE. Dynamically adding and removing inheritance links like this can be useful
when the inheritance relationship is being used for table partitioning (see Section 5.9).

One convenient way to create a compatible table that will later be made a new child is to use the
LIKE clause in CREATE TABLE. This creates a new table with the same columns as the source table. If
there are any CHECK constraints defined on the source table, the INCLUDING CONSTRAINTS option to
LIKE should be specified, as the new child must have constraints matching the parent to be considered
compatible.

A parent table cannot be dropped while any of its children remain. Neither can columns or check
constraints of child tables be dropped or altered if they are inherited from any parent tables. If you
wish to remove a table and all of its descendants, one easy way is to drop the parent table with the
CASCADE option.

ALTER TABLE will propagate any changes in column data definitions and check constraints down the
inheritance hierarchy. Again, dropping columns that are depended on by other tables is only possible
when using the CASCADE option. ALTER TABLE follows the same rules for duplicate column merging
and rejection that apply during CREATE TABLE.

Note how table access permissions are handled. Querying a parent table can automatically access data
in child tables without further access privilege checking. This preserves the appearance that the data
is (also) in the parent table. Accessing the child tables directly is, however, not automatically allowed
and would require further privileges to be granted.

5.8.1. Caveats

Note that not all SQL commands are able to work on inheritance hierarchies. Commands that are
used for data querying, data modification, or schema modification (e.g., SELECT, UPDATE, DELETE,
most variants of ALTER TABLE, but not INSERT and ALTER TABLE ... RENAME) typically default
to including child tables and support the ONLY notation to exclude them. Commands that do database
maintenance and tuning (e.g., REINDEX, VACUUM) typically only work on individual, physical tables
and do no support recursing over inheritance hierarchies. The respective behavior of each individual
command is documented in the reference part (Reference I, SOQL Commands).

A serious limitation of the inheritance feature is that indexes (including unique constraints) and for-
eign key constraints only apply to single tables, not to their inheritance children. This is true on both
the referencing and referenced sides of a foreign key constraint. Thus, in the terms of the above ex-
ample:

« If we declared cities.name to be UNIQUE or a PRIMARY KEY, this would not stop the capitals
table from having rows with names duplicating rows in cities. And those duplicate rows would
by default show up in queries from cities. In fact, by default capitals would have no unique
constraint at all, and so could contain multiple rows with the same name. You could add a unique
constraint to capitals, but this would not prevent duplication compared to cities.

« Similarly, if we were to specify that cities.name REFERENCES some other table, this constraint
would not automatically propagate to capitals. In this case you could work around it by manually
adding the same REFERENCES constraint to capitals.

68

Chapter 5. Data Definition

« Specifying that another table’s column REFERENCES cities (name) would allow the other table
to contain city names, but not capital names. There is no good workaround for this case.

These deficiencies will probably be fixed in some future release, but in the meantime considerable
care is needed in deciding whether inheritance is useful for your application.

Deprecated: In releases of PostgreSQL prior to 7.1, the default behavior was not to include child
tables in queries. This was found to be error prone and also in violation of the SQL standard. You
can get the pre-7.1 behavior by turning off the sql_inheritance configuration option.

5.9. Partitioning

PostgreSQL supports basic table partitioning. This section describes why and how to implement par-
titioning as part of your database design.

5.9.1. Overview

Partitioning refers to splitting what is logically one large table into smaller physical pieces. Partition-
ing can provide several benefits:

+ Query performance can be improved dramatically in certain situations, particularly when most of
the heavily accessed rows of the table are in a single partition or a small number of partitions. The
partitioning substitutes for leading columns of indexes, reducing index size and making it more
likely that the heavily-used parts of the indexes fit in memory.

« When queries or updates access a large percentage of a single partition, performance can be im-
proved by taking advantage of sequential scan of that partition instead of using an index and random
access reads scattered across the whole table.

+ Bulk loads and deletes can be accomplished by adding or removing partitions, if that requirement
is planned into the partitioning design. ALTER TABLE NO INHERIT and DROP TABLE are both far
faster than a bulk operation. These commands also entirely avoid the vAcuUM overhead caused by
a bulk DELETE.

» Seldom-used data can be migrated to cheaper and slower storage media.

The benefits will normally be worthwhile only when a table would otherwise be very large. The exact
point at which a table will benefit from partitioning depends on the application, although a rule of
thumb is that the size of the table should exceed the physical memory of the database server.

Currently, PostgreSQL supports partitioning via table inheritance. Each partition must be created as a
child table of a single parent table. The parent table itself is normally empty; it exists just to represent
the entire data set. You should be familiar with inheritance (see Section 5.8) before attempting to set
up partitioning.

The following forms of partitioning can be implemented in PostgreSQL.:

Range Partitioning

The table is partitioned into “ranges” defined by a key column or set of columns, with no overlap
between the ranges of values assigned to different partitions. For example one might partition by
date ranges, or by ranges of identifiers for particular business objects.

69

Chapter 5. Data Definition

List Partitioning

The table is partitioned by explicitly listing which key values appear in each partition.

5.9.2. Implementing Partitioning

To set up a partitioned table, do the following:

1. Create the “master” table, from which all of the partitions will inherit.

This table will contain no data. Do not define any check constraints on this table, unless you
intend them to be applied equally to all partitions. There is no point in defining any indexes or
unique constraints on it, either.

. Create several “child” tables that each inherit from the master table. Normally, these tables will

not add any columns to the set inherited from the master.

We will refer to the child tables as partitions, though they are in every way normal PostgreSQL
tables.

. Add table constraints to the partition tables to define the allowed key values in each partition.

Typical examples would be:

CHECK (x =1)

CHECK (county IN ('Oxfordshire’, ’Buckinghamshire’, ’'Warwickshire’))
CHECK (outletID >= 100 AND outletID < 200)

Ensure that the constraints guarantee that there is no overlap between the key values permitted in
different partitions. A common mistake is to set up range constraints like:

CHECK (outletID BETWEEN 100 AND 200)
CHECK (outletID BETWEEN 200 AND 300)

This is wrong since it is not clear which partition the key value 200 belongs in.

Note that there is no difference in syntax between range and list partitioning; those terms are
descriptive only.

. For each partition, create an index on the key column(s), as well as any other indexes you might

want. (The key index is not strictly necessary, but in most scenarios it is helpful. If you intend
the key values to be unique then you should always create a unique or primary-key constraint for
each partition.)

. Optionally, define a trigger or rule to redirect data inserted into the master table to the appropriate

partition.

.Ensure that the constraint_exclusion configuration parameter is not disabled in

postgresqgl.conf. If it is, queries will not be optimized as desired.

For example, suppose we are constructing a database for a large ice cream company. The company

measures peak temperatures every day as well as ice cream sales in each region. Conceptually, we

want a table like:

CREATE TABLE measurement (

city_id int not null,
logdate date not null,
peaktemp int,
unitsales int

70

Chapter 5. Data Definition

We know that most queries will access just the last week’s, month’s or quarter’s data, since the main
use of this table will be to prepare online reports for management. To reduce the amount of old data
that needs to be stored, we decide to only keep the most recent 3 years worth of data. At the beginning
of each month we will remove the oldest month’s data.

In this situation we can use partitioning to help us meet all of our different requirements for the

measurements table. Following the steps outlined above, partitioning can be set up as follows:

1. The master table is the measurement table, declared exactly as above.
2. Next we create one partition for each active month:

CREATE TABLE measurement_y2006m02 () INHERITS (measurement);
CREATE TABLE measurement_y2006m03 () INHERITS (measurement);
CREATE TABLE measurement_y2007mll () INHERITS (measurement);
CREATE TABLE measurement_y2007ml2 () INHERITS (measurement);
CREATE TABLE measurement_y2008m0l1 () INHERITS (measurement);

Each of the partitions are complete tables in their own right, but they inherit their definitions from
the measurement table.

This solves one of our problems: deleting old data. Each month, all we will need to do is perform

a DROP TABLE on the oldest child table and create a new child table for the new month’s data.
3. We must provide non-overlapping table constraints. Rather than just creating the partition tables

as above, the table creation script should really be:

CREATE TABLE measurement_y2006m02 (
CHECK (logdate >= DATE

) INHERITS (measurement);

CREATE TABLE measurement_y2006m03 (
CHECK (

) INHERITS (measurement);

CREATE TABLE measurement_y2007mll (
CHECK (logdate >= DATE

) INHERITS (measurement);

CREATE TABLE measurement_y2007ml2 (
CHECK (

) INHERITS (measurement);

CREATE TABLE measurement_y2008m01 (
CHECK (

72006-02-01"

logdate >= DATE ’2006-03-01"

r2007-11-01"

logdate >= DATE ’2007-12-01’

logdate >= DATE ’2008-01-01"

) INHERITS

(measurement) ;

4. We probably need indexes on the key columns too:

CREATE
CREATE
CREATE
CREATE
CREATE

INDEX
INDEX

INDEX
INDEX
INDEX

measurement_y2006m02_logdate
measurement_y2006m03_logdate

measurement_y2007mll_logdate
measurement_y2007ml2_logdate
measurement_y2008m01_logdate

‘We choose not to add further indexes at this time.

5. We want our application to be able to say INSERT INTO measurement

AND

AND

AND

AND

AND

ON
ON

ON
ON
ON

logdate < DATE

logdate < DATE

logdate < DATE

logdate < DATE

logdate < DATE

measurement_y2006m02
measurement_y2006m03

measurement_y2007mll
measurement_y2007ml2
measurement_y2008m01

72006-03-01")

72006-04-01")

72007-12-01")

72008-01-01")

72008-02-01")

(logdate) ;
(logdate) ;

(logdate) ;
(logdate) ;
(logdate) ;

... and have the data

be redirected into the appropriate partition table. We can arrange that by attaching a suitable
trigger function to the master table. If data will be added only to the latest partition, we can use a
very simple trigger function:

CREATE OR REPLACE FUNCTION measurement_insert_trigger ()
RETURNS TRIGGER AS $$

BEGIN

71

Chapter 5. Data Definition

INSERT INTO measurement_y2008m0l1 VALUES (NEW.x);
RETURN NULL;

END;

$S

LANGUAGE plpgsql;

After creating the function, we create a trigger which calls the trigger function:

CREATE TRIGGER insert_measurement_trigger

BEFORE INSERT ON measurement

FOR EACH ROW EXECUTE PROCEDURE measurement_insert_trigger();
We must redefine the trigger function each month so that it always points to the current partition.
The trigger definition does not need to be updated, however.

We might want to insert data and have the server automatically locate the partition into which the
row should be added. We could do this with a more complex trigger function, for example:

CREATE OR REPLACE FUNCTION measurement_insert_trigger ()
RETURNS TRIGGER AS $$
BEGIN
IF (NEW.logdate >= DATE ’2006-02-01" AND
NEW.logdate < DATE ’2006-03-01") THEN
INSERT INTO measurement_y2006m02 VALUES (NEW.x);
ELSIF (NEW.logdate >= DATE ’2006-03-01" AND
NEW.logdate < DATE ’"2006-04-01") THEN
INSERT INTO measurement_y2006m03 VALUES (NEW.x);

ELSIF (NEW.logdate >= DATE ’2008-01-01" AND
NEW.logdate < DATE ’2008-02-01") THEN
INSERT INTO measurement_y2008m0l1 VALUES (NEW.x);
ELSE
RAISE EXCEPTION ’‘Date out of range. Fix the measurement_insert_trigger () fur
END IF;
RETURN NULL;
END;
$S
LANGUAGE plpgsql;

The trigger definition is the same as before. Note that each IF test must exactly match the CHECK
constraint for its partition.

While this function is more complex than the single-month case, it doesn’t need to be updated as
often, since branches can be added in advance of being needed.

Note: In practice it might be best to check the newest partition first, if most inserts go into
that partition. For simplicity we have shown the trigger’s tests in the same order as in other
parts of this example.

As we can see, a complex partitioning scheme could require a substantial amount of DDL. In the
above example we would be creating a new partition each month, so it might be wise to write a script
that generates the required DDL automatically.

72

Chapter 5. Data Definition

5.9.3. Managing Partitions

Normally the set of partitions established when initially defining the table are not intended to remain
static. It is common to want to remove old partitions of data and periodically add new partitions
for new data. One of the most important advantages of partitioning is precisely that it allows this
otherwise painful task to be executed nearly instantaneously by manipulating the partition structure,
rather than physically moving large amounts of data around.

The simplest option for removing old data is simply to drop the partition that is no longer necessary:
DROP TABLE measurement_y2006m02;

This can very quickly delete millions of records because it doesn’t have to individually delete every
record.

Another option that is often preferable is to remove the partition from the partitioned table but retain
access to it as a table in its own right:

ALTER TABLE measurement_y2006m02 NO INHERIT measurement;

This allows further operations to be performed on the data before it is dropped. For example, this is
often a useful time to back up the data using copy, pg_dump, or similar tools. It might also be a useful
time to aggregate data into smaller formats, perform other data manipulations, or run reports.

Similarly we can add a new partition to handle new data. We can create an empty partition in the
partitioned table just as the original partitions were created above:

CREATE TABLE measurement_y2008m02 (
CHECK (logdate >= DATE ’'2008-02-01’ AND logdate < DATE ’2008-03-01")
) INHERITS (measurement);

As an alternative, it is sometimes more convenient to create the new table outside the partition struc-
ture, and make it a proper partition later. This allows the data to be loaded, checked, and transformed
prior to it appearing in the partitioned table:

CREATE TABLE measurement_y2008m02
(LIKE measurement INCLUDING DEFAULTS INCLUDING CONSTRAINTS) ;
ALTER TABLE measurement_y2008m02 ADD CONSTRAINT y2008m02
CHECK (logdate >= DATE ’'2008-02-01’ AND logdate < DATE ’'2008-03-01");
\copy measurement_y2008m02 from ’'measurement_y2008m02’
—-— possibly some other data preparation work
ALTER TABLE measurement_y2008m02 INHERIT measurement;

5.9.4. Partitioning and Constraint Exclusion

Constraint exclusion is a query optimization technique that improves performance for partitioned
tables defined in the fashion described above. As an example:

SET constraint_exclusion = on;
SELECT count () FROM measurement WHERE logdate >= DATE ’2008-01-01'";

Without constraint exclusion, the above query would scan each of the partitions of the measurement
table. With constraint exclusion enabled, the planner will examine the constraints of each partition
and try to prove that the partition need not be scanned because it could not contain any rows meeting

73

Chapter 5. Data Definition

the query’s WHERE clause. When the planner can prove this, it excludes the partition from the query
plan.

You can use the EXPLAIN command to show the difference between a plan with
constraint_exclusion on and a plan with it off. A typical unoptimized plan for this type of table
setup is:

SET constraint_exclusion = off;
EXPLAIN SELECT count (x) FROM measurement WHERE logdate >= DATE ’2008-01-01';

QUERY PLAN
Aggregate (cost=158.66..158.68 rows=1 width=0)
-> Append (cost=0.00..151.88 rows=2715 width=0)
-> Seq Scan on measurement (cost=0.00..30.38 rows=543 width=0)
Filter: (logdate >= 72008-01-01’::date)

-> Seq Scan on measurement_y2006m02 measurement (cost=0.00..30.38 rows=543 wi
Filter: (logdate >= ’2008-01-01’::date)
-> Seq Scan on measurement_y2006m03 measurement (cost=0.00..30.38 rows=543 wi

Filter: (logdate >= ’2008-01-01’::date)

-> Seq Scan on measurement_y2007ml2 measurement (cost=0.00..30.38 rows=543 wi
Filter: (logdate >= 72008-01-01’::date)
-> Seq Scan on measurement_y2008m0l1 measurement (cost=0.00..30.38 rows=543 wi

Filter: (logdate >= ’2008-01-01’::date)

Some or all of the partitions might use index scans instead of full-table sequential scans, but the point
here is that there is no need to scan the older partitions at all to answer this query. When we enable
constraint exclusion, we get a significantly cheaper plan that will deliver the same answer:

SET constraint_exclusion = on;
EXPLAIN SELECT count (x) FROM measurement WHERE logdate >= DATE ’2008-01-01’";
QUERY PLAN
Aggregate (cost=63.47..63.48 rows=1 width=0)
-> Append (cost=0.00..60.75 rows=1086 width=0)

-> Seqg Scan on measurement (cost=0.00..30.38 rows=543 width=0)
Filter: (logdate >= ’2008-01-01’::date)
-> Seqg Scan on measurement_y2008m0l measurement (cost=0.00..30.38 rows=543 wi

Filter: (logdate >= ’2008-01-01’::date)

Note that constraint exclusion is driven only by CHECK constraints, not by the presence of indexes.
Therefore it isn’t necessary to define indexes on the key columns. Whether an index needs to be
created for a given partition depends on whether you expect that queries that scan the partition will
generally scan a large part of the partition or just a small part. An index will be helpful in the latter
case but not the former.

The default (and recommended) setting of constraint_exclusion is actually neither on nor of £, but an
intermediate setting called partition, which causes the technique to be applied only to queries that
are likely to be working on partitioned tables. The on setting causes the planner to examine CHECK
constraints in all queries, even simple ones that are unlikely to benefit.

74

Chapter 5. Data Definition

5.9.5. Alternative Partitioning Methods

A different approach to redirecting inserts into the appropriate partition table is to set up rules, instead
of a trigger, on the master table. For example:

CREATE RULE measurement_insert_y2006m02 AS
ON INSERT TO measurement WHERE

(logdate >= DATE ’'2006-02-01’ AND logdate < DATE ’'2006-03-01")
DO INSTEAD

INSERT INTO measurement_y2006m02 VALUES (NEW.x);

CREATE RULE measurement_insert_y2008m0l1 AS
ON INSERT TO measurement WHERE

(logdate >= DATE ’'2008-01-01’ AND logdate < DATE ’'2008-02-01")
DO INSTEAD

INSERT INTO measurement_y2008m01 VALUES (NEW.x*);

A rule has significantly more overhead than a trigger, but the overhead is paid once per query rather
than once per row, so this method might be advantageous for bulk-insert situations. In most cases,
however, the trigger method will offer better performance.

Be aware that copy ignores rules. If you want to use COPY to insert data, you’ll need to copy into the
correct partition table rather than into the master. cCopy does fire triggers, so you can use it normally
if you use the trigger approach.

Another disadvantage of the rule approach is that there is no simple way to force an error if the set of
rules doesn’t cover the insertion date; the data will silently go into the master table instead.

Partitioning can also be arranged using a UNION ALL view, instead of table inheritance. For example,

CREATE VIEW measurement AS
SELECT x FROM measurement_y2006m02
UNION ALL SELECT % FROM measurement_y2006m03

UNION ALL SELECT % FROM measurement_y2007mll
UNION ALL SELECT % FROM measurement_y2007ml12
UNION ALL SELECT % FROM measurement_y2008m01;

However, the need to recreate the view adds an extra step to adding and dropping individual partitions
of the data set. In practice this method has little to recommend it compared to using inheritance.

5.9.6. Caveats

The following caveats apply to partitioned tables:

« There is no automatic way to verify that all of the CHECK constraints are mutually exclusive. It is
safer to create code that generates partitions and creates and/or modifies associated objects than to
write each by hand.

« The schemes shown here assume that the partition key column(s) of a row never change, or at
least do not change enough to require it to move to another partition. An UPDATE that attempts
to do that will fail because of the CHECK constraints. If you need to handle such cases, you can
put suitable update triggers on the partition tables, but it makes management of the structure much
more complicated.

75

Chapter 5. Data Definition

If you are using manual VACUUM or ANALYZE commands, don’t forget that you need to run them on
each partition individually. A command like:

ANALYZE measurement;
will only process the master table.

The following caveats apply to constraint exclusion:

Constraint exclusion only works when the query’s WHERE clause contains constants. A parameter-
ized query will not be optimized, since the planner cannot know which partitions the parameter
value might select at run time. For the same reason, “stable” functions such as CURRENT_DATE
must be avoided.

Keep the partitioning constraints simple, else the planner may not be able to prove that partitions
don’t need to be visited. Use simple equality conditions for list partitioning, or simple range tests for
range partitioning, as illustrated in the preceding examples. A good rule of thumb is that partitioning
constraints should contain only comparisons of the partitioning column(s) to constants using B-
tree-indexable operators.

All constraints on all partitions of the master table are examined during constraint exclusion, so
large numbers of partitions are likely to increase query planning time considerably. Partitioning
using these techniques will work well with up to perhaps a hundred partitions; don’t try to use
many thousands of partitions.

5.10. Other Database Objects

Tables are the central objects in a relational database structure, because they hold your data. But they
are not the only objects that exist in a database. Many other kinds of objects can be created to make the
use and management of the data more efficient or convenient. They are not discussed in this chapter,
but we give you a list here so that you are aware of what is possible:

Views
Functions and operators
Data types and domains

Triggers and rewrite rules

Detailed information on these topics appears in Part V.

5.11. Dependency Tracking

When you create complex database structures involving many tables with foreign key constraints,

views, triggers, functions, etc. you implicitly create a net of dependencies between the objects. For

instance, a table with a foreign key constraint depends on the table it references.

To ensure the integrity of the entire database structure, PostgreSQL makes sure that you cannot drop
objects that other objects still depend on. For example, attempting to drop the products table we had

76

Chapter 5. Data Definition

considered in Section 5.3.5, with the orders table depending on it, would result in an error message
such as this:

DROP TABLE products;

NOTICE: constraint orders_product_no_fkey on table orders depends on table products
ERROR: cannot drop table products because other objects depend on it
HINT: Use DROP ... CASCADE to drop the dependent objects too.

The error message contains a useful hint: if you do not want to bother deleting all the dependent
objects individually, you can run:

DROP TABLE products CASCADE;

and all the dependent objects will be removed. In this case, it doesn’t remove the orders table, it only
removes the foreign key constraint. (If you want to check what DrRoP ... caASCADE will do, run
DROP without CASCADE and read the NOTICE messages.)

All drop commands in PostgreSQL support specifying CASCADE. Of course, the nature of the possible
dependencies varies with the type of the object. You can also write RESTRICT instead of CASCADE to
get the default behavior, which is to prevent the dropping of objects that other objects depend on.

Note: According to the SQL standard, specifying either RESTRICT or cascapk is required. No
database system actually enforces that rule, but whether the default behavior is REsTRICT or
CASCADE varies across systems.

Note: Foreign key constraint dependencies and serial column dependencies from PostgreSQL
versions prior to 7.3 are not maintained or created during the upgrade process. All other depen-
dency types will be properly created during an upgrade from a pre-7.3 database.

77

Chapter 6. Data Manipulation

The previous chapter discussed how to create tables and other structures to hold your data. Now it is
time to fill the tables with data. This chapter covers how to insert, update, and delete table data. The
chapter after this will finally explain how to extract your long-lost data from the database.

6.1. Inserting Data

When a table is created, it contains no data. The first thing to do before a database can be of much use
is to insert data. Data is conceptually inserted one row at a time. Of course you can also insert more
than one row, but there is no way to insert less than one row. Even if you know only some column
values, a complete row must be created.

To create a new row, use the INSERT command. The command requires the table name and column
values. For example, consider the products table from Chapter 5:

CREATE TABLE products (
product_no integer,
name text,
price numeric

)i
An example command to insert a row would be:

INSERT INTO products VALUES (1, ’Cheese’, 9.99);
The data values are listed in the order in which the columns appear in the table, separated by commas.
Usually, the data values will be literals (constants), but scalar expressions are also allowed.

The above syntax has the drawback that you need to know the order of the columns in the table. To
avoid this you can also list the columns explicitly. For example, both of the following commands have
the same effect as the one above:

INSERT INTO products (product_no, name, price) VALUES (1, ’Cheese’, 9.99);
INSERT INTO products (name, price, product_no) VALUES (’'Cheese’, 9.99, 1);

Many users consider it good practice to always list the column names.

If you don’t have values for all the columns, you can omit some of them. In that case, the columns
will be filled with their default values. For example:

INSERT INTO products (product_no, name) VALUES (1, ’Cheese’);
INSERT INTO products VALUES (1, ’Cheese’);

The second form is a PostgreSQL extension. It fills the columns from the left with as many values as
are given, and the rest will be defaulted.

For clarity, you can also request default values explicitly, for individual columns or for the entire row:

INSERT INTO products (product_no, name, price) VALUES (1, ’'Cheese’, DEFAULT);
INSERT INTO products DEFAULT VALUES;

You can insert multiple rows in a single command:

INSERT INTO products (product_no, name, price) VALUES

78

Chapter 6. Data Manipulation

(1, ’"Cheese’, 9.99),
(2, '"Bread’, 1.99),
(3, 'Milk’, 2.99);

Tip: When inserting a lot of data at the same time, considering using the COPY command. It
is not as flexible as the INSERT command, but is more efficient. Refer to Section 14.4 for more
information on improving bulk loading performance.

6.2. Updating Data

The modification of data that is already in the database is referred to as updating. You can update
individual rows, all the rows in a table, or a subset of all rows. Each column can be updated separately;
the other columns are not affected.

To update existing rows, use the UPDATE command. This requires three pieces of information:

1. The name of the table and column to update
2. The new value of the column
3. Which row(s) to update

Recall from Chapter 5 that SQL does not, in general, provide a unique identifier for rows. Therefore it
is not always possible to directly specify which row to update. Instead, you specify which conditions
a row must meet in order to be updated. Only if you have a primary key in the table (independent of
whether you declared it or not) can you reliably address individual rows by choosing a condition that
matches the primary key. Graphical database access tools rely on this fact to allow you to update rows
individually.

For example, this command updates all products that have a price of 5 to have a price of 10:
UPDATE products SET price = 10 WHERE price = 5;

This might cause zero, one, or many rows to be updated. It is not an error to attempt an update that
does not match any rows.

Let’s look at that command in detail. First is the key word UPDATE followed by the table name. As
usual, the table name can be schema-qualified, otherwise it is looked up in the path. Next is the key
word SET followed by the column name, an equal sign, and the new column value. The new column
value can be any scalar expression, not just a constant. For example, if you want to raise the price of
all products by 10% you could use:

UPDATE products SET price = price * 1.10;

As you see, the expression for the new value can refer to the existing value(s) in the row. We also
left out the WHERE clause. If it is omitted, it means that all rows in the table are updated. If it is
present, only those rows that match the WHERE condition are updated. Note that the equals sign in
the SET clause is an assignment while the one in the WHERE clause is a comparison, but this does not
create any ambiguity. Of course, the WHERE condition does not have to be an equality test. Many other
operators are available (see Chapter 9). But the expression needs to evaluate to a Boolean result.

79

Chapter 6. Data Manipulation

You can update more than one column in an UPDATE command by listing more than one assignment
in the SET clause. For example:

UPDATE mytable SET a = 5, b = 3, ¢ = 1 WHERE a > 0;

6.3. Deleting Data

So far we have explained how to add data to tables and how to change data. What remains is to
discuss how to remove data that is no longer needed. Just as adding data is only possible in whole
rows, you can only remove entire rows from a table. In the previous section we explained that SQL
does not provide a way to directly address individual rows. Therefore, removing rows can only be
done by specifying conditions that the rows to be removed have to match. If you have a primary key
in the table then you can specify the exact row. But you can also remove groups of rows matching a
condition, or you can remove all rows in the table at once.

You use the DELETE command to remove rows; the syntax is very similar to the UPDATE command.
For instance, to remove all rows from the products table that have a price of 10, use:

DELETE FROM products WHERE price = 10;

If you simply write:

DELETE FROM products;

then all rows in the table will be deleted! Caveat programmer.

80

Chapter 7. Queries

The previous chapters explained how to create tables, how to fill them with data, and how to manipu-
late that data. Now we finally discuss how to retrieve the data from the database.

7.1. Overview

The process of retrieving or the command to retrieve data from a database is called a query. In SQL
the SELECT command is used to specify queries. The general syntax of the SELECT command is

[WITH with_queries] SELECT select_list FROM table_expression [sort_specification]
The following sections describe the details of the select list, the table expression, and the sort specifi-
cation. WITH queries are treated last since they are an advanced feature.

A simple kind of query has the form:

SELECT * FROM tablel;

Assuming that there is a table called tablel, this command would retrieve all rows and all columns
from tablel. (The method of retrieval depends on the client application. For example, the psql
program will display an ASCII-art table on the screen, while client libraries will offer functions to
extract individual values from the query result.) The select list specification » means all columns that
the table expression happens to provide. A select list can also select a subset of the available columns
or make calculations using the columns. For example, if tablel has columns named a, b, and c (and
perhaps others) you can make the following query:

SELECT a, b + ¢ FROM tablel;

(assuming that b and c are of a numerical data type). See Section 7.3 for more details.

FROM tablel isasimple kind of table expression: it reads just one table. In general, table expressions
can be complex constructs of base tables, joins, and subqueries. But you can also omit the table
expression entirely and use the SELECT command as a calculator:

SELECT 3 * 4;

This is more useful if the expressions in the select list return varying results. For example, you could
call a function this way:

SELECT random() ;

7.2. Table Expressions

A table expression computes a table. The table expression contains a FROM clause that is optionally
followed by WHERE, GROUP BY, and HAVING clauses. Trivial table expressions simply refer to a table
on disk, a so-called base table, but more complex expressions can be used to modify or combine base
tables in various ways.

The optional WHERE, GROUP BY, and HAVING clauses in the table expression specify a pipeline of
successive transformations performed on the table derived in the FrROM clause. All these transforma-

81

Chapter 7. Queries

tions produce a virtual table that provides the rows that are passed to the select list to compute the
output rows of the query.

7.2.1. The rroM Clause

The FROM Clause derives a table from one or more other tables given in a comma-separated table
reference list.

FROM table_reference [, table_reference [, ...]]

A table reference can be a table name (possibly schema-qualified), or a derived table such as a sub-
query, a table join, or complex combinations of these. If more than one table reference is listed in the
FROM clause they are cross-joined (see below) to form the intermediate virtual table that can then be
subject to transformations by the WHERE, GROUP BY, and HAVING clauses and is finally the result of
the overall table expression.

When a table reference names a table that is the parent of a table inheritance hierarchy, the table
reference produces rows of not only that table but all of its descendant tables, unless the key word
ONLY precedes the table name. However, the reference produces only the columns that appear in the
named table — any columns added in subtables are ignored.

7.2.1.1. Joined Tables

A joined table is a table derived from two other (real or derived) tables according to the rules of the
particular join type. Inner, outer, and cross-joins are available.

Join Types

Cross join
T1 CROSS JOIN T2
For every possible combination of rows from 71 and 72 (i.e., a Cartesian product), the joined

table will contain a row consisting of all columns in 71 followed by all columns in T2. If the
tables have N and M rows respectively, the joined table will have N * M rows.

FROM T1 CROSS JOIN T2 is equivalent to FROM 71, 72. It is also equivalent to FROM T1
INNER JOIN T2 ON TRUE (see below).

Qualified joins

71 { [INNER] | { LEFT | RIGHT | FULL } [OUTER] } JOIN T2 ON boolean_expression
71 { [INNER] | { LEFT | RIGHT | FULL } [OUTER] } JOIN T2 USING (join column list)
T1 NATURAL { [INNER] | { LEFT | RIGHT | FULL } [OUTER] } JOIN T2

The words INNER and OUTER are optional in all forms. INNER is the default; LEFT, RIGHT, and
FULL imply an outer join.

The join condition is specified in the ON or USING clause, or implicitly by the word NATURAL.
The join condition determines which rows from the two source tables are considered to “match”,
as explained in detail below.

The oN clause is the most general kind of join condition: it takes a Boolean value expression
of the same kind as is used in a WHERE clause. A pair of rows from 71 and 72 match if the on
expression evaluates to true for them.

USING is a shorthand notation: it takes a comma-separated list of column names, which the joined
tables must have in common, and forms a join condition specifying equality of each of these pairs

82

Chapter 7. Queries

of columns. Furthermore, the output of JOIN USING has one column for each of the equated
pairs of input columns, followed by the remaining columns from each table. Thus, USING (a,
b, c)isequivalenttoON (tl.a = t2.a AND tl.b = t2.b AND tl.c = t2.c) withthe
exception that if on is used there will be two columns a, b, and c in the result, whereas with
USING there will be only one of each (and they will appear first if SELECT « is used).

Finally, NATURAL is a shorthand form of USING: it forms a USING list consisting of all column
names that appear in both input tables. As with USING, these columns appear only once in the
output table.

The possible types of qualified join are:

INNER JOIN

For each row R1 of T1, the joined table has a row for each row in T2 that satisfies the join
condition with R1.

LEFT OUTER JOIN

First, an inner join is performed. Then, for each row in T1 that does not satisfy the join
condition with any row in T2, a joined row is added with null values in columns of T2.
Thus, the joined table always has at least one row for each row in T1.

RIGHT OUTER JOIN

First, an inner join is performed. Then, for each row in T2 that does not satisfy the join
condition with any row in T1, a joined row is added with null values in columns of T1. This
is the converse of a left join: the result table will always have a row for each row in T2.

FULL OUTER JOIN

First, an inner join is performed. Then, for each row in T1 that does not satisfy the join
condition with any row in T2, a joined row is added with null values in columns of T2.
Also, for each row of T2 that does not satisfy the join condition with any row in T1, a
joined row with null values in the columns of T1 is added.

Joins of all types can be chained together or nested: either or both 71 and T2 can be joined tables.
Parentheses can be used around JOIN clauses to control the join order. In the absence of parentheses,
JOIN clauses nest left-to-right.

To put this together, assume we have tables t 1:

m | name
PR
11 a

2 | b

3] ¢

t2:

m | value
__+ _______
1 | xxx

3 1 yyy

5 | zzz

then we get the following results for the various joins:

=>

SELECT * FROM tl CROSS JOIN t2;

num | name | num | value

83

Chapter 7. Queries

| xXxx
| yyy
| zzz
| xXxx
| yyy
| zzz
| xxx
|

|

YYy
2227

g w kR U WwEF 0o wkRE

W w w NN

=> SELECT % FROM tl INNER JOIN t2 ON tl.num = t2.num;

num | name | num | value
————— ot
11 a \ 1 | xxx
3 c 31 yyy
(2 rows)

=> SELECT * FROM tl INNER JOIN t2 USING (num);

num | name | value
_____ e
1] a | xxx
31 c | yyy
(2 rows)

=> SELECT * FROM tl NATURAL INNER JOIN t2;

num | name | value
_____ o
1] a | xxx
31 ¢ | yyy
(2 rows)

=> SELECT » FROM tl LEFT JOIN t2 ON tl.num = t2.num;

num | name | num | value
————— ot
11 a \ 1 | xxx
2 1 Db \ |
3 1 ¢ \ 3 | yyy
(3 rows)

=> SELECT x FROM tl LEFT JOIN t2 USING (num);

num | name | value
_____ e

11 a | xxx

2 1 Db \

31 ¢ | yyy
(3 rows)

=> SELECT % FROM tl RIGHT JOIN t2 ON tl.num = t2.num;

num | name | num | value
————— ot
11 a \ 1 | xxx
31 ¢ \ 3 1 yyy
| | 5] zzz
(3 rows)

84

Chapter 7. Queries

=> SELECT x FROM tl FULL JOIN t2 ON tl.num = t2.num;

num name num | value
————— Bt it
11 a \ 1 | xxx
2 1 b \ |
3| c \ 3 1 yyy
\ \ 5 | zzz
(4 rows)

The join condition specified with ON can also contain conditions that do not relate directly to the join.
This can prove useful for some queries but needs to be thought out carefully. For example:

=> SELECT x FROM tl LEFT JOIN t2 ON tl.num = t2.num AND t2.value = ’'xxx’;

num name num | value
_____ T
11 a | 1 | xxx
2 b \ |
3| c \ |
(3 rows)

Notice that placing the restriction in the WHERE clause produces a different result:

=> SELECT * FROM tl LEFT JOIN t2 ON tl.num = t2.num WHERE t2.value = ’'xxx’;
num name num | value
————— B Rt e
1] a | 1 | xxx
(1 row)

This is because a restriction placed in the ON clause is processed before the join, while a restriction
placed in the WHERE clause is processed after the join.

7.2.1.2. Table and Column Aliases

A temporary name can be given to tables and complex table references to be used for references to
the derived table in the rest of the query. This is called a table alias.

To create a table alias, write

FROM table_reference AS alias
or

FROM table reference alias

The As key word is optional noise. alias can be any identifier.

A typical application of table aliases is to assign short identifiers to long table names to keep the join
clauses readable. For example:

SELECT x= FROM some_very_long_table_name s JOIN another_fairly long_name a ON s.id = a.nu

The alias becomes the new name of the table reference so far as the current query is concerned — it
is not allowed to refer to the table by the original name elsewhere in the query. Thus, this is not valid:

SELECT x FROM my_table AS m WHERE my_table.a > 5; —— wrong

85

Chapter 7. Queries

Table aliases are mainly for notational convenience, but it is necessary to use them when joining a
table to itself, e.g.:

SELECT * FROM people AS mother JOIN people AS child ON mother.id = child.mother_id;

Additionally, an alias is required if the table reference is a subquery (see Section 7.2.1.3).

Parentheses are used to resolve ambiguities. In the following example, the first statement assigns the
alias b to the second instance of my_table, but the second statement assigns the alias to the result of
the join:

SELECT % FROM my_table AS a CROSS JOIN my_table AS b
SELECT x= FROM (my_table AS a CROSS JOIN my_table) AS Db

Another form of table aliasing gives temporary names to the columns of the table, as well as the table
itself:

FROM table_reference [AS] alias (columnl [, column2 [, ...]1)

If fewer column aliases are specified than the actual table has columns, the remaining columns are not
renamed. This syntax is especially useful for self-joins or subqueries.

When an alias is applied to the output of a JOIN clause, the alias hides the original name(s) within the
JOIN. For example:

SELECT a.x FROM my_table AS a JOIN your_table AS b ON
is valid SQL, but:
SELECT a.* FROM (my_table AS a JOIN your_table AS b ON ...) AS c

is not valid; the table alias a is not visible outside the alias c.

7.2.1.3. Subqueries

Subqueries specifying a derived table must be enclosed in parentheses and must be assigned a table
alias name. (See Section 7.2.1.2.) For example:

FROM (SELECT * FROM tablel) AS alias_name

This example is equivalent to FROM tablel AS alias_name. More interesting cases, which cannot
be reduced to a plain join, arise when the subquery involves grouping or aggregation.

A subquery can also be a VALUES list:

FROM (VALUES (’anne’, ’‘smith’), (’bob’, ’Jjones’), ('’ joe’, ’"blow’))
AS names (first, last)

Again, a table alias is required. Assigning alias names to the columns of the VALUES list is optional,
but is good practice. For more information see Section 7.7.

86

Chapter 7. Queries

7.2.1.4. Table Functions

Table functions are functions that produce a set of rows, made up of either base data types (scalar
types) or composite data types (table rows). They are used like a table, view, or subquery in the FROM
clause of a query. Columns returned by table functions can be included in SELECT, JOIN, Oor WHERE
clauses in the same manner as a table, view, or subquery column.

If a table function returns a base data type, the single result column name matches the function name.
If the function returns a composite type, the result columns get the same names as the individual
attributes of the type.

A table function can be aliased in the FROM clause, but it also can be left unaliased. If a function is
used in the FROM clause with no alias, the function name is used as the resulting table name.

Some examples:

CREATE TABLE foo (fooid int, foosubid int, fooname text);

CREATE FUNCTION getfoo (int) RETURNS SETOF foo AS S$$
SELECT * FROM foo WHERE fooid = $1;
$$ LANGUAGE SQL;

SELECT » FROM getfoo(l) AS tl1;

SELECT * FROM foo
WHERE foosubid IN (
SELECT foosubid
FROM getfoo (foo.fooid) =z
WHERE z.fooid = foo.fooid
)i

CREATE VIEW vw_getfoo AS SELECT % FROM getfoo(l);

SELECT = FROM vw_getfoo;

In some cases it is useful to define table functions that can return different column sets depending on
how they are invoked. To support this, the table function can be declared as returning the pseudotype
record. When such a function is used in a query, the expected row structure must be specified in the
query itself, so that the system can know how to parse and plan the query. Consider this example:

SELECT =«
FROM dblink (' dbname=mydb’, ’SELECT proname, prosrc FROM pg_proc’)
AS tl (proname name, prosrc text)
WHERE proname LIKE ’'bytea%’;

The dblink function executes a remote query (see contrib/dblink). It is declared to return
record since it might be used for any kind of query. The actual column set must be specified in
the calling query so that the parser knows, for example, what » should expand to.

7.2.2. The wHERE Clause

The syntax of the WHERE Clause is

WHERE search condition

87

Chapter 7. Queries

where search_condition is any value expression (see Section 4.2) that returns a value of type

boolean.

After the processing of the FROM clause is done, each row of the derived virtual table is checked
against the search condition. If the result of the condition is true, the row is kept in the output table,
otherwise (i.e., if the result is false or null) it is discarded. The search condition typically references
at least one column of the table generated in the FROM clause; this is not required, but otherwise the
WHERE clause will be fairly useless.

Note: The join condition of an inner join can be written either in the weHERE clause or in the JoIn
clause. For example, these table expressions are equivalent:

FROM a, b WHERE a.id = b.id AND b.val > 5

and:

FROM a INNER JOIN b ON (a.id = b.id) WHERE b.val > 5
or perhaps even:

FROM a NATURAL JOIN b WHERE b.val > 5

Which one of these you use is mainly a matter of style. The JoIn syntax in the From clause is
probably not as portable to other SQL database management systems, even though it is in the
SQL standard. For outer joins there is no choice: they must be done in the From clause. The on
or usiING clause of an outer join is not equivalent to a wHERE condition, because it results in the
addition of rows (for unmatched input rows) as well as the removal of rows in the final result.

Here are some examples of WHERE clauses:

SELECT ... FROM fdt WHERE cl > 5

SELECT ... FROM fdt WHERE cl IN (1, 2, 3)

SELECT ... FROM fdt WHERE cl IN (SELECT cl FROM t2)

SELECT ... FROM fdt WHERE cl IN (SELECT c3 FROM t2 WHERE c2 = fdt.cl + 10)
SELECT ... FROM fdt WHERE cl BETWEEN (SELECT c3 FROM t2 WHERE c2 = fdt.cl +
SELECT ... FROM fdt WHERE EXISTS (SELECT cl FROM t2 WHERE c2 > fdt.cl)

£dt is the table derived in the FROM clause. Rows that do not meet the search condition of the WHERE
clause are eliminated from f£dt. Notice the use of scalar subqueries as value expressions. Just like any
other query, the subqueries can employ complex table expressions. Notice also how fdt is referenced
in the subqueries. Qualifying c1 as £dt . c1 is only necessary if c1 is also the name of a column in the
derived input table of the subquery. But qualifying the column name adds clarity even when it is not
needed. This example shows how the column naming scope of an outer query extends into its inner
queries.

7.2.3. The crourP BY and HAVING Clauses

After passing the WHERE filter, the derived input table might be subject to grouping, using the GROUP
BY clause, and elimination of group rows using the HAVING clause.

88

10)

AND 100

Chapter 7. Queries

SELECT select_1list
FROM
[WHERE ...]
GROUP BY grouping_column_reference [, grouping_column_reference]...

The GROUP BY Clause is used to group together those rows in a table that have the same values in all
the columns listed. The order in which the columns are listed does not matter. The effect is to combine
each set of rows having common values into one group row that represents all rows in the group. This
is done to eliminate redundancy in the output and/or compute aggregates that apply to these groups.
For instance:

=> SELECT * FROM testl;

(3 rows)

In the second query, we could not have written SELECT = FROM testl GROUP BY x, because
there is no single value for the column y that could be associated with each group. The grouped-
by columns can be referenced in the select list since they have a single value in each group.

In general, if a table is grouped, columns that are not listed in GROUP BY cannot be referenced except
in aggregate expressions. An example with aggregate expressions is:

=> SELECT x, sum(y) FROM testl GROUP BY x;

X | sum

Here sum is an aggregate function that computes a single value over the entire group. More informa-
tion about the available aggregate functions can be found in Section 9.18.

Tip: Grouping without aggregate expressions effectively calculates the set of distinct values in a
column. This can also be achieved using the prsTINCT clause (see Section 7.3.3).

Here is another example: it calculates the total sales for each product (rather than the total sales of all
products):

SELECT product_id, p.name, (sum(s.units) * p.price) AS sales
FROM products p LEFT JOIN sales s USING (product_id)

89

Chapter 7. Queries
GROUP BY product_id, p.name, p.price;

In this example, the columns product_id, p.name, and p.price must be in the GROUP BY clause
since they are referenced in the query select list. (Depending on how the products table is set up, name
and price might be fully dependent on the product ID, so the additional groupings could theoretically
be unnecessary, though this is not implemented.) The column s.units does not have to be in the
GROUP BY list since it is only used in an aggregate expression (sum (. . .)), which represents the
sales of a product. For each product, the query returns a summary row about all sales of the product.

In strict SQL, GROUP BY can only group by columns of the source table but PostgreSQL extends this
to also allow GROUP BY to group by columns in the select list. Grouping by value expressions instead
of simple column names is also allowed.

If a table has been grouped using GROUP BY, but only certain groups are of interest, the HAVING
clause can be used, much like a WHERE clause, to eliminate groups from the result. The syntax is:

SELECT select_list FROM ... [WHERE ...] GROUP BY ... HAVING boolean_expression

Expressions in the HAVING clause can refer both to grouped expressions and to ungrouped expressions
(which necessarily involve an aggregate function).

Example:

=> SELECT x, sum(y) FROM testl GROUP BY x HAVING sum(y) > 3;
X | sum

=> SELECT x, sum(y) FROM testl GROUP BY x HAVING x < ’'c’;

Again, a more realistic example:

SELECT product_id, p.name, (sum(s.units) * (p.price - p.cost)) AS profit
FROM products p LEFT JOIN sales s USING (product_id)
WHERE s.date > CURRENT_DATE - INTERVAL ’4 weeks’
GROUP BY product_id, p.name, p.price, p.cost
HAVING sum(p.price x s.units) > 5000;

In the example above, the WHERE clause is selecting rows by a column that is not grouped (the expres-
sion is only true for sales during the last four weeks), while the HAVING clause restricts the output to
groups with total gross sales over 5000. Note that the aggregate expressions do not necessarily need
to be the same in all parts of the query.

If a query contains aggregate function calls, but no GROUP BY clause, grouping still occurs: the result
is a single group row (or perhaps no rows at all, if the single row is then eliminated by HAVING). The
same is true if it contains a HAVING clause, even without any aggregate function calls or GROUP BY
clause.

90

Chapter 7. Queries

7.2.4. Window Function Processing

If the query contains any window functions (see Section 3.5, Section 9.19 and Section 4.2.8), these
functions are evaluated after any grouping, aggregation, and HAVING filtering is performed. That is,
if the query uses any aggregates, GROUP BY, or HAVING, then the rows seen by the window functions
are the group rows instead of the original table rows from FROM/WHERE.

When multiple window functions are used, all the window functions having syntactically equivalent
PARTITION BY and ORDER BY clauses in their window definitions are guaranteed to be evaluated
in a single pass over the data. Therefore they will see the same sort ordering, even if the ORDER BY
does not uniquely determine an ordering. However, no guarantees are made about the evaluation of
functions having different PARTITION BY or ORDER BY specifications. (In such cases a sort step is
typically required between the passes of window function evaluations, and the sort is not guaranteed
to preserve ordering of rows that its ORDER BY sees as equivalent.)

Currently, window functions always require presorted data, and so the query output will be ordered
according to one or another of the window functions’ PARTITION BY/ORDER BY clauses. It is not
recommendable to rely on this, however. Use an explicit top-level ORDER BY clause if you want to be
sure the results are sorted in a particular way.

7.3. Select Lists

As shown in the previous section, the table expression in the SELECT command constructs an inter-
mediate virtual table by possibly combining tables, views, eliminating rows, grouping, etc. This table
is finally passed on to processing by the select list. The select list determines which columns of the
intermediate table are actually output.

7.3.1. Select-List Items

The simplest kind of select list is »+ which emits all columns that the table expression produces.
Otherwise, a select list is a comma-separated list of value expressions (as defined in Section 4.2). For
instance, it could be a list of column names:

SELECT a, b, c FROM

The columns names a, b, and c are either the actual names of the columns of tables referenced in the
FROM clause, or the aliases given to them as explained in Section 7.2.1.2. The name space available in
the select list is the same as in the WHERE clause, unless grouping is used, in which case it is the same
as in the HAVING clause.

If more than one table has a column of the same name, the table name must also be given, as in:

SELECT tbll.a, tbl2.a, tbll.b FROM

When working with multiple tables, it can also be useful to ask for all the columns of a particular
table:

SELECT tbll.x, tbl2.a FROM

(See also Section 7.2.2.)

If an arbitrary value expression is used in the select list, it conceptually adds a new virtual column to
the returned table. The value expression is evaluated once for each result row, with the row’s values

91

Chapter 7. Queries

substituted for any column references. But the expressions in the select list do not have to reference
any columns in the table expression of the FROM clause; they can be constant arithmetic expressions,
for instance.

7.3.2. Column Labels

The entries in the select list can be assigned names for subsequent processing, such as for use in an
ORDER BY clause or for display by the client application. For example:

SELECT a AS value, b + c¢c AS sum FROM

If no output column name is specified using AS, the system assigns a default column name. For simple
column references, this is the name of the referenced column. For function calls, this is the name of
the function. For complex expressions, the system will generate a generic name.

The As keyword is optional, but only if the new column name does not match any PostgreSQL key-
word (see Appendix C). To avoid an accidental match to a keyword, you can double-quote the column
name. For example, VALUE is a keyword, so this does not work:

SELECT a value, b + ¢ AS sum FROM

but this does:
SELECT a "value", b + ¢ AS sum FROM

For protection against possible future keyword additions, it is recommended that you always either
write AS or double-quote the output column name.

Note: The naming of output columns here is different from that done in the From clause (see
Section 7.2.1.2). It is possible to rename the same column twice, but the name assigned in the
select list is the one that will be passed on.

7.3.3. DISTINCT

After the select list has been processed, the result table can optionally be subject to the elimination of
duplicate rows. The DISTINCT key word is written directly after SELECT to specify this:

SELECT DISTINCT select_list

(Instead of DISTINCT the key word ALL can be used to specify the default behavior of retaining all
TrOWS.)

Obviously, two rows are considered distinct if they differ in at least one column value. Null values are
considered equal in this comparison.

Alternatively, an arbitrary expression can determine what rows are to be considered distinct:

SELECT DISTINCT ON (expression [, expression ...]) select_list

Here expression is an arbitrary value expression that is evaluated for all rows. A set of rows for
which all the expressions are equal are considered duplicates, and only the first row of the set is kept

92

Chapter 7. Queries

in the output. Note that the “first row” of a set is unpredictable unless the query is sorted on enough
columns to guarantee a unique ordering of the rows arriving at the DISTINCT filter. (DISTINCT ON
processing occurs after ORDER BY sorting.)

The DISTINCT ON clause is not part of the SQL standard and is sometimes considered bad style
because of the potentially indeterminate nature of its results. With judicious use of GROUP BY and
subqueries in FROM, this construct can be avoided, but it is often the most convenient alternative.

7.4. Combining Queries

The results of two queries can be combined using the set operations union, intersection, and differ-
ence. The syntax is

queryl UNION [ALL] query2
queryl INTERSECT [ALL] query?2
queryl EXCEPT [ALL] query2

queryl and guery2 are queries that can use any of the features discussed up to this point. Set
operations can also be nested and chained, for example

queryl UNION query2 UNION query3
which is executed as:

(queryl UNION query2) UNION query3

UNION effectively appends the result of query2 to the result of query1 (although there is no guaran-
tee that this is the order in which the rows are actually returned). Furthermore, it eliminates duplicate
rows from its result, in the same way as DISTINCT, unless UNION ALL is used.

INTERSECT returns all rows that are both in the result of guery1 and in the result of query2. Dupli-
cate rows are eliminated unless INTERSECT ALL is used.

EXCEPT returns all rows that are in the result of query1 but not in the result of query2. (This is some-
times called the difference between two queries.) Again, duplicates are eliminated unless EXCEPT
ALL is used.

In order to calculate the union, intersection, or difference of two queries, the two queries must be
“union compatible”, which means that they return the same number of columns and the corresponding
columns have compatible data types, as described in Section 10.5.

7.5. Sorting Rows

After a query has produced an output table (after the select list has been processed) it can optionally
be sorted. If sorting is not chosen, the rows will be returned in an unspecified order. The actual order
in that case will depend on the scan and join plan types and the order on disk, but it must not be relied
on. A particular output ordering can only be guaranteed if the sort step is explicitly chosen.

The ORDER BY clause specifies the sort order:

SELECT select_list
FROM table expression

93

Chapter 7. Queries

ORDER BY sort_expressionl [ASC | DESC] [NULLS { FIRST | LAST }]
[, sort_expression2 [ASC | DESC] [NULLS { FIRST | LAST }] ...]

The sort expression(s) can be any expression that would be valid in the query’s select list. An example
is:

SELECT a, b FROM tablel ORDER BY a + b, c;

When more than one expression is specified, the later values are used to sort rows that are equal
according to the earlier values. Each expression can be followed by an optional ASC or DESC keyword
to set the sort direction to ascending or descending. ASC order is the default. Ascending order puts
smaller values first, where “smaller” is defined in terms of the < operator. Similarly, descending order
is determined with the > operator. '

The NULLS FIRST and NULLS LAST options can be used to determine whether nulls appear before
or after non-null values in the sort ordering. By default, null values sort as if larger than any non-null
value; that is, NULLS FIRST is the default for DESC order, and NULLS LAST otherwise.

Note that the ordering options are considered independently for each sort column. For example ORDER
BY x, y DESC means ORDER BY x ASC, y DESC, which is not the same as ORDER BY x DESC,
y DESC.

A sort_expression can also be the column label or number of an output column, as in:

SELECT a + b AS sum, c FROM tablel ORDER BY sum;
SELECT a, max(b) FROM tablel GROUP BY a ORDER BY 1;

both of which sort by the first output column. Note that an output column name has to stand alone,
that is, it cannot be used in an expression — for example, this is not correct:

SELECT a + b AS sum, c¢ FROM tablel ORDER BY sum + cC; —-— wrong

This restriction is made to reduce ambiguity. There is still ambiguity if an ORDER BY item is a simple
name that could match either an output column name or a column from the table expression. The
output column is used in such cases. This would only cause confusion if you use AS to rename an
output column to match some other table column’s name.

ORDER BY can be applied to the result of a UNION, INTERSECT, or EXCEPT combination, but in this
case it is only permitted to sort by output column names or numbers, not by expressions.

7.6. LIMIT and OFFSET

LIMIT and OFFSET allow you to retrieve just a portion of the rows that are generated by the rest of
the query:

SELECT select_list
FROM table expression
[ORDER BY ...]
[LIMIT { number | ALL }] [OFFSET number]

1. Actually, PostgreSQL uses the default B-tree operator class for the expression’s data type to determine the sort ordering
for Asc and DESC. Conventionally, data types will be set up so that the < and > operators correspond to this sort ordering, but
a user-defined data type’s designer could choose to do something different.

94

Chapter 7. Queries

If a limit count is given, no more than that many rows will be returned (but possibly less, if the query
itself yields less rows). LIMIT ALL is the same as omitting the LIMIT clause.

OFFSET says to skip that many rows before beginning to return rows. OFFSET 0 is the same as
omitting the OFFSET clause, and LIMIT NULL is the same as omitting the LIMIT clause. If both
OFFSET and LIMIT appear, then OFFSET rows are skipped before starting to count the LIMIT rows
that are returned.

When using LIMIT, it is important to use an ORDER BY clause that constrains the result rows into a
unique order. Otherwise you will get an unpredictable subset of the query’s rows. You might be asking
for the tenth through twentieth rows, but tenth through twentieth in what ordering? The ordering is
unknown, unless you specified ORDER BY.

The query optimizer takes LIMIT into account when generating query plans, so you are very likely
to get different plans (yielding different row orders) depending on what you give for LIMIT and
OFFSET. Thus, using different LIMIT/OFFSET values to select different subsets of a query result will
give inconsistent results unless you enforce a predictable result ordering with ORDER BY. This is not
a bug; it is an inherent consequence of the fact that SQL does not promise to deliver the results of a
query in any particular order unless ORDER BY is used to constrain the order.

The rows skipped by an OFFSET clause still have to be computed inside the server; therefore a large
OFFSET might be inefficient.

7.7. vALUES Lists

VALUES provides a way to generate a “constant table” that can be used in a query without having to
actually create and populate a table on-disk. The syntax is

VALUES (expression [, ...]1) [, ...]

Each parenthesized list of expressions generates a row in the table. The lists must all have the same
number of elements (i.e., the number of columns in the table), and corresponding entries in each
list must have compatible data types. The actual data type assigned to each column of the result is
determined using the same rules as for UNION (see Section 10.5).

As an example:
VALUES (1, ’'one’), (2, 'two’), (3, "three’);
will return a table of two columns and three rows. It’s effectively equivalent to:

SELECT 1 AS columnl, ’one’ AS column2
UNION ALL

SELECT 2, ’"two’

UNION ALL

SELECT 3, ’'three’;

By default, PostgreSQL assigns the names columnl, column2, etc. to the columns of a VALUES
table. The column names are not specified by the SQL standard and different database systems do it
differently, so it’s usually better to override the default names with a table alias list.

Syntactically, VALUES followed by expression lists is treated as equivalent to:

SELECT select_list FROM table_expression

95

Chapter 7. Queries

and can appear anywhere a SELECT can. For example, you can use it as part of a UNION, or attach a
sort_specification (ORDER BY, LIMIT, and/or OFFSET) to it. VALUES is most commonly used
as the data source in an INSERT command, and next most commonly as a subquery.

For more information see VALUES.

7.8. wiTH Queries (Common Table Expressions)

WITH provides a way to write subqueries for use in a larger SELECT query. The subqueries, which
are often referred to as Common Table Expressions or CTEs, can be thought of as defining temporary
tables that exist just for this query. One use of this feature is to break down complicated queries into
simpler parts. An example is:

WITH regional_sales AS (
SELECT region, SUM(amount) AS total_sales
FROM orders
GROUP BY region
), top_regions AS (
SELECT region
FROM regional_sales
WHERE total_sales > (SELECT SUM(total_sales)/10 FROM regional_sales)
)
SELECT region,
product,
SUM (quantity) AS product_units,
SUM (amount) AS product_sales
FROM orders
WHERE region IN (SELECT region FROM top_regions)
GROUP BY region, product;

which displays per-product sales totals in only the top sales regions. This example could have been
written without WITH, but we’d have needed two levels of nested sub-SELECTs. It’s a bit easier to
follow this way.

The optional RECURSIVE modifier changes WITH from a mere syntactic convenience into a feature
that accomplishes things not otherwise possible in standard SQL. Using RECURSIVE, a WITH query
can refer to its own output. A very simple example is this query to sum the integers from 1 through
100:

WITH RECURSIVE t (n) AS (
VALUES (1)
UNION ALL
SELECT n+l FROM t WHERE n < 100

)
SELECT sum(n) FROM t;

The general form of a recursive WITH query is always a non-recursive term, then UNION (or UNION
ALL), then a recursive term, where only the recursive term can contain a reference to the query’s own
output. Such a query is executed as follows:

96

Chapter 7. Queries
Recursive Query Evaluation

1. Evaluate the non-recursive term. For UNION (but not UNION ALL), discard duplicate rows. In-
clude all remaining rows in the result of the recursive query, and also place them in a temporary
working table.

2. So long as the working table is not empty, repeat these steps:

a. Evaluate the recursive term, substituting the current contents of the working table for
the recursive self-reference. For UNION (but not UNION ALL), discard duplicate rows
and rows that duplicate any previous result row. Include all remaining rows in the result
of the recursive query, and also place them in a temporary intermediate table.

b. Replace the contents of the working table with the contents of the intermediate table,
then empty the intermediate table.

Note: Strictly speaking, this process is iteration not recursion, but RECURSIVE is the terminology
chosen by the SQL standards committee.

In the example above, the working table has just a single row in each step, and it takes on the values
from 1 through 100 in successive steps. In the 100th step, there is no output because of the WHERE
clause, and so the query terminates.

Recursive queries are typically used to deal with hierarchical or tree-structured data. A useful example
is this query to find all the direct and indirect sub-parts of a product, given only a table that shows
immediate inclusions:

WITH RECURSIVE included_parts (sub_part, part, quantity) AS (
SELECT sub_part, part, quantity FROM parts WHERE part = ’'our_product’
UNION ALL
SELECT p.sub_part, p.part, p.quantity
FROM included_parts pr, parts p
WHERE p.part = pr.sub_part
)
SELECT sub_part, SUM(quantity) as total_quantity
FROM included_parts
GROUP BY sub_part

When working with recursive queries it is important to be sure that the recursive part of the query will
eventually return no tuples, or else the query will loop indefinitely. Sometimes, using UNION instead
of UNION ALL can accomplish this by discarding rows that duplicate previous output rows. However,
often a cycle does not involve output rows that are completely duplicate: it may be necessary to check
just one or a few fields to see if the same point has been reached before. The standard method for
handling such situations is to compute an array of the already-visited values. For example, consider
the following query that searches a table graph using a 1ink field:

WITH RECURSIVE search_graph(id, link, data, depth) AS (
SELECT g.id, g.link, g.data, 1
FROM graph g
UNION ALL
SELECT g.id, g.link, g.data, sg.depth + 1
FROM graph g, search_graph sg
WHERE g.id = sg.link

97

Chapter 7. Queries

)
SELECT x FROM search_graph;

This query will loop if the 1ink relationships contain cycles. Because we require a “depth” output,
just changing UNION ALL to UNION would not eliminate the looping. Instead we need to recognize
whether we have reached the same row again while following a particular path of links. We add two
columns path and cycle to the loop-prone query:

WITH RECURSIVE search_graph(id, link, data, depth, path, cycle) AS (
SELECT g.id, g.link, g.data, 1,
ARRAY [g.1d],
false
FROM graph g
UNION ALL
SELECT g.id, g.link, g.data, sg.depth + 1,
path || g.id,
g.id = ANY (path)
FROM graph g, search_graph sg
WHERE g.id = sg.link AND NOT cycle
)
SELECT * FROM search_graph;

Aside from preventing cycles, the array value is often useful in its own right as representing the “path”
taken to reach any particular row.

In the general case where more than one field needs to be checked to recognize a cycle, use an array
of rows. For example, if we needed to compare fields £1 and £2:

WITH RECURSIVE search_graph(id, link, data, depth, path, cycle) AS (
SELECT g.id, g.link, g.data, 1,
ARRAY [ROW (g.f1l, g.f2)1,

false
FROM graph g
UNION ALL
SELECT g.id, g.link, g.data, sg.depth + 1,
path || ROW(g.fl, g.f2),
ROW(g.fl, g.f2) = ANY (path)

FROM graph g, search_graph sg
WHERE g.id = sg.link AND NOT cycle

)
SELECT * FROM search_graph;

Tip: Omit the row () syntax in the common case where only one field needs to be checked to
recognize a cycle. This allows a simple array rather than a composite-type array to be used,
gaining efficiency.

Tip: The recursive query evaluation algorithm produces its output in breadth-first search order.
You can display the results in depth-first search order by making the outer query orDER BY a
“path” column constructed in this way.

A helpful trick for testing queries when you are not certain if they might loop is to place a LIMIT in
the parent query. For example, this query would loop forever without the LIMIT:

98

Chapter 7. Queries

WITH RECURSIVE t(n) AS (
SELECT 1
UNION ALL
SELECT n+l1 FROM t

)
SELECT n FROM t LIMIT 100;

This works because PostgreSQL’s implementation evaluates only as many rows of a WITH query as
are actually fetched by the parent query. Using this trick in production is not recommended, because
other systems might work differently. Also, it usually won’t work if you make the outer query sort the
recursive query’s results or join them to some other table.

A useful property of WITH queries is that they are evaluated only once per execution of the parent
query, even if they are referred to more than once by the parent query or sibling WITH queries. Thus,
expensive calculations that are needed in multiple places can be placed within a WITH query to avoid
redundant work. Another possible application is to prevent unwanted multiple evaluations of func-
tions with side-effects. However, the other side of this coin is that the optimizer is less able to push
restrictions from the parent query down into a WITH query than an ordinary sub-query. The WITH
query will generally be evaluated as stated, without suppression of rows that the parent query might
discard afterwards. (But, as mentioned above, evaluation might stop early if the reference(s) to the
query demand only a limited number of rows.)

99

Chapter 8. Data Types

PostgreSQL has a rich set of native data types available to users. Users can add new types to Post-
greSQL using the CREATE TYPE command.

Table 8-1 shows all the built-in general-purpose data types. Most of the alternative names listed in
the “Aliases” column are the names used internally by PostgreSQL for historical reasons. In addition,
some internally used or deprecated types are available, but are not listed here.

Table 8-1. Data Types

Name Aliases Description

bigint int8 signed eight-byte integer

bigserial serial8 autoincrementing eight-byte
integer

bit [(n)] fixed-length bit string

bit varying [(n)] varbit variable-length bit string

boolean bool logical Boolean (true/false)

box rectangular box on a plane

bytea binary data (“byte array”)

character varying [(n) |varchar [(n)] variable-length character string

]

character [(n)] char [(n)] fixed-length character string

cidr IPv4 or IPv6 network address

circle circle on a plane

date calendar date (year, month,
day)

double precision float8 double precision floating-point
number (8 bytes)

inet IPv4 or IPv6 host address

integer int, int4 signed four-byte integer

interval [fields] [time span

(p)]

line infinite line on a plane

lseg line segment on a plane

macaddr MAC (Media Access Control)
address

money currency amount

numeric [(p, s)] decimal [(p, s)] exact numeric of selectable
precision

path geometric path on a plane

point geometric point on a plane

polygon closed geometric path on a
plane

real float4 single precision floating-point
number (4 bytes)

100

Chapter 8. Data Types

Name Aliases Description

smallint int2 signed two-byte integer

serial serial4 autoincrementing four-byte
integer

text variable-length character string

time [(p)] [without time of day (no time zone)

time zone]

time [(p)] with time |timetz time of day, including time

zone zone

timestamp [(p) 1 [date and time (no time zone)

without time zone]

timestamp [(p)] with

time zone

timestamptz

date and time, including time
zone

tsquery

text search query

tsvector

text search document

txid_snapshot

user-level transaction ID

snapshot
uuid universally unique identifier
xml XML data

Compatibility: The following types (or spellings thereof) are specified by SQL: bigint, bit, bit
varying, boolean, char, character varying, character, varchar, date, double precision,
integer, interval, numeric, decimal, real, smallint, time (With or without time zone),
timestamp (with or without time zone), xm1.

Each data type has an external representation determined by its input and output functions. Many of
the built-in types have obvious external formats. However, several types are either unique to Post-
greSQL, such as geometric paths, or have several possible formats, such as the date and time types.
Some of the input and output functions are not invertible, i.e., the result of an output function might

lose accuracy when compared to the original input.

8.1. Numeric Types

Numeric types consist of two-, four-, and eight-byte integers, four- and eight-byte floating-point num-
bers, and selectable-precision decimals. Table 8-2 lists the available types.

Table 8-2. Numeric Types

Name Storage Size Description Range

smallint 2 bytes small-range integer -32768 to +32767

integer 4 bytes typical choice for -2147483648 to
integer +2147483647

101

Chapter 8. Data Types

Name Storage Size Description Range

bigint 8 bytes large-range integer -
9223372036854775808
to
9223372036854775807

decimal variable user-specified no limit

precision, exact

numeric variable user-specified no limit
precision, exact

real 4 bytes variable-precision, 6 decimal digits
inexact precision

double precision |8 bytes variable-precision, 15 decimal digits
inexact precision

serial 4 bytes autoincrementing 1 to 2147483647
integer

bigserial 8 bytes large autoincrementing | 1 to
integer 9223372036854775807

The syntax of constants for the numeric types is described in Section 4.1.2. The numeric types have a
full set of corresponding arithmetic operators and functions. Refer to Chapter 9 for more information.
The following sections describe the types in detail.

8.1.1. Integer Types

The types smallint, integer, and bigint store whole numbers, that is, numbers without fractional
components, of various ranges. Attempts to store values outside of the allowed range will result in an
error.

The type integer is the common choice, as it offers the best balance between range, storage size, and
performance. The smallint type is generally only used if disk space is at a premium. The bigint
type should only be used if the integer range is insufficient, because the latter is definitely faster.

On very minimal operating systems the bigint type might not function correctly, because it relies
on compiler support for eight-byte integers. On such machines, bigint acts the same as integer,
but still takes up eight bytes of storage. (We are not aware of any modern platform where this is the
case.)

SQL only specifies the integer types integer (or int), smallint, and bigint. The type names
int2, int4, and int8 are extensions, which are also used by some other SQL database systems.

8.1.2. Arbitrary Precision Numbers

The type numeric can store numbers with up to 1000 digits of precision and perform calculations
exactly. It is especially recommended for storing monetary amounts and other quantities where exact-
ness is required. However, arithmetic on numeric values is very slow compared to the integer types,
or to the floating-point types described in the next section.

We use the following terms below: The scale of a numeric is the count of decimal digits in the
fractional part, to the right of the decimal point. The precision of a numeric is the total count of

102

Chapter 8. Data Types

significant digits in the whole number, that is, the number of digits to both sides of the decimal point.
So the number 23.5141 has a precision of 6 and a scale of 4. Integers can be considered to have a
scale of zero.

Both the maximum precision and the maximum scale of a numeric column can be configured. To
declare a column of type numeric use the syntax:

NUMERIC (precision, scale)

The precision must be positive, the scale zero or positive. Alternatively:
NUMERIC (precision)

selects a scale of 0. Specifying:

NUMERIC

without any precision or scale creates a column in which numeric values of any precision and scale
can be stored, up to the implementation limit on precision. A column of this kind will not coerce
input values to any particular scale, whereas numeric columns with a declared scale will coerce input
values to that scale. (The SQL standard requires a default scale of 0, i.e., coercion to integer precision.
We find this a bit useless. If you’re concerned about portability, always specify the precision and scale
explicitly.)

If the scale of a value to be stored is greater than the declared scale of the column, the system will
round the value to the specified number of fractional digits. Then, if the number of digits to the left of
the decimal point exceeds the declared precision minus the declared scale, an error is raised.

Numeric values are physically stored without any extra leading or trailing zeroes. Thus, the declared
precision and scale of a column are maximums, not fixed allocations. (In this sense the numeric type
is more akin to varchar (n) than to char (n).) The actual storage requirement is two bytes for each
group of four decimal digits, plus five to eight bytes overhead.

In addition to ordinary numeric values, the numeric type allows the special value NaN, meaning
“not-a-number”. Any operation on NaN yields another NaN. When writing this value as a constant in
an SQL command, you must put quotes around it, for example UPDATE table SET x = ’NaN’.
On input, the string NaN is recognized in a case-insensitive manner.

Note: In most implementations of the “not-a-number” concept, Nan is not considered equal to any
other numeric value (including Nan). In order to allow numeric values to be sorted and used in
tree-based indexes, PostgreSQL treats nan values as equal, and greater than all non-nan values.

The types decimal and numeric are equivalent. Both types are part of the SQL standard.

8.1.3. Floating-Point Types

The data types real and double precision are inexact, variable-precision numeric types. In prac-
tice, these types are usually implementations of IEEE Standard 754 for Binary Floating-Point Arith-
metic (single and double precision, respectively), to the extent that the underlying processor, operating
system, and compiler support it.

Inexact means that some values cannot be converted exactly to the internal format and are stored as ap-
proximations, so that storing and retrieving a value might show slight discrepancies. Managing these

103

Chapter 8. Data Types

errors and how they propagate through calculations is the subject of an entire branch of mathematics
and computer science and will not be discussed here, except for the following points:

« If you require exact storage and calculations (such as for monetary amounts), use the numeric
type instead.

« If you want to do complicated calculations with these types for anything important, especially
if you rely on certain behavior in boundary cases (infinity, underflow), you should evaluate the
implementation carefully.

« Comparing two floating-point values for equality might not always work as expected.

On most platforms, the real type has a range of at least 1E-37 to 1E+37 with a precision of at least 6
decimal digits. The double precision type typically has a range of around 1E-307 to 1E+308 with
a precision of at least 15 digits. Values that are too large or too small will cause an error. Rounding
might take place if the precision of an input number is too high. Numbers too close to zero that are
not representable as distinct from zero will cause an underflow error.

In addition to ordinary numeric values, the floating-point types have several special values:

Infinity
—Infinity
NaN

LEINNT3

These represent the IEEE 754 special values “infinity”, “negative infinity”, and “not-a-number”, re-
spectively. (On a machine whose floating-point arithmetic does not follow IEEE 754, these values
will probably not work as expected.) When writing these values as constants in an SQL command,
you must put quotes around them, for example UPDATE table SET x = 'Infinity’. On input,
these strings are recognized in a case-insensitive manner.

Note: IEEE754 specifies that nan should not compare equal to any other floating-point value
(including nan). In order to allow floating-point values to be sorted and used in tree-based indexes,
PostgreSQL treats nan values as equal, and greater than all non-nan values.

PostgreSQL also supports the SQL-standard notations float and float (p) for specifying inexact
numeric types. Here, p specifies the minimum acceptable precision in binary digits. PostgreSQL
accepts float (1) to float (24) as selecting the real type, while f1loat (25) to float (53) select
double precision. Values of p outside the allowed range draw an error. £1oat with no precision
specified is taken to mean double precision.

Note: Prior to PostgreSQL 7.4, the precision in float (p) was taken to mean so many decimal
digits. This has been corrected to match the SQL standard, which specifies that the precision is
measured in binary digits. The assumption that real and double precision have exactly 24 and
53 bits in the mantissa respectively is correct for IEEE-standard floating point implementations.
On non-IEEE platforms it might be off a little, but for simplicity the same ranges of p are used on
all platforms.

104

Chapter 8. Data Types

8.1.4. Serial Types

The data types serial and bigserial are not true types, but merely a notational convenience for
creating unique identifier columns (similar to the AUTO_INCREMENT property supported by some
other databases). In the current implementation, specifying:

CREATE TABLE tablename (
colname SERIAL

)i
is equivalent to specifying:

CREATE SEQUENCE tablename_colname_seq;
CREATE TABLE tablename (
colname integer NOT NULL DEFAULT nextval (' tablename_colname_seq’)
)i
ALTER SEQUENCE tablename_colname_seq OWNED BY tablename.colname;

Thus, we have created an integer column and arranged for its default values to be assigned from a se-
quence generator. A NOT NULL constraint is applied to ensure that a null value cannot be inserted. (In
most cases you would also want to attach a UNIQUE or PRIMARY KEY constraint to prevent duplicate
values from being inserted by accident, but this is not automatic.) Lastly, the sequence is marked as
“owned by” the column, so that it will be dropped if the column or table is dropped.

Note: Prior to PostgreSQL 7.3, serial implied un1Que. This is no longer automatic. If you wish a
serial column to have a unique constraint or be a primary key, it must now be specified, just like
any other data type.

To insert the next value of the sequence into the serial column, specify that the serial column
should be assigned its default value. This can be done either by excluding the column from the list of
columns in the INSERT statement, or through the use of the DEFAULT key word.

The type names serial and serial4 are equivalent: both create integer columns. The type names
bigserial and serial8 work the same way, except that they create abigint column. bigserial
should be used if you anticipate the use of more than 2*' identifiers over the lifetime of the table.

The sequence created for a serial column is automatically dropped when the owning column is
dropped. You can drop the sequence without dropping the column, but this will force removal of the
column default expression.

8.2. Monetary Types

The money type stores a currency amount with a fixed fractional precision; see Table 8-3. The frac-
tional precision is determined by the database’s lc_monetary setting. Input is accepted in a variety of
formats, including integer and floating-point literals, as well as typical currency formatting, such as
7$1,000.00”. Output is generally in the latter form but depends on the locale. Non-quoted numeric
values can be converted to money by casting the numeric value to text and then money, for example:

SELECT 1234::text::money;

105

Chapter 8. Data Types

There is no simple way of doing the reverse in a locale-independent manner, namely casting a money
value to a numeric type. If you know the currency symbol and thousands separator you can use

regexp_replace():

SELECT regexp_replace (’52093.89’ ::money::text, "[$,1', ”, 'g’)::numeric;

Since the output of this data type is locale-sensitive, it might not work to load money data into a
database that has a different setting of 1c_monetary. To avoid problems, before restoring a dump
into a new database make sure 1c_monetary has the same or equivalent value as in the database that
was dumped.

Table 8-3. Monetary Types

Name Storage Size Description Range

money 8 bytes currency amount -
92233720368547758.08
to
+92233720368547758.0

8.3. Character Types

Table 8-4. Character Types

Name Description

character varying(n), varchar (n) variable-length with limit
character (n), char (n) fixed-length, blank padded
text variable unlimited length

Table 8-4 shows the general-purpose character types available in PostgreSQL.

SQL defines two primary character types: character varying(n) and character (n), where n
is a positive integer. Both of these types can store strings up to n characters (not bytes) in length.
An attempt to store a longer string into a column of these types will result in an error, unless the
excess characters are all spaces, in which case the string will be truncated to the maximum length.
(This somewhat bizarre exception is required by the SQL standard.) If the string to be stored is shorter
than the declared length, values of type character will be space-padded; values of type character
varying will simply store the shorter string.

If one explicitly casts a value to character varying(n) or character (n), then an over-length
value will be truncated to n characters without raising an error. (This too is required by the SQL
standard.)

The notations varchar (n) and char(n) are aliases for character varying(n) and
character (n), respectively. character without length specifier is equivalent to character (1).
If character varying is used without length specifier, the type accepts strings of any size. The
latter is a PostgreSQL extension.

In addition, PostgreSQL provides the text type, which stores strings of any length. Although the
type text is not in the SQL standard, several other SQL database management systems have it as

106

Chapter 8. Data Types

well.

Values of type character are physically padded with spaces to the specified width n, and are stored
and displayed that way. However, the padding spaces are treated as semantically insignificant. Trailing
spaces are disregarded when comparing two values of type character, and they will be removed
when converting a character value to one of the other string types. Note that trailing spaces are
semantically significant in character varying and text values.

The storage requirement for a short string (up to 126 bytes) is 1 byte plus the actual string, which
includes the space padding in the case of character. Longer strings have 4 bytes of overhead instead
of 1. Long strings are compressed by the system automatically, so the physical requirement on disk
might be less. Very long values are also stored in background tables so that they do not interfere with
rapid access to shorter column values. In any case, the longest possible character string that can be
stored is about 1 GB. (The maximum value that will be allowed for n in the data type declaration
is less than that. It wouldn’t be useful to change this because with multibyte character encodings
the number of characters and bytes can be quite different. If you desire to store long strings with no
specific upper limit, use text or character varying without a length specifier, rather than making
up an arbitrary length limit.)

Tip: There is no performance difference among these three types, apart from increased storage
space when using the blank-padded type, and a few extra CPU cycles to check the length when
storing into a length-constrained column. While character (n) has performance advantages in
some other database systems, there is no such advantage in PostgreSQL; in fact character (n)
is usually the slowest of the three because of its additional storage costs. In most situations text
Or character varying should be used instead.

Refer to Section 4.1.2.1 for information about the syntax of string literals, and to Chapter 9 for infor-
mation about available operators and functions. The database character set determines the character
set used to store textual values; for more information on character set support, refer to Section 22.2.

Example 8-1. Using the character types

CREATE TABLE testl (a character(4));
INSERT INTO testl VALUES (’ok’);

SELECT a, char_length(a) FROM testl; —- ©
a | char_length

______ e

ok | 2

CREATE TABLE test2 (b varchar(5));

INSERT INTO test2 VALUES ('ok’);

INSERT INTO test2 VALUES (’good ")

INSERT INTO test2 VALUES (’too long’);

ERROR: value too long for type character varying(5)

INSERT INTO test2 VALUES (’too long’::varchar(5)); -- explicit truncation
SELECT b, char_length(b) FROM test2;
b | char_length
,,,,,,, o
ok | 2
good | 5
too 1 | 5

©® The char_length function is discussed in Section 9.4.

107

Chapter 8. Data Types

There are two other fixed-length character types in PostgreSQL, shown in Table 8-5. The name type
exists only for the storage of identifiers in the internal system catalogs and is not intended for use by
the general user. Its length is currently defined as 64 bytes (63 usable characters plus terminator) but
should be referenced using the constant NAMEDATALEN in C source code. The length is set at compile
time (and is therefore adjustable for special uses); the default maximum length might change in a
future release. The type "char" (note the quotes) is different from char (1) in that it only uses one
byte of storage. It is internally used in the system catalogs as a simplistic enumeration type.

Table 8-5. Special Character Types

Name Storage Size Description
"char" 1 byte single-byte internal type
name 64 bytes internal type for object names

8.4. Binary Data Types

The bytea data type allows storage of binary strings; see Table 8-6.

Table 8-6. Binary Data Types

Name Storage Size Description

bytea 1 or 4 bytes plus the actual variable-length binary string
binary string

A binary string is a sequence of octets (or bytes). Binary strings are distinguished from character
strings in two ways. First, binary strings specifically allow storing octets of value zero and other “non-
printable” octets (usually, octets outside the range 32 to 126). Character strings disallow zero octets,
and also disallow any other octet values and sequences of octet values that are invalid according to
the database’s selected character set encoding. Second, operations on binary strings process the actual
bytes, whereas the processing of character strings depends on locale settings. In short, binary strings
are appropriate for storing data that the programmer thinks of as “raw bytes”, whereas character
strings are appropriate for storing text.

The bytea type supports two external formats for input and output: PostgreSQL’s historical “escape”
format, and “hex” format. Both of these are always accepted on input. The output format depends on
the configuration parameter bytea_output; the default is hex. (Note that the hex format was introduced
in PostgreSQL 9.0; earlier versions and some tools don’t understand it.)

The SQL standard defines a different binary string type, called BLOB or BINARY LARGE OBJECT.
The input format is different from bytea, but the provided functions and operators are mostly the
same.

8.4.1. bytea hex format

The “hex” format encodes binary data as 2 hexadecimal digits per byte, most significant nibble first.
The entire string is preceded by the sequence \x (to distinguish it from the escape format). In some
contexts, the initial backslash may need to be escaped by doubling it, in the same cases in which
backslashes have to be doubled in escape format; details appear below. The hexadecimal digits can
be either upper or lower case, and whitespace is permitted between digit pairs (but not within a digit
pair nor in the starting \x sequence). The hex format is compatible with a wide range of external

108

Chapter 8. Data Types

applications and protocols, and it tends to be faster to convert than the escape format, so its use is
preferred.

Example:

SELECT E’\\xDEADBEEF’;

8.4.2. bytea escape format

The “escape” format is the traditional PostgreSQL format for the bytea type. It takes the approach
of representing a binary string as a sequence of ASCII characters, while converting those bytes that
cannot be represented as an ASCII character into special escape sequences. If, from the point of
view of the application, representing bytes as characters makes sense, then this representation can be
convenient. But in practice it is usually confusing because it fuzzes up the distinction between binary
strings and character strings, and also the particular escape mechanism that was chosen is somewhat
unwieldy. So this format should probably be avoided for most new applications.

When entering bytea values in escape format, octets of certain values must be escaped, while all
octet values can be escaped. In general, to escape an octet, convert it into its three-digit octal value
and precede it by a backslash (or two backslashes, if writing the value as a literal using escape string
syntax). Backslash itself (octet value 92) can alternatively be represented by double backslashes.
Table 8-7 shows the characters that must be escaped, and gives the alternative escape sequences where
applicable.

Table 8-7. bytea Literal Escaped Octets

Decimal Octet | Description Escaped Input | Example Output
Value Representation Representation
0 zero octet E’\\000" SELECT \000

E’\\0OO’ : :bytea;

39 single quote 77 or E/\\047’ |SELECT ’
E’\”::bytea;
92 backslash E’\\\\’ or SELECT AN\
E’\\134’ E’\\\\’ : :bytea
0to 31 and 127 to | “non-printable” E’\\xxx’ (octal |SELECT \001
255 octets value) E’\\001’ ::bytea;

The requirement to escape non-printable octets varies depending on locale settings. In some instances
you can get away with leaving them unescaped. Note that the result in each of the examples in Table
8-7 was exactly one octet in length, even though the output representation is sometimes more than
one character.

The reason multiple backslashes are required, as shown in Table 8-7, is that an input string written
as a string literal must pass through two parse phases in the PostgreSQL server. The first backslash
of each pair is interpreted as an escape character by the string-literal parser (assuming escape string
syntax is used) and is therefore consumed, leaving the second backslash of the pair. (Dollar-quoted
strings can be used to avoid this level of escaping.) The remaining backslash is then recognized by

109

Chapter 8. Data Types

the bytea input function as starting either a three digit octal value or escaping another backslash. For
example, a string literal passed to the server as E’ \\001’ becomes \001 after passing through the
escape string parser. The \001 is then sent to the bytea input function, where it is converted to a
single octet with a decimal value of 1. Note that the single-quote character is not treated specially by
bytea, so it follows the normal rules for string literals. (See also Section 4.1.2.1.)

Bytea octets are sometimes escaped when output. In general, each “non-printable” octet is converted
into its equivalent three-digit octal value and preceded by one backslash. Most “printable” octets are
represented by their standard representation in the client character set. The octet with decimal value
92 (backslash) is doubled in the output. Details are in Table 8-8.

Table 8-8. bytea Output Escaped Octets

Decimal Octet |Description Escaped Example Output Result
Value Output

Representation
92 backslash A\ SELECT A\

E’\\134’ ::bytea;

0to 31 and 127 to | “non-printable” \xxx (octal value) | SELECT \001
255 octets E’\\0O01’ : :bytea;
32to 126 “printable” octets | client character SELECT ~

set representation |E’\\176’ : :bytea;

Depending on the front end to PostgreSQL you use, you might have additional work to do in terms of
escaping and unescaping bytea strings. For example, you might also have to escape line feeds and
carriage returns if your interface automatically translates these.

8.5. Date/Time Types

PostgreSQL supports the full set of SQL date and time types, shown in Table 8-9. The operations
available on these data types are described in Section 9.9.

Table 8-9. Date/Time Types

Name Storage Size | Description |Low Value High Value |Resolution
timestamp [|8 bytes both date and | 4713 BC 294276 AD 1 microsecond
(p) 1 [time (no time / 14 digits
without zone)

time zone]

timestamp [|8 bytes both date and | 4713 BC 294276 AD 1 microsecond
(p) 1 with time, with time / 14 digits
time zone zone

110

Chapter 8. Data Types

Name Storage Size | Description |Low Value High Value |Resolution
date 4 bytes date (no time |4713 BC 5874897 AD |1 day

of day)
time [(p) |8 bytes time of day (no | 00:00:00 24:00:00 1 microsecond
] [without date) / 14 digits
time zone]
time [(p) |12 bytes times of day 00:00:00+1459 | 24:00:00-1459 | 1 microsecond
] with time only, with time / 14 digits
zone zone
interval [|12 bytes time interval | -178000000 178000000 1 microsecond
fields 1 [years years / 14 digits
(p)]

Note: The SQL standard requires that writing just timestamp be equivalent to timestamp
without time zone, and PostgreSQL honors that behavior. (Releases prior to 7.3 treated it as

timestamp with time zone.)

time, timestamp, and interval accept an optional precision value p which specifies the number
of fractional digits retained in the seconds field. By default, there is no explicit bound on precision.
The allowed range of p is from 0 to 6 for the t imestamp and interval types.

Note: When timestamp values are stored as eight-byte integers (currently the default), microsec-
ond precision is available over the full range of values. When timestamp values are stored as
double precision floating-point numbers instead (a deprecated compile-time option), the effective
limit of precision might be less than 6. timestamp values are stored as seconds before or after
midnight 2000-01-01. When timestamp values are implemented using floating-point numbers,
microsecond precision is achieved for dates within a few years of 2000-01-01, but the precision
degrades for dates further away. Note that using floating-point datetimes allows a larger range of
timestamp values to be represented than shown above: from 4713 BC up to 5874897 AD.

The same compile-time option also determines whether time and interval values are stored
as floating-point numbers or eight-byte integers. In the floating-point case, large interval values
degrade in precision as the size of the interval increases.

For the t ime types, the allowed range of p is from 0 to 6 when eight-byte integer storage is used, or
from O to 10 when floating-point storage is used.

The interval type has an additional option, which is to restrict the set of stored fields by writing
one of these phrases:

YEAR

MONTH

DAY

HOUR

MINUTE

SECOND

YEAR TO MONTH
DAY TO HOUR
DAY TO MINUTE
DAY TO SECOND

111

Chapter 8. Data Types

HOUR TO MINUTE
HOUR TO SECOND
MINUTE TO SECOND

Note that if both fields and p are specified, the £ields must include SECOND, since the precision
applies only to the seconds.

The type time with time zone is defined by the SQL standard, but the definition exhibits
properties which lead to questionable usefulness. In most cases, a combination of date, time,
timestamp without time zone, and timestamp with time zone should provide a
complete range of date/time functionality required by any application.

The types abstime and reltime are lower precision types which are used internally. You are dis-
couraged from using these types in applications; these internal types might disappear in a future
release.

8.5.1. Date/Time Input

Date and time input is accepted in almost any reasonable format, including ISO 8601,
SQL-compatible, traditional POSTGRES, and others. For some formats, ordering of day, month, and
year in date input is ambiguous and there is support for specifying the expected ordering of these
fields. Set the DateStyle parameter to MDY to select month-day-year interpretation, DMY to select
day-month-year interpretation, or YMD to select year-month-day interpretation.

PostgreSQL is more flexible in handling date/time input than the SQL standard requires. See Ap-
pendix B for the exact parsing rules of date/time input and for the recognized text fields including
months, days of the week, and time zones.

Remember that any date or time literal input needs to be enclosed in single quotes, like text strings.
Refer to Section 4.1.2.7 for more information. SQL requires the following syntax

type [(p) 1 "value’

where p is an optional precision specification giving the number of fractional digits in the seconds
field. Precision can be specified for t ime, t imestamp, and interval types. The allowed values are
mentioned above. If no precision is specified in a constant specification, it defaults to the precision of
the literal value.

8.5.1.1. Dates

Table 8-10 shows some possible inputs for the date type.

Table 8-10. Date Input

Example Description

1999-01-08 ISO 8601; January 8 in any mode
(recommended format)

January 8, 1999 unambiguous in any datestyle input mode

1/8/1999 January 8 in MDY mode; August 1 in DMY mode

1/18/1999 January 18 in MDY mode; rejected in other modes

01/02/03 January 2, 2003 in MDY mode; February 1, 2003

in DMY mode; February 3, 2001 in YMD mode

112

Chapter 8. Data Types

Example Description

1999-Jan-08 January 8 in any mode

Jan-08-1999 January 8 in any mode

08-Jan-1999 January 8 in any mode

99-Jan-08 January 8 in YMD mode, else error
08-Jan-99 January 8, except error in YMD mode
Jan-08-99 January 8, except error in YMD mode
19990108 ISO 8601; January 8, 1999 in any mode
990108 ISO 8601; January 8, 1999 in any mode
1999.008 year and day of year

J2451187 Julian day

January 8, 99 BC year 99 BC

8.5.1.2. Times

The time-of-day types are time [(p)] without time zoneandtime [(p)] with time
zone. time alone is equivalent to time without time zone.

Valid input for these types consists of a time of day followed by an optional time zone. (See Table 8-11
and Table 8-12.) If a time zone is specified in the input for time without time zone, itis silently
ignored. You can also specify a date but it will be ignored, except when you use a time zone name
that involves a daylight-savings rule, such as America/New_York. In this case specifying the date
is required in order to determine whether standard or daylight-savings time applies. The appropriate
time zone offset is recorded in the time with time zone value.

Table 8-11. Time Input

Example Description

04:05:06.789 ISO 8601

04:05:06 ISO 8601

04:05 ISO 8601

040506 ISO 8601

04:05 AM same as 04:05; AM does not affect value
04:05 PM same as 16:05; input hour must be <= 12
04:05:06.789-8 ISO 8601

04:05:06-08:00 ISO 8601

04:05-08:00 ISO 8601

040506-08 ISO 8601

04:05:06 PST time zone specified by abbreviation
2003-04-12 04:05:06 America/New_York |time zone specified by full name

Table 8-12. Time Zone Input

Example Description

113

Chapter 8. Data Types

Example Description

PST Abbreviation (for Pacific Standard Time)
America/New_York Full time zone name

PST8PDT POSIX-style time zone specification
-8:00 ISO-8601 offset for PST

-800 ISO-8601 offset for PST

-8 ISO-8601 offset for PST

zulu Military abbreviation for UTC

z Short form of zulu

Refer to Section 8.5.3 for more information on how to specify time zones.

8.5.1.3. Time Stamps

Valid input for the time stamp types consists of the concatenation of a date and a time, followed by
an optional time zone, followed by an optional AD or BC. (Alternatively, AD/BC can appear before the
time zone, but this is not the preferred ordering.) Thus:

1999-01-08 04:05:06

and:

1999-01-08 04:05:06 —-8:00

are valid values, which follow the ISO 8601 standard. In addition, the common format:

January 8 04:05:06 1999 PST

is supported.

The SQL standard differentiates t imestamp without time zone and timestamp with time
zone literals by the presence of a “+” or “-” symbol and time zone offset after the time. Hence,
according to the standard,

TIMESTAMP '2004-10-19 10:23:54’

isatimestamp without time zone, while

TIMESTAMP "2004-10-19 10:23:54+02’

isatimestamp with time zone.PostgreSQL never examines the content of a literal string before
determining its type, and therefore will treat both of the above as t imestamp without time zone.
To ensure that a literal is treated as timestamp with time zone, give it the correct explicit type:

TIMESTAMP WITH TIME ZONE ’2004-10-19 10:23:54+02'

In a literal that has been determined to be timestamp without time zone, PostgreSQL will
silently ignore any time zone indication. That is, the resulting value is derived from the date/time
fields in the input value, and is not adjusted for time zone.

For timestamp with time zone, the internally stored value is always in UTC (Universal Coordi-
nated Time, traditionally known as Greenwich Mean Time, GMT). An input value that has an explicit
time zone specified is converted to UTC using the appropriate offset for that time zone. If no time

114

Chapter 8. Data Types

zone is stated in the input string, then it is assumed to be in the time zone indicated by the system’s
timezone parameter, and is converted to UTC using the offset for the t imezone zone.

When a timestamp with time zone value is output, it is always converted from UTC to the
current timezone zone, and displayed as local time in that zone. To see the time in another time
zone, either change t imezone or use the AT TIME ZONE construct (see Section 9.9.3).

Conversions between timestamp without time zone and timestamp with time zone
normally assume that the timestamp without time zone value should be taken or given as
timezone local time. A different time zone can be specified for the conversion using AT TIME
ZONE.

8.5.1.4. Special Values

PostgreSQL supports several special date/time input values for convenience, as shown in Table 8-13.
The values infinity and —-infinity are specially represented inside the system and will be dis-
played unchanged; but the others are simply notational shorthands that will be converted to ordinary
date/time values when read. (In particular, now and related strings are converted to a specific time
value as soon as they are read.) All of these values need to be enclosed in single quotes when used as
constants in SQL commands.

Table 8-13. Special Date/Time Inputs

Input String Valid Types Description

epoch date, timestamp 1970-01-01 00:00:00+00 (Unix
system time zero)

infinity date, timestamp later than all other time stamps

—infinity date, timestamp earlier than all other time
stamps

now date, time, timestamp current transaction’s start time

today date, timestamp midnight today

tomorrow date, timestamp midnight tomorrow

yesterday date, timestamp midnight yesterday

allballs time 00:00:00.00 UTC

The following SQL-compatible functions can also be used to obtain the current time value for the
corresponding data type: CURRENT_DATE, CURRENT_TIME, CURRENT_TIMESTAMP, LOCALTIME,
LOCALTIMESTAMP. The latter four accept an optional subsecond precision specification. (See
Section 9.9.4.) Note that these are SQL functions and are not recognized in data input strings.

8.5.2. Date/Time Output

The output format of the date/time types can be set to one of the four styles ISO 8601, SQL (Ingres),
traditional POSTGRES (Unix date format), or German. The default is the ISO format. (The SQL
standard requires the use of the ISO 8601 format. The name of the “SQL” output format is a historical
accident.) Table 8-14 shows examples of each output style. The output of the date and t ime types is
of course only the date or time part in accordance with the given examples.

115

Chapter 8. Data Types

Table 8-14. Date/Time Output Styles

Style Specification Description Example

ISO ISO 8601/SQL standard 1997-12-17 07:37:16-08

SQL traditional style 12/17/1997 07:37:16.00 PST

POSTGRES original style Wed Dec 17 07:37:16 1997
PST

German regional style 17.12.1997 07:37:16.00 PST

In the SQL and POSTGRES styles, day appears before month if DMY field ordering has been spec-
ified, otherwise month appears before day. (See Section 8.5.1 for how this setting also affects inter-
pretation of input values.) Table 8-15 shows an example.

Table 8-15. Date Order Conventions

datestyle Setting Input Ordering Example Output

SQL, DMY day/monthlyear 17/12/1997 15:37:16.00 CET

SQL, MDY month/daylyear 12/17/1997 07:37:16.00 PST

Postgres, DMY day/monthlyear Wed 17 Dec 07:37:16 1997
PST

The date/time styles can be selected by the user using the SET datestyle command, the DateStyle
parameter in the postgresqgl.conf configuration file, or the PGDATESTYLE environment variable
on the server or client. The formatting function to_char (see Section 9.8) is also available as a more
flexible way to format date/time output.

8.5.3. Time Zones

Time zones, and time-zone conventions, are influenced by political decisions, not just earth geometry.
Time zones around the world became somewhat standardized during the 1900’s, but continue to be
prone to arbitrary changes, particularly with respect to daylight-savings rules. PostgreSQL uses the
widely-used zoneinfo time zone database for information about historical time zone rules. For times
in the future, the assumption is that the latest known rules for a given time zone will continue to be
observed indefinitely far into the future.

PostgreSQL endeavors to be compatible with the SQL standard definitions for typical usage. However,
the SQL standard has an odd mix of date and time types and capabilities. Two obvious problems are:

+ Although the date type cannot have an associated time zone, the t ime type can. Time zones in the
real world have little meaning unless associated with a date as well as a time, since the offset can
vary through the year with daylight-saving time boundaries.

+ The default time zone is specified as a constant numeric offset from UTC. It is therefore impossible
to adapt to daylight-saving time when doing date/time arithmetic across DST boundaries.

To address these difficulties, we recommend using date/time types that contain both date and time
when using time zones. We do not recommend using the type time with time zone (though it
is supported by PostgreSQL for legacy applications and for compliance with the SQL standard).
PostgreSQL assumes your local time zone for any type containing only date or time.

116

Chapter 8. Data Types

All timezone-aware dates and times are stored internally in UTC. They are converted to local time in
the zone specified by the timezone configuration parameter before being displayed to the client.

PostgreSQL allows you to specify time zones in three different forms:

« A full time zone name, for example America/New_York. The recognized time zone names are
listed in the pg_timezone_names view (see Section 45.60). PostgreSQL uses the widely-used
zoneinfo time zone data for this purpose, so the same names are also recognized by much other
software.

« A time zone abbreviation, for example PST. Such a specification merely defines a particular offset
from UTC, in contrast to full time zone names which can imply a set of daylight savings transition-
date rules as well. The recognized abbreviations are listed in the pg_timezone_abbrevs view
(see Section 45.59). You cannot set the configuration parameters timezone or log_timezone to a
time zone abbreviation, but you can use abbreviations in date/time input values and with the AT
TIME ZONE operator.

+ In addition to the timezone names and abbreviations, PostgreSQL will accept POSIX-style time
zone specifications of the form STDoffset or STDoffsetDST, where STD is a zone abbreviation,
offset is a numeric offset in hours west from UTC, and DST is an optional daylight-savings zone
abbreviation, assumed to stand for one hour ahead of the given offset. For example, if ESTSEDT
were not already a recognized zone name, it would be accepted and would be functionally equiva-
lent to United States East Coast time. When a daylight-savings zone name is present, it is assumed
to be used according to the same daylight-savings transition rules used in the zoneinfo time zone
database’s posixrules entry. In a standard PostgreSQL installation, posixrules is the same as
Us/Eastern, so that POSIX-style time zone specifications follow USA daylight-savings rules. If
needed, you can adjust this behavior by replacing the posixrules file.

In short, this is the difference between abbreviations and full names: abbreviations always represent a
fixed offset from UTC, whereas most of the full names imply a local daylight-savings time rule, and
so have two possible UTC offsets.

One should be wary that the POSIX-style time zone feature can lead to silently accepting bogus input,
since there is no check on the reasonableness of the zone abbreviations. For example, SET TIMEZONE
TO FOOBARO will work, leaving the system effectively using a rather peculiar abbreviation for UTC.
Another issue to keep in mind is that in POSIX time zone names, positive offsets are used for locations
west of Greenwich. Everywhere else, PostgreSQL follows the ISO-8601 convention that positive
timezone offsets are east of Greenwich.

In all cases, timezone names are recognized case-insensitively. (This is a change from PostgreSQL
versions prior to 8.2, which were case-sensitive in some contexts but not others.)

Neither full names nor abbreviations are hard-wired into the server; they are obtained from configura-
tion files stored under . . . /share/timezone/ and . ../share/timezonesets/ of the installation
directory (see Section B.3).

The timezone configuration parameter can be set in the file postgresgl . conf, or in any of the other
standard ways described in Chapter 18. There are also several special ways to set it:

» If timezone is not specified in postgresqgl . conf or as a server command-line option, the server
attempts to use the value of the TZ environment variable as the default time zone. If TZ is not
defined or is not any of the time zone names known to PostgreSQL, the server attempts to deter-
mine the operating system’s default time zone by checking the behavior of the C library function
localtime (). The default time zone is selected as the closest match among PostgreSQL’s known
time zones. (These rules are also used to choose the default value of log_timezone, if not specified.)

117

Chapter 8. Data Types

« The SQL command SET TIME ZONE sets the time zone for the session. This is an alternative
spelling of SET TIMEZONE TO with a more SQL-spec-compatible syntax.

« The pPGTZ environment variable is used by libpq clients to send a SET TIME ZONE command to
the server upon connection.

8.5.4. Interval Input

interval values can be written using the following verbose syntax:
[@Q] quantity unit [quantity unit...] [direction]

where quantity is a number (possibly signed); unit is microsecond, millisecond, second,
minute, hour, day, week, month, year, decade, century, millennium, or abbreviations or plu-
rals of these units; direction can be ago or empty. The at sign (@) is optional noise. The amounts
of the different units are implicitly added with appropriate sign accounting. ago negates all the fields.
This syntax is also used for interval output, if IntervalStyle is set to postgres_verbose.

Quantities of days, hours, minutes, and seconds can be specified without explicit unit markings. For
example, 1 12:59:10" is read the same as 1 day 12 hours 59 min 10 sec’. Also, a com-
bination of years and months can be specified with a dash; for example ' 200-10" is read the same
as 200 years 10 months’. (These shorter forms are in fact the only ones allowed by the SQL
standard, and are used for output when IntervalStyle is set to sql_standard.)

Interval values can also be written as ISO 8601 time intervals, using either the “format with designa-
tors” of the standard’s section 4.4.3.2 or the “alternative format” of section 4.4.3.3. The format with
designators looks like this:

P quantity unit [quantity unit ...] [T [quantity unit ...]]

The string must start with a P, and may include a T that introduces the time-of-day units. The available
unit abbreviations are given in Table 8-16. Units may be omitted, and may be specified in any order,
but units smaller than a day must appear after T. In particular, the meaning of M depends on whether
it is before or after T.

Table 8-16. ISO 8601 interval unit abbreviations

Abbreviation Meaning

Years

Months (in the date part)
Weeks

Days

Hours

Minutes (in the time part)

AREICIEIEE

Seconds

In the alternative format:
P [years—months—days] [T hours:minutes:seconds]

the string must begin with P, and a T separates the date and time parts of the interval. The values are
given as numbers similar to ISO 8601 dates.

118

Chapter 8. Data Types

When writing an interval constant with a fields specification, or when assigning a string to an in-
terval column that was defined with a £ields specification, the interpretation of unmarked quantities
depends on the fields. For example INTERVAL ’1’ YEAR is read as 1 year, whereas INTERVAL
71" means 1 second. Also, field values “to the right” of the least significant field allowed by the
fields specification are silently discarded. For example, writing INTERVAL ’1 day 2:03:04'
HOUR TO MINUTE results in dropping the seconds field, but not the day field.

According to the SQL standard all fields of an interval value must have the same sign, so a leading
negative sign applies to all fields; for example the negative sign in the interval literal * -1 2:03:04"
applies to both the days and hour/minute/second parts. PostgreSQL allows the fields to have differ-
ent signs, and traditionally treats each field in the textual representation as independently signed, so
that the hour/minute/second part is considered positive in this example. If IntervalStyle is set
to sql_standard then a leading sign is considered to apply to all fields (but only if no additional
signs appear). Otherwise the traditional PostgreSQL interpretation is used. To avoid ambiguity, it’s
recommended to attach an explicit sign to each field if any field is negative.

Internally interval values are stored as months, days, and seconds. This is done because the number
of days in a month varies, and a day can have 23 or 25 hours if a daylight savings time adjustment is
involved. The months and days fields are integers while the seconds field can store fractions. Because
intervals are usually created from constant strings or timestamp subtraction, this storage method
works well in most cases. Functions justify_days and justify_hours are available for adjusting
days and hours that overflow their normal ranges.

In the verbose input format, and in some fields of the more compact input formats, field values can
have fractional parts; for example 1.5 week’ or 01:02:03.45”. Such input is converted to the
appropriate number of months, days, and seconds for storage. When this would result in a fractional
number of months or days, the fraction is added to the lower-order fields using the conversion factors
1 month = 30 days and 1 day = 24 hours. For example, ' 1.5 month’ becomes 1 month and 15 days.
Only seconds will ever be shown as fractional on output.

Table 8-17 shows some examples of valid interval input.

Table 8-17. Interval Input

Example Description

1-2 SQL standard format: 1 year 2 months

3 4:05:06 SQL standard format: 3 days 4 hours 5 minutes
6 seconds

1 year 2 months 3 days 4 hours 5 minutes 6 Traditional Postgres format: 1 year 2 months 3

seconds days 4 hours 5 minutes 6 seconds

P1Y2M3DT4H5M6S ISO 8601 “format with designators”: same
meaning as above

P0001-02-03T04:05:06 ISO 8601 “alternative format”: same meaning as
above

8.5.5. Interval Output

The output format of the interval type can be set to one of the four styles sql_standard, postgres,
postgres_verbose, Or iso_8601, using the command SET intervalstyle. The default is the
postgres format. Table 8-18 shows examples of each output style.

The sql_standard style produces output that conforms to the SQL standard’s specification for

119

Chapter 8. Data Types

interval literal strings, if the interval value meets the standard’s restrictions (either year-month only or
day-time only, with no mixing of positive and negative components). Otherwise the output looks like
a standard year-month literal string followed by a day-time literal string, with explicit signs added to
disambiguate mixed-sign intervals.

The output of the postgres style matches the output of PostgreSQL releases prior to 8.4 when the
DateStyle parameter was set to ISO.

The output of the postgres_verbose style matches the output of PostgreSQL releases prior to 8.4
when the DateStyle parameter was set to non-ISO output.

The output of the i so_8601 style matches the “format with designators” described in section 4.4.3.2
of the ISO 8601 standard.

Table 8-18. Interval Output Style Examples

Style Specification

Year-Month Interval

Day-Time Interval

Mixed Interval

sgl_standard

1-2

3 4:05:06

-1-2 +3 -4:05:06

postgres

1 year 2 mons

3 days 04:05:06

-1 year -2 mons +3
days -04:05:06

postgres_verbose

@ 1 year 2 mons

@ 3 days 4 hours 5

@ 1 year 2 mons -3

mins 6 secs days 4 hours 5 mins 6
secs ago
iso_8601 P1Y2M P3DT4H5M6S P-1Y-2M3DT-4H-5M-

6S

8.5.6. Internals

PostgreSQL uses Julian dates for all date/time calculations. This has the useful property of correctly
calculating dates from 4713 BC to far into the future, using the assumption that the length of the year
is 365.2425 days.

Date conventions before the 19th century make for interesting reading, but are not consistent enough
to warrant coding into a date/time handler.

8.6. Boolean Type

PostgreSQL provides the standard SQL type boolean; see Table 8-19. The boolean type can have
one of only two states: “true” or “false”. A third state, “unknown”, is represented by the SQL null
value.

Table 8-19. Boolean Data Type

Name Storage Size Description

boolean state of true or false

1 byte

Valid literal values for the “true” state are:

120

Chapter 8. Data Types

TRUE
14 t 14
"true’
14 y’
’ yes ’
14 OI'I’
14 l r
For the “false” state, the following values can be used:

FALSE
Ifl
"false’
Inl
Inol
roff’
IOI

Leading or trailing whitespace is ignored, and case does not matter. The key words TRUE and FALSE
are the preferred (SQL-compliant) usage.

Example 8-2 shows that boolean values are output using the letters t and £.
Example 8-2. Using the boolean type

CREATE TABLE testl (a boolean, b text);

INSERT INTO testl VALUES (TRUE, ’sic est’);

INSERT INTO testl VALUES (FALSE, 'non est’);
SELECT » FROM testl;

a | b

8.7. Enumerated Types

Enumerated (enum) types are data types that comprise a static, ordered set of values. They are equiv-
alent to the enum types supported in a number of programming languages. An example of an enum
type might be the days of the week, or a set of status values for a piece of data.

8.7.1. Declaration of Enumerated Types
Enum types are created using the CREATE TYPE command, for example:

CREATE TYPE mood AS ENUM (’sad’, ’ok’, ’'happy’);

Once created, the enum type can be used in table and function definitions much like any other type:

121

Chapter 8. Data Types

CREATE TYPE mood AS ENUM (’sad’, ’‘ok’, ’happy’);
CREATE TABLE person (
name text,
current_mood mood
)i
INSERT INTO person VALUES (’Moe’, ’happy’);

SELECT x FROM person WHERE current_mood = ’"happy’;
name | current_mood
,,,,,, e
Moe | happy
(1 row)

8.7.2. Ordering

The ordering of the values in an enum type is the order in which the values were listed when the
type was created. All standard comparison operators and related aggregate functions are supported
for enums. For example:

INSERT INTO person VALUES (’Larry’, ’'sad’);
INSERT INTO person VALUES (’Curly’, ’ok’);
SELECT % FROM person WHERE current_mood > ’'sad’;

name | current_mood
_______ T,
Moe | happy

Curly | ok

(2 rows)

SELECT % FROM person WHERE current_mood > ’sad’ ORDER BY current_mood;

name current_mood

|
_______ o
Curly | ok
Moe | happy
(2 rows)

SELECT name
FROM person

WHERE current_mood = (SELECT MIN (current_mood) FROM person);
name

8.7.3. Type Safety

Each enumerated data type is separate and cannot be compared with other enumerated types. See this
example:

CREATE TYPE happiness AS ENUM ('happy’, ’'very happy’, ’ecstatic’);

CREATE TABLE holidays (
num_weeks integer,

122

Chapter 8. Data Types

happiness happiness

)i
INSERT INTO holidays (num_weeks, happiness) VALUES (4, "happy’);
INSERT INTO holidays (num_weeks, happiness) VALUES (6, ’very happy’);
INSERT INTO holidays (num_weeks, happiness) VALUES (8, ’'ecstatic’);
INSERT INTO holidays (num_weeks,happiness) VALUES (2, ’'sad’);
ERROR: invalid input value for enum happiness: "sad"
SELECT person.name, holidays.num_weeks FROM person, holidays

WHERE person.current_mood = holidays.happiness;
ERROR: operator does not exist: mood = happiness

If you really need to do something like that, you can either write a custom operator or add explicit
casts to your query:

SELECT person.name, holidays.num_weeks FROM person, holidays
WHERE person.current_mood::text = holidays.happiness::text;
name | num_weeks

8.7.4. Implementation Details

An enum value occupies four bytes on disk. The length of an enum value’s textual label is limited by
the NAMEDATALEN setting compiled into PostgreSQL; in standard builds this means at most 63 bytes.

Enum labels are case sensitive, so happy’ is not the same as ' HAPPY’. White space in the labels is
significant too.

The translations from internal enum values to textual labels are kept in the system catalog pg_enum.
Querying this catalog directly can be useful.

8.8. Geometric Types

Geometric data types represent two-dimensional spatial objects. Table 8-20 shows the geometric types
available in PostgreSQL. The most fundamental type, the point, forms the basis for all of the other

types.

Table 8-20. Geometric Types

Name Storage Size Representation Description

point 16 bytes Point on a plane x,y)

line 32 bytes Infinite line (not fully | ((x1,y1),(x2,y2))
implemented)

lseg 32 bytes Finite line segment ((x1,y1),(x2,y2))

box 32 bytes Rectangular box ((x1,y1),(x2,y2))

123

Chapter 8. Data Types

Name Storage Size Representation Description
path 16+16n bytes Closed path (similar to | ((x1,yl),...)
polygon)
path 16+16n bytes Open path [(x1,y1),...]
polygon 40+16n bytes Polygon (similar to (xLyD),...)
closed path)
circle 24 bytes Circle <(x,y),r> (center point
and radius)

A rich set of functions and operators is available to perform various geometric operations such as
scaling, translation, rotation, and determining intersections. They are explained in Section 9.11.

8.8.1. Points

Points are the fundamental two-dimensional building block for geometric types. Values of type point
are specified using either of the following syntaxes:

(x, vyv)
X 7 Y

where x and y are the respective coordinates, as floating-point numbers.

Points are output using the first syntax.

8.8.2. Line Segments

Line segments (1seg) are represented by pairs of points. Values of type 1seg are specified using any
of the following syntaxes:

[(x1, y1) , (x2, y2)]
((x1, y1) , (x2, y2))
(x1, y1), (x2, y2)
x1 , yl ’ x2 , y2

where (x1, y1) and (x2, y2) are the end points of the line segment.

Line segments are output using the first syntax.

8.8.3. Boxes

Boxes are represented by pairs of points that are opposite corners of the box. Values of type box are
specified using any of the following syntaxes:

((x1, y1) , (x2, y2))
(x1, y1) , (x2, y2)
x1 , vyl , x2 , y2
where (x1,y1) and (x2, y2) are any two opposite corners of the box.

Boxes are output using the second syntax.

Any two opposite corners can be supplied on input, but the values will be reordered as needed to store
the upper right and lower left corners, in that order.

124

Chapter 8. Data Types

8.8.4. Paths

Paths are represented by lists of connected points. Paths can be open, where the first and last points
in the list are considered not connected, or closed, where the first and last points are considered
connected.

Values of type path are specified using any of the following syntaxes:

[(x1 , y1) , «.. , (xn , yn)]
((x1, y1) , «.. , (xn , yn))
(x1 , y1) , .. , (xn , yn)

(x1 , yl ;e xn , yn)
x1 , vyl PR xn , yn

where the points are the end points of the line segments comprising the path. Square brackets ([1)
indicate an open path, while parentheses (()) indicate a closed path. When the outermost parentheses
are omitted, as in the third through fifth syntaxes, a closed path is assumed.

Paths are output using the first or second syntax, as appropriate.

8.8.5. Polygons

Polygons are represented by lists of points (the vertexes of the polygon). Polygons are very similar to
closed paths, but are stored differently and have their own set of support routines.

Values of type polygon are specified using any of the following syntaxes:

((x1, y1) , «.. , (xn , yn))
(x1 , v1i) , «.. , (xn , yn)
(x1 , yl ;e xn , yn)
x1 , yl ;e g xn , yn

where the points are the end points of the line segments comprising the boundary of the polygon.

Polygons are output using the first syntax.

8.8.6. Circles

Circles are represented by a center point and radius. Values of type circle are specified using any of
the following syntaxes:

>
)

< (x , vy r
((x, v),r
(x, v), r

X Yy r

’

where (x, y) is the center point and r is the radius of the circle.

Circles are output using the first syntax.

125

Chapter 8. Data Types

8.9. Network Address Types

PostgreSQL offers data types to store IPv4, IPv6, and MAC addresses, as shown in Table 8-21. It is
better to use these types instead of plain text types to store network addresses, because these types
offer input error checking and specialized operators and functions (see Section 9.12).

Table 8-21. Network Address Types

Name Storage Size Description

cidr 7 or 19 bytes IPv4 and IPv6 networks

inet 7 or 19 bytes IPv4 and IPv6 hosts and
networks

macaddr 6 bytes MAC addresses

When sorting inet or cidr data types, IPv4 addresses will always sort before IPv6 addresses, in-
cluding IPv4 addresses encapsulated or mapped to IPv6 addresses, such as ::10.2.3.4 or ::ffff:10.4.3.2.

8.9.1. inet

The inet type holds an IPv4 or IPv6 host address, and optionally its subnet, all in one field. The sub-
net is represented by the number of network address bits present in the host address (the “netmask”).
If the netmask is 32 and the address is [Pv4, then the value does not indicate a subnet, only a single
host. In IPv6, the address length is 128 bits, so 128 bits specify a unique host address. Note that if you
want to accept only networks, you should use the cidr type rather than inet.

The input format for this type is address/y where address is an IPv4 or IPv6 address and y is the
number of bits in the netmask. If the /y portion is missing, the netmask is 32 for [Pv4 and 128 for
IPv6, so the value represents just a single host. On display, the /y portion is suppressed if the netmask
specifies a single host.

8.9.2. cidr

The cidr type holds an IPv4 or IPv6 network specification. Input and output formats follow Class-
less Internet Domain Routing conventions. The format for specifying networks is address/y where
address is the network represented as an IPv4 or IPv6 address, and y is the number of bits in the
netmask. If y is omitted, it is calculated using assumptions from the older classful network numbering
system, except it will be at least large enough to include all of the octets written in the input. It is an
error to specify a network address that has bits set to the right of the specified netmask.

Table 8-22 shows some examples.

Table 8-22. cidr Type Input Examples

cidr Input cidr Output abbrev (cidr)
192.168.100.128/25 192.168.100.128/25 192.168.100.128/25
192.168/24 192.168.0.0/24 192.168.0/24
192.168/25 192.168.0.0/25 192.168.0.0/25
192.168.1 192.168.1.0/24 192.168.1/24
192.168 192.168.0.0/24 192.168.0/24

126

Chapter 8. Data Types

cidr Input cidr Output abbrev (cidr)
128.1 128.1.0.0/16 128.1/16

128 128.0.0.0/16 128.0/16
128.1.2 128.1.2.0/24 128.1.2/24
10.1.2 10.1.2.0/24 10.1.2/24
10.1 10.1.0.0/16 10.1/16

10 10.0.0.0/8 10/8
10.1.2.3/32 10.1.2.3/32 10.1.2.3/32

2001:418:3:ba::/64

2001:4£8:3:ba::/64

2001:4£8:3:ba::/64

2001:418:3:ba:2e0:81ff:fe22:d1f]

| AXB1 :418:3:ba:2e0:81ff:fe22:d1f

DIONB] :4£8:3:ba:2e0:81ff:fe22:d1f

|

:offff:1.2.3.0/120

=ffff:1.2.3.0/120

=ffff:1.2.3/120

:offff:1.2.3.0/128

=ffff:1.2.3.0/128

ffff:1.2.3.0/128

8.9.3. inet VS. cidr

The essential difference between inet and cidr data types is that inet accepts values with nonzero

bits to the right of the netmask, whereas cidr does not.

Tip: If you do not like the output format for inet or cidr values, try the functions host, text, and

abbrev.

8.9.4. macaddr

The macaddr type stores MAC addresses, known for example from Ethernet card hardware addresses
(although MAC addresses are used for other purposes as well). Input is accepted in the following

formats:

708:00:2b:01:02:03"
"08-00-2b-01-02-03"
08002b:010203"
"08002b-010203"
70800.2b01.0203"
708002b010203"

These examples would all specify the same address. Upper and lower case is accepted for the digits a

through f£. Output is always in the

first of the forms shown.

IEEE Std 802-2001 specifies the second shown form (with hyphens) as the canonical form for MAC
addresses, and specifies the first form (with colons) as the bit-reversed notation, so that 08-00-2b-01-
02-03 = 01:00:4D:08:04:0C. This convention is widely ignored nowadays, and it is only relevant for
obsolete network protocols (such as Token Ring). PostgreSQL makes no provisions for bit reversal,
and all accepted formats use the canonical LSB order.

The remaining four input formats

are not part of any standard.

127

Chapter 8. Data Types

8.10. Bit String Types

Bit strings are strings of 1’s and 0’s. They can be used to store or visualize bit masks. There are two
SQL bit types: bit (n) and bit varying (n), Where n is a positive integer.

bit type data must match the length n exactly; it is an error to attempt to store shorter or longer bit
strings. bit varying data is of variable length up to the maximum length n; longer strings will be
rejected. Writing bit without a length is equivalenttobit (1), whilebit varying without alength
specification means unlimited length.

Note: If one explicitly casts a bit-string value to bit (n), it will be truncated or zero-padded on the
right to be exactly n bits, without raising an error. Similarly, if one explicitly casts a bit-string value
tobit varying(n), it will be truncated on the right if it is more than n bits.

Refer to Section 4.1.2.5 for information about the syntax of bit string constants. Bit-logical operators
and string manipulation functions are available; see Section 9.6.

Example 8-3. Using the bit string types

CREATE TABLE test (a BIT(3), b BIT VARYING(5));
INSERT INTO test VALUES (B’101’, B’00");

INSERT INTO test VALUES (B’10’, B’1017);

ERROR: Dbit string length 2 does not match type bit (3)
INSERT INTO test VALUES (B’10’::bit(3), B’101’");
SELECT x FROM test;

a | b
,,,,, I
101 | 00
100 | 101

A bit string value requires 1 byte for each group of 8 bits, plus 5 or 8 bytes overhead depending on the
length of the string (but long values may be compressed or moved out-of-line, as explained in Section
8.3 for character strings).

8.11. Text Search Types

PostgreSQL provides two data types that are designed to support full text search, which is the activity
of searching through a collection of natural-language documents to locate those that best match a
query. The tsvector type represents a document in a form optimized for text search; the t squery
type similarly represents a text query. Chapter 12 provides a detailed explanation of this facility, and
Section 9.13 summarizes the related functions and operators.

8.11.1. tsvector

A tsvector value is a sorted list of distinct lexemes, which are words that have been normalized
to merge different variants of the same word (see Chapter 12 for details). Sorting and duplicate-
elimination are done automatically during input, as shown in this example:

SELECT ’"a fat cat sat on a mat and ate a fat rat’::tsvector;
tsvector

128

Chapter 8. Data Types
"a’ "and’ ’'ate’ ’cat’ ’"fat’ ’'mat’ ’'on’ ’'rat’ ’sat’

To represent lexemes containing whitespace or punctuation, surround them with quotes:

SELECT Sthe lexeme ' ’ contains spaces$$::tsvector;
tsvector
! " ’contains’ ’lexeme’ ’spaces’ ’the’

(We use dollar-quoted string literals in this example and the next one to avoid the confusion of having
to double quote marks within the literals.) Embedded quotes and backslashes must be doubled:

SELECT Sthe lexeme ’Joe”s’ contains a quote$$::tsvector;
tsvector

s’ ’"a’ ’'contains’ ’lexeme’ ’'quote’ ’‘the’

Optionally, integer positions can be attached to lexemes:

SELECT "a:1 fat:2 cat:3 sat:4 on:5 a:6 mat:7 and:8 ate:9 a:10 fat:11 rat:12’
tsvector

"a’:1,6,10 "and’ :8 "ate’:9 'cat’:3 'fat’:2,11 'mat’:7 ’'on’:5 'rat’:12 ’"sat’:

A position normally indicates the source word’s location in the document. Positional information can
be used for proximity ranking. Position values can range from 1 to 16383; larger numbers are silently
set to 16383. Duplicate positions for the same lexeme are discarded.

Lexemes that have positions can further be labeled with a weight, which can be A, B, C, or D. D is the
default and hence is not shown on output:

SELECT "a:1A fat:2B,4C cat:5D’ ::tsvector;
tsvector

"a’” ;1A ’'cat’:5 ’"fat’ :2B,4C

Weights are typically used to reflect document structure, for example by marking title words differ-
ently from body words. Text search ranking functions can assign different priorities to the different
weight markers.

It is important to understand that the tsvector type itself does not perform any normalization; it
assumes the words it is given are normalized appropriately for the application. For example,

select ’'The Fat Rats’ ::tsvector;
tsvector

"Fat’” ’'Rats’ ’'The’

For most English-text-searching applications the above words would be considered non-normalized,
but tsvector doesn’t care. Raw document text should usually be passed through to_tsvector to
normalize the words appropriately for searching:

SELECT to_tsvector (’english’, ’'The Fat Rats’);
to_tsvector

"fat’:2 ’'rat’:3

Again, see Chapter 12 for more detail.

129

::tsvector;

Chapter 8. Data Types

8.11.2. tsquery

A tsquery value stores lexemes that are to be searched for, and combines them honoring the Boolean
operators & (AND), | (OR), and ! (NOT). Parentheses can be used to enforce grouping of the opera-
tors:

SELECT ’"fat & rat’::tsquery;
tsquery

SELECT "fat & (rat | cat)’::tsquery;
tsquery

SELECT ’'fat & rat & ! cat’::tsquery;
tsquery

"fat’ & ’'rat’ & !’cat’

In the absence of parentheses, ! (NOT) binds most tightly, and & (AND) binds more tightly than |
(OR).

Optionally, lexemes in a tsquery can be labeled with one or more weight letters, which restricts
them to match only t svector lexemes with matching weights:

SELECT ’"fat:ab & cat’::tsquery;
tsquery

Also, lexemes in a t squery can be labeled with to specify prefix matching:

SELECT ’super:«’::tsquery;
tsquery

This query will match any word in a t svector that begins with “super”.

Quoting rules for lexemes are the same as described previously for lexemes in t svector; and, as with
tsvector, any required normalization of words must be done before converting to the t squery type.
The to_tsquery function is convenient for performing such normalization:

SELECT to_tsquery ('Fat:ab & Cats’);
to_tsquery

130

Chapter 8. Data Types

8.12. UUID Type

The data type uuid stores Universally Unique Identifiers (UUID) as defined by RFC 4122, ISO/IEC
9834-8:2005, and related standards. (Some systems refer to this data type as a globally unique identi-
fier, or GUID, instead.) This identifier is a 128-bit quantity that is generated by an algorithm chosen
to make it very unlikely that the same identifier will be generated by anyone else in the known uni-
verse using the same algorithm. Therefore, for distributed systems, these identifiers provide a better
uniqueness guarantee than sequence generators, which are only unique within a single database.

A UUID is written as a sequence of lower-case hexadecimal digits, in several groups separated by
hyphens, specifically a group of 8 digits followed by three groups of 4 digits followed by a group of
12 digits, for a total of 32 digits representing the 128 bits. An example of a UUID in this standard
form is:

aleebc99-9c0b-4ef8-bb6d-6bb9%d380all

PostgreSQL also accepts the following alternative forms for input: use of upper-case digits, the stan-
dard format surrounded by braces, omitting some or all hyphens, adding a hyphen after any group of
four digits. Examples are:

AOEEBC99-9COB-4EF8-BB6D-6BB9BD380A11
{a0eebc99-9c0b-4ef8-bb6d-6bb9bd380all}
al0eebc999c0b4ef8bb6d6bb9bd380all
alee-bc99-9c0b-4ef8-bb6d-6bb9-bd38-0all
{a0eebc99-9c0bdef8-bb6d6bb9-bd380all}

Output is always in the standard form.

PostgreSQL provides storage and comparison functions for UUIDs, but the core database does not
include any function for generating UUIDs, because no single algorithm is well suited for every
application. The contrib module contrib/uuid-ossp provides functions that implement several
standard algorithms. Alternatively, UUIDs could be generated by client applications or other libraries
invoked through a server-side function.

8.13. XML Type

The xm1 data type can be used to store XML data. Its advantage over storing XML data in a text
field is that it checks the input values for well-formedness, and there are support functions to perform
type-safe operations on it; see Section 9.14. Use of this data type requires the installation to have been
built with configure —-with-libxml.

The xm1 type can store well-formed “documents”, as defined by the XML standard, as well as “con-
tent” fragments, which are defined by the production xMLDecl? content in the XML standard.
Roughly, this means that content fragments can have more than one top-level element or character
node. The expression xmlvalue IS DOCUMENT can be used to evaluate whether a particular xml
value is a full document or only a content fragment.

8.13.1. Creating XML Values

To produce a value of type xm1 from character data, use the function xmlparse:

XMLPARSE ({ DOCUMENT | CONTENT } value)

Examples:

131

Chapter 8. Data Types

XMLPARSE (DOCUMENT ’<?xml version="1.0"?><book><title>Manual</title><chapter>...</chapte
XMLPARSE (CONTENT ’abc<foo>bar</foo><bar>foo</bar>')

While this is the only way to convert character strings into XML values according to the SQL standard,
the PostgreSQL-specific syntaxes:

xml ’<foo>bar</foo>’
' <foo>bar</foo>’::xml

can also be used.

The xml type does not validate input values against a document type declaration (DTD), even when
the input value specifies a DTD. There is also currently no built-in support for validating against other
XML schema languages such as XML Schema.

The inverse operation, producing a character string value from xm1, uses the function xmlserialize:

XMLSERIALIZE ({ DOCUMENT | CONTENT } value AS type)

type can be character, character varying, or text (or an alias for one of those). Again,
according to the SQL standard, this is the only way to convert between type xm1 and character types,
but PostgreSQL also allows you to simply cast the value.

When a character string value is cast to or from type xml without going through XMLPARSE or
XMLSERIALIZE, respectively, the choice of DOCUMENT versus CONTENT is determined by the “XML
option” session configuration parameter, which can be set using the standard command:

SET XML OPTION { DOCUMENT | CONTENT };
or the more PostgreSQL-like syntax
SET xmloption TO { DOCUMENT | CONTENT };

The default is CONTENT, so all forms of XML data are allowed.

Note: With the default XML option setting, you cannot directly cast character strings to type xm1 if
they contain a document type declaration, because the definition of XML content fragment does
not accept them. If you need to do that, either use xvMLpPaARSE or change the XML option.

8.13.2. Encoding Handling

Care must be taken when dealing with multiple character encodings on the client, server, and in
the XML data passed through them. When using the text mode to pass queries to the server and
query results to the client (which is the normal mode), PostgreSQL converts all character data passed
between the client and the server and vice versa to the character encoding of the respective end; see
Section 22.2. This includes string representations of XML values, such as in the above examples.
This would ordinarily mean that encoding declarations contained in XML data can become invalid as
the character data is converted to other encodings while travelling between client and server, because
the embedded encoding declaration is not changed. To cope with this behavior, encoding declarations
contained in character strings presented for input to the xm1 type are ignored, and content is assumed
to be in the current server encoding. Consequently, for correct processing, character strings of XML
data must be sent from the client in the current client encoding. It is the responsibility of the client
to either convert documents to the current client encoding before sending them to the server, or to

132

Chapter 8. Data Types

adjust the client encoding appropriately. On output, values of type xm1 will not have an encoding
declaration, and clients should assume all data is in the current client encoding.

When using binary mode to pass query parameters to the server and query results back to the client, no
character set conversion is performed, so the situation is different. In this case, an encoding declaration
in the XML data will be observed, and if it is absent, the data will be assumed to be in UTF-8 (as
required by the XML standard; note that PostgreSQL does not support UTF-16). On output, data will
have an encoding declaration specifying the client encoding, unless the client encoding is UTF-8, in
which case it will be omitted.

Needless to say, processing XML data with PostgreSQL will be less error-prone and more efficient
if the XML data encoding, client encoding, and server encoding are the same. Since XML data is
internally processed in UTF-8, computations will be most efficient if the server encoding is also
UTF-8.

Caution

Some XML-related functions may not work at all on non-ASCII data when the
server encoding is not UTF-8. This is known to be an issue for xpath () in
particular.

8.13.3. Accessing XML Values

The xm1 data type is unusual in that it does not provide any comparison operators. This is because
there is no well-defined and universally useful comparison algorithm for XML data. One consequence
of this is that you cannot retrieve rows by comparing an xml column against a search value. XML
values should therefore typically be accompanied by a separate key field such as an ID. An alternative
solution for comparing XML values is to convert them to character strings first, but note that character
string comparison has little to do with a useful XML comparison method.

Since there are no comparison operators for the xm1 data type, it is not possible to create an index
directly on a column of this type. If speedy searches in XML data are desired, possible workarounds
include casting the expression to a character string type and indexing that, or indexing an XPath
expression. Of course, the actual query would have to be adjusted to search by the indexed expression.

The text-search functionality in PostgreSQL can also be used to speed up full-document searches
of XML data. The necessary preprocessing support is, however, not yet available in the PostgreSQL
distribution.

8.14. Arrays

PostgreSQL allows columns of a table to be defined as variable-length multidimensional arrays. Ar-
rays of any built-in or user-defined base type, enum type, or composite type can be created. Arrays of
domains are not yet supported.

8.14.1. Declaration of Array Types

To illustrate the use of array types, we create this table:

CREATE TABLE sal_emp (

133

Chapter 8. Data Types

name text,

pay_by_quarter integer|[],

schedule text[][]
)i

As shown, an array data type is named by appending square brackets ([1) to the data type name of
the array elements. The above command will create a table named sal_emp with a column of type
text (name), a one-dimensional array of type integer (pay_by_quarter), which represents the
employee’s salary by quarter, and a two-dimensional array of text (schedule), which represents
the employee’s weekly schedule.

The syntax for CREATE TABLE allows the exact size of arrays to be specified, for example:

CREATE TABLE tictactoe (
squares integer[3][3]
)

However, the current implementation ignores any supplied array size limits, i.e., the behavior is the
same as for arrays of unspecified length.

The current implementation does not enforce the declared number of dimensions either. Arrays of
a particular element type are all considered to be of the same type, regardless of size or number
of dimensions. So, declaring the array size or number of dimensions in CREATE TABLE is simply
documentation; it does not affect run-time behavior.

An alternative syntax, which conforms to the SQL standard by using the keyword ARRAY, can be used
for one-dimensional arrays. pay_by_quarter could have been defined as:

pay_by_qgquarter integer ARRAY[4],
Or, if no array size is to be specified:
pay_by_quarter integer ARRAY,

As before, however, PostgreSQL does not enforce the size restriction in any case.

8.14.2. Array Value Input

To write an array value as a literal constant, enclose the element values within curly braces and
separate them by commas. (If you know C, this is not unlike the C syntax for initializing structures.)
You can put double quotes around any element value, and must do so if it contains commas or curly
braces. (More details appear below.) Thus, the general format of an array constant is the following:

"{ vall delim val2 delim ... }'

where delim is the delimiter character for the type, as recorded in its pg_type entry. Among the
standard data types provided in the PostgreSQL distribution, all use a comma (,), except for type box
which uses a semicolon (;). Each val is either a constant of the array element type, or a subarray. An
example of an array constant is:

"{{1,2,3},{4,5,6},{7,8,9}}’

This constant is a two-dimensional, 3-by-3 array consisting of three subarrays of integers.

To set an element of an array constant to NULL, write NULL for the element value. (Any upper- or
lower-case variant of NULL will do.) If you want an actual string value “NULL”, you must put double
quotes around it.

134

Chapter 8. Data Types

(These kinds of array constants are actually only a special case of the generic type constants discussed
in Section 4.1.2.7. The constant is initially treated as a string and passed to the array input conversion
routine. An explicit type specification might be necessary.)

Now we can show some INSERT statements:

INSERT INTO sal_emp
VALUES (’Bill’,
{10000, 10000, 10000, 10000}",
"{{"meeting", "lunch"}, {"training", "presentation"}}’);

INSERT INTO sal_emp
VALUES ('Carol’,
{20000, 25000, 25000, 25000}",
"{{"breakfast", "consulting"}, {"meeting", "lunch"}}’);

The result of the previous two inserts looks like this:

SELECT % FROM sal_emp;

name | pay_by_quarter | schedule

,,,,,,, T
Bill | {10000,10000,10000,10000} | {{meeting,lunch}, {training,presentation}}
Carol | {20000,25000,25000,25000} | {{breakfast,consulting}, {meeting, lunch}}
(2 rows)

Multidimensional arrays must have matching extents for each dimension. A mismatch causes an error,
for example:

INSERT INTO sal_emp
VALUES (’'Bill’,
{10000, 10000, 10000, 10000}",
"{{"meeting", "lunch"}, {"meeting"}}’);
ERROR: multidimensional arrays must have array expressions with matching dimensions

The ARRAY constructor syntax can also be used:

INSERT INTO sal_emp
VALUES (’Bill’,
ARRAY[10000, 10000, 10000, 100007,
ARRAY [['meeting’, ’lunch’], [’'training’, ’'presentation’]]);

INSERT INTO sal_emp
VALUES (’Carol’,
ARRAY[20000, 25000, 25000, 25000],
ARRAY [["breakfast’, ’consulting’], ['meeting’, ’"lunch’]11]);

Notice that the array elements are ordinary SQL constants or expressions; for instance, string literals
are single quoted, instead of double quoted as they would be in an array literal. The ARRAY constructor
syntax is discussed in more detail in Section 4.2.11.

135

Chapter 8. Data Types

8.14.3. Accessing Arrays

Now, we can run some queries on the table. First, we show how to access a single element of an array.
This query retrieves the names of the employees whose pay changed in the second quarter:

SELECT name FROM sal_emp WHERE pay_by_quarter[l] <> pay_by_qguarter[2];

The array subscript numbers are written within square brackets. By default PostgreSQL uses a one-
based numbering convention for arrays, that is, an array of n elements starts with array[1] and ends
with array [n].

This query retrieves the third quarter pay of all employees:

SELECT pay_by_quarter[3] FROM sal_emp;

pay_by_quarter

10000
25000
(2 rows)

We can also access arbitrary rectangular slices of an array, or subarrays. An array slice is denoted
by writing Iower-bound: upper—-bound for one or more array dimensions. For example, this query
retrieves the first item on Bill’s schedule for the first two days of the week:

SELECT schedule[1:2][1:1] FROM sal_emp WHERE name = ’'Bill’;

schedule

{{meeting}, {training}}
(1 row)

If any dimension is written as a slice, i.e., contains a colon, then all dimensions are treated as slices.
Any dimension that has only a single number (no colon) is treated as being from 1 to the number
specified. For example, [2] is treated as [1:2], as in this example:

SELECT schedule[1:2][2] FROM sal_emp WHERE name = ’'Bill’;

schedule

{{meeting, lunch}, {training, presentation}}
(1 row)

To avoid confusion with the non-slice case, it’s best to use slice syntax for all dimensions, e.g.,
[1:2][1:1],n0t [2][1:1].

An array subscript expression will return null if either the array itself or any of the subscript expres-
sions are null. Also, null is returned if a subscript is outside the array bounds (this case does not raise
an error). For example, if schedule currently has the dimensions [1:3][1:2] then referencing
schedule[3] [3] yields NULL. Similarly, an array reference with the wrong number of subscripts
yields a null rather than an error.

136

Chapter 8. Data Types

An array slice expression likewise yields null if the array itself or any of the subscript expressions are
null. However, in other cases such as selecting an array slice that is completely outside the current
array bounds, a slice expression yields an empty (zero-dimensional) array instead of null. (This does
not match non-slice behavior and is done for historical reasons.) If the requested slice partially over-
laps the array bounds, then it is silently reduced to just the overlapping region instead of returning
null.

The current dimensions of any array value can be retrieved with the array_dims function:

SELECT array_dims (schedule) FROM sal_emp WHERE name = ’'Carol’;

array_dims

[1:2]1[1:2]
(1 row)

array_dims produces a text result, which is convenient for people to read but perhaps inconvenient
for programs. Dimensions can also be retrieved with array_upper and array_1lower, which return
the upper and lower bound of a specified array dimension, respectively:

SELECT array_upper (schedule, 1) FROM sal_emp WHERE name = ’'Carol’;

array_upper

(1 row)
array_length will return the length of a specified array dimension:
SELECT array_length(schedule, 1) FROM sal_emp WHERE name = ’Carol’;

array_length

8.14.4. Modifying Arrays
An array value can be replaced completely:

UPDATE sal_emp SET pay_by_quarter = ’{25000,25000,27000,27000}"
WHERE name = ’‘Carol’;

or using the ARRAY expression syntax:

UPDATE sal_emp SET pay_by_quarter = ARRAY[25000,25000,27000,27000]
WHERE name = ’'Carol’;

An array can also be updated at a single element:

UPDATE sal_emp SET pay_by_quarter[4] = 15000
WHERE name = ’'Bill’;

or updated in a slice:

137

Chapter 8. Data Types

UPDATE sal_emp SET pay_by_quarter[1l:2] = 7 {27000,27000}"
WHERE name = ’'Carol’;

A stored array value can be enlarged by assigning to elements not already present. Any positions be-
tween those previously present and the newly assigned elements will be filled with nulls. For example,
if array myarray currently has 4 elements, it will have six elements after an update that assigns to
myarray[6]; myarray[5] will contain null. Currently, enlargement in this fashion is only allowed
for one-dimensional arrays, not multidimensional arrays.

Subscripted assignment allows creation of arrays that do not use one-based subscripts. For example
one might assign to myarray[-2:7] to create an array with subscript values from -2 to 7.

New array values can also be constructed using the concatenation operator, | |:

SELECT ARRAY[1,2] || ARRAY[3,4];
?column?

{1,2,3,4}
(1 row)

SELECT ARRAY[5,6] || ARRAY[[1,2]1,103,411;
?column?

{{5,6},{1,2},1{3,4}}
(1 row)

The concatenation operator allows a single element to be pushed onto the beginning or end of a
one-dimensional array. It also accepts two N-dimensional arrays, or an N-dimensional and an N+1-
dimensional array.

When a single element is pushed onto either the beginning or end of a one-dimensional array, the
result is an array with the same lower bound subscript as the array operand. For example:

SELECT array_dims(1l || "[0:1]={2,3}" ::int([]);
array_dims

[0:2]
(1 row)

SELECT array_dims (ARRAY[1,2] || 3);
array_dims

[1:3]
(1 row)

When two arrays with an equal number of dimensions are concatenated, the result retains the lower
bound subscript of the left-hand operand’s outer dimension. The result is an array comprising every
element of the left-hand operand followed by every element of the right-hand operand. For example:

SELECT array_dims (ARRAY[1,2] || ARRAY[3,4,5]);
array_dims

138

Chapter 8. Data Types
(1 row)

SELECT array_dims (ARRAY[[1,2],[3,4]1]1 || ARRAY[[5,6],17,8]1,109,011);
array_dims

[1:5][1:2]
(1 row)

When an N-dimensional array is pushed onto the beginning or end of an N+I-dimensional array, the
result is analogous to the element-array case above. Each N-dimensional sub-array is essentially an
element of the nN+1-dimensional array’s outer dimension. For example:

SELECT array_dims (ARRAY[1,2] || ARRAY[[3,4]1,[5,6]11);
array_dims

[1:3][1:2]
(1 row)

An array can also be constructed by using the functions array_prepend, array_append,
or array_cat. The first two only support one-dimensional arrays, but array_cat supports
multidimensional arrays. Note that the concatenation operator discussed above is preferred over
direct use of these functions. In fact, these functions primarily exist for use in implementing the
concatenation operator. However, they might be directly useful in the creation of user-defined
aggregates. Some examples:

SELECT array_prepend(l, ARRAY[2,3]);
array_prepend

{1,2,3}
(1 row)

SELECT array_append (ARRAY[1,2], 3);
array_append

{1,2,3}
(1 row)

SELECT array_cat (ARRAY[1,2], ARRAY[3,4]);
array_cat

{1,2,3,4}
(1 row)

SELECT array_cat (ARRAY[[1,2],[3,4]1]1, ARRAY[5,6]);
array_cat

{{1,2},{3,4},{5,6}}
(1 row)

SELECT array_cat (ARRAY[5,6], ARRAY[[1,2],1[3,411);
array_cat

{{5,6},{1,2},{3,4}}

139

Chapter 8. Data Types

8.14.5. Searching in Arrays

To search for a value in an array, each value must be checked. This can be done manually, if you know
the size of the array. For example:

SELECT x FROM sal_emp WHERE pay_by_quarter[1l] = 10000 OR
pay_by_quarter[2] = 10000 OR
pay_by_qgquarter[3] = 10000 OR
pay_by_qgquarter[4] = 10000;

However, this quickly becomes tedious for large arrays, and is not helpful if the size of the array is
unknown. An alternative method is described in Section 9.21. The above query could be replaced by:

SELECT FROM sal_emp WHERE 10000 = ANY (pay_by_quarter);
In addition, you can find rows where the array has all values equal to 10000 with:

SELECT x FROM sal_emp WHERE 10000 = ALL (pay_by_quarter);

Alternatively, the generate_subscripts function can be used. For example:

SELECT % FROM
(SELECT pay_by_dquarter,
generate_subscripts (pay_by_quarter, 1) AS s
FROM sal_emp) AS foo
WHERE pay_by_quarter[s] = 10000;

This function is described in Table 9-46.

Tip: Arrays are not sets; searching for specific array elements can be a sign of database misde-
sign. Consider using a separate table with a row for each item that would be an array element.
This will be easier to search, and is likely to scale better for a large number of elements.

8.14.6. Array Input and Output Syntax

The external text representation of an array value consists of items that are interpreted according to the
I/O conversion rules for the array’s element type, plus decoration that indicates the array structure.
The decoration consists of curly braces ({ and }) around the array value plus delimiter characters
between adjacent items. The delimiter character is usually a comma (,) but can be something else:
it is determined by the typdelim setting for the array’s element type. Among the standard data
types provided in the PostgreSQL distribution, all use a comma, except for type box, which uses a
semicolon (;). In a multidimensional array, each dimension (row, plane, cube, etc.) gets its own level
of curly braces, and delimiters must be written between adjacent curly-braced entities of the same
level.

The array output routine will put double quotes around element values if they are empty strings,
contain curly braces, delimiter characters, double quotes, backslashes, or white space, or match the
word NULL. Double quotes and backslashes embedded in element values will be backslash-escaped.

140

Chapter 8. Data Types

For numeric data types it is safe to assume that double quotes will never appear, but for textual data
types one should be prepared to cope with either the presence or absence of quotes.

By default, the lower bound index value of an array’s dimensions is set to one. To represent arrays
with other lower bounds, the array subscript ranges can be specified explicitly before writing the array
contents. This decoration consists of square brackets ([]) around each array dimension’s lower and
upper bounds, with a colon (:) delimiter character in between. The array dimension decoration is
followed by an equal sign (=). For example:

SELECT f£1[1][-2][3] AS el, f1[1][-1][5] AS e2
FROM (SELECT ' [1:1]1[-2:-1]1[3:5]1={{{1,2,3},{4,5,6}}}"::int[] AS fl) AS ss;

The array output routine will include explicit dimensions in its result only when there are one or more
lower bounds different from one.

If the value written for an element is NULL (in any case variant), the element is taken to be NULL.
The presence of any quotes or backslashes disables this and allows the literal string value “NULL” to
be entered. Also, for backwards compatibility with pre-8.2 versions of PostgreSQL, the array_nulls
configuration parameter can be turned of £ to suppress recognition of NULL as a NULL.

As shown previously, when writing an array value you can use double quotes around any individual
array element. You must do so if the element value would otherwise confuse the array-value parser.
For example, elements containing curly braces, commas (or the data type’s delimiter character), dou-
ble quotes, backslashes, or leading or trailing whitespace must be double-quoted. Empty strings and
strings matching the word NULL must be quoted, too. To put a double quote or backslash in a quoted
array element value, use escape string syntax and precede it with a backslash. Alternatively, you can
avoid quotes and use backslash-escaping to protect all data characters that would otherwise be taken
as array syntax.

You can add whitespace before a left brace or after a right brace. You can also add whitespace before
or after any individual item string. In all of these cases the whitespace will be ignored. However,
whitespace within double-quoted elements, or surrounded on both sides by non-whitespace characters
of an element, is not ignored.

Note: Remember that what you write in an SQL command will first be interpreted as a string
literal, and then as an array. This doubles the number of backslashes you need. For example, to
insert a text array value containing a backslash and a double quote, you'd need to write:

INSERT ... VALUES (E’ {"\\\\","\\""}");

The escape string processor removes one level of backslashes, so that what arrives at the array-
value parser looks like {"\\", "\""}. In turn, the strings fed to the text data type’s input routine
become \ and " respectively. (If we were working with a data type whose input routine also treated
backslashes specially, bytea for example, we might need as many as eight backslashes in the
command to get one backslash into the stored array element.) Dollar quoting (see Section 4.1.2.4)
can be used to avoid the need to double backslashes.

Tip: The ArRrAY constructor syntax (see Section 4.2.11) is often easier to work with than the array-
literal syntax when writing array values in SQL commands. In array, individual element values
are written the same way they would be written when not members of an array.

141

Chapter 8. Data Types

8.15. Composite Types

A composite type represents the structure of a row or record; it is essentially just a list of field names
and their data types. PostgreSQL allows composite types to be used in many of the same ways that
simple types can be used. For example, a column of a table can be declared to be of a composite type.

8.15.1. Declaration of Composite Types

Here are two simple examples of defining composite types:

CREATE TYPE complex AS (
r double precision,
i double precision

)i

CREATE TYPE inventory_item AS (

name text,
supplier_id integer,
price numeric

)i

The syntax is comparable to CREATE TABLE, except that only field names and types can be specified;
no constraints (such as NOT NULL) can presently be included. Note that the AS keyword is essential;
without it, the system will think a different kind of CREATE TYPE command is meant, and you will
get odd syntax errors.

Having defined the types, we can use them to create tables:
CREATE TABLE on_hand (
item inventory_item,

count integer
)i

INSERT INTO on_hand VALUES (ROW(’fuzzy dice’, 42, 1.99), 1000);
or functions:

CREATE FUNCTION price_extension (inventory_item, integer) RETURNS numeric
AS ’SELECT S$l.price x $2’ LANGUAGE SQL;

SELECT price_extension(item, 10) FROM on_hand;

Whenever you create a table, a composite type is also automatically created, with the same name as
the table, to represent the table’s row type. For example, had we said:

CREATE TABLE inventory_item (

name text,
supplier_id integer REFERENCES suppliers,
price numeric CHECK (price > 0)

)i

142

Chapter 8. Data Types

then the same inventory_item composite type shown above would come into being as a byproduct,
and could be used just as above. Note however an important restriction of the current implementation:
since no constraints are associated with a composite type, the constraints shown in the table definition
do not apply to values of the composite type outside the table. (A partial workaround is to use domain
types as members of composite types.)

8.15.2. Composite Value Input

To write a composite value as a literal constant, enclose the field values within parentheses and sepa-
rate them by commas. You can put double quotes around any field value, and must do so if it contains
commas or parentheses. (More details appear below.) Thus, the general format of a composite constant
is the following:

"(vall , valz , ...)’
An example is:
" ("fuzzy dice",42,1.99)"

which would be a valid value of the inventory_item type defined above. To make a field be NULL,
write no characters at all in its position in the list. For example, this constant specifies a NULL third
field:

" ("fuzzy dice",42,)’
If you want an empty string rather than NULL, write double quotes:
4 (nn , 4 2 ,) ’

Here the first field is a non-NULL empty string, the third is NULL.

(These constants are actually only a special case of the generic type constants discussed in Section
4.1.2.7. The constant is initially treated as a string and passed to the composite-type input conversion
routine. An explicit type specification might be necessary.)

The ROW expression syntax can also be used to construct composite values. In most cases this is
considerably simpler to use than the string-literal syntax since you don’t have to worry about multiple
layers of quoting. We already used this method above:

ROW (’ fuzzy dice’, 42, 1.99)
ROW (”, 42, NULL)

The ROW keyword is actually optional as long as you have more than one field in the expression, so
these can simplify to:

(" fuzzy dice’, 42, 1.99)
(”, 42, NULL)

The rROW expression syntax is discussed in more detail in Section 4.2.12.

8.15.3. Accessing Composite Types

To access a field of a composite column, one writes a dot and the field name, much like selecting a
field from a table name. In fact, it’s so much like selecting from a table name that you often have to use

143

Chapter 8. Data Types

parentheses to keep from confusing the parser. For example, you might try to select some subfields
from our on_hand example table with something like:

SELECT item.name FROM on_hand WHERE item.price > 9.99;

This will not work since the name item is taken to be a table name, not a column name of on_hand,
per SQL syntax rules. You must write it like this:

SELECT (item) .name FROM on_hand WHERE (item).price > 9.99;
or if you need to use the table name as well (for instance in a multitable query), like this:
SELECT (on_hand.item) .name FROM on_hand WHERE (on_hand.item) .price > 9.99;

Now the parenthesized object is correctly interpreted as a reference to the item column, and then the
subfield can be selected from it.

Similar syntactic issues apply whenever you select a field from a composite value. For instance, to
select just one field from the result of a function that returns a composite value, you’d need to write
something like:

SELECT (my_func(...)).field FROM

Without the extra parentheses, this will generate a syntax error.

8.15.4. Modifying Composite Types

Here are some examples of the proper syntax for inserting and updating composite columns. First,
inserting or updating a whole column:

INSERT INTO mytab (complex_col) VALUES((1.1,2.2));
UPDATE mytab SET complex_col = ROW(l1.1,2.2) WHERE ...;

The first example omits ROW, the second uses it; we could have done it either way.

We can update an individual subfield of a composite column:

UPDATE mytab SET complex_col.r = (complex_col).r + 1 WHERE ...;

Notice here that we don’t need to (and indeed cannot) put parentheses around the column name
appearing just after SET, but we do need parentheses when referencing the same column in the ex-
pression to the right of the equal sign.

And we can specify subfields as targets for INSERT, too:
INSERT INTO mytab (complex_col.r, complex_col.i) VALUES(1l.1, 2.2);

Had we not supplied values for all the subfields of the column, the remaining subfields would have
been filled with null values.

8.15.5. Composite Type Input and Output Syntax

The external text representation of a composite value consists of items that are interpreted according
to the I/O conversion rules for the individual field types, plus decoration that indicates the composite
structure. The decoration consists of parentheses ((and)) around the whole value, plus commas (,)

144

Chapter 8. Data Types

between adjacent items. Whitespace outside the parentheses is ignored, but within the parentheses it
is considered part of the field value, and might or might not be significant depending on the input
conversion rules for the field data type. For example, in:

/(42)!

the whitespace will be ignored if the field type is integer, but not if it is text.

As shown previously, when writing a composite value you can write double quotes around any in-
dividual field value. You must do so if the field value would otherwise confuse the composite-value
parser. In particular, fields containing parentheses, commas, double quotes, or backslashes must be
double-quoted. To put a double quote or backslash in a quoted composite field value, precede it with
a backslash. (Also, a pair of double quotes within a double-quoted field value is taken to represent a
double quote character, analogously to the rules for single quotes in SQL literal strings.) Alternatively,
you can avoid quoting and use backslash-escaping to protect all data characters that would otherwise
be taken as composite syntax.

A completely empty field value (no characters at all between the commas or parentheses) represents
a NULL. To write a value that is an empty string rather than NULL, write "".

The composite output routine will put double quotes around field values if they are empty strings or
contain parentheses, commas, double quotes, backslashes, or white space. (Doing so for white space
is not essential, but aids legibility.) Double quotes and backslashes embedded in field values will be
doubled.

Note: Remember that what you write in an SQL command will first be interpreted as a string
literal, and then as a composite. This doubles the number of backslashes you need (assuming
escape string syntax is used). For example, to insert a text field containing a double quote and
a backslash in a composite value, you'd need to write:

INSERT ... VALUES (E’ ("\\"\\\\")");

The string-literal processor removes one level of backslashes, so that what arrives at the
composite-value parser looks like ("\"\\"). In turn, the string fed to the text data type’s input
routine becomes "\. (If we were working with a data type whose input routine also treated
backslashes specially, bytea for example, we might need as many as eight backslashes in the
command to get one backslash into the stored composite field.) Dollar quoting (see Section
4.1.2.4) can be used to avoid the need to double backslashes.

Tip: The row constructor syntax is usually easier to work with than the composite-literal syntax
when writing composite values in SQL commands. In row, individual field values are written the
same way they would be written when not members of a composite.

8.16. Object Identifier Types

Object identifiers (OIDs) are used internally by PostgreSQL as primary keys for various system tables.
OIDs are not added to user-created tables, unless WITH 01IDS is specified when the table is created,
or the default_with_oids configuration variable is enabled. Type oid represents an object identifier.
There are also several alias types for oid: regproc, regprocedure, regoper, regoperator,
regclass, regtype, regconfig, and regdictionary. Table 8-23 shows an overview.

145

Chapter 8. Data Types

The oid type is currently implemented as an unsigned four-byte integer. Therefore, it is not large
enough to provide database-wide uniqueness in large databases, or even in large individual tables. So,
using a user-created table’s OID column as a primary key is discouraged. OIDs are best used only for
references to system tables.

The oid type itself has few operations beyond comparison. It can be cast to integer, however, and
then manipulated using the standard integer operators. (Beware of possible signed-versus-unsigned
confusion if you do this.)

The OID alias types have no operations of their own except for specialized input and output routines.
These routines are able to accept and display symbolic names for system objects, rather than the raw
numeric value that type oid would use. The alias types allow simplified lookup of OID values for
objects. For example, to examine the pg_attribute rows related to a table mytable, one could
write:

SELECT = FROM pg_attribute WHERE attrelid = 'mytable’::regclass;
rather than:

SELECT » FROM pg_attribute
WHERE attrelid = (SELECT oid FROM pg_class WHERE relname = ’'mytable’);

While that doesn’t look all that bad by itself, it’s still oversimplified. A far more complicated sub-
select would be needed to select the right OID if there are multiple tables named mytable in differ-
ent schemas. The regclass input converter handles the table lookup according to the schema path
setting, and so it does the “right thing” automatically. Similarly, casting a table’s OID to regclass
is handy for symbolic display of a numeric OID.

Table 8-23. Object Identifier Types

Name References Description Value Example
oid any numeric object 564182
identifier
regproc pPg_proc function name sum
regprocedure pPg_proc function with argument | sum (int4)
types
regoper pg_operator operator name +
regoperator pPg_operator operator with argument | « (integer, integer)
types or — (NONE, integer)
regclass pg_class relation name Pg_type
regtype pg_type data type name integer
regconfig pg_ts_config text search english
configuration
regdictionary pg_ts_dict text search dictionary |simple

All of the OID alias types accept schema-qualified names, and will display schema-qualified names
on output if the object would not be found in the current search path without being qualified. The
regproc and regoper alias types will only accept input names that are unique (not overloaded), so
they are of limited use; for most uses regprocedure or regoperator are more appropriate. For
regoperator, unary operators are identified by writing NONE for the unused operand.

An additional property of the OID alias types is the creation of dependencies. If a constant of one
of these types appears in a stored expression (such as a column default expression or view), it

146

Chapter 8. Data Types

creates a dependency on the referenced object. For example, if a column has a default expression
nextval ('my_seq’ : :regclass), PostgreSQL understands that the default expression depends on
the sequence my_segq; the system will not let the sequence be dropped without first removing the
default expression.

Another identifier type used by the system is xid, or transaction (abbreviated xact) identifier. This is
the data type of the system columns xmin and xmax. Transaction identifiers are 32-bit quantities.

A third identifier type used by the system is cid, or command identifier. This is the data type of the
system columns cmin and cmax. Command identifiers are also 32-bit quantities.

A final identifier type used by the system is tid, or tuple identifier (row identifier). This is the data
type of the system column ctid. A tuple ID is a pair (block number, tuple index within block) that
identifies the physical location of the row within its table.

(The system columns are further explained in Section 5.4.)

8.17. Pseudo-Types

The PostgreSQL type system contains a number of special-purpose entries that are collectively called
pseudo-types. A pseudo-type cannot be used as a column data type, but it can be used to declare a
function’s argument or result type. Each of the available pseudo-types is useful in situations where a
function’s behavior does not correspond to simply taking or returning a value of a specific SQL data
type. Table 8-24 lists the existing pseudo-types.

Table 8-24. Pseudo-Types

Name Description

any Indicates that a function accepts any input data
type.

anyarray Indicates that a function accepts any array data
type (see Section 35.2.5).

anyelement Indicates that a function accepts any data type
(see Section 35.2.5).

anyenum Indicates that a function accepts any enum data
type (see Section 35.2.5 and Section 8.7).

anynonarray Indicates that a function accepts any non-array
data type (see Section 35.2.5).

cstring Indicates that a function accepts or returns a
null-terminated C string.

internal Indicates that a function accepts or returns a
server-internal data type.

language_handler A procedural language call handler is declared to
return language_handler.

record Identifies a function returning an unspecified
Trow type.

trigger A trigger function is declared to return
trigger.

void Indicates that a function returns no value.

147

Chapter 8. Data Types

Name Description

opaque An obsolete type name that formerly served all
the above purposes.

Functions coded in C (whether built-in or dynamically loaded) can be declared to accept or return any
of these pseudo data types. It is up to the function author to ensure that the function will behave safely
when a pseudo-type is used as an argument type.

Functions coded in procedural languages can use pseudo-types only as allowed by their implementa-
tion languages. At present the procedural languages all forbid use of a pseudo-type as argument type,
and allow only void and record as a result type (plus trigger when the function is used as a trig-
ger). Some also support polymorphic functions using the types anyarray, anyelement, anyenum,

and anynonarray.

The internal pseudo-type is used to declare functions that are meant only to be called internally
by the database system, and not by direct invocation in an SQL query. If a function has at least one
internal-type argument then it cannot be called from SQL. To preserve the type safety of this
restriction it is important to follow this coding rule: do not create any function that is declared to
return internal unless it has at least one internal argument.

148

Chapter 9. Functions and Operators

PostgreSQL provides a large number of functions and operators for the built-in data types. Users can
also define their own functions and operators, as described in Part V. The psql commands \df and
\do can be used to list all available functions and operators, respectively.

If you are concerned about portability then note that most of the functions and operators described
in this chapter, with the exception of the most trivial arithmetic and comparison operators and some
explicitly marked functions, are not specified by the SQL standard. Some of this extended function-
ality is present in other SQL database management systems, and in many cases this functionality is
compatible and consistent between the various implementations. This chapter is also not exhaustive;
additional functions appear in relevant sections of the manual.

9.1. Logical Operators

The usual logical operators are available:

AND
OR
NOT

SQL uses a three-valued logic system with true, false, and nul1, which represents “unknown”. Ob-
serve the following truth tables:

a b a AND b aORb
TRUE TRUE TRUE TRUE
TRUE FALSE FALSE TRUE
TRUE NULL NULL TRUE
FALSE FALSE FALSE FALSE
FALSE NULL FALSE NULL
NULL NULL NULL NULL
a NOT a

TRUE FALSE

FALSE TRUE

NULL NULL

The operators AND and OR are commutative, that is, you can switch the left and right operand without
affecting the result. But see Section 4.2.13 for more information about the order of evaluation of
subexpressions.

9.2. Comparison Operators

The usual comparison operators are available, shown in Table 9-1.

149

Chapter 9. Functions and Operators

Table 9-1. Comparison Operators

Operator Description

< less than

> greater than

<= less than or equal to
>= greater than or equal to
= equal

<>or!l= not equal

Note: The != operator is converted to <> in the parser stage. It is not possible to implement =
and <> operators that do different things.

Comparison operators are available for all relevant data types. All comparison operators are binary
operators that return values of type boolean; expressions like 1 < 2 < 3 are not valid (because
there is no < operator to compare a Boolean value with 3).

In addition to the comparison operators, the special BETWEEN construct is available:
a BETWEEN x AND y

is equivalent to

a >= x AND a <=y

Notice that BETWEEN treats the endpoint values as included in the range. NOT BETWEEN does the
opposite comparison:

a NOT BETWEEN x AND y
is equivalent to
a< x OR a >y

BETWEEN SYMMETRIC is the same as BETWEEN except there is no requirement that the argument to
the left of AND be less than or equal to the argument on the right. If it is not, those two arguments are
automatically swapped, so that a nonempty range is always implied.

To check whether a value is or is not null, use the constructs:

expression IS NULL
expression 1S NOT NULL

or the equivalent, but nonstandard, constructs:

expression ISNULL
expression NOTNULL

Do not write expression = NULL because NULL is not “equal to” NULL. (The null value represents an
unknown value, and it is not known whether two unknown values are equal.) This behavior conforms
to the SQL standard.

150

Chapter 9. Functions and Operators

Tip: Some applications might expect that expression = NULL returns true if expression evalu-
ates to the null value. It is highly recommended that these applications be modified to comply
with the SQL standard. However, if that cannot be done the transform_null_equals configuration
variable is available. If it is enabled, PostgreSQL will convert x = NULL clauses to x IS NULL.

Note: If the expression is row-valued, then 1s NULL is true when the row expression itself is null
or when all the row’s fields are null, while 1s noT NULL is true when the row expression itself is
non-null and all the row’s fields are non-null. Because of this behavior, 1s nULL and Is NOT NULL
do not always return inverse results for row-valued expressions, i.e., a row-valued expression that
contains both NULL and non-null values will return false for both tests. This definition conforms
to the SQL standard, and is a change from the inconsistent behavior exhibited by PostgreSQL
versions prior to 8.2.

Ordinary comparison operators yield null (signifying “unknown”), not true or false, when either input
is null. For example, 7 = NULL yields null. When this behavior is not suitable, use the IS [NOT]
DISTINCT FROM constructs:

expression IS DISTINCT FROM expression
expression IS NOT DISTINCT FROM expression

For non-null inputs, IS DISTINCT FROM is the same as the <> operator. However, if both inputs are
null it returns false, and if only one input is null it returns true. Similarly, IS NOT DISTINCT FROM
is identical to = for non-null inputs, but it returns true when both inputs are null, and false when only
one input is null. Thus, these constructs effectively act as though null were a normal data value, rather
than “unknown”.

Boolean values can also be tested using the constructs

expression IS TRUE
expression 1S NOT TRUE
expression 1S FALSE
expression IS NOT FALSE
expression IS UNKNOWN
expression IS NOT UNKNOWN

These will always return true or false, never a null value, even when the operand is null. A null
input is treated as the logical value “unknown”. Notice that IS UNKNOWN and IS NOT UNKNOWN are
effectively the same as Is NULL and IS NOT NULL, respectively, except that the input expression
must be of Boolean type.

9.3. Mathematical Functions and Operators

Mathematical operators are provided for many PostgreSQL types. For types without standard mathe-
matical conventions (e.g., date/time types) we describe the actual behavior in subsequent sections.

Table 9-2 shows the available mathematical operators.

Table 9-2. Mathematical Operators

Operator Description Example Result

151

Chapter 9. Functions and Operators

Operator Description Example Result
+ addition 2 + 3 5
- subtraction 2 -3 -1
* multiplication 2 % 3 6
/ division (integer 4/ 2 2
division truncates the
result)
S modulo (remainder) 5% 4 1
0 exponentiation 2.0 ~ 3.0 8
|/ square root |/ 25.0 5
|1/ cube root |/ 27.0 3
! factorial 5 ! 120
! factorial (prefix 15 120
operator)
@ absolute value @ -5.0 5
& bitwise AND 91 & 15 11
| bitwise OR 32 | 3 35
bitwise XOR 17 # 5 20
~ bitwise NOT ~1 -2
<< bitwise shift left 1 << 4 16
>> bitwise shift right 8 >> 2 2

The bitwise operators work only on integral data types, whereas the others are available for all numeric

data types. The bitwise operators are also available for the bit string types bit and bit varying, as

shown in Table 9-10.

Table 9-3 shows the available mathematical functions. In the table, dp indicates double precision.

Many of these functions are provided in multiple forms with different argument types. Except where

noted, any given form of a function returns the same data type as its argument. The functions work-
ing with double precision data are mostly implemented on top of the host system’s C library;
accuracy and behavior in boundary cases can therefore vary depending on the host system.

Table 9-3. Mathematical Functions

Function Return Type Description Example Result
abs (x) (same as input) absolute value abs (-17.4) 17.4
cbrt (dp) dp cube root cbrt (27.0) 3
ceil (dp or (same as input) smallest integer ceil (-42.8) -42
numeric) not less than

argument
ceiling(dp or (same as input) smallest integer ceiling (-95.3) |-95

numeric)

not less than
argument (alias
for ceil)

degrees (dp)

dp

radians to degrees

degrees (0.5)

28.64788975654

| 2

152

Chapter 9. Functions and Operators

Function Return Type Description Example Result
div (y numeric, x |numeric integer quotient of | div (9, 4) 2
numeric) y/x
exp (dp or (same as input) exponential exp (1.0) 2.71828182845905
numeric)
floor (dp or (same as input) largest integer not | floor (-42.8) -43
numeric) greater than
argument
1n(dp or (same as input) natural logarithm | 1n(2.0) 0.693147180559945
numeric)
log(dp or (same as input) base 10 logarithm | 1og (100.0) 2
numeric)
log (b numeric, x |numeric logarithm to base | log (2.0, 6.0000000000
numeric) b 64.0)
mod (y, x) (same as argument | remainder of y/x | mod (9, 4) 1
types)
pi() dp “m” constant pi() 3.14159265358979
power (a dp, b dp a raised to the power (9.0, 729
dp) power of b 3.0)
power (a numeric, |numeric a raised to the power (9.0, 729
b numeric) power of b 3.0)
radians (dp) dp degrees to radians | radians (45.0) [0.785398163397448
random () dp random value in random ()
the range 0.0 <=
x< 1.0
round (dp or (same as input) round to nearest round (42.4) 42
numeric) integer
round (v numeric, |numeric round to s round (42.4382, | 42.44
s int) decimal places 2)
setseed (dp) void set seed for setseed (0.548238)
subsequent
random () calls
(value between
-1.0 and 1.0,
inclusive)
sign(dp or (same as input) sign of the sign(-8.4) -1
numeric) argument (-1, 0,
+1)
sqgrt (dp or (same as input) square root sqrt (2.0) 1.4142135623731

numeric)

trunc (dp or (same as input) truncate toward trunc (42.8) 42
numeric) Zero
trunc (v numeric, |numeric truncate to s trunc(42.4382,(42.43

s int)

decimal places

2)

153

Chapter 9. Functions and Operators

Function Return Type Description Example Result
width_bucket (op | int return the bucket |width_bucket (5} 35,
numeric, bl to which operand | 0.024, 10.06,
numeric, b2 would be assigned | 5)
numeric, count in an equidepth
int) histogram with
count buckets, in
the range b1 to b2
width_bucket (op |int return the bucket |width_bucket (5}35,

to which operand | 0.024,
would be assigned | 5)

in an equidepth
histogram with
count buckets, in

the range b1l to b2

dp, bl dp, b2 10.060,

dp, count int)

Finally, Table 9-4 shows the available trigonometric functions. All trigonometric functions take ar-
guments and return values of type double precision. Trigonometric functions arguments are ex-
pressed in radians. Inverse functions return values are expressed in radians. See unit transformation
functions radians () and degrees () above.

Table 9-4. Trigonometric Functions

Function Description
acos (x) inverse cosine
asin (x) inverse sine
atan (x) inverse tangent

atan2 (y, x) inverse tangent of y/x

cos (x) cosine
cot (x) cotangent
sin (x) sine

tan (x) tangent

9.4. String Functions and Operators

This section describes functions and operators for examining and manipulating string values. Strings
in this context include values of the types character, character varying, and text. Unless
otherwise noted, all of the functions listed below work on all of these types, but be wary of poten-
tial effects of automatic space-padding when using the character type. Some functions also exist
natively for the bit-string types.

SQL defines some string functions that use key words, rather than commas, to separate arguments.
Details are in Table 9-5. PostgreSQL also provides versions of these functions that use the regular
function invocation syntax (see Table 9-6).

154

Chapter 9. Functions and Operators

Note: Before PostgreSQL 8.3, these functions would silently accept values of several non-string
data types as well, due to the presence of implicit coercions from those data types to text. Those
coercions have been removed because they frequently caused surprising behaviors. However,
the string concatenation operator (| |) still accepts non-string input, so long as at least one input
is of a string type, as shown in Table 9-5. For other cases, insert an explicit coercion to text if
you need to duplicate the previous behavior.

Table 9-5. SQL String Functions and Operators

Function Return Type Description Example Result

string || text String "Post’ || PostgreSQL

string concatenation "greSQL’

string || text String "Value: 7 || Value: 42

non-string Or concatenation 42

non-string || with one

string non-string input

bit_length (string)iint Number of bits in |bit_length (' jo$82)
string

char_length (stripgnt Number of char_length (’ jpde’)

or characters in

character_length|(string) snjng

lower (string) text Convert string to | lower (* TOM') tom
lower case

octet_length (stridgit Number of bytes |octet_length(’ fjdse’)
in string

overlay (string text Replace substring | overlay (' TxxxxaEhomas

placing string placing ’"hom’

from int [for from 2 for 4)

int])

position (substrirgint Location of position(’om’ |3

in string) specified substring | in ’ Thomas’)

substring (string | text Extract substring | substring (’ Thomhsth

[from int] [for from 2 for 3)

int])

substring (string | text Extract substring | substring (' Thommas

from pattern)

matching POSIX
regular
expression. See
Section 9.7 for
more information
on pattern
matching.

.87)

from ' ..

155

Chapter 9. Functions and Operators

Function Return Type Description Example Result
substring (string | text Extract substring | substring (' Thomema
from pattern for matching SQL from
escape) regular "S#"o_a#"_’
expression. See for "#7)
Section 9.7 for
more information
on pattern
matching.
trim([leading text Remove the trim(both ’x’ |Tom
| trailing | longest string from
both] containing only " xTomxx"')
[characters] the characters
from string) (a space by
default) from the
start/end/both
ends of the
string
upper (string) text Convert string to | upper (' tom’) TOM
upper case

Additional string manipulation functions are available and are listed in Table 9-6. Some of them are
used internally to implement the SQL-standard string functions listed in Table 9-5.

Table 9-6. Other String Functions

Function

Return Type

Description

Example

Result

ascii (string)

int

ASCII code of
the first character
of the argument.
For UTFS returns
the Unicode code
point of the
character. For
other multibyte
encodings, the
argument must be
an ASCII
character.

ascii(’'x")

120

btrim(string
text [,
characters

text])

text

Remove the
longest string
consisting only of
characters in
characters (a
space by default)
from the start and
end of string

btrim(’xyxtrimy

"xy’)

yExin

156

Chapter 9. Functions and Operators

Function

Return Type

Description

Example

Result

chr (int)

text

Character with
the given code.
For UTFS the
argument is
treated as a
Unicode code
point. For other
multibyte
encodings the
argument must
designate an
ASCII character.
The NULL (0)
character is not
allowed because
text data types
cannot store such
bytes.

chr (65)

A

convert (string
bytea,
src_encoding
name,
dest_encoding

name)

bytea

Convert string to
dest_encoding.
The original
encoding is
specified by
src_encoding.
The string must
be valid in this
encoding.
Conversions can
be defined by
CREATE
CONVERSTION.
Also there are
some predefined
conversions. See
Table 9-7 for
available
conversions.

convert (' text_
"UTF8’,
"LATIN1")

ihextf&h,utf8
represented in
Latin-1 encoding
(ISO 8859-1)

convert_from(str
bytea,
src_encoding

name)

text

ing

Convert string to
the database
encoding. The
original encoding
is specified by
src_encoding.
The string must
be valid in this
encoding.

convert_from (’f{
"UTEF8")

reggtinnutf&s,
represented in the
current database
encoding

157

Chapter 9. Functions and Operators

Function

Return Type

Description

Example

Result

convert_to(string
text,
dest_encoding

name)

bytea

Convert string to

dest_encoding.

convert_to (’soj
text’,
"UTF8’")

neome text
represented in the
UTF8 encoding

decode (string
text, format

text)

bytea

Decode binary
data from textual
representation in
string. Options
for format are
same as in

encode.

decode (' MTIzAA}R
"base64d’)

£x3132330001

encode (data
bytea, format

text)

text

Encode binary
data into a textual
representation.
Supported formats
are: base64, hex,
escape. escape
merely outputs
null bytes as \000
and doubles
backslashes.

encode (E’ 123\\
"baseb64d’)

MUY XBRAEE,

initcap (string)

text

Convert the first
letter of each word
to upper case and
the rest to lower
case. Words are
sequences of
alphanumeric
characters
separated by
non-alphanumeric
characters.

initcap(’'hi
THOMAS')

Hi Thomas

length (string)

int

Number of
characters in

string

length (' jose’)

length (stringbyte

encoding name)

ajint

Number of
characters in
stringin the
given encoding.
The string must
be valid in this
encoding.

length (’ jose’,
"UTF8’)

158

Chapter 9. Functions and Operators

Function

Return Type

Description

Example

Result

lpad (string
text, length int

[, fill text])

text

Fill up the
string to length
length by
prepending the
characters fil1 (a
space by default).
If the stringis
already longer
than 1length then
it is truncated (on
the right).

lpad("hi’,
"xy'")

5,

xyxhi

ltrim(string
text [,
characters

text])

text

Remove the
longest string
containing only
characters from
characters (a
space by default)
from the start of

string

ltrim (/" zzzytriy

Ixyzl)

trim

md5 (string)

text

Calculates the
MD)5 hash of
string, returning
the result in
hexadecimal

md5 (" abc’)

900150983cd24f
d6963£7d28el7f

b0
V2

pg_client_encodi]

nyEme

Current client
encoding name

pg_client_enco

H$0% (ASCIT

quote_ident (stri

text)

Fext

Return the given
string suitably
quoted to be used
as an identifier in
an SQL statement
string. Quotes are
added only if
necessary (i.e., if
the string contains
non-identifier
characters or
would be
case-folded).
Embedded quotes
are properly
doubled. See also
Example 39-1.

quote_ident ('F

bar’)

p&Foo bar"

159

Chapter 9. Functions and Operators

Function

Return Type

Description

Example

Result

quote_literal (st

text)

rtext

Return the given
string suitably
quoted to be used
as a string literal
in an SQL
statement string.
Embedded
single-quotes and
backslashes are
properly doubled.
Note that
quote_literal
returns null on
null input; if the
argument might
be null,
quote_nullable
is often more
suitable. See also
Example 39-1.

quote_literal (}

7 OXRBE11YY’)

quote_literal (va

anyelement)

Ltext

Coerce the given
value to text and
then quote it as a
literal. Embedded
single-quotes and
backslashes are
properly doubled.

quote_literal (

1243) 5"

quote_nullable (s

text)

L et

Return the given
string suitably
quoted to be used
as a string literal
in an SQL
statement string;
or, if the argument
is null, return
NULL. Embedded
single-quotes and
backslashes are
properly doubled.
See also Example
39-1.

quote_nullable

(NULL)

160

Chapter 9. Functions and Operators

Function

Return Type

Description

Example

Result

quote_nullable (vplext

anyelement)

Coerce the given
value to text and
then quote it as a
literal; or, if the
argument is null,
return NULL.
Embedded
single-quotes and
backslashes are
properly doubled.

quote_nullable

(4225p'

regexp_matches (stseteof text[]

text, pattern

text [, flags

text])

Return all
captured
substrings
resulting from
matching a
POSIX regular
expression against
the string. See
Section 9.7.3 for
more information.

regexp_matches

" (bar) (beque)’

({Peohbebagleba

regexp_replace (stkext

text, pattern
text,
replacement text

[, flags text])

Replace
substring(s)
matching a
POSIX regular
expression. See
Section 9.7.3 for
more information.

regexp_replace
. [mN]a.’,
IMI)

(TEMomas’,

regexp_split_to_|

text, pattern
text [, flags
text 1)

atrexy (dtring

Split string
using a POSIX
regular expression
as the delimiter.
See Section 9.7.3
for more
information.

regexp_split_t
world’,
E’\\s+’)

p{bhetdyp (Wheldd

regexp_split_to_{taete fstresnd Split string regexp_split_tohedbdweerhdl(@®
text, pattern using a POSIX world’, rows)
text [, flags regular expression |E’ \\s+")
text]) as the delimiter.
See Section 9.7.3
for more
information.
repeat (string text Repeat string repeat (' Pg’, PgPgPgPg
text, number the specified 4)
int) number of times

161

~

Chapter 9. Functions and Operators

Function Return Type Description Example Result
replace (string |text Replace all replace (' abcdefabgdefapXXef
text, from text, occurrences in rcd’, TXX')
to text) string of

substring from

with substring to
rpad (string text Fill up the rpad(’hi’, 5, |hixyx
text, length int stringtolength |’xy’)
[, £fill text]) length by

appending the

characters £il1l (a

space by default).

If the stringis

already longer

than length then

it is truncated.
rtrim(string text Remove the rtrim(/ trimxxxktrim
text [, longest string rx")
characters containing only
text]) characters from

characters (a

space by default)

from the end of

string
split_part (stringtext Split stringon |split_part (' abgd@fdef~Q@~ghi’,
text, delimiter delimiter and f~@~", 2)
text, field int) return the given

field (counting

from one)
strpos (string, int Location of strpos (high’, |2
substring) specified substring | 7 ig’)

(same as

position (substring

in string), but

note the reversed

argument order)
substr (string, text Extract substring | substr (/ alphabgph,
from [, count]) (same as 3, 2)

substring (string

from from for

count))
to_ascii (string |text Convert string |to_ascii (’KarelKarel
text [, encoding to ASCII from
text]) another encoding

(only supports
conversion from
LATINI1, LATINZ,
LATINO, and
WIN1250

encodings)

162

Chapter 9. Functions and Operators

translate (string
text, from text,

to text)

string that
matches a
character in the
from set is
replaced by the
corresponding
character in the to

set

Function Return Type Description Example Result
to_hex (number text Convert number to_hex (214748363Fffffff
int or bigint) to its equivalent
hexadecimal
representation
text Any characterin |translate (’1234823x5

147, "ax’)

See also the aggregate function st ring_agg in Section 9.18.

Table 9-7. Built-in Conversions

Conversion Name a

Source Encoding

Destination Encoding

ascii_to_mic SQL_ASCII MULE_INTERNAL
ascii_to_utfs8 SQL_ASCII UTFE8
bigb_to_euc_tw BIGS EUC_TW
big5_to_mic BIGS MULE_INTERNAL
big5_to_utf8 BIGS UTF8
euc_cn_to_mic EUC_CN MULE_INTERNAL
euc_cn_to_utf8 EUC_CN UTF8
euc_Jjp_to_mic EUC_JP MULE_INTERNAL
euc_Jjp_to_sijis EUC_JP SJIS
euc_Jjp_to_utfs8 EUC_JP UTF8
euc_kr_to_mic EUC_KR MULE_INTERNAL
euc_kr_to_utf8 EUC_KR UTF8
euc_tw_to_bigh EUC_TW BIGS
euc_tw_to_mic EUC_TW MULE_INTERNAL
euc_tw_to_utf8 EUC_TW UTF8
gb18030_to_utf8 GB18030 UTF8
gbk_to_utf8 GBK UTF8
iso_8859_10_to_utf8 LATING UTF8
iso_8859_13_to_utf8 LATIN7 UTF8
iso_8859_14_ to_utf8 LATINS UTFE8
iso_8859_15 to_utf8 LATINY UTFE8
iso_8859_16_to_utf8 LATIN1O UTF8
iso_8859_ 1 to_mic LATIN1 MULE_INTERNAL
iso_8859 1 to_utfs8 LATINI1 UTF8
is0_8859_2_to_mic LATIN2 MULE_INTERNAL
is0_8859_2_to_utfs LATIN2 UTF8

163

Chapter 9. Functions and Operators

Conversion Name -

Source Encoding

Destination Encoding

is0_8859_2 to_windows_12

bOATINZ2

WIN1250

1is0_8859_3_to_mic LATIN3 MULE_INTERNAL
iso_8859_3_to_utfs LATIN3 UTF8
iso_8859_4 to_mic LATIN4A MULE_INTERNAL
iso_8859_4_to_utfs8 LATIN4 UTF8
iso_8859_5 to_koi8_ r IS0_8859_5 KOI8R
iso0_8859_5_to_mic I150_8859_5 MULE_INTERNAL
is0_8859_5_to_utf8 IS0O_8859_5 UTF8
iso_8859_5_to_windows_125150_8859_5 WIN1251
is0_8859_5_to_windows_866ISO_8859_5 WIN866
iso_8859_6_to_utfs8 ISO_8859_6 UTF38
iso0_8859_7_to_utf8 IS0O_8859_7 UTF38
iso0_8859_8_to_utf8 ISO_8859_8 UTF8
iso_8859_9 to_utfs8 LATINS UTF8
johab_to_utf8 JOHAB UTF8
koi8_r_to_iso_8859_5 KOI8R IS0_8859_5
koi8_r_to_mic KOI8R MULE_INTERNAL
koi8_r_to_utf8 KOI8R UTF8

koi8_r_ to_windows_1251 KOI8R WIN1251
koi8_r_to_windows_866 KOI8R WIN866
koi8_u_to_utf8 KOI8U UTF8
mic_to_ascii MULE_INTERNAL SQL_ASCII
mic_to_bigh MULE_INTERNAL BIGS
mic_to_euc_cn MULE_INTERNAL EUC_CN
mic_to_euc_jp MULE_INTERNAL EUC_JP
mic_to_euc_kr MULE_INTERNAL EUC_KR
mic_to_euc_tw MULE_INTERNAL EUC_TW
mic_to_iso_8859_1 MULE_INTERNAL LATINL
mic_to_iso_8859_2 MULE_INTERNAL LATIN2
mic_to_iso_8859_3 MULE_INTERNAL LATIN3
mic_to_iso_8859_4 MULE_INTERNAL LATIN4
mic_to_1iso_8859_5 MULE_INTERNAL IS0O_8859_5
mic_to_koi8_r MULE_INTERNAL KOI8R
mic_to_sijis MULE_INTERNAL SJIS
mic_to_windows_1250 MULE_INTERNAL WIN1250
mic_to_windows_1251 MULE_INTERNAL WIN1251
mic_to_windows_866 MULE_INTERNAL WIN866
sjis_to_euc_jp SJIS EUC_JP
sjis_to_mic SJIS MULE_INTERNAL

164

Chapter 9. Functions and Operators

Conversion Name a Source Encoding Destination Encoding
sjis_to_utfs8 SJIS UTF8
tcvn_to_utf8 WIN1258 UTFEF8
uhc_to_utf8 UHC UTF8
utf8_to_ascii UTF8 SQL_ASCII
utf8_to_bigh UTF8 BIGS
utf8_to_euc_cn UTF8 EUC_CN
utf8_to_euc_ijp UTF8 EUC_JP
utf8_to_euc_kr UTF8 EUC_KR
utf8_to_euc_tw UTFE8 EUC_TW
utf8_to_gbl8030 UTF8 GB18030
ut£8_to_gbk UTF'8 GBK
utf8_to_iso_8859_1 UTF8 LATIN1
utf8_to_iso_8859_10 UTF8 LATING
utf8_to_iso_8859_ 13 UTF8 LATIN7
utf8_to_iso_8859_ 14 UTFES8 LATINS
utf8_to_iso_8859_15 UTF8 LATINOS
utf8_to_iso_8859_16 UTF8 LATINIO
utf8_to_iso_8859_2 UTF8 LATIN2
utf8_ _to_iso_8859_3 UTFE8 LATIN3
utf8_to_iso_8859_4 UTF8 LATIN4
utf8_to_iso_8859_5 UTF8 IS0O_8859_5
utf8_to_iso_8859_6 UTF8 IS0O_8859_6
utf8_to_iso_8859_7 UTF8 IS0_8859_7
utf8_to_iso_8859_8 UTF8 IS0O_8859_8
utf8_to_iso_8859_9 UTF8 LATINS
ut£8_to_johab UTF8 JOHAB
utf8_to_koi8_r UTFES8 KOI8R
utf8_to_koi8_u UTFE8 KOI8U
utf8_to_sjis UTF8 SJIS
utf8_to_tcvn UTF8 WIN1258
utf8_to_uhc UTF8 UHC
utf8_to_windows_1250 UTFS8 WIN1250
utf8_to_windows_1251 UTF8 WIN1251
utf8_to_windows_1252 UTFE8 WIN1252
utf8_to_windows_1253 UTF8 WIN1253
utf8_to_windows_1254 UTF8 WIN1254
utf8_to_windows_1255 UTF8 WIN1255
utf8_to_windows_1256 UTF8 WIN1256
utf8_to_windows_1257 UTFS8 WIN1257
utf8_to_windows_866 UTFES8 WINB66
utf8_to_windows_874 UTF8 WIN874

165

Chapter 9. Functions and Operators

Conversion Name a Source Encoding Destination Encoding
windows_1250_to_iso_8859|WIN1250 LATINZ2
windows_1250_to_mic WIN1250 MULE_INTERNAL
windows_1250_to_utf8 WIN1250 UTF8
windows_1251_to_iso_8859|®BIN1251 IS0_8859_5
windows_1251 to_koi8_r WIN1251 KOI8R
windows_1251_to_mic WIN1251 MULE_INTERNAL
windows_1251_to_utf8 WIN1251 UTF8
windows_1251_to_windows_8WEN1251 WIN866
windows_1252_to_utf8 WIN1252 UTF8
windows_1256_to_utf8 WIN1256 UTF8
windows_866_to_iso_8859 bBWIN8G66 ISO_8859_5
windows_866_to_koi8_r WIN866 KOI8R
windows_866_to_mic WINB66 MULE_INTERNAL
windows_866_to_utf8 WIN866 UTF8
windows_866_to_windows_1PWINB66 WIN
windows_874_to_utfs8 WIN874 UTF8
euc_7jis_2004_to_utfs8 EUC_JIS_2004 UTF8
ut8_to_euc_jis_2004 UTF8 EUC_JIS_2004
shift_jis_2004_to_utfs SHIFT_JIS_2004 UTF8
ut8_to_shift_jis_2004 UTF8 SHIFT_JIS_2004
euc_7jis_2004_to_shift_jisEWQ04IS_2004 SHIFT_JIS_2004
shift_Jjis_2004_to_euc_JjisSRUBDE_JIS_2004 EUC_JIS_2004

Notes:

a. The conversion names follow a standard naming scheme: The official name of the source
encoding with all non-alphanumeric characters replaced by underscores, followed by _to_,
followed by the similarly processed destination encoding name. Therefore, the names might
deviate from the customary encoding names.

9.5. Binary String Functions and Operators

This section describes functions and operators for examining and manipulating values of type bytea.

SQL defines some string functions that use key words, rather than commas, to separate arguments.
Details are in Table 9-8. PostgreSQL also provides versions of these functions that use the regular
function invocation syntax (see Table 9-9).

166

Chapter 9. Functions and Operators

Note: The sample results shown on this page assume that the server parameter bytea_output
is set to escape (the traditional PostgreSQL format).

Table 9-8. SQL Binary String Functions and Operators

:bytea)

Pa

the bytes in
bytes from the
start and end of

string

Function Return Type Description Example Result
string || bytea String E’\\\\Post’ : :byk&Rost’ gres\00
string concatenation |

E’\\047gres\\000’ : :bytea
octet_length (stridiq)t Number of bytes |octet_length (Ef50\\000se’ :

in binary string

overlay (string |bytea Replace substring | overlay (E’ Th\\DUQ&RAZX\0BFnaa
placing string placing
from int [for E’\\002\\003’ : tbytea
int]) from 2 for 3)
position (substrirgint Location of position (E’\\0QBom’ : :bytea
in string) specified substring | in

E’Th\\000omas’ } :bytea)
substring (string |bytea Extract substring | substring (E’ Th\RR006mas’ : :bytd
[from int] [for from 2 for 3)
int])
trim([both] bytea Remove the trim(E’\\000"’ : | Bymea
bytes from longest string from
string) containing only E’\\000Tom\\000" : :bytea)

Additional binary string manipulation functions are available and are listed in Table 9-9. Some of
them are used internally to implement the SQL-standard string functions listed in Table 9-8.

Table 9-9. Other Binary String Functions

bytes in bytes
from the start and
end of string

Function Return Type Description Example Result
btrim(string bytea Remove the btrim (E’\\000trtmin000’ : :byte
bytea, bytes longest string E’\\000’ : :bytea)

bytea) consisting only of

2y

167

Chapter 9. Functions and Operators

Function Return Type Description Example Result
decode (string bytea Decode binary decode (E’ 123\\ 00035600456
text, type text) string from "escape’)
string
previously
encoded with
encode.
Parameter type is
same as in
encode.
encode (string text Encode binary encode (E’ 123\\002356004bgtea,
bytea, type SangtO "escape’)
text) ASClII-only
representation.
Supported types
are: base64, hex,
escape.
get_bit (string, |int Extract bit from |get_bit (E’ Th\\Q00omas’ : :bytea
offset) string 45)
int Extract byte from | get_byte (E’ Th\\000omas’ : :bytea,
get_byte (string, Sang 4)
offset)
length (string) int Length of binary |length (E’ jo\\00Bse’ : :bytea)
string
md5 (string) text Calculates the md5 (E’ Th\\000om8ab2dBgRé8Paafls
MD5 hash of 04958c334c82d8hb1l
string, returning
the result in
hexadecimal
set_bit (string, |bytea Set bit in string set_bit (E' Th\\QUThsfasbmAbytea
offset, 45, 0)
newvalue)
bytea Set byte in string | set_byte (E’ Th\\Uhi6f@sRasbytea,
set_byte (string, 4, 64)
offset,
newvalue)

get_byte and set_byte number the first byte of a binary string as byte 0. get_bit and set_bit

number bits from the right within each byte; for example bit O is the least significant bit of the first
byte, and bit 15 is the most significant bit of the second byte.

9.6. Bit String Functions and Operators

This section describes functions and operators for examining and manipulating bit strings, that is
values of the types bit and bit varying. Aside from the usual comparison operators, the operators
shown in Table 9-10 can be used. Bit string operands of &, |, and # must be of equal length. When bit
shifting, the original length of the string is preserved, as shown in the examples.

168

Chapter 9. Functions and Operators

Table 9-10. Bit String Operators

Operator Description Example Result

| concatenation B’/10001" || 10001011
B’/ 011’

& bitwise AND B’ 10001’ & 00001
B’ 01101’

bitwise OR B/10001" | 11101

B’01101’

bitwise XOR B’10001" # 11100
B’01101"

~ bitwise NOT ~ B’10001’ 01110

<< bitwise shift left B’10001’ << 3 01000

>> bitwise shift right B’10001" >> 2 00100

The following SQL-standard functions work on bit strings as well as character strings: length,
bit_length, octet_length, position, substring, overlay.

The following functions work on bit strings as well as binary strings: get_bit, set_bit. When work-
ing with a bit string, these functions number the first (Ieftmost) bit of the string as bit 0.

In addition, it is possible to cast integral values to and from type bit. Some examples:

44::pbit (10) 0000101100
44::bit (3) 100

cast (44 as bit(12)) 111111010100
711107 : :bit (4) : :integer 14

Note that casting to just “bit” means casting to bit (1), and so will deliver only the least significant
bit of the integer.

Note: Prior to PostgreSQL 8.0, casting an integer to bit (n) would copy the leftmost n bits of the
integer, whereas now it copies the rightmost n bits. Also, casting an integer to a bit string width
wider than the integer itself will sign-extend on the left.

9.7. Pattern Matching

There are three separate approaches to pattern matching provided by PostgreSQL: the traditional
SQL LIKE operator, the more recent SIMILAR TO operator (added in SQL:1999), and POSIX-style
regular expressions. Aside from the basic “does this string match this pattern?”” operators, functions
are available to extract or replace matching substrings and to split a string at matching locations.

Tip: If you have pattern matching needs that go beyond this, consider writing a user-defined
function in Perl or Tcl.

169

Chapter 9. Functions and Operators

9.7.1. LIKE

string LIKE pattern [ESCAPE escape-character]
string NOT LIKE pattern [ESCAPE escape-character]

The LIKE expression returns true if the st ring matches the supplied pattern. (As expected, the
NOT LIKE expression returns false if LIKE returns true, and vice versa. An equivalent expression is
NOT (string LIKE pattern).)

If pattern does not contain percent signs or underscores, then the pattern only represents the string
itself; in that case LIKE acts like the equals operator. An underscore (_) in pattern stands for
(matches) any single character; a percent sign (%) matches any sequence of zero or more characters.

Some examples:

"abc’ LIKE ’"abc’ true
"abc’ LIKE "a%’ true
"abc’ LIKE '_b_ ' true
"abc’ LIKE ’c’ false

LIKE pattern matching always covers the entire string. Therefore, to match a sequence anywhere
within a string, the pattern must start and end with a percent sign.

To match a literal underscore or percent sign without matching other characters, the respective char-
acter in pattern must be preceded by the escape character. The default escape character is the back-
slash but a different one can be selected by using the ESCAPE clause. To match the escape character
itself, write two escape characters.

Note that the backslash already has a special meaning in string literals, so to write a pattern constant
that contains a backslash you must write two backslashes in an SQL statement (assuming escape string
syntax is used, see Section 4.1.2.1). Thus, writing a pattern that actually matches a literal backslash
means writing four backslashes in the statement. You can avoid this by selecting a different escape
character with ESCAPE; then a backslash is not special to LIKE anymore. (But backslash is still special
to the string literal parser, so you still need two of them to match a backslash.)

It’s also possible to select no escape character by writing ESCAPE ”. This effectively disables the
escape mechanism, which makes it impossible to turn off the special meaning of underscore and
percent signs in the pattern.

The key word ILIKE can be used instead of LIKE to make the match case-insensitive according to
the active locale. This is not in the SQL standard but is a PostgreSQL extension.

The operator ~~ is equivalent to LIKE, and ~~ corresponds to ILIKE. There are also !~~ and
! ~~x operators that represent NOT LIKE and NOT ILIKE, respectively. All of these operators are
PostgreSQL-specific.

9.7.2. stM1LAR TO Regular Expressions

string SIMILAR TO pattern [ESCAPE escape-character]
string NOT SIMILAR TO pattern [ESCAPE escape-character]

The SIMILAR TO operator returns true or false depending on whether its pattern matches the given
string. It is similar to LIKE, except that it interprets the pattern using the SQL standard’s definition of a
regular expression. SQL regular expressions are a curious cross between LIKE notation and common
regular expression notation.

170

Chapter 9. Functions and Operators

Like LIKE, the SIMILAR TO operator succeeds only if its pattern matches the entire string; this is
unlike common regular expression behavior where the pattern can match any part of the string. Also
like LIKE, SIMILAR TO uses _ and % as wildcard characters denoting any single character and any
string, respectively (these are comparable to . and . » in POSIX regular expressions).

In addition to these facilities borrowed from LIKE, SIMILAR TO supports these pattern-matching
metacharacters borrowed from POSIX regular expressions:

« | denotes alternation (either of two alternatives).

« * denotes repetition of the previous item zero or more times.

+ + denotes repetition of the previous item one or more times.

« 2 denotes repetition of the previous item zero or one time.

- {m} denotes repetition of the previous item exactly m times.

« {m, } denotes repetition of the previous item m or more times.

« {m, n} denotes repetition of the previous item at least m and not more than n times.

« Parentheses () can be used to group items into a single logical item.

« A bracket expression [. . .] specifies a character class, just as in POSIX regular expressions.
Notice that the period (.) is not a metacharacter for SIMILAR TO.

As with LIKE, a backslash disables the special meaning of any of these metacharacters; or a different
escape character can be specified with ESCAPE.

Some examples:

"abc’ SIMILAR TO ’abc’ true
"abc’ SIMILAR TO ’a’ false
"abc’ SIMILAR TO ’'%(b|d)%’ true
"abc’ SIMILAR TO " (blc)%’ false

The substring function with three parameters, substring(string from pattern for
escape-character), provides extraction of a substring that matches an SQL regular expression
pattern. As with SIMILAR TO, the specified pattern must match the entire data string, or else the
function fails and returns null. To indicate the part of the pattern that should be returned on success,
the pattern must contain two occurrences of the escape character followed by a double quote (). The
text matching the portion of the pattern between these markers is returned.

Some examples, with #" delimiting the return string:

substring (' foobar’ from ’'S$#"o_b#"%’ for ’"#') oob
substring (' foobar’ from '#"o_b#"%’ for "#') NULL

9.7.3. POSIX Regular Expressions

Table 9-11 lists the available operators for pattern matching using POSIX regular expressions.

Table 9-11. Regular Expression Match Operators

171

Chapter 9. Functions and Operators

Operator Description Example
~ Matches regular expression, "thomas’ ~ ’.xthomas.x’
case sensitive
~x Matches regular expression, ’thomas’ ~=
case insensitive " .xThomas. x’
I~ Does not match regular "thomas’ !~
expression, case sensitive " . «Thomas.x’
[P Does not match regular ’thomas’ !~=
expression, case insensitive " oxvadim. x’

POSIX regular expressions provide a more powerful means for pattern matching than the LIKE and
SIMILAR TO operators. Many Unix tools such as egrep, sed, or awk use a pattern matching language
that is similar to the one described here.

A regular expression is a character sequence that is an abbreviated definition of a set of strings (a
regular set). A string is said to match a regular expression if it is a member of the regular set described
by the regular expression. As with LIKE, pattern characters match string characters exactly unless
they are special characters in the regular expression language — but regular expressions use different
special characters than LIKE does. Unlike LIKE patterns, a regular expression is allowed to match
anywhere within a string, unless the regular expression is explicitly anchored to the beginning or end
of the string.

Some examples:

"abc’ ~ "abc’ true
"abc’ ~ "7a’ true
rabce’ ~ " (b|d)’ true
rabc’ ~ """ (blc)’ false

The POSIX pattern language is described in much greater detail below.

The substring function with two parameters, substring (string from pattern), provides ex-
traction of a substring that matches a POSIX regular expression pattern. It returns null if there is no
match, otherwise the portion of the text that matched the pattern. But if the pattern contains any paren-
theses, the portion of the text that matched the first parenthesized subexpression (the one whose left
parenthesis comes first) is returned. You can put parentheses around the whole expression if you want
to use parentheses within it without triggering this exception. If you need parentheses in the pattern
before the subexpression you want to extract, see the non-capturing parentheses described below.

Some examples:

substring (' foobar’ from "o0.b’) oob
substring (’ foobar’ from ‘o(.)b’))

The regexp_replace function provides substitution of new text for substrings that match POSIX
regular expression patterns. It has the syntax regexp_replace(source, pattern, replacement
[, f1ags]). The source string is returned unchanged if there is no match to the pattern. If there
is a match, the source string is returned with the replacement string substituted for the matching
substring. The replacement string can contain \ n, where nis 1 through 9, to indicate that the source
substring matching the n’th parenthesized subexpression of the pattern should be inserted, and it can
contain \ & to indicate that the substring matching the entire pattern should be inserted. Write \ \ if you
need to put a literal backslash in the replacement text. (As always, remember to double backslashes

172

Chapter 9. Functions and Operators

written in literal constant strings, assuming escape string syntax is used.) The f1ags parameter is an
optional text string containing zero or more single-letter flags that change the function’s behavior. Flag
i specifies case-insensitive matching, while flag g specifies replacement of each matching substring
rather than only the first one. Other supported flags are described in Table 9-19.

Some examples:

regexp_replace (' foobarbaz’, 'b..’, 'X’)

fooXbaz
regexp_replace (' foobarbaz’, 'b..’, X', 'g’)

fooXX
regexp_replace (' foobarbaz’, 'b(..)’, E’X\\1Y’, ’'g’)

fooXarYXazY

The regexp_matches function returns a text array of all of the captured substrings resulting from
matching a POSIX regular expression pattern. It has the syntax regexp_matches(string, pattern
[, f1ags]). The function can return no rows, one row, or multiple rows (see the g flag below). If the
pattern does not match, the function returns no rows. If the pattern contains no parenthesized subex-
pressions, then each row returned is a single-element text array containing the substring matching the
whole pattern. If the pattern contains parenthesized subexpressions, the function returns a text array
whose n’th element is the substring matching the n’th parenthesized subexpression of the pattern (not
counting “non-capturing” parentheses; see below for details). The £1ags parameter is an optional text
string containing zero or more single-letter flags that change the function’s behavior. Flag g causes
the function to find each match in the string, not only the first one, and return a row for each such
match. Other supported flags are described in Table 9-19.

Some examples:

SELECT regexp_matches (' foobarbequebaz’, ’ (bar) (beque)’);
regexp_matches

{bar, beque}
(1 row)

SELECT regexp_matches (/ foobarbequebazilbarfbonk’, ' (b[*bl+) (b["b]l+)’, 'g’);
regexp_matches

{bar, beque}
{bazil, barf}
(2 rows)

SELECT regexp_matches (' foobarbequebaz’, ’'barbeque’);
regexp_matches

{barbeque}
(1 row)

It is possible to force regexp_matches () to always return one row by using a sub-select; this is
particularly useful in a SELECT target list when you want all rows returned, even non-matching ones:

SELECT coll, (SELECT regexp_matches(col2, ' (bar) (beque)’)) FROM tab;

173

Chapter 9. Functions and Operators

The regexp_split_to_table function splits a string using a POSIX regular expression pattern as
a delimiter. It has the syntax regexp_split_to_table(string, pattern [, flags]). If there is
no match to the pattern, the function returns the string. If there is at least one match, for each
match it returns the text from the end of the last match (or the beginning of the string) to the beginning
of the match. When there are no more matches, it returns the text from the end of the last match to the
end of the string. The f1ags parameter is an optional text string containing zero or more single-letter
flags that change the function’s behavior. regexp_split_to_table supports the flags described in
Table 9-19.

The regexp_split_to_array function behaves the same as regexp_split_to_table,
except that regexp_split_to_array returns its result as an array of text. It has the syntax
regexp_split_to_array(string, pattern [, flags]). The parameters are the same as for
regexp_split_to_table.

Some examples:

SELECT foo FROM regexp_split_to_table(’the quick brown fox jumped over the lazy dog’, E’
foo

quick
brown
fox
Jjumped
over
the
lazy
dog

(9 rows)

SELECT regexp_split_to_array(’the quick brown fox jumped over the lazy dog’, E’\\s+’);
regexp_split_to_array

{the, quick, brown, fox, jumped, over, the, lazy, dog}
(1 row)

SELECT foo FROM regexp_split_to_table(’the quick brown fox’, E’\\sx’) AS foo;
foo

6 rows)

174

Chapter 9. Functions and Operators

As the last example demonstrates, the regexp split functions ignore zero-length matches that occur
at the start or end of the string or immediately after a previous match. This is contrary to the strict
definition of regexp matching that is implemented by regexp_matches, but is usually the most
convenient behavior in practice. Other software systems such as Perl use similar definitions.

9.7.3.1. Regular Expression Details

PostgreSQL’s regular expressions are implemented using a software package written by Henry
Spencer. Much of the description of regular expressions below is copied verbatim from his manual.

Regular expressions (REs), as defined in POSIX 1003.2, come in two forms: extended REs or EREs
(roughly those of egrep), and basic REs or BREs (roughly those of ed). PostgreSQL supports both
forms, and also implements some extensions that are not in the POSIX standard, but have become
widely used due to their availability in programming languages such as Perl and Tcl. REs using these
non-POSIX extensions are called advanced REs or AREs in this documentation. AREs are almost an
exact superset of EREs, but BREs have several notational incompatibilities (as well as being much
more limited). We first describe the ARE and ERE forms, noting features that apply only to AREs,
and then describe how BREs differ.

Note: PostgreSQL always initially presumes that a regular expression follows the ARE rules. How-
ever, the more limited ERE or BRE rules can be chosen by prepending an embedded option to the
RE pattern, as described in Section 9.7.3.4. This can be useful for compatibility with applications
that expect exactly the POSIX 1003.2 rules.

A regular expression is defined as one or more branches, separated by |. It matches anything that
matches one of the branches.

A branch is zero or more quantified atoms or constraints, concatenated. It matches a match for the
first, followed by a match for the second, etc; an empty branch matches the empty string.

A quantified atom is an atom possibly followed by a single quantifier. Without a quantifier, it matches
a match for the atom. With a quantifier, it can match some number of matches of the atom. An atom
can be any of the possibilities shown in Table 9-12. The possible quantifiers and their meanings are
shown in Table 9-13.

A constraint matches an empty string, but matches only when specific conditions are met. A constraint
can be used where an atom could be used, except it cannot be followed by a quantifier. The simple
constraints are shown in Table 9-14; some more constraints are described later.

Table 9-12. Regular Expression Atoms

Atom Description

(re) (where re is any regular expression) matches a
match for re, with the match noted for possible
reporting

(?:re) as above, but the match is not noted for
reporting (a “non-capturing” set of parentheses)
(AREs only)

matches any single character

175

Chapter 9. Functions and Operators

Atom

Description

[chars]

a bracket expression, matching any one of the
chars (see Section 9.7.3.2 for more detail)

\k

(where k is a non-alphanumeric character)
matches that character taken as an ordinary
character, e.g., \\ matches a backslash character

where c is alphanumeric (possibly followed by
other characters) is an escape, see Section
9.7.3.3 (AREs only; in EREs and BREzs, this
matches c)

when followed by a character other than a digit,
matches the left-brace character {; when
followed by a digit, it is the beginning of a
bound (see below)

where x is a single character with no other

significance, matches that character

An RE cannot end with \.

Note: Remember that the backslash (\) already has a special meaning in PostgreSQL string
literals. To write a pattern constant that contains a backslash, you must write two backslashes in
the statement, assuming escape string syntax is used (see Section 4.1.2.1).

Table 9-13. Regular Expression Quantifiers

Quantifier Matches
* a sequence of 0 or more matches of the atom
+ a sequence of 1 or more matches of the atom
? a sequence of 0 or 1 matches of the atom
{m} a sequence of exactly m matches of the atom
{m, } a sequence of m or more matches of the atom
{m, n} a sequence of m through n (inclusive) matches
of the atom; m cannot exceed n
*? non-greedy version of x
+2 non-greedy version of +
?? non-greedy version of ?
{m}? non-greedy version of {m}
{m, }? non-greedy version of {m, }
{m, n}? non-greedy version of {m, n}

The forms using {...} are known as bounds. The numbers m and n within a bound are unsigned
decimal integers with permissible values from 0 to 255 inclusive.

Non-greedy quantifiers (available in AREs only) match the same possibilities as their correspond-
ing normal (greedy) counterparts, but prefer the smallest number rather than the largest number of

matches. See Section 9.7.3.5 for more detail.

176

Chapter 9. Functions and Operators

Note: A quantifier cannot immediately follow another quantifier, e.g., =« is invalid. A quantifier
cannot begin an expression or subexpression or follow ~ or |.

Table 9-14. Regular Expression Constraints

Constraint Description
~ matches at the beginning of the string
$ matches at the end of the string
(?=re) positive lookahead matches at any point where

a substring matching re begins (AREs only)

(?!re) negative lookahead matches at any point where
no substring matching re begins (AREs only)

Lookahead constraints cannot contain back references (see Section 9.7.3.3), and all parentheses within
them are considered non-capturing.

9.7.3.2. Bracket Expressions

A bracket expression is a list of characters enclosed in []. It normally matches any single character
from the list (but see below). If the list begins with ~, it matches any single character not from the
rest of the list. If two characters in the list are separated by -, this is shorthand for the full range
of characters between those two (inclusive) in the collating sequence, e.g., [0-9] in ASCII matches
any decimal digit. It is illegal for two ranges to share an endpoint, e.g., a-—c-e. Ranges are very
collating-sequence-dependent, so portable programs should avoid relying on them.

To include a literal] in the list, make it the first character (after ~, if that is used). To include a
literal —, make it the first or last character, or the second endpoint of a range. To use a literal - as
the first endpoint of a range, enclose it in [. and .] to make it a collating element (see below).
With the exception of these characters, some combinations using [(see next paragraphs), and escapes
(AREs only), all other special characters lose their special significance within a bracket expression.
In particular, \ is not special when following ERE or BRE rules, though it is special (as introducing
an escape) in ARE:s.

Within a bracket expression, a collating element (a character, a multiple-character sequence that col-
lates as if it were a single character, or a collating-sequence name for either) enclosed in [. and .]
stands for the sequence of characters of that collating element. The sequence is treated as a single ele-
ment of the bracket expression’s list. This allows a bracket expression containing a multiple-character
collating element to match more than one character, e.g., if the collating sequence includes a ch
collating element, then the RE [[.ch. 1] *c matches the first five characters of chchcc.

Note: PostgreSQL currently does not support multi-character collating elements. This information
describes possible future behavior.

Within a bracket expression, a collating element enclosed in [= and =] is an equivalence class, stand-
ing for the sequences of characters of all collating elements equivalent to that one, including itself. (If
there are no other equivalent collating elements, the treatment is as if the enclosing delimiters were [.
and .1.) For example, if o and ~ are the members of an equivalence class, then [[=o=11, [[="=11,
and [o~] are all synonymous. An equivalence class cannot be an endpoint of a range.

177

Chapter 9. Functions and Operators

Within a bracket expression, the name of a character class enclosed in [: and :] stands for the list
of all characters belonging to that class. Standard character class names are: alnum, alpha, blank,
cntrl,digit, graph, lower, print, punct, space, upper, xdigit. These stand for the character
classes defined in ctype. A locale can provide others. A character class cannot be used as an endpoint
of a range.

There are two special cases of bracket expressions: the bracket expressions [[:<:]1] and [[:>:]]
are constraints, matching empty strings at the beginning and end of a word respectively. A word is
defined as a sequence of word characters that is neither preceded nor followed by word characters.
A word character is an alnum character (as defined by ctype) or an underscore. This is an extension,
compatible with but not specified by POSIX 1003.2, and should be used with caution in software in-
tended to be portable to other systems. The constraint escapes described below are usually preferable;
they are no more standard, but are easier to type.

9.7.3.3. Regular Expression Escapes

Escapes are special sequences beginning with \ followed by an alphanumeric character. Escapes
come in several varieties: character entry, class shorthands, constraint escapes, and back references.
A\ followed by an alphanumeric character but not constituting a valid escape is illegal in AREs. In
EREs, there are no escapes: outside a bracket expression, a \ followed by an alphanumeric character
merely stands for that character as an ordinary character, and inside a bracket expression, \ is an
ordinary character. (The latter is the one actual incompatibility between EREs and AREs.)

Character-entry escapes exist to make it easier to specify non-printing and other inconvenient char-
acters in REs. They are shown in Table 9-15.

Class-shorthand escapes provide shorthands for certain commonly-used character classes. They are
shown in Table 9-16.

A constraint escape is a constraint, matching the empty string if specific conditions are met, written
as an escape. They are shown in Table 9-17.

A back reference (\n) matches the same string matched by the previous parenthesized subexpression
specified by the number n (see Table 9-18). For example, ([bc])\1 matches bb or cc but not bc
or cb. The subexpression must entirely precede the back reference in the RE. Subexpressions are
numbered in the order of their leading parentheses. Non-capturing parentheses do not define subex-
pressions.

Note: Keep in mind that an escape’s leading \ will need to be doubled when entering the pattern
as an SQL string constant. For example:

123" ~ E'M\\d{3}’ true

Table 9-15. Regular Expression Character-Entry Escapes

Escape Description

\a alert (bell) character, as in C

\b backspace, as in C

\B synonym for backslash (\) to help reduce the
need for backslash doubling

178

Chapter 9. Functions and Operators

Escape Description

\cX (where X is any character) the character whose
low-order 5 bits are the same as those of x, and
whose other bits are all zero

\e the character whose collating-sequence name is
ESC, or failing that, the character with octal
value 033

\f form feed, as in C

\n newline, as in C

\r carriage return, as in C

\t horizontal tab, as in C

\uwxyz (where wxyz is exactly four hexadecimal digits)
the UTF16 (Unicode, 16-bit) character U+wxyz
in the local byte ordering

\Ustuvwxyz (where stuvwxyz is exactly eight hexadecimal
digits) reserved for a hypothetical Unicode
extension to 32 bits

\v vertical tab, as in C

\xhhh (where hhh is any sequence of hexadecimal
digits) the character whose hexadecimal value is
Oxhhh (a single character no matter how many
hexadecimal digits are used)

\O the character whose value is 0 (the null byte)

\xy (where xy is exactly two octal digits, and is not
a back reference) the character whose octal value
is Oxy

\xyz (where xyz is exactly three octal digits, and is
not a back reference) the character whose octal
value is Oxyz

Hexadecimal digits are 0-9, a-£, and A-F. Octal digits are 0-7.

The character-entry escapes are always taken as ordinary characters. For example, \135 is] in ASCII,

but \ 135 does not terminate a bracket expression.

Table 9-16. Regular Expression Class-Shorthand Escapes

Escape Description

\d [[:digit:]]

\'s [[:space:]]

\w [[:alnum:]_] (note underscore is included)
\D [~[:digit:]]

\S [~[:space:]]

\W [~ [:alnum:]_] (note underscore is included)

Within bracket expressions, \d, \s, and \w lose their outer brackets, and \D, \ S, and \w are illegal.
(So, for example, [a-c\d] is equivalent to [a-c[:digit:]]. Also, [a—c\D], which is equivalent

to [a—c”[:digit:]11],isillegal.)

179

Chapter 9. Functions and Operators

Table 9-17. Regular Expression Constraint Escapes

Escape Description

\A matches only at the beginning of the string (see
Section 9.7.3.5 for how this differs from *)

\m matches only at the beginning of a word

\M matches only at the end of a word

\y matches only at the beginning or end of a word

\Y matches only at a point that is not the beginning

or end of a word

\Z matches only at the end of the string (see
Section 9.7.3.5 for how this differs from $)

A word is defined as in the specification of [[:<:]] and [[:>:]] above. Constraint escapes are
illegal within bracket expressions.

Table 9-18. Regular Expression Back References

Escape Description

\m (where m is a nonzero digit) a back reference to
the m’th subexpression

\mnn (where m is a nonzero digit, and nn is some
more digits, and the decimal value mnn is not
greater than the number of closing capturing
parentheses seen so far) a back reference to the
mnn’th subexpression

Note: There is an inherent ambiguity between octal character-entry escapes and back references,
which is resolved by the following heuristics, as hinted at above. A leading zero always indicates
an octal escape. A single non-zero digit, not followed by another digit, is always taken as a back
reference. A multi-digit sequence not starting with a zero is taken as a back reference if it comes
after a suitable subexpression (i.e., the number is in the legal range for a back reference), and
otherwise is taken as octal.

9.7.3.4. Regular Expression Metasyntax

In addition to the main syntax described above, there are some special forms and miscellaneous syn-
tactic facilities available.

An RE can begin with one of two special director prefixes. If an RE begins with »xx :, the rest of
the RE is taken as an ARE. (This normally has no effect in PostgreSQL, since REs are assumed to be
AREs; but it does have an effect if ERE or BRE mode had been specified by the £1ags parameter to
aregex function.) If an RE begins with =« +=, the rest of the RE is taken to be a literal string, with all
characters considered ordinary characters.

An ARE can begin with embedded options: a sequence (?xyz) (where xyz is one or more alphabetic
characters) specifies options affecting the rest of the RE. These options override any previously de-
termined options — in particular, they can override the case-sensitivity behavior implied by a regex

180

Chapter 9. Functions and Operators

operator, or the f1ags parameter to a regex function. The available option letters are shown in Table
9-19. Note that these same option letters are used in the f1ags parameters of regex functions.

Table 9-19. ARE Embedded-Option Letters

Option Description

b rest of RE is a BRE

c case-sensitive matching (overrides operator
type)

e rest of RE is an ERE

i case-insensitive matching (see Section 9.7.3.5)
(overrides operator type)

m historical synonym for n

n newline-sensitive matching (see Section 9.7.3.5)

P partial newline-sensitive matching (see Section
9.7.3.5)

a rest of RE is a literal (“quoted”) string, all
ordinary characters

s non-newline-sensitive matching (default)

t tight syntax (default; see below)

w inverse partial newline-sensitive (“weird”)

matching (see Section 9.7.3.5)

X expanded syntax (see below)

Embedded options take effect at the) terminating the sequence. They can appear only at the start of
an ARE (after the »»: director if any).

In addition to the usual (#ight) RE syntax, in which all characters are significant, there is an expanded
syntax, available by specifying the embedded x option. In the expanded syntax, white-space characters
in the RE are ignored, as are all characters between a # and the following newline (or the end of the
RE). This permits paragraphing and commenting a complex RE. There are three exceptions to that
basic rule:

« a white-space character or # preceded by \ is retained
» white space or # within a bracket expression is retained
+ white space and comments cannot appear within multi-character symbols, such as (2:

For this purpose, white-space characters are blank, tab, newline, and any character that belongs to the
space character class.

Finally, in an ARE, outside bracket expressions, the sequence (?#ttt) (where ttt is any text not
containing a)) is a comment, completely ignored. Again, this is not allowed between the characters of
multi-character symbols, like (?:. Such comments are more a historical artifact than a useful facility,
and their use is deprecated; use the expanded syntax instead.

None of these metasyntax extensions is available if an initial « x »= director has specified that the user’s
input be treated as a literal string rather than as an RE.

181

Chapter 9. Functions and Operators

9.7.3.5. Regular Expression Matching Rules

In the event that an RE could match more than one substring of a given string, the RE matches the
one starting earliest in the string. If the RE could match more than one substring starting at that point,
either the longest possible match or the shortest possible match will be taken, depending on whether
the RE is greedy or non-greedy.

Whether an RE is greedy or not is determined by the following rules:

« Most atoms, and all constraints, have no greediness attribute (because they cannot match variable
amounts of text anyway).

+ Adding parentheses around an RE does not change its greediness.

» A quantified atom with a fixed-repetition quantifier ({m} or {m} ?) has the same greediness (possi-
bly none) as the atom itself.

+ A quantified atom with other normal quantifiers (including {m, n} with m equal to n) is greedy
(prefers longest match).

+ A quantified atom with a non-greedy quantifier (including {m, n} ? with m equal to n) is non-greedy
(prefers shortest match).

« A branch — that is, an RE that has no top-level | operator — has the same greediness as the first
quantified atom in it that has a greediness attribute.

« An RE consisting of two or more branches connected by the | operator is always greedy.

The above rules associate greediness attributes not only with individual quantified atoms, but with
branches and entire REs that contain quantified atoms. What that means is that the matching is done
in such a way that the branch, or whole RE, matches the longest or shortest possible substring as
a whole. Once the length of the entire match is determined, the part of it that matches any particu-
lar subexpression is determined on the basis of the greediness attribute of that subexpression, with
subexpressions starting earlier in the RE taking priority over ones starting later.

An example of what this means:

SELECT SUBSTRING (’XY12347’, 'Yx([0-91{1,3})");
Result: 123

SELECT SUBSTRING (’XY12347’, 'Yx2([0-9]1{1,3})");
Result: 1

In the first case, the RE as a whole is greedy because v~ is greedy. It can match beginning at the v,
and it matches the longest possible string starting there, i.e., Y123. The output is the parenthesized
part of that, or 123. In the second case, the RE as a whole is non-greedy because v« 2 is non-greedy.
It can match beginning at the v, and it matches the shortest possible string starting there, i.e., Y1. The
subexpression [0-9] {1, 3} is greedy but it cannot change the decision as to the overall match length;
so it is forced to match just 1.

In short, when an RE contains both greedy and non-greedy subexpressions, the total match length is
either as long as possible or as short as possible, according to the attribute assigned to the whole RE.
The attributes assigned to the subexpressions only affect how much of that match they are allowed to
“eat” relative to each other.

The quantifiers {1,1} and {1, 1}? can be used to force greediness or non-greediness, respectively,
on a subexpression or a whole RE.

Match lengths are measured in characters, not collating elements. An empty string is considered
longer than no match at all. For example: bb* matches the three middle characters of abbbc;

182

Chapter 9. Functions and Operators

(week |wee) (night |knights) matches all ten characters of weeknights; when (.x).x is
matched against abc the parenthesized subexpression matches all three characters; and when (a«) *
is matched against bc both the whole RE and the parenthesized subexpression match an empty
string.

If case-independent matching is specified, the effect is much as if all case distinctions had vanished
from the alphabet. When an alphabetic that exists in multiple cases appears as an ordinary character
outside a bracket expression, it is effectively transformed into a bracket expression containing both
cases, e.g., x becomes [xx]. When it appears inside a bracket expression, all case counterparts of it
are added to the bracket expression, e.g., [x] becomes [xx] and [~x] becomes [~xX].

If newline-sensitive matching is specified, . and bracket expressions using ~ will never match the
newline character (so that matches will never cross newlines unless the RE explicitly arranges it) and
~and $ will match the empty string after and before a newline respectively, in addition to matching at
beginning and end of string respectively. But the ARE escapes \A and \ z continue to match beginning
or end of string only.

If partial newline-sensitive matching is specified, this affects . and bracket expressions as with
newline-sensitive matching, but not ~ and $.

If inverse partial newline-sensitive matching is specified, this affects ~ and $ as with newline-sensitive
matching, but not . and bracket expressions. This isn’t very useful but is provided for symmetry.

9.7.3.6. Limits and Compatibility

No particular limit is imposed on the length of REs in this implementation. However, programs in-
tended to be highly portable should not employ REs longer than 256 bytes, as a POSIX-compliant
implementation can refuse to accept such REs.

The only feature of AREs that is actually incompatible with POSIX ERE:s is that \ does not lose its
special significance inside bracket expressions. All other ARE features use syntax which is illegal or
has undefined or unspecified effects in POSIX EREs; the »«« syntax of directors likewise is outside
the POSIX syntax for both BREs and EREs.

Many of the ARE extensions are borrowed from Perl, but some have been changed to clean them
up, and a few Perl extensions are not present. Incompatibilities of note include \b, \B, the lack of
special treatment for a trailing newline, the addition of complemented bracket expressions to the
things affected by newline-sensitive matching, the restrictions on parentheses and back references in
lookahead constraints, and the longest/shortest-match (rather than first-match) matching semantics.

Two significant incompatibilities exist between AREs and the ERE syntax recognized by pre-7.4
releases of PostgreSQL:

« In AREs, \ followed by an alphanumeric character is either an escape or an error, while in previous
releases, it was just another way of writing the alphanumeric. This should not be much of a problem
because there was no reason to write such a sequence in earlier releases.

« In AREs, \ remains a special character within [, so a literal \ within a bracket expression must
be written \\.

9.7.3.7. Basic Regular Expressions

BREs differ from EREs in several respects. In BREs, |, +, and ? are ordinary characters and there
is no equivalent for their functionality. The delimiters for bounds are \ { and \}, with { and } by

183

Chapter 9. Functions and Operators

themselves ordinary characters. The parentheses for nested subexpressions are \ (and \), with (and
) by themselves ordinary characters. ~ is an ordinary character except at the beginning of the RE or
the beginning of a parenthesized subexpression, $ is an ordinary character except at the end of the
RE or the end of a parenthesized subexpression, and = is an ordinary character if it appears at the
beginning of the RE or the beginning of a parenthesized subexpression (after a possible leading *).
Finally, single-digit back references are available, and \< and \> are synonyms for [[:<:]] and
[[:>:1] respectively; no other escapes are available in BREs.

9.8. Data Type Formatting Functions

The PostgreSQL formatting functions provide a powerful set of tools for converting various data types
(date/time, integer, floating point, numeric) to formatted strings and for converting from formatted
strings to specific data types. Table 9-20 lists them. These functions all follow a common calling
convention: the first argument is the value to be formatted and the second argument is a template that
defines the output or input format.

A single-argument to_t imestamp function is also available; it accepts a double precision argu-
ment and converts from Unix epoch (seconds since 1970-01-01 00:00:00+00) to timestamp with
time zone. (Integer Unix epochs are implicitly cast to double precision.)

Table 9-20. Formatting Functions

mestamp,

text)

numeric

Function Return Type Description Example
to_char (timestamp, text convert time stamp to to_char (current_ti
text) string "HH12:MI:SS’)
to_char (interval, text convert interval to to_char (interval
text) string ’15h 2m 12s’,
"HH24 :MI:SS’)
to_char (int, text) text convert integer to string | to_char (125,
79997)
to_char (double text convert real/double to_char(125.8::rea
precision, text) precision to string 7999D9")
to_char (numeric, text convert numeric to to_char (-125.8,
text) string 7999D99S")
to_date (text, text) |date convert string to date | to_date (' 05 Dec 20
'DD Mon YYYY')
to_number (text, numeric convert string to to_number (/12,454.

"99G999D9s")

text)

to_timestamp (text,

timestamp with

time zone

convert string to time
stamp

to_timestamp (' 05 D
DD Mon YYYY')

ec 2000,

precision)

to_timestamp (double

timestamp with

time zone

convert Unix epoch to
time stamp

to_timestamp (12843

62323)

In a to_char output template string, there are certain patterns that are recognized and replaced with
appropriately-formatted data based on the given value. Any text that is not a template pattern is simply
copied verbatim. Similarly, in an input template string (for the other functions), template patterns
identify the values to be supplied by the input data string.

184

Chapter 9. Functions and Operators

Table 9-21 shows the template patterns available for formatting date and time values.

Table 9-21. Template Patterns for Date/Time Formatting

Pattern Description

HH hour of day (01-12)

HH12 hour of day (01-12)

HH24 hour of day (00-23)

MI minute (00-59)

Ss second (00-59)

MS millisecond (000-999)

Us microsecond (000000-999999)
SSSs seconds past midnight (0-86399)

AM, am, PM Or pm

meridiem indicator (without periods)

A.M.,a.m.,P.M. Orp.m.

meridiem indicator (with periods)

Y, YYY year (4 and more digits) with comma
YYYY year (4 and more digits)

YYY last 3 digits of year

YY last 2 digits of year

Y last digit of year

IYYY ISO year (4 and more digits)

IYY last 3 digits of ISO year

1Y last 2 digits of ISO year

I last digit of ISO year

BC, bc, AD or ad

era indicator (without periods)

B.C.,b.c.,A.D.Ora.d.

era indicator (with periods)

MONTH full upper case month name (blank-padded to 9
chars)

Month full capitalized month name (blank-padded to 9
chars)

month full lower case month name (blank-padded to 9
chars)

MON abbreviated upper case month name (3 chars in
English, localized lengths vary)

Mon abbreviated capitalized month name (3 chars in
English, localized lengths vary)

mon abbreviated lower case month name (3 chars in
English, localized lengths vary)

MM month number (01-12)

DAY full upper case day name (blank-padded to 9
chars)

Day full capitalized day name (blank-padded to 9
chars)

day full lower case day name (blank-padded to 9

chars)

185

Chapter 9. Functions and Operators

Pattern Description

DY abbreviated upper case day name (3 chars in
English, localized lengths vary)

Dy abbreviated capitalized day name (3 chars in
English, localized lengths vary)

dy abbreviated lower case day name (3 chars in
English, localized lengths vary)

DDD day of year (001-366)

IDDD ISO day of year (001-371; day 1 of the year is
Monday of the first ISO week.)

DD day of month (01-31)

D day of the week, Sunday(1) to Saturday(7)

D ISO day of the week, Monday(1) to Sunday(7)

W week of month (1-5) (The first week starts on the
first day of the month.)

Wi week number of year (1-53) (The first week
starts on the first day of the year.)

IW ISO week number of year (01 - 53; the first
Thursday of the new year is in week 1.)

cc century (2 digits) (The twenty-first century starts
on 2001-01-01.)

J Julian Day (days since November 24, 4714 BC
at midnight)

0 quarter (ignored by to_date and
to_timestamp)

RM month in upper case Roman numerals (I-XII;
I=January)

rm month in lower case Roman numerals (i-xii;
i=January)

TZ upper case time-zone name

tz lower case time-zone name

Modifiers can be applied to any template pattern to alter its behavior. For example, FMMonth is the
Month pattern with the FM modifier. Table 9-22 shows the modifier patterns for date/time formatting.

Table 9-22. Template Pattern Modifiers for Date/Time Formatting

Modifier Description Example

FM prefix fill mode (suppress padding FMMonth
blanks and zeroes)

TH suffix upper case ordinal number DDTH, e.g., 12TH
suffix

th suffix lower case ordinal number DDth, e.g., 12th
suffix

FX prefix fixed format global option (see |FX Month DD Day

usage notes)

186

Chapter 9. Functions and Operators

Modifier Description Example

TM prefix translation mode (print TMMonth
localized day and month names
based on Ic_time)

Sp suffix spell mode (not implemented) | DDSP

Usage notes for date/time formatting:

FM suppresses leading zeroes and trailing blanks that would otherwise be added to make the output
of a pattern be fixed-width. In PostgreSQL, FM modifies only the next specification, while in Oracle
FM affects all subsequent specifications, and repeated FM modifiers toggle fill mode on and off.

T™ does not include trailing blanks.

to_timestamp and to_date skip multiple blank spaces in the input string unless the Fx
option is used. For example, to_timestamp (/2000 JUN’, ’YYYY MON’) works, but
to_timestamp (72000 JUN’, 'FXYYYY MON’) returns an error because to_timestamp
expects one space only. FX must be specified as the first item in the template.

Ordinary text is allowed in to_char templates and will be output literally. You can put a substring
in double quotes to force it to be interpreted as literal text even if it contains pattern key words. For
example, in ' "Hello Year "YYYY’, the YYvY will be replaced by the year data, but the single
Y in Year will not be. In to_date, to_number, and to_timestamp, double-quoted strings skip
the number of input characters contained in the string, e.g. "XX" skips two input characters.

If you want to have a double quote in the output you must precede it with a backslash, for exam-
ple E/\\"YYYY Month\\"’. (Two backslashes are necessary because the backslash has special
meaning when using the escape string syntax.)

The YYYy conversion from string to timestamp or date has a restriction when processing
years with more than 4 digits. You must use some non-digit character or template after Yyvy,
otherwise the year is always interpreted as 4 digits. For example (with the year 20000):
to_date (’200001131’, ’yyyymmpDd’) will be interpreted as a 4-digit year; instead use
a non-digit separator after the year, like to_date(’20000-1131’, ’YYYY-MMDD’) or
to_date ('20000Nov31l’, ’'YYYYMonDD’).

In conversions from string to timestamp or date, the CC (century) field is ignored if there is a
YYY,YYYYOry,Yyy field. If cc is used with Yy or v then the year is computed as (CC-1) x100+YY.

An ISO week date (as distinct from a Gregorian date) can be specified to to_timestamp and
to_date in one of two ways:

- Year, week, and weekday: for example to_date (' 2006-42-4’, ’'IYYY-IW-ID’) returns the
date 2006-10-19. If you omit the weekday it is assumed to be 1 (Monday).

« Year and day of year: for example to_date('2006-291’, ’IYYY-IDDD’) also returns
2006-10-109.

Attempting to construct a date using a mixture of ISO week and Gregorian date fields is nonsensical,
and will cause an error. In the context of an ISO year, the concept of a “month” or “day of month”
has no meaning. In the context of a Gregorian year, the ISO week has no meaning. Users should
avoid mixing Gregorian and ISO date specifications.

In a conversion from string to t imestamp, millisecond (MS) or microsecond (Us) values are used
as the seconds digits after the decimal point. For example to_timestamp (/12:37, ’SS:MS’)
is not 3 milliseconds, but 300, because the conversion counts it as 12 + 0.3 seconds. This means

187

Chapter 9. Functions and Operators

for the format ss:Ms, the input values 12:3, 12:30, and 12:300 specify the same number of
milliseconds. To get three milliseconds, one must use 12 : 003, which the conversion counts as 12
+0.003 = 12.003 seconds.

Here is a more complex example: to_timestamp(’15:12:02.020.001230",
"HH:MI:SS.MS.US’) is 15 hours, 12 minutes, and 2 seconds + 20 milliseconds + 1230
microseconds = 2.021230 seconds.

to_char (..., "ID’)’sday ofthe week numbering matchesthe extract (isodow from ...)
function, but to_char (..., ’D’)’s does not match extract (dow from ...)’s day number-
ing.

to_char (interval) formats HH and HH12 as shown on a 12-hour clock, i.e. zero hours and 36
hours output as 12, while HH24 outputs the full hour value, which can exceed 23 for intervals.

Table 9-23 shows the template patterns available for formatting numeric values.

Table 9-23. Template Patterns for Numeric Formatting

Pattern Description

9 value with the specified number of digits

0 value with leading zeros

. (period) decimal point

, (comma) group (thousand) separator

PR negative value in angle brackets

S sign anchored to number (uses locale)

L currency symbol (uses locale)

D decimal point (uses locale)

G group separator (uses locale)

MI minus sign in specified position (if number < 0)
PL plus sign in specified position (if number > 0)
SG plus/minus sign in specified position

RN Roman numeral (input between 1 and 3999)
THoOr th ordinal number suffix

\ shift specified number of digits (see notes)
EEEE exponent for scientific notation

Usage notes for numeric formatting:

A sign formatted using SG, PL, or MI is not anchored to the number; for example, to_char (-12,
"MI9999’) produces ‘- 12’ but to_char(-12, ’59999’) produces * -12’. The Oracle
implementation does not allow the use of MI before 9, but rather requires that 9 precede M1I.

9 results in a value with the same number of digits as there are 9s. If a digit is not available it
outputs a space.

TH does not convert values less than zero and does not convert fractional numbers.
PL, SG, and TH are PostgreSQL extensions.

v effectively multiplies the input values by 10~n, where n is the number of digits following v.

188

Chapter 9. Functions and Operators

to_char does not support the use of v combined with a decimal point (e.g., 99.9V99 is not

allowed).

« EEEE (scientific notation) cannot be used in combination with any of the other formatting patterns
or modifiers other than digit and decimal point patterns, and must be at the end of the format string
(e.g., 9. 99EEEE is a valid pattern).

Certain modifiers can be applied to any template pattern to alter its behavior. For example, FM9999 is
the 9999 pattern with the FM modifier. Table 9-24 shows the modifier patterns for numeric formatting.

Table 9-24. Template Pattern Modifiers for Numeric Formatting

Modifier Description Example

FM prefix fill mode (suppress padding FM9999
blanks and zeroes)

TH suffix upper case ordinal number 999TH
suffix

th suffix lower case ordinal number 999th
suffix

Table 9-25 shows some examples of the use of the to_char function.

Table 9-25. to_char Examples

Expression Result
to_char (current_timestamp, " Tuesday 06 05:39:187
"Day, DD HH12:MI:SS’)

to_char (current_timestamp, " Tuesday, 05:39:18"
'FMDay, FMDD HH12:MI:SS’)

to_char(-0.1, 799.99") ’ -.10"
to_char(-0.1, "FM9.99") r—-.1r
to_char (0.1, 70.9") " 0.1’
to_char (12, "9990999.9") ! 0012.0"
to_char (12, 'FM9990999.9") 0012.7
to_char (485, 7999") ! 4857
to_char (-485, 7999") ' -485'
to_char (485, 9 9 9') " 4 8 57
to_char (1485, 79,999") ' 1,485
to_char (1485, "9G999") 1 485’
to_char(148.5, 7999.999") ' 148.500
to_char(148.5, ’'FM999.999") 7148.5"
to_char(148.5, "FM999.990") ’148.500"
to_char(148.5, "999D999") ' 148,500
to_char(3148.5, "9G999D%999") ' 3 148,500’
to_char (-485, "999s’) "485-"
to_char (-485, "999MI’) "485-"
to_char (485, "999MI’") '485 '

189

Chapter 9. Functions and Operators

Expression Result
to_char (485, "FM999MI’) ' 4857
to_char (485, ’'PL999’") r+4857
to_char (485, ’SG999") " +485"
to_char (=485, ’SG999') " -485"
to_char (=485, ’'9SG99') "4-85"
to_char (=485, "999PR’) ! <485>"
to_char (485, 'L999") DM 485
to_char (485, ’'RN’) ’ CDLXXXV'
to_char (485, ’'FMRN’) " CDLXXXV'
to_char (5.2, 'FMRN’) rv’
to_char (482, ’999th’) ! 482nd’

to_char (485, ’'"Good number:"999’)

"Good number: 485’

to_char (485.8,

"Pre: 485 Post: .800

""Pre:"999" Post:" .999')

to_char (12, "99vV999") 12000
to_char(12.4, ’"99v999") " 124007
to_char(12.45, "99v9’) 1257

to_char (0.0004859, ’9.99EEEE’)

! 4.86e-04"

9.9. Date/Time Functions and Operators

Table 9-27 shows the available functions for date/time value processing, with details appearing in
the following subsections. Table 9-26 illustrates the behaviors of the basic arithmetic operators (+,
+, etc.). For formatting functions, refer to Section 9.8. You should be familiar with the background
information on date/time data types from Section 8.5.

All the functions and operators described below that take time or t imestamp inputs actually come
in two variants: one that takes time with time zone Or timestamp with time zone, and one

that takes time without time zone or timestamp without time zone. For brevity, these
variants are not shown separately. Also, the + and » operators come in commutative pairs (for ex-
ample both date + integer and integer + date); we show only one of each such pair.

Table 9-26. Date/Time Operators

Operator Example Result

+ date "2001-09-28" + date 72001-10-05"
integer "7’

+ date 72001-09-28" + timestamp "2001-09-28
interval '1 hour’ 01:00:00"

+ date 72001-09-28" + timestamp 72001-09-28
time 703:00’ 03:00:00"

+ interval ’1 day’ + interval ’'1 day
interval ’1 hour’ 01:00:00"

190

Chapter 9. Functions and Operators

Operator Example Result
+ timestamp ’2001-09-28 timestamp ’2001-09-29
01:00" + interval ’'23 00:00:00"
hours’
+ time ’01:00" + interval |time "04:00:00"
"3 hours’
- - interval ’23 hours’ interval ’-23:00:00"
- date ’2001-10-01" - integer '3’ (days)
date 72001-09-28"
- date ’2001-10-01" - date ’2001-09-24"
integer 77’
- date 72001-09-28" - timestamp "2001-09-27
interval ’1 hour’ 23:00:00"
- time 705:00" - time interval "02:00:00"
703:00"
- time ’05:00" - interval |time "03:00:00"
"2 hours’
- timestamp "2001-09-28 timestamp 72001-09-28
23:00” - interval ’'23 00:00:00"
hours’
- interval 'l day’ - interval ’'1 day
interval ’1 hour’ -01:00:00"
- timestamp ’2001-09-29 interval ’'1 day
03:00" - timestamp 15:00:00"
72001-09-27 12:00"
* 900 % interval ’1 interval "00:15:00"
second’
* 21 x interval ’'1 day’ interval ’21 days’
* double precision ’3.5’ interval '03:30:00"
* interval ’1 hour’
/ interval ’1 hour’ / interval "00:40:00"
double precision ’1.5'
Table 9-27. Date/Time Functions
Function Return Type Description Example Result
age (timestamp, interval Subtract age (timestamp |43 years 9
timestamp) arguments, 72001-04-10", |mons 27 days
producing a timestamp
“symbolic” result |’71957-06-13")
that uses years
and months
age (timestamp) interval Subtract from age (timestamp |43 years 8
current_date r1957-06-13") mons 3 days
(at midnight)

191

Chapter 9. Functions and Operators

Function Return Type Description Example Result
clock_timestamp ()timestamp Current date and
with time time (changes
zone during statement
execution); see
Section 9.9.4
current_date date Current date; see
Section 9.9.4
current_time time with Current time of
time zone day; see Section
994
current_timestamptimestamp Current date and
with time time (start of
zone current
transaction); see
Section 9.9.4
date_part (text, |double Get subfield date_part (’ hour29
timestamp) precision (equivalent to timestamp
extract); see r2001-02-16
Section 9.9.1 20:38:40")
date_part (text, |double Get subfield date_part ('montB’,
interval) precision (equivalent to interval ’2
extract); see years 3
Section 9.9.1 months”’)
date_trunc (text, | timestamp Truncate to date_trunc (" hoh20p1-02-16
timestamp) specified timestamp 20:00:00
precision; see also | 7 2001-02-16
Section 9.9.2 20:38:40")
extract (field double Get subfield; see |extract (hour 20
from precision Section 9.9.1 from
timestamp) timestamp
72001-02-16
20:38:40")
extract (field double Get subfield; see |extract (month |3
from interval) |precision Section 9.9.1 from interval
"2 years 3
months’)
isfinite (date) boolean Test for finite date | isfinite (date |true
(not +/-infinity) r2001-02-16")
isfinite (timestandoolean Test for finite time isfinite (timestampe

stamp (not
+/-infinity)

72001-02-16
21:28:307)

isfinite (intervall)poolean

Test for finite
interval

isfinite (intery

"4 hours’)

yatue

justify_days (int

eivatierval

Adjust interval so
30-day time
periods are
represented as
months

Justify_days (i
35 days’)

ntemwvald days

192

Chapter 9. Functions and Operators

Function Return Type Description Example Result
justify_hours (intémteyrval Adjust interval so | justify_hours (ihtdayal
24-hour time *27 hours’) 03:00:00

periods are
represented as

days
justify_interval|(intewua)l Adjust interval justify_interval29idagsval
using "1 mon -1 23:00:00

justify_days hour’)
and
justify_hours,
with additional
sign adjustments

localtime time Current time of
day; see Section
994
localtimestamp |timestamp Current date and
time (start of
current
transaction); see
Section 9.9.4
now () timestamp Current date and
with time time (start of
zone current
transaction); see
Section 9.9.4
statement_timestlamprigstamp Current date and
with time time (start of
zone current
statement); see
Section 9.9.4
timeofday () text Current date and
time (like

clock_timestamp,
but as a text
string); see

Section 9.9.4
transaction_timelstame$kamp Current date and
with time time (start of
zone current
transaction); see
Section 9.9.4

In addition to these functions, the SQL OVERLAPS operator is supported:

(startl, endl) OVERLAPS (start2, end2)
(startl, lengthl) OVERLAPS (start2, length2)

This expression yields true when two time periods (defined by their endpoints) overlap, false when
they do not overlap. The endpoints can be specified as pairs of dates, times, or time stamps; or as a
date, time, or time stamp followed by an interval. When a pair of values is provided, either the start

193

Chapter 9. Functions and Operators

or the end can be written first; OVERLAPS automatically takes the earlier value of the pair as the start.
Each time period is considered to represent the half-open interval start <= time < end, unless
start and end are equal in which case it represents that single time instant. This means for instance
that two time periods with only an endpoint in common do not overlap.

SELECT (DATE ’2001-02-16", DATE ’"2001-12-21") OVERLAPS
(DATE "2001-10-30’, DATE ’'2002-10-30");

Result: true

SELECT (DATE ’2001-02-16’, INTERVAL ’100 days’) OVERLAPS
(DATE "2001-10-30’, DATE ’'2002-10-30");

Result: false

SELECT (DATE ’2001-10-29’, DATE "2001-10-30") OVERLAPS
(DATE "2001-10-30’, DATE '2001-10-31");

Result: false

SELECT (DATE "2001-10-30", DATE ’"2001-10-30") OVERLAPS
(DATE "2001-10-30’, DATE '2001-10-31");

Result: true

When adding an interval value to (or subtracting an interval value from) a timestamp with
time zone value, the days component advances (or decrements) the date of the timestamp with
time zone by the indicated number of days. Across daylight saving time changes (with the
session time zone set to a time zone that recognizes DST), this means interval ’1 day’ does
not necessarily equal interval ‘24 hours’. For example, with the session time zone set to
CST7CDT, timestamp with time zone ’2005-04-02 12:00-07’ + interval ’1 day’
will produce t imestamp with time zone ’2005-04-03 12:00-06’, while adding interval
’24 hours’ tothe same initial timestamp with time zone produces timestamp with time
zone ’2005-04-03 13:00-06", as there is a change in daylight saving time at 2005-04-03
02:00 in time zone CST7CDT.

Note there can be ambiguity in the months returned by age because different months have a different
number of days. PostgreSQL’s approach uses the month from the earlier of the two dates when cal-
culating partial months. For example, age (2004-06-01", ’2004-04-30") uses April to yield 1
mon 1 day, while using May would yield 1 mon 2 days because May has 31 days, while April
has only 30.

9.9.1. EXTRACT, date_part

EXTRACT (field FROM source)

The extract function retrieves subfields such as year or hour from date/time values. source must
be a value expression of type t imestamp, time, or interval. (Expressions of type date are cast to
timestamp and can therefore be used as well.) field is an identifier or string that selects what field
to extract from the source value. The ext ract function returns values of type double precision.
The following are valid field names:

century
The century

SELECT EXTRACT (CENTURY FROM TIMESTAMP ’'2000-12-16 12:21:13");
Result: 20
SELECT EXTRACT (CENTURY FROM TIMESTAMP ’'2001-02-16 20:38:40");
Result: 21

194

Chapter 9. Functions and Operators

The first century starts at 0001-01-01 00:00:00 AD, although they did not know it at the time.
This definition applies to all Gregorian calendar countries. There is no century number 0, you
go from -1 century to 1 century. If you disagree with this, please write your complaint to: Pope,
Cathedral Saint-Peter of Roma, Vatican.

PostgreSQL releases before 8.0 did not follow the conventional numbering of centuries, but just
returned the year field divided by 100.

day
The day (of the month) field (1 - 31)

SELECT EXTRACT (DAY FROM TIMESTAMP ’2001-02-16 20:38:40");
Result: 16

decade
The year field divided by 10

SELECT EXTRACT (DECADE FROM TIMESTAMP ’'2001-02-16 20:38:40");
Result: 200

dow
The day of the week as Sunday(0) to Saturday(6)

SELECT EXTRACT (DOW FROM TIMESTAMP ’2001-02-16 20:38:40");

Result: 5
Note that ext ract’s day of the week numbering differs from that of the to_char (..., 'D’)
function.

doy
The day of the year (1 - 365/366)

SELECT EXTRACT (DOY FROM TIMESTAMP ’2001-02-16 20:38:407);
Result: 47

epoch

For date and timestamp values, the number of seconds since 1970-01-01 00:00:00 UTC (can
be negative); for interval values, the total number of seconds in the interval

SELECT EXTRACT (EPOCH FROM TIMESTAMP WITH TIME ZONE ’2001-02-16 20:38:40.12-087);
Result: 982384720.12
SELECT EXTRACT (EPOCH FROM INTERVAL ’'5 days 3 hours’);
Result: 442800
Here is how you can convert an epoch value back to a time stamp:
SELECT TIMESTAMP WITH TIME ZONE ’epoch’ + 982384720.12 % INTERVAL ’1 second’;
(The to_timestamp function encapsulates the above conversion.)
hour
The hour field (0 - 23)

SELECT EXTRACT (HOUR FROM TIMESTAMP ’2001-02-16 20:38:407);
Result: 20

isodow
The day of the week as Monday(1) to Sunday(7)

SELECT EXTRACT (ISODOW FROM TIMESTAMP ’2001-02-18 20:38:40");
Result: 7

195

Chapter 9. Functions and Operators

This is identical to dow except for Sunday. This matches the ISO 8601 day of the week number-
ing.

isoyear
The ISO 8601 year that the date falls in (not applicable to intervals)

SELECT EXTRACT (ISOYEAR FROM DATE ’2006-01-01");
Result: 2005
SELECT EXTRACT (ISOYEAR FROM DATE ’2006-01-02");
Result: 2006

Each ISO year begins with the Monday of the week containing the 4th of January, so in early
January or late December the ISO year may be different from the Gregorian year. See the week
field for more information.

This field is not available in PostgreSQL releases prior to 8.3.
microseconds

The seconds field, including fractional parts, multiplied by 1 000 000; note that this includes full
seconds

SELECT EXTRACT (MICROSECONDS FROM TIME ’"17:12:28.5");
Result: 28500000

millennium
The millennium

SELECT EXTRACT (MILLENNIUM FROM TIMESTAMP ’'2001-02-16 20:38:40");
Result: 3

Years in the 1900s are in the second millennium. The third millennium started January 1, 2001.

PostgreSQL releases before 8.0 did not follow the conventional numbering of millennia, but just
returned the year field divided by 1000.

milliseconds

The seconds field, including fractional parts, multiplied by 1000. Note that this includes full
seconds.

SELECT EXTRACT (MILLISECONDS FROM TIME ’'17:12:28.5");
Result: 28500

minute
The minutes field (0 - 59)

SELECT EXTRACT (MINUTE FROM TIMESTAMP ’'2001-02-16 20:38:40");
Result: 38

month

For t imestamp values, the number of the month within the year (1 - 12) ; for interval values
the number of months, modulo 12 (0 - 11)

SELECT EXTRACT (MONTH FROM TIMESTAMP ’2001-02-16 20:38:40");
Result: 2

SELECT EXTRACT (MONTH FROM INTERVAL ’'2 years 3 months’);
Result: 3

SELECT EXTRACT (MONTH FROM INTERVAL ’2 years 13 months’);
Result: 1

196

Chapter 9. Functions and Operators

quarter

The quarter of the year (1 - 4) that the date is in

SELECT EXTRACT (QUARTER FROM TIMESTAMP ’'2001-02-16 20:38:40");
Result: 1

second
The seconds field, including fractional parts (0 - 59")
SELECT EXTRACT (SECOND FROM TIMESTAMP ’2001-02-16 20:38:407);
Result: 40
SELECT EXTRACT (SECOND FROM TIME '17:12:28.5");
Result: 28.5

timezone

The time zone offset from UTC, measured in seconds. Positive values correspond to time zones
east of UTC, negative values to zones west of UTC.

timezone_hour

The hour component of the time zone offset
timezone_minute

The minute component of the time zone offset
week

The number of the week of the year that the day is in. By definition (ISO 8601), the first week of
a year contains January 4 of that year. (The ISO-8601 week starts on Monday.) In other words,
the first Thursday of a year is in week 1 of that year.

Because of this, it is possible for early January dates to be part of the 52nd or 53rd week
of the previous year. For example, 2005-01-01 is part of the 53rd week of year 2004, and
2006-01-01 is part of the 52nd week of year 2005.

SELECT EXTRACT (WEEK FROM TIMESTAMP ’2001-02-16 20:38:407);
Result: 7

year

The year field. Keep in mind there is no 0 AD, so subtracting BC years from AD years should be
done with care.

SELECT EXTRACT (YEAR FROM TIMESTAMP ’2001-02-16 20:38:40");
Result: 2001

The extract function is primarily intended for computational processing. For formatting date/time
values for display, see Section 9.8.

The date_part function is modeled on the traditional Ingres equivalent to the SQL-standard function
extract:

date_part (' field’, source)

Note that here the field parameter needs to be a string value, not a name. The valid field names for
date_part are the same as for extract.

SELECT date_part (‘day’, TIMESTAMP ’2001-02-16 20:38:40");

60 if leap seconds are implemented by the operating system

197

Chapter 9. Functions and Operators
Result: 16

SELECT date_part ("hour’, INTERVAL "4 hours 3 minutes’);
Result: 4

9.9.2. date_trunc

The function date_trunc is conceptually similar to the t runc function for numbers.

date_trunc ('’ field’, source)

source is a value expression of type t imestamp or interval. (Values of type date and time are
cast automatically to timestamp or interval, respectively.) field selects to which precision to
truncate the input value. The return value is of type t imestamp or interval with all fields that are
less significant than the selected one set to zero (or one, for day and month).

Valid values for field are:

microseconds
milliseconds
second
minute

hour

day

week

month
quarter

year

decade
century

millennium

Examples:

SELECT date_trunc (’hour’, TIMESTAMP ’'2001-02-16 20:38:40");
Result: 2001-02-16 20:00:00

SELECT date_trunc(’year’, TIMESTAMP ’'2001-02-16 20:38:40");
Result: 2001-01-01 00:00:00

9.9.3. AT TIME ZONE

The AT TIME ZONE construct allows conversions of time stamps to different time zones. Table 9-28
shows its variants.

198

Chapter 9. Functions and Operators

Expression Return Type Description

Table 9-28. AT TIME ZONE Variants

Expression Return Type Description
timestamp without time timestamp with time Treat given time stamp without
zone AT TIME ZONE zone zone time zone as located in the

specified time zone

timestamp with time zone |timestamp without time |Convert given time stamp with
AT TIME ZONE zone zone time zone to the new time zone,
with no time zone designation

time with time zone AT time with time zone Convert given time with time
TIME ZONE zone zone to the new time zone

In these expressions, the desired time zone zone can be specified either as a text string (e.g., ' PST’)
or as an interval (e.g., INTERVAL ’-08:00"). In the text case, a time zone name can be specified in
any of the ways described in Section 8.5.3.

Examples (assuming the local time zone is PST8PDT):

SELECT TIMESTAMP ’'2001-02-16 20:38:40’ AT TIME ZONE ’'MST’;
Result: 2001-02-16 19:38:40-08

SELECT TIMESTAMP WITH TIME ZONE ’2001-02-16 20:38:40-05" AT TIME ZONE ’MST’;
Result: 2001-02-16 18:38:40

The first example takes a time stamp without time zone and interprets it as MST time (UTC-7), which
is then converted to PST (UTC-8) for display. The second example takes a time stamp specified in
EST (UTC-5) and converts it to local time in MST (UTC-7).

The function timezone (zone, timestamp) is equivalent to the SQL-conforming construct
timestamp AT TIME ZONE zone.

9.9.4. Current Date/Time

PostgreSQL provides a number of functions that return values related to the current date and time.
These SQL-standard functions all return values based on the start time of the current transaction:

CURRENT_DATE

CURRENT_TIME
CURRENT_TIMESTAMP
CURRENT_TIME (precision)
CURRENT_TIMESTAMP (precision)
LOCALTIME

LOCALTIMESTAMP

LOCALTIME (precision)
LOCALTIMESTAMP (precision)

CURRENT_TIME and CURRENT_TIMESTAMP deliver values with time zone; LOCALTIME and
LOCALTIMESTAMP deliver values without time zone.

199

Chapter 9. Functions and Operators

CURRENT_TIME, CURRENT_TIMESTAMP, LOCALTIME, and LOCALTIMESTAMP can optionally take a
precision parameter, which causes the result to be rounded to that many fractional digits in the seconds
field. Without a precision parameter, the result is given to the full available precision.

Some examples:

SELECT CURRENT_TIME;
Result: 14:39:53.662522-05

SELECT CURRENT_DATE;
Result: 2001-12-23

SELECT CURRENT_TIMESTAMP;
Result: 2001-12-23 14:39:53.662522-05

SELECT CURRENT_TIMESTAMP (2) ;
Result: 2001-12-23 14:39:53.66-05

SELECT LOCALTIMESTAMP;
Result: 2001-12-23 14:39:53.662522

Since these functions return the start time of the current transaction, their values do not change during
the transaction. This is considered a feature: the intent is to allow a single transaction to have a
consistent notion of the “current” time, so that multiple modifications within the same transaction
bear the same time stamp.

Note: Other database systems might advance these values more frequently.

PostgreSQL also provides functions that return the start time of the current statement, as well as the
actual current time at the instant the function is called. The complete list of non-SQL-standard time
functions is:

transaction_timestamp ()
statement_timestamp ()
clock_timestamp ()
timeofday ()

now ()

transaction_timestamp() 1S equivalent to CURRENT_TIMESTAMP, but is named to
clearly reflect what it returns. statement_timestamp () returns the start time of the current
statement (more specifically, the time of receipt of the latest command message from the
client). statement_timestamp () and transaction_timestamp () return the same value
during the first command of a transaction, but might differ during subsequent commands.
clock_timestamp () returns the actual current time, and therefore its value changes even
within a single SQL command. timeofday () is a historical PostgreSQL function. Like
clock_timestamp (), it returns the actual current time, but as a formatted text string rather
than a timestamp with time zone value. now() is a traditional PostgreSQL equivalent to
transaction_timestamp ().

All the date/time data types also accept the special literal value now to specify the current date and
time (again, interpreted as the transaction start time). Thus, the following three all return the same
result:

200

Chapter 9. Functions and Operators

SELECT CURRENT_TIMESTAMP;
SELECT now () ;
SELECT TIMESTAMP ’'now’; —-- incorrect for use with DEFAULT

Tip: You do not want to use the third form when specifying a pErauLT clause while creating a
table. The system will convert now to a timestamp as soon as the constant is parsed, so that
when the default value is needed, the time of the table creation would be used! The first two
forms will not be evaluated until the default value is used, because they are function calls. Thus
they will give the desired behavior of defaulting to the time of row insertion.

9.9.5. Delaying Execution

The following function is available to delay execution of the server process:
pg_sleep (seconds)

pg_sleep makes the current session’s process sleep until seconds seconds have elapsed. seconds
is a value of type double precision, so fractional-second delays can be specified. For example:

SELECT pg_sleep(l.5);

Note: The effective resolution of the sleep interval is platform-specific; 0.01 seconds is a common
value. The sleep delay will be at least as long as specified. It might be longer depending on factors
such as server load.

Warning

Make sure that your session does not hold more locks than necessary when
calling pg_s1leep. Otherwise other sessions might have to wait for your sleeping
process, slowing down the entire system.

9.10. Enum Support Functions

For enum types (described in Section 8.7), there are several functions that allow cleaner programming
without hard-coding particular values of an enum type. These are listed in Table 9-29. The examples
assume an enum type created as:

CREATE TYPE rainbow AS ENUM (’red’, ’orange’, ’yellow’, ’green’, ’blue’, ’'purple’);

Table 9-29. Enum Support Functions

201

Chapter 9. Functions and Operators

Function

Description

Example

Example Result

enum_first (anyenum

)Returns the first value
of the input enum type

enum_first (null::r

pratow)

enum_last (anyenum)

Returns the last value
of the input enum type

enum_last (null::ra

yoioop) e

enum_range (anyenum

)Returns all values of
the input enum type in
an ordered array

enum_range (null::r

pinddwdrange, yellow

ygreen,blue, p

enum_range (anyenum

anyenum)

, Returns the range
between the two given
enum values, as an
ordered array. The
values must be from
the same enum type. If
the first parameter is
null, the result will
start with the first value
of the enum type. If the
second parameter is
null, the result will end
with the last value of
the enum type.

enum_range (' orange

"green’ : :rainbow)

! foradgdowellow, gre

en}

enum_range (NULL,

"green’ : :rainbow)

{red, orange, yellow

, green}

enum_range (' orange
NULL)

" foradgdowellow, gre

en,blue, purpl

Notice that except for the two-argument form of enum_range, these functions disregard the specific
value passed to them; they care only about its declared data type. Either null or a specific value of
the type can be passed, with the same result. It is more common to apply these functions to a table
column or function argument than to a hardwired type name as suggested by the examples.

9.11. Geometric Functions and Operators

The geometric types point, box, 1seq, line, path, polygon, and circle have alarge set of native
support functions and operators, shown in Table 9-30, Table 9-31, and Table 9-32.

Caution

Note that the “same as” operator, ~=, represents the usual notion of equality for
the point, box, polygon, and circle types. Some of these types also have an
= operator, but = compares for equal areas only. The other scalar comparison
operators (<= and so on) likewise compare areas for these types.

Table 9-30. Geometric Operators

Operator Description Example

+ Translation box ’ ((0,0), (1,1))" +
point ' (2.0,0)"

- Translation box 7 ((0,0), (1,1))" -
point " (2.0,0)"

202

Chapter 9. Functions and Operators

Operator Description Example
* Scaling/rotation box ' ((0,0),(1,1))" =
point " (2.0,0)’
/ Scaling/rotation box ' ((0,0),(2,2))" /
point " (2.0,0)’
Point or box of intersection T((1,-1), (-1,1))"
T((1,1), (-1,-1))"
Number of points in path or
[xﬂygon "((1,0),(0,1),(-1,0))"
e-@ Length or circumference @-@ path
" ((0,0),(1,0))"
ee Center @@ circle ' ((0,0),10)"
Closest point to first operand on | point ' (0,0)’ ## lseg
second operand " ((2,0),(0,2))"
<-> Distance between circle 7 ((0,0),1)" <->
circle 7 ((5,0),1)"
8& Overlaps? (One point in box ’ ((0,0), (1,1))’ &s
common makes this true.) box " ((0,0),(2,2))"
<< Is strictly left of? circle 7 ((0,0),1)" <<
circle ' ((5,0),1)"
>> Is strictly right of? circle 7 ((5,0),1)" >>
circle 7 ((0,0),1)"
&< Does not extend to the right of? |box ’ ((0,0), (1,1))" &<
box " ((0,0), (2,2))"
&> Does not extend to the left of? |box ’ ((0,0), (3,3))’ &>
box ' ((0,0),(2,2))’
<< | Is strictly below? box ' ((0,0),(3,3))" <<|
box " ((3,4), (5,5))"
[>> Is strictly above? box ' ((3,4),(5,5))" |>>
box " ((0,0), (3,3))’
&< | Does not extend above? box ' ((0,0), (1,1))’" &<|
box " ((0,0), (2,2))"
| &> Does not extend below? box ' ((0,0),(3,3))" |&>
box " ((0,0), (2,2))"
< Is below (allows touching)? circle 7 ((0,0),1)" <»
circle ’ ((0,5),1)"
>n Is above (allows touching)? circle 7 ((0,5),1)" >~
circle ' ((0,0),1)’
24 Intersects? lseg " ((=1,0),(1,0))"

?# box
" ((=2,-2),(2,2))"

Is horizontal?

?— lseg
" ((=1,0),(1,0))"

Are horizontally aligned?

point ' (1,0)’ 7?- point
' (0,0)

?

Is vertical?

?| lseg
" ((=1,0),(1,0))"

203

Chapter 9. Functions and Operators

Operator Description Example

2 Are vertically aligned? point ' (0,1)’ ?| point
' (0,0)"

- Is perpendicular? lseg ' ((0,0), (0,1))"
?-| lseg
" ((0,0),(1,0))"

21 | Are parallel? lseg ' ((=1,0),(1,0))"
211 lseg
f((=1,2),(1,2))"

@> Contains? circle 7 ((0,0),2)" @>
point " (1,1)’

<@ Contained in or on? point ' (1,1)’ <@ circle

" ((0,0),2)"

Same as?

polygon ’ ((0,0), (1,1))"
~= polygon

" ((1,1),(0,0))"

Note: Before PostgreSQL 8.2, the containment operators @> and <e were respectively called ~
and e. These names are still available, but are deprecated and will eventually be removed.

Table 9-31. Geometric Functions

Function Return Type Description Example
area (object) double precision area area (box

" ((0,0),(1,1))")
center (object) point center center (box

" ((0,0),(1,2))")

diameter (circle)

double precision

diameter of circle

diameter (circle
" ((0,0),2.0)")

height (box)

double precision

vertical size of box

height (box
" ((0,0),(1,1))")

isclosed (path) boolean a closed path? isclosed (path
" ((0,0),(1,1),(2,0
isopen (path) boolean an open path? isopen (path

"1(0,0),(1,1),(2,0

) 17)

length (object)

double precision

length

length (path
"((=1,0),(1,0))")

) 17)

npoints (path) int number of points npoints (path
"[(0,0),(1,1),(2,0
npoints (polygon) int number of points npoints (polygon

"((1,1),(0,0))")

204

Chapter 9. Functions and Operators

) 17)

Function Return Type Description Example

pclose (path) path convert path to closed |pclose (path
"1(0,0),(1,1), (2,0

popen (path) path convertpaﬂ1u>0pen popen (path

" ((0,0),(1,1),(2,0

) ")

radius (circle)

double precision

radius of circle

radius (circle
"((0,0),2.0)")

width (box)

double precision

horizontal size of box

width (box
" ((0,0),(1,1))")

Table 9-32. Geometric Type Conversion Functions

) ")

D)) ")

Function Return Type Description Example
box (circle) box circle to box box (circle
"((0,0),2.0)")
box (point, point) box points to box box (point
"(0,0)’, point
"(1,1)")
box (polygon) box polygon to box box (polygon
"((0,0),(1,1),(2,0
circle (box) circle box to circle circle (box
" ((0,0),(1,1))")
circle (point, double |circle center and radius to circle (point
precision) circle "(0,0)", 2.0)
circle (polygon) circle polygon to circle circle (polygon
"((0,0),(1,1), (2,0
1seg (box) lseg box diagonal to line lseg (box
segment " ((=1,0),(1,0)0)")
lseg (point, point) lseg points to line segment | l1seg (point
"(-1,0)", point
'(1,0)")
path (polygon) point polygon to path path (polygon
"((0,0),(1,1), (2,0
point (double point construct point point (23.4,
precision, double -44.5)
precision)
point (box) point center of box point (box
" ((-1,0),(1,0))")
point (circle) point center of circle point (circle
" ((0,0),2.0)")
point (lseg) point center of line segment |point (lseg

"((=1,0),(1,0))")

205

Chapter 9. Functions and Operators

Function Return Type Description Example

point (polygon) point center of polygon point (polygon
"((0,0),(1,1),(2,0))")

polygon (box) polygon box to 4-point polygon |polygon (box
" ((0,0),(1,1))")
polygon (circle) polygon circle to 12-point polygon (circle
polygon 7((0,0),2.0)")
polygon (npts, polygon circle to npts-point polygon (12,
circle) polygon circle

" ((0,0),2.0)")

polygon (path) polygon path to polygon polygon (path
" ((0,0),(1,1),(2,0))")

It is possible to access the two component numbers of a point as though the point were an array with
indexes 0 and 1. For example, if t . p iS a point column then SELECT p[0] FROM t retrieves the X
coordinate and UPDATE t SET p[l1] = ... changesthe Y coordinate. In the same way, a value of
type box or 1seg can be treated as an array of two point values.

The area function works for the types box, circle, and path. The area function only
works on the path data type if the points in the path are non-intersecting. For example,
the path "((0,0),(0,1),(2,1),(2,2),(1,2),(1,0), (0,0))" ::PATH
will not work; however, the following visually identical path
7 ((0,0),(0,1),(1,1),(1,2),(2,2),(2,1),(1,1),(1,0), (0,0))”::PATH will work. If
the concept of an intersecting versus non-intersecting path is confusing, draw both of the above
paths side by side on a piece of graph paper.

9.12. Network Address Functions and Operators

Table 9-33 shows the operators available for the cidr and inet types. The operators <<, <<=,
>>, and >>= test for subnet inclusion. They consider only the network parts of the two addresses
(ignoring any host part) and determine whether one network is identical to or a subnet of the other.

Table 9-33. cidr and inet Operators

Operator Description Example

< is less than inet 7192.168.1.5" <
inet 7192.168.1.6'

<= is less than or equal inet 7192.168.1.5" <=
inet 7192.168.1.5"

= equals inet 7192.168.1.5" =
inet 7192.168.1.5"

>= is greater or equal inet 7192.168.1.5" >=
inet 7192.168.1.5'

> is greater than inet 7192.168.1.5" >
inet 7192.168.1.4'

206

Chapter 9. Functions and Operators

Operator Description Example

<> is not equal inet 7192.168.1.5" <>
inet 7192.168.1.4"

<< is contained within inet 7192.168.1.5" <<
inet 7192.168.1/24'

<<= is contained within or equals inet 7192.168.1/24" <<=
inet 7192.168.1/24'

>> contains inet 7192.168.1/247 >>
inet 7192.168.1.5'

>>= contains or equals inet 7192.168.1/24" >>=
inet 7192.168.1/24’

~ bitwise NOT ~ inet 7192.168.1.6’

& bitwise AND inet 7192.168.1.6" &
inet 70.0.0.255"

bitwise OR inet 7192.168.1.6" |

inet 70.0.0.255"

+ addition inet 7192.168.1.6" + 25

- subtraction inet 7192.168.1.43" -
36

- subtraction inet 7192.168.1.43" -
inet 7192.168.1.19'

Table 9-34 shows the functions available for use with the cidr and inet types. The abbrev, host,
and text functions are primarily intended to offer alternative display formats.

Table 9-34. cidr and inet Functions

P4

Function Return Type Description Example Result

abbrev (inet) text abbreviated abbrev (inet 10.1.0.0/16
display formatas |’10.1.0.0/16")
text

abbrev (cidr) text abbreviated abbrev (cidr 10.1/16
display formatas |710.1.0.0/16")
text

broadcast (inet) |inet broadcast address |broadcast (1192,168.168/24255/}
for network

family (inet) int extract family of |family(’::1") |6
address; 4 for
IPv4, 6 for IPv6

host (inet) text extract IP address |host (7192.168.11922468.1.5
as text

hostmask (inet) inet construct host hostmask (7192.168028.30/30")
mask for network

masklen (inet) int extract netmask masklen (/192.16841.5/24")
length

netmask (inet) inet construct netmask | netmask (/192.16855.3%24255.0

for network

207

Chapter 9. Functions and Operators

Function Return Type Description Example Result

network (inet) cidr extract network network (192.16892.%56841)0/24
part of address

set_masklen (inet/inet set netmask length | set_masklen (’ 192926868.%5/3416%

int) for inet value 16)

set_masklen (cidrfcidr set netmask length | set_masklen (' 192926868.0/R416

int) for cidr value 16)

text (inet) text extract IP address |text (inet 192.168.1.5/32
and netmask 7192.168.1.5")

length as text

Any cidr value can be cast to inet implicitly or explicitly; therefore, the functions shown above
as operating on inet also work on cidr values. (Where there are separate functions for inet and
cidr, it is because the behavior should be different for the two cases.) Also, it is permitted to cast
an inet value to cidr. When this is done, any bits to the right of the netmask are silently zeroed to
create a valid cidr value. In addition, you can cast a text value to inet or cidr using normal casting
syntax: for example, inet (expression) O colname: :cidr.

Table 9-35 shows the functions available for use with the macaddr type. The function t runc (macaddr)
returns a MAC address with the last 3 bytes set to zero. This can be used to associate the remaining
prefix with a manufacturer.

Table 9-35. macaddr Functions

Function Return Type Description Example Result
trunc (macaddr) macaddr set last 3 bytes to | trunc (macaddr [12:34:56:00:00
Zero "12:34:56:78:90:ab")

The macaddr type also supports the standard relational operators (>, <=, etc.) for lexicographical
ordering.

9.13. Text Search Functions and Operators

Table 9-36, Table 9-37 and Table 9-38 summarize the functions and operators that are provided for
full text searching. See Chapter 12 for a detailed explanation of PostgreSQL’s text search facility.

Table 9-36. Text Search Operators

Operator Description Example Result
Q@ tsvector matches to_tsvector (’ fat t
tsquery ? cats ate rats’)
Qe

to_tsquery (' cat &
rat’)

208

cidr,

00

Chapter 9. Functions and Operators

in ?

"cat &

rat’ ::tsquery

Operator Description Example Result
eee deprecated synonym to_tsvector (' fat |t
for @@ cats ate rats’)
@Qea@
to_tsquery (' cat &
rat’)
| concatenate ra:l ra’:1 'b’":2,5
tsvectors b:2"::tsvector || |'c’:3 'd’':4
"c:l d:2
b:3" ::tsvector
&8 AND tsquerys "fat | ("fat’ | ’'rat’)
together rat’ ::tsquery &é& & 'cat’
"cat’ ::tsquery
| OR tsquerys together |’ fat | ("fat’ | ’"rat’)
rat’ ::tsquery || | "cat’
"cat’ ::tsquery
[y negate a tsquery 'l 7cat’::tsquery |!’cat’
@> tsquery contains "cat’ ::tsquery @> | f
another ? "cat &
rat’ ::tsquery
<@ tsquery is contained |’cat’::tsquery <@ |t

Note: The tsquery containment operators consider only the lexemes listed in the two queries,
ignoring the combining operators.

In addition to the operators shown in the table, the ordinary B-tree comparison operators (=, <, etc)
are defined for types t svector and tsquery. These are not very useful for text searching but allow,
for example, unique indexes to be built on columns of these types.

Table 9-37. Text Search Functions

Function Return Type Description Example Result
to_tsvector ([tsvector reduce document |to_tsvector (' engEash*
config regconfig textto tsvector |’The Fat "rat’ :3
, 1 document Rats’)
text)
length (tsvector) | integer number of length (' fat:2,43
lexemes in cat:3
tsvector rat:5A’ ::tsvector)
setweight (tsvectqifbsvector asﬂgn\vdghtu) setweight (' fatt2¢dt’ :3A
"char") each element of cat:3 " fat’ :2A, 4A
tsvector rat:5B’ ::tsvectbrat’ : 5A
TAr)

209

Chapter 9. Functions and Operators

Function Return Type Description Example Result
strip (tsvector) |tsvector remove positions |strip(’fat:2,4|’cat’ ’fat’
and weights from |cat:3 "rat’
tsvector rat:5A’ : :tsvector)
to_tsquery ([tsquery normalize words to_tsquery ('englfsh’,& ’"rat’
config regconfig and convert to "The & Fat &
, 1 query text) tsquery Rats’)
plainto_tsquery (|[[tsquery produce tsquery |plainto_tsquery{fenglishtat’
config regconfig ignoring "The Fat
, 1 query text) punctuation Rats’)
numnode (tsquery) | integer number of 5
lexemes plus numnode (’ (fat
operators in & rat) |
tsquery cat’ ::tsquery)
querytree (query |text get indexable part | querytree (' foo|’ foo’
tsquery) of a tsquery & !
bar’ ::tsquery)
ts_rank ([floatd rank document for | t s_rank (textsea®cB]l8
weights query query)
floatd[], 1]
vector tsvector,
query tsquery [,
normalization
integer 1)
ts_rank_cd ([float4 rank document for | ts_rank_cd (' {0/2,01317
weights query using cover (0.2, 0.4,
floatd[l, 1 density 1.0},
vector tsvector, textsearch,
query tsquery [, query)
normalization
integer])
ts_headline ([text display a query ts_headline (x|x y z
config match y z",
regconfig, | "'z’ ::tsquery)
document text,
query tsquery [,
options text 1)
ts_rewrite (query|tsquery replace target with | ts_rewrite(‘a |’b’ & (’foo’
tsquery, target substitute within | & | "bar’)
tsquery, query b’ ::tsquery,
substitute "a’ ::tsquery,
tsquery) "foolbar’ ::tsqlery)

210

Chapter 9. Functions and Operators

Function Return Type Description Example Result
ts_rewrite (query|tsquery replace using SELECT b’ & ("foo’
tsquery, select targets and ts_rewrite(’a || 'bar’)
text) substitutes from a | &
SELECT command | b’ : :tsquery,
"SELECT t,s
FROM
aliases’)
get_current_ts_cdongggonfig get default text get_current_ts| engfigh)
search
configuration

tsvector_update_[trrggget)

trigger function
for automatic
tsvector
column update

CREATE
TRIGGER

tsvector_updaté_trigger (tsvcol

"pg_catalog.swedish’,

title, body)
tsvector_update_|trigggercolumn () | trigger function CREATE
for automatic TRIGGER
tsvector tsvector_update_trigger_column
column update configcol,
title, body)

Note: All the text search functions that accept an optional regconfig argument will use the con-
figuration specified by default_text_search_config when that argument is omitted.

The functions in Table 9-38 are listed separately because they are not usually used in everyday text
searching operations. They are helpful for development and debugging of new text search configura-

tions.

Table 9-38. Text Search Debugging Functions

document text,
OUT alias text,
OUT description
OUT token
ouT

text,
text,
dictionaries
regdictionaryl[],
OUT dictionary
regdictionary,

OUT lexemes

text[])

supernovaes’)

211

~

(tsvcol,

Function Return Type Description Example Result

ts_debug ([setof record test a ts_debug (’englifhs¢iiword, "Word,
config configuration " The all

regconfig,] Brightest ASCII", The, {en

lish_stem}, er

Chapter 9. Functions and Operators

Function Return Type Description Example Result
ts_lexize(dict |text][] test a dictionary ts_lexize (’englishastem’,
regdictionary, "stars’)

token text)

ts_parse (parser_naetof record test a parser ts_parse ('defanlt; foo)
text, document "foo - bar’)

text, OUT tokid

integer, OUT

token text)

ts_parse (parser_qizetof record test a parser ts_parse (3722, | (1, foo)

oid, document

text, OUT tokid
integer, OUT

token text)

"foo - bar’)

ts_token_type (pa
OUT tokid
ouT

OuT

text,
integer,
alias text,
description

text)

rset afmeecord

get token types
defined by parser

ts_token_type (

défastttiyvord, "V
all ASCII")

Nord,

ts_token_type (pa
OUT tokid
ouT

OuUT

oid,
integer,
alias text,
description

text)

rset ofdrecord

get token types
defined by parser

ts_token_type (

BT122asciiword, "V
all ASCII")

Nord,

ts_stat (sglquery
text, [weights
text,] OUT word
text, OUT ndoc

integer, OUT

setof record

nentry integer)

get statistics of a
tsvector

column

ts_stat (' SELEC
vector from

apod’)

T (foo,10,15)

9.14. XML Functions

The functions and function-like expressions described in this section operate on values of type xm1.
Check Section 8.13 for information about the xm1 type. The function-like expressions xmlparse and
xmlserialize for converting to and from type xml are not repeated here. Use of many of these
functions requires the installation to have been built with configure --with-libxml.

9.14.1. Producing XML Content

A set of functions and function-like expressions are available for producing XML content from SQL
data. As such, they are particularly suitable for formatting query results into XML documents for

processing in client

applications.

212

Chapter 9. Functions and Operators

9.14.1.1. xmlcomment
xmlcomment (text)

The function xmlcomment creates an XML value containing an XML comment with the specified
text as content. The text cannot contain “~-"" or end with a “-”" so that the resulting construct is a valid

XML comment. If the argument is null, the result is null.

Example:

SELECT xmlcomment ("hello’);

xmlcomment

<!--hello——>

9.14.1.2. xmlconcat
xmlconcat (xml1[, ...])

The function xmlconcat concatenates a list of individual XML values to create a single value con-
taining an XML content fragment. Null values are omitted; the result is only null if there are no
nonnull arguments.

Example:

SELECT xmlconcat (' <abc/>’, ’<bar>foo</bar>’");

xmlconcat

<abc/><bar>foo</bar>

XML declarations, if present, are combined as follows. If all argument values have the same XML
version declaration, that version is used in the result, else no version is used. If all argument values
have the standalone declaration value “yes”, then that value is used in the result. If all argument
values have a standalone declaration value and at least one is “no”, then that is used in the result.
Else the result will have no standalone declaration. If the result is determined to require a standalone
declaration but no version declaration, a version declaration with version 1.0 will be used because
XML requires an XML declaration to contain a version declaration. Encoding declarations are ignored
and removed in all cases.

Example:

SELECT xmlconcat (’/<?xml version="1.1"?><foo/>', ’<?xml version="1.1" standalone="no"?><b
xmlconcat

<?xml version="1.1"?><foo/><bar/>

213

Chapter 9. Functions and Operators

9.14.1.3. xmlelement
xmlelement (name name [, xmlattributes (value [AS attname] [, ... 1)1 [, content, ...])

The xmlelement expression produces an XML element with the given name, attributes, and content.

Examples:

SELECT xmlelement (name foo);

xmlelement

SELECT xmlelement (name foo, xmlattributes(’'xyz’ as bar));

xmlelement

<foo bar="xyz"/>
SELECT xmlelement (name foo, xmlattributes (current_date as bar), ’'cont’, ’'ent’);

xmlelement

<foo bar="2007-01-26">content</foo>

Element and attribute names that are not valid XML names are escaped by replacing the offending
characters by the sequence _xHHHA_, where HHHH is the character’s Unicode codepoint in hexadeci-
mal notation. For example:

SELECT xmlelement (name "fooS$bar", xmlattributes (’xyz’ as "a&b"));

xmlelement

<foo_x0024_bar a_x0026_b="xyz"/>

An explicit attribute name need not be specified if the attribute value is a column reference, in which
case the column’s name will be used as the attribute name by default. In other cases, the attribute must
be given an explicit name. So this example is valid:

CREATE TABLE test (a xml, b xml);
SELECT xmlelement (name test, xmlattributes(a, b)) FROM test;

But these are not:

SELECT xmlelement (name test, xmlattributes(’constant’), a, b) FROM test;
SELECT xmlelement (name test, xmlattributes (func(a, b))) FROM test;

Element content, if specified, will be formatted according to its data type. If the content is itself of
type xm1, complex XML documents can be constructed. For example:

SELECT xmlelement (name foo, xmlattributes(’xyz’ as bar),

xmlelement (name abc),
xmlcomment (' test’),

214

Chapter 9. Functions and Operators
xmlelement (name xyz));

xmlelement

<foo bar="xyz"><abc/><!--test--><xyz/></foo>

Content of other types will be formatted into valid XML character data. This means in particular
that the characters <, >, and & will be converted to entities. Binary data (data type bytea) will
be represented in base64 or hex encoding, depending on the setting of the configuration parameter
xmlbinary. The particular behavior for individual data types is expected to evolve in order to align the
SQL and PostgreSQL data types with the XML Schema specification, at which point a more precise
description will appear.

9.14.1.4. xmlforest

xmlforest (content [AS name] [, ...])

The xm1forest expression produces an XML forest (sequence) of elements using the given names
and content.

Examples:

SELECT xmlforest (’abc’ AS foo, 123 AS bar);

xmlforest

<foo>abc</foo><bar>123</bar>

SELECT xmlforest (table_name, column_name)
FROM information_schema.columns
WHERE table_schema = ’"pg_catalog’;

xmlforest

<table_name>pg_authid</table_name><column_name>rolname</column_name>
<table_name>pg_authid</table_name><column_name>rolsuper</column_name>

As seen in the second example, the element name can be omitted if the content value is a column
reference, in which case the column name is used by default. Otherwise, a name must be specified.

Element names that are not valid XML names are escaped as shown for xmlelement above. Simi-
larly, content data is escaped to make valid XML content, unless it is already of type xm1.

Note that XML forests are not valid XML documents if they consist of more than one element, so it
might be useful to wrap xmlforest expressions in xmlelement.

9.14.1.5. xmlpi

xmlpi (name target [, content])

The xm1pi expression creates an XML processing instruction. The content, if present, must not con-
tain the character sequence ?>.

Example:

215

Chapter 9. Functions and Operators

SELECT xmlpi (name php, ’"echo "hello world";’);

<?php echo "hello world";?>

9.14.1.6. xmlroot

xmlroot (xml, version text | no value [, standalone yes|no|no value])

The xmlroot expression alters the properties of the root node of an XML value. If a version is spec-
ified, it replaces the value in the root node’s version declaration; if a standalone setting is specified, it
replaces the value in the root node’s standalone declaration.

SELECT xmlroot (xmlparse (document ’<?xml version="1.1"?><content>abc</content>’),
version "1.0’, standalone yes);

xmlroot

<?xml version="1.0" standalone="yes"?>
<content>abc</content>

9.14.1.7. xmlagg

xmlagg (xml)

The function xmlagg is, unlike the other functions described here, an aggregate function. It con-
catenates the input values to the aggregate function call, much like xmlconcat does, except that
concatenation occurs across rows rather than across expressions in a single row. See Section 9.18 for
additional information about aggregate functions.

Example:

CREATE TABLE test (y int, x xml);
INSERT INTO test VALUES (1, ’<foo>abc</foo>');
INSERT INTO test VALUES (2, ’'<bar/>'");
SELECT xmlagg(x) FROM test;
xmlagg

<foo>abc</foo><bar/>

To determine the order of the concatenation, an ORDER BY clause may be added to the aggregate call
as described in Section 4.2.7. For example:

SELECT xmlagg(x ORDER BY y DESC) FROM test;
xmlagg

<bar/><foo>abc</foo>

216

Chapter 9. Functions and Operators

The following non-standard approach used to be recommended in previous versions, and may still be
useful in specific cases:

SELECT xmlagg(x) FROM (SELECT % FROM test ORDER BY y DESC) AS tab;
xmlagg

<bar/><foo>abc</foo>

9.14.1.8. XML Predicates

xml IS DOCUMENT

The expression IS DOCUMENT returns true if the argument XML value is a proper XML document,
false if it is not (that is, it is a content fragment), or null if the argument is null. See Section 8.13 about
the difference between documents and content fragments.

9.14.2. Processing XML

To process values of data type xm1, PostgreSQL offers the function xpath, which evaluates XPath
1.0 expressions.

xpath (xpath, xml[, nsarray])
The function xpath evaluates the XPath expression xpath against the XML value xm1. It returns an
array of XML values corresponding to the node set produced by the XPath expression.

The second argument must be a well formed XML document. In particular, it must have a single root
node element.

The third argument of the function is an array of namespace mappings. This array should be a two-
dimensional array with the length of the second axis being equal to 2 (i.e., it should be an array of
arrays, each of which consists of exactly 2 elements). The first element of each array entry is the
namespace name (alias), the second the namespace URI. It is not required that aliases provided in
this array are the same that those being used in the XML document itself (in other words, both in the
XML document and in the xpath function context, aliases are local).

Example:

SELECT xpath(’/my:a/text()’, ’'<my:a xmlns:my="http://example.com">test</my:a>’,
ARRAY [ARRAY ['my’, ’'http://example.com’]]);

How to deal with default (anonymous) namespaces:

SELECT xpath(’//mydefns:b/text()’, ’'test’,

217

Chapter 9. Functions and Operators

ARRAY [ARRAY ['mydefns’, ’"http://example.com’]]);

9.14.3. Mapping Tables to XML

The following functions map the contents of relational tables to XML values. They can be thought of
as XML export functionality:

table_to_xml (tbl regclass, nulls boolean, tableforest boolean, targetns text)
query_to_xml (query text, nulls boolean, tableforest boolean, targetns text)
cursor_to_xml (cursor refcursor, count int, nulls boolean,

tableforest boolean, targetns text)

The return type of each function is xm1.

table_to_xml maps the content of the named table, passed as parameter tbl. The regclass type
accepts strings identifying tables using the usual notation, including optional schema qualifications
and double quotes. query_to_xml executes the query whose text is passed as parameter query and
maps the result set. cursor_to_xml fetches the indicated number of rows from the cursor specified
by the parameter cursor. This variant is recommended if large tables have to be mapped, because
the result value is built up in memory by each function.

If tableforest is false, then the resulting XML document looks like this:
<tablename>
<row>
<columnnamel>data</columnnamel>
<columnname2>data</columnname2>
</row>
<row>
</row>
</tablename>
If tableforest is true, the result is an XML content fragment that looks like this:
<tablename>
<columnnamel>data</columnnamel>
<columnname2>data</columnname2>
</tablename>

<tablename>

</tablename>

218

Chapter 9. Functions and Operators

If no table name is available, that is, when mapping a query or a cursor, the string table is used in
the first format, row in the second format.

The choice between these formats is up to the user. The first format is a proper XML document,
which will be important in many applications. The second format tends to be more useful in the
cursor_to_xml function if the result values are to be reassembled into one document later on. The
functions for producing XML content discussed above, in particular xmlelement, can be used to
alter the results to taste.

The data values are mapped in the same way as described for the function xmlelement above.

The parameter nulls determines whether null values should be included in the output. If true, null
values in columns are represented as:

<columnname xsi:nil="true"/>

where xsi is the XML namespace prefix for XML Schema Instance. An appropriate namespace
declaration will be added to the result value. If false, columns containing null values are simply
omitted from the output.

The parameter targetns specifies the desired XML namespace of the result. If no particular names-
pace is wanted, an empty string should be passed.

The following functions return XML Schema documents describing the mappings performed by the
corresponding functions above:

table_to_xmlschema (tbl regclass, nulls boolean, tableforest boolean, targetns text)
query_to_xmlschema (query text, nulls boolean, tableforest boolean, targetns text)
cursor_to_xmlschema (cursor refcursor, nulls boolean, tableforest boolean, targetns text)

It is essential that the same parameters are passed in order to obtain matching XML data mappings
and XML Schema documents.

The following functions produce XML data mappings and the corresponding XML Schema in one
document (or forest), linked together. They can be useful where self-contained and self-describing
results are wanted:

table_to_xml_and_xmlschema (tbl regclass, nulls boolean, tableforest boolean, targetns te
query_to_xml_and_xmlschema (query text, nulls boolean, tableforest boolean, targetns text

In addition, the following functions are available to produce analogous mappings of entire schemas
or the entire current database:

schema_to_xml (schema name, nulls boolean, tableforest boolean, targetns text)
schema_to_xmlschema (schema name, nulls boolean, tableforest boolean, targetns text)
schema_to_xml_and_xmlschema (schema name, nulls boolean, tableforest boolean, targetns te

database_to_xml (nulls boolean, tableforest boolean, targetns text)
database_to_xmlschema (nulls boolean, tableforest boolean, targetns text)
database_to_xml_and_xmlschema (nulls boolean, tableforest boolean, targetns text)

Note that these potentially produce a lot of data, which needs to be built up in memory. When request-
ing content mappings of large schemas or databases, it might be worthwhile to consider mapping the
tables separately instead, possibly even through a cursor.

The result of a schema content mapping looks like this:

<schemaname>

219

Chapter 9. Functions and Operators

tablel-mapping

tableZ2-mapping

</schemaname>

where the format of a table mapping depends on the tableforest parameter as explained above.

The result of a database content mapping looks like this:

<dbname>
<schemalname>
</;égemalname>
<schema2name>

</schema2name>

</dbname>

where the schema mapping is as above.

As an example of using the output produced by these functions, Figure 9-1 shows an XSLT stylesheet
that converts the output of table_to_xml_and_xmlschema to an HTML document containing a
tabular rendition of the table data. In a similar manner, the results from these functions can be con-
verted into other XML-based formats.

Figure 9-1. XSLT stylesheet for converting SQL/XML output to HTML

<?xml version="1.0"7?>

<xsl:stylesheet version="1.0"
xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
xmlns="http://www.w3.0rg/1999/xhtml"

<xsl:output method="xml"
doctype-system="http://www.w3.0rg/TR/xhtml1/DTD/xhtmll-strict.dtd"
doctype-public="-//W3C/DTD XHTML 1.0 Strict//EN"
indent="yes"/>

<xsl:template match="/+">
<xsl:variable name="schema" select="//xsd:schema"/>
<xsl:variable name="tabletypename"
select="S$schema/xsd:element [@name=name (current ())]/@type"/>
<xsl:variable name="rowtypename"
select="$schema/xsd:complexType [@name=Stabletypename] /xsd:sequence/xsd

<html>

<head>
<title><xsl:value-of select="name (current ())"/></title>

220

Chapter 9. Functions and Operators

</head>
<body>
<table>
<tr>
<xsl:for-each select="$schema/xsd:complexType[@name=Srowtypename]/xsd:sequen
<th><xsl:value-of select="."/></th>
</xsl:for-each>
</tr>

<xsl:for—-each select="row">
<tr>
<xsl:for—-each select="x%">
<td><xsl:value-of select="."/></td>
</xsl:for-each>
</tr>
</xsl:for-each>
</table>
</body>
</html>
</xsl:template>

</xsl:stylesheet>

9.15. Sequence Manipulation Functions

This section describes PostgreSQL’s functions for operating on sequence objects. Sequence objects
(also called sequence generators or just sequences) are special single-row tables created with CREATE
SEQUENCE. A sequence object is usually used to generate unique identifiers for rows of a table.
The sequence functions, listed in Table 9-39, provide simple, multiuser-safe methods for obtaining
successive sequence values from sequence objects.

Table 9-39. Sequence Functions

Function Return Type Description

currval (regclass) bigint Return value most recently
obtained with nextval for
specified sequence

lastval() bigint Return value most recently
obtained with nextval for any
sequence

nextval (regclass) bigint Advance sequence and return
new value

setval (regclass, bigint) bigint Set sequence’s current value

setval (regclass, bigint, bigint Set sequence’s current value

boolean) and is_called ﬂag

The sequence to be operated on by a sequence function is specified by a regclass argument, which
is simply the OID of the sequence in the pg_class system catalog. You do not have to look up the
OID by hand, however, since the regclass data type’s input converter will do the work for you.
Just write the sequence name enclosed in single quotes so that it looks like a literal constant. For

221

Chapter 9. Functions and Operators

compatibility with the handling of ordinary SQL names, the string will be converted to lower case
unless it contains double quotes around the sequence name. Thus:

nextval (' foo’) operates on sequence foo
nextval ("FOO’) operates on sequence foo
nextval (" "Foo"') operates on sequence Foo

The sequence name can be schema-qualified if necessary:

nextval (myschema.foo’) operates on myschema.foo
nextval (! "myschema".foo’) same as above
nextval (' foo’) searches search path for foo

See Section 8.16 for more information about regclass.

Note: Before PostgreSQL 8.1, the arguments of the sequence functions were of type text, not
regclass, and the above-described conversion from a text string to an OID value would happen
at run time during each call. For backwards compatibility, this facility still exists, but internally it is
now handled as an implicit coercion from text t0 regclass before the function is invoked.

When you write the argument of a sequence function as an unadorned literal string, it becomes
a constant of type regclass. Since this is really just an OID, it will track the originally identified
sequence despite later renaming, schema reassignment, etc. This “early binding” behavior is
usually desirable for sequence references in column defaults and views. But sometimes you might
want “late binding” where the sequence reference is resolved at run time. To get late-binding
behavior, force the constant to be stored as a text constant instead of regclass:

nextval (! foo’ : :text) foo 1is looked up at runtime
Note that late binding was the only behavior supported in PostgreSQL releases before 8.1, so you

might need to do this to preserve the semantics of old applications.

Of course, the argument of a sequence function can be an expression as well as a constant. If it
is a text expression then the implicit coercion will result in a run-time lookup.

The available sequence functions are:

nextval

Advance the sequence object to its next value and return that value. This is done atomically: even
if multiple sessions execute nextval concurrently, each will safely receive a distinct sequence
value.

currval

Return the value most recently obtained by nextval for this sequence in the current session. (An
error is reported if nextval has never been called for this sequence in this session.) Because this
is returning a session-local value, it gives a predictable answer whether or not other sessions have
executed nextval since the current session did.

lastval

Return the value most recently returned by nextval in the current session. This function is
identical to currval, except that instead of taking the sequence name as an argument it fetches
the value of the last sequence used by nextval in the current session. It is an error to call
lastval if nextval has not yet been called in the current session.

222

Chapter 9. Functions and Operators

setval

Reset the sequence object’s counter value. The two-parameter form sets the sequence’s
last_value field to the specified value and sets its is_called field to true, meaning that
the next nextval will advance the sequence before returning a value. The value reported by
currval is also set to the specified value. In the three-parameter form, is_called can be set
to either true or false. true has the same effect as the two-parameter form. If it is set to
false, the next nextval will return exactly the specified value, and sequence advancement
commences with the following nextval. Furthermore, the value reported by currval is not
changed in this case (this is a change from pre-8.3 behavior). For example,

SELECT setval (' foo’, 42); Next nextval will return 43
SELECT setval ('’ foo’, 42, true); Same as above
SELECT setval (' foo’, 42, false); Next nextval will return 42

The result returned by setval is just the value of its second argument.

If a sequence object has been created with default parameters, successive nextval calls will return
successive values beginning with 1. Other behaviors can be obtained by using special parameters in
the CREATE SEQUENCE command; see its command reference page for more information.

Important: To avoid blocking concurrent transactions that obtain numbers from the same se-
quence, a nextval operation is never rolled back; that is, once a value has been fetched it is con-
sidered used, even if the transaction that did the nextva1l later aborts. This means that aborted
transactions might leave unused “holes” in the sequence of assigned values. setval operations
are never rolled back, either.

9.16. Conditional Expressions

This section describes the SQL-compliant conditional expressions available in PostgreSQL.

Tip: If your needs go beyond the capabilities of these conditional expressions, you might want to
consider writing a stored procedure in a more expressive programming language.

9.16.1. casE

The SQL cASE expression is a generic conditional expression, similar to if/else statements in other
programming languages:

CASE WHEN condition THEN result
[WHEN ...]
[ELSE result]

END

CASE clauses can be used wherever an expression is valid. Each condition is an expression that
returns a boolean result. If the condition’s result is true, the value of the CASE expression is the
result that follows the condition, and the remainder of the CASE expression is not processed. If the
condition’s result is not true, any subsequent WHEN clauses are examined in the same manner. If no

223

Chapter 9. Functions and Operators

WHEN condition yields true, the value of the CASE expression is the result of the ELSE clause. If
the ELSE clause is omitted and no condition is true, the result is null.

An example:

SELECT » FROM test;

a
1
2
3
SELECT a,
CASE WHEN a=1 THEN ’one’
WHEN a=2 THEN ’two’
ELSE ’other’
END
FROM test;
a | case
T
1 | one
2 | two
3 | other

The data types of all the result expressions must be convertible to a single output type. See Section
10.5 for more details.

There is a “simple” form of CASE expression that is a variant of the general form above:

CASE expression
WHEN value THEN result
[WHEN ...]
[ELSE result]

END

The first expression is computed, then compared to each of the value expressions in the WHEN
clauses until one is found that is equal to it. If no match is found, the result of the ELSE clause (or
a null value) is returned. This is similar to the switch statement in C.

The example above can be written using the simple CASE syntax:

SELECT a,
CASE a WHEN 1 THEN ’one’
WHEN 2 THEN 'two’
ELSE ’other’
END
FROM test;

a | case
R

1 | one

2 | two

3 | other

224

Chapter 9. Functions and Operators

A cASE expression does not evaluate any subexpressions that are not needed to determine the result.
For example, this is a possible way of avoiding a division-by-zero failure:

SELECT ... WHERE CASE WHEN x <> 0 THEN y/x > 1.5 ELSE false END;

9.16.2. COALESCE
COALESCE (value [, ...])

The COALESCE function returns the first of its arguments that is not null. Null is returned only if all
arguments are null. It is often used to substitute a default value for null values when data is retrieved
for display, for example:

SELECT COALESCE (description, short_description, ’ (none)’)

Like a CASE expression, COALESCE only evaluates the arguments that are needed to determine the
result; that is, arguments to the right of the first non-null argument are not evaluated. This SQL-
standard function provides capabilities similar to NVL and IFNULL, which are used in some other
database systems.

9.16.3. NULLIF

NULLIF (valuel, valueZ2)

The NULLIF function returns a null value if valuel equals value2; otherwise it returns valuel.
This can be used to perform the inverse operation of the COALESCE example given above:

SELECT NULLIF (value, '’ (none)’)

In this example, if value is (none), null is returned, otherwise the value of value is returned.

9.16.4. GREATEST and LEAST

GREATEST (value [, ...])
LEAST (value [, ...])

The GREATEST and LEAST functions select the largest or smallest value from a list of any number of
expressions. The expressions must all be convertible to a common data type, which will be the type of
the result (see Section 10.5 for details). NULL values in the list are ignored. The result will be NULL
only if all the expressions evaluate to NULL.

Note that GREATEST and LEAST are not in the SQL standard, but are a common extension. Some other
databases make them return NULL if any argument is NULL, rather than only when all are NULL.

225

Chapter 9. Functions and Operators

9.17. Array Functions and Operators

Table 9-40 shows the operators available for array types.

Table 9-40. Array Operators

7,8,9}}

Operator Description Example Result
= equal ARRAY[1.1,2.1,3.1]ftint[]
= ARRAY[1,2, 3]
<> not equal ARRAY[1,2,3] <> t
ARRAY[1,2,4]
< less than ARRAY[1,2,3] < t
ARRAY[1,2,4]
> greater than ARRAY[1,4,3] > t
ARRAY[1,2,4]
<= less than or equal ARRAY[1,2,3] <= t
ARRAY[1,2, 3]
>= greater than or equal ARRAY[1,4,3] >= t
ARRAY[1, 4, 3]
@> contains ARRAY[1,4,3] @> t
ARRAY[3,1]
<@ is contained by ARRAY[2,7] <@ t
ARRAY[1,7,4,2,6]
& & overlap (have elements | ARRAY[1,4,3] && t
in common) ARRAY[2, 1]
[array-to-array ARRAY[1,2,3] || (1,2,3,4,5,6}
concatenation ARRAY[4,5, 6]
| array-to-array ARRAY[1,2,3] || {{1,2,3},1{4,5,6},1
concatenation ARRAY[[4,5,6]1,17,8},91]
| element-to-array 3 || ARRAY[4,5,6] |{3,4,5,6}
concatenation
| array—to—element ARRAY [4,5,6] || 7 |{4,5,6,7}
concatenation

Array comparisons compare the array contents element-by-element, using the default B-tree com-

parison function for the element data type. In multidimensional arrays the elements are visited in
row-major order (last subscript varies most rapidly). If the contents of two arrays are equal but the
dimensionality is different, the first difference in the dimensionality information determines the sort

order. (This is a change from versions of PostgreSQL prior to 8.2: older versions would claim that

two arrays with the same contents were equal, even if the number of dimensions or subscript ranges

were different.)

See Section 8.14 for more details about array operator behavior.

Table 9-41 shows the functions available for use with array types. See Section 8.14 for more informa-
tion and examples of the use of these functions.

Table 9-41. Array Functions

226

Chapter 9. Functions and Operators

int[],

~

Function Return Type Description Example Result
anyarray append an array_append (ARRAY2]132],
array_append (anyarray, element to the end | 3)
anyelement) of an array
anyarray concatenate two array_cat (ARRAY{1,2,3]4,5}
array_cat (anyarray, arrays ARRAY [4,5])
anyarray)
int returns the array_ndims (ARRRY[[1,2, 3],
array_ndims (anygrray) number of [4,5,611])
dimensions of the
array
text returns a text array_dims (ARRAYI{2]2133])
array_dims (anyanray) representation of | [4,5,6]11)
array’s
dimensions
anyarray returns an array array_fil1(7, [2:4]1={7,7,7}
array_fill (anyellement, initialized with ARRAY [3],
int[1l, [, supplied value and | ARRAY [2])
int[1]) dimensions,
optionally with
lower bounds
other than 1
int returns the length |array_length(ardayl[l,2, 3],
array_length (anyjarray, of the requested 1)
int) array dimension
int returns lower array_lower (' [002]1={1,2,3}" ::]
array_lower (anydrray, bound of the 1)
int) requested array
dimension
anyarray append an element | array_prepend (1{1,2,3}
array_prepend (anyelement, to the beginning ARRAY [2,31)
anyarray) of an array
text concatenates array | array_to_stringIARRR¥T13
array_to_string (lanyarray, elements using 2, 31, "~"~")
text) supplied delimiter
int returns upper array_upper (ARRAY[1,2,3,4],
array_upper (anygrray, bound of the 1)
int) requested array
dimension
text [] Splits string into string_to_array{kxgy9rzgt} ~zz
string_to_array (text, array elements ranat)
text) using supplied
delimiter
setof expand an array to | unnest (ARRAY [1}22) (2 rows)
unnest (anyarray)| anyelement a set of rows

See also Section 9.18 about the aggregate function array_agg for use with arrays.

227

Chapter 9. Functions and Operators

9.18. Aggregate Functions

Aggregate functions compute a single result from a set of input values. The built-in aggregate func-
tions are listed in Table 9-42 and Table 9-43. The special syntax considerations for aggregate functions

are explained in Section 4.2.7. Consult Section 2.7 for additional introductory information.

Table 9-42. General-Purpose Aggregate Functions

Function

Argument Type(s)

Return Type

Description

array_agg (expressio

any

n)

array of the argument
type

input values, including
nulls, concatenated into
an array

avg (expression)

smallint, int,

bigint, real,

numeric for any
integer-type argument,

the average (arithmetic
mean) of all input

bit_and (expression)

double precision, |double precision |values
numeric, or for a floating-point
interval argument, otherwise
the same as the
argument data type
smallint, int, same as argument data | the bitwise AND of all

bigint,orbit

type

non-null input values,
or null if none

bit_or (expression)

smallint, int,

bigint,orbit

same as argument data
type

the bitwise OR of all
non-null input values,
or null if none

bool_and (expression

bool

bool

true if all input values
are true, otherwise
false

bool_or (expression)

bool

bool

true if at least one input
value is true, otherwise
false

count (=)

bigint

number of input rows

count (expression)

any

bigint

number of input rows
for which the value of
expression is not
null

every (expression)

bool

bool

equivalent to
bool_and

max (expression)

any array, numeric,
string, or date/time
type

same as argument type

maximum value of
expression across all
input values

min (expression)

any array, numeric,
string, or date/time

type

same as argument type

minimum value of
expression across all
input values

string_agg (expressi

delimiter)

text, text

on,

text

input values
concatenated into a
string, separated by
delimiter

228

Chapter 9. Functions and Operators

Function Argument Type(s) |Return Type Description

sum (expression) smallint, int, bigint for smallint | sum of expression
bigint, real, or int arguments, across all input values
double precision, |numeric forbigint
numeric, Or arguments, double
interval precision for

floating-point
arguments, otherwise
the same as the
argument data type

xml xml concatenation of XML
xmlagg (expression) values (see also Section
9.14.1.7)

It should be noted that except for count, these functions return a null value when no rows are selected.
In particular, sum of no rows returns null, not zero as one might expect, and array_agg returns null
rather than an empty array when there are no input rows. The coalesce function can be used to
substitute zero or an empty array for null when necessary.

Note: Boolean aggregates bool_and and bool_or correspond to standard SQL aggregates
every and any or some. As for any and some, it seems that there is an ambiguity built into the
standard syntax:

SELECT bl = ANY((SELECT b2 FROM t2 ...)) FROM tl ...;

Here any can be considered either as introducing a subquery, or as being an aggregate function,
if the subquery returns one row with a Boolean value. Thus the standard name cannot be given
to these aggregates.

Note: Users accustomed to working with other SQL database management systems might be
disappointed by the performance of the count aggregate when it is applied to the entire table. A
query like:

SELECT count (*) FROM sometable;

will be executed by PostgreSQL using a sequential scan of the entire table.

The aggregate functions array_agg, string_agg, and xmlagg, as well as similar user-defined
aggregate functions, produce meaningfully different result values depending on the order of the input
values. This ordering is unspecified by default, but can be controlled by writing an ORDER BY clause
within the aggregate call, as shown in Section 4.2.7. Alternatively, supplying the input values from a
sorted subquery will usually work. For example:

SELECT xmlagg(x) FROM (SELECT x FROM test ORDER BY y DESC) AS tab;

But this syntax is not allowed in the SQL standard, and is not portable to other database systems.

Table 9-43 shows aggregate functions typically used in statistical analysis. (These are separated out
merely to avoid cluttering the listing of more-commonly-used aggregates.) Where the description
mentions N, it means the number of input rows for which all the input expressions are non-null. In all
cases, null is returned if the computation is meaningless, for example when N is zero.

229

Table 9-43. Aggregate Functions for Statistics

Chapter 9. Functions and Operators

Function

Argument Type

Return Type

Description

corr(y, X)

double precision

double precision

correlation coefficient

covar_pop (Y, X)

double precision

double precision

population covariance

covar_samp (Y, X)

double precision

double precision

sample covariance

regr_avgx (Y, X)

double precision

double precision

average of the
independent variable
(sum (x) /N)

regr_avgy (Y, X)

double precision

double precision

average of the
dependent variable
(sum (v) /N)

regr_count (Y, X)

double precision

bigint

number of input rows
in which both
expressions are nonnull

regr_intercept (Y,
X)

double precision

double precision

y-intercept of the
least-squares-fit linear
equation determined by
the (X, v) pairs

regr_r2(y, X)

double precision

double precision

square of the
correlation coefficient

regr_slope (Y, X)

double precision

double precision

slope of the
least-squares-fit linear
equation determined by
the (X, Y) pairs

regr_sxx (Y, X)

double precision

double precision

sum(x*2) -

sum (x) ~2/nN (“sum of
squares” of the
independent variable)

regr_sxy (Y, X)

double precision

double precision

sum(X*Y) — sum(X)
x sum(Y) /N (“sum of
products” of
independent times

dependent variable)

regr_syy (Y, X)

double precision

double precision

sum(y~2) -

sum (y) ~2/n (“sum of
squares” of the
dependent variable)

stddev (expression)

smallint, int,
bigint, real,
double precision,

Oor numeric

double precision
for floating-point
arguments, otherwise

numeric

historical alias for

stddev_samp

stddev_pop (expressi

smallint, int,
dm)gint, real,
double precision,

Oor numeric

double precision
for floating-point
arguments, otherwise

numeric

population standard
deviation of the input
values

230

Chapter 9. Functions and Operators

Function

Argument Type

Return Type

Description

stddev_samp (expresd

smallint, int,
iwigint, real,
double precision,

Oor numeric

double precision
for floating-point
arguments, otherwise

numeric

sample standard
deviation of the input
values

smallint, int,

variance(expressionpbigint, real

double precision,

Oor numeric

double precision
for floating-point
arguments, otherwise

numeric

historical alias for

var_samp

var_pop(expression

smallint, int,
bigint, real,
double precision,

or numeric

double precision
for floating-point
arguments, otherwise

numeric

population variance of
the input values (square
of the population
standard deviation)

smallint, int,

var_samp(expressiomnpigint, real

double precision,

Oor numeric

double precision
for floating-point
arguments, otherwise

numeric

sample variance of the
input values (square of
the sample standard
deviation)

9.19. Window Functions

Window functions provide the ability to perform calculations across sets of rows that are related to the
current query row. See Section 3.5 for an introduction to this feature.

The built-in window functions are listed in Table 9-44. Note that these functions must be invoked
using window function syntax; that is an OVER clause is required.

In addition to these functions, any built-in or user-defined aggregate function can be used as a window
function (see Section 9.18 for a list of the built-in aggregates). Aggregate functions act as window
functions only when an OVER clause follows the call; otherwise they act as regular aggregates.

Table 9-44. General-Purpose Window Functions

Function Return Type Description

row_number () bigint number of the current row
within its partition, counting
from 1

rank () bigint rank of the current row with
gaps; same as row_number of
its first peer

dense_rank () bigint rank of the current row without

gaps; this function counts peer
groups

relative rank of the current row:
(rank - 1)/ (total rows - 1)

percent_rank () double precision

cume_dist () double precision relative rank of the current row:
(number of rows preceding or
peer with current row) / (total

TOWS)

231

Chapter 9. Functions and Operators

Function Return Type Description
ntile (num buckets integer integer ranging from 1 to the
integer) argument value, dividing the

partition as equally as possible

lag(value any [, offset | same type as value returns value evaluated at the
integer [, default any row that is offset rows before
1) the current row within the
partition; if there is no such
row, instead return default.
Both offset and default are
evaluated with respect to the
current row. If omitted, offset
defaults to 1 and default to

null
lead (value any [, same type as value returns value evaluated at the
offset integer [, default row that is offset rows after
any 11]) the current row within the

partition; if there is no such
row, instead return default.
Both offset and default are
evaluated with respect to the
current row. If omitted, offset
defaults to 1 and default to
null

first_value (value any) same type as value returns value evaluated at the
row that is the first row of the
window frame

last_value (value any) same type as value returns value evaluated at the
row that is the last row of the
window frame

nth_value (value any, same type as value returns value evaluated at the
nth integer) row that is the nth row of the
window frame (counting from
1); null if no such row

All of the functions listed in Table 9-44 depend on the sort ordering specified by the ORDER BY clause
of the associated window definition. Rows that are not distinct in the ORDER BY ordering are said to
be peers; the four ranking functions are defined so that they give the same answer for any two peer
TOWS.

Note that first_value, last_value, and nth_value consider only the rows within the “window
frame”, which by default contains the rows from the start of the partition through the last peer of the
current row. This is likely to give unhelpful results for 1ast_value and sometimes also nth_value.
You can redefine the frame by adding a suitable frame specification (RANGE or ROWS) to the OVER
clause. See Section 4.2.8 for more information about frame specifications.

When an aggregate function is used as a window function, it aggregates over the rows within the cur-
rent row’s window frame. An aggregate used with ORDER BY and the default window frame definition
produces a “running sum” type of behavior, which may or may not be what’s wanted. To obtain ag-
gregation over the whole partition, omit ORDER BY or use ROWS BETWEEN UNBOUNDED PRECEDING
AND UNBOUNDED FOLLOWING. Other frame specifications can be used to obtain other effects.

232

Chapter 9. Functions and Operators

Note: The SQL standard defines a RESPECT NULLS Of IGNORE NULLS option for lead, lag,
first_value, last_value, and nth_value. This is not implemented in PostgreSQL: the
behavior is always the same as the standard’s default, namely rRespECcT NULLS. Likewise, the
standard’s FROM FIRST Of FROM LAST option for nth_value is not implemented: only the default
FROM FIRST behavior is supported. (You can achieve the result of FrRoM LAST by reversing the
ORDER BY ordering.)

9.20. Subquery Expressions

This section describes the SQL-compliant subquery expressions available in PostgreSQL. All of the
expression forms documented in this section return Boolean (true/false) results.

9.20.1. EXISTS
EXISTS (subquery)

The argument of EXISTS is an arbitrary SELECT statement, or subguery. The subquery is evaluated
to determine whether it returns any rows. If it returns at least one row, the result of EXISTS is “true”;
if the subquery returns no rows, the result of EXISTs is “false”.

The subquery can refer to variables from the surrounding query, which will act as constants during
any one evaluation of the subquery.

The subquery will generally only be executed long enough to determine whether at least one row is
returned, not all the way to completion. It is unwise to write a subquery that has side effects (such as
calling sequence functions); whether the side effects occur might be unpredictable.

Since the result depends only on whether any rows are returned, and not on the contents of those
rows, the output list of the subquery is normally unimportant. A common coding convention is to
write all EXISTS tests in the form EXISTS (SELECT 1 WHERE ...). There are exceptions to this
rule however, such as subqueries that use INTERSECT.

This simple example is like an inner join on col2, but it produces at most one output row for each

tabl row, even if there are several matching tab2 rows:

SELECT coll
FROM tabl
WHERE EXISTS (SELECT 1 FROM tab2 WHERE col2 = tabl.col2);

9.20.2. IN

expression IN (subquery)

The right-hand side is a parenthesized subquery, which must return exactly one column. The left-hand
expression is evaluated and compared to each row of the subquery result. The result of IN is “true”
if any equal subquery row is found. The result is “false” if no equal row is found (including the case
where the subquery returns no rows).

233

Chapter 9. Functions and Operators

Note that if the left-hand expression yields null, or if there are no equal right-hand values and at
least one right-hand row yields null, the result of the IN construct will be null, not false. This is in
accordance with SQL’s normal rules for Boolean combinations of null values.

As with EXISTS, it’s unwise to assume that the subquery will be evaluated completely.

row_constructor IN (subquery)

The left-hand side of this form of IN is a row constructor, as described in Section 4.2.12. The right-
hand side is a parenthesized subquery, which must return exactly as many columns as there are ex-
pressions in the left-hand row. The left-hand expressions are evaluated and compared row-wise to
each row of the subquery result. The result of 1IN is “true” if any equal subquery row is found. The
result is “false” if no equal row is found (including the case where the subquery returns no rows).

As usual, null values in the rows are combined per the normal rules of SQL Boolean expressions.
Two rows are considered equal if all their corresponding members are non-null and equal; the rows
are unequal if any corresponding members are non-null and unequal; otherwise the result of that row
comparison is unknown (null). If all the per-row results are either unequal or null, with at least one
null, then the result of IN is null.

9.20.3. NOT IN

expression NOT IN (subquery)

The right-hand side is a parenthesized subquery, which must return exactly one column. The left-
hand expression is evaluated and compared to each row of the subquery result. The result of NOT 1IN
is “true” if only unequal subquery rows are found (including the case where the subquery returns no
rows). The result is “false” if any equal row is found.

Note that if the left-hand expression yields null, or if there are no equal right-hand values and at least
one right-hand row yields null, the result of the NOT IN construct will be null, not true. This is in
accordance with SQL’s normal rules for Boolean combinations of null values.

As with EXISTS, it’s unwise to assume that the subquery will be evaluated completely.
row_constructor NOT IN (subquery)

The left-hand side of this form of NOT IN is a row constructor, as described in Section 4.2.12. The
right-hand side is a parenthesized subquery, which must return exactly as many columns as there are
expressions in the left-hand row. The left-hand expressions are evaluated and compared row-wise to
each row of the subquery result. The result of NOT IN is “true” if only unequal subquery rows are
found (including the case where the subquery returns no rows). The result is “false” if any equal row
is found.

As usual, null values in the rows are combined per the normal rules of SQL Boolean expressions.
Two rows are considered equal if all their corresponding members are non-null and equal; the rows
are unequal if any corresponding members are non-null and unequal; otherwise the result of that row
comparison is unknown (null). If all the per-row results are either unequal or null, with at least one
null, then the result of NOT 1IN is null.

9.20.4. ANY/SOME

expression operator ANY (subquery)

expression operator SOME (subquery)

234

Chapter 9. Functions and Operators

The right-hand side is a parenthesized subquery, which must return exactly one column. The left-hand
expression is evaluated and compared to each row of the subquery result using the given operator,
which must yield a Boolean result. The result of ANY is “true” if any true result is obtained. The result
is “false” if no true result is found (including the case where the subquery returns no rows).

SOME is a synonym for ANY. IN is equivalent to = ANY.

Note that if there are no successes and at least one right-hand row yields null for the operator’s result,
the result of the ANY construct will be null, not false. This is in accordance with SQL’s normal rules
for Boolean combinations of null values.

As with EXISTS, it’s unwise to assume that the subquery will be evaluated completely.

row_constructor operator ANY (subquery)

row_constructor operator SOME (subquery)

The left-hand side of this form of ANY is a row constructor, as described in Section 4.2.12. The
right-hand side is a parenthesized subquery, which must return exactly as many columns as there
are expressions in the left-hand row. The left-hand expressions are evaluated and compared row-wise
to each row of the subquery result, using the given operator. The result of ANY is “true” if the
comparison returns true for any subquery row. The result is “false” if the comparison returns false for
every subquery row (including the case where the subquery returns no rows). The result is NULL if
the comparison does not return true for any row, and it returns NULL for at least one row.

See Section 9.21.5 for details about the meaning of a row-wise comparison.

9.20.5. ALL

expression operator ALL (subquery)

The right-hand side is a parenthesized subquery, which must return exactly one column. The left-hand
expression is evaluated and compared to each row of the subquery result using the given operator,
which must yield a Boolean result. The result of ALL is “true” if all rows yield true (including the case
where the subquery returns no rows). The result is “false” if any false result is found. The result is
NULL if the comparison does not return false for any row, and it returns NULL for at least one row.

NOT 1IN isequivalentto <> ALL.

As with EXISTS, it’s unwise to assume that the subquery will be evaluated completely.

row_constructor operator ALL (subquery)

The left-hand side of this form of ALL is a row constructor, as described in Section 4.2.12. The
right-hand side is a parenthesized subquery, which must return exactly as many columns as there
are expressions in the left-hand row. The left-hand expressions are evaluated and compared row-wise
to each row of the subquery result, using the given operator. The result of ALL is “true” if the
comparison returns true for all subquery rows (including the case where the subquery returns no
rows). The result is “false” if the comparison returns false for any subquery row. The result is NULL
if the comparison does not return false for any subquery row, and it returns NULL for at least one row.

See Section 9.21.5 for details about the meaning of a row-wise comparison.

9.20.6. Row-wise Comparison

row_constructor operator (subquery)

235

Chapter 9. Functions and Operators

The left-hand side is a row constructor, as described in Section 4.2.12. The right-hand side is a paren-
thesized subquery, which must return exactly as many columns as there are expressions in the left-
hand row. Furthermore, the subquery cannot return more than one row. (If it returns zero rows, the
result is taken to be null.) The left-hand side is evaluated and compared row-wise to the single sub-
query result row.

See Section 9.21.5 for details about the meaning of a row-wise comparison.

9.21. Row and Array Comparisons

This section describes several specialized constructs for making multiple comparisons between groups
of values. These forms are syntactically related to the subquery forms of the previous section, but do
not involve subqueries. The forms involving array subexpressions are PostgreSQL extensions; the rest
are SQL-compliant. All of the expression forms documented in this section return Boolean (true/false)
results.

9.21.1. IN

expression IN (value [, ...])

The right-hand side is a parenthesized list of scalar expressions. The result is “true” if the left-hand
expression’s result is equal to any of the right-hand expressions. This is a shorthand notation for

expression = valuel
OR
expression = value2
OR

Note that if the left-hand expression yields null, or if there are no equal right-hand values and at least
one right-hand expression yields null, the result of the IN construct will be null, not false. This is in
accordance with SQL’s normal rules for Boolean combinations of null values.

9.21.2. NOT IN

expression NOT IN (value [, ...])

The right-hand side is a parenthesized list of scalar expressions. The result is “true” if the left-hand
expression’s result is unequal to all of the right-hand expressions. This is a shorthand notation for

expression <> valuel
AND
expression <> value2
AND

Note that if the left-hand expression yields null, or if there are no equal right-hand values and at least
one right-hand expression yields null, the result of the NOT IN construct will be null, not true as one

236

Chapter 9. Functions and Operators

might naively expect. This is in accordance with SQL’s normal rules for Boolean combinations of null
values.

Tip: x NOT IN yisequivalenttoNoT (x IN y) in all cases. However, null values are much more
likely to trip up the novice when working with not 1N than when working with 1n. It is best to
express your condition positively if possible.

9.21.3. ANY/SOME (array)

expression operator ANY (array expression)

expression operator SOME (array expression)

The right-hand side is a parenthesized expression, which must yield an array value. The left-hand
expression is evaluated and compared to each element of the array using the given operator, which
must yield a Boolean result. The result of ANY is “true” if any true result is obtained. The result is
“false” if no true result is found (including the case where the array has zero elements).

If the array expression yields a null array, the result of aNY will be null. If the left-hand expression
yields null, the result of ANY is ordinarily null (though a non-strict comparison operator could possibly
yield a different result). Also, if the right-hand array contains any null elements and no true compar-
ison result is obtained, the result of ANY will be null, not false (again, assuming a strict comparison
operator). This is in accordance with SQL’s normal rules for Boolean combinations of null values.

SOME is a synonym for ANY.

9.21.4. aLL (array)

expression operator ALL (array expression)

The right-hand side is a parenthesized expression, which must yield an array value. The left-hand
expression is evaluated and compared to each element of the array using the given operator, which
must yield a Boolean result. The result of ALL is “true” if all comparisons yield true (including the
case where the array has zero elements). The result is “false” if any false result is found.

If the array expression yields a null array, the result of ALL will be null. If the left-hand expression
yields null, the result of ALL is ordinarily null (though a non-strict comparison operator could possibly
yield a different result). Also, if the right-hand array contains any null elements and no false compar-
ison result is obtained, the result of ALL will be null, not true (again, assuming a strict comparison
operator). This is in accordance with SQL’s normal rules for Boolean combinations of null values.

9.21.5. Row-wise Comparison

row_constructor operator row_constructor

Each side is a row constructor, as described in Section 4.2.12. The two row values must have the
same number of fields. Each side is evaluated and they are compared row-wise. Row comparisons are
allowed when the operatoris =, <>, <, <=, > or >=, or has semantics similar to one of these. (To
be specific, an operator can be a row comparison operator if it is a member of a B-tree operator class,
or is the negator of the = member of a B-tree operator class.)

237

Chapter 9. Functions and Operators

The = and <> cases work slightly differently from the others. Two rows are considered equal if
all their corresponding members are non-null and equal; the rows are unequal if any corresponding
members are non-null and unequal; otherwise the result of the row comparison is unknown (null).

For the <, <=, > and >= cases, the row elements are compared left-to-right, stopping as soon as
an unequal or null pair of elements is found. If either of this pair of elements is null, the result of
the row comparison is unknown (null); otherwise comparison of this pair of elements determines the
result. For example, ROW (1, 2, NULL) < ROW (1,3, 0) yields true, not null, because the third pair of
elements are not considered.

Note: Prior to PostgreSQL 8.2, the <, <=, > and >= cases were not handled per SQL specifica-
tion. A comparison like Row (a,b) < ROW(c,d) was implementedasa < ¢ AND b < dwhereas
the correct behavior is equivalenttoa < ¢ OR (a = ¢ AND b < d).

row_constructor IS DISTINCT FROM row_constructor

This construct is similar to a <> row comparison, but it does not yield null for null inputs. Instead,
any null value is considered unequal to (distinct from) any non-null value, and any two nulls are
considered equal (not distinct). Thus the result will either be true or false, never null.

row_constructor IS NOT DISTINCT FROM row_constructor

This construct is similar to a = row comparison, but it does not yield null for null inputs. Instead,
any null value is considered unequal to (distinct from) any non-null value, and any two nulls are
considered equal (not distinct). Thus the result will always be either true or false, never null.

Note: The SQL specification requires row-wise comparison to return NULL if the result depends
on comparing two NULL values or a NULL and a non-NULL. PostgreSQL does this only when
comparing the results of two row constructors or comparing a row constructor to the output of a
subquery (as in Section 9.20). In other contexts where two composite-type values are compared,
two NULL field values are considered equal, and a NULL is considered larger than a non-NULL.
This is necessary in order to have consistent sorting and indexing behavior for composite types.

9.22. Set Returning Functions

This section describes functions that possibly return more than one row. Currently the only functions
in this class are series generating functions, as detailed in Table 9-45 and Table 9-46.

Table 9-45. Series Generating Functions

Function Argument Type Return Type Description
generate_series (starfint Or bigint setof int or setof | Generate a series of
stop) bigint (same as values, from start to
argument type) stop with a step size
of one

238

Chapter 9. Functions and Operators

Function

Argument Type

Return Type

Description

generate_series (start

stop, step)

Ant or bigint

setof int or setof
bigint (same as
argument type)

Generate a series of
values, from start to
stop with a step size
of step

generate_series (start

stop, step interval)

timestamp Or
timestamp with

time zone

setof timestamp Or
setof timestamp
with time zone

(same as argument
type)

Generate a series of
values, from start to
stop with a step size
of step

When step is positive, zero rows are returned if start is greater than stop. Conversely, when step
is negative, zero rows are returned if start is less than stop. Zero rows are also returned for NULL
inputs. It is an error for step to be zero. Some examples follow:

SELECT % FROM generate_series(2,4);

generate_series

(3 rows)

SELECT x FROM generate_series(5,1,-2);

generate_series

(3 rows)

SELECT % FROM generate_series (4, 3);

generate_series

—— this example relies on the date-plus—-integer operator

SELECT current_date + s.a AS dates FROM generate_series(0,14,7) AS s(a);

dates
2004-02-05
2004-02-12
2004-02-19
(3 rows)

SELECT % FROM generate_series (/2008-03-01 00:00’ ::timestamp,

generate_series

2008-03-04 12:00",

2008-03-01 00:00:00
2008-03-01 10:00:00
2008-03-01 20:00:00
2008-03-02 06:00:00
2008-03-02 16:00:00
2008-03-03 02:00:00
2008-03-03 12:00:00

10 hours’);

239

Chapter 9. Functions and Operators

2008-03-03 22:00:00
2008-03-04 08:00:00
(9 rows)

Table 9-46. Subscript Generating Functions

Function Return Type Description

generate_subscripts (array |setof int Generate a series comprising

anyarray, dim int) the given array’s subscripts.

generate_subscripts (array setof int Generate a series comprising

anyarray, dim int, reverse the given array’s subscripts.

boolean) When reverse is true, the
series is returned in reverse
order.

generate_subscripts is a convenience function that generates the set of valid subscripts for the
specified dimension of the given array. Zero rows are returned for arrays that do not have the requested
dimension, or for NULL arrays (but valid subscripts are returned for NULL array elements). Some
examples follow:

-— basic usage
SELECT generate_subscripts(’ {NULL,1,NULL, 2}’ ::int[], 1) AS s;

4
(4 rows)

—-— presenting an array, the subscript and the subscripted
—-— value requires a subquery
SELECT = FROM arrays;

{-1,-2}
{100,200,300}
(2 rows)

SELECT a AS array, s AS subscript, als] AS value
FROM (SELECT generate_subscripts(a, 1) AS s, a FROM arrays) foo;

array | subscript | wvalue
_______________ e
{-1,-2} | 1 -1
{-1,-2} \ 2| -2
{100,200,300} | 1| 100
{100,200,300} | 2 | 200
{100,200,300} | 3 300

(5 rows)
—-— unnest a 2D array

CREATE OR REPLACE FUNCTION unnest2 (anyarray)
RETURNS SETOF anyelement AS $$

240

Chapter 9. Functions and Operators

select $1[1i][]]
from generate_subscripts($1l,1) gl(i),
generate_subscripts($1,2) g2 (3);

$$ LANGUAGE sqgl IMMUTABLE;

CREATE FUNCTION

postgres=# SELECT * FROM unnest2 (ARRAY[[1,2],

unnest?2

9.23. System Information Functions

[3,411);

Table 9-47 shows several functions that extract session and system information.

In addition to the functions listed in this section, there are a number of functions related to the statistics
system that also provide system information. See Section 27.2.2 for more information.

Table 9-47. Session Information Functions

Name Return Type Description

current_catalog name name of current database
(called “catalog” in the SQL
standard)

current_database () name name of current database

current_schema[()] name name of current schema

current_schemas (boolean) name [] names of schemas in search
path, optionally including
implicit schemas

current_user name user name of current execution
context

current_query () text text of the currently executing
query, as submitted by the
client (might contain more than
one statement)

pg_backend_pid () int Process ID of the server

process attached to the current
session

pg_listening_channels ()

setof text

channel names that the session
is currently listening on

inet_client_addr () inet address of the remote
connection

inet_client_port () int port of the remote connection

inet_server_addr () inet address of the local connection

241

Chapter 9. Functions and Operators

Name Return Type Description
inet_server_port () int port of the local connection
pg_my_temp_schema () oid OID of session’s temporary

schema, or O if none

pg_is_other_temp_schema (oid

boolean

is schema another session’s
temporary schema?

pg_postmaster_start_time ()

timestamp with time

zone

server start time

pg_conf_load_time ()

timestamp with time

configuration load time

zone

session_user name session user name

user name equivalent to current_user

version () text PostgreSQL version
information

Note: current_catalog, current_schema, current_user, session_user, and user have spe-
cial syntactic status in SQL: they must be called without trailing parentheses. (In PostgreSQL,
parentheses can optionally be used with current_schema, but not with the others.)

The session_user is normally the user who initiated the current database connection; but superusers
can change this setting with SET SESSION AUTHORIZATION. The current_user is the user
identifier that is applicable for permission checking. Normally it is equal to the session user, but it
can be changed with SET ROLE. It also changes during the execution of functions with the attribute
SECURITY DEFINER. In Unix parlance, the session user is the “real user” and the current user is the
“effective user”.

current_schema returns the name of the schema that is first in the search path (or a null value if the
search path is empty). This is the schema that will be used for any tables or other named objects that
are created without specifying a target schema. current_schemas (boolean) returns an array of
the names of all schemas presently in the search path. The Boolean option determines whether or not
implicitly included system schemas such as pg_catalog are included in the returned search path.

Note: The search path can be altered at run time. The command is:

SET search_path TO schema [, schema, ...]

pg_listening_channels returns a set of names of channels that the current session is listening to.
See LISTEN for more information.

inet_client_addr returns the IP address of the current client, and inet_client_port returns
the port number. inet_server_addr returns the IP address on which the server accepted the current
connection, and inet_server_port returns the port number. All these functions return NULL if the
current connection is via a Unix-domain socket.

pg_my_temp_schema returns the OID of the current session’s temporary schema, or zero if it has
none (because it has not created any temporary tables). pg_is_other_temp_schema returns true if
the given OID is the OID of another session’s temporary schema. (This can be useful, for example, to
exclude other sessions’ temporary tables from a catalog display.)

242

Chapter 9. Functions and Operators

pPg_postmaster_start_time returns the timestamp with time zone when the server started.

pg_conf_load_time returns the timestamp with time zone when the server configuration
files were last loaded. (If the current session was alive at the time, this will be the time when the
session itself re-read the configuration files, so the reading will vary a little in different sessions.
Otherwise it is the time when the postmaster process re-read the configuration files.)

version returns a string describing the PostgreSQL server’s version.

Table 9-48 lists functions that allow the user to query object access privileges programmatically. See
Section 5.6 for more information about privileges.

Table 9-48. Access Privilege Inquiry Functions

Name Return Type Description
has_any_column_privilege (usdrgolean does user have privilege for any
table, privilege) column of table
has_any_column_privilege (taddeplean does current user have privilege
privilege) for any column of table
has_column_privilege (user, |boolean does user have privilege for
table, column, privilege) column
has_column_privilege (table,|boolean does current user have privilege
column, privilege) for column
has_database_privilege (user,boolean does user have privilege for
database, privilege) database
has_database_privilege (datadaselean does current user have privilege
privilege) for database
has_foreign_data_wrapper_prlivodégatuser, does user have privilege for
fdw, privilege) foreign-data wrapper
has_foreign_data_wrapper_prlilvadeégahfdw, does current user have pn'vilege
privilege) for foreign-data wrapper
has_function_privilege (user,boolean does user have privilege for
function, privilege) function
has_function_privilege (funciioalean does current user have privilege
privilege) for function
has_language_privilege (user,boolean does user have privilege for
language, privilege) language
has_language_privilege (languagelean does current user have privilege
privilege) for language
has_schema_privilege (user, |boolean does user have privilege for
schema, privilege) schema
has_schema_privilege (schema,boolean does current user have privilege
privilege) for schema
has_server_privilege (user, |boolean does user have privilege for
server, privilege) foreign server
has_server_privilege (server,boolean does current user have privilege
privilege) for foreign server
has_sequence_privilege (user,boolean does user have privilege for
sequence, privilege) sequence

243

Chapter 9. Functions and Operators

Name Return Type Description
has_sequence_privilege (sequdneelean does current user have privilege
privilege) for sequence
has_table_privilege (user, |boolean does user have privilege for
table, privilege) table

has_table_privilege (table, |boolean does current user have privilege
privilege) for table
has_tablespace_privilege (usidrgolean does user have privilege for
tablespace, privilege) tabkmpace
has_tablespace_privilege (tadlespeas, does current user have privilege
privilege) for tablespace

pg_has_role (user, role, boolean does user have privilege for role
privilege)

pg_has_role (role, boolean does current user have privilege
privilege) for role

has_table_privilege checks whether a user can access a table in a particular way. The user can
be specified by name or by OID (pg_authid.oid), or if the argument is omitted current_user
is assumed. The table can be specified by name or by OID. (Thus, there are actually six variants of
has_table_privilege, which can be distinguished by the number and types of their arguments.)
When specifying by name, the name can be schema-qualified if necessary. The desired access priv-
ilege type is specified by a text string, which must evaluate to one of the values SELECT, INSERT,
UPDATE, DELETE, TRUNCATE, REFERENCES, or TRIGGER. Optionally, WITH GRANT OPTION can be
added to a privilege type to test whether the privilege is held with grant option. Also, multiple privi-
lege types can be listed separated by commas, in which case the result will be t rue if any of the listed
privileges is held. (Case of the privilege string is not significant, and extra whitespace is allowed
between but not within privilege names.) Some examples:

SELECT has_table_privilege ('myschema.mytable’, ’select’);
SELECT has_table_privilege (’ joe’, ’'mytable’, ’INSERT, SELECT WITH GRANT OPTION’);

has_sequence_privilege checks whether a user can access a sequence in a particular way. The
possibilities for its arguments are analogous to has_table_privilege. The desired access privilege
type must evaluate to one of USAGE, SELECT, or UPDATE.

has_any_column_privilege checks whether a user can access any column of a table in a particular
way. Its argument possibilities are analogous to has_table_privilege, except that the desired ac-
cess privilege type must evaluate to some combination of SELECT, INSERT, UPDATE, or REFERENCES.
Note that having any of these privileges at the table level implicitly grants it for each column of the
table, so has_any_column_privilege will always return true if has_table_privilege does
for the same arguments. But has_any_column_privilege also succeeds if there is a column-level
grant of the privilege for at least one column.

has_column_privilege checks whether a user can access a column in a particular way. Its argu-
ment possibilities are analogous to has_table_privilege, with the addition that the column can be
specified either by name or attribute number. The desired access privilege type must evaluate to some
combination of SELECT, INSERT, UPDATE, or REFERENCES. Note that having any of these privileges
at the table level implicitly grants it for each column of the table.

has_database_privilege checks whether a user can access a database in a particular way. Its
argument possibilities are analogous to has_table_privilege. The desired access privilege type

244

Chapter 9. Functions and Operators

must evaluate to some combination of CREATE, CONNECT, TEMPORARY, or TEMP (which is equivalent
to TEMPORARY).

has_function_privilege checks whether a user can access a function in a particular way. Its
argument possibilities are analogous to has_table_privilege. When specifying a function by a
text string rather than by OID, the allowed input is the same as for the regprocedure data type (see
Section 8.16). The desired access privilege type must evaluate to EXECUTE. An example is:

SELECT has_function_privilege (' joeuser’, ’'myfunc(int, text)’, ’execute’);

has_foreign_data_wrapper_privilege checks whether a user can access a foreign-data wrap-
per in a particular way. Its argument possibilities are analogous to has_table_privilege. The
desired access privilege type must evaluate to USAGE.

has_language_privilege checks whether a user can access a procedural language in a partic-
ular way. Its argument possibilities are analogous to has_table_privilege. The desired access
privilege type must evaluate to USAGE.

has_schema_privilege checks whether a user can access a schema in a particular way. Its argu-
ment possibilities are analogous to has_table_privilege. The desired access privilege type must
evaluate to some combination of CREATE or USAGE.

has_server_privilege checks whether a user can access a foreign server in a particular way. Its
argument possibilities are analogous to has_table_privilege. The desired access privilege type
must evaluate to USAGE.

has_tablespace_privilege checks whether a user can access a tablespace in a particular way. Its
argument possibilities are analogous to has_table_privilege. The desired access privilege type
must evaluate to CREATE.

pg_has_role checks whether a user can access a role in a particular way. Its argument possibilities
are analogous to has_table_privilege. The desired access privilege type must evaluate to some
combination of MEMBER or USAGE. MEMBER denotes direct or indirect membership in the role (that is,
the right to do SET ROLE), while USAGE denotes whether the privileges of the role are immediately
available without doing SET ROLE.

Table 9-49 shows functions that determine whether a certain object is visible in the current schema
search path. For example, a table is said to be visible if its containing schema is in the search path
and no table of the same name appears earlier in the search path. This is equivalent to the statement
that the table can be referenced by name without explicit schema qualification. To list the names of
all visible tables:

SELECT relname FROM pg_class WHERE pg_table_is_visible (oid);

Table 9-49. Schema Visibility Inquiry Functions

Name Return Type Description

pg_conversion_is_visible (copbacleamid) is conversion visible in search
path

pg_function_is_visible (functimodesn is function visible in search
path

pg_operator_is_visible (operatrmarodesn is operator visible in search
path

245

Chapter 9. Functions and Operators

Name Return Type Description
pg_opclass_is_visible (opclagbhoddean is operator class visible in
search path
pg_table_is_visible (table_oidoolean is table visible in search path
pg_ts_config_is_visible (confbpolern is text search configuration

visible in search path

pg_ts_dict_is_visible (dict_gipolean is text search dictionary visible
in search path

pPy_ts_parser_is_visible (parsé@noléan is text search parser visible in
search path

pg_ts_template_is_visible (tklomteasnid) is text search template visible in
search path

pg_type_is_visible (type_oid)| boolean is type (or domain) visible in
search path

Each function performs the visibility check for one type of database object. Note
that pg_table_is_visible can also be used with views, indexes and sequences;
Pg_type_is_visible can also be used with domains. For functions and operators, an object in the
search path is visible if there is no object of the same name and argument data type(s) earlier in the
path. For operator classes, both name and associated index access method are considered.

All these functions require object OIDs to identify the object to be checked. If you want to test an
object by name, it is convenient to use the OID alias types (regclass, regtype, regprocedure,
regoperator, regconfig, or regdictionary), for example:

SELECT pg_type_is_visible ('myschema.widget’ ::regtype);

Note that it would not make much sense to test a non-schema-qualified type name in this way — if
the name can be recognized at all, it must be visible.

Table 9-50 lists functions that extract information from the system catalogs.

Table 9-50. System Catalog Information Functions

Name Return Type Description

format_type (type_oid, text get SQL name of a data type

typemod)

pg_get_keywords () setof record get list of SQL keywords and
their categories

Pg_get_constraintdef (constrgimexdid) get definition of a constraint

pPg_get_constraintdef (constrdimexsid, get definition of a constraint

pretty_bool)

PY_get_expr (expr_text, text decompile internal form of an

relation_oid) expression, assuming that any

Vars in it refer to the relation
indicated by the second
parameter

246

Chapter 9. Functions and Operators

Name Return Type Description
Pg_get_expr (expr_text, text decompile internal form of an
relation_oid, pretty_bool) expression, assuming that any

Vars in it refer to the relation
indicated by the second

parameter
pg_get_functiondef (func_oid)| text get definition of a function
pg_get_function_arguments (fhhextid) get argument list of function’s
definition (with default values)
pg_get_function_identity_argoeshts (func_oid) get argument list to identify a
function (without default
values)
pg_get_function_result (func|diexxt get RETURNS clause for
function
pg_get_indexdef (index_oid) text get CREATE INDEX command
for index
pg_get_indexdef (index_oid, text get CREATE INDEX command
column_no, pretty_bool) for index, or definition of just

one index column when
column_no iS not zero

pg_get_ruledef (rule_oid) text get CREATE RULE command
for rule
pg_get_ruledef (rule_oid, text get CREATE RULE command
pretty_bool) for rule
pg_get_serial_sequence (table trexs, get name of the sequence that a
column_name) serial orbigserial column
uses
pg_get_triggerdef(triggen teit) get CREATE [CONSTRAINT]
TRIGGER command for trigger
pg_get_triggerdef(triggen text, get CREATE [CONSTRAINT]
pretty_bool) TRIGGER command for trigger
pg_get_userbyid (role_oid) name get role name with given OID
pg_get_viewdef (view_name) text get underlying SELECT
command for view
(deprecated)
pg_get_viewdef (view_name, text get underlying SELECT
pretty_bool) command for view
(deprecated)
pPg_get_viewdef (view_oid) text get underlying SELECT
command for view
pg_get_viewdef (view_oid, text get underlying SELECT
pretty_bool) command for view
pg_tablespace_databases (tablsshod iy get the set of database OIDs
that have objects in the
tablespace
pg_typeof (any) regtype get the data type of any value

247

Chapter 9. Functions and Operators

format_type returns the SQL name of a data type that is identified by its type OID and possibly a
type modifier. Pass NULL for the type modifier if no specific modifier is known.

pg_get_keywords returns a set of records describing the SQL keywords recognized by the server.
The word column contains the keyword. The catcode column contains a category code: U for un-
reserved, C for column name, T for type or function name, or R for reserved. The catdesc column
contains a possibly-localized string describing the category.

Pg_get_constraintdef, pg_get_indexdef, pg_get_ruledef, and pg_get_triggerdef, re-
spectively reconstruct the creating command for a constraint, index, rule, or trigger. (Note that this is
a decompiled reconstruction, not the original text of the command.) pg_get_expr decompiles the
internal form of an individual expression, such as the default value for a column. It can be useful
when examining the contents of system catalogs. If the expression might contain Vars, specify the
OID of the relation they refer to as the second parameter; if no Vars are expected, zero is sufficient.
pg_get_viewdef reconstructs the SELECT query that defines a view. Most of these functions come
in two variants, one of which can optionally “pretty-print” the result. The pretty-printed format is
more readable, but the default format is more likely to be interpreted the same way by future ver-
sions of PostgreSQL; avoid using pretty-printed output for dump purposes. Passing false for the
pretty-print parameter yields the same result as the variant that does not have the parameter at all.

pg_get_functiondef returns a complete CREATE OR REPLACE FUNCTION statement for a func-
tion. pg_get_function_arguments returns the argument list of a function, in the form it would
need to appear in within CREATE FUNCTION. pg_get_function_result similarly returns the ap-
propriate RETURNS clause for the function. pg_get_function_identity_arguments returns the
argument list necessary to identify a function, in the form it would need to appear in within ALTER
FUNCTION, for instance. This form omits default values.

pg_get_serial_sequence returns the name of the sequence associated with a column, or NULL
if no sequence is associated with the column. The first input parameter is a table name with optional
schema, and the second parameter is a column name. Because the first parameter is potentially a
schema and table, it is not treated as a double-quoted identifier, meaning it is lower cased by default,
while the second parameter, being just a column name, is treated as double-quoted and has its case
preserved. The function returns a value suitably formatted for passing to sequence functions (see
Section 9.15). This association can be modified or removed with ALTER SEQUENCE OWNED BY. (The
function probably should have been called pg_get_owned_sequence; its current name reflects the
fact that it’s typically used with serial or bigserial columns.)

pg_get_userbyid extracts a role’s name given its OID.

pg_tablespace_databases allows a tablespace to be examined. It returns the set of OIDs of
databases that have objects stored in the tablespace. If this function returns any rows, the tablespace
is not empty and cannot be dropped. To display the specific objects populating the tablespace, you
will need to connect to the databases identified by pg_tablespace_databases and query their
pg_class catalogs.

pg_typeof returns the OID of the data type of the value that is passed to it. This can be helpful
for troubleshooting or dynamically constructing SQL queries. The function is declared as returning
regtype, which is an OID alias type (see Section 8.16); this means that it is the same as an OID for
comparison purposes but displays as a type name. For example:

SELECT pg_typeof (33);

pg_typeof

integer
(1 row)

248

Chapter 9. Functions and Operators

SELECT typlen FROM pg_type WHERE oid = pg_typeof (33);
typlen

The functions shown in Table 9-51 extract comments previously stored with the COMMENT com-
mand. A null value is returned if no comment could be found for the specified parameters.

Table 9-51. Comment Information Functions

Name Return Type Description

col_description (table_oid, |text get comment for a table column

column_number)

obj_description (object_oid, |text get comment for a database

catalog_name) object

obj_description (object_oid) |text get comment for a database
object (deprecated)

shobj_description (object_oid,text get comment for a shared

catalog_name) database ObjCCt

col_description returns the comment for a table column, which is specified by the OID of its
table and its column number. obj_description cannot be used for table columns since columns do
not have OIDs of their own.

The two-parameter form of obj_description returns the comment for a database
object specified by its OID and the name of the containing system catalog. For example,
obj_description (123456, ’pg_class’) would retrieve the comment for the table with
OID 123456. The one-parameter form of obj_description requires only the object OID. It
is deprecated since there is no guarantee that OIDs are unique across different system catalogs;
therefore, the wrong comment might be returned.

shobj_description is used just like obj_description except it is used for retrieving comments
on shared objects. Some system catalogs are global to all databases within each cluster and their
descriptions are stored globally as well.

The functions shown in Table 9-52 provide server transaction information in an exportable form.
The main use of these functions is to determine which transactions were committed between two
snapshots.

Table 9-52. Transaction IDs and snapshots

Name Return Type Description

txid_current () bigint get current transaction ID

txid_current_snapshot () txid_snapshot get current snapshot

txid_snapshot_xmin (txid_snapdndgint get xmin of snapshot

txid_snapshot_xmax (txid_snapdhdgint get xmax of snapshot

txid_snapshot_xip (txid_snapshsetof bigint get in-progress transaction IDs
in snapshot

249

Chapter 9. Functions and Operators

Name Return Type Description

txid_visible_in_snapshot (bighaglean is transaction ID visible in

txid_snapshot) snapshot? (do not use with
subtransaction ids)

The internal transaction ID type (xid) is 32 bits wide and wraps around every 4 billion transac-
tions. However, these functions export a 64-bit format that is extended with an “epoch” counter so
it will not wrap around during the life of an installation. The data type used by these functions,
txid_snapshot, stores information about transaction ID visibility at a particular moment in time.
Its components are described in Table 9-53.

Table 9-53. Snapshot components

Name Description

xmin Earliest transaction ID (txid) that is still active.
All earlier transactions will either be committed
and visible, or rolled back and dead.

xmax First as-yet-unassigned txid. All txids greater
than or equal to this are not yet started as of the
time of the snapshot, and thus invisible.

xip_list Active txids at the time of the snapshot. The list
includes only those active txids between xmin
and xmax; there might be active txids higher than
xmax. A txid that is xmin <= txid < xmax
and not in this list was already completed at the
time of the snapshot, and thus either visible or
dead according to its commit status. The list
does not include txids of subtransactions.

txid_snapshot’s textual representation iS xmin: xmax:xip list. For example 10:20:10,14,15
means xmin=10, xmax=20, xip_list=10, 14, 15.

9.24. System Administration Functions

Table 9-54 shows the functions available to query and alter run-time configuration parameters.

Table 9-54. Configuration Settings Functions

Name Return Type Description

text get current value of setting

current_setting (setting_name

set_config (setting_name, text set parameter and return new

new_value, is_local) value

The function current_setting yields the current value of the setting setting_name. It corre-
sponds to the SQL command SHOW. An example:

SELECT current_setting(’datestyle’);

250

Chapter 9. Functions and Operators

current_setting

IS0, MDY
(1 row)

set_config sets the parameter setting_name to new_value.If is_local is true, the new value
will only apply to the current transaction. If you want the new value to apply for the current session,
use false instead. The function corresponds to the SQL command SET. An example:

SELECT set_config(’log_statement_stats’, ’'off’, false);

set_config

off
(1 row)

The functions shown in Table 9-55 send control signals to other server processes. Use of these func-
tions is restricted to superusers.

Table 9-55. Server Signalling Functions

Name Return Type Description

pg_cancel_backend (pid int) |boolean Cancel a backend’s current
query

pg_terminate_backend (pid boolean Terminate a backend

int)

pg_reload_conf () boolean Cause server processes to
reload their configuration files

pg_rotate_logfile () boolean Rotate server’s log file

Each of these functions returns t rue if successful and false otherwise.

pg_cancel_backend and pg_terminate_backend send signals (SIGINT or SIGTERM respec-
tively) to backend processes identified by process ID. The process ID of an active backend can be
found from the procpid column of the pg_stat_activity view, or by listing the postgres pro-
cesses on the server (using ps on Unix or the Task Manager on Windows).

pg_reload_conf sends a SIGHUP signal to the server, causing configuration files to be reloaded by
all server processes.

pg_rotate_logfile signals the log-file manager to switch to a new output file immediately. This
works only when the built-in log collector is running, since otherwise there is no log-file manager
subprocess.

The functions shown in Table 9-56 assist in making on-line backups. These functions cannot be exe-
cuted during recovery. Use of the first three functions is restricted to superusers.

Table 9-56. Backup Control Functions

Name Return Type Description
pg_start_backup (label text |text Prepare for performing on-line
[, fast boolean]) backup

251

Chapter 9. Functions and Operators

Name Return Type Description
pg_stop_backup () text Finish performing on-line
backup
pg_switch_xlog () text Force switch to a new
transaction log file
text Get current transaction log
pg_current_xlog_location () write location
text Get current transaction log
pg_current_xlog_insert_locaftion () insert location
text, integer Convert transaction log location
pg_xlogfile_name_offset (locition string to file name and decimal
text) byte offset within file
pg_xlogfile_name (location |text Convert transaction log location
text) string to file name

pg_start_backup accepts an arbitrary user-defined label for the backup. (Typically this would be
the name under which the backup dump file will be stored.) The function writes a backup label file
(backup_label) into the database cluster’s data directory, performs a checkpoint, and then returns
the backup’s starting transaction log location as text. The user can ignore this result value, but it is
provided in case it is useful.

postgres=# select pg_start_backup(’label_goes_here’);
pg_start_backup

0/D4445B8
(1 row)

There is an optional second parameter of type boolean. If true, it specifies executing
pg_start_backup as quickly as possible. This forces an immediate checkpoint which will cause a
spike in I/O operations, slowing any concurrently executing queries.

pg_stop_backup removes the label file created by pg_start_backup, and creates a backup history
file in the transaction log archive area. The history file includes the label given to pg_start_backup,
the starting and ending transaction log locations for the backup, and the starting and ending times of
the backup. The return value is the backup’s ending transaction log location (which again can be
ignored). After recording the ending location, the current transaction log insertion point is automati-
cally advanced to the next transaction log file, so that the ending transaction log file can be archived
immediately to complete the backup.

pg_switch_xlog moves to the next transaction log file, allowing the current file to be archived
(assuming you are using continuous archiving). The return value is the ending transaction log location
+ 1 within the just-completed transaction log file. If there has been no transaction log activity since
the last transaction log switch, pg_switch_xlog does nothing and returns the start location of the
transaction log file currently in use.

pg_current_xlog_location displays the current transaction log write location in the same format
used by the above functions. Similarly, pg_current_xlog_insert_location displays the current
transaction log insertion point. The insertion point is the “logical” end of the transaction log at any
instant, while the write location is the end of what has actually been written out from the server’s
internal buffers. The write location is the end of what can be examined from outside the server, and is
usually what you want if you are interested in archiving partially-complete transaction log files. The

252

Chapter 9. Functions and Operators

insertion point is made available primarily for server debugging purposes. These are both read-only
operations and do not require superuser permissions.

You can use pg_xlogfile_name_offset toextract the corresponding transaction log file name and
byte offset from the results of any of the above functions. For example:

postgres=# SELECT * FROM pg_xlogfile_name_offset (pg_stop_backup());
file_name | file_ offset
__________________________ o
00000001000000000000000D | 4039624
(1 row)

Similarly, pg_xlogfile_name extracts just the transaction log file name. When the given transaction
log location is exactly at a transaction log file boundary, both these functions return the name of
the preceding transaction log file. This is usually the desired behavior for managing transaction log
archiving behavior, since the preceding file is the last one that currently needs to be archived.

For details about proper usage of these functions, see Section 24.3.

The functions shown in Table 9-57 provide information about the current status of the standby. These
functions may be executed during both recovery and in normal running.

Table 9-57. Recovery Information Functions

Name Return Type Description
pg_is_in_recovery () bool True if recovery is still in
progress.
text Get last transaction log location
pg_last_xlog_receive_locatipn () received and synced to disk by

streaming replication. While
streaming replication is in
progress this will increase
monotonically. But when
streaming replication is
restarted this will back off to
the replication starting position,
typically the beginning of the
WAL file containing the current
replay location. If recovery has
completed this will remain
static at the value of the last
WAL record received and
synced to disk during recovery.
If streaming replication is
disabled, or if it has not yet
started, the function returns
NULL.

253

Chapter 9. Functions and Operators

Name

Return Type

Description

text

pg_last_xlog_replay_location ()

Get last transaction log location
replayed during recovery. If
recovery is still in progress this
will increase monotonically. If
recovery has completed then
this value will remain static at
the value of the last WAL
record applied during that
recovery. When the server has
been started normally without
recovery the function returns
NULL.

The functions shown in Table 9-58 calculate the disk space usage of database objects.

Table 9-58. Database Object Size Functions

Name

Return Type

Description

pg_column_size (any)

int

Number of bytes used to store a
particular value (possibly
compressed)

pg_total_relation_size (regc!

bigint

ass)

Total disk space used by the
table with the specified OID or
name, including all indexes and
TOAST data

pg_table_size (regclass)

bigint

Disk space used by the table
with the specified OID or name,
excluding indexes (but
including TOAST, free space
map, and visibility map)

pg_indexes_size (regclass)

bigint

Total disk space used by
indexes attached to the table
with the specified OID or name

pg_database_size (oid)

bigint

Disk space used by the database
with the specified OID

pg_database_size (name)

bigint

Disk space used by the database
with the specified name

pg_tablespace_size (oid)

bigint

Disk space used by the
tablespace with the specified
OID

pg_tablespace_size (name)

bigint

Disk space used by the
tablespace with the specified
name

254

Chapter 9. Functions and Operators

Name Return Type Description
pg_relation_size (relation bigint Disk space used by the
regclass, fork text) speciﬁed fork (main’, ’ fsm’

or ' vm’) of the table or index
with the specified OID or name

pg_relation_size (relation |bigint Shorthand for

regclass) pg_relation_size (...,
"main’)

pg_size_pretty (bigint) text Converts a size in bytes into a

human-readable format with
size units

pg_column_size shows the space used to store any individual data value.

pg_total_relation_size accepts the OID or name of a table or toast table, and returns the total
on-disk space used for that table, including all associated indexes. This function is equivalent to

pg_table_size + pg_indexes_size.

pg_table_size accepts the OID or name of a table and returns the disk space needed for that table,
exclusive of indexes. (TOAST space, free space map, and visibility map are included.)

pg_indexes_size accepts the OID or name of a table and returns the total disk space used by all
the indexes attached to that table.

pg_database_size and pg_tablespace_size accept the OID or name of a database or
tablespace, and return the total disk space used therein.

pg_relation_size accepts the OID or name of a table, index or toast table, and returns the on-
disk size in bytes. Specifying 'main’ or leaving out the second argument returns the size of the
main data fork of the relation. Specifying ’ £sm’ returns the size of the Free Space Map (see Section
54.3) associated with the relation. Specifying ’ vm’ returns the size of the Visibility Map (see Sec-
tion 54.4) associated with the relation. Note that this function shows the size of only one fork; for
most purposes it is more convenient to use the higher-level functions pg_total_relation_size or
pg_table_size.

pPg_size_pretty can be used to format the result of one of the other functions in a human-readable
way, using kB, MB, GB or TB as appropriate.

The functions shown in Table 9-59 assist in identifying the specific disk files associated with database
objects.

Table 9-59. Database Object Location Functions

Name Return Type Description

oid Filenode number of the
pg_relation_filenode (relatidn relation with the specified OID
regclass) Or name

text File path name of the relation
pg_relation_filepath (relatidn with the specified OID or name
regclass)

pg_relation_filenode accepts the OID or name of a table, index, sequence, or toast table, and
returns the “filenode” number currently assigned to it. The filenode is the base component of the file
name(s) used for the relation (see Section 54.1 for more information). For most tables the result is

255

Chapter 9. Functions and Operators

the same as pg_class.relfilenode, but for certain system catalogs relfilenode is zero and this
function must be used to get the correct value. The function returns NULL if passed a relation that
does not have storage, such as a view.

pg_relation_filepath is similar to pg_relation_filenode, but it returns the entire file path
name (relative to the database cluster’s data directory PGDATA) of the relation.

The functions shown in Table 9-60 provide native access to files on the machine hosting the server.
Only files within the database cluster directory and the log_directory can be accessed. Use a
relative path for files in the cluster directory, and a path matching the 1og_directory configuration
setting for log files. Use of these functions is restricted to superusers.

Table 9-60. Generic File Access Functions

Name Return Type Description
pg_ls_dir (dirname text) setof text List the contents of a directory
pg_read_file (filename text, |text Return the contents of a text file

offset bigint, length

bigint)
pg_stat_file (filename text) | record Return information about a file
pg_ls_dir returns all the names in the specified directory, except the special entries “.” and *“. .”.

pg_read_file returns part of a text file, starting at the given of fset, returning at most length
bytes (less if the end of file is reached first). If of fset is negative, it is relative to the end of the file.

pg_stat_file returns a record containing the file size, last accessed time stamp, last modified time
stamp, last file status change time stamp (Unix platforms only), file creation time stamp (Windows
only), and a boolean indicating if it is a directory. Typical usages include:

SELECT % FROM pg_stat_file(’filename’);
SELECT (pg_stat_file(’filename’)) .modification;

The functions shown in Table 9-61 manage advisory locks. For details about proper use of these
functions, see Section 13.3.4.

Table 9-61. Advisory Lock Functions

Name Return Type Description
pg_advisory_lock (key void Obtain exclusive advisory lock
bigint)
pg_advisory_lock (keyl int, |void Obtain exclusive advisory lock
key2 int)

void Obtain shared advisory lock

pg_advisory_lock_shared (key

bigint)

void Obtain shared advisory lock
pg_advisory_lock_shared (keyl

int, key2 int)

pg_try_advisory_lock (key boolean Obtain exclusive advisory lock
bigint) if available

256

Chapter 9. Functions and Operators

Name Return Type Description
pg_try_advisory_lock (keyl |boolean Obtain exclusive advisory lock
int, key2 int) if available

boolean Obtain shared advisory lock if
pg_try_advisory_lock_shared|(key available
bigint)

boolean Obtain shared advisory lock if
pg_try_advisory_lock_shared|(keyl available

int, key2 int)

pg_advisory_unlock (key boolean Release an exclusive advisory
bigint) lock
pg_advisory_unlock (keyl boolean Release an exclusive advisory
int, key2 int) lock

boolean Release a shared advisory lock

U

pg_advisory_unlock_shared (kpy

bigint)

boolean Release a shared advisory lock
pg_advisory_unlock_shared (kpyl

int, key2 int)

pg_advisory_unlock_all () void Release all advisory locks held
by the current session

pg_advisory_lock locks an application-defined resource, which can be identified either by a single
64-bit key value or two 32-bit key values (note that these two key spaces do not overlap). The key type
is specified in pg_locks.ob7jid. If another session already holds a lock on the same resource, the
function will wait until the resource becomes available. The lock is exclusive. Multiple lock requests
stack, so that if the same resource is locked three times it must be also unlocked three times to be
released for other sessions’ use.

pg_advisory_lock_shared works the same as pg_advisory_lock, except the lock can be
shared with other sessions requesting shared locks. Only would-be exclusive lockers are locked out.

pg_try_advisory_lock is similar to pg_advisory_lock, except the function will not wait for
the lock to become available. It will either obtain the lock immediately and return true, or return
false if the lock cannot be acquired immediately.

pg_try_advisory_lock_shared works the same as pg_try_advisory_lock, except it attempts
to acquire a shared rather than an exclusive lock.

pg_advisory_unlock will release a previously-acquired exclusive advisory lock. It returns t rue
if the lock is successfully released. If the lock was not held, it will return false, and in addition, an
SQL warning will be raised by the server.

pg_advisory_unlock_shared works the same as pg_advisory_unlock, except it releases a
shared advisory lock.

pg_advisory_unlock_all will release all advisory locks held by the current session. (This func-
tion is implicitly invoked at session end, even if the client disconnects ungracefully.)

9.25. Trigger Functions

Currently PostgreSQL provides one built in trigger function,

257

Chapter 9. Functions and Operators

suppress_redundant_updates_trigger, which will prevent any update
that does not actually change the data in the row from taking place, in contrast to the normal behavior
which always performs the update regardless of whether or not the data has changed. (This normal
behavior makes updates run faster, since no checking is required, and is also useful in certain cases.)

Ideally, you should normally avoid running updates that don’t actually change the data in the record.
Redundant updates can cost considerable unnecessary time, especially if there are lots of indexes
to alter, and space in dead rows that will eventually have to be vacuumed. However, detecting such
situations in client code is not always easy, or even possible, and writing expressions to detect them
can be error-prone. An alternative is to use suppress_redundant_updates_trigger, which will
skip updates that don’t change the data. You should use this with care, however. The trigger takes a
small but non-trivial time for each record, so if most of the records affected by an update are actually
changed, use of this trigger will actually make the update run slower.

The suppress_redundant_updates_trigger function can be added to a table like this:

CREATE TRIGGER z_min_update
BEFORE UPDATE ON tablename
FOR EACH ROW EXECUTE PROCEDURE suppress_redundant_updates_trigger();

In most cases, you would want to fire this trigger last for each row. Bearing in mind that triggers fire
in name order, you would then choose a trigger name that comes after the name of any other trigger
you might have on the table.

For more information about creating triggers, see CREATE TRIGGER.

258

Chapter 10. Type Conversion

SQL statements can, intentionally or not, require the mixing of different data types in the same ex-
pression. PostgreSQL has extensive facilities for evaluating mixed-type expressions.

In many cases a user does not need to understand the details of the type conversion mechanism.
However, implicit conversions done by PostgreSQL can affect the results of a query. When necessary,
these results can be tailored by using explicit type conversion.

This chapter introduces the PostgreSQL type conversion mechanisms and conventions. Refer to the
relevant sections in Chapter 8 and Chapter 9 for more information on specific data types and allowed
functions and operators.

10.1. Overview

SQL is a strongly typed language. That is, every data item has an associated data type which deter-
mines its behavior and allowed usage. PostgreSQL has an extensible type system that is more general
and flexible than other SQL implementations. Hence, most type conversion behavior in PostgreSQL
is governed by general rules rather than by ad hoc heuristics. This allows the use of mixed-type ex-
pressions even with user-defined types.

The PostgreSQL scanner/parser divides lexical elements into five fundamental categories: integers,
non-integer numbers, strings, identifiers, and key words. Constants of most non-numeric types are
first classified as strings. The SQL language definition allows specifying type names with strings, and
this mechanism can be used in PostgreSQL to start the parser down the correct path. For example, the

query:

SELECT text ’Origin’ AS "label", point ’ (0,0)’ AS "value";

label | value
________ b
Origin | (0,0)
(1 row)

has two literal constants, of type text and point. If a type is not specified for a string literal, then
the placeholder type unknown is assigned initially, to be resolved in later stages as described below.

There are four fundamental SQL constructs requiring distinct type conversion rules in the PostgreSQL
parser:
Function calls

Much of the PostgreSQL type system is built around a rich set of functions. Functions can have
one or more arguments. Since PostgreSQL permits function overloading, the function name
alone does not uniquely identify the function to be called; the parser must select the right function
based on the data types of the supplied arguments.

Operators

PostgreSQL allows expressions with prefix and postfix unary (one-argument) operators, as well
as binary (two-argument) operators. Like functions, operators can be overloaded, so the same
problem of selecting the right operator exists.

259

Chapter 10. Type Conversion

Value Storage

SQL INSERT and UPDATE statements place the results of expressions into a table. The expres-
sions in the statement must be matched up with, and perhaps converted to, the types of the target
columns.

UNION, CASE, and related constructs

Since all query results from a unionized SELECT statement must appear in a single set of
columns, the types of the results of each SELECT clause must be matched up and converted to
a uniform set. Similarly, the result expressions of a CASE construct must be converted to a
common type so that the CASE expression as a whole has a known output type. The same holds
for ARRAY constructs, and for the GREATEST and LEAST functions.

The system catalogs store information about which conversions, or casts, exist between which data
types, and how to perform those conversions. Additional casts can be added by the user with the
CREATE CAST command. (This is usually done in conjunction with defining new data types. The
set of casts between built-in types has been carefully crafted and is best not altered.)

An additional heuristic provided by the parser allows improved determination of the proper cast-
ing behavior among groups of types that have implicit casts. Data types are divided into several
basic type categories, including boolean, numeric, string, bitstring, datetime, timespan,
geometric, network, and user-defined. (For a list see Table 45-45; but note it is also possible to cre-
ate custom type categories.) Within each category there can be one or more preferred types, which are
preferred when there is a choice of possible types. With careful selection of preferred types and avail-
able implicit casts, it is possible to ensure that ambiguous expressions (those with multiple candidate
parsing solutions) can be resolved in a useful way.

All type conversion rules are designed with several principles in mind:

« Implicit conversions should never have surprising or unpredictable outcomes.

« There should be no extra overhead in the parser or executor if a query does not need implicit type
conversion. That is, if a query is well-formed and the types already match, then the query should
execute without spending extra time in the parser and without introducing unnecessary implicit
conversion calls in the query.

Additionally, if a query usually requires an implicit conversion for a function, and if then the user
defines a new function with the correct argument types, the parser should use this new function and
no longer do implicit conversion to use the old function.

10.2. Operators

The specific operator that is referenced by an operator expression is determined using the following
procedure. Note that this procedure is indirectly affected by the precedence of the involved operators,
since that will determine which sub-expressions are taken to be the inputs of which operators. See
Section 4.1.6 for more information.

Operator Type Resolution

1. Select the operators to be considered from the pg_operator system catalog. If a non-schema-
qualified operator name was used (the usual case), the operators considered are those with the

260

Chapter 10. Type Conversion

matching name and argument count that are visible in the current search path (see Section 5.7.3).
If a qualified operator name was given, only operators in the specified schema are considered.

a. If the search path finds multiple operators with identical argument types, only the one
appearing earliest in the path is considered. Operators with different argument types are
considered on an equal footing regardless of search path position.

2. Check for an operator accepting exactly the input argument types. If one exists (there can be only
one exact match in the set of operators considered), use it.

a. If one argument of a binary operator invocation is of the unknown type, then assume it is
the same type as the other argument for this check. Invocations involving two unknown
inputs, or a unary operator with an unknown input, will never find a match at this step.

3. Look for the best match.

a. Discard candidate operators for which the input types do not match and cannot be con-
verted (using an implicit conversion) to match. unknown literals are assumed to be con-
vertible to anything for this purpose. If only one candidate remains, use it; else continue
to the next step.

b. Run through all candidates and keep those with the most exact matches on input types.
(Domains are considered the same as their base type for this purpose.) Keep all candi-
dates if none have exact matches. If only one candidate remains, use it; else continue to
the next step.

c. Run through all candidates and keep those that accept preferred types (of the input data
type’s type category) at the most positions where type conversion will be required. Keep
all candidates if none accept preferred types. If only one candidate remains, use it; else
continue to the next step.

d. If any input arguments are unknown, check the type categories accepted at those ar-
gument positions by the remaining candidates. At each position, select the string
category if any candidate accepts that category. (This bias towards string is appropri-
ate since an unknown-type literal looks like a string.) Otherwise, if all the remaining
candidates accept the same type category, select that category; otherwise fail because
the correct choice cannot be deduced without more clues. Now discard candidates that
do not accept the selected type category. Furthermore, if any candidate accepts a pre-
ferred type in that category, discard candidates that accept non-preferred types for that
argument.

e. If only one candidate remains, use it. If no candidate or more than one candidate re-
mains, then fail.

Some examples follow.

Example 10-1. Factorial Operator Type Resolution

There is only one factorial operator (postfix !) defined in the standard catalog, and it takes an argu-
ment of type bigint. The scanner assigns an initial type of integer to the argument in this query
expression:

SELECT 40 ! AS "40 factorial";
40 factorial

815915283247897734345611269596115894272000000000

261

Chapter 10. Type Conversion

(1 row)
So the parser does a type conversion on the operand and the query is equivalent to:
SELECT CAST (40 AS bigint) ! AS "40 factorial";

Example 10-2. String Concatenation Operator Type Resolution

A string-like syntax is used for working with string types and for working with complex extension
types. Strings with unspecified type are matched with likely operator candidates.

An example with one unspecified argument:

SELECT text ’"abc’ || ’'def’ AS "text and unknown";

text and unknown

abcdef
(1 row)

In this case the parser looks to see if there is an operator taking text for both arguments. Since there
is, it assumes that the second argument should be interpreted as type text.

Here is a concatenation on unspecified types:

SELECT ’abc’ || 'def’ AS "unspecified";

unspecified

abcdef
(1 row)

In this case there is no initial hint for which type to use, since no types are specified in the query.
So, the parser looks for all candidate operators and finds that there are candidates accepting both
string-category and bit-string-category inputs. Since string category is preferred when available, that
category is selected, and then the preferred type for strings, text, is used as the specific type to
resolve the unknown literals as.

Example 10-3. Absolute-Value and Negation Operator Type Resolution

The PostgreSQL operator catalog has several entries for the prefix operator @, all of which implement
absolute-value operations for various numeric data types. One of these entries is for type floats,
which is the preferred type in the numeric category. Therefore, PostgreSQL will use that entry when
faced with an unknown input:

SELECT @ "-4.5" AS "abs";
abs

4.5
(1 row)
Here the system has implicitly resolved the unknown-type literal as type £1oat 8 before applying the

chosen operator. We can verify that f1oat 8 and not some other type was used:
SELECT @ "-4.5e500" AS "abs";

ERROR: "-4.5e500" is out of range for type double precision

262

Chapter 10. Type Conversion

On the other hand, the prefix operator ~ (bitwise negation) is defined only for integer data types, not
for f10at8. So, if we try a similar case with ~, we get:

SELECT ~

ERROR:
HINT:

720’ AS "negation";

operator is not unigque: ~ "unknown"
Could not choose a best candidate operator. You might need to add

explicit type casts.

This happens because the system cannot decide which of the several possible ~ operators should be
preferred. We can help it out with an explicit cast:

SELECT ~ CAST(’20" AS int8) AS "negation";

negation

-21

(1 row)

10.3. Functions

The specific function that is referenced by a function call is determined using the following procedure.

Function Type Resolution

1.

Select

the functions to be considered from the pg_proc system catalog. If a

non-schema-qualified function name was used, the functions considered are those with the
matching name and argument count that are visible in the current search path (see Section 5.7.3).
If a qualified function name was given, only functions in the specified schema are considered.

a.

If the search path finds multiple functions of identical argument types, only the one
appearing earliest in the path is considered. Functions of different argument types are
considered on an equal footing regardless of search path position.

If a function is declared with a VARIADIC array parameter, and the call does not use the
VARIADIC keyword, then the function is treated as if the array parameter were replaced
by one or more occurrences of its element type, as needed to match the call. After
such expansion the function might have effective argument types identical to some non-
variadic function. In that case the function appearing earlier in the search path is used,
or if the two functions are in the same schema, the non-variadic one is preferred.

Functions that have default values for parameters are considered to match any call that
omits zero or more of the defaultable parameter positions. If more than one such func-
tion matches a call, the one appearing earliest in the search path is used. If there are two
or more such functions in the same schema with identical parameter types in the non-
defaulted positions (which is possible if they have different sets of defaultable param-
eters), the system will not be able to determine which to prefer, and so an “ambiguous
function call” error will result if no better match to the call can be found.

Check for a function accepting exactly the input argument types. If one exists (there can be only

one exact match in the set of functions considered), use it. (Cases involving unknown will never
find a match at this step.)

If no exact match is found, see if the function call appears to be a special type conversion request.

This happens if the function call has just one argument and the function name is the same as

263

Chapter 10. Type Conversion

the (internal) name of some data type. Furthermore, the function argument must be either an
unknown-type literal, or a type that is binary-coercible to the named data type, or a type that
could be converted to the named data type by applying that type’s I/O functions (that is, the
conversion is either to or from one of the standard string types). When these conditions are met,
the function call is treated as a form of CAST specification. '

4. Look for the best match.

a. Discard candidate functions for which the input types do not match and cannot be con-
verted (using an implicit conversion) to match. unknown literals are assumed to be con-
vertible to anything for this purpose. If only one candidate remains, use it; else continue
to the next step.

b. Run through all candidates and keep those with the most exact matches on input types.
(Domains are considered the same as their base type for this purpose.) Keep all candi-
dates if none have exact matches. If only one candidate remains, use it; else continue to
the next step.

c. Run through all candidates and keep those that accept preferred types (of the input data
type’s type category) at the most positions where type conversion will be required. Keep
all candidates if none accept preferred types. If only one candidate remains, use it; else
continue to the next step.

d. If any input arguments are unknown, check the type categories accepted at those ar-
gument positions by the remaining candidates. At each position, select the string
category if any candidate accepts that category. (This bias towards string is appropri-
ate since an unknown-type literal looks like a string.) Otherwise, if all the remaining
candidates accept the same type category, select that category; otherwise fail because
the correct choice cannot be deduced without more clues. Now discard candidates that
do not accept the selected type category. Furthermore, if any candidate accepts a pre-
ferred type in that category, discard candidates that accept non-preferred types for that
argument.

e. If only one candidate remains, use it. If no candidate or more than one candidate re-
mains, then fail.

Note that the “best match” rules are identical for operator and function type resolution. Some exam-
ples follow.

Example 10-4. Rounding Function Argument Type Resolution

There is only one round function that takes two arguments; it takes a first argument of type numeric
and a second argument of type integer. So the following query automatically converts the first
argument of type integer to numeric:

SELECT round (4, 4);

(1 row)
That query is actually transformed by the parser to:
SELECT round (CAST (4 AS numeric), 4);

1. The reason for this step is to support function-style cast specifications in cases where there is not an actual cast function.
If there is a cast function, it is conventionally named after its output type, and so there is no need to have a special case. See
CREATE CAST for additional commentary.

264

Chapter 10. Type Conversion

Since numeric constants with decimal points are initially assigned the type numeric, the following
query will require no type conversion and therefore might be slightly more efficient:

SELECT round (4.0, 4);

Example 10-5. Substring Function Type Resolution

There are several substr functions, one of which takes types text and integer. If called with a
string constant of unspecified type, the system chooses the candidate function that accepts an argu-
ment of the preferred category st ring (namely of type text).

SELECT substr (1234, 3);

substr

34
(1 row)

If the string is declared to be of type varchar, as might be the case if it comes from a table, then the
parser will try to convert it to become text:

SELECT substr (varchar 712347, 3);

substr

34
(1 row)

This is transformed by the parser to effectively become:
SELECT substr (CAST (varchar ’1234’ AS text), 3);

Note: The parser learns from the pg_cast catalog that text and varchar are binary-compatible,
meaning that one can be passed to a function that accepts the other without doing any physical
conversion. Therefore, no type conversion call is really inserted in this case.

And, if the function is called with an argument of type integer, the parser will try to convert that to
text:

SELECT substr (1234, 3);

ERROR: function substr (integer, integer) does not exist

HINT: ©No function matches the given name and argument types. You might need
to add explicit type casts.

This does not work because integer does not have an implicit cast to text. An explicit cast will

work, however:
SELECT substr (CAST (1234 AS text), 3);

265

Chapter 10. Type Conversion

10.4. Value Storage

Values to be inserted into a table are converted to the destination column’s data type according to the
following steps.

Value Storage Type Conversion

1. Check for an exact match with the target.

2. Otherwise, try to convert the expression to the target type. This will succeed if there is a registered
cast between the two types. If the expression is an unknown-type literal, the contents of the literal
string will be fed to the input conversion routine for the target type.

3. Check to see if there is a sizing cast for the target type. A sizing cast is a cast from that type to
itself. If one is found in the pg_cast catalog, apply it to the expression before storing into the
destination column. The implementation function for such a cast always takes an extra param-
eter of type integer, which receives the destination column’s atttypmod value (typically its
declared length, although the interpretation of atttypmod varies for different data types), and it
may take a third boolean parameter that says whether the cast is explicit or implicit. The cast
function is responsible for applying any length-dependent semantics such as size checking or
truncation.

Example 10-6. character Storage Type Conversion

For a target column declared as character (20) the following statement shows that the stored value
is sized correctly:

CREATE TABLE vv (v character(20));
INSERT INTO vv SELECT ’abc’ || ’'def’;
SELECT v, octet_length(v) FROM vv;

v | octet_length
______________________ b
abcdef | 20

(1 row)

What has really happened here is that the two unknown literals are resolved to text by default, al-
lowing the | | operator to be resolved as text concatenation. Then the text result of the operator is
converted to bpchar (“blank-padded char”, the internal name of the character data type) to match
the target column type. (Since the conversion from text to bpchar is binary-coercible, this conver-
sion does not insert any real function call.) Finally, the sizing function bpchar (bpchar, integer,
boolean) is found in the system catalog and applied to the operator’s result and the stored column
length. This type-specific function performs the required length check and addition of padding spaces.

10.5. un1ON, cask, and Related Constructs

SQL UNION constructs must match up possibly dissimilar types to become a single result set. The res-
olution algorithm is applied separately to each output column of a union query. The INTERSECT and
EXCEPT constructs resolve dissimilar types in the same way as UNION. The CASE, ARRAY, VALUES,
GREATEST and LEAST constructs use the identical algorithm to match up their component expressions
and select a result data type.

266

Chapter 10. Type Conversion

Type Resolution for UNION, CASE, and Related Constructs

1.

If all inputs are of the same type, and it is not unknown, resolve as that type. Otherwise, replace
any domain types in the list with their underlying base types.

If all inputs are of type unknown, resolve as type text (the preferred type of the string category).
Otherwise, unknown inputs are ignored.

If the non-unknown inputs are not all of the same type category, fail.

Choose the first non-unknown input type which is a preferred type in that category, if there is
one.

Otherwise, choose the last non-unknown input type that allows all the preceding non-unknown
inputs to be implicitly converted to it. (There always is such a type, since at least the first type in
the list must satisfy this condition.)

Convert all inputs to the selected type. Fail if there is not a conversion from a given input to the
selected type.

Some examples follow.

Example 10-7. Type Resolution with Underspecified Types in a Union

SELECT text ’"a’ AS "text" UNION SELECT ’'b’;

(2 rows)
Here, the unknown-type literal / b’ will be resolved to type text.

Example 10-8. Type Resolution in a Simple Union

SELECT 1.2 AS "numeric" UNION SELECT 1;

numeric

1.2

(2 rows)

The literal 1.2 is of type numeric, and the integer value 1 can be cast implicitly to numeric, so
that type is used.

Example 10-9. Type Resolution in a Transposed Union

SELECT 1 AS "real" UNION SELECT CAST(’2.2’ AS REAL);

267

Chapter 10. Type Conversion
(2 rows)

Here, since type real cannot be implicitly cast to integer, but integer can be implicitly cast to
real, the union result type is resolved as real.

268

Chapter 11. Indexes

Indexes are a common way to enhance database performance. An index allows the database server to
find and retrieve specific rows much faster than it could do without an index. But indexes also add
overhead to the database system as a whole, so they should be used sensibly.

11.1. Introduction

Suppose we have a table similar to this:

CREATE TABLE testl (
id integer,
content wvarchar

)i
and the application issues many queries of the form:

SELECT content FROM testl WHERE id = constant;

With no advance preparation, the system would have to scan the entire test1 table, row by row, to
find all matching entries. If there are many rows in test1 and only a few rows (perhaps zero or one)
that would be returned by such a query, this is clearly an inefficient method. But if the system has
been instructed to maintain an index on the id column, it can use a more efficient method for locating
matching rows. For instance, it might only have to walk a few levels deep into a search tree.

A similar approach is used in most non-fiction books: terms and concepts that are frequently looked
up by readers are collected in an alphabetic index at the end of the book. The interested reader can
scan the index relatively quickly and flip to the appropriate page(s), rather than having to read the
entire book to find the material of interest. Just as it is the task of the author to anticipate the items
that readers are likely to look up, it is the task of the database programmer to foresee which indexes
will be useful.

The following command can be used to create an index on the id column, as discussed:
CREATE INDEX testl_id_index ON testl (id);

The name test1_id_index can be chosen freely, but you should pick something that enables you
to remember later what the index was for.

To remove an index, use the DROP INDEX command. Indexes can be added to and removed from
tables at any time.

Once an index is created, no further intervention is required: the system will update the index when the
table is modified, and it will use the index in queries when it thinks doing so would be more efficient
than a sequential table scan. But you might have to run the ANALYZE command regularly to update
statistics to allow the query planner to make educated decisions. See Chapter 14 for information about
how to find out whether an index is used and when and why the planner might choose not to use an
index.

Indexes can also benefit UPDATE and DELETE commands with search conditions. Indexes can more-
over be used in join searches. Thus, an index defined on a column that is part of a join condition can
also significantly speed up queries with joins.

Creating an index on a large table can take a long time. By default, PostgreSQL allows reads
(SELECT statements) to occur on the table in parallel with index creation, but writes (INSERT,

269

Chapter 11. Indexes

UPDATE, DELETE) are blocked until the index build is finished. In production environments this is
often unacceptable. It is possible to allow writes to occur in parallel with index creation, but there are
several caveats to be aware of — for more information see Building Indexes Concurrently.

After an index is created, the system has to keep it synchronized with the table. This adds overhead
to data manipulation operations. Therefore indexes that are seldom or never used in queries should be
removed.

11.2. Index Types

PostgreSQL provides several index types: B-tree, Hash, GiST and GIN. Each index type uses a differ-
ent algorithm that is best suited to different types of queries. By default, the CREATE INDEX command
creates B-tree indexes, which fit the most common situations.

B-trees can handle equality and range queries on data that can be sorted into some ordering. In partic-
ular, the PostgreSQL query planner will consider using a B-tree index whenever an indexed column
is involved in a comparison using one of these operators:

Constructs equivalent to combinations of these operators, such as BETWEEN and IN, can also be im-
plemented with a B-tree index search. Also, an IS NULL or IS NOT NULL condition on an index
column can be used with a B-tree index.

The optimizer can also use a B-tree index for queries involving the pattern matching operators LIKE
and ~ if the pattern is a constant and is anchored to the beginning of the string — for example, col
LIKE ’foo%’ orcol ~ ’'~foo’,butnotcol LIKE ’%bar’.However, if your database does not
use the C locale you will need to create the index with a special operator class to support indexing
of pattern-matching queries; see Section 11.9 below. It is also possible to use B-tree indexes for
ILIKE and ~«, but only if the pattern starts with non-alphabetic characters, i.e., characters that are not
affected by upper/lower case conversion.

Hash indexes can only handle simple equality comparisons. The query planner will consider using
a hash index whenever an indexed column is involved in a comparison using the = operator. The
following command is used to create a hash index:

CREATE INDEX name ON table USING hash (column);

Caution

Hash index operations are not presently WAL-logged, so hash indexes might
need to be rebuilt with REINDEX after a database crash. They are also not repli-
cated over streaming or file-based replication. For these reasons, hash index
use is presently discouraged.

GiST indexes are not a single kind of index, but rather an infrastructure within which many different
indexing strategies can be implemented. Accordingly, the particular operators with which a GiST
index can be used vary depending on the indexing strategy (the operator class). As an example,

270

Chapter 11. Indexes

the standard distribution of PostgreSQL includes GiST operator classes for several two-dimensional
geometric data types, which support indexed queries using these operators:

<<
&<
&>
>>
<<|
&<
[&>
[>>
@>
<@

&&

(See Section 9.11 for the meaning of these operators.) Many other GiST operator classes are available
in the contrib collection or as separate projects. For more information see Chapter 52.

GIN indexes are inverted indexes which can handle values that contain more than one key, arrays for
example. Like GiST, GIN can support many different user-defined indexing strategies and the partic-
ular operators with which a GIN index can be used vary depending on the indexing strategy. As an
example, the standard distribution of PostgreSQL includes GIN operator classes for one-dimensional
arrays, which support indexed queries using these operators:

<@
@>

&&

(See Section 9.17 for the meaning of these operators.) Many other GIN operator classes are available
in the contrib collection or as separate projects. For more information see Chapter 53.

11.3. Multicolumn Indexes

An index can be defined on more than one column of a table. For example, if you have a table of this
form:
CREATE TABLE test2 (

major int,

minor int,

name varchar

)i

(say, you keep your /dev directory in a database...) and you frequently issue queries like:
SELECT name FROM test2 WHERE major = constant AND minor = constant;

then it might be appropriate to define an index on the columns major and minor together, e.g.:

CREATE INDEX test2_mm_idx ON test2 (major, minor);

271

Chapter 11. Indexes

Currently, only the B-tree, GiST and GIN index types support multicolumn indexes. Up to 32
columns can be specified. (This limit can be altered when building PostgreSQL; see the file

pg_config_manual.h.)

A multicolumn B-tree index can be used with query conditions that involve any subset of the index’s
columns, but the index is most efficient when there are constraints on the leading (leftmost) columns.
The exact rule is that equality constraints on leading columns, plus any inequality constraints on the
first column that does not have an equality constraint, will be used to limit the portion of the index that
is scanned. Constraints on columns to the right of these columns are checked in the index, so they save
visits to the table proper, but they do not reduce the portion of the index that has to be scanned. For
example, given an index on (a, b, c) and a query condition WHERE a = 5 AND b >= 42 AND
c < 77, the index would have to be scanned from the first entry with a = 5 and b = 42 up through the
last entry with a = 5. Index entries with ¢ >= 77 would be skipped, but they’d still have to be scanned
through. This index could in principle be used for queries that have constraints on b and/or ¢ with no
constraint on a — but the entire index would have to be scanned, so in most cases the planner would
prefer a sequential table scan over using the index.

A multicolumn GiST index can be used with query conditions that involve any subset of the index’s
columns. Conditions on additional columns restrict the entries returned by the index, but the condition
on the first column is the most important one for determining how much of the index needs to be
scanned. A GiST index will be relatively ineffective if its first column has only a few distinct values,
even if there are many distinct values in additional columns.

A multicolumn GIN index can be used with query conditions that involve any subset of the index’s
columns. Unlike B-tree or GiST, index search effectiveness is the same regardless of which index
column(s) the query conditions use.

Of course, each column must be used with operators appropriate to the index type; clauses that involve
other operators will not be considered.

Multicolumn indexes should be used sparingly. In most situations, an index on a single column is
sufficient and saves space and time. Indexes with more than three columns are unlikely to be helpful
unless the usage of the table is extremely stylized. See also Section 11.5 for some discussion of the
merits of different index configurations.

11.4. Indexes and ORDER BY

In addition to simply finding the rows to be returned by a query, an index may be able to deliver them in
a specific sorted order. This allows a query’s ORDER BY specification to be honored without a separate
sorting step. Of the index types currently supported by PostgreSQL, only B-tree can produce sorted
output — the other index types return matching rows in an unspecified, implementation-dependent
order.

The planner will consider satisfying an ORDER BY specification either by scanning an available index
that matches the specification, or by scanning the table in physical order and doing an explicit sort.
For a query that requires scanning a large fraction of the table, an explicit sort is likely to be faster
than using an index because it requires less disk I/O due to following a sequential access pattern.
Indexes are more useful when only a few rows need be fetched. An important special case is ORDER
BY in combination with LIMIT n: an explicit sort will have to process all the data to identify the first
n rows, but if there is an index matching the ORDER BY, the first n rows can be retrieved directly,
without scanning the remainder at all.

By default, B-tree indexes store their entries in ascending order with nulls last. This means that a
forward scan of an index on column x produces output satisfying ORDER BY x (or more verbosely,

272

Chapter 11. Indexes

ORDER BY x ASC NULLS LAST). The index can also be scanned backward, producing output sat-
isfying ORDER BY x DESC (or more verbosely, ORDER BY x DESC NULLS FIRST, since NULLS
FIRST is the default for ORDER BY DESC).

You can adjust the ordering of a B-tree index by including the options ASC, DESC, NULLS FIRST,
and/or NULLS LAST when creating the index; for example:

CREATE INDEX test2_info_nulls_low ON test2 (info NULLS FIRST);
CREATE INDEX test3_desc_index ON test3 (id DESC NULLS LAST);

An index stored in ascending order with nulls first can satisfy either ORDER BY x ASC NULLS
FIRST or ORDER BY x DESC NULLS LAST depending on which direction it is scanned in.

You might wonder why bother providing all four options, when two options together with the pos-
sibility of backward scan would cover all the variants of ORDER BY. In single-column indexes the
options are indeed redundant, but in multicolumn indexes they can be useful. Consider a two-column
index on (x, y): this can satisfy ORDER BY x, vy if we scan forward, or ORDER BY x DESC, y
DESC if we scan backward. But it might be that the application frequently needs to use ORDER BY x
Asc, y DEsc. There is no way to get that ordering from a plain index, but it is possible if the index
is defined as (x ASC, y DESC) or (x DESC, y ASC).

Obviously, indexes with non-default sort orderings are a fairly specialized feature, but sometimes they
can produce tremendous speedups for certain queries. Whether it’s worth maintaining such an index
depends on how often you use queries that require a special sort ordering.

11.5. Combining Multiple Indexes

A single index scan can only use query clauses that use the index’s columns with operators of its
operator class and are joined with AND. For example, given an index on (a, b) a query condition
like WHERE a = 5 AND b = 6 could use the index, but a query like WHERE a = 5 OR b = 6
could not directly use the index.

Fortunately, PostgreSQL has the ability to combine multiple indexes (including multiple uses of the
same index) to handle cases that cannot be implemented by single index scans. The system can form
AND and OR conditions across several index scans. For example, a query like WHERE x = 42 OR x
= 47 OR x = 53 OR x = 99 could be broken down into four separate scans of an index on x, each
scan using one of the query clauses. The results of these scans are then ORed together to produce the
result. Another example is that if we have separate indexes on x and y, one possible implementation
of aquery like WHERE x = 5 AND y = 6 isto use each index with the appropriate query clause and
then AND together the index results to identify the result rows.

To combine multiple indexes, the system scans each needed index and prepares a bitmap in memory
giving the locations of table rows that are reported as matching that index’s conditions. The bitmaps
are then ANDed and ORed together as needed by the query. Finally, the actual table rows are visited
and returned. The table rows are visited in physical order, because that is how the bitmap is laid out;
this means that any ordering of the original indexes is lost, and so a separate sort step will be needed if
the query has an ORDER BY clause. For this reason, and because each additional index scan adds extra
time, the planner will sometimes choose to use a simple index scan even though additional indexes
are available that could have been used as well.

In all but the simplest applications, there are various combinations of indexes that might be useful,
and the database developer must make trade-offs to decide which indexes to provide. Sometimes
multicolumn indexes are best, but sometimes it’s better to create separate indexes and rely on the
index-combination feature. For example, if your workload includes a mix of queries that sometimes

273

Chapter 11. Indexes

involve only column x, sometimes only column y, and sometimes both columns, you might choose to
create two separate indexes on x and y, relying on index combination to process the queries that use
both columns. You could also create a multicolumn index on (x, vy). This index would typically be
more efficient than index combination for queries involving both columns, but as discussed in Section
11.3, it would be almost useless for queries involving only y, so it should not be the only index. A
combination of the multicolumn index and a separate index on y would serve reasonably well. For
queries involving only x, the multicolumn index could be used, though it would be larger and hence
slower than an index on x alone. The last alternative is to create all three indexes, but this is probably
only reasonable if the table is searched much more often than it is updated and all three types of query
are common. If one of the types of query is much less common than the others, you’d probably settle
for creating just the two indexes that best match the common types.

11.6. Unique Indexes

Indexes can also be used to enforce uniqueness of a column’s value, or the uniqueness of the combined
values of more than one column.

CREATE UNIQUE INDEX name ON table (column [, ...]);

Currently, only B-tree indexes can be declared unique.

When an index is declared unique, multiple table rows with equal indexed values are not allowed.
Null values are not considered equal. A multicolumn unique index will only reject cases where all
indexed columns are equal in multiple rows.

PostgreSQL automatically creates a unique index when a unique constraint or primary key is de-
fined for a table. The index covers the columns that make up the primary key or unique constraint (a
multicolumn index, if appropriate), and is the mechanism that enforces the constraint.

Note: The preferred way to add a unique constraint to a table is ALTER TABLE ... ADD
CONSTRAINT. The use of indexes to enforce unique constraints could be considered an
implementation detail that should not be accessed directly. One should, however, be aware that
there’s no need to manually create indexes on unique columns; doing so would just duplicate the
automatically-created index.

11.7. Indexes on Expressions

An index column need not be just a column of the underlying table, but can be a function or scalar
expression computed from one or more columns of the table. This feature is useful to obtain fast
access to tables based on the results of computations.

For example, a common way to do case-insensitive comparisons is to use the 1ower function:

SELECT » FROM testl WHERE lower (coll) = ’'value’;

This query can use an index if one has been defined on the result of the 1ower (col1) function:

CREATE INDEX testl_lower_coll_idx ON testl (lower(coll));

274

Chapter 11. Indexes

If we were to declare this index UNIQUE, it would prevent creation of rows whose col11 values differ
only in case, as well as rows whose col1 values are actually identical. Thus, indexes on expressions
can be used to enforce constraints that are not definable as simple unique constraints.

As another example, if one often does queries like:
SELECT x FROM people WHERE (first_name || ' ' || last_name) = ’John Smith’;
then it might be worth creating an index like this:

CREATE INDEX people_names ON people ((first_name || ' ' || last_name));

The syntax of the CREATE INDEX command normally requires writing parentheses around index
expressions, as shown in the second example. The parentheses can be omitted when the expression is
just a function call, as in the first example.

Index expressions are relatively expensive to maintain, because the derived expression(s) must be
computed for each row upon insertion and whenever it is updated. However, the index expressions are
not recomputed during an indexed search, since they are already stored in the index. In both examples
above, the system sees the query as just WHERE indexedcolumn = ’constant’ and so the speed
of the search is equivalent to any other simple index query. Thus, indexes on expressions are useful
when retrieval speed is more important than insertion and update speed.

11.8. Partial Indexes

A partial index is an index built over a subset of a table; the subset is defined by a conditional expres-
sion (called the predicate of the partial index). The index contains entries only for those table rows
that satisfy the predicate. Partial indexes are a specialized feature, but there are several situations in
which they are useful.

One major reason for using a partial index is to avoid indexing common values. Since a query search-
ing for a common value (one that accounts for more than a few percent of all the table rows) will not
use the index anyway, there is no point in keeping those rows in the index at all. This reduces the size
of the index, which will speed up those queries that do use the index. It will also speed up many table
update operations because the index does not need to be updated in all cases. Example 11-1 shows a
possible application of this idea.

Example 11-1. Setting up a Partial Index to Exclude Common Values

Suppose you are storing web server access logs in a database. Most accesses originate from the IP
address range of your organization but some are from elsewhere (say, employees on dial-up connec-
tions). If your searches by IP are primarily for outside accesses, you probably do not need to index
the IP range that corresponds to your organization’s subnet.

Assume a table like this:
CREATE TABLE access_log (
url varchar,
client_ip inet,
)i
To create a partial index that suits our example, use a command such as this:

CREATE INDEX access_log_client_ip_ix ON access_log (client_ip)

275

Chapter 11. Indexes

WHERE NOT (client_ip > inet ’192.168.100.0’ AND
client_ip < inet ’192.168.100.255");

A typical query that can use this index would be:

SELECT =«

FROM access_log

WHERE url = ’/index.html’ AND client_ip = inet ’212.78.10.32';
A query that cannot use this index is:

SELECT =«

FROM access_log

WHERE client_ip = inet 7192.168.100.237";

Observe that this kind of partial index requires that the common values be predetermined, so such
partial indexes are best used for data distributions that do not change. The indexes can be recreated
occasionally to adjust for new data distributions, but this adds maintenance effort.

Another possible use for a partial index is to exclude values from the index that the typical query
workload is not interested in; this is shown in Example 11-2. This results in the same advantages as
listed above, but it prevents the “uninteresting” values from being accessed via that index, even if
an index scan might be profitable in that case. Obviously, setting up partial indexes for this kind of
scenario will require a lot of care and experimentation.

Example 11-2. Setting up a Partial Index to Exclude Uninteresting Values

If you have a table that contains both billed and unbilled orders, where the unbilled orders take up a
small fraction of the total table and yet those are the most-accessed rows, you can improve perfor-
mance by creating an index on just the unbilled rows. The command to create the index would look
like this:

CREATE INDEX orders_unbilled_index ON orders (order_nr)
WHERE billed is not true;

A possible query to use this index would be:

SELECT * FROM orders WHERE billed is not true AND order_nr < 10000;

However, the index can also be used in queries that do not involve order_nr at all, e.g.:
SELECT * FROM orders WHERE billed is not true AND amount > 5000.00;

This is not as efficient as a partial index on the amount column would be, since the system has to scan
the entire index. Yet, if there are relatively few unbilled orders, using this partial index just to find the
unbilled orders could be a win.

Note that this query cannot use this index:

SELECT x= FROM orders WHERE order_nr = 3501;
The order 3501 might be among the billed or unbilled orders.

Example 11-2 also illustrates that the indexed column and the column used in the predicate do not
need to match. PostgreSQL supports partial indexes with arbitrary predicates, so long as only columns
of the table being indexed are involved. However, keep in mind that the predicate must match the
conditions used in the queries that are supposed to benefit from the index. To be precise, a partial
index can be used in a query only if the system can recognize that the WHERE condition of the query
mathematically implies the predicate of the index. PostgreSQL does not have a sophisticated theorem
prover that can recognize mathematically equivalent expressions that are written in different forms.
(Not only is such a general theorem prover extremely difficult to create, it would probably be too

276

Chapter 11. Indexes

slow to be of any real use.) The system can recognize simple inequality implications, for example
“x < 1”7 implies “x < 2”; otherwise the predicate condition must exactly match part of the query’s
WHERE condition or the index will not be recognized as usable. Matching takes place at query planning
time, not at run time. As a result, parameterized query clauses do not work with a partial index. For
example a prepared query with a parameter might specify “x < ?7”” which will never imply “x < 2” for
all possible values of the parameter.

A third possible use for partial indexes does not require the index to be used in queries at all. The idea
here is to create a unique index over a subset of a table, as in Example 11-3. This enforces uniqueness
among the rows that satisfy the index predicate, without constraining those that do not.

Example 11-3. Setting up a Partial Unique Index

Suppose that we have a table describing test outcomes. We wish to ensure that there is only one
“successful” entry for a given subject and target combination, but there might be any number of
“unsuccessful” entries. Here is one way to do it:

CREATE TABLE tests (
subject text,
target text,
success boolean,

)i

CREATE UNIQUE INDEX tests_success_constraint ON tests (subject, target)
WHERE success;

This is a particularly efficient approach when there are few successful tests and many unsuccessful
ones.

Finally, a partial index can also be used to override the system’s query plan choices. Also, data sets
with peculiar distributions might cause the system to use an index when it really should not. In that
case the index can be set up so that it is not available for the offending query. Normally, PostgreSQL
makes reasonable choices about index usage (e.g., it avoids them when retrieving common values, so
the earlier example really only saves index size, it is not required to avoid index usage), and grossly
incorrect plan choices are cause for a bug report.

Keep in mind that setting up a partial index indicates that you know at least as much as the query
planner knows, in particular you know when an index might be profitable. Forming this knowledge
requires experience and understanding of how indexes in PostgreSQL work. In most cases, the advan-
tage of a partial index over a regular index will be minimal.

More information about partial indexes can be found in The case for partial indexes , Partial indexing
in POSTGRES: research project, and Generalized Partial Indexes (cached version) .

11.9. Operator Classes and Operator Families

An index definition can specify an operator class for each column of an index.
CREATE INDEX name ON table (column opclass [sort options] [, ...1);

The operator class identifies the operators to be used by the index for that column. For example, a B-
tree index on the type int4 would use the int4_ops class; this operator class includes comparison
functions for values of type int4. In practice the default operator class for the column’s data type is

277

Chapter 11. Indexes

usually sufficient. The main reason for having operator classes is that for some data types, there could
be more than one meaningful index behavior. For example, we might want to sort a complex-number
data type either by absolute value or by real part. We could do this by defining two operator classes for
the data type and then selecting the proper class when making an index. The operator class determines
the basic sort ordering (which can then be modified by adding sort options ASC/DESC and/or NULLS
FIRST/NULLS LAST).

There are also some built-in operator classes besides the default ones:

« The operator classes text_pattern_ops, varchar_pattern_ops, and
bpchar_pattern_ops support B-tree indexes on the types text, varchar, and char
respectively. The difference from the default operator classes is that the values are compared
strictly character by character rather than according to the locale-specific collation rules. This
makes these operator classes suitable for use by queries involving pattern matching expressions
(LIKE or POSIX regular expressions) when the database does not use the standard “C” locale. As
an example, you might index a varchar column like this:

CREATE INDEX test_index ON test_table (col varchar_pattern_ops);

Note that you should also create an index with the default operator class if you want queries
involving ordinary <, <=, >, or >= comparisons to use an index. Such queries cannot use the
xxx_pattern_ops operator classes. (Ordinary equality comparisons can use these operator
classes, however.) It is possible to create multiple indexes on the same column with different
operator classes. If you do use the C locale, you do not need the xxx_pattern_ops operator
classes, because an index with the default operator class is usable for pattern-matching queries in
the C locale.

The following query shows all defined operator classes:

SELECT am.amname AS index_method,
opc.opcname AS opclass_name
FROM pg_am am, pg_opclass opc
WHERE opc.opcmethod = am.oid
ORDER BY index_method, opclass_name;

An operator class is actually just a subset of a larger structure called an operator family. In cases where
several data types have similar behaviors, it is frequently useful to define cross-data-type operators
and allow these to work with indexes. To do this, the operator classes for each of the types must be
grouped into the same operator family. The cross-type operators are members of the family, but are
not associated with any single class within the family.

This query shows all defined operator families and all the operators included in each family:

SELECT am.amname AS index_method,
opf.opfname AS opfamily_name,
amop.amopopr: :regoperator AS opfamily_operator
FROM pg_am am, pg_opfamily opf, pg_amop amop
WHERE opf.opfmethod = am.oid AND
amop.amopfamily = opf.oid
ORDER BY index_method, opfamily_name, opfamily_operator;

278

Chapter 11. Indexes

11.10. Examining Index Usage

Although indexes in PostgreSQL do not need maintenance or tuning, it is still important to check
which indexes are actually used by the real-life query workload. Examining index usage for an indi-
vidual query is done with the EXPLAIN command; its application for this purpose is illustrated in
Section 14.1. It is also possible to gather overall statistics about index usage in a running server, as
described in Section 27.2.

It is difficult to formulate a general procedure for determining which indexes to create. There are a
number of typical cases that have been shown in the examples throughout the previous sections. A
good deal of experimentation is often necessary. The rest of this section gives some tips for that:

+ Always run ANALYZE first. This command collects statistics about the distribution of the values
in the table. This information is required to estimate the number of rows returned by a query, which
is needed by the planner to assign realistic costs to each possible query plan. In absence of any real
statistics, some default values are assumed, which are almost certain to be inaccurate. Examining
an application’s index usage without having run ANALYZE is therefore a lost cause. See Section
23.1.3 and Section 23.1.5 for more information.

« Use real data for experimentation. Using test data for setting up indexes will tell you what indexes
you need for the test data, but that is all.

It is especially fatal to use very small test data sets. While selecting 1000 out of 100000 rows
could be a candidate for an index, selecting 1 out of 100 rows will hardly be, because the 100 rows
probably fit within a single disk page, and there is no plan that can beat sequentially fetching 1 disk

page.
Also be careful when making up test data, which is often unavoidable when the application is not

yet in production. Values that are very similar, completely random, or inserted in sorted order will
skew the statistics away from the distribution that real data would have.

« When indexes are not used, it can be useful for testing to force their use. There are run-time param-
eters that can turn off various plan types (see Section 18.6.1). For instance, turning off sequential
scans (enable_segscan) and nested-loop joins (enable_nestloop), which are the most basic
plans, will force the system to use a different plan. If the system still chooses a sequential scan or
nested-loop join then there is probably a more fundamental reason why the index is not being used;
for example, the query condition does not match the index. (What kind of query can use what kind
of index is explained in the previous sections.)

« If forcing index usage does use the index, then there are two possibilities: Either the system is
right and using the index is indeed not appropriate, or the cost estimates of the query plans are not
reflecting reality. So you should time your query with and without indexes. The EXPLAIN ANALYZE
command can be useful here.

- If it turns out that the cost estimates are wrong, there are, again, two possibilities. The total cost
is computed from the per-row costs of each plan node times the selectivity estimate of the plan
node. The costs estimated for the plan nodes can be adjusted via run-time parameters (described
in Section 18.6.2). An inaccurate selectivity estimate is due to insufficient statistics. It might be
possible to improve this by tuning the statistics-gathering parameters (see ALTER TABLE).

If you do not succeed in adjusting the costs to be more appropriate, then you might have to resort
to forcing index usage explicitly. You might also want to contact the PostgreSQL developers to
examine the issue.

279

Chapter 12. Full Text Search

12.1. Introduction

Full Text Searching (or just text search) provides the capability to identify natural-language documents
that satisfy a query, and optionally to sort them by relevance to the query. The most common type
of search is to find all documents containing given query terms and return them in order of their
similarity to the query. Notions of query and similarity are very flexible and depend on the
specific application. The simplest search considers query as a set of words and similarity as the
frequency of query words in the document.

Textual search operators have existed in databases for years. PostgreSQL has ~, ~«, LIKE, and ILIKE
operators for textual data types, but they lack many essential properties required by modern informa-
tion systems:

+ There is no linguistic support, even for English. Regular expressions are not sufficient because
they cannot easily handle derived words, e.g., satisfies and satisfy. You might miss docu-
ments that contain satisfies, although you probably would like to find them when searching
for satisfy. It is possible to use OR to search for multiple derived forms, but this is tedious and
error-prone (some words can have several thousand derivatives).

+ They provide no ordering (ranking) of search results, which makes them ineffective when thousands
of matching documents are found.

» They tend to be slow because there is no index support, so they must process all documents for
every search.

Full text indexing allows documents to be preprocessed and an index saved for later rapid searching.
Preprocessing includes:

Parsing documents into tokens. It is useful to identify various classes of tokens, e.g., numbers,
words, complex words, email addresses, so that they can be processed differently. In principle token
classes depend on the specific application, but for most purposes it is adequate to use a predefined
set of classes. PostgreSQL uses a parser to perform this step. A standard parser is provided, and
custom parsers can be created for specific needs.

Converting tokens into lexemes. A lexeme is a string, just like a token, but it has been normalized
so that different forms of the same word are made alike. For example, normalization almost always
includes folding upper-case letters to lower-case, and often involves removal of suffixes (such as s
or es in En