PostgreSQL 11.2 Documentation

The PostgreSQL Global Development Group

PostgreSQL 11.2 Documentation
The PostgreSQL Global Development Group
Copyright © 1996-2019 The PostgreSQL Global Development Group

Legal Notice
PostgreSQL is Copyright © 1996-2019 by the PostgreSQL Global Development Group.
Postgresos is Copyright © 1994-5 by the Regents of the University of California.

Permission to use, copy, modify, and distribute this software and its documentation for any purpose, without fee,
and without a written agreement is hereby granted, provided that the above copyright notice and this paragraph
and the following two paragraphs appear in all copies.

IN NO EVENT SHALL THE UNIVERSITY OF CALIFORNIA BE LIABLE TO ANY PARTY FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING LOST PROFITS,
ARISING OUT OF THE USE OF THIS SOFTWARE AND ITS DOCUMENTATION, EVEN IF THE
UNIVERSITY OF CALIFORNIA HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

THE UNIVERSITY OF CALIFORNIA SPECIFICALLY DISCLAIMS ANY WARRANTIES, INCLUDING,
BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE. THE SOFTWARE PROVIDED HEREUNDER IS ON AN “AS-|S” BASIS, AND
THEUNIVERSITY OF CALIFORNIA HASNO OBLIGATIONSTO PROVIDE MAINTENANCE, SUPPORT,
UPDATES, ENHANCEMENTS, OR MODIFICATIONS.

Table of Contents

PrEFBCE . e et XXX
1. What 1S POSIGrE@SQL? ...ttt ettt e XXX
2. A Brief History of POSIGreSQLuuiiiiiiiieieiii et XXX

2.1. The Berkeley POSTGRES Projectcccvuieiiiiiiieiiiiiieecci e XXXIi
2.2, POSIOrESOS ... XXXIi
2.3, POSIOrESQL ..ottt XXXil
3. CONVENTIONS ...ttt ettt et e et et e et et e e e e et e e e ere s XXXil
4. Further InfOrmationcoouuuiiiiiii e XXXil
5. Bug Reporting GUIEIINESuuniiiiiiie e XXXl
5.1 1dentifying BUGSccevvneiiiiiiee ettt XXXl
5.2. WHEt t0 REDPOIT ...ttt e XXXIV
5.3. Where t0 REPOIT BUGScevveiiiiiiii et XXXV
O N0 1o = TSP UP PP PPPPPTR PPN 1
L GEtING SEAEAveneeeei et 3
I 10 =] = (o EO ST SOP PP UPPPTTRUPPPIN 3
1.2. Architectural FUNDamMENtalSccouvuiiiiiiiee e 3
1.3. Creating @ Dal@haseoceevuiiiiii e 3
1.4, ACCESSING 8 DaADESEccvvneiiiii e 5
2. The SQL LBNGUBGEeevueeeeiiiieeeee ettt et e e e e 7
2.1 INEFOQUCTION ..ttt et e et e e 7
2.2, CONCEPLS ..eveeiet ettt ettt ettt 7
2.3. Creating aNew Talleoovunii e 7
2.4. Populating @ Table With ROWSccoiiiiiiiiiiieii e 8
25, QUEYING A TaADIE ...eiii e e 9
2.6. J0iNS BEWEEN TabIES ..ooviiiiiii e 11
2.7. AQOregate FUNCLIONScuuuneiiiii ettt e e e e 13
2.8 UPELES ...t 15
2.9, DEBLIONSeeiieieeeeie e 15
3. AGVANCED FEAIUMNESc.vei ettt ettt et e e s 16
130 B [L oo (8 1o o EO PP TOP PP 16
B2, VIBINS ettt 16
3.3 FOrEIgN KEBYS ..ot 16
B4 THANSACHIONS ...eeiti et ettt ettt ettt e e e e e e et e eene 17
3.5, WINAOW FUNCHIONSuiiiiii et 19
3.6, INNEITEANCE ...t e 22
7. CONCIUSION ..ttt et e e et eeena e 23
[1. The SQL LBNQUAJE ... eeeitieeeeite ettt ettt et e et e et e e e e et eeenaa s 24
4. SQL SYNEBX +evteeeetiee ettt e ettt e et e et et et e et e et e e e e e e e e aean 32
A1, LeXiCal SHUCKUMEcevveeieii ettt eaeas 32
4.2, ValUE EXPIrESSIONS ... eeieiieeeeiti e ettt ettt e et e e e 41
4.3. CaliNg FUNCLIONS ...ttt 55
5. Data DEFINITION ...ceeviiiiii e et et e 58
5.1 TADIE BASICS vt 58
5.2. DEFAUIT VAIUBS ...t 59
5.3, CONSITAINTS ..ttt ettt et e e e e e e 60
5.4, SysStemM COIUMNS ...ttt 67
5.5. MOdifying TableScoiiiiieii e 68
5.6, PrIVIIEOES ... e 71
5.7. ROW SeCUrity POIICIES ...ccevuniiiiii e 72
5.8, SCREMAS ... 78
5.9, INNEITTANCE ... e e e 83
5.10. Table Partitioningccuuuiiiiiiieiiii e 86
511, FOrEIGN DB ... cieeei ettt 98
5.12. Other Datahase ODJECESccevuiiiiiiii et 99
5.13. DependenCy TraCKingooeeeuuuieieiiieeeeii e 99

PostgreSQL 11.2 Documentation

6. Data ManipUlationcccouuieiiiieii e e e e e e e e e 101
Lo 1 == g To [- - PN 101
(S 1o = 1] oo J T - L 102
(SRR D= 1= (] ool D - LN 103
6.4. Returning Data From Modified ROWSc.ccooiiiiiiiiiiicii e 103

2O N = 1= P 105
48 T @ = 4T 1 PP 105
7.2. Tahle EXPrESSIONSciviieiii e et e e e e e e e e e eaa s 105
7.3, SEIECE LISIS 1iiiiiiieiiiii ettt 120
7.4. CombiNiNG QUETESc.uuiiiiiieiiie e e e e e e e e e e e e aaaas 122
7.5. SOMING ROWS ...t e e e e e e e e e e ees 122
T76. LIM T and OFFSET ..oovniiiiiiiiieeiiie e e e et e eeeai e 123
T.7. VALUES LISES ittt e et e e s 124
7.8. W TH Queries (Common Table EXPreSSioNS)cc.uvevvnieiiiieeiiieeiiieeeieeeinns 125

S T DT = T Y/ o1 PP 131
8.1 NUMEIIC TYPES . tttiitiiee i ettt et et e e e e e e e e e e e e et e e et e e ean e eaes 132
8.2, MONEAY Ty DS ittt ittt 137
LI @ o= = Tot (= G Y/ o= PPN 138
8.4. BiNary Dafa TYPES c.uuuiiiieiii e et et e e e e e e e e e e e e e eeaens 140
8.5, DaAE/TIME TYPES civtuiiiieiii et et et e e e e e e e e et e et e et eeaanas 142
S = T To = g N Y/ o 151
8.7. ENUMEIAEd TYPES oovuiiiiieiii et ettt e e e e e e e e e e e e aans 152
8.8. GEOMELNIC TYPES ... civtneiiieiiii e et e et e e e e e e e e e e e e e e e et e et e e aaeeaens 154
8.9. NEtWOrK AdAreSS TYPES ..ovuueiiieiii i eeiiee et e e e e e e e e e e e e e e e aneees 156
8.10. Bit SIHNG TYPES .nniiveieii ettt et e e e e e e e e e eees 159
8.11. TeXt SEACH TYPES . oeen ittt e e 160
B.12. UUID TYPE - ieiitiieeeiit ettt ettt ettt e e et e e e et e e e eaanaeeees 162
ST Q1 R 1Y/ o= PP 163
ST N S @ N Y/ o=~ ST 165
S I N = Y P 172
8.16. COMPOSITE TYPES vvuteiitneeiieeei e eie e e e e et e e et e e et e e et e et e e et e e e aaeeeaneeeen 181
8.17. RANGE TYPES ..ttt 187
8.18. DOMAIN TYPES ..vuiitiieiii e et e e e e e et e e e e e e e et e et e e st e e e e e eaneeees 193
8.19. Object 1dentifier TYPES ..vuiiiii e e e e 194
8.20. PO SN TYP oottt 195
ST T e =0 (o 0l N o1 PN 195

9. FUNCLIONS @N0 OPEIAIOIS ... cvvueiiiieieiee e ee e e e e e e e e e e e e et e et e et e e e eeens 198
1< I oo [or= B @ o= = (] £ 198
9.2. Comparison FUNctions and OPEratorsvevvuneeiineeiiiieeiieeeie e e e eeens 198
9.3. Mathematical Functions and OPEratorscccuveevieeiiieeiieeeiiee e eeaeeeens 201
9.4. String FUNCtions and OPEratorsSccuueeriieiiieeiiiee e e e e e eeaneeeees 205
9.5. Binary String Functions and OPEratorscccuvevieeiiieeiieeeiieeeeieeeaneeeens 219
9.6. Bit String Functions and OPEratorseveeuuieeriieeiiieeeiieeeieeeeeeaneeaens 221
A = 1 (= ¢ TN\ (o 11 o P 222
9.8. Data Type Formatting FUNCLIONSccoviiiiiiiiin e 237
9.9. Date/Time Functions and OPEratorsc..oveveueeeiieiiiieeiie e e e eeaeeeees 244
9.10. Enum SUpPOrt FUNCLIONSccuuiiiiieeiiecee e e e e e e 257
9.11. Geometric FUNCtions and OPEratorsSceevvuieeiiieeiieeiii e e e e e eaanaes 258
9.12. Network Address Functions and OPEratorseeevuvevuiieeiiieeiiiieeiieeeaneens 262
9.13. Text Search Functions and OPEratorscoovvvveiiieeiiiieeiieeeeieeeei e eieeeen 264
9.14. XML FUNCLIONSeiiiii ettt e et e e e e e e 270
9.15. JSON Functions and OPEratorscuueeeuuieiiiieeiieeeiieeeiee e e eee e e e eannas 284
9.16. Sequence Manipulation FUNCLIONScoovviiiiiiiieiiiieceee e 293
9.17. Conditional EXPreSSIONSuueviviiiiieiiieeeieee e ee e e e e s e e e e 295
9.18. Array FUNCtions and OPEratorsScc.ueeuueeiinierieeriiieeiee e eaieeeaneeeens 298
9.19. Range FUNctions and OPEratorscc.uveivieeiieeiii e e e e e e e eaen 301
9.20. AQQregate FUNCLIONSccuuiiii i e e e e 303
9.21. WINAOW FUNCLIONSuuieeiiiii e e e e 310

PostgreSQL 11.2 Documentation

9.22. SUDQUENY EXPrESSIONS ...vuuciiineeeieiii e e et e e et ee e e e e s et e e et e e st e e eeaneenen 312

9.23. Row and Array COMPAIiSONSevuuieiiieeiiieeeieesteesieeestneeatneeeteesanaaees 315

9.24. Set RetUrNing FUNCLIONSuiiii i e e e 317

9.25. System Information FUNCLIONScccovuiiiiiiiiiii e 320

9.26. System Administration FUNCLIONScouuiiiiiieiieeii e 337

9.27. Trigger FUNCHIONS .. .ouuiii et e e e e e e e et eeaaeees 353

9.28. Event Trigger FUNCLIONScouuiiiii e e e e 354

O Y oL o017/ = o] o PN 357
FO. 1. OVEIVIBIW Luueiiiii ettt e e et s e e et s e e e et a e e e et aeeeeatnaeaeees 357

J0.2. OPEIAIONS ittt ittt 358

10.3. FUNCLIONS ...ttt e et e e e et e e e e et e e e eetaaeeeee 362

O R 1 oI (o] - o = 366

10.5. UNI ON, CASE, and Related CONSIIUCESuuveviiiiieiiiiieeceiie e 366

10.6. SELECT OULPUL COIUMNSvvueeiiiieeeeeii e et e ettt e et e e 368

T o (== USSP 369
00 O 1 oo 0 1o ISP 369

2 1 o L= G Y/ o === 370

11.3. MUItiCOIUMN INAEXES .. .ceveiiieeiei e 372

11.4. Indexes and ORDER BYcicvuiiiiiiiiiiieiiiii ettt e s 373

11.5. Combining MUltiple INAEXESoiivnieiie e 374

12.6. UNIQUE INAEXES ...vneeeeeei et e e e e e e e e e e e e 374

11.7. INAEXES ON EXPrESSIONS ...vuieiieeiiiieiii e e e e ete e e e e e e e e e e e e e eaneeeanees 375

11.8. Partial INAEXES .. .ceevviieeiiii e eaens 375
11.9. Index-Only Scans and Covering INdeXEScoevvvieiiiiieiiieeiie e eeais 378
11.10. Operator Classes and Operator FamilieSccceevviiiiiiiciiin e, 380
11.11. Indexes and CollationSoovvuuiiiiiiiiiiee e 382
11.12. Examining INdeX USAQgEuviuniiiiieiii e e e e e e e e 382

N T L = A= o 384
2 O 1 1 oo (0 1o SO SUPPTTRSPP 384

12.2. TablesS @and INAEXEScocvvuiiiiiiie e 388

12.3. Controlling TexXt SEarchccuviiiiiiiii e 390

12.4. Additional FEAIUMESuuiiiiiiii e 397

D25, PaISErS .. ettt ettt ettt ettt 402

12.6. DICHONAITES ...ueieiiii et e ettt e e e e e et e e et e eeera s 404

12.7. Configuration EXamMPIEcouiiiiiiiiii e 414

12.8. Testing and Debugging Text SEarchcooovviveiiiiiiii e, 415

12.9. GIN and GiST INAEX TYPES .evvuneiiiiiiietiiiie et et et e et eenenes 420
2250 O T 1= o ST o) oo o 420
2 T R 1] = o) PP 423

13. ConCUrrenCy CONLIOlccee e e r e e e e e aaas 425
G35 I 1 11 oo [0 1o PP 425

13.2. Transaction ISOIAONccvuvnieiiiii e e 425

13.3. EXPlICIt LOCKING «.cvvueiiieeii e e e e e e e e e e eeen 431

13.4. Data Consistency Checks at the Application Levelcccccocoviviiiiinnn. 436

T O (V= PP 438

13.6. Locking and INAEXESvvvniei e 438

14, P OIMANCE TIPS coivniiiieii ettt e e e e e e e e e e e e e et e e et e et e e aa e eens 439
14.1. USING EXPLAIL N Looi e 439

14.2. Statistics Used by the Planner ... 450

14.3. Controlling the Planner with Explicit JO N ClauseScc.oeevvvieviinieennnnnns 454

14.4. Populating @ Databasecc.ueiinieiiiieeie e e e e e e 456

14.5. NON-DUrable SEttiNGScvvvniiiieeii e e e e e e 459

15, Parallel QUETY ...ouniiiiii e e 460
15.1. How Parallel QUEry WOrKScovviiiiii e 460

15.2. When Can Parallel Query Be USed?ocuvviiiiiiiiiiiiiiiec e 461

15.3. Parallel PIanscocovuniiiiiiie et 462

15.4. Parallel SEfEtYooveeeiiieiiis e 464

RIS o V7= g AN 41T o T (= (o o SO 466

PostgreSQL 11.2 Documentation

16. Installation from SOUrCE COUEuuiiiiiiii e e e 472
T S o g Y= £ o] o PP 472
16.2. REQUITEIMENES ..uuiii e e e e e e e e e e e e e e e et e e aaeeeanas 472
16.3. GELtNG ThE SOUICEciiiciii e e e e e 474
16.4. InStallation ProCeAUMEivieeiiiee e 474
16.5. Post-INstallation SEIUPc.ueiveicii e 486
16.6. Supported Platformsoiiiiiiiii e 488
16.7. Platform-specific NOESccvuiiii e e 488
17. Installation from Source Code 0N WINAOWSoveiiiiiiieiiiiiie e 496
17.1. Building with Visual C++ or the Microsoft Windows SDK 496
18. Server Setup and OPEratioNocvuueiiiierii e e e e e 502
18.1. The PostgreSQL USEr ACCOUNLcvuuiiieiiieeeieeeiee e e e et e e e e eaaeeaens 502
18.2. Creating a Datahase CIUSLEYovvviiiiiieciie e 502
18.3. Starting the Database SErVErccouviiiiii e 504
18.4. Managing Kernel RESOUICEScovviiii i e e e e e e 507
18.5. Shutting DOWN the SEIVErcovuiiiiiic e 516
18.6. Upgrading a POStgreSQL CIUSLErcccvueiiieiiiieeii e ee e e e 517
18.7. Preventing Server SPOOfiNguuevereeiiieeiii e e e 520
18.8. ENCryptioN OPtiONSccvuiiiiiieii e e e e e e e e eaas 520
18.9. Secure TCP/IP Connections with SSLccoviiiiiiiiiiieceeee e, 521
18.10. Secure TCP/IP Connections with SSH Tunnelsccovvvveviiiiiiiinneeenn, 525
18.11. Registering Event Log on WINOWSoveiiieiiiieiiii e eeeeaiees 526
19. Server ConfigUIAtioniiiiieii e e e e e 527
19.1. SEtting ParamMeterSivvi e e 527
19.2. Fil@ LOCAIIONS ...uueeeieie et ettt e et e et e e et a e e eeaaneeeees 530
19.3. Connections and AUtNENtICALTIONviiiiiiieiie e 531
19.4. Resource CoNSUMPLIONcovuiiiii e eeei e e e e e e e e e e e et e e e eanas 537
19.5. WrIt€ ANEAH LOQ ..vviviiiii e 543
RS S = o) 1 o o 549
19.7. QUENY Planningccouniiiii i 554
19.8. Error Reporting and LOGGiNGcvuuvernieeiieeiieeiieeeiieeeieeeaeesinneeenneeennnas 560
19.9. RUN-TIME SEALISHICS ..oevevvieeeeii e e s 570
19.10. AULtOMALIC VACUUMINGivveeiieeiiiieeie e e e e e e e e e et e s e e et e eeaneees 571
19.11. Client Connection DEfALISocvevuiieiiiiiii e 573
19.12. LOCK MaNagemeNtoviinieiiieeiieeieee e e e e e et e e e e e e e e st e e et eeaneens 582
19.13. Version and Platform Compatibilitycccoeeiiiiiiiiiiiiiiicin e, 583
e e o T P | o 585
19.15. Presat OPtiONS ...ccuuuiiiiieiiiieeiie e e e e e e et e e e e e e e e e et e e et e e et e e e eeanns 585
19.16. CUStOMIZEA OPLIONSivviieieei e e e eaa s 587
19.17. DEVEIOPEr OPLIONSvuuiiiieiiiieiiii e e e e e e e e e e e e e e e eaeans 587
19.18. SN0t OPLIONS . .cvvueei e e e e e e e e e e e e e e e e e e e aaaaes 591
20. Client AUtNENLICALIONuueieiiis e e e e e 592
20.1. The pg_hba. conf Filecccooiiiiii e 592
20.2. USEr NAIME MBS ..ottt et 599
20.3. Authentication MethOSviiiiiiiiiii e 600
20.4. Trust AULNENEICAEIONvvuiiieii e 601
20.5. Password AUtNentiCationcouuuiieiiiiiie e 601
20.6. GSSAPI AUtNENLICALION ...cevvviieiiiii e 602
20.7. SSPI AUNENtICALION ...eevviieeeiii e 603
20.8. Ident AULhENTICAIONccevveeeeeii et e e e e eei e eaens 604
20.9. Peer AULNENLICALIONcvieviiieiieii e 605
20.10. LDAP AULhENtiCALIONeiiveiieieiise ettt e e 605
20.11. RADIUS AUtNENtICALION ...ivvveieiiiie e 608
20.12. Certificate AUENICALIONuiiiiiiie e 609
20.13. PAM AUtNENLICAION ...ceiiviieeieis e 609
20.14. BSD AULNENLICAIONeeeeviiieeiiii et e et e e e e e et e e eenenaeeees 610
20.15. Authentication Problemsviiiiiiiiiiiiii e 610
21, DAtahase ROIESciveiiiee e 612

Vi

PostgreSQL 11.2 Documentation

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

21.1. Datahase ROIESuuvviiieeiiiiicee et 612
21.2. ROIE ALIDULES ... et eaees 613
21.3. ROIE MEMDBErSNIP . ive i 614
21.4. Dropping ROIESieiiee e 616
21.5. DEFAUIT ROIES ..uvuiiiiceiieeeee et e e e e e e e e aanee 616
21.6. FUNCLION SECUMLY .uuuiiiiieii e e e e e e e e e e e e e et e e aa e eens 617
Managing Databasesccvueiiii i 619
22,1, OVEIVIBIW vttt e e et e e e e e e e e et s e e e e e e e e saaa e e aaeeaeeannnes 619
22.2. Creating @ Databasecccvuieiii i 619
22.3. Template Databasesvevvnieiiiccie e 620
22.4. Database COonfigurationcc..eeiiiiieiieeii e e e e e e et e e e aes 621
22.5. Destroying a DatabhaSecccvuiiiiiiiiiie e 622
A T I o = o o = S 622
(oo 112 1o PP 625
PG T I o oz L= IS o] oo o AP 625
23.2. Coll@tion SUPPOIT «....cieieeiiee e et e e e e e e et e et e e aaeeeens 627
23.3. CharaCter Set SUPPOITciii e e e e e e eees 633
Routine Database MaintenanCe TasKSveeeeurieriiiiiieeeiinee e et e e eein e e eeineeeeens 640
24.1. ROULINE VACUUMING ..uuiiitieii e ee e et s e e e e et e e et s e e eeeaaaeeat e eeaneaennas 640
24.2. ROULINE REINAEXING ©..cvvueiiiieiii e e e e e e e e e e e e e eeaens 647
24.3. Log File MaNteNanCeuuevieeiiii e e e e e e e e e e eeen 648
Backup and RESIOIE ... cuuu i e 650
25. 1. SOL DUIMIP .otttiiiieeeie ettt s s e e e ettt e e e e e e e e et e s e e e e e e e aaaaan s e eeeeaeaenes 650
25.2. File System Level Backupoevuiiiiiiiiiiicie e 653
25.3. Continuous Archiving and Point-in-Time Recovery (PITR)cccvveenn.. 654
High Availability, Load Balancing, and Replicationcccoeevviiiiiiieiiinecinens 666
26.1. Comparison of Different SOIUtiONScccuiviiiiieiiii e 666
26.2. Log-Shipping Standby SErVErScccuiiiiiieiii e 669
26.3. FallOVEL ..oiiiiiiiii e e aaaaaaae 678
26.4. Alternative Method for Log Shippingcccvveviiiieiiiicii e, 679
26.5. HOt StANADY ..vvvviieeiiiiiiiee e e e e e e e e e e e e e e aaaae 681
RECOVErY CONfIQUIAIONciveciii e e e e e e e e e e e e 688
27.1. Archive RECOVENY SELINGS ...uovvvniiiie e 688
27.2. Recovery Target SEtNGSu.evvrneeiiieiiii e e e e e e e e e e e e e eeans 689
27.3. Standby Server SELNGS ...vuvev e 690
Monitoring Database ACHIVITYcouvneiiicii e 692
28.1. Standard UnNiX TOOIS ..euuuuieeiiiieeiiii ettt 692
28.2. The StatisticsS COHECONuiiiiii e 693
28.3. VIEeWING LOCKScouiiiiiiii e e 724
28.4. Progress REPOMINGuvvvuieiii e e e e e e e e e e e e e e e e aaeees 725
28.5. DYNAMIC TIaCiNG ...vuueiiieiiiieiiiie e e e e e e et e e e e e e e e e e e e e e aaeeanns 727
MONItOriNG DisSK USBOEcivviiiiii e e e e e e e e e et e eeanaees 737
29.1. Determining DiSK USAQEuiivniiiiieiiieeie e ee e e e e e et e e 737
29.2. Disk FUIl FaIlUIccceeiieiiie e eeeaaaaes 738
Reliability and the Write-AhEad LOgccvuiiiiiiiiiii e 739
O = = T] 1 YRR 739
30.2. Write-Ahead Logging (WAL) ...oouiiiiii e 741
30.3. ASynchronous COMMITveiinieiiiieei e e e e e e e e e e e e e 741
30.4. WAL Configurationccuueeiuuieiiieeiiie e ie e e e e e e e e e et e e et e e eanaeeens 742
30.5. WAL INEEIMEIS ..vuiiiiii ettt e e et e et e e et e eeees 745
oo Torz I == o) Lo 1 Lo o RN 747
T . o o= 1o o PP 747
G IS U 1= v] o)1 Lo o P 748
3 G I 0o 1T £ PP 749
G I (== Ao o LS P 749
315, ATChITECIUIE ...t 750
13 ST 1 o g (o oo [751
S o) Y SSPPPRRN 751

vii

PostgreSQL 11.2 Documentation

31.8. Configuration SEINGSocvuniiiiieiiie e e e e e 751

31.9. QUICK SELUP ..ueieeiii et 751

32. Just-in-Time Compilation (JIT) ...cuueeeeniiiii e e e e e e 753
32.1. What is JIT COMPIHEHONToeiniiiiiciie e e e e e 753

32.2. WHEN 10 JIT 2 oottt e e e et eeaees 753

IC2C T @0 011 To 1= 1 (o] o U 755

324, EXEENSIDIITY ooeeveieeeii e 755

T B L= | (= o T 1= = 757
33.1. RUNNING the TESES ...iviiciii e e e e e e 757

33.2. TSt EVAIUBLION ..vuieeiiiieeee et 760

33.3. Variant Comparison FilESccouiiiiiiiiiiici e 763

T A e = £ S 764

33.5. Test Coverage EXaminalioncc.uvveiuiieiiieiiii e e e e e e e eanaeeeen 764

IV, Clent INEEIACES ...vu i e 765
34, 1HDPG = C LIBrary ..ooveii i 770
34.1. Database Connection Control FUNCLIONScccvviiiiiiiiiieiiie e, 770

34.2. Connection StatuS FUNCLIONSuuiiiiiiiieeeiii e e e 783

34.3. Command EXeCUtion FUNCLIONSooeviiiiieieiiiieeeeiiie e 789

34.4. Asynchronous Command ProCESSINGcuuevrrieiiieriiieeeiieeeiieesiieeaieeannens 805

34.5. Retrieving Query Results ROW-BY-ROWccccoieviiiiiiiici e, 809

34.6. Canceling QUENES IN ProgresSuuevuuneiiiiieeiieeeieeee e e eie e e e e e e eeens 810

34.7. The Fast-Path Interfacecoouviiiiiiiii e 811

34.8. Asynchronous NOEIfICatioNcccuviiiiiiiii e, 812

34.9. Functions Associated with the COPY Commandccccvvveveiiieeeiiinnnennns 813
34.10. CONLIOl FUNCHIONS ...vuieeiiiiieee et e e et e e e e e e eea e e eenes 817
34.11. Miscellaneous FUNCLIONSc.uuiiiiiiiiee e e e e e 819
34.12. NOLICE PrOCESSING ©..cvvtuiiineeiieeeie e e e e e e et e e et e e st e e et e e et e s e eaneenens 822
34.13. EVENE SYSLOIM ..uuiiiiiiii et e e e e e aee 823
34.14. Environment VariableSviiiiiiiiiiii e 829
34.15. The Password FIlecoovuuiiiii e 831
34.16. The Connection Service Fileoviiiiiiiii e 831
34.17. LDAP Lookup of Connection Parameterscceceuvveviiieeiiieeiiieeeiieeeineens 832
3418, SSL SUPPOIT ..ttt 833
34.19. Behavior in Threaded Programscoceuieiiiieeiiiiiiii e e e 837
34.20. Building [ibpg Programscouiiiiiiiiii e 837
34.21. EXAMPIE PrOQramSuueiiiieiiiieeii e e e e e e e e e e e e et e e e e eans 839

LS T IR (0 (=l @) o[ox P 850
11300 I g1 o (8o ' o PP 850
35.2. Implementation FEAIUIESccvvviiiii e 850

35.3. ClENt INtEIfACES . .cevvviieeeii e eees 850

35.4. Server-Side FUNCLIONSuuiiiiiiii e e et e e e e eees 854

35.5. EXAMPIE Programc.uuiiiiieiii e e e e e 856

36. ECPG - Embedded SQL iNC ..ouvuiiiiiiii e 862
G T N I =T o o= o | 862

36.2. Managing Database CONNECLIONSccvuuiiiiiieiiiieiii e e e e e e e 862

36.3. Running SQL CoMMANGSccouuieiiiieiiiie e e e e e eeens 865

36.4. Using HOSt VariableScovuiiiiiiii e 868

36.5. DYNAMIC SQL .oeviiiiiiiiiie e 882

36.6. POLYPES LIbraryoeeeeiiii i 884

36.7. USING DESCIIPLOr ATEBScivvieiiieiiiiee e ee e e e e e e e e e e e e e e eeaes 898

36.8. Error Handlingccoueiiniiiii e e e e e e e 911

36.9. PreproCessor DITECHIVESu.iii i e e e e e e e 918
36.10. Processing Embedded SQL Programscc.uvevuieiiiieiiieeeiiieeiieeeeieeennn 920
36.11. Library FUNCLIONSuiiiiicii e e e 921
36.12. Large ObJECEScvueiiieeii e et e e e e e e e e 922
36.13. CH+ APPHCALIONS .. cevveiii e e 923
36.14. Embedded SQL ComMMandScouuieiiiieiiiieeiieeci e e e e e 927
36.15. Informix Compatibility MOdecoeeviiiiiiiii e, 951

viii

PostgreSQL 11.2 Documentation

TS S 101 1= 11 7= SRR 966
37. The INformation SChEMAuiiiiii e 969
37.1. The SChEMA ... e 969
7.2, DAA TYPES .en ettt ettt ettt 969
37.3.informati on_schema _catal og nameccoocceveiiiiinieiee e, 970
374.adm nistrable role authorizationsccooeeiiiiiiiiiincnnnnn, 970
37.5.applicabl @ rol €S .o 970
7.6, At LT T DUL ES oo 971
37.7. Char @Ct BF _SEL S it 974
37.8.check_constraint_routine_usageccooccoeveviiieiiincciiniecieeeinnn 975
37.9. CheCK_CONSErai NES .o 975
37.10. COI T @t T ONS coviiieiiiii e 976
37.11.col lation_character_set _applicabilitycccooriiiniinninnnnn. 976
37.12. cOl UM_dOMBI N_USAQE ..eeevniiiiiieiiie e e e e et e e 976
37.13. COl UNM_OPL i ONS oiiiiii e 977
37.14. Ol UMM_Pri Vil €0ES i 977
37.15. COl UNM_UAL _USAQE .uiiiiiieiiii e e e e e e et e e e e 978
37.16. COl UNMMIS Lottt e e 979
37.17.constrai Nt _COl UNTM_USAQE ...uuiiivniiiiiieiiie e e e e e e e eaaee s 983
37.18.constrai nt_tabl e _USagecocceviiiiiiiiiii e 984
37.09.data_type priVvil €0es .o 984
37.20. dOMBI N_CONSE T A NE'S touiiiii i e e e 985
37.21. dOMBI N_UAL _USAQE .iiiiiieiii e e e e e 985
I 2 s [o] 11 U o E- SO 986
37.23. €l EIMENE L Y PES i 989
37.24. enabl €d_ 0l €S ..o 991
37.25.forei gn_data wrapper_OptiONS ...ccooceieiiiiiiiiii e 991
37.26. forei gn_dat @ W apPer'S .uiiiiiiiii e 992
37.27.FT0orei gn_Server_OpPti ONS ..ociiiiiiiiiiii i 992
37.28. f OF €I gN Sl VI S 1itiiiiiieiii et e e et e e e e e e et e e ees 993
37.29.foreign_tabl e Options ...ccooiiiiiiiii i 993
37.30. forei gn_tabl €S ..o 993
37.3L KEY_COl UM _USAQE ..iiveiiiiieiiie e e e e e e e e et e e e e e 994
37,32, Par AR B S ittt 995
37.33. referential _constrainNtsccooeiiiiiiiii i 997
37.34. 10l €_COl UM _grant's ..oooiiiiiiiiice e e e 998
37.35. 10l €_routine_grants ..ocooiiiiiiiiie e 998
37.36.ro0l e _table grants ...ooocoiiiiiiiiii 999
37.37. 10l €_UAL _grant'S ..oooiiiiiiiiii e 1000
37.38. 10l €_USAQE _grant S ..oiiiiiiiiiiie e e 1000
37.30. 10Ut i NE_PriVil BOES i 1001
A o U o 1= PP 1002
3741, SCREMAL @ ooievei i 1007
Y T =To [DT =] [o =3 R PP 1007
37.43. Sl _F AL UIMNES iriiii i 1008
3744.sql _inmplenmentation info ..o, 1009
37.45. SOl | @NQUAGES .euiiviiiiiii e 1009
37.46. SOl _PACKAGES ovviiiiiiii e 1010
B7A47. SOl PAIt S oo 1010
37.48. SOl ST ZI N i 1011
37.49.5ql _Si Zing Profiles i 1011
37.50.tabl e CoNStrai NtS ..o 1012
3751 tabl @ Pri Vil @0ES . 1012
752, 1AD] €S v 1013
3753 tFANST OF ITB oo e 1014
3754.triggered _update Col UMS ..ooccoiiiiiiiiiiec e 1015
A ST A g e [0 =] =T 1015
37.56. Udt _Pri Vil €0ES oo 1017

PostgreSQL 11.2 Documentation

37.57. USAQE_Pri Vil BOES i 1017
37.58. user _defined _tYPeS .o 1018
37.59. user _mappi NG_OPLi ONS ...iiiiii e 1019
37.60. USEI IMBPPI NUS tuueiitiiiiieeii et e et e e e e e e e e e e e e st eeaneeaanaees 1020
37.61. Vi W _COl UMMN_USAQE .ivvniiiiiiiiiie e e e e e e e e 1020
37.62. Vi EBW T OUL i NE_USAQE ..vuiiiiiiiii e e e e e e e e e e 1021
37.63. view tabl @ USAQge ..occoiiii i 1022
704, Vi BWS ooiiiieiiii ettt e 1022

AV = L= . 0o = 0 1 411 oo P 1024
38. EXIENAING SQL ...evviiiiiiii ettt 1029
38.1. How Extensibility WOrksSc.cooiiiiiiiiiiici e 1029

38.2. The PostgreSQL TYPe SYSEM ...ouuiiiiiiii e 1029

38.3. User-defined FUNCLIONSuuiieiiiiiiciiiis e 1031

38.4. User-defined ProCEAUIESuiiiiiiiiieiiiii e 1031

38.5. Query Language (SQL) FUNCLIONSccvvuieiiiieii e ee e e, 1031

38.6. Function Overloadingcooveviiiiiiieiie e 1047

38.7. Function Volatility CategOori€suieiiuieiiiiieiiieeeiieeeie e e e e e 1048

38.8. Procedural Language FUNCLIONSuveiiiieiiiieeii e ee e e e 1050

38.9. INternal FUNCLIONSuuiiiiiiiiiiii et 1050
38.10. C-Language FUNCLIONSccuuieiiii e e e e e e eanes 1050
38.11. User-defined AQQregatescvuniiiii e e e e aas 1071
38.12. USer-defiNed TYPES ..u.iven it e e e e e e 1078
38.13. User-defined OPEratorsSccvuuieiiiieeeiieeiiiie e e e e e e e e e e e eanes 1082
38.14. Operator Optimization INfOrmMationcceceviieiiiieiii e, 1083
38.15. Interfacing EXtensSions TO INAEXEScvvvnieiiiiiii e 1087
38.16. Packaging Related Objects into an EXteNSioncccovevvveviiiieiineennnn. 1100
38.17. Extension Building INfrastruCturecocooveeiiiiiiiiecie e, 1107

11 T I o (o = N 1111
39.1. Overview of Trigger BEhaviorccoceviiiiiiiiiinci e 1111

39.2. Visibility of Data ChangeSvvvuniiiiieiiieee e 1114

39.3. Writing Trigger FUNCLIONS IN Covviiiiiiii e 1114

39.4. A Complete Trigger EXampleccoeuneiiiiiiiii e 1117

O V= o | T (o (= N 1121
40.1. Overview of Event Trigger BENaVIorccoiviiiiiiiiieie e 1121

40.2. Event Trigger Firing MatriXooovvuiiiiiiiiiiii e 1122

40.3. Writing Event Trigger FUNCEIONS IN Covviiiiiieccieece e, 1126

40.4. A Complete Event Trigger EXampleooviiiiiiiiiiiiiiece e 1127

40.5. A Table Rewrite Event Trigger EXamplecccoovviiiiiiiiieeiiieceeeeeeen, 1128

A1, The RUIE SYSLEIM ...ttt e e et e e e et e e e eaa e eeeees 1130
A1.1. ThE QUENY TIEE .uuiiiiiieii et e e e e e e e e e e e et e e e e aaeees 1130

41.2. Views and the RUIE SYSIEMoovniiiiiii e 1131

41.3. MAEriaiZed VIBWSoieeiiiieeii et e e 1138

41.4. Rules on | NSERT, UPDATE, and DELETEcccviiiiiiiiinieiiiieeeceii, 1141
41.5. RUIES aNd PrIVIIEES .. .ccvneii e 1152
41.6. Rules and Command SEALUSc.uuveriiiiieeieiiii e e e 1154

41.7. RUIES VErSUS TIIQOENS covueiinieeiiieeeieeee e e e e e eae e et e e e et e e ete e et aesaaeeaanaees 1154

42. Procedural LanQUABOESu.evvunieeieeiiieeie e et eeeeteeeae e st s e et e e st e estnaesanesannaens 1157
42.1. Installing Procedural LangUagEeSccuovvviieiieeiiieciineee e e e 1157

43. PL/pgSQL - SQL Procedural LangUagecccuuvviinieiiieeiiiieciieeeeeei e e e 1160
T I @Y= VPSPPSR 1160
43.2. Structure of PL/PGSQLvvviieiieeie e 1161
A3.3. DECIArAHONS .. e 1163
B d o (== 0] 1 1168
43.5. BASIC SEALEIMENESuieiieiiiiee it e et e et et e e e e e e e eaeens 1169

43.6. CONLTOl SITUCLUMNES ... iieeii ettt e e e eanans 1177
A O 1 o = T PP PTP TP 1191
43.8. TransaCtion Managementceeiuieeiiieeiiiiee e e e e e e e eanes 1197

43.9. Errors ant MESSAgESuuuevvneiiieeiiiee e et e e e e e e e e e et e e et e e e e aanaes 1198

PostgreSQL 11.2 Documentation

43.10. Trigger FUNCLIONSccuuiiii e e et e e e e e e e e eaaeeees 1200
43.11. PL/pgSQL Under the HOOdccoviiiiiiiiiicicc e, 1209
43.12. Tips for Developing in PL/PGSQLuovvvniiiiiciieee e, 1212
43.13. Porting from Oracle PL/SQLccovuiiiiiieiieeeee e 1215

44, PL/Tcl - Tcl Procedural LanQUagEcceuueiiieeiiieeiii e e e e e e e e eaae e 1225
Y I @Y= VPSPPSR 1225
44.2. PL/Tcl Functions and ArgumeNtSccuuveviiieiineeiiiieeiiee e eeei e eaeeeens 1225

44.3. Data Values in PLITCl ..o 1227
44.4. Globa Datain PLITCl ..ouuiiiiii e 1227

44.5. Database AcCeSS From PL/TCliviiiiiiiiii e 1228

44.6. Trigger FUNCLiONS iN PLITCl c.vnciinc e 1230

44.7. Event Trigger FUNCtions in PL/TCl ...vvivviiii e, 1232

44.8. Error Handling in PL/TCl ...oovniiiii e e 1232

44.9. Explicit Subtransactions in PL/TClccovviiiiiiiii e 1233
44.10. Transaction ManagemeNtooiviiieiiiieii e e 1234
44.11. PL/Tcl CONfigUIationoveueieiiiieeieeeei e e e e e e e e e e e e eeeen 1235
44.12. Tcl Procedure NEMESviiiiiieeiiii et e e e e e e e e 1235

45, PL/Perl - Perl Procedural Languageevvueeiinieiiiieeiieeeieee e e e e e e eeens 1236
45.1. PL/Perl Functions and ArgumMENESccuuieiuiieiiiieeeiieeeiieeeiieeaineenieens 1236

45.2. Data Values in PLIPErl ..o 1240

45.3. BUIlt-iN FUNCHIONS ...coeviiccc e 1240
45.4. Globa Values in PLIPENooiiiiiiiciei e 1245

45.5. Trusted and Untrusted PL/Per|oiviiiiiiiiiiiiiiie e 1246

N T o I = 4 B I T o L= 1247
45.7. PL/Perl EVENt TIIQOEIS . cvvueiiii e e e et e e et e s e e e e e e eens 1249
45.8. PL/Perl Under the HOOooviiiiiiiiiii e 1249

46. PL/Python - Python Procedural Languagec.oveviieiiieiiiiecieeeeeeeeeeaie e 1252
46.1. Python 2 vS. PYthOn 3ooii e 1252

46.2. PL/Python FUNCHIONSuuiiiiici e 1253
46.3. DAA VAIUBS ...t e 1254

46.4. ShaNG Dalal .. .ccvuiiiiieiiii e e 1260

46.5. Anonymous Code BIOCKSovvuuiiiiiiiii e e 1260

46.6. Trigger FUNCHIONSivviiii e e e e aaa s 1260

46.7. DAADASE ACCESSvvuieieiiiie et e et e e e e e e et e et eaaas 1261

46.8. EXplicit SUDLraNSaCioNSoovvunieiiieeii e e 1265

46.9. Transaction Managementoveiiiieeiiieeiiie e ee e e e e eanes 1266
46.10. Utility FUNCLIONSciiviiiii e e e e e 1267
46.11. Environment VariableScooviuiiiiiiiiii 1268

47. Server Programming INtErfaceooovviiiiiii e e 1270
47.1. Interface FUNCLIONS ... coieiii et eeeae e eees 1270

47.2. Interface SUPPOrt FUNCLIONScivieiii e e e 1304

47.3. Memory Managementc.vvuviuiiiiiieei e 1313

47.4. TransaCtion Managementveiuiieeeiieeiiie e e e e e e eanes 1323

47.5. Visibility of Data Changesccuuviiiiiiiiiiiii e 1326

A7.6. EXAMPIES ..ot 1326

48. Background WOTKEr PrOCESSESc.uuiiiiieiiiiieiii e e e e e e e e e e e e et e e e e aanas 1330
L R T o= I D= wo o [o [P 1334
49.1. Logical Decoding EXampleScc.uiiiiiiiiiiicii e 1334

49.2. Logical Decoding CONCEPLSuueivuneeiiieiiiiieiiieeeii e e e e e e e e e eaaeens 1336

49.3. Streaming Replication Protocol Interfacecccoeevviiiiiiiiiiiiiiieeeieeenn, 1338

49.4. Logical Decoding SQL INtErfacecc.uveviiiiiiiiieiiiecie e 1338
49.5. System Catalogs Related to Logical Decodingcooeevvevvnieiiiieiinneennnn. 1338

49.6. Logical Decoding OUtpUt PIUGINScovviiiiieiiieciii e eei e 1338

49.7. Logical Decoding OUtPULt WIHLEISuevviiiiii e 1343

49.8. Synchronous Replication Support for Logical Decodingccoccvvneennnn. 1343

50. Replication Progress TraCKingciueieiiii i e e e e e e e e e eanee e 1344
VL REFEIBNCE ... ettt ettt et e e e e e e e 1345
S @ I o 410170 1350

Xi

PostgreSQL 11.2 Documentation

ABORT 1354
ALTER AGGREGATEoiiiiii e 1355
ALTER COLLATION ...ttt 1357
ALTER CONVERSIONciiiiiiiiiiiiiiic e 1359
ALTER DATABASE ... 1361
ALTER DEFAULT PRIVILEGES ..., 1364
ALTER DOMAIN .o 1367
ALTER EVENT TRIGGER ..ot 1370
ALTER EXTENSION ...oiiiiiiiiii e 1371
ALTER FOREIGN DATA WRAPPER ... 1375
ALTER FOREIGN TABLE ...t 1377
ALTER FUNCTIONooiiiiiiiiiii et 1382
ALTER GROUPoiiiiiiiii e 1386
ALTER INDEX ..ot 1388
ALTER LANGUAGE ...t 1391
ALTER LARGE OBJECT ..ottt 1392
ALTER MATERIALIZED VIEWoiiiiiiiiii e 1393
ALTER OPERATORoiiiiiiii e 1395
ALTER OPERATOR CLASS ... 1397
ALTER OPERATOR FAMILY ..o 1398
ALTER POLICY oo 1402
ALTER PROCEDUREocoiiiiiiiiii e 1404
ALTER PUBLICATION ..ottt 1407
ALTER ROLE .. .o 1409
ALTER ROUTINE ..ot 1413
ALTER RULE ... 1415
ALTER SCHEMA ..o 1416
ALTER SEQUENCE ..o 1417
ALTER SERVERcooii 1420
ALTER STATISTICS ... 1422
ALTER SUBSCRIPTIONcoiiiiiiiiiiiiii e 1423
ALTER SYSTEM ..o 1425
ALTER TABLE ..o 1427
ALTER TABLESPACE ... 1443
ALTER TEXT SEARCH CONFIGURATIONc.oiiviiiiiiiiiiiinciineci e, 1445
ALTER TEXT SEARCH DICTIONARY ..o 1447
ALTER TEXT SEARCH PARSERcociiiiiiii e, 1449
ALTER TEXT SEARCH TEMPLATE ...t 1450
ALTER TRIGGERciiiiiii e 1451
ALTER TYPE .o 1453
ALTER USER ..o 1457
ALTER USER MAPPINGooiiiiiiiiii e 1458
ALTER VIEW .o 1459
ANALYZE ... o 1461
BEGIN ..o 1464
CALL 1466
CHECKPOINT .ot 1467
LS .o 1468
CLUSTER ..o 1469
COMMENT Lo 1471
COMMIT e 1476
COMMIT PREPAREDcooviiiiiiiii e 1477
GO Y 1478
CREATE ACCESS METHODccuiiiiiiiiiiiici e 1488
CREATE AGGREGATE ...t 1489
CREATE CAST o 1497
CREATE COLLATION L..uiiiiiiiiiiiii e 1501
CREATE CONVERSIONouiiiiiiiiiiii e 1503

Xii

PostgreSQL 11.2 Documentation

CREATE DATABASE ..o 1505
CREATE DOMAIN ..ot 1508
CREATE EVENT TRIGGERooiiiiiiiiii e 1511
CREATE EXTENSIONooiiiiiiii e 1513
CREATE FOREIGN DATA WRAPPERccooiiii 1515
CREATE FOREIGN TABLE ... 1517
CREATE FUNCTION L..ooiiiiiiiiii e 1521
CREATE GROUP ..ottt 1529
CREATE INDEX ...t 1530
CREATE LANGUAGE ... 1538
CREATE MATERIALIZED VIEW ... 1541
CREATE OPERATOR ...t 1543
CREATE OPERATOR CLASS ...t 1546
CREATE OPERATOR FAMILY .o 1549
CREATE POLICY .o 1550
CREATE PROCEDURE ..ot 1556
CREATE PUBLICATION ...ttt 1559
CREATE ROLE ...ooiiii e 1561
CREATE RULE ..o 1566
CREATE SCHEMA ..o 1569
CREATE SEQUENCEcoiiiiiiiiiiic e 1572
CREATE SERVER ... 1576
CREATE STATISTICS ... 1578
CREATE SUBSCRIPTIONouiiiiiiiii e 1580
CREATE TABLE ... 1583
CREATE TABLE AS L. o 1604
CREATE TABLESPACEoiiiiii e 1607
CREATE TEXT SEARCH CONFIGURATIONcooviiiiiiiiiinciie e, 1609
CREATE TEXT SEARCH DICTIONARYooiiiiiiiiiiiiii e 1610
CREATE TEXT SEARCH PARSER ...t 1612
CREATE TEXT SEARCH TEMPLATE ..., 1614
CREATE TRANSFORM ..ottt 1615
CREATE TRIGGER ...t 1617
CREATE TYPE ..o 1624
CREATE USER ...coiiiiii 1633
CREATE USER MAPPINGoiiiiiiiiiii e 1634
CREATE VIEW Lo 1636
DEALLOCATE ..o 1641
DECLARE ..o 1642
DELETE . o 1646
DISCARD ...t 1649
DO 1650
DROP ACCESS METHODcoviiiiiiiiiiiiicii e 1652
DROP AGGREGATE ...t 1653
DROP CAST oo 1655
DROP COLLATION .ottt 1656
DROP CONVERSIONcouiiiiiiiiiiiii et 1657
DROP DATABASE ..o 1658
DROP DOMAIN .ot 1659
DROP EVENT TRIGGERcciiiiiiiiiiii e 1660
DROP EXTENSION ...coiiiiiiiiiic e 1661
DROP FOREIGN DATA WRAPPERccocoiiiiiii e, 1662
DROP FOREIGN TABLEooiiiii e 1663
DROP FUNCTION ..ottt 1664
DROP GROUPciiiiiiii e 1666
DROP INDEX ..ottt 1667
DROP LANGUAGE ... oot 1669
DROP MATERIALIZED VIEW ... 1670

Xiii

PostgreSQL 11.2 Documentation

DROP OPERATOR ...ttt 1671
DROP OPERATOR CLASS ..o 1673
DROP OPERATOR FAMILY oiiiiiiiii e 1675
DROP OWNEDcoiiiiiiiiiiiii e 1677
DROP POLICY ottt 1678
DROP PROCEDUREiiiiiiiiici e 1679
DROP PUBLICATION ..ottt 1681
DROP ROLE ..ot 1682
DROP ROUTINE ...coiiiiiiiii et 1683
DROP RULE ...t 1684
DROP SCHEMA ... 1685
DROP SEQUENCEcoiiiiiiiiii 1686
DROP SERVER ...t 1687
DROP STATISTICS ... 1688
DROP SUBSCRIPTION ..ottt 1689
DROP TABLE ... 1691
DROP TABLESPACE ... 1692
DROP TEXT SEARCH CONFIGURATIONooiviiiiiiiiiiiiii e 1693
DROP TEXT SEARCH DICTIONARY ..o, 1694
DROP TEXT SEARCH PARSER ..o 1695
DROP TEXT SEARCH TEMPLATE ..o, 1696
DROP TRANSFORM ...ttt 1697
DROP TRIGGERouiiiiiiiiiiii e 1698
DROP TYPE ..o 1699
DROP USER ... oot 1700
DROP USER MAPPINGouiiiiiiiiin e 1701
DROP VIEW ..ot 1702
END oo 1703
EXECUTE . 1704
EXPLAIN Lo 1705
FET CH 1710
GRAIN T 1714
IMPORT FOREIGN SCHEMA ...t 1721
INSERT .o 1723
LISTEN Lo 1730
LOAD o 1732
LOCK i 1733
MOVE .o 1736
NOTIFY e 1738
PREPARE ... 1741
PREPARE TRANSACTIONciviiiiiiiiii e 1744
REASSIGN OWNEDcocviiiiiii e 1746
REFRESH MATERIALIZED VIEW ..o 1747
REINDEX ... 1749
RELEASE SAVEPOINT ..ot 1752
RESE T e 1754
REVOKE ..o 1755
ROLLBACK o 1759
ROLLBACK PREPAREDoiiiiiiiiiiiic e 1760
ROLLBACK TO SAVEPOINT ..ot 1761
SAVEPOINT ..o 1763
SECURITY LABEL ..ooi e 1765
SE L ECT e 1768
SELECT INTO .oiiiiiiii e 1789
SE T e 1791
SET CONSTRAINTS ..o 1794
SET ROLE ..o 1795
SET SESSION AUTHORIZATION ..ot 1797

Xiv

PostgreSQL 11.2 Documentation

SET TRANSACTION ..ttt e e e e et e eeenaaeeees 1799
SHOW e 1802
START TRANSACTION ...ouiiiiiiiiieeeei e e s 1804
TRUNCATE ..ottt et e e e e e e e e e aaa s 1805
UNLISTEN L.t e e e et e e e e aa s 1807
L N I PP 1809
VACUUM L. e et e et e e e et e e e eatnaeeens 1814
VALUES ..ot e et aaae 1817
I1. PostgreSQL Client APPlICAIONSuuieiiiieeii e e e e 1820
CIUSLEIAD ..o e 1821
(o= 1= | o ISP 1824
(0= (S T PP 1827
01 0] 0o | o S 1831
(01 0] 11 P 1834
1< 0: oo PP PRPRPR 1837
PG _DESEDACKUD ... 1839
0701070 o TSN 1846
o700) o P 1862
o700 L0 o TP 1865
PO AUMPAIL ..o 1877
[T TS (== |V N 1883
[T T = o= AV L=V 1885
[oTo T (= o1/ oo o 1889
10 (== (0] (PP PPRPPPIPRN 1893
0 o | 1902
=T 070 1= | o TP 1941
(2= e U1 1o o PP 1944
[11. PostgreSQL Server APPliCaliONSccvvuiiiiiieeiie e e e e e e e e e e 1948
TNTEAD e 1949
PY_arChiVECIEaNUDiiii e 1953
[oTo T w0011 0] [=1 - PN 1955
oo N o | P 1956
Lo T =5 = A1 | 1962
o To T (=111 o 1965
L0 T (=S)Y 1 1968
[oTo T === A (142 Vo P 1969
o100 oo =" [TP 1973
PY_VENify ChECKSUMS ... iviciii e 1981
o To T1V2= o L1 3o o 1982
105 0 === PPN 1984
POSIMIBSEE ...ttt 1991
RV I 1 1= 0= £ PP 1992
51. Overview of PoStgreSQL INtENElScovuiiiiiiiiecic e 1998
51.1. The Path Of @ QUETNYuuiiiniiiii e 1998
51.2. How Connections are Establishedccoooviiiiiiiiiniiiiiieeeeci, 1998
51.3. ThE Parser StAgE ...uuivvnieiie et e e e e eens 1999
51.4. The PostgreSQL RUIE SYStEMccvvuiiiiiiiiieeiiii e 2000
51.5. Planner/OptiMizZEerccuuiiiii e e eaaaes 2000
Y I = o U (o P 2002
YISV (= 1 (I OF - [0 o 2003
521, OVEIVIBIW ...ttt e et e ettt e ettt e e e et e e e et s e e e et n e e e et aeeeesenaeaeees 2003
52.2. PO_B0GI €A & ..ttt 2004
Y2 T o Lo - 1o ¢ [P 2007
Y2 N o Lo T = 11 £ 0] o H TP 2007
2.5, PU NPT OC ittt 2008
52.6. PO _at trdef o 2009
B2.7.pg_attribut @ .o 2009
52.8. PO _AUL NI 0 oeieiii 2013

XV

PostgreSQL 11.2 Documentation

52.9. pg_aut h_mMBNDErsS ..o 2014
52,00, PO LS ittt 2014
5211 PO _Cl @SS it 2015
52.12. PG _COl L At i ON coveiiii e 2020
LSy K T o To T X o] 1 11 A G- Y I o | PN 2020
Sy S o To T o1 o] 0 VA=Y G =Y o] o PN 2023
52.15. pg_dat @DaSE ..ccvuiiiiiiii 2024
52.16. pg_db rol e Setting .coociiiiiiiiii e 2025
52.17. pg_defaul t _acl ..o 2026
LSy S I o To o =Y 01T o [o [P 2027
Y228 K N o To o (Y=Y of g I o) A o o [2028
Y20 A o To T =1 0 16 1 o PP 2029
Sy B o T T =AVA =1 0 | G A o Lo [2029
52.22. PY_EXE ENST ON civiiiiiiiciii e et e e e 2030
52.23. pg_foreign_data W apper ...cccccooiiiiiiiiiii e 2031
52.24. PG _fOr €I N _SEI VeI ittt 2032
52.25. pg foreign tabl @ .o 2032
A T o T T o 13 N 2032
52.27. PO I NNEI T 1S it e e 2035
Sy T o 1o T o VI S] YA TP 2036
e I o T T B Y 1o [V = Vo = PN 2036
52.30. pg_l argeobj Ct ... 2038
52.31. pg_l argeobject_netadataccooeeiviiiiniiiiii e 2038
52,32, PO _NAIMBSPACE ottt 2039
52.33. PO _OPCl @SS .uuiiiiiiiiii i 2039
52.34. PO 0PI AL OF ouiiiiiiiie e 2040
52.35. PG _OPf ami [Y oo 2041
52.36. pg_partitioned tabl eccooiiiiiiiiii 2041
52.37. pg_Pltenpl at @ .o 2042
52.38. PO PO i CY crrriiiii e 2043
52,30, PO Pl OC ittt 2044
52.40. pg_PUbl i Cati ON oo 2048
52.41. pg_publicati on_rel . 2049
D242, PO T AN ittt 2049
5243.pg_replicati on_Ori giN .o 2050
YAV o To T =X I A = TN 2050
52.45. pg_secl abel ... 2051
52.46. PO _SEUUEBNCE .uituiiiiie e e e 2051
52.47. pg_ShAepend ..o 2052
52.48. pg_ShAeSCri PtiON oo 2053
52.49. pg_shsecl abel ... 2054
52.50. PO ST AT ST C civrieiiiiiiii e 2054
5251 PG St ati STi C_ X it 2056
52.52. PG _SUDSCIi PLI ON coviiiii e e 2057
52.53. pg_SUDbSCription_rel . 2058
52.54. pg tabl ESPACE ..civviiiii e 2058
B52.55. PG _transSt OFr M. 2059
Y T o To TR O I [1= N 2059
B52.57. PG 1S _CONT I § cirriiiiiiiiii e 2061
52.58. pg tS _CONFi g IMBP ooiiiiiii e 2061
52.59. PO 1S i Cl orriiiiiiii e 2062
52,60, PO L S PaI ST ittt 2062
52.61L. PG tS tEMPl At @ covvriii i 2063
Y2 2 o To T VA o 1 PP 2063
52.63. PG _USEI _IMAPPI NQ torniiiiieiiiieiie e e e e e e e e e e e e e e e e aanees 2070
52.64. SYSIEM VIBWS .. ittt e et e e et eeeera e eees 2070
52.65. pg_avai l abl €_ext enNSi ONS ...cocciiiiiiiiiiie e 2071
52.66. pg_avai | abl e_ext ensi on_Versi onsc.ccccceeeeviiieiiineeinneennn, 2072

XVi

PostgreSQL 11.2 Documentation

Y Y A o To T o1 o 1 1 1 N« TP 2072
2GS A oo T o1 U1 oY o] g TP 2072
52.69. PG fil € SEttiNGS ciiiiiiiii i 2073
L2 (O A o To T o | e 1 U1 o R PP 2074
52.71. pg_hba file rul @S . 2074
A o o T T 4 Lo 123 €= N 2075
B52.73. PO | OCKS it 2075
A o o To T .- VA = 1PN 2078
B52.75. PG _POI I Cl 8BS iiiriiiii i 2079
52.76. pg_prepared_Stat EMBNES ...cooiiiiiiiiiii i 2080
52.77. pg_prepar €d_XaCl S ..ociiiiiiiiiiiiii e e 2080
52.78. pg_publication_tabl scccoooiiiiiiiiiii 2081
52.79.pg_replication_origin_statuscccooeeiiiiiiiniiin i, 2081
52.80. pg_replicati on_SIotsS .oooiiiiiiiiii i 2082
YR o To T o1 =TT 2083
YR v o T T GV 1 =TSN 2084
52.83. pg_SeCl @bel S oo 2085
52.84. PO _SEUUEBNCES ouiiiiiiiie ittt 2085
ST o T =X =) O A [PN 2086
52.86. P _SAUOWiiiiiii e 2088
2,87, PO ST AL S ittt 2089
52.88. PO 1 Abl €S iriiiiii i 2092
52.89. pg_timezone _abbrevs ..., 2092
52.90. PG _ti MBZONE _NAIMES ..iiuiiiiieiiii e e e e e e e e e e e e e eaaes 2093
Y2 R o To T U =1 = PP 2093
Sy e 2 oTo RV EST=1 N 1Y o] o L o 1T 2093
e I o T T VA I =1 SN 2094
53. Frontend/Backend ProtOCOIoveiiiiiiiiiiiiieeiii e 2095
53,1, OVEIVIBIW ..ttt ettt e et e et e e e e et n e e e et s e e e et aeeeesenaeeeees 2095
53.2. MESSAPE FIOW ...vveiiiiiii e 2097
53.3. SASL AULNENTICAIONiiieviieieei e 2109
53.4. Streaming Replication ProtoColcccouiieiiiieiiiieiiiieeie e e 2110
53.5. Logical Streaming Replication Protocolccoooeviiiiiiiiiniiece, 2117
53.6. MESSAgE Dala TYPES ..vuiviiiiiieie et 2118
53.7. MESSA0E FOIMMELS . .vuiveii e 2118
53.8. Error and Notice Message FieldSooevviiiiiiiiiiin e 2135
53.9. Logical Replication Message FOrMAELScevueeiiieiiiieeiiieeiiiieeieeeaneens 2137
53.10. Summary of Changes since Protocol 2.0cccoveviiiiiiiiiiiiiiecieeeiees 2141
54. PostgreSQL Coding CONVENLIONScc.uuiiiiiieiiieiiieeie e e e e e et e e e e e eeanees 2143
oY o 4 0= 1] o 2143
54.2. Reporting Errors Within the Servercccovvviiiiiiii e 2143
54.3. Error Message Style GUIAEcc.vviviiiiiii e 2146
54.4. Miscellaneous Coding CONVENLIONScceuuieiieeiiiieeie e e eanes 2150
55. Native Language SUPPOITuuuiiii e e e e e e e e e e e e e e et e e eaeesaneee 2153
55.1. FOr the TranSatoruieiieiiieieiiis e 2153
55.2. FOr the Programimerociuniiiii e e s 2155
56. Writing A Procedural Language Handlercooovviiiiiiiiiiiin e, 2159
57. Writing A Foreign Data WIapPESrcoouiiiiieii e e e e e e 2162
57.1. Foreign Data Wrapper FUNCHIONSccovviiiiiiiiiec e 2162
57.2. Foreign Data Wrapper Callback ROULINESoevvviiiiiiiciiie e, 2162
57.3. Foreign Data Wrapper Helper FUNCLioNScccoveviiiiiiin e 2176
57.4. Foreign Data Wrapper Query Planningcccocevieiiiiiiinecin e 2177
57.5. Row Locking in Foreign Data WIrapperSoevvveviiiieiiieeiieeeieeeaaeeeaenns 2179
58. Writing A Table Sampling Methodccoooiiiiiiiii e 2181
58.1. Sampling Method Support FUNCLIONSccvvieiieeiiiiecece e, 2181
59. Writing A Custom SCan ProVideroovuiiiiiiiiiii e 2184
59.1. Creating Custom Scan Pathsccccoviiiiiiiiiii e 2184
59.2. Creating Custom SCan PlanSoeiiiiiiiiiiciie e e e 2185

XVii

PostgreSQL 11.2 Documentation

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

59.3. EXECUiNG CUSLOM SCANSuvvvieiiiiieiieeii i e e e e e e e e e e e e e e eeees 2186
GeNEtiC QUENY OPLIMIZENiiiiieiie e e e e e aens 2189
60.1. Query Handling as a Complex Optimization Problemcceeeennn. 2189
60.2. GENELIC AlQOMItNMS ...t 2189
60.3. Genetic Query Optimization (GEQO) in PostgreSQLcccvvvvvvvievinnnnnn. 2190
60.4. Further REAINGoovvuiiii e e e 2191
Index Access Method Interface Definitioncccuviviiiiiiiiiiiiii e 2193
61.1. Basic APl Structure for INAeXesccuvveiiiiiiiieiiieee e 2193
61.2. Index Access Method FUNCLIONSoovvvviiiiiiiicc e 2195
B1.3. INAEX SCANNING +..evvneieinieeie et et e e e e e e e e e e e e e e et e e e eeaen 2200
61.4. Index Locking Considerationsoeevuieiiieeiiiiecii e eeie e e 2202
61.5. Index Uniqueness ChECKSocvuuiiiiiiiiiii i 2203
61.6. Index Cost EStimation FUNCHIONSuuieiiiiiieiiiiiie e 2204
GENEiC WAL RECOIUSuniiiiiiie ettt e 2207
B-TrEE INUEXES ..eu et e e et e e et e e e eatn e eeees 2209
L2C 700 1 1 oo (8o 1o o SRR 2209
63.2. Behavior of B-Tree Operator ClasseScvvvieviiiiiiii e, 2209
63.3. B-Tree SUppOort FUNCLIONSviiiiieiiieci e e e e eeaes 2210
63.4. IMPIEMENTBEIONevuiiii e e e e e e e e e eaaeens 2211
GIST INOEXES ..ottt e et e et e e e et e e e eaa e 2212
o7 0 1 oo (8o [o o ST 2212
64.2. BUilt-in Operator ClasseSccvuuieiiii e 2212
64.3. EXENSIDIILY ooeeeeniieei e 2213
64.4. IMPIEMENTBEION .. .evuiiii e e e e e e e e e e e et e eaaeees 2222
B4.5. EXBMPIES ..eeiii et 2222
SP-GIST INEXES ...eevtieeeiiie ettt e et e e aa e e enees 2224
L0 g1 oo (8o 1o o SRR 2224
65.2. BUilt-in Operator ClasseSccuuieiiiieeiii e e e 2224
65.3. EXENSIDIILY oeeeveiieii e 2224
65.4. IMPIEMENTBEIONuuiiiii e e e e e e e e eaaeens 2233
B5.5. EXAMPIES ..uiiiiiii e 2234
GIN TNOEXES ...ttt e et e e e e e 2235
ST g1 oo (8o [o o SRR 2235
66.2. BUilt-in Operator ClasseSccuuiiiiii i 2235
66.3. EXENSIDIILY ooveevneeie e 2235
66.4. IMPIEMENTBEIONvuiii e e e e e e e eeaaeees 2238
66.5. GIN TipS and THICKS ..uuuiiii i e e e e e e e e eeas 2239
L o I I T 1] = 1 o) PR 2240
B6.7. EXAMPIES ...t 2240
BRIN INOEXES ..ottt et e et e e et 2241
% 1 oo (8o 1o o TP 2241
67.2. BUilt-iN Operator ClasseSciuuieiiiieeii e 2242
67.3. EXENSIDIILY ooeeeeiieei e 2243
Database PhySICal SOrageuuivvviieii e e e e e e e eaanns 2246
68.1. Datahase FIle LayOutcccouuiiiiiieiiii e e 2246
B8.2. TOAST ettt ittt ettt e et e et e et e et e et a e ae 2248
68.3. Free SPaCe Mapovuiiiiiie e 2251
68.4. VISIDIlIY MaD ..o 2251
68.5. The Initidization FOrKcoooiiiiiiiiiiiie e 2251
68.6. Datahase Page LayOulcocuuieiiiieiiieeiieee e e e e 2252
System Catalog Declarations and Initial Contentscccovvvviiiiiiiieiineeie e, 2255
69.1. System Catalog Declaration RUIESccvviiiiiiiiiiccii e, 2255
69.2. System Catalog INitial Dataccuueeiiiiiiiiieiieeei e 2256
69.3. BKI File FOIMELuuiiiiiiiieeiii e 2260
69.4. BKI COMMENGScoevvieeiiiiieee e e s 2260
69.5. Structure of the Bootstrap BKI Filec.ooviiiiiiiiii e, 2261
69.6. BKI EXAMPIE ...vuiiiiiii et 2262
How the Planner USeS SEatiStiCSvvuieiiiiiiieeiiiiie e 2263

XViii

PostgreSQL 11.2 Documentation

70.1. Row EStimation EXamMPIESccuviiiiieiiiciieee e 2263

70.2. Multivariate Statistics EXamplesc.ooevviiiiiiiiiie e 2268

70.3. Planner Statistics and SECUNLYcovvniviiieiiiiicii e e 2270

RV LY o) = o [=S 2272
A. POSIOreSQL Error COUESuuiiiiieiii i ei et e e e e e e e e e e e e e et e e eaaeaees 2278
B. Dat€/Time SUPPOITiitiieii et e e e e e e e e e e e e e et e e e e e st e e et e eaanaees 2286
B.1. Date/Time Input INterpretationeevvvieiiiieii e 2286

B.2. Handling of Invalid or Ambiguous TimeStampsccocvveeiiiieviineeennennn, 2287

B.3. Date/Time K&y WOrAScovviiiiiiiiic e 2288

B.4. Date/Time Configuration Fil€Scoevviiiiiiiii e, 2289

B.5. HIiStory Of UNItSociiiiiiii i e e 2290

C. SOL KEBY WOIAS ... cevueiiiieiie et e e e e e e e e e e et e e e eaaees 2292
D. SQL CONfOIMMANCEietiei et e e e e e e et e eaaeanas 2314
D.1. SUPPOIEd FEAUIEScovuiiii e e e e e e e e e e 2315

D.2. UNSUPPOrtEd FEAIUIESuuiiiiieeei e ee e e e e e e e eaaas 2331

E. REIEASE NOES ...oevviieiiii e e et e et e e e et e e e earaaeeees 2344
E.L REEESE 11.2 ..ot 2344

E.2. REEESE 111 ..o 2349

E.3. REEESE 11 ..ot e 2351

B4 Prior REIEASES ...t 2370

F. Additional Supplied MOAUIESccuuiiiiiiii e 2371
F.L adminpackcovneiiiiii e 2372

F.2. @MCNECK ..t 2372

F.3. @UEN_AEIAY ..neeeeeiieee e 2376

O 0| (o T = o] =1 o N 2376

FLB. BIOOM Lo e 2378

FLB. DB GiN oo 2382

A o 1 (==Y o [2382

RS T o) (=4 PP 2383

FiO. CUDE e 2386
FLL0. dBIINK Lo 2391

Nt I o [T | PP 2422

L 2o ([D 6/ PPN 2423

F.13. €arthdiStanCevvneeiii e 2424

N 1T = o PP 2426

F.A5. fUZZYSIIMAECH «.evecc e 2428

S 01 o = PP 2430
T 17 o o R 2437
S T 17 1 - Y 2438
Nt L T = o ST R 2441
Fo20. 10 et e 2444
L T | == PP 2446
F.22. PAgEINSDECE . ovvuiii e 2452
F.23. passWOrdChECKciuiiiii e e 2459
F.24. pg bUFfEIrCaChe . .c.ue i 2460
FL25, POCIYPLO ettt 2461
F.26. PO_freeSpaCceMa . .c.u e e 2473
e R oo [o (= V= 1 [T PRPRIN 2474
F.28. POrOWIOCKS ... ittt e e e e e e e 2475
F.20. pO_stal StatBmMENTS 2476

G O oo = 0o TN 2481
[I oo [1 (0 [0 2485
F.32. PO_VISIDIHILY oo 2491
F.33. POSIOrES FOW ..ovvnciiic i 2492
7 PP 2498

[ST oo o | 2501

T o O STPR 2509

Fo37. SSIINTO ittt 2511

XiX

PostgreSQL 11.2 Documentation

F.38. taDIEFUNC ..ot 2513

1S T (o S PSPP 2522

IO I (== o =0 o] oo [FRR P 2524

F.AL SN _SYSIBIM TOWS L.ttt e e a e en 2524

F.A2. tSM_SYSIEM TIME .oovniiii i e e e e 2525

FLA3. UNBCCENT ...ttt e e e e e e ees 2525

Y TH T K0S o ISP 2527

L 41] PP 2529

G. Additional SUpPlied Programscccuuiiiiiiieii e 2534
G.1. Client APPlICAIONScvveciii e e e 2534

G.2. Server ApPliCALIONScvviiciii e 2540

L T (= g = I (0= o £ 2545
H.L CHeNt INtErTaCESoiiieii e 2545

H.2. AdMINIStration TOOISuuiiiiiiiiieiiiiis et e e 2545

H.3. Procedural LanQUAagEScuuveiuniiiiiieiiie et e e e e e e e 2545

[I g (= =T PP 2546

I. The Source Code REPOSITONYccuuiiiiiieiii e e e e e e e e e e e aaeees 2547
I.1. Getting The SOUrCe VIa Gitccvvuiiiiicii e aa s 2547

I B o o109 01 - 1o PP 2548
J L DOCBOOK ...ttt 2548

J2. TOOl SEES vt 2548

J.3. Building The Documentationccoeeiiiiiiiieiiin e 2550

J.4. Documentation AULNOIINGoovuiieiii e 2551

J5. SEYIE GUITE ...evviiiii e e 2552

N N 001/ 0 PP 2554
(23] o] oo r="o] /0P 2560
g0 1= PP 2562

XX

List of Figures

9.1. XSLT Stylesheet for Converting SQL/XML Output to HTMLoveiiiiiiiiiiiieeeceiin,

60.1. Structured Diagram of a Genetic Algorithm

XXi

List of Tables

4.1. BaCkslash ESCAPE SEOUENCESciieriieeieiieeeeeti e ettt e ettt e et et e ettt e e e b e e enea s 35
4.2. Operator Precedence (highest tO TOWESE)couuuuiiiiiiiiiiii e 40
I DT r= R Y o= T PSPPI 131
8.2, INUMENIC TYPIES ..ttt ettt ettt et e e et e et e et et e e e e aba s 132
8.3, MONELAIY TIPS ..ottt ettt ettt et e e e 137
8.4, CAIACLES TYPES ..ottt ettt ettt ettt e e et et e e e 138
8.5. SpeCial CharaCler TYPESuuu ittt ettt ettt e e et e r e e e e ennans 139
8.6. BINAIY Daa TYPESvueeiiiti ettt ettt ettt e et et e e e e eaaas 140
8.7. byt ea Literal ESCAPEd OCLELSuuiiiiiiiieeiiii ettt e e e e 141
8.8. byt ea Output ESCAPEd OCLELSciieeiieiiiii ettt enees 141
8.9. DAE/TIME TYPES ..ttt e ettt et e e et ettt e e e et e e e eaa s 142
8.10. DB INPUL ..ottt ettt et e e e 143
8. L1, THME INPUL .ttt ettt e ettt e et e e et e e et e e e e et e e e e eaa s 144
8.12. TiME ZONE INPUL ...ttt ettt ettt ettt ettt et e e et e e e b e e era s 144
8.13. Special Date/TIME INPUEScoeviieieiiieee et e s 146
8.14. Date/TIime OULPUL SEYIESot 146
8.15. Date Order CONVENTIONSu.eieerteeeiii et eeti et e e et e e et e e e e e e eana e eeneas 147
8.16. 1SO 8601 Interval Unit ADDreviationSc..uuiiiiiiiiiiiii e 149
8.L7. INEIVEl INPUL ...t ettt e et e e 150
8.18. Interval Output Style EXaMPIEScouuiiiiiiieeee e 151
8.19. BOOIEAN DaLA TYPE ... eeeeei ettt ettt ettt ettt ettt e e e e 151
8.20. GEOMELNIC TS .. ettt e ettt ettt ettt e e ettt e ettt e ettt e e et et e e e eeaaaeeees 154
8.21. NEtWOrK AQArESS TYPES ... eeeeiiieeeetie ettt ettt e e et e e e e e e 156
8.22. ci dr Type INPut EXAMPIEScciiiiiiiii e 157
8.23. JSON primitive types and corresponding POstgreSQL tYPESccvvuveviriinieiiiiiieeeeiinee, 166
8.24. ODJeCt IdeNtifier TYPES ...t 194
8.25. PSEUTO-TYPES ...ttt ettt et 196
9.1. COMPATSON OPEIAIOIS ...e.vueeeiti ettt e et ettt e et et et e et r e e e et e e e e et e e e eaea s 198
9.2. COMPATISON PraEdiCALESuuueiiiie ettt et e e e e e e e 199
9.3. COomMPAriSON FUNCLIONS ...ttt et e 201
9.4. MathematiCal OPEIALOrSceeueieieeii ettt ettt e e e e e b 201
9.5. MathematiCal FUNCHIONSccuuiiiiiii et e e e 202
9.6. RANAOM FUNCLIONSceeitieieiie ettt ettt et e et e e 204
9.7. TrigONOMELNIC FUNCLIONSeeeiit ettt ettt et e e e neens 204
9.8. SQL String FUNCLiONS 8Nd OPEIELOISu.eiiiiiieeeeiii ettt e et e et e e e e e e e e eens 205
9.9. Other StNG FUNCLIONScouuiiiiiii et et e e e eanans 206
9.10. BUIt-IN CONVEISIONScevtieiiiii ettt ettt ettt et e et e e enai e e ennens 214
9.11. SQL Binary String FUNCtions and OPEratorscccuuueeeirinieeieiieeeeeiie e e eeeies 219
9.12. Other Binary String FUNCLIONSuuuiiiiiiiieiii et 220
9.13. Bit SING OPEIEIOISvvueeeetie ettt ettt ettt e et e ettt e e et e e e eaa s 221
9.14. Regular EXpression MatCh OPEraOrScuuuueieeuieiiiii it e e e e e eeeees 224
9.15. Regular EXPression ATOIMSuu ittt e et e e et e e e eab e e eeeta e eeenns 229
9.16. Regular EXpression QUENTITIENSuuuiieiii et 229
9.17. Regular EXpression CONSIIAINTSeiiirieeiiii et e et 230
9.18. Regular Expression Character-entry ESCapESccvvvunieiiiiiieeiiiie e 231
9.19. Regular Expression Class-shorthand ESCaPESc.uuviiiiiiiieiiiiieeeci e 232
9.20. Regular Expression Constraint ESCAPESuuiiiiiiiieiiiii e 233
9.21. Regular Expression Back REFEIENCESccuuuiiiiiiiicie e 233
9.22. ARE Embedded-0ption LEErSuiiiiiiieiei e 234
9.23. FOrMatting FUNCLIONSccuuuiiiiiii ettt et e et e e e e e ena e eeees 237
9.24. Template Patterns for Date/Time FOrmattingcc.uuveeiiiiiiiiiiiiiieeecie e 238
9.25. Template Pattern Modifiers for Date/Time FOrmattingcccuvvveviiiinneieiiinneeenennnn. 240
9.26. Template Patterns for NUMeric FOrmattingc..uoveiiiiiiiiiiiiiiieeeii e 242
9.27. Template Pattern Modifiers for Numeric FOrmattingccoeuvviveiiiinieiiiiiieeeeiineees 243
9.28. 1 0_Char EXAMPIESuuiiiiiiii e 243

XXii

PostgreSQL 11.2 Documentation

A R DT (= A N1 1O o= = (0] £ T 244
9.30. Date/TIME FUNCHIONS ...cevviiiei ittt e e et e e et e e et e e e e aaa s 245
9.3L AT TIME ZONE VATAMES ..euueiiiiiieeiiiiiee et e et e et e e et e e e et e e e et eeeeaen s 254
9.32. ENUM SUPPOIt FUNCHIONSiieiiiiicii e e e e e e e e e e et e e e e aaa s 257
0.33. GEOMELIIC OPEIALONS . .evuueiiieeiti e et e et et e e e et e e et e e e e et e e et e e et e e st e eaa e eanneaaens 258
9.34. GEOMELNIC FUNCHIONS ...ttt ettt e et e e e e e et e e et eeeeaa e 259
9.35. Geometric Type Conversion FUNCLIONSoovvuiriiiiii e e e 260
9.36. Ci dr and i NEt OPEIEIOISvveiiiiiieeie e e ee e e e et e e e e e e e e et e e et e e e e e aanaaees 262
9.37.Cidr and i Net FUNCHIONSuiiiiiiii i e s 263
9.38. MBCAAAr FUNCHIONS ..evvieiiiii et e e e e e 264
9.39. MBCAAAr 8 FUNCHIONS . ..uiiiiii ettt e et et e e e et e e e e ae e 264
9.40. Text SEArCh OPEralOrSuuiiieeii e et e et e e e e e e e e et e e et e e et e e et e e s e eanaees 264
9.41. TexXt SEACH FUNCHIONSueiieii ettt e et e e et e e et e e e e aanaeas 265
9.42. Text Search Debugging FUNCLIONSiiiiiiiiic e 269
9.43.) S0N aNd | SOND OPEIAIOISccvuiiiii it e ee e et e e e e e e e e e e e e e aaaes 285
9.44. Additional | SOND OPEIAOrSuuiiiiiieiiie et e e e e e e e e e e aa e 285
9.45. JSON Creation FUNCLIONScoiuviieiiii e e et e e et e e e et e e e eet e e e eaan e eeenes 287
9.46. JSON Processing FUNCLIONSciuuuiiiiieiiii e eiiee e e e e e e e e e e e e e et e e e e eanaeeeen 288
9.47. SEQUENCE FUNCLIONSuuiiiieii et e e e et e e e e e e e e et e e et e e et e e aaeeaenas 293
.48, ATTAY OPEIEIONS ..ttt ettt e e et et e e et e e 298
9.49. ArTay FUNCHIONSuuiiiiicii et e e e e e e et e e e et e e e e ean s 299
O0.50. RANGE OPBIALOIS . ..euiiiitiee ettt e s e e e e e e anas 301
9.51. RANGE FUNCLIONSiiiiiii e e e e e e e e e e et e e e eanaas 302
9.52. General-Purpose Aggregate FUNCHIONScouuieiiiieiii e e e e e 303
9.53. Aggregate FUNCLIONS TOF SEAtiStICScvvuiviiieii i e 305
9.54. Ordered-Set AgQregate FUNCLIONSiiiiiieii e e e e e e e e e e eaas 307
9.55. Hypothetical-Set Aggregate FUNCLIONSccovuiiiiiieiiiii e e e 309
9.56. GroupiNg OPEIatiONSuuiiieueiiieiiee et e e e e e e e et e et e e et e e st e e et eeat e eatneeeaaaetnaes 309
9.57. General-Purpose Window FUNCLIONSocouuiiiiiiii e e 310
9.58. Series Generating FUNCHIONSccuuiiiii e e e e e e e e e e e e e e ees 317
9.59. Subscript Generating FUNCLIONSccuuiiiiiiiiii e e e e e e e eees 319
9.60. Session INformation FUNCHIONSiiiiiiiiei e 321
9.61. Access Privilege INquiry FUNCLIONSoiiiiiiii e e 323
9.62. Schema Visibility INQUINY FUNCLIONScovuiiiiiic e e 326
9.63. System Catalog Information FUNCLIONScccuiiiiiiiiiiiciie e e e e e 327
9.64. IndexX ColUMN PrOPEITIESu.iiii e e e et e e e e e e e e e e e aanas 330
9.65. INAEX PrOPEITIESiiti it e e e e e e e e e e e e e e e e ee 331
9.66. Index Access Method PropeErtiesviiiieii e 331
9.67. Object Information and Addressing FUNCHIONSccooviiiiiiieiiiiccin e e 332
9.68. Comment INformation FUNCLIONScovvuiieiiiiieeei e 333
9.69. Transaction IDS and SNaPShOLScvvvniiiiiei e 333
9.70. SNaPSNOt COMPONENES .. .evuueieieeeieeei e et e et e et e e et e e st e e et e et e eeta e e et e e etn e eanneeennnas 334
9.71. Committed transaction iNfOrMALIONcovviiiiiiiii e e 335
9.72. CONtrol Data FUNCHIONSueiieiie ettt e e e et e e e e e e eaa e e eeaenns 335
9.73. pg_control _checkpoi nt ColuMNSccoeiiiiiiiiiiiiii e, 335
9.74. pg_control _SYySt @MCOIUMNSiiiiiiiiiieii e e e e 336
9.75. pg_control _iNit COolUMNSccouiiiiii e e 336
9.76. pg_control _recovery COlUMNSccooviiiiiiiieii e 336
9.77. Configuration Settings FUNCLIONSciiiiiiiiii e e 337
9.78. Server SIgnaling FUNCLIONSovuiiiiiee e e e e e e aaaes 337
9.79. Backup Control FUNCLIONSuiiiiieii e e e e e e e e e e eaens 338
9.80. Recovery Information FUNCHIONScocvuiiiiiiii e e e e e e e e eaa e 341
9.81. Recovery Control FUNCHIONScciuuiiiiecie e e e e e e e e e e eaae e 342
9.82. Snapshot Synchronization FUNCHIONSc.uuiiiiiciiie e ee e e e e 342
9.83. Replication SQL FUNCHIONSc.uuiiiiieiii e e e e e e e e e e e e e e eees 343
9.84. Database Object Size FUNCLIONSiiiiiiii e 346
9.85. Database Object Location FUNCLIONScouuiiiiieii e e e e e e 348
9.86. Collation Management FUNCLIONScoouiiiiiieii e e e e e 349

XXiii

PostgreSQL 11.2 Documentation

9.87. Index MaintenancCe FUNCHIONSooiiiiiieiiiii et eees 349
9.88. GeneriC File ACCESS FUNCLIONSccuviiiiiiiie et e e e e e e s 350
9.89. AdVISOry LOCK FUNCHIONSuuiiieiii e e e e e e e e e e e e e st e e e e e e e eeen 351
9.90. Table ReWNIte INFOMMELIONccvevt i e e e et e eeeetenaeeees 356
12.1. Default Parser's TOKEN TYPES c.uuuiuueiiiieiie e e e e e e e e e e e e e e e e et e e aa e aanns 403
13.1. Transaction ISOlation LEVEISc.uuuiiiiiiiieeiii et et e e e e e e e 426
13.2. Conflicting LOCK MOESuuiiiiiiiii e e e e e e e 433
13.3. Conflicting ROW-IEVEl LOCKSciviiiiiii e 434
18.1. System V IPC PalramEtarsSvuiieiieiiie ettt eas 508
18.2. SSL SerVEr FIlE USAQE «.uvuiiiiiiieiiiii ettt ettt e et eeeaa s 523
19.1. MesSsage SEVErity LEVEIS ...ouiii i 564
19.2. ShOrt OptioN KEY ...oveeiiiiici e e e e e e e e e e 591
201, DEFAUIT ROIES ...ttt e et e et a e e e et e e e eataaeeaees 616
23.1. PoStgreSQL Charalter SELScuuuiiiiieiii e e e e e e e e e e e et e e e e eeees 633
23.2. Client/Server Character Set CONVEISIONSc.uuuieiiiiieeeeiiineeeeiise e et eeeiin e eeainns 636
26.1. High Availability, Load Balancing, and Replication Feature Matrixccooeevvnnennnnn. 668
28.1. DYNAMIC StAISHCS VIBWS . oovniiiceii et e e e et e e e e e s e e e e eeees 694
28.2. Collected SEAISHCS VIBWSveeeeieieiiii ettt e et e et e et e e e ena s 695
283.pg_Stat _aCti Vity VIBW oo e e e 696
28.4. Wait_eVENE DESCIHPLION . .uuiii i e e e e e e e e e e e e e ees 700
285.pg_stat _replicati ON VIBW ..o 711
28.6. pg_stat_Wal reCei VEI VIiBW ...iiiiiiciiii i 713
28.7.pg_stat _SUDSCription VIieW ...cocoeiiiiiiiiie e 715
28.8. PO St At _SSI ViBW coouiiiiiii e 715
28.9. pg_stat _arChi VEI VIBW ..o e 716
28.10. pg_Stat _bgWrit €5 VIieW .oouiiiiiiii e e e e 716
28.11. pg_stat_dat abase VIieWc.ooiiiiiiiiii e 717
28.12. pg_stat _database_confliCts VIEWcccoeeiiiiiiiiiiiiii e, 718
28.13. pg_stat_all _tabl @S VIeW ..o 719
28.14. pg_stat _all i NdeXES VIBW ... e 720
28.15.pg_statio_all _tabl €S VIEW ..o 721
28.16. pg_statio_all 1 NAdeXES VIBW ..cccuiiiiiiiiiie e 721
28.17.pg_stati o _all _SeqUENCES VIBW ...ccccuuiiiiii i 722
28.18. pg_stat_user _fUuNCti ONS VIBWcocovviiiiiiicii e 722
28.19. Additional StatistiCS FUNCHIONSvuuiiiiiiieiiei et e e 723
28.20. Per-Backend Statistics FUNCHIONSuiiiiiiiieicii e e e 724
28.21. pg_stat _progress _VAaCUUMVIBWcc.uviiiieiiiieeiiieeeii e e e e e e e e e eaens 725
28.22. VACUUM PRhESES ... ittt e e e e e et e e e et e e eenanns 726
28.23. BUIlt-iN DTTaCe PrODES .. .cceviieeeii et 727
28.24. Defined Types Used in Probe Parametersoceviviiiiiiciii e 734
34.1. SSL MOOE DESCIIPLIONSivvieiiie e e e e e e e e e e e e e e et e e e e et e e et e e eaneees 835
34.2. Libpg/Client SSL FilE@ USAQE ... cvvniiiii it e e e e e e e e e aae e 836
35.1. SQL-oriented Large ObjeCt FUNCLIONSccvviiiiiiieii e e e e e e e e e e e 854
36.1. Mapping Between PostgreSQL Data Typesand C Variable Typesccocevvevivevinnnnnn. 870
36.2. Valid Input Formats for PGTYPESdat € from asccoccceeeviiiiiiiiiiin e, 888
36.3. Vadid Input Formats for PGTYPESdat € fnt_asCcccooevviveiiiiiiiiiiciecccec e, 890
36.4. Valid Input Formats for rdef mtdat €ccociviiiii i 891
36.5. Valid Input Formats for PGTYPESt i mest anp_from ascccoevevvieeviineiinneennnnn, 892
37.1.informati on_schema_catal og name Columns............coooeviieiiiieiin e, 970
37.2.adm ni strabl e _rol e_authori zations Columns.............ccoeevviiiiiiieiinnennnnn. 970
37.3. applicabl e rol €5 ColumMNSooiiiiiiii e 970
37.4. At tri DUt €S COIUMNS ..euuiiiiiii e eeaees 971
37.5.charact er _Sets COlUMNSuoiiiiieiiii e e e e anes 974
37.6. check _constraint_routine_usage Columns.........cccceeviiiiiieiiineiiineeiieeennnn, 975
37.7.check_constrai NtS ColUMNScociuuiiiiiieiii e e aans 975
37.8. COl 1 @t i ONS COIUMNSuuiiiiiiii e a e e eeees 976
37.9.col lation_character_set _applicability Coumns.............c..coeieiinnn. 976
37.10. col um_domai N_usage COlUMNSoeiuiieiiieei e ee e e e e e e 977

XXiV

PostgreSQL 11.2 Documentation

37.11. col uMm_opt i ONS COlUMNScvuuiiii e e e e e e e e e e e eaen
37.12. col um_privil eges ColUMNScciiiiiiiiiiii e e
37.13. col umMm_udt _uSage COlUMNSc.uiiiieiie e e e eaens
37.14. COl UMMS COIUMNSeiiiiieieii et e et e e et e e e et e e e aaaneeeeeens
37.15. constrai nt _col unm_usage ColuMNSccoeveiiiiiiiieiiiiecin e e e
37.16.constraint _table_usage ColumNSccoeeviiiiiiiiieiii i
37.17.data_type privileges ColumMNS.......cccooeiiiiiiiiiiiiii e
37.18. domai n_constrai Nts ColUMNScoovviiiiiiii e
37.19. domai Nn_udt _uSaQge COIUMNScouuiiii e e e e e aens
37.20. dOMBI NS COIUMNSeeitiieiiii ettt e et e et e e e et s e e e aaa e eeeeens
37.21. el ement _tyPes COIUMNSciuniiiie e e e e e eees
37.22. enabl €d_r 0l €S COIUMNSuiiiiii e
37.23.foreign_data wrapper_opti ons ColumNScccoveviiiiiiiiieiiineeiineceee e,
37.24.foreign_data wappers ColUMNSccoeceuiiiiiiiiiiii e
37.25. foreign_server_options ColUMNScocouuiiiiiiiiiiiieiiieeciie e e e
37.26. forei gn_servers COlUMNSc.iiiiiiiiiie e e
37.27.foreign_table options ColUMNSc..ccuiiiiiiiiiii e
37.28.foreign_tabl €S ColUMNScccouuiiiiiiiiiie e e
37.29. key_col umm_usSage COlUMNSoeiiiieiiii e e e e e e e aens
37.30. par anBt €S COIUMNSceiniiii e e e e e e e e e e e eaens
373Lreferential _constraints ColUmMNS........cccoooeuiiiiiiieiiiieiii e
37.32.role_col um_grants ColUMNSooeviiiiiiiiii e
37.33.role_routine_grants ColUMNScccouuieiiiieiiiiieiii e
37.34.role_table grants ColUMNSccooeiiiiiiiiiiiiii e e

37.35.r0l e_udt _grants ColUMNSiiiiiiiiii e e e
37.36.r0l e_usage _grants COolUMNSoiiiiiiiiiiieiii e e e
37.37.routine_privileges ColUMNScooeiuiiiiiiiiiii e
37.38. T OUL T NES COIUMNS ...coiiiieiii et e et e e e et e e e et s e e eeatnneaaees
37.39. SChemBt @ COIUMNSouuiiiiii e e e e e et e e et e eeeatn e aeee
37.40. SEqUENCES COIUMNSuuiiiiiiiii e e e e e e e e et e ean e eees
3741 sql _features COlUMNSco.iiiiiiiii e e
3742.sql _inplementation_info Columns.........ccoooviiiiiiiiii e
37.43. sl _| anguages COlUMNSiciiiiiii e e e e e e e aens
37.44. sql _packages COlUMNScc.iiiiiiiiiii e e
37.45. 51 _Part s COIUMNSccouniiiiii e e e e e e e e eaes
37.46. 51 _Si Zi NG COIUMNSiiiiieiii e e e e e e e e e aes
3747.sql _sizing profiles ColUumMNSc.couiiiiiiiiiiiiiii e
3748. tabl e _constrai Nts COolUMNScccuiiiiiiiiiiiic e
3749.tabl e privileges ColUMNScccocouiiiiiiiiii e e
37.50. t @bl €S COIUMNSiiiiii e e e et e eeeaa e eeee
3751 t ransSf Or B COIUMNSuiiiiii et e e e e e eera e eees
37.52.triggered _update_col ums ColuMNSccocvuiiiiiiiiiiiiee e
37.53. 111 gQEI'S COlUMNS .. .cetiiiiii e e e e e e e e e e e et e et e e aa e eeas
37.54. udt _privil eges COolUMNSccccuiiiiiiiiii e e eaas
37.55. usage_priVvil eges ColUMNScoeiiiiiiiiiiii e e
37.56. user _defined _types ColUMNSccoeviiiiiiiiiiii e
37.57. user _mappi Ng_0opti ONS COlUMNScovviiiiiieiii e e e
37.58. user _mBappPi NQS COIUMNSuiiiiiee e e e e e e e aeas
37.59. vi ew_col um_usage ColUMNSccuiiiiiiiiiiiici e e e e
37.60. vi ew routine_usage COlUMNSoeeiiiiiiiiiiiii e
37.61L. view tabl e_usage ColumNSc.cooiiiiiiiiiii e
37.62. Vi €WS COIUMNS ..ttt ettt s e et r e e e st e e e eaaaaeeeneen
38.1. Equivalent C Types for Built-in SQL TYPEScvvvniiiiiiiiiiieeieeee e e
I I S (= TS 1 - (= o [P
G R T o s T 1 1o [==
38.4. GIST Two-Dimensional “R-treg” StrategieSoeivuieiiiiieiiieeiiiieein e e e
38.5. SP-GiST POINt SIAEgIES ..vuevviieiiiieeee e e e e e e e e e e e e e s e e e e e st e eaneens
38.6. GIN AITAY SHTAEgIES ...vuiieiieii i eeie e et e e e e e e e e e e et e et e e st e e et e e eaneeanaees

XXV

PostgreSQL 11.2 Documentation

38.7. BRIN MiNMaX SIralEOIES .. cevuiiineiiiieiiiieeie e e e e e e e e e e e e e e e e e et eeaa e e eanas 1089
38.8. B-tree SUPPOIt FUNCHIONSouuiiiicii e e e e e e e e e e e e e aanas 1090
38.9. Hash SUPPOrt FUNCHIONScuuiiiiieii e e e e e e e e e eaaas 1090
38.10. GiST SUPPOIt FUNCLIONSiivieiii e e e e e e e e e e e e e e e e eaa e eees 1091
38.11. SP-GiST SUPPOIt FUNCHIONScvuiiiiieii e e e e e e e e e e e e aaaas 1091
38.12. GIN SUPPOIt FUNCLIONSiieeiiiice e e e e e et e et e e e e eens 1091
38.13. BRIN SUPPOIt FUNCLIONSuuiiiiiiiii e e ee e e e e e e e s e e et e e e e e e eeaens 1092
40.1. Event Trigger Support by Command Tagoeeveeiinieiiiieeiiieeeiieee e eean e e e 1122
43.1. Available DIiagnoSstiCS ItEMSiiuiiiiie e e e e e e e 1175
43.2. Error DIiagnoStiCS [TEIMS . ..uuiiii i e e e e e e eaas 1190
240. Policies Applied by Command TYPE ...c.uueiiiiiiiiiieie e e e e 1553
241, AULOMALIC VariahDlES ... 1853
242. pgbench Operators by inCreasing PreCEAENCEuuvvviiiiii e e 1855
243. PYENCH FUNCLIONSiieici e e e e e e e e e e e e aaas 1856
52.1. SYSEEM CalAlOOS ... vvvneeiteiii e ee e et e e e e e e e e e e e e e et e e et e e et e e e e e e anaaes 2003
52.2. pg_aggregat @ COlUMNScouuiiiiiieiiii e e e e e e e e e e e e et eeaaeens 2005
LSy T o o T -1 41] 1070 T 2007
YA o o[-V 0] o I Oo [49 1 2008
52.5. Pg_anPr OC COlUMNScuuuiiiiieiiii e e e e e e e e e e e e e e e e st e e et e ean e eaes 2009
52.6. pg_attrdef COolUMNScc.iiiiiiii e e 2009
52.7.pg_attribut @ ColUMNScccouuiiiii i e 2010
52.8. pg_aut hi d COlUMNSeiiiiiiiie e e e e e e e e aen 2013
52.9. pg_aut h_menbers ColUMNScc.iiiiiiiiiii e e e e 2014
52.10. PG_CASt COIUMNSuiiiiciii e e e e et e e et e e e e e e eaens 2015
52.11. PG _Cl @SS COlUMNS .. .ceuuiiiiiiii e e e e e e e et e et e e eeas 2016
52.12. pg_col 1 ati on COlUMNScouuiiiiiiiii e e 2020
52.13. pg_constrai Nt COUMNSuiiiiiiiii e e e e eeas 2021
52.14. pg_CONVETr Si ON COIUMNSoutiiiiiieei e e e e e e e e e e e e e e e aens 2023
52.15. pg_dat abase COolUMNSco.uiiiiiiiiii e e e e e 2024
52.16. pg_db _role_setting ColUmMNSccoovuiiiiiiiiiiii e 2026
52.17. pg_defaul t _acl ColUMNSccoiiiiiiiiii e 2026
52.18. pg_depend COlUMNSccuiiiiiiieiiie e e e e e e e e eees 2027
52.19. pg_descCription COlUMNSccouuuiiiiiiii e e e e e e eaas 2028
52.20. PG_ENUMECOIUMNSuiiiieii e e e e e e e e e e e e e et e e st e e et e e e eeeens 2029
52.21. pg_event _trigger ColUMNSccociiiiiiiiiieii e e e e 2030
52.22. pg_ext ensi 0N COIUMNScouuiiiiiiiii e e e e e aeas 2030
52.23. pg_foreign_data wapper ColUmMNScccoovuiiiiiiiiiiiiierii e e 2031
52.24. pg_forei gn_server COolUMNSccooiiiiiiiiiiie e e e 2032
52.25. pg _foreign_tabl @ ColumMNSccocouuiiiiiiiiiii e 2032
52.26. PG i NAEX COIUMNS .. .couuiiiieiiii e e e e e e e e e e e et e et e e aan e eeas 2033
52.27. pg_ 1 NNEritS COlUMNScuuiiiiiiiii e e e e e e e e e een 2035
52.28. pg 1 Nit _Privs COUMNScouuiiiiiii e e e e e e e eens 2036
52.29. pg_| anguage COlUMNScouuuiiiiieiii e e e e e e e e e e e e e e e anaeeeen 2037
52.30. pg_| ar geobj €Ct COlUMNScocuuiiiiiii e 2038
52.31. pg_l argeobj ect _netadat a ColumNScooovuiiiiiiiiiiiieiie e 2038
52.32. pg_NamESPACE COIUMNScoviiiiiiei e e e e e aans 2039
52.33. PG_0PCI @SS COIUMNSiiiiiiiii e e e e e e e e aes 2039
52.34. pg_oper at Or COlUMNSciuiiiiie e e e e e e e e e e e e et e e e e aneeeen 2040
52.35. pg_opfam |y COlUMNScciuiiiiiieeii e e e e e e e e e een 2041
52.36. pg_partitioned tabl e ColUMNSccooeiiiiiiiii e 2041
52.37. pg_pltenpl at @ ColUMNSociiiiiiii e 2043
52.38. Pg_POI i CY COIUMNSouiiiiiii e e e eaes 2043
52.39. PG _PrOC COIUMNSuiiiieiie e e e e e e e e e st e e e e e e e eaens 2044
52.40. pg_publicati on ColUMNScccuiiiiiiiiiii e e eaas 2048
52.41. pg_publication_rel Columns.......cccccoiiiiiiiiiiiii e 2049
52.42. PG _range COlUMNSuuiiiiiiiiie e e et e e e e e e e e e e e et e st e et e e saneeeeas 2049
5243.pg_replication_originColumnscccocouiiiiiiiiiiiiiiii e 2050
52.44. PG reWr i t € COIUMNSiiiiiiii et e e e e e e e e eeen 2050

XXVi

PostgreSQL 11.2 Documentation

52.45. pg_secl abel ColUMNScouuiiiiiiiiii e e 2051
52.46. pg_SEQUENCE COUMNScuuiiiiieiii e et e e e e e e e e e e e e e et e e et e e e eaneeeen 2051
52.47. pg_shdepend ColUMNSco.uiiiiiiiiiiii e e e e e een 2052
52.48. pg_shdescri pti on ColUMNSccouuiiiiiiiiii e e 2053
52.49. pg_shsecl abel Columnscoiiiiiiiiii e 2054
52.50. pg_stati StiC COUMNSccoviiiiii i e 2055
52.51. pg_statistic_ext ColUMNSccoeiuuiiiiiiiiii e e e 2056
52.52. pg_subscri ption ColUMNSc.iiiiiiiii e e 2057
52.53. pg_subscription_rel ColumNSc.cccoiiiiiiiiiiiicii e 2058
52.54. pg_tabl espace COlUMNScciuiiiiiiieii e e e aens 2058
52.55. pg_transf or MCOIUMNScoouiiiiiii e 2059
52.56. PG _tri gger COIUMNScouuiiiii e e e e e e e e e e eaen 2059
52.57.pg ts _config ColUMNSccouuiiiiiiiii e e 2061
52.58. pg_ts _confi g mBp ColUMNSooiiiiiiiii e e 2062
52.59. PG t'S_di Ct COIUMNSuiiiiiiiii e e e e e e e e aes 2062
52.60. pg_ts_parser COIUMNSco.iiiiiiiiii e e e e e 2063
52.61. pg ts tenpl at @ ColUMNScccuuiiiiiiiiii e e 2063
52.62. PG _tYPE COIUMNS ...uuiiiiiiii e e e e et e e e e e eaens 2064
Y S IR] o Tox- A= To [o] YA ©r0 o == RN 2069
52.64. pg_user _mappi NG COIUMNSoiiiiii e e e 2070
52.65. SYSEIM VIBIWS ...ttt e e ettt e e ettt e e e e et r e e e eab s e e e eatnaeaaees 2070
52.66. pg_avai | abl e_ext ensi ons ColUMNSccoovviiiiiiiiiiii e 2071
52.67. pg_avai | abl e_extensi on_versi ons ColumNSccooeevveeiiieviineeennennn. 2072
52.68. pg_CONFi g COIUMNSouiiiiiiii e e e eaes 2072
52.69. PG _CUISOI'S COIUMNS ..uuiiiiiiiii e e e e e e e e e e e e e e eaen 2073
52.70. pg _fil e _settings ColUMNScccocouiiiiiiiiiii e e e 2074
LSy 4 o To e [o 10 o @] 1N 1 410 TP 2074
52.72. pg_hba file rul es ColumNS.........ccoooiiiiiiiiiii e 2075
52.73. PG_1 NAEXES COIUMNSiiiiiiiiiie e e e e e e e ean e eaes 2075
52.74. PG | OCKS COlUMNS .. .couuiiiiciii e e e e e e e e e e et e e et e e aa e aeas 2076
52.75. pg_MBAt Vi WS COIUMNScutiiiiii i e e e e e e e e e e e e e e e e e aneeeen 2079
52.76. Pg_POI i Ci €S COlUMNScuuiiiiiieii e e e e e e e e e e eeen 2079
52.77. pg_prepared_stat ement's ColUMNScccouieiiiiiiiiiiiiii e 2080
52.78. pg_prepared _Xact s COlUMNSc.oiiiiiiiiiiiieiii e e e e 2081
52.79. pg_publication_tabl es Columns.........c.cccoieiiiiiiiiiii e 2081
52.80.pg_replication_origin_status ColUmnS.........cccoeeviiiiiiiieeiiiieciineeieeeeenn, 2081
52.81L.pg replication_slots ColUMNScccoeviiiiiiiiiieiiie e e e 2082
52.82. PG I 0l €S COlUMNS .. .couuiiiieiiii e e e e e e e e e e e e et e eaa e eaas 2083
52.83. PG T Ul €S COIUMNS .. .ouvniiieiii e e e e e e e e e e e e et e et e e aan e eeas 2084
52.84. pg_secl abel s COlUMNSc.oiiiiiiiii e 2085
52.85. pg_SequUENCES COIUMNScouiiiiiieiii e e e e e aeas 2086
52.86. pg_SettiNGS COIUMNScouiiiiiiiiii e e e e e e e e e eeen 2086
52.87. pg_Shadow COlUMNSccuuiiiiii e e 2089
52.88. PG ST At'S COIUMNS .. .cuvuiiiiiiii e e e e e e et e e e e ea e aeas 2089
52.89. pg_tabl €5 COlUMNScouuiiiiiiii e 2092
52.90. pg_ti mezone_abbrevs ColUMNScc.oviiiiiiiii i 2092
52.91. pg_timezone _Nanmes COlUMNScc.iiiiiiiiiiiie e e e 2093
52.92. PG _USEI COIUMNSuiiiiieiii e e e e e e e e e e e st e e e e e e eeaens 2093
52.93. pg_user _nmappi NGS COlUMNSoiiii e e e e 2094
52.94. PG Vi €WS COUMNS .. .cuuuiiieiiiie e e e e e e e e e e e e e et e et e et e e aan e eeas 2094
64.1. BUilt-iN GIST OPErator ClaSSESuuiiiuueeiiieiiiiieiiieeee e e e e e e e et e e e eaaeeaanaaes 2212
65.1. BUilt-in SP-GIST OpEerator ClaSSESuicvutiiiieeiiieeiiieeeiieeerie e et eseeeeeesnaeannaes 2224
66.1. BUilt-iN GIN OpErator ClaSSESuuiiiiiieiiiieiiii e e e e e e e e e e e e e et e e st eraneens 2235
67.1. BUilt-in BRIN Operator ClaSSEScvvuuiiiiiieiiiieiiii et e e e ee e s e e e e e e et e e eanaeens 2242
67.2. Function and Support Numbers for Minmax Operator ClasseScoeevvveviiiieiineennnnn. 2244
67.3. Function and Support Numbers for Inclusion Operator Classescccvvevvvviiineeninnnns 2244
68.1. CONENES Of PCDATA ...ttt ittt et e e e e et e e et e e e et e e e et neeeanans 2246
B8.2. PAgE LAYOULuiieiiiiiieee ettt 2252

XXVii

PostgreSQL 11.2 Documentation

68.3. PageHeaderData LayOULc..uiiiiiiiiii e e e e e e e e e e et e e e eaaes 2252
68.4. HeapTupleHeaderData LayOuLceeeuniiiiieiiii e e e e e e e e e e e e e 2253
A.L POSIOreSQL Error COUESuuiiiiieiiii e et ee et e e e e e e e e e e e e e e e e e eaes 2278
230 Vo0 11 I = 0 1= <SP SPPN 2288
B.2. Day Of the Week NAMEScciiiiiii e e e 2288
B.3. Date/Time Field MOGIfIErS ...ccouuiiiiiiii e 2288
C.L. SOL KEBY WOIASieiiiii et e e et e e e e e e e et e e et e e et e e et e e et e eeanaes 2292
F.1 adm NPacK FUNCHIONS ..o e e e e e e e e e een 2372
F.2. Cube External REPreSeNtationsSccuuiiiiniiiiii e e e e e e e e e e eaens 2386
[R 0 oL @ o= - o] ¢ TP 2386
Fod. CUDE FUNCLIONS ... ittt e e et e e e et e e e e et s e e e eatnneaeees 2388
F.5. Cube-based Earthdistance FUNCLIONSccuuuiiiiiiiiieii e 2425
F.6. Point-based EarthdiStance OPEraforsc.uuiviinieiie e e e e e e e e e e e e eaens 2426
O 1 TSY o T @ o= = o) £ P 2431
F.8. NSt Or @ FUNCHONS ..oiiiiicic e e 2432
FO. intarray FUNCHONS ..o e e e e e e e e aes 2439
[(ORI oL = L = | VA @ o= = o) £ 2439
L Y I I 7 = W Y/ o= PP 2441
[A =Y o I ¥ o PP 2443
[T I B YT @ o= (o) £ 2447
[N I O T W o PP 2448
F.15. pg_buffercache Columnsccoooiiiiiiiiii i 2460
F.16. Supported Algorithms fOr Crypt () oeeeeeeieiie e 2462
F.17. Iteration Counts fOr CrYPL () covnieiiiiiiiie e e s 2463
F.18. Hash AlQOrithm SPEEASiveiii e e e 2464
F.19. Summary of Functionality with and without OpenSSLcccoovvviieiiii i, 2471
F.20. pgr oW 0cks OULPUL COIUMNSccvuiiiiii e e e e e aens 2475
F.21. pg stat_statenments COlUMNSccooiiiiiiiii e 2477
F.22. pgstatt upl @ OUtpUt COIUMNSc.uuiiiiieiii e e e e e e eees 2482
F.23. pgst at t upl e_appr ox Output ColUMNSccuuiiiiiiiiiii e e e 2485
F.24. pg t FgMEUNCHONS .. couuiiii e e e e e e e e e e e e eanees 2486
F.25. PO_t I OMOPEIEIOISeuiiiie et eas 2487
F.26. seg External REPreSentationsSccuueiiuiieiiii e e e e e e e e 2499
F.27. Examples of Valid SEQ INPULo.uuiiiiiiii e e 2499
F.28. SEO GiST OPErAlONS . .cvueiiiieiitieeiie ettt et ie e e e e e e et e e et e e et e e st s e et e e aa e eateeraneaenns 2500
[IS= oo = | I 1 Tox) 2508
F.30. t abl €f UNC FUNCHONScuiiiiiiiii e 2513
F.31L. CONNECt DY Palrameterscouuiiiiiiii e e e e e 2520
F.32. FUNCtioNS fOr UUID GENEION ... ccvvvviieieiiiieeeiii e et s e e et e e et eeeeai e e eeriaeeees 2527
F.33. Functions Returning UUID CONStANESccuueiiiieiiiiieiiieeciieeeie e e e e e eanaeeaen 2528
7 A 0 1 PP 2529
F.35. xpat h_t abl @ Parametersccouiiiiiiiiiii e 2530
H.1. Externally Maintained Client INterfacescc.oveiiiiiiiiiiiii e 2545
H.2. Externally Maintained Procedural LangUagescoevuuieiiieiiiiieiieec e e 2546

XXVili

List of Examples

8.1. USING the CharaCter TYPES ... eiieiii ittt ettt e et e e et e e e et eeeees 139
8.2. USING the DOOI €8N TYPE ... 152
8.3. USING the Bit SIHNG TYPES ... eeeiiieieii ettt et et e e e eaeens 159
10.1. Factorial Operator TYPe RESOIULIONc.uuiiiiiiiieeiiii et 359
10.2. String Concatenation Operator Type RESOIULIONveeeiiiiiiiiiiieeiiii e 360
10.3. Absolute-Vaue and Negation Operator Type ReSOIULIONcccuvuveiiiiinieiiiiieeeeiinn, 360
10.4. Array Inclusion Operator Type RESOIULIONveiiiiiieiiiiieeiiii e 361
10.5. Custom Operator 0N @ DOmMaiN TYPEueiiiiiieiiiiii e 361
10.6. Rounding Function Argument Type ReSOIULIONcoeiviviiiiiiiiiiieeciie e 364
10.7. Variadic FUNCtioN RESOIULIONcviiieieiiiii e e 364
10.8. Substring FUNCtion Type RESOIULIONiiiiiiiiiiiiie e 365
10.9. char act er Storage TYPE CONVEISIONccevuuneieiiieeeeti e eeeti e e eetia e e eeni e eeernaeeees 366
10.10. Type Resolution with Underspecified Typesin @ Unionoeeeevviveieiiiieeiiiinnenes 367
10.11. Type Resolution in @ SImMple UNionooooiiiiiiii e 367
10.12. Type Resolution in @ Transposed UNIONcoouuuuiiiiiiiieiiiii e e 367
10.13. Type Resolution in @ Nested UNIONcc.uuuieiiiiiieiiiiiieeeeei et 368
11.1. Setting up a Partial Index to Exclude Common ValUEScc.ovviiiiiiiiiiiiiiieeiiiieees 376
11.2. Setting up a Partial Index to Exclude Uninteresting Valuescocoeviviiiiiineeiinnnnnn. 376
11.3. Setting up a Partial Unique INAEXcoouuiiiiiiiieiii e 377
20.1. Example pg_hba. coNf ENtrES 597
20.2. An Example pg_i dent . conf Fileoooiiiiiii 600
34.1. libpg EXample Program Luuoeiiiieieei et 839
34.2. 1ibpg EXample Program 2oiiiiiieeei e 842
34.3. libpg EXample Program 3c.oue e 845
35.1. Large Objects with libpg Example Programooceeuviiiiiiiiineeeieeei e 856
36.1. Example SQLDA PrOQraMcieeieieeeiiie et ettt e e et e e et eeaaa s 908
36.2. ECPG Program Accessing Large ODJECESuuuiviiiiiieiiiiiiee e 922
42.1. Manua Installation of PLIPEITcoiiiiiiiiii e 1158
43.1. Quoting Vaues IN DYNamiC QUETTESccuuuuiiiiiiieeiiii et e et e eeeni e 1173
43.2. Exceptions With UPDATE/I NSERToiiiiiiiieiiii e ettt 1189
43.3. A PL/PgSQL Trigger FUNCHIONuuuiiiiiieecei et 1202
43.4. A PL/pgSQL Trigger Function FOor AUditingcc.uuieiiiiinieiiiii e 1203
43.5. A PL/pgSQL View Trigger Function For Auditingoveieriineiiiiinieeeiiieeeeeiien 1204
43.6. A PL/pgSQL Trigger Function For Maintaining A Summary Tableccccoeeeeeee 1205
43.7. Auditing with Transition Tablesccoeuiiiii e 1207
43.8. A PL/pgSQL Event Trigger FUNCLIONooviiiiieiiiiieeee e 1209
43.9. Porting a Simple Function from PL/SQL t0 PL/PGSQLuuiiiiiiiieiiiiiieeciieeeeeiiee 1216
43.10. Porting a Function that Creates Another Function from PL/SQL to PL/pgSQL 1217
43.11. Porting a Procedure With String Manipulation and OUT Parameters from PL/SQL to

[0TSO RSO PPTPTTRR 1218
43.12. Porting a Procedure from PL/SQL to PL/PGSQLuvviiiiiiiiiiiiie e 1220
F.1. Create a Foreign Table for POSIgreSQL CSV LOGS ... civvvvneiiiiiieeeeiiieeeeiieeeeeiineees 2427

XXiX

Preface

This book is the official documentation of PostgreSQL. It has been written by the PostgreSQL
developersand other volunteersin parallel to the devel opment of the PostgreSQL software. It describes
all the functionality that the current version of PostgreSQL officially supports.

To makethelarge amount of information about PostgreSQL manageabl e, thisbook has been organized
in several parts. Each part istargeted at adifferent class of users, or at usersin different stages of their
PostgreSQL experience:

e Part | isaninformal introduction for new users.

 Part 1l documentsthe SQL query language environment, including datatypes and functions, aswell
as user-level performance tuning. Every PostgreSQL user should read this.

 Part 111 describestheinstallation and administration of the server. Everyone who runs a PostgreSQL
server, beit for private use or for others, should read this part.

 Part IV describes the programming interfaces for PostgreSQL client programs.

» Part V contains information for advanced users about the extensibility capabilities of the server.
Topics include user-defined data types and functions.

» Part VI contains reference information about SQL commands, client and server programs. This part
supports the other parts with structured information sorted by command or program.

» Part VII contains assorted information that might be of use to PostgreSQL developers.

1. What is PostgreSQL?

PostgreSQL is an object-relational database management system (ORDBMS) based on POSTGRES,
Version 4.2, developed at the University of California at Berkeley Computer Science Department.
POSTGRES pioneered many concepts that only became available in some commercial database
systems much later.

PostgreSQL is an open-source descendant of this original Berkeley code. It supports a large part of
the SQL standard and offers many modern features:

» complex queries

« foreign keys

* triggers

 updatable views

* transactional integrity

» multiversion concurrency control

Also, PostgreSQL can be extended by the user in many ways, for example by adding new

o datatypes

* functions

* operators
 aggregate functions
* index methods
 procedural languages

And because of the liberal license, PostgreSQL can be used, modified, and distributed by anyone free
of charge for any purpose, beit private, commercial, or academic.

2. A Brief History of PostgreSQL

L hitp://dio.cs.berkel ey.edu/postgres.htm

XXX

http://db.cs.berkeley.edu/postgres.html
http://db.cs.berkeley.edu/postgres.html
http://db.cs.berkeley.edu/postgres.html

Preface

The object-relational database management system now known as PostgreSQL is derived from the
POSTGRES package written at the University of California at Berkeley. With over two decades
of development behind it, PostgreSQL is now the most advanced open-source database available
anywhere.

2.1. The Berkeley POSTGRES Project

The POSTGRES project, led by Professor Michael Stonebraker, was sponsored by the Defense
Advanced Research Projects Agency (DARPA), the Army Research Office (ARO), the National
Science Foundation (NSF), and ESL, Inc. The implementation of POSTGRES began in 1986. The
initial concepts for the system were presented in [ston86], and the definition of the initial data model
appeared in [rowe87]. The design of the rule system at that time was described in [ston87a]. The
rational e and architecture of the storage manager were detailed in [ston87b].

POSTGRES has undergone several major releases since then. The first “demoware” system became
operational in 1987 and was shown at the 1988 ACM-SIGMOD Conference. Version 1, described in
[ston90a], was released to afew external usersin June 1989. In response to a critique of thefirst rule
system ([ston89]), the rule system was redesigned ([ston90b]), and Version 2 was released in June
1990 with the new rule system. Version 3 appeared in 1991 and added support for multiple storage
managers, an improved query executor, and a rewritten rule system. For the most part, subsegquent
releases until Postgres95 (see bel ow) focused on portability and reliability.

POST GRES has been used to implement many different research and production applications. These
include: afinancial data analysis system, a jet engine performance monitoring package, an asteroid
tracking database, a medical information database, and severa geographic information systems.
POSTGRES has also been used as an educational tool at severa universities. Finally, Illustra
Information Technologies (later merged into Informix?, which is now owned by IBM3) picked up
the code and commercialized it. In late 1992, POSTGRES became the primary data manager for the
Sequoia 2000 scientific computing project®,

The size of the external user community nearly doubled during 1993. It became increasingly obvious
that maintenance of the prototype code and support was taking up large amounts of time that should
have been devoted to database research. In an effort to reduce this support burden, the Berkeley
POSTGRES project officially ended with Version 4.2.

2.2. Postgres95

In 1994, Andrew Y u and Jolly Chen added an SQL language interpreter to POSTGRES. Under anew
name, Postgres95 was subsequently released to the web to find its own way in the world as an open-
source descendant of the original POSTGRES Berkeley code.

Postgres95 code was completely ANSI C and trimmed in size by 25%. Many internal changes
improved performance and maintainability. Postgres95 release 1.0.x ran about 30-50% faster on the
Wisconsin Benchmark compared to POSTGRES, Version 4.2. Apart from bug fixes, the following
were the major enhancements:

* The query language PostQUEL was replaced with SQL (implemented in the server). (Interface
library libpg was named after PostQUEL .) Subqueries were not supported until PostgreSQL (see
below), but they could be imitated in Postgres95 with user-defined SQL functions. Aggregate
functions were re-implemented. Support for the GROUP BY query clause was a so added.

* A new program (psqgl) was provided for interactive SQL queries, which used GNU Readline. This
largely superseded the old monitor program.

* A new front-end library, | i bpgt cl , supported Tcl-based clients. A sample shell, pgt cl sh,
provided new Tcl commands to interface Tcl programs with the Postgres95 server.

2 https://www.ibm.com/anal ytics/informix
3 https://www.ibm.com/
4 http://meteora.ucsd.edu/s2k/s2k_home.html

XXXIi

https://www.ibm.com/analytics/informix
https://www.ibm.com/
http://meteora.ucsd.edu/s2k/s2k_home.html
https://www.ibm.com/analytics/informix
https://www.ibm.com/
http://meteora.ucsd.edu/s2k/s2k_home.html

Preface

» The large-object interface was overhauled. The inversion large objects were the only mechanism
for storing large objects. (The inversion file system was removed.)

» Theinstance-level rule system was removed. Rules were still available as rewrite rules.

» A short tutorial introducing regular SQL features as well as those of Postgres95 was distributed
with the source code

* GNU make (instead of BSD make) was used for the build. Also, Postgres95 could be compiled with
an unpatched GCC (data alignment of doubles was fixed).

2.3. PostgreSQL

By 1996, it became clear that the name “ Postgres95” would not stand the test of time. We chose anew
name, PostgreSQL, to reflect the relationship between the original POSTGRES and the more recent
versions with SQL capability. At the same time, we set the version numbering to start at 6.0, putting
the numbers back into the sequence originally begun by the Berkeley POSTGRES project.

Many people continue to refer to PostgreSQL as “Postgres’ (now rarely in all capital letters) because
of tradition or because it is easier to pronounce. This usage is widely accepted as a nickname or alias.

The emphasis during development of Postgresd5 was on identifying and understanding existing
problems in the server code. With PostgreSQL, the emphasis has shifted to augmenting features and
capabilities, although work continuesin all areas.

Details about what has happened in PostgreSQL since then can be found in Appendix E.

3. Conventions

Thefollowing conventionsare used in the synopsis of acommand: brackets([and]) indicate optional
parts. (In the synopsis of a Tcl command, question marks (?) are used instead, as is usual in Tcl.)
Braces({ and}) and vertical lines(|) indicate that you must choose one dternative. Dots(. . .) mean
that the preceding element can be repeated.

Where it enhances the clarity, SQL commands are preceded by the prompt =>, and shell commands
are preceded by the prompt $. Normally, prompts are not shown, though.

An administrator is generally a person who is in charge of installing and running the server. A user
could be anyone who is using, or wants to use, any part of the PostgreSQL system. These terms
should not be interpreted too narrowly; this book does not have fixed presumptions about system
administration procedures.

4. Further Information

Besides the documentation, that is, this book, there are other resources about PostgreSQL :
Wiki

The PostgreSQL wiki® contains the project's FAQ® (Frequently Asked Questions) list, TODO’
list, and detailed information about many more topics.

Web Site

The PostgreSQL web site® carries details on the | atest release and other information to make your
work or play with PostgreSQL more productive.

5 https://wiki.postgresql.org

5 https://wiki.postgresql.org/wiki/Frequently Asked Questions
7 https://wiki.postgresgl.org/wiki/Todo

8 https://www.postgresgl.org

XXXii

https://wiki.postgresql.org
https://wiki.postgresql.org/wiki/Frequently_Asked_Questions
https://wiki.postgresql.org/wiki/Todo
https://www.postgresql.org
https://wiki.postgresql.org
https://wiki.postgresql.org/wiki/Frequently_Asked_Questions
https://wiki.postgresql.org/wiki/Todo
https://www.postgresql.org

Preface

Mailing Lists

The mailing lists are a good place to have your questions answered, to share experiences with
other users, and to contact the developers. Consult the PostgreSQL web site for details.

Y ourself!

PostgreSQL is an open-source project. As such, it depends on the user community for ongoing
support. As you begin to use PostgreSQL, you will rely on others for help, either through the
documentation or through the mailing lists. Consider contributing your knowledge back. Read
the mailing lists and answer questions. If you learn something which is not in the documentation,
write it up and contribute it. If you add features to the code, contribute them.

5. Bug Reporting Guidelines

When you find abug in PostgreSQL we want to hear about it. Y our bug reports play an important part
in making PostgreSQL more reliable because even the utmost care cannot guarantee that every part
of PostgreSQL will work on every platform under every circumstance.

The following suggestions are intended to assist you in forming bug reports that can be handled in an
effective fashion. No oneis required to follow them but doing so tends to be to everyone's advantage.

We cannot promiseto fix every bug right away. If the bug is obvious, critical, or affectsalot of users,
chances are good that someone will 1ook into it. It could also happen that we tell you to update to
a newer version to see if the bug happens there. Or we might decide that the bug cannot be fixed
before some major rewrite we might be planning isdone. Or perhapsit issimply too hard and there are
more important things on the agenda. If you need help immediately, consider obtaining a commercial
support contract.

5.1. Identifying Bugs

Before you report a bug, please read and re-read the documentation to verify that you can realy do
whatever it isyou are trying. If it is not clear from the documentation whether you can do something
or not, please report that too; it is a bug in the documentation. If it turns out that a program does
something different from what the documentation says, that is a bug. That might include, but is not
limited to, the following circumstances:

» A program terminates with afatal signal or an operating system error message that would point to
a problem in the program. (A counterexample might be a “disk full” message, since you have to
fix that yourself.)

» A program produces the wrong output for any given input.
» A program refuses to accept valid input (as defined in the documentation).

A program acceptsinvalid input without a notice or error message. But keep in mind that your idea
of invalid input might be our idea of an extension or compatibility with traditional practice.

» PostgreSQL failsto compile, build, or install according to the instructions on supported platforms.
Here “program” refers to any executable, not only the backend process.

Being slow or resource-hogging is not necessarily a bug. Read the documentation or ask on one of
the mailing lists for help in tuning your applications. Failing to comply to the SQL standard is not
necessarily a bug either, unless compliance for the specific feature is explicitly claimed.

Before you continue, check on the TODO list and in the FAQ to see if your bug is aready known.
If you cannot decode the information on the TODO list, report your problem. The least we cando is
make the TODO list clearer.

XXXl

Preface

5.2. What to Report

The most important thing to remember about bug reporting is to state all the facts and only facts. Do
not speculate what you think went wrong, what “it seemed to do”, or which part of the program has a
fault. If you are not familiar with the implementation you would probably guess wrong and not help
us a bit. And even if you are, educated explanations are a great supplement to but no substitute for
facts. If we are going to fix the bug we still have to see it happen for ourselves first. Reporting the
bare facts is relatively straightforward (you can probably copy and paste them from the screen) but
all too often important details are left out because someone thought it does not matter or the report
would be understood anyway.

The following items should be contained in every bug report:

» Theexact sequence of stepsfrom program start-up necessary to reproduce the problem. This should
be self-contained; it is not enough to send in a bare SELECT statement without the preceding
CREATE TABLE and | NSERT statements, if the output should depend on the data in the tables.
We do not have the time to reverse-engineer your database schema, and if we are supposed to make
up our own data we would probably miss the problem.

The best format for atest case for SQL-related problems is afile that can be run through the psgl
frontend that shows the problem. (Be sure to not have anything inyour ~/ . psql r ¢ start-up file))
An easy way to createthisfileisto use pg_dump to dump out the table declarations and data needed
to set the scene, then add the problem query. You are encouraged to minimize the size of your
example, but thisis not absolutely necessary. If the bug is reproducible, we will find it either way.

If your application uses some other client interface, such as PHP, then please try to isolate the
offending queries. We will probably not set up aweb server to reproduce your problem. In any case
remember to provide the exact input files; do not guess that the problem happens for “large files’
or “midsize databases’, etc. since thisinformation istoo inexact to be of use.

» Theoutput you got. Please do not say that it “didn't work” or “crashed”. If thereisan error message,
show it, even if you do not understand it. If the program terminates with an operating system error,
say which. If nothing at all happens, say so. Even if the result of your test case is a program crash
or otherwise obvious it might not happen on our platform. The easiest thing is to copy the output
from the terminal, if possible.

Note

If you are reporting an error message, please obtain the most verbose form of the message.
Inpsql, say \ set VERBOSI TY ver bose beforehand. If you are extracting the message
from the server log, set the run-time parameter log_error_verbosity to ver bose so that all
details are logged.

Note

In case of fatal errors, the error message reported by the client might not contain al the
information available. Please also look at the log output of the database server. If you do
not keep your server'slog output, this would be a good time to start doing so.

» The output you expected is very important to state. If you just write “This command gives me that
output.” or “Thisis not what | expected.”, we might run it ourselves, scan the output, and think it
looks OK and is exactly what we expected. We should not have to spend the time to decode the
exact semantics behind your commands. Especialy refrain from merely saying that “This is not
what SQL says/Oracle does.” Digging out the correct behavior from SQL is not a fun undertaking,

XXXIV

Preface

nor do we al know how all the other relational databases out there behave. (If your problem is a
program crash, you can obviously omit thisitem.)

» Any command line options and other start-up options, including any relevant environment variables
or configuration files that you changed from the default. Again, please provide exact information.
If you are using a prepackaged distribution that starts the database server at boot time, you should
try to find out how that is done.

» Anything you did at al differently from the installation instructions.

» ThePostgreSQL version. Y ou canrunthecommand SELECT ver si on() ; tofindouttheversion
of the server you are connected to. Most executable programs also support a- - ver si on option;
at least postgres --version and psql --version should work. If the function or the
options do not exist then your version is more than old enough to warrant an upgrade. If you run a
prepackaged version, such as RPMs, say so, including any subversion the package might have. If
you are talking about a Git snapshot, mention that, including the commit hash.

If your version is older than 11.2 we will almost certainly tell you to upgrade. There are many bug
fixes and improvementsin each new release, so it is quite possible that a bug you have encountered
in an older release of PostgreSQL has already been fixed. We can only provide limited support
for sites using older releases of PostgreSQL ; if you require more than we can provide, consider
acquiring a commercial support contract.

 Platform information. This includes the kernel name and version, C library, processor, memory
information, and so on. In most cases it is sufficient to report the vendor and version, but do not
assume everyone knowswhat exactly “ Debian” containsor that everyone runsoni386s. If you have
installation problems then information about the toolchain on your machine (compiler, make, and
S0 on) is also necessary.

Do not be afraid if your bug report becomes rather lengthy. That is afact of life. It is better to report
everything the first time than us having to squeeze the facts out of you. On the other hand, if your
input files are huge, it isfair to ask first whether somebody isinterested in looking into it. Hereis an
article” that outlines some more ti ps on reporting bugs.

Do not spend all your time to figure out which changes in the input make the problem go away. This
will probably not help solving it. If it turns out that the bug cannot be fixed right away, you will still
have timeto find and share your work-around. Also, once again, do not waste your time guessing why
the bug exists. We will find that out soon enough.

When writing a bug report, please avoid confusing terminology. The software package in total is
called “PostgreSQL ", sometimes“ Postgres” for short. If you are specifically talking about the backend
process, mention that, do not just say “PostgreSQL crashes’. A crash of a single backend process
is quite different from crash of the parent “postgres’ process; please don't say “the server crashed”
when you mean asingle backend process went down, nor vice versa. Also, client programs such asthe
interactive frontend “psgl” are completely separate from the backend. Please try to be specific about
whether the problem is on the client or server side.

5.3. Where to Report Bugs

In general, send bug reports to the bug report mailing list at
<pgsql - bugs@i st s. post gresqgl . or g>. You are requested to use a descriptive subject for
your email message, perhaps parts of the error message.

Another method is to fill in the bug report web-form available at the project's web site™®. Entering
a bug report this way causes it to be mailed to the <pgsql - bugs@i st s. post gresql . or g>
mailing list.

9 https://www.chiark.greenend.org.uk/~sgtatham/bugs.html
10 https:/iwww. postgresal.org/

XXXV

https://www.chiark.greenend.org.uk/~sgtatham/bugs.html
https://www.postgresql.org/
https://www.chiark.greenend.org.uk/~sgtatham/bugs.html
https://www.postgresql.org/

Preface

If your bug report has security implications and you'd prefer that it not become immediately visible
in public archives, don't send it to pgsql - bugs. Security issues can be reported privately to
<security@ostgresql.org>.

Do not send bug reports to any of the wuser maling lists, such as
<pgsql -sqgl @i sts. postgresql.org> or
<pgsql -general @i sts. postgresqgl . org>. These mailing lists are for answering user
questions, and their subscribers normally do not wish to receive bug reports. More importantly, they
are unlikely to fix them.

Also, pleasse do not send reports to the developers mailing list
<pgsql - hackers@i sts. post gresql . or g>. Thislist is for discussing the development of
PostgreSQL , and it would be nice if we could keep the bug reports separate. We might choose to take
up adiscussion about your bug report on pgsql - hacker s, if the problem needs more review.

If you have a problem with the documentation, the best place to report it is the documentation
mailing list <pgsql - docs@ i st s. post gresqgl . or g>. Please be specific about what part of
the documentation you are unhappy with.

If your bug is a portability problem on a non-supported platform, send mail to
<pgsql - hackers@i sts. postgresqgl .org>, so we (and you) can work on porting
PostgreSQL to your platform.

Note

Due to the unfortunate amount of spam going around, all of the above lists will be moderated
unless you are subscribed. That means there will be some delay before the email is delivered.
If you wish to subscribe to the lists, please visit https:/lists.postgresql.org/ for instructions.

XXXVi

https://lists.postgresql.org/

Part I. Tutorial

Welcome to the PostgreSQL Tutorial. The following few chapters are intended to give a simple introduction to
PostgreSQL, relational database concepts, and the SQL |anguage to those who are new to any one of these aspects.
We only assume some general knowledge about how to use computers. No particular Unix or programming
experienceisrequired. Thispart is mainly intended to give you some hands-on experience with important aspects
of the PostgreSQL system. It makes no attempt to be a complete or thorough treatment of the topicsit covers.

After you have worked through this tutorial you might want to move on to reading Part Il to gain a more formal
knowledge of the SQL language, or Part 1V for information about devel oping applications for PostgreSQL . Those
who set up and manage their own server should also read Part 1.

Table of Contents

L. GEIING SEAMEAeeieeie ettt ettt 3
0 T 1 = = = 1o o [P 3
1.2. Architectural FUNDamENtalSc.oiviiniii i 3
1.3. Creating @ Datahasecccuuuiiiiii e 3
1.4, ACCESSING 8 DAIANESE ..ottt 5
2. The SQL LBNGUBGE ...ccevn ittt e et et e et e e e eae s 7
b2 I 1 11 (0o (U (o 1 o I PP 7
A O 04 /= o = PP PT PP 7
2.3. Creating @aNew Table ...o.uuiiii e 7
2.4. Populating @ Table With ROWScoouuiiiiiii e 8
25, QUENYING A TADIE ... 9
2.6. J0INS BEIWEEN TaADIES ...uiviiiie i 11
2.7. AQOregate FUNCLIONSccuuuieiiiii ettt ettt e e et eeeaaa s 13
2.8 UPUELES ...ttt 15
2.9, DEIBHIONSviieiee et e aaaaas 15
I Y0 (V7= o= s (1 = 16
G I 111 (oo (U o 1 o [PPSR 16
I VAT = YRS USPRPRP 16
3.3 FOrEIgN KBYS ..ttt 16
I I =01 o o 1 17
3.5, WINAOW FUNCLIONScviiviiiiii e ans 19
I ST 101015 g1 7= ot PSP 22
G I o o Tox 11 Lo o T 23

Chapter 1. Getting Started
1.1. Installation

Before you can use PostgreSQL you need to install it, of course. It is possible that PostgreSQL is
already installed at your site, either because it was included in your operating system distribution
or because the system administrator aready installed it. If that is the case, you should obtain
information from the operating system documentation or your system administrator about how to
access PostgreSQL.

If you are not sure whether PostgreSQL is already available or whether you can use it for your
experimentation then you can install it yourself. Doing so is not hard and it can be a good exercise.
PostgreSQL can be installed by any unprivileged user; no superuser (root) accessis required.

If you are installing PostgreSQL yourself, then refer to Chapter 16 for instructions on installation,
and return to this guide when the installation is complete. Be sure to follow closely the section about
setting up the appropriate environment variabl es.

If your site administrator has not set things up in the default way, you might have some more work to
do. For example, if the database server machine is aremote machine, you will need to set the PGHOST
environment variable to the name of the database server machine. The environment variable PGPORT
might also have to be set. The bottom line is this: if you try to start an application program and it
complains that it cannot connect to the database, you should consult your site administrator or, if
that is you, the documentation to make sure that your environment is properly set up. If you did not
understand the preceding paragraph then read the next section.

1.2. Architectural Fundamentals

Before we proceed, you should understand the basic PostgreSQL system architecture. Understanding
how the parts of PostgreSQL interact will make this chapter somewhat clearer.

In database jargon, PostgreSQL uses a client/server model. A PostgreSQL session consists of the
following cooperating processes (programs):

A server process, which manages the database files, accepts connections to the database from client
applications, and performs database actions on behalf of the clients. The database server program
iscaled post gres.

e The user's client (frontend) application that wants to perform database operations. Client
applications can be very diverse in nature: a client could be a text-oriented tool, a graphical
application, aweb server that accesses the database to display web pages, or a specialized database
maintenance tool. Some client applications are supplied with the PostgreSQL distribution; most are
developed by users.

Asistypical of client/server applications, the client and the server can be on different hosts. In that
case they communicate over a TCP/IP network connection. Y ou should keep this in mind, because
the filesthat can be accessed on a client machine might not be accessible (or might only be accessible
using adifferent file name) on the database server machine.

The PostgreSQL server can handle multiple concurrent connections from clients. To achieve this
it starts (“forks”) a new process for each connection. From that point on, the client and the new
server process communicate without intervention by theoriginal post gr es process. Thus, the master
server process is always running, waiting for client connections, whereas client and associated server
processes come and go. (All of thisis of course invisible to the user. We only mention it here for
completeness.)

1.3. Creating a Database

Getting Started

Thefirst test to see whether you can access the database server isto try to create adatabase. A running
PostgreSQL server can manage many databases. Typically, a separate database is used for each project
or for each user.

Possibly, your site administrator has already created a database for your use. In that case you can omit
this step and skip ahead to the next section.

To create a new database, in this example named mydb, you use the following command:

$ createdb nydb

If this produces no response then this step was successful and you can skip over the remainder of
this section.

If you see a message similar to:

creat edb: command not found

then PostgreSQL was not installed properly. Either it was not installed at all or your shell's search path
was not set to includeit. Try calling the command with an absol ute path instead:

$ /usr/local/pgsqgl/bin/createdb nmydb

The path at your site might be different. Contact your site administrator or check the installation
instructions to correct the situation.

Another response could be this:

createdb: could not connect to database postgres: could not connect
to server: No such file or directory

Is the server running locally and accepting

connections on Uni x donain socket "/tnp/.s.PGSQL. 5432"?

This means that the server was not started, or it was not started where cr eat edb expected it. Again,
check the installation instructions or consult the administrator.

Another response could be this:

createdb: could not connect to database postgres: FATAL: role
"joe" does not exi st

where your own login name is mentioned. This will happen if the administrator has not created a
PostgreSQL user account for you. (PostgreSQL user accounts are distinct from operating system user
accounts.) If you are the administrator, see Chapter 21 for help creating accounts. Y ou will need to
become the operating system user under which PostgreSQL was installed (usualy post gr es) to
create the first user account. It could also be that you were assighed a PostgreSQL user name that is
different from your operating system user name; in that case you need to use the - U switch or set the
PGUSER environment variable to specify your PostgreSQL user name.

If you have a user account but it does not have the privileges required to create a database, you will
see the following:

creat edb: database creation failed: ERROR pernission denied to
create dat abase

Getting Started

Not every user has authorization to create new databases. If PostgreSQL refuses to create databases
for you then the site administrator needs to grant you permission to create databases. Consult your
site administrator if this occurs. If you installed PostgreSQL yourself then you should log in for the
purposes of thistutorial under the user account that you started the server as. !

You can aso create databases with other names. PostgreSQL allows you to create any number of
databases at a given site. Database names must have an alphabetic first character and are limited to
63 bytes in length. A convenient choice is to create a database with the same name as your current
user name. Many tools assume that database name as the default, so it can save you some typing. To
create that database, smply type:

$ createdb

If you do not want to use your database anymore you can removeit. For example, if you arethe owner
(creator) of the database ny db, you can destroy it using the following command:

$ dropdb nydb

(For this command, the database name does not default to the user account name. Y ou always need to
specify it.) Thisaction physically removesall files associated with the database and cannot be undone,
so this should only be done with a great deal of forethought.

More about cr eat edb and dr opdb can be found in createdb and dropdb respectively.

1.4. Accessing a Database

Once you have created a database, you can accessit by:

* Running the PostgreSQL interactive terminal program, called psgl, which alows you to
interactively enter, edit, and execute SQL commands.

» Using an existing graphical frontend tool like pgAdmin or an office suite with ODBC or JDBC
support to create and manipulate a database. These possibilities are not covered in this tutorial.

» Writing a custom application, using one of the several available language bindings. These
possibilities are discussed further in Part V.

You probably want to start up psql to try the examples in this tutorial. It can be activated for the
nmy db database by typing the command:

$ psqgl nydb

If you do not supply the database name then it will default to your user account name. Y ou already
discovered this scheme in the previous section using cr eat edb.

Inpsql , you will be greeted with the following message:
psql (11.2)

Type "hel p" for help.

mydb=>

Thelast line could also be:

1 As an explanation for why this works: PostgreSQL user names are separate from operating system user accounts. When you connect to a
database, you can choose what PostgreSQL user name to connect as; if you don't, it will default to the same name as your current operating
system account. Asit happens, there will always be a PostgreSQL user account that has the same name as the operating system user that started
the server, and it also happens that that user always has permission to create databases. Instead of logging in as that user you can also specify
the - U option everywhere to select a PostgreSQL user name to connect as.

Getting Started

nydb=#

That would mean you are a database superuser, which is most likely the case if you instaled the
PostgreSQL instance yourself. Being a superuser means that you are not subject to access controls.
For the purposes of thistutorial that is not important.

If you encounter problems starting psql then go back to the previous section. The diagnostics of
creat edb and psql aresimilar, and if the former worked the latter should work as well.

Thelast line printed out by psql isthe prompt, and it indicatesthat psql islistening to you and that
you can type SQL queries into awork space maintained by psql . Try out these commands:

nydb=> SELECT version();
ver si on

PostgreSQ. 11.2 on x86_64-pc-|inux-gnu, conpiled by gcc (Debian
4.9.2-10) 4.9.2, 64-bit
(1 row

nmydb=> SELECT current _date;
dat e

2016- 01- 07
(1 row

nmydb=> SELECT 2 + 2;
?col um?

(1 row

Thepsql program hasanumber of internal commands that are not SQL commands. They begin with
the backslash character, “\ . For example, you can get help on the syntax of various PostgreSQL SQL
commands by typing:

nydb=> \ h

To get out of psql , type:

nmydb=> \q

and psql will quit and return you to your command shell. (For more internal commands, type\ ? at
the psqgl prompt.) The full capabilities of psql are documented in psgl. In this tutorial we will not
use these features explicitly, but you can use them yourself when it is helpful.

Chapter 2. The SQL Language

2.1. Introduction

This chapter provides an overview of how to use SQL to perform simple operations. This tutorial is
only intended to give you an introduction and is in no way a complete tutorial on SQL. Numerous
books have been written on SQL, including [melt93] and [date97]. Y ou should be aware that some
PostgreSQL language features are extensions to the standard.

In the examples that follow, we assume that you have created a database named mydb, as described
in the previous chapter, and have been able to start psql.

Examples in this manual can also be found in the PostgreSQL source distribution in the directory
src/tutorial/.(Binary distributions of PostgreSQL might not compile thesefiles.) To use those
files, first change to that directory and run make:

$cd..../src/tutorial
$ make

This creates the scripts and compiles the C files containing user-defined functions and types. Then,
to start the tutorial, do the following:

$cd..../tutorial
$ psql -s mydb

nydb=> \i basi cs. sql

The\'i command readsin commandsfrom the specified file. psql 's- s option putsyou in single step
mode which pauses before sending each statement to the server. The commands used in this section
areinthefilebasi cs. sql .

2.2. Concepts

PostgreSQL isarelational database management system (RDBMS). That meansit is a system for
managing data stored in relations. Relation is essentially a mathematical term for table. The notion
of storing data in tables is so commonplace today that it might seem inherently obvious, but there
are a number of other ways of organizing databases. Files and directories on Unix-like operating
systems form an example of a hierarchical database. A more modern development is the object-
oriented database.

Each table is a named collection of rows. Each row of a given table has the same set of named
columns, and each column is of a specific datatype. Whereas columns have afixed order in each row,
it isimportant to remember that SQL does not guarantee the order of the rows within the table in any
way (although they can be explicitly sorted for display).

Tables are grouped into databases, and a collection of databases managed by a single PostgreSQL
server instance constitutes a database cluster.

2.3. Creating a New Table

Y ou can create anew table by specifying the table name, along with all column names and their types:

The SQL Language

CREATE TABLE weat her (

city var char (80),

temp_lo int, -- low tenperature
t enmp_hi int, -- high tenperature
prcp real, -- precipitation
dat e dat e

)

You can enter this into psqgl with the line breaks. psql will recognize that the command is not
terminated until the semicolon.

White space (i.e., spaces, tabs, and newlines) can be used freely in SQL commands. That means
you can type the command aligned differently than above, or even all on one line. Two dashes (“- -
") introduce comments. Whatever follows them is ignored up to the end of the line. SQL is case
insensitive about key words and identifiers, except when identifiers are double-quoted to preserve the
case (not done above).

var char (80) specifies a data type that can store arbitrary character strings up to 80 characters
inlength. i nt isthe normal integer type. r eal isatype for storing single precision floating-point
numbers. dat e should be self-explanatory. (Y es, the column of typedat e isalso named dat e. This
might be convenient or confusing — you choose.)

PostgreSQL supports the standard SQL typesi nt, smal | i nt, real , doubl e precision,
char (N),varchar(N),date,time,tinestanp, andi nt erval , aswell as other types of
genera utility and a rich set of geometric types. PostgreSQL can be customized with an arbitrary
number of user-defined data types. Consequently, type names are not key words in the syntax, except
where required to support special casesin the SQL standard.

The second example will store cities and their associated geographical |ocation:

CREATE TABLE cities (
nane var char (80),
| ocation poi nt

)
Thepoi nt typeisan example of a PostgreSQL -specific data type.

Finally, it should be mentioned that if you don't need atable any longer or want to recreateit differently
you can remove it using the following command:

DROP TABLE t abl enane;

2.4. Populating a Table With Rows

The | NSERT statement is used to populate a table with rows:

| NSERT | NTO weat her VALUES (' San Francisco', 46, 50, 0.25,
'1994- 11-27");

Notethat all datatypes use rather obviousinput formats. Constantsthat are not simple numeric values
usually must be surrounded by single quotes ('), asin the example. The dat e typeisactualy quite
flexiblein what it accepts, but for thistutorial we will stick to the unambiguous format shown here.

The poi nt type requires a coordinate pair asinput, as shown here:

The SQL Language

I NSERT I NTO cities VALUES (' San Francisco', '(-194.0, 53.0)");

The syntax used so far requiresyou to remember the order of the columns. An alternative syntax allows
you to list the columns explicitly:

| NSERT | NTO weat her (city, tenp_lo, tenp_hi, prcp, date)
VALUES (' San Franci sco', 43, 57, 0.0, '1994-11-29');
You can list the columns in a different order if you wish or even omit some columns, e.g., if the
precipitation is unknown;
| NSERT | NTO weat her (date, city, tenp_hi, tenp_l o)
VALUES (' 1994-11-29', 'Hayward', 54, 37);

Many developers consider explicitly listing the columns better style than relying on the order
implicitly.

Please enter all the commands shown above so you have some data to work with in the following
sections.

You could also have used COPY to load large amounts of data from flat-text files. This is usualy
faster because the COPY command is optimized for this application while allowing lessflexibility than
| NSERT. An example would be:

COPY weat her FROM '/ hone/ user/weat her. txt";
where the file name for the source file must be available on the machine running the backend process,

not the client, since the backend process reads the file directly. Y ou can read more about the COPY
command in COPY.

2.5. Querying a Table

To retrieve datafrom atable, thetableis queried. An SQL SELECT statement is used to do this. The
statement is divided into a select list (the part that lists the columns to be returned), a table list (the
part that lists the tables from which to retrieve the data), and an optional qualification (the part that
specifies any restrictions). For example, to retrieve al the rows of tableweat her , type:

SELECT * FROM weat her;

Here* isashorthand for “al columns’. * So the same result would be had with:

SELECT city, tenp_lo, tenmp_hi, prcp, date FROM weat her;

The output should be:

city | tenp_lo | tenmp_hi | prcp | dat e
--------------- T T T gy
San Franci sco | 46 | 50 | 0.25 | 1994-11-27
San Franci sco | 43 | 57 | 0 | 1994-11-29
Haywar d | 37 | 54 | | 1994-11-29

L \While SELECT * isuseful for off-the-cuff queries, it is widely considered bad style in production code, since adding a column to the table
would change the results.

The SQL Language

(3 rows)

Y ou can write expressions, not just simple column references, in the select list. For example, you can
do:

SELECT city, (tenp_hi+tenp_lo)/2 AS tenp_avg, date FROM weat her;

This should give:

city | tenmp_avg | dat e
_______________ e
San Franci sco | 48 | 1994-11-27
San Franci sco | 50 | 1994-11-29
Haywar d | 45 | 1994-11-29
(3 rows)

Notice how the AS clause is used to relabel the output column. (The AS clauseis optional.)

A query can be “qualified” by adding a WHERE clause that specifies which rows are wanted. The
WHERE clause contains a Boolean (truth value) expression, and only rows for which the Boolean
expression is true are returned. The usual Boolean operators (AND, OR, and NOT) are allowed in the
qualification. For example, the following retrieves the weather of San Francisco on rainy days:

SELECT * FROM weat her
WHERE city = ' San Franci sco' AND prcp > 0.0;

Result:

city | temp_lo | tenp_hi | prcp | dat e
--------------- T T
San Franci sco | 46 | 50 | 0.25 | 1994-11-27
(1 row

Y ou can request that the results of a query be returned in sorted order:

SELECT * FROM weat her
ORDER BY city;

city | temp_lo | tenp_hi | prcp | dat e
--------------- T T L g
Haywar d | 37 | 54 | | 1994-11-29
San Franci sco | 43 | 57 | 0 | 1994-11-29
San Franci sco | 46 | 50 | 0.25 | 1994-11-27

In this example, the sort order isn't fully specified, and so you might get the San Francisco rows in
either order. But you'd always get the results shown above if you do:

SELECT * FROM weat her
ORDER BY city, tenp_lo;

Y ou can request that duplicate rows be removed from the result of a query:

SELECT DI STINCT city

10

The SQL Language

FROM weat her ;

Haywar d
San Franci sco
(2 rows)

Here again, theresult row ordering might vary. Y ou can ensure consistent results by using DI STI NCT
and ORDER BY together: 2

SELECT DI STINCT city
FROM weat her
ORDER BY city;

2.6. Joins Between Tables

Thus far, our queries have only accessed one table at a time. Queries can access multiple tables at
once, or access the same table in such away that multiple rows of the table are being processed at the
sametime. A query that accesses multiple rows of the same or different tables at onetimeiscalled a
join query. As an example, say you wish to list al the weather records together with the location of
the associated city. To do that, we need to compare the ci t y column of each row of the weat her
table with the nare column of al rowsintheci t i es table, and select the pairs of rows where these
values match.

Note

Thisisonly aconceptual model. Thejoinisusually performed in amore efficient manner than
actually comparing each possible pair of rows, but thisisinvisible to the user.

This would be accomplished by the following query:

SELECT *
FROM weat her, cities
WHERE city = nane;

city | temp_lo | tenp_hi | prcp | date | name
| location
--------------- T LT I T gy
R S
San Franci sco | 46 | 50 | 0.25 | 1994-11-27 | San
Francisco | (-194,53)
San Franci sco | 43 | 57 | 0 | 1994-11-29 | San
Francisco | (-194,53)
(2 rows)

Observe two things about the result set:

e Thereis no result row for the city of Hayward. This is because there is no matching entry in the
ci ti es table for Hayward, so the join ignores the unmatched rows in the weat her table. We
will see shortly how this can be fixed.

2 |n some database systems, including older versions of PostgreSQL, the implementation of DI STI NCT automatically orders the rows and
so ORDER BY is unnecessary. But this is not required by the SQL standard, and current PostgreSQL does not guarantee that DI STI NCT
causes the rows to be ordered.

11

The SQL Language

» There are two columns containing the city name. Thisis correct because the lists of columns from
theweat her andci ti es tablesare concatenated. In practice thisis undesirable, though, so you
will probably want to list the output columns explicitly rather than using * :

SELECT city, tenp_lo, tenp_hi, prcp, date, location
FROM weat her, cities
WHERE city = nane;

Exercise: Attempt to determine the semantics of this query when the WHERE clause is omitted.

Since the columns all had different names, the parser automatically found which table they belong
to. If there were duplicate column names in the two tables you'd need to qualify the column names
to show which one you meant, asin:

SELECT weather.city, weather.tenp_ | o, weather.tenp_hi,
weat her. prcp, weather.date, cities.location
FROM weat her, cities
WHERE cities. name = weather.city;

It iswidely considered good style to qualify all column namesin ajoin query, so that the query won't
fail if aduplicate column nameis later added to one of the tables.

Join queries of the kind seen thus far can also be written in this alternative form:

SELECT *
FROM weat her I NNER JO N cities ON (weather.city = cities.nane);

This syntax is not as commonly used as the one above, but we show it here to help you understand
the following topics.

Now we will figure out how we can get the Hayward records back in. What we want the query to do
isto scan theweat her table and for each row to find the matching ci t i es row(s). If no matching
row is found we want some “empty values’ to be substituted for the ci t i es table's columns. This
kind of query is called an outer join. (The joins we have seen so far are inner joins.) The command
looks like this:

SELECT *
FROM weat her LEFT QUTER JO N cities ON (weather.city
cities.nane);

city | temp_lo | tenp_hi | prcp | dat e | nane
| location
--------------- T S LT Jpeppp
Fom e e e e o oo Fom e e e e o -
Haywar d | 37 | 54 | | 1994-11-29 |
I
San Franci sco | 46 | 50 | 0.25 | 1994-11-27 | San
Francisco | (-194, 53)
San Franci sco | 43 | 57 | 0 | 1994-11-29 | San
Francisco | (-194, 53)
(3 rows)

This query is called aleft outer join because the table mentioned on the left of the join operator will
have each of its rows in the output at |east once, whereas the table on the right will only have those
rows output that match some row of the left table. When outputting aleft-table row for which thereis
no right-table match, empty (null) values are substituted for the right-table columns.

12

The SQL Language

Exercises Thereare aso right outer joins and full outer joins. Try to find out what those do.

We can aso join atable against itself. Thisis caled a self join. As an example, suppose we wish
to find all the weather records that are in the temperature range of other weather records. So we
need to comparethet enp_| o andt enp_hi columns of each weat her rowtothet enp_| o and
t emp_hi columns of all other weat her rows. We can do this with the following query:

SELECT WL.city, WiL.tenp_lo AS | ow, WL.tenp_hi AS hi gh,
W.city, W2.tenp_lo AS low, W.tenp_hi AS high
FROM weat her WL, weat her W2
WHERE Wi.tenp_ o < W2.tenp_l o
AND WL. tenmp_hi > W2.tenp_hi;

city | lTow | high | city | low | high
--------------- T T T e I
San Francisco | 43 | 57 | San Francisco | 46 | 50
Haywar d | 37 | 54 | San Francisco | 46 | 50
(2 rows)

Here we have relabeled the weather table as WL and W2 to be able to distinguish the left and right side
of thejoin. You can aso use these kinds of aliasesin other queriesto save some typing, e.g.:

SELECT *
FROM weat her w, cities ¢
WHERE w. city = c.nane;

Y ou will encounter this style of abbreviating quite frequently.

2.7. Aggregate Functions

Like most other relational database products, PostgreSQL supports aggregate functions. An aggregate
function computes a single result from multiple input rows. For example, there are aggregates to
compute the count , sum avg (average), max (maximum) and ni n (minimum) over a set of rows.

As an example, we can find the highest |low-temperature reading anywhere with:

SELECT nmax(tenp_l o) FROM weat her;

If we wanted to know what city (or cities) that reading occurred in, we might try:

SELECT city FROM weat her WHERE tenp_| o = max(tenp_l 0); VRONG

but this will not work since the aggregate max cannot be used in the WHERE clause. (This restriction
exists because the WHERE clause determineswhich rowswill beincluded in the aggregate cal cul ation;
so obviously it hasto be eval uated before aggregate functions are computed.) However, asis often the
case the query can be restated to accomplish the desired result, here by using a subquery:

SELECT city FROM weat her

13

The SQL Language

WHERE tenp_| o = (SELECT max(tenp_l o) FROM weat her);

San Franci sco

(1 row

This is OK because the subquery is an independent computation that computes its own aggregate
separately from what is happening in the outer query.

Aggregates are also very useful in combination with GROUP BY clauses. For example, we can get
the maximum low temperature observed in each city with:

SELECT city, max(tenp_| o)
FROM weat her
GROUP BY city;

city | max
_______________ [S,
Haywar d | 37
San Francisco | 46
(2 rows)

which givesusone output row per city. Each aggregate result iscomputed over thetablerows matching
that city. We can filter these grouped rows using HAVI NG

SELECT city, max(tenp_| 0)
FROM weat her
GROUP BY city
HAVI NG max(tenp_l o) < 40;

city | max
_________ [I,
Hayward | 37
(1 row)

which gives us the same results for only the cities that have all t enp_| o values below 40. Finally,
if we only care about cities whose names begin with “S”, we might do:

SELECT city, max(tenp_l o)
FROM weat her
WHERE city LIKE ' S% --
GROUP BY city
HAVI NG max(tenp_l o) < 40;

The LI KE operator does pattern matching and is explained in Section 9.7.

It is important to understand the interaction between aggregates and SQL's WHERE and HAVI NG
clauses. The fundamental difference between WHERE and HAVI NG is this: WHERE selects input
rows before groups and aggregates are computed (thus, it controls which rows go into the aggregate
computation), whereas HAVI NG sel ects group rows after groups and aggregates are computed. Thus,
the WHERE clause must not contain aggregate functions; it makes no sense to try to use an aggregate
to determine which rows will be inputs to the aggregates. On the other hand, the HAVI NG clause
always contains aggregate functions. (Strictly speaking, you are allowed to write a HAVI NG clause

14

The SQL Language

that doesn't use aggregates, but it's seldom useful. The same condition could be used more efficiently

at the WHERE stage.)

In the previous example, we can apply the city name restriction in WHERE, sinceit needs no aggregate.
This is more efficient than adding the restriction to HAVI NG, because we avoid doing the grouping

and aggregate calculations for al rows that fail the WHERE check.

2.8. Updates

You can update existing rows using the UPDATE command. Suppose you discover the temperature
readings are all off by 2 degrees after November 28. Y ou can correct the data as follows:

UPDATE weat her

SET tenp_hi = temp_hi - 2, tenp_lo =temp_lo - 2

WHERE date > '1994-11-28";
Look at the new state of the data:
SELECT * FROM weat her;

city | temp_lo | tenp_hi | prcp | dat e
--------------- T T L e
San Franci sco | 46 | 50 | 0.25 | 1994-11-27
San Franci sco | 41 | 55 | 0 | 1994-11-29
Haywar d | 35 | 52 | | 1994-11-29
(3 rows)

2.9. Deletions

Rows can be removed from atable using the DEL ETE command.
in the weather of Hayward. Then you can do the following to delete those rows from the table:

DELETE FROM weat her WHERE city = 'Hayward';

All weather records belonging to Hayward are removed.

SELECT * FROM weat her;

city | temp_lo | tenp_hi | prcp |
--------------- T e T T Ty S
San Franci sco | 46 | 50 | 0.25 |
San Franci sco | 41 | 55 | 0 |

(2 rows)

One should be wary of statements of the form

DELETE FROM t abl enane;

Without a qualification, DELETE will remove all rows from the given table, leaving it empty. The

system will not request confirmation before doing this!

Supposeyou are no longer interested

1994-11- 27
1994-11-29

15

Chapter 3. Advanced Features

3.1. Introduction

In the previous chapter we have covered the basics of using SQL to store and access your data in
PostgreSQL . We will now discuss some more advanced features of SQL that simplify management
and prevent loss or corruption of your data. Finally, we will look at some PostgreSQL extensions.

This chapter will on occasion refer to examples found in Chapter 2 to change or improve them, so
it will be useful to have read that chapter. Some examples from this chapter can also be found in
advanced. sql inthetutoria directory. Thisfile also contains some sample datato load, which is
not repeated here. (Refer to Section 2.1 for how to use thefile.)

3.2. Views

Refer back to the queriesin Section 2.6. Suppose the combined listing of weather records and city
location is of particular interest to your application, but you do not want to type the query each time
you need it. Y ou can create a view over the query, which gives aname to the query that you can refer
to like an ordinary table:

CREATE VI EW nyvi ew AS
SELECT city, tenp_lo, tenp_hi, prcp, date, |ocation
FROM weat her, cities
WHERE city = nane;

SELECT * FROM nyvi ew,

Making liberal use of views is a key aspect of good SQL database design. Views allow you to
encapsul ate the details of the structure of your tables, which might change asyour application evolves,
behind consistent interfaces.

Views can be used in almost any place areal table can be used. Building views upon other views is
not uncommon.

3.3. Foreign Keys

Recall theweat her andci ti es tablesfrom Chapter 2. Consider the following problem: Y ou want
to make sure that no one can insert rows in the weat her table that do not have a matching entry
intheci ti es table. Thisis called maintaining the referential integrity of your data. In simplistic
database systems this would be implemented (if at al) by first looking at theci t i es table to check
if amatching record exists, and then inserting or rejecting the new weat her records. This approach
has a number of problems and is very inconvenient, so PostgreSQL can do this for you.

The new declaration of the tables would look like this:

CREATE TABLE cities (
city varchar (80) primary key,
| ocation point

)

CREATE TABLE weat her (
city varchar (80) references cities(city),
tenmp_lo int,

16

Advanced Features

t enmp_hi int,
prcp real,
dat e date

)

Now try inserting an invalid record:
| NSERT | NTO weat her VALUES (' Berkeley', 45, 53, 0.0, '1994-11-28");

ERROR: insert or update on table "weather" violates foreign key
constraint "weather_city_fkey"
DETAIL: Key (city)=(Berkeley) is not present in table "cities".

Thebehavior of foreign keys can befinely tuned to your application. Wewill not go beyond thissimple
example in thistutorial, but just refer you to Chapter 5 for more information. Making correct use of
foreign keys will definitely improve the quality of your database applications, so you are strongly
encouraged to learn about them.

3.4. Transactions

Transactions are afundamental concept of all database systems. The essential point of atransactionis
that it bundles multiple steps into a single, all-or-nothing operation. The intermediate states between
the steps are not visible to other concurrent transactions, and if some failure occurs that prevents the
transaction from completing, then none of the steps affect the database at al.

For example, consider abank database that contains balancesfor various customer accounts, aswell as
total deposit balancesfor branches. Suppose that we want to record a payment of $100.00 from Alice's
account to Bab's account. Simplifying outrageously, the SQL commands for this might ook like:

UPDATE accounts SET bal ance = bal ance - 100. 00

VWHERE nanme = 'Alice';
UPDATE branches SET bal ance = bal ance - 100. 00

WHERE nane = (SELECT branch_name FROM accounts WHERE nane
"Alice');
UPDATE accounts SET bal ance = bal ance + 100. 00

VWHERE nanme = ' Bob';
UPDATE branches SET bal ance = bal ance + 100. 00

WHERE nane = (SELECT branch_name FROM accounts WHERE nane
' Bob') ;

The details of these commands are not important here; the important point is that there are several
separate updates involved to accomplish this rather simple operation. Our bank's officers will want to
be assured that either al these updates happen, or none of them happen. It would certainly not do for
asystem failure to result in Bob receiving $100.00 that was not debited from Alice. Nor would Alice
long remain a happy customer if she was debited without Bob being credited. We need a guarantee
that if something goes wrong partway through the operation, none of the steps executed so far will
take effect. Grouping the updates into atransaction gives usthis guarantee. A transactionissaid to be
atomic: from the point of view of other transactions, it either happens completely or not at all.

We also want a guarantee that once a transaction is completed and acknowledged by the database
system, it has indeed been permanently recorded and won't be lost even if a crash ensues shortly
thereafter. For example, if we are recording a cash withdrawal by Bob, we do not want any chance that
the debit to his account will disappear in acrash just after he walks out the bank door. A transactional
database guarantees that all the updates made by a transaction are logged in permanent storage (i.e.,
on disk) before the transaction is reported compl ete.

17

Advanced Features

Another important property of transactional databases is closely related to the notion of atomic
updates: when multiple transactions are running concurrently, each one should not be able to see the
incomplete changes made by others. For example, if one transaction is busy totalling all the branch
balances, it would not do for it to include the debit from Alice's branch but not the credit to Bob's
branch, nor vice versa. So transactions must be all-or-nothing not only in terms of their permanent
effect on the database, but also in terms of their visibility asthey happen. The updates made so far by
an open transaction are invisible to other transactions until the transaction completes, whereupon all
the updates become visible simultaneously.

In PostgreSQL, a transaction is set up by surrounding the SQL commands of the transaction with
BEGQ Nand COVMM T commands. So our banking transaction would actually look like:

BEG N;

UPDATE accounts SET bal ance = bal ance - 100. 00
VWHERE nanme = 'Alice';

-- etc etc

COW T;

If, partway through the transaction, we decide we do not want to commit (perhaps we just noticed that
Alice's balance went negative), we can issue the command ROLLBACK instead of COVM T, and all
our updates so far will be canceled.

PostgreSQL actually treats every SQL statement as being executed within atransaction. If you do not
issue a BEG N command, then each individual statement has an implicit BEG N and (if successful)
COWM T wrapped around it. A group of statements surrounded by BEG Nand COVM T is sometimes
called atransaction block.

Note

Some client libraries issue BEG N and COMM T commands automatically, so that you might
get the effect of transaction blocks without asking. Check the documentation for the interface
you are using.

It's possible to control the statements in a transaction in a more granular fashion through the use of
savepoints. Savepoints allow you to selectively discard parts of the transaction, while committing the
rest. After defining a savepoint with SAVEPQO NT, you can if needed roll back to the savepoint with
ROLLBACK TO. All the transaction's database changes between defining the savepoint and rolling
back to it are discarded, but changes earlier than the savepoint are kept.

After rolling back to a savepoint, it continues to be defined, so you can roll back to it several times.
Conversely, if you are sure you won't need to roll back to a particular savepoint again, it can be
released, so the system can free some resources. Keep in mind that either releasing or rolling back to
asavepoint will automatically release all savepoints that were defined after it.

All this is happening within the transaction block, so none of it is visible to other database sessions.
When and if you commit the transaction block, the committed actions become visible asaunit to other
sessions, while the rolled-back actions never become visible at all.

Remembering the bank database, suppose we debit $100.00 from Alice's account, and credit Bob's
account, only to find later that we should have credited Wally's account. We could do it using
savepoints like this:

BEG N,

UPDATE accounts SET bal ance = bal ance - 100. 00
VWHERE nane = 'Alice';

SAVEPQO NT ny_savepoi nt;

18

Advanced Features

UPDATE accounts SET bal ance = bal ance + 100. 00
VWHERE nanme = ' Bob';

-- oops ... forget that and use Wally's account

ROLLBACK TO ny_savepoi nt;

UPDATE accounts SET bal ance = bal ance + 100. 00
WHERE nane = 'Vally';

COW T;

Thisexampleis, of course, oversimplified, but there's alot of control possible in a transaction block
through the use of savepoints. Moreover, ROLLBACK TO s the only way to regain control of a
transaction block that was put in aborted state by the system due to an error, short of rolling it back
completely and starting again.

3.5. Window Functions

A window function performs a calculation across a set of table rows that are somehow related to the
current row. Thisis comparable to the type of calculation that can be done with an aggregate function.
However, window functions do not cause rows to become grouped into a single output row like non-
window aggregate calls would. Instead, the rows retain their separate identities. Behind the scenes,
the window function is able to access more than just the current row of the query result.

Here is an example that shows how to compare each employee's salary with the average salary in his
or her department:

SELECT depnane, enpno, salary, avg(salary) OVER (PARTI TI ON BY
depnane) FROM enpsal ary;

depnane | enmpno | salary | avg
----------- T
devel op | 11 | 5200 | 5020. 0000000000000000
devel op | 7| 4200 | 5020.0000000000000000
devel op | 9 | 4500 | 5020. 0000000000000000
devel op | 8 | 6000 | 5020. 0000000000000000
devel op | 10 | 5200 | 5020. 0000000000000000
personnel | 5| 3500 | 3700. 0000000000000000
personnel | 2| 3900 | 3700. 0000000000000000
sal es | 3| 4800 | 4866.6666666666666667
sal es | 1] 5000 | 4866.6666666666666667
sal es | 4 | 4800 | 4866.6666666666666667
(10 rows)

Thefirst three output columns come directly from the tableenpsal ar y, and there is one output row
for each row in the table. The fourth column represents an average taken across all the table rows
that have the same depnane value as the current row. (This actually is the same function as the
non-window avg aggregate, but the OVER clause causes it to be treated as a window function and
computed across the window frame.)

A window function call aways contains an OVER clause directly following the window function's
name and argument(s). This is what syntactically distinguishes it from a normal function or non-
window aggregate. The OVER clause determines exactly how the rows of the query are split up for
processing by the window function. The PARTI Tl ON BY clause within OVER divides the rows into
groups, or partitions, that share the same values of the PARTI TI ON BY expression(s). For each row,
the window function is computed across the rows that fall into the same partition as the current row.

You can aso control the order in which rows are processed by window functions using ORDER BY
within OVER. (The window ORDER BY does not even have to match the order in which the rows are
output.) Hereis an example:

19

Advanced Features

SELECT depnane, enpno, salary,
rank() OVER (PARTI TI ON BY depnane ORDER BY sal ary DESC)
FROM enpsal ary;

depnanme | enmpno | salary | rank
----------- T e Y
devel op | 8 | 6000 | 1
devel op | 10 | 5200 | 2
devel op | 11 | 5200 | 2
devel op | 9 | 4500 | 4
devel op | 7 | 4200 | 5
per sonnel | 2 | 3900 | 1
personnel | 5] 3500 | 2
sal es | 1| 5000 | 1
sal es | 4 | 4800 | 2
sal es | 3| 4800 | 2
(10 rows)

As shown here, the r ank function produces a numerical rank for each distinct ORDER BY valuein
the current row's partition, using the order defined by the ORDER BY clause. r ank needs no explicit
parameter, because its behavior is entirely determined by the OVER clause.

The rows considered by a window function are those of the “virtual table” produced by the query's
FROMclause asfiltered by its WHERE, GROUP BY, and HAVI NG clausesif any. For example, arow
removed because it does not meet the WHERE condition is not seen by any window function. A query
can contain multiple window functions that slice up the data in different ways using different OVER
clauses, but they all act on the same collection of rows defined by this virtual table.

We aready saw that ORDER BY can be omitted if the ordering of rows is not important. It is also
possible to omit PARTI TI ON BY, in which case there is asingle partition containing al rows.

There is another important concept associated with window functions: for each row, there is a set of
rows within its partition called its window frame. Some window functions act only on the rows of the
window frame, rather than of the whole partition. By default, if ORDER BY is supplied then the frame
consists of all rows from the start of the partition up through the current row, plus any following rows
that are equal to the current row according to the ORDER BY clause. When ORDER BY is omitted the
default frame consists of all rows in the partition. 'Hereisan exampleusing sum

SELECT sal ary, sun{salary) OVER () FROM enpsal ary;

salary | sum

________ .
5200 | 47100
5000 | 47100
3500 | 47100
4800 | 47100
3900 | 47100
4200 | 47100
4500 | 47100
4800 | 47100
6000 | 47100
5200 | 47100

(10 rows)

! There are options to define the window frame in other ways, but this tutorial does not cover them. See Section 4.2.8 for details.

20

Advanced Features

Above, sincethereisno ORDER BY inthe OVER clause, the window frameisthe same asthe partition,
which for lack of PARTI TI ON BY is the whole table; in other words each sum is taken over the
whole table and so we get the same result for each output row. But if we add an ORDER BY clause,
we get very different results:

SELECT sal ary, sun{salary) OVER (ORDER BY sal ary) FROM enpsal ary;

salary | sum

________ Fom e oo -
3500 | 3500
3900 | 7400
4200 | 11600
4500 | 16100
4800 | 25700
4800 | 25700
5000 | 30700
5200 | 41100
5200 | 41100
6000 | 47100

(10 rows)

Herethe sumistaken from thefirst (lowest) salary up through the current one, including any duplicates
of the current one (notice the results for the duplicated salaries).

Window functions are permitted only in the SELECT list and the ORDER BY clause of the query.
They are forbidden el sewhere, such asin GROUP BY, HAVI NG and WHERE clauses. Thisis because
they logically execute after the processing of those clauses. Also, window functions execute after
non-window aggregate functions. This means it is valid to include an aggregate function call in the
arguments of awindow function, but not vice versa.

If there is a need to filter or group rows after the window calculations are performed, you can use a
sub-select. For example:

SELECT depnane, enpno, salary, enroll _date
FROM

(SELECT depnane, enpno, salary, enroll _date,

rank() OVER (PARTI TI ON BY depnane ORDER BY sal ary DESC,
enpno) AS pos
FROM enpsal ary

) AS ss

WHERE pos < 3;

The above query only shows the rows from the inner query having r ank less than 3.

When a query involves multiple window functions, it is possible to write out each one with a separate
OVER clause, but this is duplicative and error-prone if the same windowing behavior is wanted for
several functions. Instead, each windowing behavior can be named in a W NDOWclause and then
referenced in OVER. For example:

SELECT sun{sal ary) OVER w, avg(salary) OVER w
FROM enpsal ary
W NDOW w AS (PARTI TI ON BY depnanme ORDER BY sal ary DESC);

More details about window functions can be found in Section 4.2.8, Section 9.21, Section 7.2.5, and
the SELECT reference page.

21

Advanced Features

3.6. Inheritance

Inheritance is a concept from object-oriented databases. It opens up interesting new possibilities of
database design.

Let's create two tables. A tableci ti es and atable capi t al s. Naturaly, capitals are aso cities,

S0 you want some way to show the capitals implicitly when you list all cities. If you're really clever
you might invent some scheme like this:

CREATE TABLE capitals (

name t ext,
popul ati on real,
al titude i nt, -- (in ft)
state char (2)
)
CREATE TABLE non_capitals (
name t ext,
popul ati on real,
al titude i nt -- (in ft)
)

CREATE VIEWcities AS
SELECT nane, popul ation, altitude FROM capitals
UNI ON
SELECT nane, popul ation, altitude FROM non_capitals;

Thisworks OK as far as querying goes, but it gets ugly when you need to update severa rows, for
onething.

A better solution isthis;

CREATE TABLE cities (

nane t ext,
popul ati on real,
altitude i nt -- (in ft)

);

CREATE TABLE capitals (
state char (2)
) INHERITS (cities);

In this case, a row of capit al s inherits al columns (name, popul ation, and al titude)
from its parent, ci ti es. The type of the column nane ist ext, a native PostgreSQL type for
variable length character strings. State capitals have an extra column, st at e, that shows their state.
In PostgreSQL, atable can inherit from zero or more other tables.

For example, the following query finds the names of al cities, including state capitals, that are located
at an altitude over 500 feet:

SELECT nane, altitude
FROM citi es
VWHERE al titude > 500;

which returns;

22

Advanced Features

nane | altitude
___________ .
Las Vegas | 2174
Mari posa | 1953
Madi son | 845
(3 rows)

On the other hand, the following query finds all the cities that are not state capitals and are situated

at an altitude over 500 feet:

SELECT nane, altitude
FROM ONLY cities
VWHERE al titude > 500;

nane | altitude
___________ .
Las Vegas | 2174
Mari posa | 1953
(2 rows)

Herethe ONLY beforeci t i es indicatesthat the query should berun over only theci t i es table, and
not tablesbelow ci t i es in the inheritance hierarchy. Many of the commands that we have aready
discussed — SELECT, UPDATE, and DELETE — support this ONLY notation.

Note

Although inheritance is frequently useful, it has not been integrated with unique constraints or
foreign keys, which limits its usefulness. See Section 5.9 for more detail.

3.7. Conclusion

PostgreSQL has many features not touched upon in thistutorial introduction, which has been oriented
toward newer users of SQL. These features are discussed in more detail in the remainder of this book.

If you feel you need more introductory material, please visit the PostgreSQL web site? for links to

more resources.

2 https://www.postgresgl.org

https://www.postgresql.org
https://www.postgresql.org

Part Il. The SQL Language

This part describes the use of the SQL language in PostgreSQL . We start with describing the general syntax of
SQL, then explain how to create the structures to hold data, how to popul ate the database, and how to query it. The
middle part lists the available data types and functions for use in SQL commands. The rest treats several aspects
that are important for tuning a database for optimal performance.

Theinformation in this part is arranged so that a novice user can follow it start to end to gain afull understanding
of the topics without having to refer forward too many times. The chapters are intended to be self-contained, so
that advanced users can read the chapters individually asthey choose. The information in this part is presented in
a narrative fashion in topical units. Readers looking for a complete description of a particular command should
see Part V1.

Readers of this part should know how to connect to a PostgreSQL database and issue SQL commands. Readers
that are unfamiliar with these issues are encouraged to read Part | first. SQL commands aretypically entered using
the PostgreSQL interactive terminal psgl, but other programs that have similar functionality can be used as well.

Table of Contents

A, SQL SYNEBX +.tueeeeeti ettt ettt e e et e e ettt ettt et e e e et e et e e e e e e e e eabn e eene 32
A1, LeXiCal SIUCTUME ...ttt ettt e e 32
4.1.1. Identifiers and Ky WOIASuieiiiiiieiiiiiieceei et 32
.02, CONSLANESeeree ettt ettt 34
40,3, OPEIELOISeieeeeei ettt ettt et 38
4.1.4. SPECial CharaCler'S ... oceeeei ettt et 39
.05, COMMENES ...eetiieiti ettt ettt e e et e e e e e e e eaa s 39
4.1.6. OPErator PrECEOBNCEcceiti ettt ettt e e e eeees 40

4.2, VAlUE EXPIESSIONSceiitieetiiti ettt e ettt e ettt e et e ettt e e et e et eab e e eennaaaaees 41
4.2.1. ColUMN REFEIEINCEScovviieiiii e 42
4.2.2. POSItiONal PalraMELErSuiiiiiiiieieii et 42
4.2.3. SUDSCIIPES ettt ettt e 42
424, Field SEIECHON ...t 43
4.2.5. OPErator INVOCAHONScevuueiiitiieieiii ettt e e e eenees 43
4.2.6. FUNCHON CallS .. .ceiiiiiiiiii e 44
4.2.7. AQOregate EXPIESSIONScccuuuieiiitiieeiiti e ee ettt e et e ettt eeeeti e e eeaiaeeees 44
4.2.8. Window FUNCLION CallSuiiiiiiiieiiiie e 46
4.2.9. TYPR CaASLS ..cvtiiiieeet et 49
4.2.10. Collation EXPreESSIONSocieueeeieiiieee ettt 50
4.2.11. SCAlAr SUDQUENTESeeeeieieei ettt 51
4.2.12. Array CONSIIUCLOISccvuiieieieie ettt et e e e e 51
4.2.13. ROW CONSITUCTONS ...eeuiieieiei et ettt e e e 52
4.2.14. Expression Evaluation RUIEScoouviiiiiiiii e 54

4.3, CalliNg FUNCLIONS ...ttt e e e 55
4.3.1. Using Positional NOEHIONccceuuuieiiiiiieeiii et 56
4.3.2. Using Named NOLAIONuuiiiiiiiiiieiiii e e e 56
4.3.3. USINg MiXed NOLALIONuuiiiiiiiieiiiii e 57

5. Dat@ DEFINITION ..ottt et e aaas 58
5.1 TADIE BASICS ..ttt ettt 58
5.2, DEFAUIT VAIUBS ...t 59
5.3, CONSITAINTS ..ttt ettt e et e et e e e e e 60
5.3.1. Check CONSIIAINTScevuueiiiiiiee ettt e e e e et e e eeri e e e 60
5.3.2. NO-NUIT CONSIFAINES ...ceveieieiie et 62
5.3.3. UNIQUE CONSITAINESeevtieieiiie ettt 63
534, PrIMAIY KEYS ...ttt 63
5.3.5. FOrEIgN KEBYS ...t 64
5.3.6. EXCIUSION CONSITAINTScevvieiiiiiieeiei ettt et e e e 67

5.4, SYySteM COIUMNS ...ttt e et e e e et e e eat e eees 67
5.5. MOAIfyiNg TabIES ...t 68
55.1. AddiNg @ COIUMNoouuiiiiiii e 69
5.5.2. ReMOVING @ COIUMN ...coouiiiiiiii ettt 69
5.5.3. AddiNg @ CONSIFAINTccevvuiiiiiiiee e 69
5.5.4. RemMOVING @ CONSIIAINTccevuiieiiiiieee ittt 70
5.5.5. Changing a Column's Default Valueccovvviiieiiiiiiieiiii e 70
5.5.6. Changing a Column'S Data TYPEc.uuuieiiiiiiieiiiii e 70
55.7. Renaming @ COIUMINcoouiiiiiiiii e 71
55.8. RENaMINg @ TaDI€ceeviiiiiii e 71

5.6, PrIVIIEOES ...t 71
5.7. ROW SeCUrity POIICIESuuiiiiii e 72
5.8, SCREMAS ... 78
5.8.1. Creating @ SCNEMAccouuiieiiiii e 79
5.8.2. The PUBIIC SChemMacoooviiii e 79
5.8.3. The Schema Search Pathooooiiiiiiiii e 80
5.8.4. Schemas and PrivilEgESooiiiiiiiiiii e 81
5.8.5. The System Catalog SChEMa.cccvvuiiiiiiiieeie e 81

25

The SQL Language

5.8.6. USAQE PalerNSviiiiii et 82
5.8.7. POrabIlITYuieiiiiiiee i 82

L [10T g1 = (ot TSRS 83
N O = P 86

5.10. Table Partitioningoceuuiiiiieiiiie e e e e e e e e e e aaas 86
B5.10. 1. OVEIVIEIW .ottt ettt e e ettt e e e et e e e e et neeeeebe s e eaeatnneeaees 86
5.10.2. Declarative Partitioningccocuuiiiiiiiiiiicii e e 87
5.10.3. Implementation Using INeritanCeccooevieeiiiiiii e 91
5.10.4. Partition Pruningoouuuieiiiieiii e e e e e e e e e e e e e aanas 96
5.10.5. Partitioning and Constraint EXCIUSIONcc.cooevviiiiiiiiiiiecc e, 97

LI o (= o | B I - L 98
5.12. Other Datahase ODJECESivvniiii i e e e e e 99
5.13. DePENdENCY TraCKiNgcvuueiinieiiieeie e e e e e e e e e e e e e e e e et e e eaeeeenas 99
SR T = 1Y =g T o 10 = 1 o N 101
L 1S g To [D - - Y 101
S UL o = (] o I T - L 102
SRR D= I (] oo - - P 103
6.4. Returning Data From Modified ROWSc.ooiiiiiiiiiiici e 103
2O 0 = 1= N 105
T L OVEIVIBIW L.ttt et e e ettt et e i r e e e et e e e e et n e e e et e e eaaanns 105
7.2, TaDIE EXPIrESSIONScvviieiiie et e e e e e e e e e e e e et e e et e et e e e e eaans 105
7.2.1. TRE FROMCIBLISE .. .eevvieeeeii ettt 106
7.2.2. TREVWHERE ClalSE ...ccvviieiiiiiieeeeeie ettt 114
7.2.3. The GROUP BY and HAVI NG ClaUSESoevvvvieeeiiiiieeeeiiiieeeeiia e e e 115
7.2.4. GROUPI NG SETS, CUBE, and ROLLUPcoiiiiiiiiiiiii e 117
7.2.5. Window FUNCEION ProCESSINGccvuiiiieiiiiecii e e e e e e 120

SRS = < ox B I £ PR 120
7.3. 1. SEECE-LiSt ItOMS coevviieiieii e 120
7.3.2. COlUMN LADEIS ..oeviieiiii et 121
7.3.3. DESTINCT it e e e et eeeaanns 121

7.4. CombBINING QUEES .. .cuuieiii i e et e e e e e e e e e e e et e et e e aaa e eeas 122
7.5, SOMING ROWS ...t e e e e e e e e e eaens 122
T76. LIM T N OFFSET ..oviiiiiiiiieeei et et e e e e e et e e eees 123
TV A/ O S R I £ PSP 124
7.8. W TH Queries (Common Table EXPreSSions)cvevuueeeuiieeiiieiiieeeiiesiineesneenenns 125
7.8.1L SELECT INW TH .ot 125
7.8.2. Data-Modifying Statements in W THocoiiiiii i, 128

S T D= = T Y/ 0 P 131
300 O N[0 0= o Y = 132
e I R 1 011 o = Y/ o1 PPN 133
8.1.2. Arbitrary Precision NUMDBErSc.oooiiiiiiiiii e 133
8.1.3. Floating-POINt TYPES ..ovviiiiiieeii e e e e e 135

8. LA SEIA TYPES ittt 136

e I o g1 = 1Y o< T PPN 137
G I O == ot (= G Y/ o= P 138
8.4. BINAry Dala TYPES ..uuciiiieii ettt et e e e e e e e e e e et e eaen 140
8.4.1. byt €a HEX FOIMauiiiiiiiii i e 140
8.4.2. byt ea ESCape FOrMALccvvuiiiiiieii e 140

LR = (=l T2 1T Y/ o= P 142
8.5.1. Date/TimeE INPULevvneiiii e e e e e e e e e eaneees 143
8.5.2. DAE/TIME OULPULueieiiieeeeiiie et et e e et e e et e e e eat e e e eaan e eeeenns 146
8.5.3. TIME ZONES ...ttt e et aaens 147
8.5.4. Interval INPULcovtiiii e e 149
8.5.5. INTEIVAl OULPULuvieiiiii e e e 151

S = T To = Y/ o= P 151
A 1000 = =0 I Y/ o= 152
8.7.1. Declaration of Enumerated TYPESccuuiviiiiiii e 152
A @ (o[41 o PN 153

26

The SQL Language

B.7.3. TYPE SAFELY eeeveieeieii ettt 153
8.7.4. Implementation DELalSc..veiiiiiiii e 154
R CTc o0 0= (o Y o1 154
B.8.L. POINES ...uiiiiii ettt 154
882, LINES ittt 155
8.8.3. LiNE SEgMENLS ... cevuiiiii i e 155
8.8, BOXES ...ttt ettt ettt 155
B.8.5. PalNS ...t 155
8.8.6. POIYQONS .. .oviiii e 156
B.8.7. CICIES ittt 156
8.9. NEtWOIK AdOreSS TYPES .evuiiiiieiiiiee et e e e e e e e e e e e e e e e e eaaas 156
S I R T 1= PP 157
S o3 i | PP 157
e e A I 1= VA o3 o | PP 158
8.9.4, MBCAUAN iitiiiiiii et 158
8.9.5. MACAUAN 8 .ouiiiiiiii e 158
8.10. Bit SIHNG TYPES . iittiiiie et e e e e e e e e e e e e e e e an s 159
8.11. TeXt SEArCh TYPES v it e 160
00 0 O A= VT o3 A o TP 160
S I 2 A=Y o [6T 161
ST 2 U1 1 T I/ o USRS 162
ST Q1 I 1Y/ o= PP 163
8.13.1. Creating XML ValUESoiiiiiieiiiiii e 163
8.13.2. Encoding Handlingoovuiiiiiiiiii e 164
8.13.3. AcCeSSING XML ValUEScvvniiiii e 165
ST N S O N Y/ o=~ P 165
8.14.1. JSON Input and OULPUE SYNEAXueeveeiiiieiiiieeie e e e e e e 166
8.14.2. Designing JSON documents effectivelyooevvveiiiiiiiiiiiii e, 167
8.14.3.] sonb Containment and EXIStENCEccvvviiiiiiiiiii e 168
8.14.4. | SOND INUEXING ..uvviiiiiee e e e 169
8.14.5. TraNSfOMIS .. ettt e 172
8L, AT A S ettt ittt 172
8.15.1. Declaration Of Array TYPES ...cuvuiiiiieiiieeeie e e e e e e e e e eanees 172
8.15.2. Array ValUB INPULcovviiii e 173
8.15.3. ACCESSING ATTAYS .vueeuteeiieeeiiie et e ettt e et e e e e e st e e e ae e e e e st e e st e eanaeenes 174
8.15.4. MOAITYING ATTAYS ...uieiieii ettt e e e e e e e e e ees 176
8.15.5. SEarChiNG IN ATTAYS «.ouu it e e e eens 179
8.15.6. Array Input and OULPUL SYNEAXceevneeeinieiiiieeiieeineee e e e e e eeens 180
8.16. COMPOSITE TYPES ..vvuiiineiit ettt e et e et e e et e e et e e et e e et e e et e e st e eanaeeateeeaneeatnaes 181
8.16.1. Declaration of COmMPOSItE TYPES ...cvvvniiiieiii e eeei e e e e e e 181
8.16.2. Constructing Composite ValUEScceuviiiiiiiiiiieiiii e e 182
8.16.3. AccessiNg COMPOSIEE TYPES ...vvvueiiiieiiieiiie e e e e e e et e e e e e aanas 183
8.16.4. Modifying COmMPOSItE TYPEScvvvieiii i ieeiie e e e e e aens 184
8.16.5. Using Composite TYPes iN QUENEScouuuieiineeiiiieiiii e e e e e e eaen 184
8.16.6. Composite Type Input and Output SYNtaxcceeevveeeiieeiieeiiieeiineennn. 187
8.7, RANGE TYPES .ottt e 187
8.17.1. BUIIt-IN RANGE TYPES ..uiitiiii et e e e e e e aens 188
8.17.2. EXAMPIES ...t 188
8.17.3. Inclusive and EXCIUSIVE BOUNGSvieiiiiiieiiiiiieecie e 188
8.17.4. Infinite (Unbounded) RaNGESocvvviiiiiiiii e 189
8.17.5. Range INPUL/OULPULcovuiiieeii e e e e e e e e e e 189
8.17.6. CoNSIrUCtiNg RANGESuviiiiieiie e e e e e e e 190
8.17.7. DISCrete RANGE TYPES .. vvvieiii it et e et e e e e e e e e e et e e e eanns 190
8.17.8. Defining New RaNGE TYPEScvvviiiii e e e e 191
8.17.9. INAEXING ...vniii i e 192
8.17.10. ConstraintS 0N RANGESu.ivvnieiiieiie e e e e e e e e et e eaeeees 192
TR0 T I T4 F= T Y/ 0 1= 193
8.19. ObJeCt 1AENtifIEr TYPES c.vuiiii i e e e e 194

27

The SQL Language

ST 0 oo [£ o 1 1Y L= 2P 195
ST T s =0 (o 0l I o1 195
LI 0 g Tex [0 g 5= 0 1o @ o= = o TP 198
1o I oo Tor= I @ o= = (o) £ S 198
9.2. Comparison FUNCtions and OPEratOrSeeeuueeiinieiiieeeiiee e e e e e eiee e e eaneenes 198
9.3. Mathematical Functions and OPEratorSeevuiieiiiieeiiiecie e e e 201
9.4. String FUNCLioNS and OPEIAtOrSu.cvuuieiiiieeiiieeii e e e e e e e e e e et e eaneens 205
1S T o o 11 PRSP PTR PPN 217

9.5. Binary String FUNctions and OPEratorsSccuuveeruieiiineeiiieeeiiee e eeiieraineesnnens 219
9.6. Bit String FUNCtions and OPEratorsuuveiuiieiiiieeiiieeee e e e e e e e e e 221
A = (= 1 T\ (11 o P 222
S O I PP 222
9.7.2. SIM LAR TORegular EXPreSSIONScvvvuieiiieeiiiieiiiieeeineesineesineesnneens 223
9.7.3. POSIX ReguIar EXPreSSIONSuuiiiueiiiieiiiieeiieeeinesieeeiaeeaineesaneesens 224

9.8. Data Type Formatting FUNCLIONSccovuiiiii i e e e 237
9.9. Date/Time FUNCtions and OPEratorSc.uveiuuieeiiieiiiiee e e ee e e e e e e eees 244
9.9.1. EXTRACT, dat € _Part ..ciiiiiiiiiiiiiii e e e e 249
0.9.2. At @ LT UNC .iiiiiii e e 253
9.9.3. AT TIME ZONE ..ottt ittt e e e s 254
9.9.4, CUITENt DA/ TIME ...cvvnieiiiii et e et e e e 255
9.9.5. Delaying EXECULIONiiviieiiie e e e e e e e e e e e e e e e eees 256

9.10. ENUM SUPPOIt FUNCLIONSivticiiiecii e e e e e e e e e e eens 257
9.11. Geometric FUNCtions and OPEratOrScvvuueiiiieiieeeiieee e e e e e e e e eaaeeeens 258
9.12. Network Address Functions and OPEratorscc.uveevuieiiiieeiieeeiieeeneeeieeaenns 262
9.13. Text Search FUNCioNS and OPEratOrSoevvuieiiiieiiiieeiie e e e e e e eeaneees 264
.14, XML FUNCLIONS ... eiieiiieee ettt e e et e e et e e e e et e e e e et e 270
9.14.1. Producing XML CONENEccouuiiiiieiieeii e e e e e e e e e e eeen 271
9.14.2. XML PrediCatesuuueeiiiiieeeii ettt e et e e e e 275
9.14.3. ProcessiNg XML ...uuuiiiiiiiiiiii et 276
9.14.4. Mapping TableSto XMLccovuiiiiiiiii e 280

9.15. JSON FUNCLIONS aNd OPEraIOrScvvvieiiieeiieeeieeeie e e e e et e e e et e e et e e eeens 284
9.16. Sequence Manipulation FUNCLIONSooviiiiiiiiiii e 293
9.17. Conditional EXPreSSIONSuuiiiiuiiiiiieiii e e e e e e e e e e e e e e e aens 295
O.17. 1. CASE ...t 295

N A O I S P 297
0 2 U I PP 297
9.17.4. GREATEST and LEAST ..ottt 297

9.18. Array FUNCtioNS and OPEIralOrScccuuieiiuieiiiieeiiie e e e e e e e e et e e e eeenes 298
9.19. Range FUNCLioNSs and OPEratorScvuueiiiieeiiieeeeeeeiee et e e sat e e e e et e e et eeaneens 301
9.20. AQQregate FUNCLIONSccue i e e e e e e e e eaes 303
9.21. WINAOW FUNCHIONS ...ttt et e et e e e et e e e eatn e eeees 310
9.22. SUDQUENY EXPrESSIONS ...vuueiiiiiiiiieeii e e e e et e e e e e e e et e e e e et e e et e e et e e aaaeeanaas 312
.22 1. EXI STS ittt ettt 312
0.22.2. I N ettt 312
9.22.3. NOT | N Lo e e e e e e 313
9.22.4. ANY/ISOMEuiiiiiiiiieeeee ettt et e e et s e et e e e e e eaaen 313
0.22.5. ALL ottt 314
9.22.6. SINGIE-TOW COMPANISON ...uvuieteeiieeeieeeieeee e e e eata e e et e st e e eeaneenes 314

9.23. Row and Array COMPAISONSuivuuieiiieriieeeeiieeeieeetie e st re st e eaneeetreeaneeennes 315
0,23, L. I N ettt 315
9.23.2. NOT | N Lot e e e e e 315
SRS A NN 7AST0 1Y Sl - - 1Y) PP 315
9.23.4. ALL (BITAY) +eevtnieeiiiiiee et e e ettt e e ettt e e et e e et e e ettt a e e e et e e e eai e aae 316
9.23.5. Row Constructor COMPAariSONceeeuueerinieriiieriiieesiiee e esieeeaneeannnes 316
9.23.6. Composite Type COMPAiSONcvvuneiiieeiieeeiieeeie e e e e e e e e eaenns 317

9.24. Set RetUrNiNg FUNCHIONSc.uuiiiieci e e e e eens 317
9.25. System Information FUNCLIONScocuuiiiiiieiii e 320
9.26. System Administration FUNCHIONSccuuiiiiiiiiiii e e e e 337

28

The SQL Language

9.26.1. Configuration SettingS FUNCLIONSccviviiiieiiiecie e 337
9.26.2. Server SIgnaling FUNCLIONSooviiieiiicie e 337
9.26.3. Backup Control FUNCLIONSieiiiieiiicci e 338
9.26.4. Recovery Control FUNCLIONSocovveiiiiiiiii e 341
9.26.5. Snapshot Synchronization FUNCLIONSc.oveviieiiiieiieee e, 342
9.26.6. RePlication FUNCLIONScvuuieiiiiei e ee e e e e e e e e e eees 343
9.26.7. Database Object Management FUNCLIONScc.ovevvveiiiieeiii e, 346
9.26.8. Index Maintenance FUNCLIONSoveviuiiieieiin e e e eeeenns 349
9.26.9. Generic File ACCESS FUNCHIONSiiiiiiiciiiii e 350
9.26.10. Advisory LOCK FUNCLIONSccuuiiiieeii e e 351

S I o o = Gl U o (o) P 353
9.28. Event Trigger FUNCLIONSooviiiiiie e e e e e e eae e 354
9.28.1. Capturing Changes at Command Endccoccoiviiiiiiiiiiiiinecieeeees 354
9.28.2. Processing Objects Dropped by a DDL Commandccocevvvviiinnennnnnns 354
9.28.3. Handling a Table ReWrite EVENtccoviiiieiiii e, 356

O Y/ oL @0 517/ = T o P 357
FO. L. OVEIVIBIW ©uueieiiiie ettt e e ettt e e e et e e e e et e e e e ett e e e eett e e e aetaaeeeees 357
B0.2, O AIONS ittt ettt ettt e 358
L0 R g o] 0 LSRR 362
O R NI (o] = o =S 366
10.5. UNI ON, CASE, and Related CONSITUCESuuveviviiieiiiiieeeceiie e 366
10.6. SELECT OUPUL COIUMNS ...uvueeiiiie ettt e et e et e e et e e e eeaaaaeeees 368
T o (== S UPPP 369
0 O oo (0 1o PSSP 369
2 1 o L= G Y/ o === P 370
11.3. MUItICOIUMN INAEXESeeevviee et e e e e eaeen 372
11.4. Indexes and ORDER BY ...cicuuiiiiiiiiiiiiiiiin e e et e et e e 373
11.5. Combining MUItiple INAEXESciiiieeii e 374
12.6. UNIQUE INAEXESuieiieii et e e e e e e e e e e e e e e e eaens 374
11.7. INAEXES ON EXPrESSIONSuiviiieiii e e e e e e e e e e e e e e e et e et e e e e eens 375
11.8. Partial INOEXES .. eeevviieieeii et e et e e e e e e aaens 375
11.9. Index-Only Scans and Covering INAEXEScc.uvvviiieiiiieiii e 378
11.10. Operator Classes and Operator FamilieSccooevvieiiiiiiiiii e, 380
11.11. Indexes and COl@tioNSviiieiiiee e 382
11.12. EXamining INAeX USAQEuucvvunieiiiiiii e e e e e e e e e e e e e 382
12, FUIL TEXE SEAICH .o 384
2 O 1 oo (0 1o USSP 384
12.1.1. What 1S @ DOCUMENE? ..euueiiiii e et e e 385
12.1.2. Basic Text MatChingooeviiiiiiii e 385
12.1.3. CONfiQUIBLIONS .. .euuiiiieeii e e e e e e e e e e e e e e et e e e eaens 387

12.2. TahleS @A INOEXES .. .vvvveieeeiii ettt e e 388
12.2.1. Searching @ Table .. covvn i 388
12.2.2. Creating INAEXEScvveeiiii et e e e e e e eaes 389

12.3. Controlling TeXt SEarChccccviiiiii e 390
12.3.1. ParSiNg DOCUMENESuiiiiiiiii e ee e e e e e e e e e e et e e e e eens 390
12.3.2. ParSiNG QUETTES .. .cvuiiiii it e e e e e e e e e e e e 391
12.3.3. Ranking Search RESUILSiiiiiiiii e 394
12.3.4. Highlighting RESUILSccvviiiiiicei e 396

12,4, AdAItioNal FEAIUMESvuiieeeii et e e 397
12.4.1. Manipulating DOCUMENESuiiiiiieiieeii e e e e e e e e e e 397
12.4.2. Manipulating QUENIESccuueiiiieei e e e e s 398
12.4.3. Triggers for Automatic Updatesceevvieiiiieiiiieiiiieeie e eeie e 400
12.4.4. Gathering Document StatiStiCS ...ovuvvvneiiieiii e e 402

T o T TP 402
T B T Lo g = =P 404
12.6.1. SOP WOIAS .. ccvnieiiieii e ee et e e e e e e e et e e e e e aanaees 405
12.6.2. SIMPIE DICHIONAIY .vuuiiiiieii e e e e e e e eaees 406
12.6.3. SYNONYM DICHIONANYuuiiiiieeiiieiiie e e e e e e e e e e eaaas 407

29

The SQL Language

12.6.4. TheSaUrus DiCtONANYcccuuiiiiiiiiiieei e e e e e e 409
12.6.5. ISPEI DICHONAIY ...ovviiiiiicie e e e e e e 411
12.6.6. SNOWDaEll DICHIONAIYcvvveiiiieei e e e aens 413

12.7. Configuration EXaMPIEcouuniii e 414
12.8. Testing and Debugging Text Searchccocoviiiiiiiiii e, 415
12.8.1. Configuration TESLNGcvvueiiiieiiii e e e e e e e e e e eanas 415
12.8.2. ParSer TESHNG «.ovvvvvvvreneieeeeeeeiiiiiesseeeeeeeestta s e e e e e eeaaaatn e e s eeeeeeannennnas 418
12.8.3. DICioNary TESHMNGvueevneiiiieiiie e e et e e e e e e e e e e e e e e e e e e aens 419

12.9. GIN and GiST INAEX TYPES ..vvvvvrrniiieeeieieriiiiieeeeeeeeertiaassaeeeeeassennnaaaeaeeannnes 420
2250 O T 1= o [T o) oo o 420
2 T T 1] = o) PP 423
13. ConCUIrENCY CONLIOI ...uuiit it e e e e e e e e e et e et e e e e e et e e e e eaaeeees 425
30 O 1 oo (0 1o USRS 425
13.2. TransaCtion I1SOIAHONccuvuieiiii e e e 425
13.2.1. Read Committed ISOlation LEVE!uveiiiiiiiiiiiiee e 426
13.2.2. Repeatable Read 1S0lation LEVElcccoviiiiiiiiii e, 428
13.2.3. Serializable [S0lation LEVE!oovvviiiiiiiiii e 429

I CTC I (o[T I o Vo PN 431
13.3.1. TaDIETEVE LOCKS ... cveiiiieiieii et 431
13.3.2. ROW-IEVE LOCKSciieeiieiiis ettt 433
13.3.3. Pagelevel LOCKScovuiiiiici e 434
13.3.4. DEBAIOCKS ...t 434
13.3.5. AQVISONY LOCKS ..uuiiiiiiii e e e e e e e e eeens 435

13.4. Data Consistency Checks at the Application Levelccocovivviiiiiiiiiiiiinecnee, 436
13.4.1. Enforcing Consistency With Serializable Transactionsc.cc.uueeeen. 437
13.4.2. Enforcing Consistency With Explicit Blocking LOckScccoeeevvnnannn. 437

ST 0 Y= S 438
13.6. LOCKiNg and INAEXESu.eveniiii e e e e e e e e 438
I (o0 7= o= T T =P 439
14.2. USING EXPLAIL N Looiiiiiiiii oot e e s e e e e e e e et e e e e e e aaeennnnes 439
I (o Y Y I AV 27 T o 439
14.2.2. EXPLAI N ANALYZEcoviiiiiiiee e e e e e 445
I O = £ 449

14.2. Statistics Used by the Plannercooiiiiiiii e 450
14.2.1. SINgle-Column SEAiSHiCS . .ovvueiiiiiii e e 450
I A = 00 (= S - S (oSSR 452

14.3. Controlling the Planner with Explicit JO N ClaUSEScccvveiviiiiiiieeiiiccieeeiees 454
14.4. Populating @ Databaseoevuniiiiieiie e 456
14.4.1. Disable AULOCOMIMILvuuiiiiiii e e e e e e eaenns 456
T4.4.2. USE COPY oeiiiiiiieetiieet et e e e ettt s e e e e e e e et e s e e e e e e e aaa e s e e e aaeeaenees 456
14.4.3. REMOVE INAEXES ...cevvvnieeeiii ettt 457
14.4.4. Remove Foreign Key CONSITaiNtScccuuviiiieiiieiiiieeiineeineeeieeeaneeeens 457
14.4.5. Increase mai Nt enance_WOr K _IMBM.......cciveiiiieiiiiieieee e, 457
14.4.6. Increase MBaX_Wal _Si Z€ ..iiiviiiiiii i 457
14.4.7. Disable WAL Archival and Streaming Replicationccc.ccovveinnn. 457
14.4.8. RuN ANALYZE AFtErWardsScovvvuvuiiinieeeeeeeiiiiienseeeeeseesiiinseaeeeeannes 458
14.4.9. Some Notes AbBOUL PG AUMP ...evvniiiicii e 458

14.5. NON-DUrable SEtlNGSvuieeiiiiieiiie e e e e e e e e e e 459
15, Parallel QUENY ...uueieeeiieietiie ettt e e e e e et e e e e e e et et e e e e e e et e et aaaaeaaaaaes 460
15.1. How Parallel QUENY WOTKSuiiiiiiiii i 460
15.2. When Can Parallel Query Be USed?covvviiiiiiieiiiiiiiiee e e e 461
15.3. Parallel PLanScoovueiieii e 462
15.3.1. Parallel SCaNSccvvviiiiieeeeeeieee et e e e 462
15.3.2. Parallel JOINSccvvvviiieieiiiieiie e e e 462
15.3.3. Parallel AQQregationocvuuiiiiiiiiie e 463
15.3.4. Parallel APPENGcovniiiii e 463
15.3.5. Parallel Plan TIPS ..uccuuiiiiiiiii e e e e e 463

15.4. Parallel SafEYoiieeieeeeiiiiie e 464

30

The SQL Language

15.4.1. Parallel Labeling for Functions and Aggregates

31

Chapter 4. SQL Syntax

This chapter describes the syntax of SQL. It forms the foundation for understanding the following
chapters which will go into detail about how SQL commands are applied to define and modify data.

We aso advise users who are already familiar with SQL to read this chapter carefully because it
contains several rules and concepts that are implemented inconsistently among SQL databases or that
are specific to PostgreSQL.

4.1. Lexical Structure

4.1.1.

SQL input consists of a sequence of commands. A command is composed of a sequence of tokens,
terminated by asemicolon (“;”). Theend of theinput stream al so terminates acommand. Which tokens
are valid depends on the syntax of the particular command.

A token can beakey word, anidentifier, aquoted identifier, aliteral (or constant), or aspecial character
symbol. Tokens are normally separated by whitespace (space, tab, newline), but need not be if there
isno ambiguity (which is generally only the case if aspecia character is adjacent to some other token

type).

For example, the following is (syntactically) valid SQL input:

SELECT * FROM MY_TABLE;
UPDATE MY_TABLE SET A = 5;
| NSERT | NTO MY_TABLE VALUES (3, 'hi there');

This is a sequence of three commands, one per line (although this is not required; more than one
command can be on aline, and commands can usefully be split across lines).

Additionally, comments can occur in SQL input. They are not tokens, they are effectively equivalent
to whitespace.

The SQL syntax is not very consistent regarding what tokens identify commands and which are
operands or parameters. Thefirst few tokensare generally the command name, so in the above example
wewould usually speak of a“ SELECT”, an“UPDATE”, andan“INSERT” command. But for instance
the UPDATE command always requires a SET token to appear in a certain position, and this particul ar
variation of | NSERT also requires a VALUES in order to be complete. The precise syntax rules for
each command are described in Part V1.

Identifiers and Key Words

Tokens such as SELECT, UPDATE, or VALUES in the example above are examples of key words,
that is, words that have a fixed meaning in the SQL language. The tokens MY_TABLE and A are
examples of identifiers. They identify names of tables, columns, or other database objects, depending
on the command they are used in. Therefore they are sometimes simply called “names’. Key words
and identifiers have the same lexical structure, meaning that one cannot know whether a token is an
identifier or a key word without knowing the language. A complete list of key words can be found
in Appendix C.

SQL identifiers and key words must begin with a letter (a-z, but also letters with diacritical marks
and non-L atin letters) or an underscore (_). Subsequent charactersin an identifier or key word can be
letters, underscores, digits(0-9), or dollar signs($). Notethat dollar signsarenot allowed inidentifiers
according to the letter of the SQL standard, so their use might render applications less portable. The
SQL standard will not define a key word that contains digits or starts or ends with an underscore, so
identifiers of this form are safe against possible conflict with future extensions of the standard.

32

SQL Syntax

The system uses no more than NAMEDATAL EN-1 bytes of an identifier; longer names can be written
in commands, but they will be truncated. By default, NAMEDATALEN is 64 so the maximum identifier
lengthis63 bytes. If thislimitisproblematic, it can beraised by changing the NAMEDATAL EN constant
insrc/include/ pg _config_nmanual . h.

Key words and unquoted identifiers are case insensitive. Therefore:

UPDATE MY_TABLE SET A = 5;
can equivalently be written as:
uPDaTE ny_TabLE SeT a = 5;

A convention often used is to write key wordsin upper case and names in lower case, e.g.:

UPDATE ny_table SET a = 5;

There is a second kind of identifier: the delimited identifier or quoted identifier. It is formed by
enclosing an arbitrary sequence of characters in double-quotes ("). A delimited identifier is aways
an identifier, never a key word. So " sel ect " could be used to refer to a column or table named
“select”, whereas an unquoted sel ect would be taken as a key word and would therefore provoke
aparse error when used where atable or column name is expected. The example can be written with
guoted identifierslike this:

UPDATE "ny_table" SET "a" = 5;

Quoted identifiers can contain any character, except the character with code zero. (To include adouble
guote, write two double quotes.) This allows constructing table or column names that would otherwise
not be possible, such as ones containing spaces or ampersands. The length limitation still applies.

A variant of quoted identifiers allows including escaped Unicode characters identified by their code
points. Thisvariant startswith U& (upper or lower case U followed by ampersand) immediately before
the opening double quote, without any spaces in between, for example U&" f 00" . (Note that this
creates an ambiguity with the operator &. Use spaces around the operator to avoid thisproblem.) Inside
the quotes, Unicode characters can be specified in escaped form by writing a backsash followed by
the four-digit hexadecimal code point number or alternatively a backslash followed by a plus sign
followed by a six-digit hexadecimal code point number. For example, the identifier " dat a" could
be written as

U&" d\ 0061t \ +000061"

Thefollowing lesstrivial example writes the Russian word “slon” (elephant) in Cyrillic |etters:

U&"\ 0441\ 043B\ 043E\ 043D"

If adifferent escape character than backslash is desired, it can be specified using the UESCAPE clause
after the string, for example:

U&"d! 0061t ! +000061" UESCAPE ' !

The escape character can be any single character other than ahexadecimal digit, the plussign, asingle
guote, a double quote, or a whitespace character. Note that the escape character is written in single
guotes, not double quotes.

33

SQL Syntax

To include the escape character in the identifier literally, write it twice.

The Unicode escape syntax works only when the server encoding is UTF8. When other server
encodings are used, only code pointsin the ASCII range (up to\ 007F) can be specified. Both the 4-
digit and the 6-digit form can be used to specify UTF-16 surrogate pairs to compose characters with
code points larger than U+FFFF, although the availability of the 6-digit form technically makes this
unnecessary. (Surrogate pairs are not stored directly, but combined into asingle code point that isthen
encoded in UTF-8.)

Quoting an identifier al so makesit case-sensitive, whereas ungquoted names are alwaysfolded to lower
case. For example, theidentifiers FOO, f 0o, and " f 00" are considered the same by PostgreSQL, but
"Foo" and" FOO' are different from these three and each other. (The folding of unquoted namesto
lower case in PostgreSQL is incompatible with the SQL standard, which says that unquoted names
should be folded to upper case. Thus, f 00 should be equivalent to " FOO' not " f 00" according to
the standard. If you want to write portable applications you are advised to always quote a particular
name or never quoteit.)

4.1.2. Constants

There are three kinds of implicitly-typed constants in PostgreSQL.: strings, bit strings, and numbers.
Constants can also be specified with explicit types, which can enable more accurate representation and
more efficient handling by the system. These alternatives are discussed in the following subsections.

4.1.2.1. String Constants

A string constant in SQL is an arbitrary sequence of characters bounded by single quotes ('), for
example' This is a string' . Toinclude asingle-quote character within a string constant,
write two adjacent single quotes, e.g.,' Di anne' ' s hor se' . Note that this is not the same as a
double-quote character (*).

Two string constants that are only separated by whitespace with at |east one newline are concatenated
and effectively treated as if the string had been written as one constant. For example:

SELECT ' f o0

"bar';

is equivaent to:

SELECT ' f oobar' ;

but:

SELECT ' f o0’ "bar';

is not valid syntax. (This slightly bizarre behavior is specified by SQL; PostgreSQL is following the
standard.)

4.1.2.2. String Constants with C-style Escapes

PostgreSQL also accepts “escape” string constants, which are an extension to the SQL standard.
An escape string constant is specified by writing the letter E (upper or lower case) just before the
opening single quote, e.g., E' f 0o’ . (When continuing an escape string constant across lines, write
E only before the first opening quote.) Within an escape string, a backslash character (\) begins a
C-like backslash escape sequence, in which the combination of backslash and following character(s)
represent a special byte value, as shown in Table 4.1.

34

SQL Syntax

Table 4.1. Backslash Escape Sequences

Backslash Escape Sequence I nter pretation

\b backspace

\ f form feed

\n newline

\r carriage return

\ 't tab

\o,\00,\000(0=0-7) octal byte value

\xh,\xhh (h=0-9,A-F) hexadecimal byte value

\ uxxxx, \ UXXxxxxxx (X =0-9,A -F) 16 or 32-bit hexadecimal Unicode character value

Any other character following a backslash is taken literally. Thus, to include a backslash character,
write two backslashes (\ \). Also, a single quote can be included in an escape string by writing\ ',
in addition to the normal way of ' ' .

It is your responsibility that the byte sequences you create, especially when using the octal or
hexadecimal escapes, compose valid characters in the server character set encoding. When the server
encoding is UTF-8, then the Unicode escapes or the aternative Unicode escape syntax, explained in
Section 4.1.2.3, should be used instead. (The alternative would be doing the UTF-8 encoding by hand
and writing out the bytes, which would be very cumbersome.)

The Unicode escape syntax works fully only when the server encoding is UTF8. When other server
encodings are used, only code points in the ASCII range (up to \ u007F) can be specified. Both the
4-digit and the 8-digit form can be used to specify UTF-16 surrogate pairs to compose characters
with code points larger than U+FFFF, although the availability of the 8-digit form technically makes
this unnecessary. (When surrogate pairs are used when the server encoding is UTF8, they are first
combined into a single code point that is then encoded in UTF-8.)

Caution

If the configuration parameter standard conforming_strings is of f, then PostgreSQL
recoghizes backslash escapes in both regular and escape string constants. However, as of
PostgreSQL 9.1, the default is on, meaning that backslash escapes are recognized only
in escape string constants. This behavior is more standards-compliant, but might break
applications which rely on the historical behavior, where backslash escapes were always
recognized. As a workaround, you can set this parameter to of f, but it is better to migrate
away from using backslash escapes. If you need to use abackslash escapeto represent aspecial
character, write the string constant with an E.

In addition to standard_conform ng_strings, the configuration parameters
escape_string_ warning and backslash_quote govern treatment of backslashes in string
constants.

The character with the code zero cannot be in a string constant.

4.1.2.3. String Constants with Unicode Escapes

PostgreSQL also supports another type of escape syntax for strings that allows specifying arbitrary
Unicode characters by code point. A Unicode escape string constant starts with U& (upper or lower
case letter U followed by ampersand) immediately before the opening quote, without any spaces in
between, for example U&' f 00" . (Note that this creates an ambiguity with the operator & Use spaces
around the operator to avoid this problem.) Inside the quotes, Unicode characters can be specified
in escaped form by writing a backslash followed by the four-digit hexadecimal code point number

35

SQL Syntax

or alternatively a backslash followed by a plus sign followed by a six-digit hexadecimal code point
number. For example, the string' dat a' could be written as

U&' d\ 0061t \ +000061'

Thefollowing less trivial example writes the Russian word “slon” (elephant) in Cyrillic letters:

U&' \ 0441\ 043B\ 043E\ 043D

If adifferent escape character than backslash isdesired, it can be specified using the UESCAPE clause
after the string, for example:

U& d! 0061t! +000061'" UESCAPE '!'

The escape character can be any single character other than a hexadecimal digit, the plussign, asingle
guote, a double quote, or a whitespace character.

The Unicode escape syntax works only when the server encoding is UTF8. When other server
encodings are used, only code points in the ASCII range (up to \ 007F) can be specified. Both the
4-digit and the 6-digit form can be used to specify UTF-16 surrogate pairs to compose characters
with code points larger than U+FFFF, although the availability of the 6-digit form technically makes
this unnecessary. (When surrogate pairs are used when the server encoding is UTF8, they are first
combined into a single code point that is then encoded in UTF-8.)

Also, the Unicode escape syntax for string constants only works when the configuration parameter
standard_conforming_stringsisturned on. Thisisbecause otherwise this syntax could confuse clients
that parse the SQL statements to the point that it could lead to SQL injections and similar security
issues. If the parameter is set to off, this syntax will be rejected with an error message.

To include the escape character in the string literally, writeit twice.

4.1.2.4. Dollar-quoted String Constants

While the standard syntax for specifying string constants is usually convenient, it can be difficult to
understand when the desired string contains many single quotes or backslashes, since each of those
must be doubled. To allow more readable queries in such situations, PostgreSQL provides another
way, called “dollar quoting”, to write string constants. A dollar-quoted string constant consists of a
dollar sign ($), an optional “tag” of zero or more characters, another dollar sign, an arbitrary sequence
of characters that makes up the string content, adollar sign, the same tag that began this dollar quote,
and adollar sign. For example, here are two different waysto specify the string “ Dianne's horse” using
dollar quoting:

$$Di anne' s hor se$$
$SoneTag$hi anne' s hor se$SoneTag$

Notice that inside the dollar-quoted string, single quotes can be used without needing to be escaped.
Indeed, no charactersinside adollar-quoted string are ever escaped: the string content isalwayswritten
literally. Backslashes are not special, and neither are dollar signs, unless they are part of a sequence
matching the opening tag.

It is possible to nest dollar-quoted string constants by choosing different tags at each nesting level.

Thisis most commonly used in writing function definitions. For example:

$f uncti on$
BEG N

36

SQL Syntax

RETURN ($1 ~ g[\t\r\n\v\i\] $g9);
END;
$f uncti on$

Here, the sequence q[\ t\ r\ n\ vi \] g represents a dollar-quoted literal string [\ t\r\n\v
\'\], which will be recognized when the function body is executed by PostgreSQL. But since the
sequence does not match the outer dollar quoting delimiter $f unct i on$, it is just some more
characters within the constant so far as the outer string is concerned.

Thetag, if any, of adollar-quoted string follows the same rules as an unquoted identifier, except that it
cannot contain adollar sign. Tagsare case sensitive, so $t ag$St ri ng cont ent $t ag$ iscorrect,
but STAGSSt ri ng cont ent $t ag$ isnot.

A dollar-quoted string that follows a keyword or identifier must be separated from it by whitespace;
otherwise the dollar quoting delimiter would be taken as part of the preceding identifier.

Dollar quoting is not part of the SQL standard, but it is often a more convenient way to write
complicated string literals than the standard-compliant single quote syntax. It is particularly useful
when representing string constants inside other constants, as is often needed in procedural function
definitions. With single-quote syntax, each backslash in the above example would have to be written
asfour backslashes, which would be reduced to two backslashesin parsing the original string constant,
and then to one when the inner string constant is re-parsed during function execution.

4.1.2.5. Bit-string Constants

Bit-string constants look like regular string constants with a B (upper or lower case) immediately
before the opening quote (no intervening whitespace), e.g., B' 1001' . The only characters allowed
within bit-string constantsare 0 and 1.

Alternatively, hit-string constants can be specified in hexadecimal notation, using a leading X (upper
or lower case), e.qg., X' 1FF' . Thisnotationisequivalent to abit-string constant with four binary digits
for each hexadecimal digit.

Both forms of bit-string constant can be continued across lines in the same way as regular string
constants. Dollar quoting cannot be used in a bit-string constant.

4.1.2.6. Numeric Constants

Numeric constants are accepted in these general forms:

digits
digits.[digits][e[+-]digits]
[digits].digits[e[+-]digits]
digitse[+-]digits

wheredi gi t s isoneor moredecimal digits(0through 9). Atleast onedigit must bebeforeor after the
decimal point, if oneisused. At least one digit must follow the exponent marker (e), if oneis present.
There cannot be any spaces or other characters embedded in the constant. Note that any leading plus
or minus sign is not actually considered part of the constant; it is an operator applied to the constant.

These are some examples of valid numeric constants;

42
35
4.
.001
5e2

37

SQL Syntax

1.925e-3

A numeric constant that contains neither a decimal point nor an exponent isinitially presumed to be
typei nt eger if itsvaluefitsintypei nt eger (32hits); otherwiseit ispresumed to betypebi gi nt
if its value fitsin type bi gi nt (64 bits); otherwise it is taken to be type nuner i c. Constants that
contain decimal points and/or exponents are alwaysinitialy presumed to betypenuneri c.

The initially assigned data type of a numeric constant is just a starting point for the type resolution
algorithms. In most cases the constant will be automatically coerced to the most appropriate type
depending on context. When necessary, you can force a numeric value to be interpreted as a specific
data type by casting it. For example, you can force a numeric value to be treated as type r eal
(f I oat 4) by writing:

REAL '1.23" -- string style
1.23:: REAL -- PostgreSQL (historical) style

These are actually just special cases of the general casting notations discussed next.

4.1.2.7. Constants of Other Types

4.1.3.

A constant of an arbitrary type can be entered using any one of the following notations:

type 'string'

"string' ::type

CAST ('string' AS type)

The string constant'stext is passed to the input conversion routine for thetypecalledt ype. Theresult
isaconstant of the indicated type. The explicit type cast can be omitted if there is no ambiguity asto
the type the constant must be (for example, when it is assigned directly to atable column), in which
caseit isautomatically coerced.

The string constant can be written using either regular SQL notation or dollar-quoting.

It is also possible to specify atype coercion using a function-like syntax:

typenane ('string')
but not all type names can be used in this way; see Section 4.2.9 for details.

The: :, CAST() , and function-call syntaxes can also be used to specify run-time type conversions
of arbitrary expressions, as discussed in Section 4.2.9. To avoid syntactic ambiguity, the t ype
"string' syntax canonly beusedto specify thetype of asimpleliteral constant. Another restriction
onthet ype ' string' syntaxisthatitdoesnotwork for array types, use: : or CAST() to specify
the type of an array constant.

The CAST() syntax conformsto SQL. Thetype 'string' syntax is a generalization of the

standard: SQL specifies this syntax only for afew data types, but PostgreSQL allowsiit for all types.
The syntax with : : ishistorical PostgreSQL usage, asis the function-call syntax.

Operators

An operator name is a sequence of up to NAMEDATALEN-1 (63 by default) characters from the
following list:

FoR <>~ 1 @EWNE |2

38

SQL Syntax

4.1.4.

4.1.5.

There are afew restrictions on operator names, however:

e -- and/* cannot appear anywhere in an operator name, since they will be taken as the start of
acomment.

* A multiple-character operator name cannot end in + or -, unless the name also contains at least
one of these characters:

~1@#% & | ?

For example, @ isan alowed operator name, but * - is not. This restriction allows PostgreSQL to
parse SQL-compliant queries without requiring spaces between tokens.

When working with non-SQL-standard operator names, you will usualy need to separate adjacent
operatorswith spacesto avoid ambiguity. For example, if you have defined aleft unary operator named
@ you cannot write X* @; you must write X* @Y to ensure that PostgreSQL reads it as two operator
names not one.

Special Characters

Some characters that are not alphanumeric have a special meaning that is different from being an
operator. Details on the usage can be found at the location where the respective syntax element
is described. This section only exists to advise the existence and summarize the purposes of these
characters.

A dollar sign ($) followed by digits is used to represent a positional parameter in the body of
a function definition or a prepared statement. In other contexts the dollar sign can be part of an
identifier or a dollar-quoted string constant.

» Parentheses (()) have their usual meaning to group expressions and enforce precedence. In some
cases parentheses are required as part of the fixed syntax of a particular SQL command.

» Brackets ([]) are used to select the elements of an array. See Section 8.15 for more information
on arrays.

» Commas (,) are used in some syntactical constructs to separate the elements of alist.

e The semicolon (;) terminates an SQL command. It cannot appear anywhere within a command,
except within a string constant or quoted identifier.

» The colon (:) isused to select “dlices” from arrays. (See Section 8.15.) In certain SQL dialects
(such as Embedded SQL), the colon is used to prefix variable names.

* Theasterisk (*) isused in some contexts to denote all the fields of atable row or composite value.
It also has a special meaning when used as the argument of an aggregate function, namely that the
aggregate does not require any explicit parameter.

» Theperiod (.) isused in numeric constants, and to separate schema, table, and column names.

Comments

A comment is a sequence of characters beginning with double dashes and extending to the end of
theline, eg.:

-- This is a standard SQ. conment

Alternatively, C-style block comments can be used:

39

SQL Syntax

4.1.6.

/* multiline coment

* with nesting: /* nested block coment */

*/
where the comment begins with / * and extends to the matching occurrence of */ . These block
comments nest, as specified in the SQL standard but unlike C, so that one can comment out larger
blocks of code that might contain existing block comments.

A comment isremoved from theinput stream before further syntax analysisand is effectively replaced
by whitespace.

Operator Precedence

Table 4.2 shows the precedence and associativity of the operators in PostgreSQL. Most operators
have the same precedence and are left-associative. The precedence and associativity of the operators
is hard-wired into the parser.

Y ou will sometimes need to add parentheses when using combinations of binary and unary operators.
For instance:

SELECT 5! - 6;

will be parsed as:

SELECT 5! (- 6);

because the parser has no idea— until it istoo late — that ! is defined as a postfix operator, not an
infix one. To get the desired behavior in this case, you must write:

SELECT (5 !) - 6;

Thisisthe price one pays for extensibility.

Table4.2. Operator Precedence (highest to lowest)

Oper ator/Element Associativity Description
left table/column name separator
| eft PostgreSQL -style typecast
[] left array element selection
+ - right unary plus, unary minus
n left exponentiation
* | % | eft multiplication, division, modulo
+ - left addition, subtraction
(any other operator) left al other native and user-defined
operators
BETWEEN I N LI KE ILIKE range containment, set
SIM LAR membership, string matching
<>=<=>=<> comparison operators
I ST SNULL NOTNULL IS TRUE IS FALSE, IS
NULL, IS DI STI NCT FROM
etc

40

SQL Syntax

Operator/Element Associativity Description

NOT right logical negation
AND left logical conjunction
oR left logical digunction

Note that the operator precedence rules al so apply to user-defined operators that have the same names
asthe built-in operators mentioned above. For example, if you definea® +” operator for some custom
datatypeit will have the same precedence as the built-in “+” operator, no matter what yours does.

When a schema-qualified operator name is used in the OPERATOR syntax, as for examplein:

SELECT 3 OPERATOR(pg_catal og. +) 4;

the OPERATOR construct is taken to have the default precedence shown in Table 4.2 for “any other
operator”. Thisis true no matter which specific operator appears inside OPERATOR() .

Note

PostgreSQL versionsbefore 9.5 used dlightly different operator precedencerules. In particular,
<= >= and <> used to be treated as generic operators; | S tests used to have higher
priority; and NOT BETWEEN and related constructs acted inconsistently, being taken in some
cases as having the precedence of NOT rather than BETWEEN. These rules were changed
for better compliance with the SQL standard and to reduce confusion from inconsistent
treatment of logically equivalent constructs. In most cases, these changes will result in no
behavioral change, or perhapsin “no such operator” failures which can be resolved by adding
parentheses. However there are corner cases in which a query might change behavior without
any parsing error being reported. If you are concerned about whether these changes have
silently broken something, you can test your application with the configuration parameter
operator_precedence_warning turned on to see if any warnings are logged.

4.2. Value Expressions

Value expressions are used in avariety of contexts, such asin thetarget list of the SELECT command,
asnew column valuesin | NSERT or UPDATE, or in search conditionsin anumber of commands. The
result of a value expression is sometimes called a scalar, to distinguish it from the result of a table
expression (which is atable). Value expressions are therefore also called scalar expressions (or even
simply expressions). The expression syntax allowsthe cal culation of values from primitive partsusing
arithmetic, logical, set, and other operations.

A value expression is one of the following:
» A constant or literal value

» A column reference

A positional parameter reference, in the body of afunction definition or prepared statement

A subscripted expression
» A field selection expression
» An operator invocation

A function call

41

SQL Syntax

4.2.1.

4.2.2.

4.2.3.

» An aggregate expression

* A window function call

» A typecast

* A collation expression

A scalar subquery

* An array constructor

* A row constructor

» Another value expression in parentheses (used to group subexpressions and override precedence)

In addition to this list, there are a number of constructs that can be classified as an expression but do
not follow any general syntax rules. These generally have the semantics of afunction or operator and
are explained in the appropriate location in Chapter 9. An exampleisthel S NULL clause.

We have already discussed constants in Section 4.1.2. The following sections discuss the remaining
options.

Column References

A column can be referenced in the form:

correl ati on. col utmnane

correl at i on isthe name of atable (possibly qualified with a schemaname), or an aliasfor atable
defined by means of a FROMclause. The correlation name and separating dot can be omitted if the
column name is unique across all the tables being used in the current query. (See also Chapter 7.)

Positional Parameters

A positional parameter reference is used to indicate a value that is supplied externally to an SQL
statement. Parameters are used in SQL function definitions and in prepared queries. Some client
libraries also support specifying data values separately from the SQL command string, in which case
parameters are used to refer to the out-of-line data values. The form of a parameter referenceis:
$nunber

For example, consider the definition of afunction, dept , as:

CREATE FUNCTI ON dept (text) RETURNS dept

AS $$ SELECT * FROM dept WHERE narme = $1 $$
LANGUAGE SQL;

Herethe $1 references the value of the first function argument whenever the function is invoked.

Subscripts

If an expression yields a value of an array type, then a specific element of the array value can be
extracted by writing

expressi on[subscri pt]

42

SQL Syntax

4.2.4.

4.2.5.

or multiple adjacent elements (an “array dice”) can be extracted by writing

expressi on[| ower _subscri pt: upper_subscri pt]

(Here, the brackets [] are meant to appear literally.) Each subscri pt isitself an expression,
which must yield an integer value.

In general the array expr essi on must be parenthesized, but the parentheses can be omitted when
the expression to be subscripted is just a column reference or positional parameter. Also, multiple
subscripts can be concatenated when the original array is multidimensional. For example:

nyt abl e. arraycol um| 4]

nyt abl e. two_d_col umm[17] [34]
$1[10: 42]

(arrayfunction(a, b))[42]

The parentheses in the last example are required. See Section 8.15 for more about arrays.

Field Selection

If an expression yields a value of a composite type (row type), then a specific field of the row can
be extracted by writing

expression. fiel dname

In general therow expr essi on must be parenthesized, but the parentheses can be omitted when the
expression to be selected from is just atable reference or positional parameter. For example:

nyt abl e. mycol um
$1. sonecol um
(rowfunction(a,b)).col 3

(Thus, a qualified column reference is actually just a specia case of the field selection syntax.) An
important special caseis extracting afield from atable column that is of a composite type:
(conposi tecol). sonefield

(myt abl e. conposi tecol). sonefield

The parentheses are required here to show that conposi t ecol isacolumn name not atable name,
or that myt abl e isatable name not a schemaname in the second case.

Y ou can ask for all fields of a composite value by writing . *:

(conpositecol).*

This notation behaves differently depending on context; see Section 8.16.5 for details.

Operator Invocations

There are three possible syntaxes for an operator invocation:

expr essi on oper at or expr essi on (binary infix operator)
oper at or expr essi on (unary prefix operator)

43

SQL Syntax

4.2.6.

4.2.7.

expr essi on oper at or (unary postfix operator)

wheretheoper at or token followsthe syntax rules of Section 4.1.3, or isone of the key words AND,
OR, and NOT, or isaqualified operator name in the form:

OPERATOR(schenma. oper at or nane)

Which particular operators exist and whether they are unary or binary depends on what operators have
been defined by the system or the user. Chapter 9 describes the built-in operators.

Function Calls

The syntax for a function call is the name of a function (possibly qualified with a schema name),
followed by its argument list enclosed in parentheses:

function_nane ([expression [, expression ...]])

For example, the following computes the square root of 2:

sqrt(2)
Thelist of built-in functionsisin Chapter 9. Other functions can be added by the user.

When issuing queriesin adatabase where some users mistrust other users, observe security precautions
from Section 10.3 when writing function calls.

The arguments can optionally have names attached. See Section 4.3 for details.

Note

A function that takes a single argument of composite type can optionally be called using
field-selection syntax, and conversely field selection can be written in functional style. That
is, the notations col (t abl) andt abl e. col are interchangeable. This behavior is not
SQL-standard but is provided in PostgreSQL because it allows use of functions to emulate
“computed fields’. For more information see Section 8.16.5.

Aggregate Expressions

An aggregate expression represents the application of an aggregate function across the rows selected
by aquery. An aggregate function reduces multiple inputsto a single output value, such asthe sum or
average of theinputs. The syntax of an aggregate expression is one of the following:

aggregate _nane (expression [, ...] [order_by clause]) [FILTER
(WHERE filter _clause)]

aggregate _nane (ALL expression [, ...] [order_by clause])

[FILTER (WHERE filter_clause)]

aggregate_nane (DI STINCT expression [, ...] [order_by clause])

[FILTER (WHERE filter_clause)]
aggregate nane (*) [FILTER (WHERE filter _clause)]
aggregate nane ([expression [, ... 1]) WTH N GROUP
(order_by clause) [FILTER (WHERE filter_clause)]

whereaggr egat e_nane isapreviously defined aggregate (possibly qualified with aschemaname)
and expr essi on is any value expression that does not itself contain an aggregate expression or

44

SQL Syntax

a window function call. The optional order _by cl ause andfilter_cl ause are described
below.

The first form of aggregate expression invokes the aggregate once for each input row. The second
form is the same as the first, since ALL is the default. The third form invokes the aggregate once for
each distinct value of the expression (or distinct set of values, for multiple expressions) found in the
input rows. The fourth form invokes the aggregate once for each input row; since no particular input
valueis specified, it is generally only useful for the count (*) aggregate function. The last formis
used with ordered-set aggregate functions, which are described below.

Most aggregate functions ignore null inputs, so that rows in which one or more of the expression(s)
yield null are discarded. This can be assumed to be true, unless otherwise specified, for al built-in

aggregates.

For example, count (*) yields the total number of input rows; count (f 1) yields the number of
input rowsinwhichf 1 isnon-null, sincecount ignoresnulls; andcount (di sti nct f1) yields
the number of distinct non-null valuesof f 1.

Ordinarily, the input rows are fed to the aggregate function in an unspecified order. In many cases
this does not matter; for example, m n produces the same result no matter what order it receives the
inputs in. However, some aggregate functions (such as array_agg and st ri ng_agg) produce
results that depend on the ordering of the input rows. When using such an aggregate, the optional
order by cl ause can be used to specify the desired ordering. The or der _by cl ause has
the same syntax as for a query-level ORDER BY clause, as described in Section 7.5, except that its
expressionsare alwaysjust expressions and cannot be output-column names or numbers. For example:

SELECT array_agg(a ORDER BY b DESC) FROM t abl e;

When dealing with multiple-argument aggregate functions, note that the ORDER BY clause goes after
all the aggregate arguments. For example, write this:

SELECT string agg(a, ',' ORDER BY a) FROMtabl e;
not this:
SELECT string agg(a ORDER BY a, ',') FROMtable; -- incorrect

The latter is syntactically valid, but it represents a call of a single-argument aggregate function with
two ORDER BY keys (the second one being rather useless since it's a constant).

If DI STI NCT isspecifiedinadditiontoanor der _by cl ause, thenall the ORDER BY expressions
must match regular arguments of the aggregate; that is, you cannot sort on an expression that is not
included in the DI STI NCT list.

Note

The ability to specify both DI STI NCT and ORDER BY in an aggregate function is a
PostgreSQL extension.

Placing ORDER BY within the aggregate's regular argument list, as described so far, is used
when ordering the input rows for general-purpose and statistical aggregates, for which ordering is
optional. There is a subclass of aggregate functions called ordered-set aggregates for which an
order by cl ause isrequired, usually because the aggregate's computation is only sensible in
terms of a specific ordering of itsinput rows. Typica examples of ordered-set aggregatesinclude rank
and percentile calculations. For an ordered-set aggregate, the or der _by _cl ause iswritten inside

45

SQL Syntax

4.2.8.

WTH N GROUP (...), asshown in thefina syntax aternative above. The expressions in the
order by _cl ause are evaluated once per input row just like regular aggregate arguments, sorted
aspertheor der by cl ause'srequirements, and fed to the aggregate function asinput arguments.
(Thisis unlike the case for anon-W THI N GROUP or der _by_cl ause, which is not treated as
argument(s) to the aggregate function.) The argument expressions preceding W THI N GROUP, if
any, are caled direct arguments to distinguish them from the aggregated arguments listed in the
order by cl ause. Unlikeregular aggregate arguments, direct arguments are evaluated only once
per aggregate call, not once per input row. This means that they can contain variables only if those
variables are grouped by GROUP BY; thisrestriction is the same as if the direct arguments were not
inside an aggregate expression at all. Direct arguments are typically used for things like percentile
fractions, which only make sense as a single value per aggregation calculation. The direct argument
list can be empty; in this case, writejust () not (*) . (PostgreSQL will actually accept either spelling,
but only the first way conforms to the SQL standard.)

An example of an ordered-set aggregate call is:

SELECT percentile_cont(0.5) WTH N GROUP (ORDER BY incone) FROM
househol ds;
percentil e_cont

which obtains the 50th percentile, or median, value of thei nconme columnfromtablehousehol ds.
Here, 0. 5 isadirect argument; it would make no sensefor the percentile fraction to beavauevarying
across rows.

If FI LTER s specified, then only the input rows for which thef i | t er _cl ause evaluates to true
are fed to the aggregate function; other rows are discarded. For example:

SELECT

count (*) AS unfiltered,

count (*) FILTER (WHERE i < 5) AS filtered
FROM generate_series(1,10) AS s(i);
unfiltered | filtered

(1 row

The predefined aggregate functions are described in Section 9.20. Other aggregate functions can be
added by the user.

An aggregate expression can only appear in the result list or HAVI NGclause of a SELECT command.
It isforbidden in other clauses, such as WHERE, because those clauses are logically evaluated before
the results of aggregates are formed.

When an aggregate expression appears in a subquery (see Section 4.2.11 and Section 9.22),
the aggregate is normally evaluated over the rows of the subquery. But an exception occurs if
the aggregate's arguments (and fi | t er _cl ause if any) contain only outer-level variables: the
aggregate then belongs to the nearest such outer level, and is evaluated over the rows of that query.
The aggregate expression as awhole is then an outer reference for the subquery it appearsin, and acts
as a constant over any one evaluation of that subquery. The restriction about appearing only in the
result list or HAVI NG clause applies with respect to the query level that the aggregate belongs to.

Window Function Calls

A window function call represents the application of an aggregate-like function over some portion of
the rows selected by a query. Unlike non-window aggregate calls, thisis not tied to grouping of the

46

SQL Syntax

selected rows into a single output row — each row remains separate in the query output. However the
window function has access to all the rows that would be part of the current row's group according
to the grouping specification (PARTI TI ON BY list) of the window function call. The syntax of a
window function call is one of the following:

function_name ([expression [, expression ...]]) [FILTER
(WHERE filter_clause)] OVER wi ndow_name
function_name ([expression [, expression ...]]) [FILTER

(WHERE filter_clause)] OVER (w ndow definition)
function_name (*) [FILTER (WHERE filter_clause)]
OVER wi ndow_nane
function_name (*) [FILTER (WHERE filter_clause)] OVER
(wi ndow definition)

wherewi ndow_def i ni t i on hasthe syntax

[existing_w ndow _nane]

[PARTITION BY expression [, ...]]

[ORDER BY expression [ASC | DESC | USING operator] [NULLS
{ FIRST | LAST}] [, ...]11

[frane_cl ause]

The optional f r amre_cl ause can be one of

{ RANGE | RON5 | GROUPS } frane_start [frame_exclusion]
{ RANGE | ROAS | GROUPS } BETVEEN frane_start AND frane_end
[frane_exclusion]

wherefranme_start andfranme_end can be one of

UNBOUNDED PRECEDI NG
of f set PRECEDI NG
CURRENT ROW

of fset FOLLOW NG
UNBOUNDED FOLLOW NG

and f r ame_excl usi on can be one of

EXCLUDE CURRENT ROW
EXCLUDE GROUP
EXCLUDE TI ES
EXCLUDE NO OTHERS

Here, expr essi on represents any value expression that does not itself contain window function
cals.

wi ndow_narne isareferenceto anamed window specification defined in the query's W NDOWtl ause.
Alternatively, afull Wi ndow_def i ni ti on can be given within parentheses, using the same syntax
asfor defining anamed window in the W NDOWCclause; seethe SEL ECT reference pagefor details. It's
worth pointing out that OVER wnare is not exactly equivalent to OVER (wnane . . .);thelatter
implies copying and modifying the window definition, and will be rejected if the referenced window
specification includes a frame clause.

The PARTI TI ON BY clause groups the rows of the query into partitions, which are processed
separately by the window function. PARTI TI ON BY works similarly to a query-level GROUP BY

47

SQL Syntax

clause, except that its expressions are always just expressions and cannot be output-column names or
numbers. Without PARTI TI ON BY, all rows produced by the query are treated as a single partition.
The ORDER BY clause determines the order in which the rows of a partition are processed by the
window function. It works similarly to a query-level ORDER BY clause, but likewise cannot use
output-column names or numbers. Without ORDER BY, rows are processed in an unspecified order.

The f r ame_cl ause specifies the set of rows constituting the window frame, which is a subset of
the current partition, for those window functions that act on the frame instead of the whole partition.
The set of rows in the frame can vary depending on which row is the current row. The frame can be
specified in RANGE, ROAS5 or GROUPS mode; in each case, it runs from the f r ane_st art to the
frame_end. If f rame_end isomitted, the end defaults to CURRENT ROW

A frame_start of UNBOUNDED PRECEDI NG means that the frame starts with the first row of
the partition, and similarly af r ame_end of UNBOUNDED FOLLOW NG means that the frame ends
with the last row of the partition.

In RANGE or GROUPS mode, af rane_st art of CURRENT ROWmeans the frame starts with the
current row's first peer row (arow that the window's ORDER BY clause sorts as equivalent to the
current row), while af r ame_end of CURRENT ROWmMmeans the frame ends with the current row's
last peer row. In ROAS mode, CURRENT ROWsimply means the current row.

In the of f set PRECEDI NG and of f set FOLLOW NG frame options, the of f set must be an
expression not containing any variables, aggregate functions, or window functions. The meaning of
the of f set depends on the frame mode:

* In ROAS mode, the of f set must yield anon-null, non-negative integer, and the option means that
the frame starts or ends the specified number of rows before or after the current row.

* In GROUPS mode, the of f set again must yield a non-null, non-negative integer, and the option
means that the frame starts or ends the specified number of peer groups before or after the current
row's peer group, where a peer group isaset of rowsthat are equivalent inthe ORDER BY ordering.
(There must be an ORDER BY clause in the window definition to use GROUPS mode.)

* In RANGE mode, these options require that the ORDER BY clause specify exactly one column. The
of f set specifiesthe maximum difference between the value of that columnin the current row and
itsvaluein preceding or following rows of theframe. The datatypeof theof f set expressionvaries
depending on the data type of the ordering column. For numeric ordering columns it is typicaly
of the same type as the ordering column, but for datetime ordering columnsit isani nt er val .
For example, if the ordering column is of type dat e or ti mest anp, one could write RANGE
BETVEEN '1 day' PRECEDI NG AND '10 days' FOLLOW NG Theof fset istill
required to be non-null and non-negative, though the meaning of “non-negative” depends on its
data type.

In any case, the distance to the end of the frame is limited by the distance to the end of the partition,
so that for rows near the partition ends the frame might contain fewer rows than elsewhere.

Notice that in both ROAE and GROUPS mode, 0 PRECEDI NGand 0 FOLLOW NGare equivaent to
CURRENT ROW This normally holds in RANGE mode as well, for an appropriate data-type-specific
meaning of “zero”.

Thef r anme_excl usi on option allows rows around the current row to be excluded from the frame,
even if they would be included according to the frame start and frame end options. EXCLUDE
CURRENT ROWexcludes the current row from the frame. EXCLUDE GROUP excludes the current
row and its ordering peers from the frame. EXCLUDE TI ES excludes any peers of the current row
from the frame, but not the current row itself. EXCLUDE NO OTHERS simply specifies explicitly the
default behavior of not excluding the current row or its peers.

The default framing option is RANGE UNBOUNDED PRECEDI NG, which is the same as RANGE
BETVEEN UNBOUNDED PRECEDI NG AND CURRENT ROWWith ORDER BY, thissetsthe frame
to be all rows from the partition start up through the current row's last ORDER BY peer. Without

48

SQL Syntax

4.2.9.

ORDER BY, this means all rows of the partition are included in the window frame, since al rows
become peers of the current row.

Restrictions are that f r ame_st art cannot be UNBOUNDED FOLLOW NG, frane_end cannot
be UNBOUNDED PRECEDI NG, and the f r ane_end choice cannot appear earlier in the above list
of frame_start andframe_end options than the f r ame_st art choice does — for example
RANGE BETWEEN CURRENT ROW AND of f set PRECEDI NGisnot allowed. But, for example,
ROAS BETWEEN 7 PRECEDI NG AND 8 PRECEDI NGis allowed, even though it would never
select any rows.

If FI LTER s specified, then only the input rows for whichthefi | t er _cl ause evauatesto true
are fed to the window function; other rows are discarded. Only window functions that are aggregates
accept aFl LTER clause.

The built-in window functions are described in Table 9.57. Other window functions can be added by
the user. Also, any built-in or user-defined general-purpose or statistical aggregate can be used as a
window function. (Ordered-set and hypothetical-set aggregates cannot presently be used as window
functions.)

Thesyntaxesusing * are used for calling parameter-1ess aggregate functions as window functions, for
examplecount (*) OVER (PARTI TI ON BY x ORDER BY y) . Theasterisk (*) iscustomarily
not used for window-specific functions. Window-specific functions do not allow DI STI NCT or
ORDER BY to be used within the function argument list.

Window function calls are permitted only in the SELECT list and the ORDER BY clause of the query.

Moreinformation about window functions can befound in Section 3.5, Section 9.21, and Section 7.2.5.

Type Casts

A type cast specifies a conversion from one data type to another. PostgreSQL accepts two equivalent
syntaxes for type casts:

CAST (expression AS type)
expression: :type

The CAST syntax conforms to SQL ; the syntax with: : ishistorical PostgreSQL usage.

When acast is applied to avalue expression of aknown type, it represents arun-time type conversion.
The cast will succeed only if a suitable type conversion operation has been defined. Notice that this
is subtly different from the use of casts with constants, as shown in Section 4.1.2.7. A cast applied
to an unadorned string literal represents the initial assignment of a type to a literal constant value,
and so it will succeed for any type (if the contents of the string literal are acceptable input syntax for
the data type).

An explicit type cast can usually be omitted if there is no ambiguity as to the type that a value
expression must produce (for example, when it is assigned to a table column); the system will
automatically apply atype cast in such cases. However, automatic casting is only done for casts that
aremarked “ OK to apply implicitly” in the system catalogs. Other casts must be invoked with explicit
casting syntax. This restriction is intended to prevent surprising conversions from being applied
silently.

It isalso possible to specify atype cast using afunction-like syntax:

typenane (expression)

However, this only works for types whose names are also valid as function names. For example,
doubl e precision cannot be used this way, but the equivalent f| oat 8 can. Also, the

49

SQL Syntax

namesi nterval, time, andti nest anp can only be used in this fashion if they are double-
guoted, because of syntactic conflicts. Therefore, the use of the function-like cast syntax leads to
inconsistencies and should probably be avoided.

Note

The function-like syntax is in fact just a function call. When one of the two standard cast
syntaxes is used to do a run-time conversion, it will internally invoke a registered function
to perform the conversion. By convention, these conversion functions have the same name as
their output type, and thusthe“function-like syntax” isnothing morethan adirect invocation of
theunderlying conversion function. Obviously, thisisnot something that aportable application
should rely on. For further details see CREATE CAST.

4.2.10. Collation Expressions

The COLLATE clause overrides the collation of an expression. It is appended to the expression it
appliesto:
expr COLLATE collation

wherecol | at i on isapossibly schema-qualified identifier. The COLLATE clause bindstighter than
operators; parentheses can be used when necessary.

If no collation is explicitly specified, the database system either derives a collation from the columns
involved inthe expression, or it defaultsto the default collation of the databaseif no columnisinvolved
in the expression.

The two common uses of the COLLATE clause are overriding the sort order in an ORDER BY clause,
for example:

SELECT a, b, ¢ FROMtbl WHERE ... ORDER BY a COLLATE "C';

and overriding the collation of afunction or operator call that haslocal e-sensitive results, for example:

SELECT * FROM tbl WHERE a > 'foo' COLLATE "C';

Note that in the latter case the COLLATE clause is attached to an input argument of the operator we
wishto affect. It doesn't matter which argument of the operator or function call the COLLATE clauseis
attached to, because the collation that is applied by the operator or function is derived by considering
all arguments, and an explicit COLLATE clause will override the collations of all other arguments.
(Attaching non-matching COLLATE clauses to more than one argument, however, is an error. For
more details see Section 23.2.) Thus, this gives the same result as the previous example:

SELECT * FROM tbl WHERE a COLLATE "C' > 'foo';

But thisisan error:

SELECT * FROM tbl WHERE (a > 'foo') COLLATE "C';

because it attempts to apply a collation to the result of the > operator, which is of the non-collatable
datatypebool ean.

50

SQL Syntax

4.2.11. Scalar Subqueries

A scalar subquery isan ordinary SELECT query in parentheses that returns exactly one row with one
column. (See Chapter 7 for information about writing queries.) The SELECT query is executed and
the single returned value is used in the surrounding value expression. It is an error to use a query that
returns more than one row or more than one column as a scalar subquery. (But if, during a particular
execution, the subguery returns no rows, there is no error; the scalar result is taken to be null.) The
subquery can refer to variables from the surrounding query, which will act as constants during any
one evaluation of the subquery. See also Section 9.22 for other expressions involving subqueries.

For example, the following finds the largest city population in each state:

SELECT nane, (SELECT max(pop) FROM cities WHERE cities.state =
st at es. nane)
FROM st at es;

4.2.12. Array Constructors

Anarray constructor isan expression that buildsan array value using valuesfor itsmember el ements. A
simple array constructor consists of the key word ARRAY, aleft square bracket [, alist of expressions
(separated by commas) for the array element values, and finally aright square bracket | . For example:

SELECT ARRAY[1, 2, 3+4] ;
array

By default, the array element type is the common type of the member expressions, determined using
thesamerulesasfor UNI ON or CASE constructs (see Section 10.5). Y ou can override thisby explicitly
casting the array constructor to the desired type, for example:

SELECT ARRAY[1,2,22.7]::integer[];
array

This has the same effect as casting each expression to the array element type individually. For more
on casting, see Section 4.2.9.

Multidimensional array values can be built by nesting array constructors. In theinner constructors, the
key word ARRAY can be omitted. For example, these produce the same resullt:

SELECT ARRAY[ARRAY[1, 2], ARRAY[3,4]];
array

{{1,2},{3, 4}}
(1 row

SELECT ARRAY[[1,2],[3,4]];
array

{{1,2},{3, 4}}
(1 row

51

SQL Syntax

Since multidimensional arrays must be rectangular, inner constructors at the same level must produce
sub-arrays of identical dimensions. Any cast applied to the outer ARRAY constructor propagates
automatically to all the inner constructors.

Multidimensional array constructor elements can be anything yielding an array of the proper kind, not
only asub-ARRAY construct. For example:

CREATE TABLE arr(f1 int[], f2 int[]);
I NSERT | NTO arr VALUES (ARRAY[[1,2],[3,4]], ARRAY[[5,6],[7,8]1);

SELECT ARRAY[f1, f2, '{{9,10},{11,12}} ::int[]] FROMarr
array

{{{1,2},{3,4}},{{5,6},{7, 8}, {{9,10},{11,12}}}
(1 row

Y ou can construct an empty array, but since it's impossible to have an array with no type, you must
explicitly cast your empty array to the desired type. For example:

SELECT ARRAY[]::integer[];
array

{}
(1 row

Itisalso possibleto construct an array from the results of asubquery. Inthisform, thearray constructor
is written with the key word ARRAY followed by a parenthesized (not bracketed) subquery. For
example:

SELECT ARRAY(SELECT oi d FROM pg_proc WHERE pronane LIKE 'bytea%);
array

{2011, 1954, 1948, 1952, 1951, 1244, 1950, 2005, 1949, 1953, 2006, 31, 2412, 2413}
(1 row

SELECT ARRAY(SELECT ARRAY[i, i*2] FROM generate_series(1,5) AS
a(i));

{{1,2},{2,4},{3,6},{4,8},{5,10}}
(1 row)

The subquery must return a single column. If the subquery's output column is of a non-array type,
the resulting one-dimensional array will have an element for each row in the subquery result, with an
element type matching that of the subquery's output column. If the subquery's output column is of an
array type, the result will be an array of the same type but one higher dimension; in this case all the
subquery rows must yield arrays of identical dimensionality, else the result would not be rectangular.

The subscripts of an array value built with ARRAY aways begin with one. For more information about
arrays, see Section 8.15.

4.2.13. Row Constructors

A row constructor isan expression that builds arow value (also called acomposite value) using values
for its member fields. A row constructor consists of the key word ROW a left parenthesis, zero or

52

SQL Syntax

more expressions (separated by commas) for the row field values, and finally aright parenthesis. For
example:

SELECT RON1,2.5,'this is a test');

The key word ROWis optional when there is more than one expression in the list.

A row constructor can include the syntax r owval ue. *, which will be expanded to a list of the
elements of the row value, just as occurswhen the . * syntax isused at the top level of a SELECT list
(see Section 8.16.5). For example, if tablet hascolumnsf 1 and f 2, these are the same:

SELECT ROW(t.*, 42) FROMt;
SELECT ROWt.f1, t.f2, 42) FROMt;

Note

Before PostgreSQL 8.2, the . * syntax was not expanded in row constructors, so that writing
ROWNt.*, 42) created atwo-field row whose first field was another row value. The new
behavior is usualy more useful. If you need the old behavior of nested row values, write the
inner row value without . *, for instance RO t, 42).

By default, the value created by a ROWNexpression is of an anonymous record type. If necessary, it can
be cast to a named composite type — either the row type of atable, or acomposite type created with
CREATE TYPE AS. An explicit cast might be needed to avoid ambiguity. For example:

CREATE TABLE nytable(fl int, f2 float, f3 text);

CREATE FUNCTI ON getf 1(nytabl e) RETURNS int AS ' SELECT $1.f1'
LANGUAGE SQL;

-- No cast needed since only one getfl() exists
SELECT getf1(RON1,2.5,'this is a test'));
getfl

CREATE TYPE nyrowtype AS (fl1 int, f2 text, f3 nuneric);

CREATE FUNCTI ON get f 1(myr owt ype) RETURNS int AS ' SELECT $1.f1'
LANGUAGE SQL;

-- Now we need a cast to indicate which function to call:
SELECT getf1(RON1,2.5,'this is a test'));
ERROR: function getfl(record) is not unique

SELECT getf1(ROWN1,2.5,'this is a test')::nmytable);
getfl

SELECT getf1(CAST(ROW 11,'this is a test',2.5) AS nmyrowtype));
getfl

53

SQL Syntax

11
(1 row

Row constructors can be used to build composite valuesto be stored in acomposite-type table column,
or to be passed to a function that accepts a composite parameter. Also, it is possible to compare two
row valuesor test arow with | S NULL or I S NOT NULL, for example:

SELECT RON1,2.5,'this is a test') = RON1, 3, 'not the sane');
SELECT RONtable.*) IS NULL FROMtable; -- detect all-null rows

For more detail see Section 9.23. Row constructors can aso be used in connection with subqueries,
as discussed in Section 9.22.

4.2.14. Expression Evaluation Rules

The order of evaluation of subexpressions is not defined. In particular, the inputs of an operator or
function are not necessarily evaluated left-to-right or in any other fixed order.

Furthermore, if the result of an expression can be determined by evaluating only some parts of it, then
other subexpressions might not be evaluated at all. For instance, if one wrote:

SELECT true OR sonefunc();

then sonef unc() would (probably) not be called at all. The same would be the case if one wrote;

SELECT sonefunc() OR true;

Note that thisis not the same as the left-to-right “ short-circuiting” of Boolean operators that is found
in some programming languages.

As aconsequence, it is unwise to use functions with side effects as part of complex expressions. It is
particularly dangerousto rely on side effects or eval uation order in WHERE and HAVI NGclauses, since
those clauses are extensively reprocessed as part of devel oping an execution plan. Boolean expressions
(ANDYOR/NOT combinations) in those clauses can be reorganized in any manner alowed by the laws
of Boolean algebra.

When it is essential to force evaluation order, a CASE construct (see Section 9.17) can be used. For
example, thisis an untrustworthy way of trying to avoid division by zero in a WHERE clause:

SELECT ... WHERE x > 0 AND y/x > 1.5;
But thisis safe:
SELECT ... WHERE CASE WHEN x > 0 THEN y/x > 1.5 ELSE fal se END;

A CASE construct used in this fashion will defeat optimization attempts, so it should only be done
when necessary. (In this particular example, it would be better to sidestep the problem by writing y
> 1.5*x instead.)

CASE is not a cure-all for such issues, however. One limitation of the technique illustrated above is
that it does not prevent early evaluation of constant subexpressions. As described in Section 38.7,
functions and operators marked | MMUTABLE can be evaluated when the query is planned rather than
when it is executed. Thus for example

SQL Syntax

SELECT CASE WHEN x > 0 THEN x ELSE 1/0 END FROM t ab;

is likely to result in a division-by-zero failure due to the planner trying to simplify the constant
subexpression, even if every row inthetablehasx > 0 sothat the ELSE arm would never be entered
at runtime.

While that particular example might seem silly, related cases that don't obviously involve constants
can occur in queries executed within functions, since the values of function arguments and local
variables can beinserted into queries as constants for planning purposes. Within PL/pgSQL functions,
for example, using an | F-THEN-EL SE statement to protect a risky computation is much safer than
just nesting it in a CASE expression.

Another limitation of the same kind is that a CASE cannot prevent evaluation of an aggregate
expression contained within it, because aggregate expressions are computed before other expressions
in a SELECT list or HAVI NG clause are considered. For example, the following query can cause a
division-by-zero error despite seemingly having protected against it:

SELECT CASE WHEN mi n(enpl oyees) > 0
THEN avg(expenses / enpl oyees)
END
FROM depart ment s;

Them n() andavg() aggregates are computed concurrently over all the input rows, so if any row
has enpl oyees equal to zero, the division-by-zero error will occur before there is any opportunity
to test the result of mi n() . Instead, use a WHERE or FI LTER clause to prevent problematic input
rows from reaching an aggregate function in the first place.

4.3. Calling Functions

PostgreSQL allowsfunctionsthat have named parametersto be called using either positional or named
notation. Named notation is especially useful for functions that have a large number of parameters,
since it makes the associations between parameters and actual arguments more explicit and reliable.
In positional notation, a function call is written with its argument values in the same order as they
are defined in the function declaration. In named notation, the arguments are matched to the function
parameters by name and can be written in any order. For each notation, also consider the effect of
function argument types, documented in Section 10.3.

In either notation, parameters that have default values given in the function declaration need not be
written in the call at all. But thisis particularly useful in named notation, since any combination of
parameters can be omitted; while in positional notation parameters can only be omitted from right
to left.

PostgreSQL al so supports mixed notation, which combines positional and named notation. Inthiscase,
positional parameters are written first and named parameters appear after them.

The following examples will illustrate the usage of all three notations, using the following function
definition:

CREATE FUNCTI ON concat | ower _or _upper(a text, b text, uppercase
bool ean DEFAULT fal se)
RETURNS t ext
AS
$$
SELECT CASE
VWHEN $3 THEN UPPER($1 || ' ' || $2)
ELSE LONER(S$1 || " " || $2)

55

SQL Syntax

4.3.1.

4.3.2.

END;
$$
LANGUAGE SQL | MMUTABLE STRI CT;

Function concat _| ower _or _upper hastwo mandatory parameters, a and b. Additionally there
is one optional parameter upper case which defaults to f al se. The a and b inputs will be
concatenated, and forced to either upper or lower case depending on the upper case parameter.
The remaining details of this function definition are not important here (see Chapter 38 for more
information).

Using Positional Notation

Positional notation is the traditional mechanism for passing arguments to functions in PostgreSQL.
Anexampleis:

SELECT concat _| ower _or_upper('Hello', '"Wrld , true);
concat _| ower _or _upper

HELLO WORLD
(1 row

All argumentsare specified in order. Theresult isupper casesinceupper case isspecifiedast r ue.
Another exampleis:

SELECT concat _| ower _or_upper(' Hello', "Wrld);
concat _| ower _or _upper

hell o world

(1 row

Here, the upper case parameter is omitted, so it receives its default value of f al se, resulting in
lower case output. In positional notation, arguments can be omitted from right to left so long as they
have defaults.

Using Named Notation

In named notation, each argument's name is specified using => to separate it from the argument
expression. For example:

SELECT concat _| ower _or_upper(a => "Hello', b => "Wrld);
concat _| ower _or _upper

hell o worl d

(1 row

Again, the argument upper case was omitted so it is set to f al se implicitly. One advantage of
using named notation is that the arguments may be specified in any order, for example:

SELECT concat | ower _or_upper(a => "Hello', b => "Wrld', uppercase
=> true);
concat _| ower _or _upper

HELLO WORLD
(1 row

56

SQL Syntax

4.3.3.

SELECT concat _| ower _or _upper(a => 'Hell o', uppercase => true, b =>
"World');
concat _| ower _or _upper

HELLO WORLD
(1 row

An older syntax based on ":=" is supported for backward compatibility:

SELECT concat _| ower _or_upper(a := "Hello', uppercase :=true, b :=
"World');
concat _| ower _or _upper
HELLO WORLD

(1 row)

Using Mixed Notation

The mixed notation combines positional and named notation. However, as already mentioned, named
arguments cannot precede positional arguments. For example:

SELECT concat | ower _or_upper('Hello', 'Wrld', uppercase => true);
concat _| ower _or _upper

HELLO WORLD
(1 row

In the above query, the arguments a and b are specified positionally, while upper case is specified
by name. In thisexample, that addsittle except documentation. With amore complex function having
numerous parametersthat have default val ues, named or mixed notation can save agreat deal of writing
and reduce chances for error.

Note

Named and mixed call notations currently cannot be used when calling an aggregate function
(but they do work when an aggregate function is used as a window function).

57

Chapter 5. Data Definition

This chapter covers how one creates the database structures that will hold one's data. In a relational
database, the raw datais stored in tables, so the majority of this chapter is devoted to explaining how
tables are created and modified and what features are available to control what data is stored in the
tables. Subsequently, we discuss how tables can be organized into schemas, and how privileges can
be assigned to tables. Finally, we will briefly look at other features that affect the data storage, such
as inheritance, table partitioning, views, functions, and triggers.

5.1. Table Basics

A tablein arelational database is much like a table on paper: It consists of rows and columns. The
number and order of the columnsisfixed, and each column hasaname. The number of rowsisvariable
— it reflects how much data is stored at a given moment. SQL does not make any guarantees about
the order of the rowsin atable. When a table is read, the rows will appear in an unspecified order,
unless sorting is explicitly requested. Thisis covered in Chapter 7. Furthermore, SQL does not assign
unique identifiersto rows, so it is possible to have several completely identical rows in atable. This
is a consequence of the mathematical model that underlies SQL but is usually not desirable. Later in
this chapter we will see how to deal with thisissue.

Each column has adatatype. The datatype constrainsthe set of possible valuesthat can be assigned to
acolumn and assigns semanticsto the data stored in the column so that it can be used for computations.
For instance, a column declared to be of a numerical type will not accept arbitrary text strings, and
the data stored in such a column can be used for mathematical computations. By contrast, a column
declared to be of a character string type will accept almost any kind of data but it does not lend itself
to mathematical calculations, although other operations such as string concatenation are available.

PostgreSQL includes a sizable set of built-in data types that fit many applications. Users can also
define their own data types. Most built-in data types have obvious names and semantics, so we defer
adetailed explanation to Chapter 8. Some of the frequently used datatypes arei nt eger for whole
numbers, nuner i ¢ for possibly fractional numbers, t ext for character strings, dat e for dates,
t i me for time-of-day values, and t i mest anp for values containing both date and time.

To create atable, you use the aptly named CREATE TABLE command. In this command you specify
at least a name for the new table, the names of the columns and the data type of each column. For
example:

CREATE TABLE ny _first_table (
first_colum text,
second_col um i nt eger

)

This creates a table named nmy_fi r st _t abl e with two columns. The first column is named
first_col um and has adatatype of t ext ; the second column has the name second_col um
and the type i nt eger. The table and column names follow the identifier syntax explained in
Section 4.1.1. The type names are usually also identifiers, but there are some exceptions. Note that the
column list is comma-separated and surrounded by parentheses.

Of course, the previous example was heavily contrived. Normally, you would give names to your
tables and columns that convey what kind of datathey store. So let'slook at amore realistic example:

CREATE TABLE products (
product _no i nteger,
name text,

58

Data Definition

price nunmeric

)

(Thenurer i c type can store fractional components, as would be typical of monetary amounts.)

Tip

When you create many interrelated tables it is wise to choose a consistent naming pattern for
the tables and columns. For instance, there is a choice of using singular or plural nouns for
table names, both of which are favored by some theorist or other.

There is a limit on how many columns a table can contain. Depending on the column types, it is
between 250 and 1600. However, defining a table with anywhere near this many columns is highly
unusual and often a questionable design.

If you no longer need atable, you can remove it using the DROP TABLE command. For example:

DROP TABLE ny first _table;
DROP TABLE products;

Attempting to drop atable that does not exist isan error. Nevertheless, itiscommonin SQL script files
to unconditionally try to drop each table before creating it, ignoring any error messages, so that the
script works whether or not the table exists. (If you like, you can usethe DROP TABLE | F EXI STS
variant to avoid the error messages, but thisis not standard SQL .)

If you need to modify atable that already exists, see Section 5.5 later in this chapter.

With the tools discussed so far you can create fully functional tables. The remainder of this chapter is
concerned with adding featuresto the tabl e definition to ensure dataintegrity, security, or convenience.
If you are eager to fill your tables with data now you can skip ahead to Chapter 6 and read the rest
of this chapter later.

5.2. Default Values

A column can be assigned a default value. When a new row is created and no values are specified
for some of the columns, those columns will be filled with their respective default values. A data
manipulation command can also request explicitly that a column be set to its default value, without
having to know what that value is. (Details about data manipulation commands are in Chapter 6.)

If no default value is declared explicitly, the default valueis the null value. This usually makes sense
because a null value can be considered to represent unknown data.

In atable definition, default values are listed after the column data type. For example:

CREATE TABLE products (
product _no i nteger,
name text,
price numeric DEFAULT 9. 99

)

The default value can be an expression, which will be evaluated whenever the default valueisinserted
(not when thetableis created). A common exampleisfor at i nest anp column to have adefault of
CURRENT _TI MESTAMP, so that it gets set to the time of row insertion. Another common exampleis
generating a“serial number” for each row. In PostgreSQL thisistypically done by something like:

59

Data Definition

CREATE TABLE products (
product _no i nteger DEFAULT nextval (' products_product_no_seq'),

)
wherethenext val () function suppliessuccessive valuesfrom asequence object (see Section 9.16).

This arrangement is sufficiently common that there's a specia shorthand for it:

CREATE TABLE products (
product _no SERI AL,

)
The SERI AL shorthand is discussed further in Section 8.1.4.

5.3. Constraints

5.3.1.

Data types are a way to limit the kind of data that can be stored in a table. For many applications,
however, the constraint they provide istoo coarse. For example, a column containing a product price
should probably only accept positive values. But there is no standard data type that accepts only
positive numbers. Another issue isthat you might want to constrain column data with respect to other
columns or rows. For example, in a table containing product information, there should be only one
row for each product number.

To that end, SQL allows you to define constraints on columns and tables. Constraints give you as
much control over the data in your tables as you wish. If a user attempts to store data in a column
that would violate a constraint, an error is raised. This applies even if the value came from the default
value definition.

Check Constraints

A check congtraint is the most generic constraint type. It allows you to specify that the value in
a certain column must satisfy a Boolean (truth-value) expression. For instance, to require positive
product prices, you could use:

CREATE TABLE products (
product _no i nteger,
name text,
price nuneric CHECK (price > 0)

)

As you see, the constraint definition comes after the data type, just like default value definitions.
Default values and constraints can be listed in any order. A check constraint consists of the key word
CHECK followed by an expression in parentheses. The check constraint expression should involve the
column thus constrained, otherwise the constraint would not make too much sense.

Y ou can also give the constraint a separate name. This clarifies error messages and allowsyou to refer
to the constraint when you need to change it. The syntax is:

CREATE TABLE products (
product _no i nteger,
name text,
price numeri c CONSTRAI NT positive price CHECK (price > 0)

60

Data Definition

)

So, to specify anamed constraint, use the key word CONSTRAI NT followed by an identifier followed
by the constraint definition. (If you don't specify a constraint name in this way, the system chooses
anamefor you.)

A check constraint can also refer to several columns. Say you store a regular price and a discounted
price, and you want to ensure that the discounted price is lower than the regular price:

CREATE TABLE products (
product _no i nteger,
name text,
price numeric CHECK (price > 0),
di scounted_price nunmeric CHECK (discounted price > 0),
CHECK (price > discounted price)

)

The first two constraints should look familiar. The third one uses a new syntax. It is not attached to a
particular column, instead it appears as a separate item in the commarseparated column list. Column
definitions and these constraint definitions can be listed in mixed order.

We say that thefirst two constraints are column constraints, whereas the third one isatable constraint
becauseit iswritten separately from any one column definition. Column constraints can a so bewritten
astable constraints, whilethereverseisnot necessarily possible, since acolumn constraint is supposed
to refer to only the column it is attached to. (PostgreSQL doesn't enforce that rule, but you should
follow it if you want your table definitions to work with other database systems.) The above example
could also be written as:

CREATE TABLE products (
product _no i nteger,
name text,
price nuneric,
CHECK (price > 0),
di scounted _price numeric,
CHECK (di scounted _price > 0),
CHECK (price > discounted price)

or even:

CREATE TABLE products (
product _no i nteger,
name text,
price nuneric CHECK (price > 0),
di scounted_price nuneric,
CHECK (di scounted_price > 0 AND price > discounted_price)

)
It's a matter of taste.

Names can be assigned to table constraints in the same way as column constraints:

CREATE TABLE products (
product _no i nteger,
name text,
price nuneric,

61

Data Definition

5.3.2.

CHECK (price > 0),

di scounted_price nuneric,

CHECK (di scounted_price > 0),

CONSTRAI NT val i d_di scount CHECK (price > discounted_price)

)

It should be noted that a check constraint is satisfied if the check expression evaluates to true or the
null value. Since most expressions will evaluate to the null value if any operand is null, they will not
prevent null values in the constrained columns. To ensure that a column does not contain null values,
the not-null constraint described in the next section can be used.

Not-Null Constraints

A not-null constraint simply specifiesthat acolumn must not assumethe null value. A syntax example:

CREATE TABLE products (
product _no i nteger NOT NULL,
name text NOT NULL,
price nuneric

)

A not-null constraint is always written as a column constraint. A not-null constraint is functionally
equivalent to creating a check constraint CHECK (col um_name 1S NOT NULL), but in
PostgreSQL creating an explicit not-null constraint is more efficient. The drawback is that you cannot
give explicit names to not-null constraints created this way.

Of course, a column can have more than one constraint. Just write the constraints one after another:

CREATE TABLE products (
product _no i nteger NOT NULL,
nanme text NOT NULL,
price numeric NOT NULL CHECK (price > 0)

);
The order doesn't matter. It does not necessarily determine in which order the constraints are checked.

The NOT NULL constraint has an inverse: the NULL constraint. This does not mean that the column
must be null, which would surely be useless. Instead, this simply selects the default behavior that the
column might be null. The NULL constraint is not present in the SQL standard and should not be used
in portable applications. (It was only added to PostgreSQL to be compatible with some other database
systems.) Some users, however, likeit because it makesit easy to toggle the constraint in ascript file.
For example, you could start with:

CREATE TABLE products (
product _no integer NULL,
name text NULL,
price nuneric NULL

);
and then insert the NOT key word where desired.

Tip

In most database designs the majority of columns should be marked not null.

62

Data Definition

5.3.3. Unique Constraints

Unique constraints ensure that the data contained in acolumn, or agroup of columns, is unique among
all therowsin the table. The syntax is:

CREATE TABLE products (
product no integer UN QUE
name text,
price nunmeric

)

when written as a column constraint, and:

CREATE TABLE products (
product _no i nteger,
name text,
price nuneric,

UNI QUE (product _no)

);
when written as a table constraint.
To define a unique constraint for a group of columns, write it as a table constraint with the column

names separated by commas:

CREATE TABLE exanpl e (

a i nteger,
b integer,
c integer,

UNI QUE (a, c¢)
)

This specifiesthat the combination of valuesin theindicated columnsis unique acrossthe wholetable,
though any one of the columns need not be (and ordinarily isn't) unique.

Y ou can assign your own name for a unique constraint, in the usual way:

CREATE TABLE products (
product _no i nteger CONSTRAINT nust be different UN QUE
name text,
price nuneric

)

Adding a unique constraint will automatically create a unique B-tree index on the column or group of
columns listed in the constraint. A uniqueness restriction covering only some rows cannot be written
asaunique constraint, but it is possible to enforce such arestriction by creating a unique partial index.

In general, aunique constraint isviolated if thereis more than one row in the table where the val ues of
all of the columnsincluded in the constraint are equal. However, two null values are never considered
equal in this comparison. That means even in the presence of a unique constraint it is possible to
store duplicate rowsthat contain anull valuein at least one of the constrained columns. This behavior
conformsto the SQL standard, but we have heard that other SQL databases might not follow thisrule.
So be careful when devel oping applications that are intended to be portable.

5.3.4. Primary Keys

63

Data Definition

5.3.5.

A primary key constraint indicates that a column, or group of columns, can be used as a unique
identifier for rows in the table. This requires that the values be both unique and not null. So, the
following two table definitions accept the same data:

CREATE TABLE products (
product _no i nteger UN QUE NOT NULL,
name text,
price nuneric

)

CREATE TABLE products (
product _no integer PRI MARY KEY,
name text,
price nuneric

)

Primary keys can span more than one column; the syntax is similar to unique constraints:

CREATE TABLE examnpl e (

a integer,
b integer,
c integer,

PRI MARY KEY (a, c)
)

Adding a primary key will automatically create a unique B-tree index on the column or group of
columns listed in the primary key, and will force the column(s) to be marked NOT NULL.

A tablecan have at most one primary key. (There can beany number of unique and not-null constraints,
which are functionally almost the same thing, but only one can be identified as the primary key.)
Relational database theory dictatesthat every table must have aprimary key. Thisruleis not enforced
by PostgreSQL, but it is usually best to follow it.

Primary keys are useful both for documentation purposes and for client applications. For example, a
GUI application that allows modifying row values probably needs to know the primary key of atable
to be able to identify rows uniquely. There are also various ways in which the database system makes
use of aprimary key if one has been declared; for example, the primary key defines the default target
column(s) for foreign keysreferencing its table.

Foreign Keys

A foreign key constraint specifies that the valuesin acolumn (or agroup of columns) must match the
values appearing in some row of another table. We say this maintainsthe referential integrity between
two related tables.

Say you have the product table that we have used several times already:

CREATE TABLE products (
product _no integer PRI MARY KEY,
name text,
price nuneric

)

Let's also assume you have atable storing orders of those products. We want to ensure that the orders
table only contains orders of products that actually exist. So we define aforeign key constraint in the
orders table that references the products table:

64

Data Definition

CREATE TABLE orders (
order _id integer PRI MARY KEY,
product _no i nteger REFERENCES products (product_no),
guantity integer

)

Now it is impossible to create orders with non-NULL pr oduct no entries that do not appear in
the products table.

We say that in this situation the orders table is the referencing table and the products table is the
referenced table. Similarly, there are referencing and referenced columns.

Y ou can a'so shorten the above command to:

CREATE TABLE orders (
order _id integer PRI MARY KEY,
product _no i nteger REFERENCES products,
qgquantity integer

)

because in absence of a column list the primary key of the referenced table is used as the referenced
column(s).

A foreign key can also constrain and reference agroup of columns. Asusual, it then needsto bewritten
in table constraint form. Here is a contrived syntax example:

CREATE TABLE t1 (

a integer PRI MARY KEY,

b integer,

c integer,

FOREI GN KEY (b, c) REFERENCES other_table (cl, c2)
)

Of course, the number and type of the constrained columns need to match the number and type of
the referenced columns.

Y ou can assign your own name for aforeign key constraint, in the usual way.

A table can have more than one foreign key constraint. This is used to implement many-to-many
relationships between tables. Say you have tables about products and orders, but now you want to
allow one order to contain possibly many products (which the structure above did not allow). You
could use this table structure:

CREATE TABLE products (
product no integer PRI MARY KEY,
name text,
price nunmeric

)

CREATE TABLE orders (
order _id integer PRI MARY KEY,
shi ppi ng_addr ess text,

)

CREATE TABLE order _itens (

65

Data Definition

product _no i nteger REFERENCES products,
order _id integer REFERENCES orders,
guantity integer,
PRI MARY KEY (product_no, order_id)

)

Notice that the primary key overlaps with the foreign keysin the last table.

We know that the foreign keys disallow creation of ordersthat do not relate to any products. But what
if aproduct is removed after an order is created that references it? SQL allows you to handle that as
well. Intuitively, we have afew options:

» Disdlow deleting a referenced product
» Delete the orders aswell
* Something else?

To illustrate this, let's implement the following policy on the many-to-many relationship example
above: when someone wants to remove a product that is still referenced by an order (via
order _it ens), wedisalow it. If someone removes an order, the order items are removed as well:

CREATE TABLE products (
product no integer PRI MARY KEY,
name text,
price nuneric

)

CREATE TABLE orders (
order _id integer PRI MARY KEY,
shi ppi ng_addr ess text,

)

CREATE TABLE order _itens (
product _no i nteger REFERENCES products ON DELETE RESTRI CT,
order _id integer REFERENCES orders ON DELETE CASCADE,
guantity integer,
PRI MARY KEY (product_no, order _id)

)

Restricting and cascading del etes are the two most common options. RESTRI CT prevents del etion of
areferenced row. NO ACTI ON means that if any referencing rows still exist when the constraint is
checked, an error is raised; thisis the default behavior if you do not specify anything. (The essential
difference between these two choicesisthat NO ACTI ON alows the check to be deferred until later
in the transaction, whereas RESTRI CT does not.) CASCADE specifies that when a referenced row is
deleted, row(s) referencing it should be automatically deleted as well. There are two other options:
SET NULL and SET DEFAULT. These cause the referencing column(s) in the referencing row(s) to
be set to nulls or their default values, respectively, when the referenced row is deleted. Note that these
do not excuse you from observing any constraints. For example, if an action specifiesSET DEFAULT
but the default value would not satisfy the foreign key constraint, the operation will fail.

Analogousto ON DELETE thereisalso ON UPDATE which isinvoked when areferenced columnis
changed (updated). The possible actions are the same. In this case, CASCADE means that the updated
values of the referenced column(s) should be copied into the referencing row(s).

Normally, a referencing row need not satisfy the foreign key constraint if any of its referencing
columnsare null. If MATCH FULL isadded to the foreign key declaration, areferencing row escapes
satisfying the constraint only if all its referencing columns are null (so a mix of null and non-null

66

Data Definition

5.3.6.

valuesisguaranteed to fail aMATCH FULL constraint). If you don't want referencing rowsto be able
to avoid satisfying the foreign key constraint, declare the referencing column(s) as NOT NULL.

A foreign key must reference columns that either are a primary key or form a unique constraint. This
meansthat the referenced columns alwayshave anindex (the one underlying the primary key or unique
constraint); so checks on whether a referencing row has a match will be efficient. Since a DELETE
of arow from the referenced table or an UPDATE of a referenced column will require a scan of the
referencing table for rows matching the old value, it is often a good idea to index the referencing
columns too. Because this is not always needed, and there are many choices available on how to
index, declaration of aforeign key constraint does not automatically create an index on thereferencing
columns.

More information about updating and deleting dataisin Chapter 6. Also see the description of foreign
key constraint syntax in the reference documentation for CREATE TABLE.

Exclusion Constraints

Exclusion constraintsensurethat if any two rowsare compared on the specified columnsor expressions
using the specified operators, at |east one of these operator comparisons will return false or null. The
syntax is.

CREATE TABLE circles (
c circle,
EXCLUDE USI NG gist (c WTH &&)

)
See also CREATE TABLE ... CONSTRAINT ... EXCLUDE for details.

Adding an exclusion constraint will automatically create anindex of the type specified in the constraint
declaration.

5.4. System Columns

Every table has severa system columns that are implicitly defined by the system. Therefore, these
names cannot be used as names of user-defined columns. (Notethat these restrictions are separate from
whether the nameisakey word or not; quoting anamewill not allow you to escape these restrictions.)
Y ou do not really need to be concerned about these columns; just know they exist.

oid

The object identifier (object ID) of arow. This column isonly present if the table was created
using W TH QO DS, or if the default_with_oids configuration variable was set at the time. This
column is of type oi d (same name as the column); see Section 8.19 for more information about
the type.

t abl eoi d

The OID of thetable containing thisrow. This columnis particularly handy for queriesthat select
frominheritance hierarchies (see Section 5.9), sincewithout it, it's difficult to tell which individual
table arow came from. The t abl eoi d can be joined against the oi d column of pg_cl ass
to obtain the table name.

xm n
Theidentity (transaction D) of theinserting transaction for thisrow version. (A row versionisan
individual state of arow; each update of arow createsanew row version for the samelogical row.)

cmn

67

Data Definition

The command identifier (starting at zero) within the inserting transaction.
Xmax

Theidentity (transaction D) of the deleting transaction, or zero for an undeleted row version. It
is possible for this column to be nonzero in avisible row version. That usually indicates that the
deleting transaction hasn't committed yet, or that an attempted del etion was rolled back.

cnax
The command identifier within the deleting transaction, or zero.
ctid

The physical location of the row version within its table. Note that although the cti d can be
used to locate the row version very quickly, arow'sct i d will change if it is updated or moved
by VACUUM FULL. Thereforect i d is useless as along-term row identifier. The OID, or even
better a user-defined serial number, should be used to identify logical rows.

OlDs are 32-bit quantities and are assigned from a single cluster-wide counter. In alarge or long-lived
database, it is possible for the counter to wrap around. Hence, it is bad practice to assume that OIDs
are unique, unless you take steps to ensure that this is the case. If you need to identify the rows in
atable, using a sequence generator is strongly recommended. However, OIDs can be used as well,
provided that afew additional precautions are taken:

* A unique constraint should be created on the OID column of each table for which the OID will be
used to identify rows. When such aunique constraint (or unique index) exists, the system takes care
not to generate an OID matching an already-existing row. (Of course, this is only possible if the
table contains fewer than 2% (4 billion) rows, and in practice the table size had better be much less
than that, or performance might suffer.)

 OIDs should never be assumed to be unique across tables; use the combination of t abl eoi d and
row OID if you need a database-wide identifier.

» Of course, the tables in question must be created W TH O DS. As of PostgreSQL 8.1, W THOUT
O DS isthe defaullt.

Transaction identifiers are also 32-hit quantities. In along-lived database it is possible for transaction
IDs to wrap around. This is not a fatal problem given appropriate maintenance procedures; see
Chapter 24 for details. It is unwise, however, to depend on the uniqueness of transaction IDs over the
long term (more than one billion transactions).

Command identifiers are also 32-hit quantities. This creates a hard limit of 2°2 (4 billion) SQL
commandswithin asingletransaction. In practice thislimit is not a problem — notethat the limitison
the number of SQL commands, not the number of rows processed. Also, only commandsthat actually
modify the database contents will consume a command identifier.

5.5. Modifying Tables

When you create atable and you realize that you made amistake, or the requirements of the application
change, you can drop the table and create it again. But thisis not a convenient option if the table is
already filled with data, or if thetableisreferenced by other database objects (for instance aforeign key
constraint). Therefore PostgreSQL provides afamily of commands to make modifications to existing
tables. Note that thisis conceptually distinct from altering the data contained in the table: herewe are
interested in altering the definition, or structure, of the table.

You can:

* Add columns
* Remove columns

68

Data Definition

5.5.1.

5.5.2.

5.5.3.

» Add constraints

* Remove constraints

» Change default values

» Change column datatypes
* Rename columns

* Renametables

All these actions are performed using the ALTER TABLE command, whose reference page contains
details beyond those given here.

Adding a Column

To add a column, use acommand like:

ALTER TABLE products ADD COLUMWN descri ption text;

The new column isinitialy filled with whatever default value is given (null if you don't specify a
DEFAULT clause).

Y ou can a'so define constraints on the column at the same time, using the usual syntax:

ALTER TABLE products ADD COLUMWN description text CHECK (description

<)
Infact all the optionsthat can be applied to acolumn descriptionin CREATE TABLE can be used here.
Keep in mind however that the default value must satisfy the given constraints, or the ADD will fail.
Alternatively, you can add constraints | ater (see below) after you'vefilled in the new column correctly.

Tip

Adding a column with a default requires updating each row of the table (to store the new
column value). However, if no default is specified, PostgreSQL is able to avoid the physical
update. So if you intend to fill the column with mostly nondefault values, it's best to add the
column with no default, insert the correct values using UPDATE, and then add any desired
default as described below.

Removing a Column

To remove a column, use acommand like:

ALTER TABLE products DROP CCOLUWN descri ption;

Whatever datawasin the column disappears. Table constraintsinvolving the column are dropped, too.
However, if the column is referenced by a foreign key constraint of another table, PostgreSQL will
not silently drop that constraint. Y ou can authorize dropping everything that depends on the column
by adding CASCADE:

ALTER TABLE products DROP COLUWN descri pti on CASCADE;

See Section 5.13 for a description of the general mechanism behind this,

Adding a Constraint

69

Data Definition

5.5.4.

5.5.5.

5.5.6.

To add a constraint, the table constraint syntax is used. For example:

ALTER TABLE products ADD CHECK (nane <> '');

ALTER TABLE products ADD CONSTRAI NT sone_name UN QUE (product_no);

ALTER TABLE products ADD FOREI GN KEY (product _group_i d) REFERENCES
product _groups;

To add a not-null constraint, which cannot be written as a table constraint, use this syntax:

ALTER TABLE products ALTER COLUWN product _no SET NOT NULL;

The constraint will be checked immediately, so the table data must satisfy the constraint before it can
be added.

Removing a Constraint

To removeaconstraint you need to know itsname. If you gaveit anamethen that's easy. Otherwisethe
system assigned a generated name, which you need to find out. The psgl command\ d t abl enane
can be helpful here; other interfaces might also provide a way to inspect table details. Then the
command is:

ALTER TABLE products DROP CONSTRAI NT sone_nane;

(If you are dealing with a generated constraint name like $2, don't forget that you'll need to double-
quoteit to makeit avalid identifier.)

Aswith dropping acolumn, you need to add CASCADE if you want to drop a constraint that something
else depends on. An example is that a foreign key constraint depends on a unique or primary key
constraint on the referenced column(s).

This works the same for all constraint types except not-null constraints. To drop anot null constraint
use:

ALTER TABLE products ALTER COLUWN product no DROP NOT NULL;

(Recdll that not-null constraints do not have names.)

Changing a Column's Default Value

To set anew default for a column, use acommand like:

ALTER TABLE products ALTER COLUW price SET DEFAULT 7. 77,

Notethat thisdoesn't affect any existing rowsinthetable, it just changesthe default for futurel NSERT
commands.

To remove any default value, use:

ALTER TABLE products ALTER COLUWN price DROP DEFAULT;

This is effectively the same as setting the default to null. As a consequence, it is not an error to drop
a default where one hadn't been defined, because the default isimplicitly the null value.

Changing a Column's Data Type

70

Data Definition

5.5.7.

5.5.8.

To convert acolumn to a different data type, use acommand like:

ALTER TABLE products ALTER COLUWN price TYPE nuneric(10, 2);

This will succeed only if each existing entry in the column can be converted to the new type by an
implicit cast. If amore complex conversion is heeded, you can add a USI NG clause that specifies how
to compute the new values from the old.

PostgreSQL will attempt to convert the column's default value (if any) to the new type, as well as
any constraintsthat involve the column. But these conversions might fail, or might produce surprising
results. It's often best to drop any constraints on the column before altering its type, and then add back
suitably modified constraints afterwards.

Renaming a Column

To rename a column:

ALTER TABLE products RENAME COLUWN product _no TO product _numnber;

Renaming a Table

To rename atable:

ALTER TABLE products RENAMVE TO iternmns;

5.6. Privileges

When an object is created, it is assigned an owner. The owner is normally the role that executed the
creation statement. For most kinds of objects, the initial state is that only the owner (or a superuser)
can do anything with the object. To alow other rolesto useiit, privileges must be granted.

There are different kinds of privileges. SELECT, | NSERT, UPDATE, DELETE, TRUNCATE,
REFERENCES, TRI GGER, CREATE, CONNECT, TEMPORARY, EXECUTE, and USAGE. The
privileges applicable to a particular object vary depending on the object’s type (table, function, etc).
For complete information on the different types of privileges supported by PostgreSQL, refer to the
GRANT reference page. The following sections and chapters will aso show you how those privileges
are used.

Theright to modify or destroy an object is always the privilege of the owner only.

An object can be assigned to a new owner with an ALTER command of the appropriate kind for the
object, e.g. ALTER TABLE. Superusers can always do this; ordinary roles can only do it if they are
both the current owner of the object (or a member of the owning role) and a member of the new
owning role.

To assign privileges, the GRANT command is used. For example, if | oe is an existing role, and
account s isan existing table, the privilege to update the table can be granted with:

GRANT UPDATE ON accounts TO j oe;

Writing ALL in place of a specific privilege grants all privileges that are relevant for the object type.

The specia “role’ name PUBLI C can be used to grant a privilege to every role on the system. Also,
“group” roles can be set up to help manage privileges when there are many users of a database —
for details see Chapter 21.

71

Data Definition

To revoke aprivilege, use the fittingly named REVOKE command:

REVOKE ALL ON accounts FROM PUBLI C;

The special privileges of the object owner (i.e., the right to do DROP, GRANT, REVCKE, etc.) are
alwaysimplicit in being the owner, and cannot be granted or revoked. But the object owner can choose
to revoke their own ordinary privileges, for example to make a table read-only for themselves as well
as others.

Ordinarily, only the object's owner (or a superuser) can grant or revoke privileges on an object.
However, it is possible to grant a privilege “with grant option”, which gives the recipient the right to
grantitinturnto others. If the grant option is subsequently revoked then all who received the privilege
from that recipient (directly or through a chain of grants) will lose the privilege. For details see the
GRANT and REV OKE reference pages.

5.7. Row Security Policies

In addition to the SQL-standard privilege system available through GRANT, tables can have row
security policies that restrict, on a per-user basis, which rows can be returned by normal queries or
inserted, updated, or deleted by data modification commands. Thisfeatureisalso known as Row-Level
Security. By default, tables do not have any policies, so that if a user has access privileges to atable
according to the SQL privilege system, all rowswithinit areequally availablefor querying or updating.

When row security is enabled on a table (with ALTER TABLE ... ENABLE ROW LEVEL
SECURITY), all normal accessto the table for selecting rows or modifying rows must be allowed by
arow security policy. (However, the table's owner istypically not subject to row security policies.) If
no policy exists for the table, a default-deny policy is used, meaning that no rows are visible or can
be modified. Operations that apply to the whole table, such as TRUNCATE and REFERENCES, are
not subject to row security.

Row security policies can be specific to commands, or to roles, or to both. A policy can be specified
to apply to ALL commands, or to SELECT, | NSERT, UPDATE, or DELETE. Multiple roles can be
assigned to agiven policy, and normal role membership and inheritance rules apply.

To specify which rows are visible or modifiable according to a policy, an expression is required that
returns a Boolean result. This expression will be evaluated for each row prior to any conditions or
functions coming from the user's query. (The only exceptionsto thisruleare | eakpr oof functions,
which are guaranteed to not leak information; the optimizer may choose to apply such functions ahead
of the row-security check.) Rowsfor which the expression doesnot returnt r ue will not be processed.
Separate expressions may be specified to provide independent control over the rowswhich are visible
and the rows which are allowed to be modified. Policy expressions are run as part of the query and
with the privileges of the user running the query, although security-definer functions can be used to
access data not available to the calling user.

Superusers and roles with the BYPASSRLS attribute always bypass the row security system when
accessing atable. Table ownersnormally bypass row security aswell, though atable owner can choose
to be subject to row security with ALTER TABLE ... FORCE ROW LEVEL SECURITY.

Enabling and disabling row security, as well as adding policies to atable, is aways the privilege of
the table owner only.

Policies are created using the CREATE POLICY command, atered using the ALTER POLICY
command, and dropped using the DROP POLICY command. To enable and disable row security for
agiven table, usethe ALTER TABLE command.

Each policy has aname and multiple policies can be defined for atable. As policies are table-specific,
each policy for atable must have a unique name. Different tables may have policies with the same
name.

72

Data Definition

When multiple policies apply to a given query, they are combined using either OR (for permissive
policies, which are the default) or using AND (for restrictive policies). Thisissimilar to therulethat a
given role has the privileges of al roles that they are amember of. Permissive vs. restrictive policies
are discussed further below.

Asasimple example, hereishow to create apolicy ontheaccount relation to allow only members
of the manager s role to access rows, and only rows of their accounts:

CREATE TABLE accounts (nanager text, conpany text, contact_emil
text);

ALTER TABLE accounts ENABLE ROW LEVEL SECURITY,

CREATE POLI CY account _nanagers ON accounts TO managers
USI NG (manager = current _user);

The policy above implicitly providesaW TH CHECK clause identical to its USI NG clause, so that
the constraint applies both to rows selected by a command (so a manager cannot SELECT, UPDATE,
or DELETE existing rows belonging to a different manager) and to rows modified by a command (so
rows belonging to a different manager cannot be created vial NSERT or UPDATE).

If no role is specified, or the special user name PUBLI Cis used, then the policy appliesto all users
on the system. To allow all users to access only their own row in a user s table, a simple policy
can be used:

CREATE POLI CY user _policy ON users
USI NG (user_name = current_user);

Thisworks similarly to the previous example.

To use a different policy for rows that are being added to the table compared to those rows that are
visible, multiple policies can be combined. This pair of policieswould allow all usersto view all rows
intheuser s table, but only modify their own:

CREATE PCLI CY user _sel _policy ON users
FOR SELECT
USI NG (true);

CREATE PCLI CY user _nmod_policy ON users
USI NG (user_name = current_user);

In a SELECT command, these two policies are combined using OR, with the net effect being that all
rows can be selected. In other command types, only the second policy applies, so that the effects are
the same as before.

Row security can also be disabled with the ALTER TABLE command. Disabling row security does
not remove any policies that are defined on the table; they are simply ignored. Then all rows in the
table are visible and modifiable, subject to the standard SQL privileges system.

Below is a larger example of how this feature can be used in production environments. The table
passwd emulates a Unix password file:

-- Sinple passwd-file based exanpl e
CREATE TABLE passwd (

user _nane text UNI QUE NOT NULL,
pwhash t ext,
ui d int PRI MARY KEY,

73

Data Definition

gid int NOT NULL,
real nane text NOT NULL,
hone_phone t ext,
extra_info t ext,
home_dir text NOT NULL,
shel | t ext NOT NULL
)
CREATE ROLE adnmin; -- Admnistrator
CREATE ROLE bob; -- Normal user
CREATE ROLE alice; -- Normal user

-- Popul ate the table
| NSERT | NTO passwd VALUES
(*admn','xxx',0,0," Adm n',"'111-222-3333"' ,null,"'/root',"'/bin/
dash');
| NSERT | NTO passwd VALUES
("bob','xxx"',1,1,"Bob',"' 123-456-7890', null,"'/honme/bob',"/bin/
zsh');
| NSERT | NTO passwd VALUES
("alice',"xxx"',2,1,"Alice','098-765-4321" ,null,'/hone/alice' "'/
bi n/ zsh');

-- Be sure to enable row | evel security on the table
ALTER TABLE passwd ENABLE ROW LEVEL SECURI TY;

-- Create policies
-- Adm nistrator can see all rows and add any rows
CREATE PCLI CY admin_all ON passwd TO admin USING (true) WTH CHECK
(true);
-- Nornmal users can view all rows
CREATE POLI CY al | _view ON passwd FOR SELECT USI NG (true);
-- Normal users can update their own records, but
-- limt which shells a normal user is allowed to set
CREATE PCLI CY user _nmod ON passwd FOR UPDATE
USI NG (current _user = user_nane)
W TH CHECK (
current _user = user_nanme AND
shell IN ('/bin/bash','/bin/sh','/bin/dash','/bin/zsh',"'/bin/
tcsh')

)

-- Allow admin all normal rights
GRANT SELECT, | NSERT, UPDATE, DELETE ON passwd TO admi n;
-- Users only get select access on public col ums
GRANT SELECT
(user_name, uid, gid, real_name, honme_phone, extra_info,
hone_dir, shell)
ON passwd TO public;
-- Allow users to update certain col ums
GRANT UPDATE
(pwhash, real name, home_phone, extra_info, shell)
ON passwd TO public;

Aswith any security settings, it'simportant to test and ensure that the system is behaving as expected.
Using the example above, this demonstrates that the permission system is working properly.

74

Data Definition

-- admin can view all rows and fields
post gres=> set role adm n;

SET
post gres=> t abl e passwd;
user_nane | pwhash | uid | gid | real _name | home_phone
extra_info | home_dir | shel
----------- T T T I ppup R
o m e o - - o m e e e oo - T ——
adm n | xxx | 0 | 0| Admn | 111-222-3333
| /root | /bin/dash
bob | xxx | 1] 1| Bob | 123-456-7890
| /hone/ bob | /bin/zsh
alice | xxx | 2| 1| Aice | 098-765-4321
| /hone/alice | /bin/zsh
(3 rows)

-- Test what Alice is able to do
postgres=> set role alice;
SET
post gres=> t abl e passwd;
ERROR: permi ssion denied for relation passwd
post gres=> sel ect
user _nane, real _name, home_phone, extra_i nfo, hone_dir, shel |l from

passwd;

user_nane | real _name | honme_phone | extra_info | hone_dir |

shel |
----------- Ty
.

adm n | Admin | 111-222-3333 | | /root

| /bin/dash

bob | Bob | 123-456-7890 | | /hone/ bob

| /bin/zsh

alice | Alice | 098-765-4321 | | /hone/alice
| /bin/zsh
(3 rows)
post gr es=> update passwd set user_nane = 'joe'

ERROR: permi ssion denied for relation passwd
-- Alice is allowed to change her own real nanme, but no others

post gr es=> update passwd set real _nane = 'Alice Doe';

UPDATE 1

post gres=> update passwd set real _nane = 'John Doe' where user_nane
= "admin';

UPDATE 0

post gr es=> update passwd set shell = '/bin/xx";

ERROR: new row vi ol ates WTH CHECK OPTION for "passwd”

post gres=> del ete from passwd;

ERROR: permi ssion denied for relation passwd

postgres=> insert into passwd (user_nane) values ('xxx');

ERROR: permi ssion denied for relation passwd

-- Alice can change her own password; RLS silently prevents
updati ng ot her rows

post gr es=> updat e passwd set pwhash = 'abc’
UPDATE 1

All of the policies constructed thus far have been permissive policies, meaning that when multiple
policies are applied they are combined using the “OR” Boolean operator. While permissive policies
can be constructed to only allow access to rows in the intended cases, it can be simpler to combine

75

Data Definition

permissive policies with restrictive policies (which the records must pass and which are combined
using the “AND” Boolean operator). Building on the example above, we add a restrictive policy to
requirethe administrator to be connected over alocal Unix socket to accesstherecords of thepasswd
table:

CREATE PCLI CY admin_local _only ON passwd AS RESTRI CTI VE TO admi n
USI NG (pg_catal og.inet_client_addr() IS NULL);

We can then see that an administrator connecting over a network will not see any records, due to the
restrictive policy:

=> SELECT current _user;
current _user

=> sel ect inet_client_addr();
i net _client_addr

127.0.0.1
(1 row)

=> SELECT current _user;
current _user

=> TABLE passwd;
user_nane | pwhash | uid | gid | real _nane | hone_phone |
extra_info | hone_dir | shell

=> UPDATE passwd set pwhash = NULL;
UPDATE 0

Referential integrity checks, such as unique or primary key constraints and foreign key references,
always bypass row security to ensure that data integrity is maintained. Care must be taken when
developing schemas and row level policies to avoid “covert channel” leaks of information through
such referential integrity checks.

In some contexts it isimportant to be sure that row security is not being applied. For example, when
taking a backup, it could be disastrous if row security silently caused some rows to be omitted from
the backup. In such a situation, you can set the row_security configuration parameter to of f . This
does not in itself bypass row security; what it does is throw an error if any query's results would get
filtered by a policy. The reason for the error can then be investigated and fixed.

Inthe examplesabove, the policy expressionsconsider only the current valuesin therow to be accessed
or updated. This is the simplest and best-performing case; when possible, it's best to design row
security applications to work thisway. If it is necessary to consult other rows or other tables to make
apolicy decision, that can be accomplished using sub-SELECTS, or functions that contain SELECTS,
in the policy expressions. Be aware however that such accesses can create race conditions that could
alow information leakage if care is not taken. As an example, consider the following table design:

76

Data Definition

-- definition of privilege groups
CREATE TABLE groups (group_id int PRI MARY KEY,
group_name text NOT NULL);

I NSERT | NTO gr oups VALUES

(1, "low),
(2, 'medium),
(5, "high");
GRANT ALL ON groups TO alice; -- alice is the administrator

GRANT SELECT ON groups TO public;

-- definition of users' privilege |levels
CREATE TABLE users (user_nane text PRI MARY KEY,
group_id int NOT NULL REFERENCES groups);

| NSERT | NTO users VALUES
("alice', 5),
(" bob', 2),
("mallory', 2);

GRANT ALL ON users TO alice;
GRANT SELECT ON users TO public;

-- table holding the information to be protected
CREATE TABLE information (info text
group_id int NOT NULL REFERENCES groups);

I NSERT | NTO i nf or mati on VALUES
('barely secret', 1),
("slightly secret', 2),
('very secret', 5);

ALTER TABLE i nf ormati on ENABLE ROW LEVEL SECURI TY;

-- a row shoul d be visible to/updatable by users whose security
group_id is
-- greater than or equal to the row s group_id
CREATE PCLICY fp_s ONinformation FOR SELECT

USI NG (group_id <= (SELECT group_id FROM users WHERE user _nane
current _user));
CREATE POLICY fp_u ON information FOR UPDATE

USI NG (group_id <= (SELECT group_id FROM users WHERE user _nane
current _user));

-- we rely only on RLS to protect the information table
GRANT ALL ON i nformation TO public;

Now suppose that al i ce wishes to change the “dlightly secret” information, but decides that
mal | ory should not be trusted with the new content of that row, so she does:

BEG N;

UPDATE users SET group_id =
UPDATE i nformati on SET info
:2;

COW T;

1 WHERE user_nane = 'mallory’
= "secret frommallory' WHERE group_id

77

Data Definition

That looks safe; thereisno window whereinmal | or y should be ableto seethe secret from mallory”
string. However, there isarace condition here. If mal | or y is concurrently doing, say,

SELECT * FROM i nformati on WHERE group_id = 2 FOR UPDATE;

and her transactionisin READ COVM TTED mode, it ispossible for her to see “ secret from mallory”.
That happens if her transaction reaches the i nf or nat i on row just after al i ce's does. It blocks
waiting for al i ce's transaction to commit, then fetches the updated row contents thanks to the
FOR UPDATE clause. However, it does not fetch an updated row for the implicit SELECT from
user s, because that sub-SELECT did not have FOR UPDATE; instead the user s row isread with
the snapshot taken at the start of the query. Therefore, the policy expression tests the old vaue of
mal | or y'sprivilege level and allows her to see the updated row.

Thereare severa ways around this problem. Onesimpleanswer istouse SELECT ... FOR SHARE
in sub-SELECTs in row security policies. However, that requires granting UPDATE privilege on the
referenced table (here user s) to the affected users, which might be undesirable. (But another row
security policy could be applied to prevent them from actually exercising that privilege; or the sub-
SELECT could be embedded into asecurity definer function.) Also, heavy concurrent use of row share
lockson thereferenced table could pose aperformance problem, especialy if updatesof it arefrequent.
Another solution, practical if updates of the referenced table areinfrequent, isto take an exclusivelock
on the referenced table when updating it, so that no concurrent transactions could be examining old
row values. Or one could just wait for all concurrent transactions to end after committing an update
of the referenced table and before making changes that rely on the new security situation.

For additional details see CREATE POLICY and ALTER TABLE.

5.8. Schemas

A PostgreSQL database cluster contains one or more named databases. Users and groups of users
are shared across the entire cluster, but no other data is shared across databases. Any given client
connection to the server can access only the data in a single database, the one specified in the
connection request.

Note

Users of acluster do not necessarily have the privilege to access every databasein the cluster.
Sharing of user names means that there cannot be different users named, say, j oe in two
databases in the same cluster; but the system can be configured to allow j oe access to only
some of the databases.

A database contains one or more named schemas, which in turn contain tables. Schemas also contain
other kinds of named objects, including data types, functions, and operators. The same object name
can be used in different schemas without conflict; for example, both schenal and myschena can
containtablesnamed myt abl e. Unlike databases, schemasarenot rigidly separated: auser can access
objectsin any of the schemas in the database they are connected to, if they have privileges to do so.

There are several reasons why one might want to use schemas:
» To alow many usersto use one database without interfering with each other.
» To organize database objects into logical groupsto make them more manageable.

» Third-party applications can be put into separate schemas so they do not collide with the names
of other objects.

Schemas are analogous to directories at the operating system level, except that schemas cannot be
nested.

78

Data Definition

5.8.1. Creating a Schema

To create a schema, use the CREATE SCHEMA command. Give the schema a name of your choice.
For example:

CREATE SCHEMA nyschenm;

To create or access objects in a schema, write a qualified name consisting of the schema name and
table name separated by a dot:

schenma. t abl e

This works anywhere a table name is expected, including the table modification commands and the
data access commands discussed in the following chapters. (For brevity we will speak of tables only,

but the same ideas apply to other kinds of named objects, such as types and functions.)

Actualy, the even more general syntax

dat abase. schenn. t abl e

can be used too, but at present thisis just for pro forma compliance with the SQL standard. If you
write a database name, it must be the same as the database you are connected to.

So to create atable in the new schema, use:

CREATE TABLE myschema. nyt abl e (

)

To drop aschemaif it'sempty (all objectsin it have been dropped), use:

DROP SCHENMA nyschens;

To drop a schemaincluding all contained objects, use:

DROP SCHEMA nyschena CASCADE;

See Section 5.13 for a description of the general mechanism behind this.

Often you will want to create a schema owned by someone el se (since thisis one of the waysto restrict
the activities of your users to well-defined namespaces). The syntax for that is:

CREATE SCHEMA schena_name AUTHORI ZATI ON user _nane;

Y ou can even omit the schema name, in which case the schema name will be the same as the user
name. See Section 5.8.6 for how this can be useful.

Schema names beginning with pg_ are reserved for system purposes and cannot be created by users.

5.8.2. The Public Schema

79

Data Definition

5.8.3.

In the previous sections we created tables without specifying any schema names. By default such
tables (and other objects) are automatically put into a schema named “public’. Every new database
contains such aschema. Thus, the following are equivalent:

CREATE TABLE products (...);
and:
CREATE TABLE public.products (...);

The Schema Search Path

Qualified names are tedious to write, and it's often best not to wire a particular schema name into
applications anyway. Therefore tables are often referred to by unqualified names, which consist of
just the table name. The system determines which table is meant by following a search path, whichis
alist of schemasto look in. The first matching table in the search path is taken to be the one wanted.
If thereis no match in the search path, an error is reported, even if matching table names exist in other
schemas in the database.

The ability to create like-named objects in different schemas complicates writing a query that
references precisely the same objects every time. It also opens up the potential for users to change
the behavior of other users' queries, maliciously or accidentally. Due to the prevalence of unqualified
names in queries and their use in PostgreSQL internals, adding a schema to sear ch_path
effectively trusts all users having CREATE privilege on that schema. When you run an ordinary query,
amalicious user able to create objects in a schema of your search path can take control and execute
arbitrary SQL functions as though you executed them.

The first schema named in the search path is called the current schema. Aside from being the first
schema searched, it is aso the schema in which new tables will be created if the CREATE TABLE
command does not specify a schema name.

To show the current search path, use the following command:

SHOW sear ch_pat h;

In the default setup this returns:

search_pat h

"$user", public

The first element specifies that a schema with the same name as the current user is to be searched.
If no such schema exists, the entry is ignored. The second element refers to the public schema that
we have seen already.

The first schema in the search path that exists is the default location for creating new objects. That
is the reason that by default objects are created in the public schema. When objects are referenced
in any other context without schema qualification (table modification, data modification, or query
commands) the search path is traversed until a matching object is found. Therefore, in the default
configuration, any unqualified access again can only refer to the public schema.

To put our new schemain the path, we use:

80

Data Definition

5.8.4.

5.8.5.

SET search_path TO nyschenm, publi c;

(We omit the $user here because we have no immediate need for it.) And then we can access the
table without schema qualification:

DROP TABLE nyt abl e;

Also, since nyschena isthefirst element in the path, new objects would by default be created in it.

We could also have written:

SET search_path TO nyschens;

Then we no longer have access to the public schema without explicit qualification. There is nothing
special about the public schema except that it exists by default. It can be dropped, too.

See also Section 9.25 for other ways to manipul ate the schema search path.

The search path works in the same way for data type names, function names, and operator names as it
does for table names. Data type and function names can be qualified in exactly the same way astable
names. If you need to write a qualified operator name in an expression, there is a special provision:
you must write

OPERATOR(schenma. oper at or)

Thisis needed to avoid syntactic ambiguity. An exampleis:

SELECT 3 OPERATOR(pg_catal og. +) 4;

In practice one usually relies on the search path for operators, so as not to have to write anything so
ugly asthat.

Schemas and Privileges

By default, users cannot access any objects in schemas they do not own. To alow that, the owner of
the schema must grant the USAGE privilege on the schema. To allow users to make use of the objects
in the schema, additional privileges might need to be granted, as appropriate for the object.

A user can aso be alowed to create objects in someone else's schema. To alow that, the CREATE
privilege on the schema needs to be granted. Note that by default, everyone has CREATE and USAGE
privileges on the schema publ i c. Thisallows all users that are able to connect to a given database
to create objectsin itspubl i ¢ schema. Some usage patterns call for revoking that privilege:

REVOKE CREATE ON SCHEMA public FROM PUBLI C,
(The first “public” is the schema, the second “public” means “every user”. In the first senseit is an

identifier, in the second sense it is akey word, hence the different capitalization; recall the guidelines
from Section 4.1.1.)

The System Catalog Schema

In addition to public and user-created schemas, each database contains a pg_cat al og
schema, which contains the system tables and all the built-in data types, functions, and operators.

81

Data Definition

5.8.6.

5.8.7.

pg_cat al og is always effectively part of the search path. If it is not named explicitly in the path
thenitisimplicitly searched before searching the path's schemas. This ensuresthat built-in nameswill
always be findable. However, you can explicitly place pg_cat al og at the end of your search path
if you prefer to have user-defined names override built-in names.

Since system table namesbeginwithpg_, it isbest to avoid such namesto ensure that you won't suffer
aconflict if somefuture version defines a system table named the same asyour table. (With the default
search path, an unqualified reference to your table name would then be resolved as the system table
instead.) System tables will continue to follow the convention of having names beginning with pg_,
so that they will not conflict with unqualified user-table names so long as users avoid the pg__ prefix.

Usage Patterns

Schemas can be used to organize your data in many ways. There are a few usage patterns easily
supported by the default configuration, only one of which suffices when database users mistrust other
database users:

 Constrain ordinary usersto user-private schemas. To implement this, issue REVOKE CREATE ON
SCHEMA public FROM PUBLI C, and create a schema for each user with the same name as
that user. If affected users had logged in before this, consider auditing the public schemafor objects
named like objectsin schemapg_cat al og. Recall that the default search path startswith $user ,
which resolves to the user name. Therefore, if each user has a separate schema, they access their
own schemas by defaullt.

» Remove the public schemafrom each user's default search path using ALTER ROLE user SET
search_path = "$user". Everyoneretainsthe ability to create objects in the public schema,
but only qualified nameswill choose those objects. While qualified tablereferencesarefine, callsto
functionsin the public schemawill be unsafe or unreliable. Also, auser holding the CREATEROLE
privilege can undo this setting and issue arbitrary queries under the identity of usersrelying on the
setting. If you create functions or extensions in the public schema or grant CREATEROLE to users
not warranting this almost-superuser ability, use the first pattern instead.

* Remove the public schema from sear ch_pat h in post gresql . conf . The ensuing user
experience matches the previous pattern. In addition to that pattern'simplications for functions and
CREATERQLE, thistrusts database ownerslike CREATEROLE. If you createfunctionsor extensions
in the public schema or assign the CREATEROLE privilege, CREATEDB privilege or individual
database ownership to users not warranting almost-superuser access, use the first pattern instead.

» Keep the default. All users access the public schemaimplicitly. This simulates the situation where
schemas are not available at al, giving a smooth transition from the non-schema-aware world.
However, any user can issue arbitrary queries under the identity of any user not electing to protect
itself individually. This pattern is acceptable only when the database has a single user or a few
mutually-trusting users.

For any pattern, to install shared applications (tables to be used by everyone, additional functions
provided by third parties, etc.), put them into separate schemas. Remember to grant appropriate
privileges to allow the other users to access them. Users can then refer to these additional objects by
qualifying the names with a schema name, or they can put the additional schemas into their search
path, as they choose.

Portability

In the SQL standard, the notion of objects in the same schema being owned by different users does
not exist. Moreover, some implementations do not allow you to create schemas that have a different
name than their owner. In fact, the concepts of schema and user are nearly equivalent in a database
system that implements only the basi ¢c schema support specified in the standard. Therefore, many users
consider qualified namesto really consist of user _nane. t abl e_nane. Thisis how PostgreSQL
will effectively behave if you create a per-user schemafor every user.

82

Data Definition

Also, there is no concept of apubl i ¢ schemain the SQL standard. For maximum conformance to
the standard, you should not use the publ i ¢ schema.

Of course, some SQL database systems might not implement schemas at all, or provide namespace
support by alowing (possibly limited) cross-database access. If you need to work with those systems,
then maximum portability would be achieved by not using schemas at all.

5.9. Inheritance

PostgreSQL implements table inheritance, which can be a useful tool for database designers.
(SQL:1999 and later define atypeinheritance feature, which differsin many respectsfrom the features
described here.)

Let's start with an example: suppose we aretrying to build adatamodel for cities. Each state has many
cities, but only one capital. We want to be able to quickly retrieve the capital city for any particular
state. This can be done by creating two tables, one for state capitals and one for cities that are not
capitals. However, what happens when we want to ask for data about acity, regardless of whether itis
acapital or not? The inheritance feature can help to resolve this problem. We definethecapi t al s
table so that it inheritsfromci ti es:

CREATE TABLE cities (

nane t ext,
popul ati on fl oat,
altitude i nt -- in feet

)

CREATE TABLE capitals (
state char (2)
) INHERI TS (cities);

Inthis case, the capi t al s tableinheritsall the columns of its parent table, ci t i es. State capitals
also have an extracolumn, st at e, that shows their state.

In PostgreSQL., a table can inherit from zero or more other tables, and a query can reference either
all rows of atable or all rows of atable plus al of its descendant tables. The latter behavior is the
default. For example, the following query finds the names of all cities, including state capitals, that
arelocated at an altitude over 500 feet:

SELECT nane, altitude
FROM ci ti es
VWHERE al titude > 500;

Given the sample data from the PostgreSQL tutorial (see Section 2.1), this returns:

name | altitude
___________ N,
Las Vegas | 2174
Mari posa | 1953
Madi son | 845

On the other hand, the following query finds all the cities that are not state capitals and are situated
at an altitude over 500 feet:

SELECT nane, altitude
FROM ONLY cities

83

Data Definition

VWHERE al titude > 500;

nane | altitude
___________ .
Las Vegas | 2174
Mari posa | 1953

Here the ONLY keyword indicates that the query should apply only to ci t i es, and not any tables
below ci ti es in the inheritance hierarchy. Many of the commands that we have already discussed
— SELECT, UPDATE and DELETE — support the ONLY keyword.

You can also write the table name with a trailing * to explicitly specify that descendant tables are
included:

SELECT nane, altitude
FROM ci ti es*
VWHERE al ti tude > 500;

Writing * is not necessary, since this behavior is always the default. However, this syntax is till
supported for compatibility with older releases where the default could be changed.

In some cases you might wish to know which table aparticular row originated from. Thereisasystem
column called t abl eoi d in each table which can tell you the originating table:

SELECT c.tableoid, c.nane, c.altitude
FROM cities c
VWHERE c. altitude > 500;

which returns:

tabl eoid | nanme | altitude
__________ e
139793 | Las Vegas | 2174
139793 | Mariposa | 1953
139798 | Madi son | 845

(If you try to reproduce this example, you will probably get different numeric OIDs.) By doing ajoin
with pg_cl ass you can see the actual table names:

SELECT p.rel nane, c.nane, c.altitude
FROM cities ¢, pg_class p
WHERE c. al titude > 500 AND c.tabl eoid = p.oid,;

which returns;

rel nane | nane | altitude
__________ e
cities | Las Vegas | 2174
cities | Mariposa | 1953
capitals | Madison | 845

Another way to get the same effect isto usether egcl ass diastype, which will print the table OID
symbolically:

Data Definition

SELECT c.tabl eoi d::regclass, c.nane, c.altitude
FROM cities ¢
WHERE c. al titude > 500;

Inheritance does not automatically propagate data from | NSERT or COPY commands to other tables
in the inheritance hierarchy. In our example, the following | NSERT statement will fail:

I NSERT I NTO cities (name, popul ation, altitude, state)
VALUES (' Al bany', NULL, NULL, 'NY');

We might hope that the data would somehow be routed to the capi t al s table, but this does not
happen: | NSERT alwaysinsertsinto exactly the table specified. In some casesit is possibleto redirect
the insertion using a rule (see Chapter 41). However that does not help for the above case because
theci ti es table does not contain the column st at e, and so the command will be rejected before
the rule can be applied.

All check constraints and not-null constraints on a parent table are automatically inherited by its
children, unless explicitly specified otherwise with NO | NHERI T clauses. Other types of constraints
(unique, primary key, and foreign key constraints) are not inherited.

A table can inherit from more than one parent table, in which case it has the union of the columns
defined by the parent tables. Any columns declared in the child tabl€'s definition are added to these.
If the same column name appears in multiple parent tables, or in both a parent table and the child's
definition, then these columns are“ merged” so that thereisonly one such columninthechildtable. To
be merged, columns must have the same datatypes, elsean error israised. Inheritable check constraints
and not-null constraints are merged in asimilar fashion. Thus, for example, amerged column will be
marked not-null if any one of the column definitionsit came fromismarked not-null. Check constraints
are merged if they have the same name, and the merge will fail if their conditions are different.

Table inheritance istypically established when the child table is created, using the | NHERI TS clause
of the CREATE TABLE statement. Alternatively, a table which is already defined in a compatible
way can have anew parent relationship added, using thel NHERI T variant of ALTER TABLE. To do
this the new child table must aready include columns with the same names and types as the columns
of the parent. It must also include check constraints with the same names and check expressions as
those of the parent. Similarly aninheritancelink can be removed from achild usingthe NO | NHERI T
variant of ALTER TABLE. Dynamically adding and removing inheritance linkslike this can be useful
when the inheritance relationship is being used for table partitioning (see Section 5.10).

One convenient way to create a compatible table that will later be made a new child is to use the
LI KE clausein CREATE TABLE. Thiscreatesanew table with the same columns as the source table.
If there are any CHECK constraints defined on the source table, the | NCLUDI NG CONSTRAI NTS
option to LI KE should be specified, as the new child must have constraints matching the parent to
be considered compatible.

A parent table cannot be dropped while any of its children remain. Neither can columns or check
constraints of child tables be dropped or altered if they are inherited from any parent tables. If you
wish to remove atable and all of its descendants, one easy way is to drop the parent table with the
CASCADE option (see Section 5.13).

ALTER TABLE will propagate any changesin column datadefinitionsand check constraintsdown the
inheritance hierarchy. Again, dropping columns that are depended on by other tablesis only possible
when using the CASCADE option. ALTER TABLE follows the same rules for duplicate column
merging and rejection that apply during CREATE TABLE.

Inherited queries perform access permission checks on the parent table only. Thus, for example,
granting UPDATE permission on the citi es table implies permission to update rows in the
capi t al s table as well, when they are accessed through ci ti es. This preserves the appearance
that the data is (also) in the parent table. But the capi t al s table could not be updated directly

85

Data Definition

5.9.1.

5.10.

without an additional grant. In asimilar way, the parent table's row security policies (see Section 5.7)
are applied to rows coming from child tables during an inherited query. A child table's policies, if
any, are applied only when it is the table explicitly named in the query; and in that case, any policies
attached to its parent(s) are ignored.

Foreign tables (see Section 5.11) can also be part of inheritance hierarchies, either as parent or child
tables, just as regular tables can be. If a foreign table is part of an inheritance hierarchy then any
operations not supported by the foreign table are not supported on the whole hierarchy either.

Caveats

Note that not all SQL commands are able to work on inheritance hierarchies. Commands that are used
for dataquerying, datamodification, or schemamaodification (e.g., SELECT, UPDATE, DELETE, most
variants of ALTER TABLE, but not | NSERT or ALTER TABLE ... RENAME) typically default
to including child tables and support the ONLY notation to exclude them. Commands that do database
maintenance and tuning (e.g., REI NDEX, VACUUM) typically only work onindividual, physical tables
and do not support recursing over inheritance hierarchies. The respective behavior of each individual
command is documented in its reference page (SQL Commands).

A seriouslimitation of theinheritance featureisthat indexes (including unique constraints) and foreign
key constraints only apply to single tables, not to their inheritance children. This s true on both the
referencing and referenced sides of aforeign key constraint. Thus, in the terms of the above example:

« If we declared ci ti es.nane to be UNI QUE or a PRI MARY KEY, this would not stop the
capi t al s tablefrom having rows with names duplicating rowsinci t i es. And those duplicate
rowswould by default show upinqueriesfromci t i es. Infact, by default capi t al s would have
no unique constraint at all, and so could contain multiple rows with the same name. Y ou could add
aunique constraint to capi t al s, but thiswould not prevent duplication comparedtoci ti es.

e Similarly, if wewereto specify that ci t i es.name REFERENCES some other table, thisconstraint
would not automatically propagatetocapi t al s. Inthiscaseyou couldwork around it by manually
adding the same REFERENCES constraint to capi t al s.

» Specifying that another table's column REFERENCES citi es(nane) would alow the other
table to contain city names, but not capital names. There is no good workaround for this case.

These deficiencies will probably be fixed in some future release, but in the meantime considerable
careis needed in deciding whether inheritance is useful for your application.

Table Partitioning

PostgreSQL supports basic table partitioning. This section describes why and how to implement
partitioning as part of your database design.

5.10.1. Overview

Partitioning refersto splitting what islogically onelargetableinto smaller physical pieces. Partitioning
can provide several benefits:

* Query performance can be improved dramatically in certain situations, particularly when most of
the heavily accessed rows of the table are in asingle partition or a small number of partitions. The
partitioning substitutes for leading columns of indexes, reducing index size and making it more
likely that the heavily-used parts of the indexes fit in memory.

» When queries or updates access a large percentage of a single partition, performance can be
improved by taking advantage of sequential scan of that partition instead of using an index and
random access reads scattered across the whole table.

86

Data Definition

 Bulk loads and del etes can be accomplished by adding or removing partitions, if that requirement is
planned into the partitioning design. Doing ALTER TABLE DETACH PARTI TI ON or dropping
an individual partition using DROP TABLE is far faster than a bulk operation. These commands
also entirely avoid the VACUUMoverhead caused by abulk DELETE.

» Seldom-used data can be migrated to cheaper and slower storage media.

The benefitswill normally be worthwhile only when atable would otherwise be very large. The exact
point at which a table will benefit from partitioning depends on the application, although a rule of
thumb is that the size of the table should exceed the physical memory of the database server.

PostgreSQL offers built-in support for the following forms of partitioning:
Range Partitioning

Thetableis partitioned into “ranges’ defined by akey column or set of columns, with no overlap
between the ranges of values assigned to different partitions. For example, one might partition by
date ranges, or by ranges of identifiers for particular business objects.

List Partitioning
Thetableis partitioned by explicitly listing which key values appear in each partition.
Hash Partitioning

Thetableis partitioned by specifying amodulus and aremainder for each partition. Each partition
will hold the rows for which the hash value of the partition key divided by the specified modulus
will produce the specified remainder.

If your application needsto use other forms of partitioning not listed above, alternative methods such
asinheritance and UNI ON ALL views can be used instead. Such methods offer flexibility but do not
have some of the performance benefits of built-in declarative partitioning.

5.10.2. Declarative Partitioning

PostgreSQL offers away to specify how to divide atable into pieces called partitions. The table that
isdivided is referred to as a partitioned table. The specification consists of the partitioning method
and alist of columns or expressions to be used as the partition key.

All rowsinserted into a partitioned table will be routed to one of the partitions based on the value of
the partition key. Each partition has a subset of the data defined by its partition bounds. The currently
supported partitioning methods are range, list, and hash.

Partitions may themselves be defined as partitioned tables, using what is called sub-partitioning.
Partitions may have their own indexes, constraints and default values, distinct from those of other
partitions. See CREATE TABLE for more details on creating partitioned tables and partitions.

It is not possible to turn a regular table into a partitioned table or vice versa. However, it is possible
to add aregular or partitioned table containing data as a partition of a partitioned table, or remove a
partition from a partitioned table turning it into a standalone table; see ALTER TABLE to learn more
about the ATTACH PARTI TI ONand DETACH PARTI TI ON sub-commands.

Individual partitionsare linked to the partitioned table with inheritance behind-the-scenes; however, it
is not possible to use some of the generic features of inheritance (discussed below) with declaratively
partitioned tables or their partitions. For example, a partition cannot have any parents other than the
partitioned table it is a partition of, nor can a regular table inherit from a partitioned table making
the latter its parent. That means partitioned tables and their partitions do not participate in inheritance
with regular tables. Since a partition hierarchy consisting of the partitioned table and its partitionsis

87

Data Definition

still an inheritance hierarchy, all the normal rules of inheritance apply as described in Section 5.9 with
some exceptions, most notably:

» Both CHECK and NOT NULL constraints of a partitioned table are always inherited by al its
partitions. CHECK constraints that are marked NO | NHERI T are not allowed to be created on
partitioned tables.

» Using ONLY to add or drop a constraint on only the partitioned table is supported as long as there
are no partitions. Once partitions exist, using ONLY will result in an error as adding or dropping
constraints on only the partitioned table, when partitions exist, isnot supported. Instead, constraints
on the partitions themselves can be added and (if they are not present in the parent table) dropped.

» As a partitioned table does not have any data directly, attempts to use TRUNCATE ONLY on a
partitioned table will always return an error.

* Partitions cannot have columnsthat are not present in the parent. It isnot possibleto specify columns
when creating partitionswith CREATE TABLE, nor isit possible to add columnsto partitions after-
the-fact using ALTER TABLE. Tables may be added as a partition with ALTER TABLE ...
ATTACH PARTI TI ONonly if their columns exactly match the parent, including any oi d column.

* You cannot drop the NOT NULL constraint on a partition's column if the constraint is present in
the parent table.

Partitions can also be foreign tables, although they have some limitations that normal tables do not;
see CREATE FOREIGN TABLE for more information.

Updating the partition key of a row might cause it to be moved into a different partition where this
row satisfies the partition bounds.

5.10.2.1. Example

Suppose we are constructing a database for alarge ice cream company. The company measures peak
temperatures every day as well asice cream salesin each region. Conceptually, we want atable like:

CREATE TABLE neasur enent (

city_ id int not null,
| ogdat e date not null,
peakt enmp int,

uni t sal es i nt

)

We know that most queries will access just the last week's, month's or quarter's data, since the main
use of thistable will be to prepare online reports for management. To reduce the amount of old data
that needs to be stored, we decide to only keep the most recent 3 yearsworth of data. At the beginning
of each month wewill remove the oldest month's data. In this situation we can use partitioning to help
us meet al of our different requirements for the measurements table.

To use declarative partitioning in this case, use the following steps:
1. Create measur enent table as a partitioned table by specifying the PARTI TI ON BY clause,

which includes the partitioning method (RANCE in this case) and the list of column(s) to use as
the partition key.

CREATE TABLE neasurenent (

city id int not null,
| ogdat e date not null,
peakt enp int,

88

Data Definition

uni t sal es i nt
) PARTI TI ON BY RANGE (| ogdate);

You may decide to use multiple columns in the partition key for range partitioning, if desired.
Of course, this will often result in a larger number of partitions, each of which is individually
smaller. On the other hand, using fewer columns may lead to a coarser-grained partitioning criteria
with smaller number of partitions. A query accessing the partitioned table will have to scan fewer
partitions if the conditions involve some or al of these columns. For example, consider a table
range partitioned using columns| ast nanme and f i r st nane (in that order) as the partition key.

. Create partitions. Each partition's definition must specify the bounds that correspond to the
partitioning method and partition key of the parent. Note that specifying bounds such that the new
partition's values will overlap with those in one or more existing partitions will cause an error.
Inserting data into the parent table that does not map to one of the existing partitions will cause an
error; an appropriate partition must be added manually.

Partitions thus created are in every way normal PostgreSQL tables (or, possibly, foreign tables). It
is possible to specify atablespace and storage parameters for each partition separately.

It isnot necessary to create table constraints describing partition boundary condition for partitions.
Instead, partition constraints are generated implicitly from the partition bound specification
whenever there is need to refer to them.

CREATE TABLE neasurenment _y2006nD2 PARTI TI ON OF neasur enment
FOR VALUES FROM (' 2006-02-01") TO (' 2006-03-01");

CREATE TABLE neasurenment _y2006nD3 PARTI TI ON OF neasur ement
FOR VALUES FROM (' 2006-03-01") TO (' 2006-04-01");

CREATE TABLE neasurenent _y2007ml1l PARTI TI ON OF neasur enment
FOR VALUES FROM (' 2007-11-01") TO ('2007-12-01");

CREATE TABLE neasurenment _y2007ml2 PARTI TI ON OF neasur enment
FOR VALUES FROM (' 2007-12-01') TO ('2008-01-01")
TABLESPACE f astt abl espace;

CREATE TABLE neasurenment _y2008nD1 PARTI TI ON OF neasur enment
FOR VALUES FROM (' 2008-01-01') TO ('2008-02-01")
WTH (paral l el _workers = 4)
TABLESPACE f astt abl espace;

Toimplement sub-partitioning, specify the PARTI TI ON BY clausein the commandsused to create
individual partitions, for example:

CREATE TABLE neasurenent _y2006nD2 PARTI TI ON OF neasur enent
FOR VALUES FROM (' 2006-02-01') TO ('2006-03-01")
PARTI TI ON BY RANGE (peaktenp);

After creating partitions of measur ement _y2006n02, any datainserted into neasur enment
that is mapped to nmeasurenent _y2006n02 (or data that is directly inserted into
nmeasur enent _y2006nm02, provided it satisfiesits partition constraint) will befurther redirected
to one of its partitions based on the peakt enp column. The partition key specified may overlap
with the parent's partition key, although care should be taken when specifying the bounds of a sub-
partition such that the set of data it accepts constitutes a subset of what the partition's own bounds
allows; the system does not try to check whether that's really the case.

. Create an index on the key column(s), as well as any other indexes you might want, on the
partitioned table. (The key index is not strictly necessary, but in most scenariosit is helpful.) This

89

Data Definition

automatically creates one index on each partition, and any partitions you create or attach later will
also contain the index.

CREATE | NDEX ON neasur enent (| ogdate);
4. Ensure that the enable partition pruning configuration parameter is not disabled in
post gresql . conf . Ifitis, querieswill not be optimized as desired.

In the above example we would be creating a new partition each month, so it might be wise to write
a script that generates the required DDL automatically.

5.10.2.2. Partition Maintenance

Normally the set of partitions established when initially defining the table are not intended to remain
gtatic. It is common to want to remove old partitions of data and periodically add new partitions for
new data. One of the most important advantages of partitioning is precisely that it allowsthis otherwise
painful task to be executed nearly instantaneously by manipulating the partition structure, rather than
physically moving large amounts of data around.

The simplest option for removing old data is to drop the partition that is no longer necessary:

DROP TABLE neasur enent _y2006n02;

This can very quickly delete millions of records because it doesn't have to individually delete every
record. Note however that the above command requires taking an ACCESS EXCLUSI VE lock on
the parent table.

Another option that is often preferable is to remove the partition from the partitioned table but retain
accessto it asatableinits own right:

ALTER TABLE neasur enent DETACH PARTI TI ON nmeasur enent _y2006n0D2;

This alows further operations to be performed on the data before it is dropped. For example, thisis
often auseful timeto back up the datausing COPY, pg_dump, or similar tools. It might also be auseful
time to aggregate data into smaller formats, perform other data manipulations, or run reports.

Similarly we can add a new partition to handle new data. We can create an empty partition in the
partitioned table just as the original partitions were created above:

CREATE TABLE neasur enent _y2008nD2 PARTI TI ON OF neasur enment
FOR VALUES FROM (' 2008-02-01') TO ('2008-03-01")
TABLESPACE f astt abl espace;

As an aternative, it is sometimes more convenient to create the new table outside the partition
structure, and make it a proper partition later. This alows the data to be loaded, checked, and
transformed prior to it appearing in the partitioned table:

CREATE TABLE neasur enment _y2008n0D2
(LI KE nmeasurenment | NCLUDI NG DEFAULTS | NCLUDI NG CONSTRAI NTS)
TABLESPACE f astt abl espace;

ALTER TABLE neasur enent _y2008nD2 ADD CONSTRAI NT y2008nD2
CHECK (| ogdate >= DATE ' 2008-02- 01" AND | ogdate < DATE
' 2008-03-01");

\ copy neasurenent _y2008n02 from ' measurenment _y2008nD2'

90

Data Definition

-- possibly sonme other data preparation work

ALTER TABLE neasurenment ATTACH PARTI TI ON nmeasur ement _y2008n02
FOR VALUES FROM (' 2008-02-01") TO ('2008-03-01");

Beforerunningthe ATTACH PARTI TI ONcommand, it isrecommended to create a CHECK constraint
on the table to be attached describing the desired partition constraint. That way, the system will be
able to skip the scan to validate the implicit partition constraint. Without such a constraint, the table
will be scanned to validate the partition constraint while holding an ACCESS EXCLUSI VE lock on
the parent table. One may then drop the constraint after ATTACH PARTI Tl ONis finished, because
it is no longer necessary.

5.10.2.3. Limitations

The following limitations apply to partitioned tables:

e There is no way to create an exclusion constraint spanning all partitions; it is only possible to
constrain each leaf partition individually.

» While primary keys are supported on partitioned tables, foreign keys referencing partitioned
tables are not supported. (Foreign key references from a partitioned table to some other table are
supported.)

» When an UPDATE causes a row to move from one partition to another, there is a chance that
another concurrent UPDATE or DELETE will get a serialization failure error. Suppose session 1is
performing an UPDATE on a partition key, and meanwhile a concurrent session 2 for which this
row is visible performs an UPDATE or DELETE operation on this row. In such case, session 2's
UPDATE or DELETE, will detect the row movement and raise a serialization failure error (which
alwaysreturnswith an SQLSTATE code '40001"). Applications may wish to retry the transaction if
this occurs. Inthe usual case where the table is not partitioned, or where there is no row movement,
session 2 would have identified the newly updated row and carried out the UPDATE/DELETE on
this new row version.

» BEFORE ROWtriggers, if necessary, must be defined on individua partitions, not the partitioned
table.

e Mixing temporary and permanent relations in the same partition tree is not allowed. Hence, if
the partitioned table is permanent, so must be its partitions and likewise if the partitioned table is
temporary. When using temporary relations, all members of the partition tree have to be from the
same session.

5.10.3. Implementation Using Inheritance

While the built-in declarative partitioning is suitable for most common use cases, there are some
circumstances where a more flexible approach may be useful. Partitioning can be implemented using
tableinheritance, which allows for several features not supported by declarative partitioning, such as:

* For declarative partitioning, partitions must have exactly the same set of columns asthe partitioned
table, whereas with table inheritance, child tables may have extra columns not present in the parent.

» Tableinheritance alows for multiple inheritance.

 Declarative partitioning only supports range, list and hash partitioning, whereas table inheritance
alows data to be divided in a manner of the user's choosing. (Note, however, that if constraint
exclusion is unable to prune child tables effectively, query performance might be poor.)

» Some operations require a stronger lock when using declarative partitioning than when using
table inheritance. For example, adding or removing a partition to or from a partitioned table
requires taking an ACCESS EXCLUSI VE lock on the parent table, whereas a SHARE UPDATE
EXCLUSI VE lock is enough in the case of regular inheritance.

91

Data Definition

5.10.3.1. Example

We use the same measur enent table we used above. To implement partitioning using inheritance,
use the following steps:

1. Create the “master” table, from which al of the “child” tables will inherit. This table will contain
no data. Do not define any check constraints on this table, unless you intend them to be applied
equally to al child tables. There is no point in defining any indexes or unique constraints on it,
either. For our example, the master table isthe measur enent table as originally defined.

2. Create severa “child” tablesthat each inherit from the master table. Normally, these tableswill not
add any columns to the set inherited from the master. Just as with declarative partitioning, these
tables arein every way normal PostgreSQL tables (or foreign tables).

CREATE TABLE mneasur enent _y2006n02 () | NHERI TS (rnmeasurenent);
CREATE TABLE measur enent _y2006n03 () |INHERI TS (rmeasurenent);

CREATE TABLE measur enent _y2007nill () |INHERI TS (rmeasurenent);
CREATE TABLE mneasur enent _y2007nil2 () |INHERI TS (rmeasurenent);
CREATE TABLE measur enent _y2008n01 () |INHERI TS (rnmeasurenent);

3. Add non-overlapping table constraints to the child tables to define the allowed key valuesin each.

Typical examples would be:

CHECK (x = 1)

CHECK (county IN ('Oxfordshire', 'Buckinghanshire',
"Warwi ckshire'))

CHECK (outletID >= 100 AND outletID < 200)

Ensure that the constraints guarantee that there is no overlap between the key values permitted in
different child tables. A common mistakeis to set up range constraints like:

CHECK (outlet! D BETWEEN 100 AND 200)
CHECK (outlet| D BETWEEN 200 AND 300)

Thisiswrong sinceit is not clear which child table the key value 200 belongsin.

It would be better to instead create child tables as follows:

CREATE TABLE neasur ement _y2006n02 (
CHECK (| ogdate >= DATE '2006-02-01' AND | ogdate < DATE
' 2006- 03-01')
) INHERI TS (rneasurenent);

CREATE TABLE measur enent _y2006n03 (
CHECK (| ogdate >= DATE ' 2006-03-01' AND | ogdate < DATE
' 2006- 04-01')
) INHERI TS (neasurenent);

CREATE TABLE neasurement _y2007nll (
CHECK (| ogdate >= DATE ' 2007-11-01'" AND | ogdate < DATE
'2007-12-01")
) INHERI TS (neasurenent);

CREATE TABLE neasurement _y2007nil2 (

92

Data Definition

CHECK (| ogdate >= DATE '2007-12-01' AND | ogdate < DATE
'2008-01-01')
) INHERI TS (neasurenent);

CREATE TABLE measur enent _y2008n01 (
CHECK (| ogdate >= DATE ' 2008-01-01' AND | ogdate < DATE
' 2008- 02-01')
) INHERI TS (neasurenent);
. For each child table, create an index on the key column(s), as well as any other indexes you might
want.

CREATE | NDEX neasur enent _y2006n02_| ogdat e ON neasur enment _y2006n02
(1 ogdate);

CREATE | NDEX neasur enent _y2006n03_| ogdat e ON nmeasur enment _y2006n03
(1 ogdate);

CREATE | NDEX neasur enent _y2007nll_| ogdat e ON nmeasurenment y2007nil
(1 ogdate);

CREATE | NDEX neasur enent _y2007nl2_| ogdat e ON neasur enment y2007ni2
(1 ogdate);

CREATE | NDEX neasur enent _y2008n01_| ogdat e ON neasur enment _y2008n01
(1 ogdate);

. Wewant our applicationto beabletosay | NSERT | NTO neasur enent ... and havethedata

be redirected into the appropriate child table. We can arrange that by attaching a suitable trigger

function to the master table. If datawill be added only to the latest child, we can use avery simple

trigger function:

CREATE OR REPLACE FUNCTI ON nmeasurenent _i nsert _trigger()

RETURNS TRI GGER AS $%

BEG N
| NSERT | NTO neasur enent _y2008n01 VALUES (NEW *);
RETURN NULL;

END;

$$

LANGUAGE pl pgsdl ;

After creating the function, we create atrigger which calls the trigger function:

CREATE TRI GGER i nsert_measurenent _tri gger
BEFORE | NSERT ON neasur enment
FOR EACH ROW EXECUTE FUNCTI ON rmeasurenent _i nsert _trigger();

We must redefine the trigger function each month so that it always pointsto the current child table.
The trigger definition does not need to be updated, however.

We might want to insert data and have the server automatically locate the child table into which
the row should be added. We could do this with a more complex trigger function, for example:

CREATE OR REPLACE FUNCTI ON neasurenment _insert _trigger()
RETURNS TRI GGER AS $$
BEG N

IF (NEW I ogdate >= DATE ' 2006- 02-01' AND

NEW | ogdat e < DATE ' 2006-03-01') THEN
I NSERT | NTO neasur enent _y2006n02 VALUES (NEW *);
ELSIF (NEW I ogdate >= DATE ' 2006- 03-01'" AND
NEW | ogdat e < DATE ' 2006- 04-01') THEN

93

Data Definition

I NSERT | NTO neasur enment _y2006n03 VALUES (NEW *);

ELSIF (NEW | ogdat e >= DATE ' 2008-01-01' AND
NEW | ogdat e < DATE ' 2008-02-01') THEN
| NSERT | NTO nmeasur enent _y2008nmD1 VALUES (NEW *);
ELSE
RAI SE EXCEPTION 'Date out of range. Fix the
measurenent _insert_trigger() function!';
END | F;
RETURN NULL;
END;
$$
LANGUAGE pl pgsdl ;

Thetrigger definition is the same as before. Note that each | F test must exactly match the CHECK
constraint for its child table.

While this function is more complex than the single-month case, it doesn't need to be updated as
often, since branches can be added in advance of being needed.

Note

In practice, it might be best to check the newest child first, if most inserts go into that child.
For simplicity, we have shown the trigger's tests in the same order asin other parts of this
example.

A different approach to redirecting inserts into the appropriate child table isto set up rules, instead
of atrigger, on the master table. For example:

CREATE RULE neasurenent _i nsert_y2006nmD2 AS
ON I NSERT TO measur enment WHERE
(logdate >= DATE ' 2006-02-01'" AND | ogdate < DATE
' 2006- 03-01")
DO | NSTEAD
| NSERT | NTO neasur enment _y2006n02 VALUES (NEW *);

CREATE RULE neasurenent _i nsert_y2008nmD1 AS
ON I NSERT TO measur enment WHERE
(| ogdate >= DATE ' 2008-01-01" AND | ogdate < DATE
' 2008- 02-01')
DO | NSTEAD
| NSERT | NTO neasur enent _y2008n01 VALUES (NEW *);

A rulehas significantly more overhead than atrigger, but the overhead is paid once per query rather
than once per row, so this method might be advantageous for bulk-insert situations. In most cases,
however, the trigger method will offer better performance.

Be aware that COPY ignoresrules. If you want to use COPY to insert data, you'll need to copy into
the correct child table rather than directly into the master. COPY does fire triggers, so you can use
it normally if you use the trigger approach.

Another disadvantage of the rule approach is that thereis no simple way to force an error if the set
of rules doesn't cover the insertion date; the data will silently go into the master table instead.

. Ensure that the constraint_exclusion configuration parameter is not disabled in
post gr esql . conf ; otherwise child tables may be accessed unnecessarily.

94

Data Definition

As we can see, a complex table hierarchy could require a substantial amount of DDL. In the above
example we would be creating a new child table each month, so it might be wise to write a script that
generates the required DDL automatically.

5.10.3.2. Maintenance for Inheritance Partitioning

To remove old data quickly, simply drop the child table that is no longer necessary:

DROP TABLE neasurenment _y2006n02;

To remove the child table from the inheritance hierarchy table but retain accessto it as atablein its
own right:

ALTER TABLE measurenment _y2006nmD2 NO | NHERI T neasur enent ;

To add a new child table to handle new data, create an empty child table just as the original children
were created above:

CREATE TABLE measur enent _y2008n02 (

CHECK (| ogdate >= DATE ' 2008-02-01' AND | ogdate < DATE
' 2008-03-01")
) INHERI TS (neasurenent);

Alternatively, one may want to create and populate the new child table before adding it to the table
hierarchy. This could allow data to be loaded, checked, and transformed before being made visible
to queries on the parent table.

CREATE TABLE neasur enment _y2008n0D2
(LI KE nmeasurenment | NCLUDI NG DEFAULTS | NCLUDI NG CONSTRAI NTS) ;
ALTER TABLE neasurenent _y2008nD2 ADD CONSTRAI NT y2008n0D2
CHECK (| ogdate >= DATE ' 2008-02-01' AND | ogdate < DATE
' 2008-03-01");
\ copy neasurenent _y2008n02 from ' measurenment _y2008nD2'
-- possibly sonme other data preparation work
ALTER TABLE neasurenment _y2008nD2 | NHERI T measur enent ;

5.10.3.3. Caveats

The following caveats apply to partitioning implemented using inheritance:

* Thereis no automatic way to verify that all of the CHECK constraints are mutually exclusive. It is
safer to create code that generates child tables and creates and/or modifies associated objects than
to write each by hand.

» Theschemes shown here assumethat the values of arow'skey column(s) never change, or at least do
not change enough to requireit to moveto another partition. An UPDATE that attemptsto do that will
fail because of the CHECK constraints. If you need to handle such cases, you can put suitable update
triggers on the child tables, but it makes management of the structure much more complicated.

* If you are using manual VACUUMor ANAL YZE commands, don't forget that you need to run them
on each child table individually. A command like:

ANALYZE neasurenent;

95

Data Definition

will only process the master table.

* | NSERT statements with ON CONFLI CT clauses are unlikely to work as expected, as the ON
CONFLI CT action is only taken in case of unique violations on the specified target relation, not
its child relations.

» Triggers or rules will be needed to route rows to the desired child table, unless the application is

explicitly aware of the partitioning scheme. Triggers may be complicated to write, and will be much
slower than the tuple routing performed internally by declarative partitioning.

5.10.4. Partition Pruning

Partition pruning is a query optimization technique that improves performance for declaratively
partitioned tables. As an example:

SET enabl e_partition_pruning = on; -- the default
SELECT count (*) FROM nmeasur enent WHERE | ogdat e >= DATE
' 2008-01-01';

Without partition pruning, the above query would scan each of the partitions of the measur enent

table. With partition pruning enabled, the planner will examine the definition of each partition and
prove that the partition need not be scanned because it could not contain any rows meeting the query's
WHERE clause. When the planner can provethis, it excludes (prunes) the partition from the query plan.

By using the EXPLAIN command and the enable partition_pruning configuration parameter, it's
possible to show the difference between a plan for which partitions have been pruned and one for
which they have not. A typical unoptimized plan for thistype of table setup is:

SET enabl e_partition_pruning = off;
EXPLAI N SELECT count (*) FROM nmeasur enent WHERE | ogdat e >= DATE
' 2008-01-01';
QUERY PLAN
Aggregate (cost=188.76..188.77 rows=1 wi dth=8)
-> Append (cost=0.00..181.05 rows=3085 wi dt h=0)
-> Seq Scan on neasurenent_y2006nD2 (cost=0.00..33.12
rows=617 wi dt h=0)
Filter: (logdate >= '2008-01-01'::date)
-> Seq Scan on neasurenent_y2006n0D3 (cost=0.00..33.12
rows=617 wi dt h=0)
Filter: (logdate >= '2008-01-01'::date)

-> Seq Scan on neasurenent_y2007nll (cost=0.00..33.12
rows=617 wi dt h=0)
Filter: (logdate >= '2008-01-01'::date)
-> Seq Scan on neasurenent_y2007nl2 (cost=0.00..33.12
rows=617 wi dt h=0)
Filter: (logdate >= '2008-01-01'::date)
-> Seq Scan on neasurenent_y2008nD1 (cost=0.00..33.12
rows=617 wi dt h=0)
Filter: (logdate >= '2008-01-01'::date)

Some or all of the partitions might use index scansinstead of full-table sequential scans, but the point
here is that there is no need to scan the older partitions at all to answer this query. When we enable
partition pruning, we get a significantly cheaper plan that will deliver the same answer:

96

Data Definition

SET enabl e_partition_pruning = on;
EXPLAI N SELECT count (*) FROM nmeasur enent WHERE | ogdat e >= DATE

' 2008-01-01';

QUERY PLAN
Aggregate (cost=37.75..37.76 rows=1 wi dt h=8)
-> Append (cost=0.00..36.21 rows=617 w dt h=0)
-> Seq Scan on neasurenent_y2008nD1 (cost=0.00..33.12
rows=617 wi dt h=0)
Filter: (logdate >= '2008-01-01'::date)

Note that partition pruning is driven only by the constraints defined implicitly by the partition keys,
not by the presence of indexes. Therefore it isn't necessary to define indexes on the key columns.
Whether an index needsto be created for agiven partition depends on whether you expect that queries
that scan the partition will generally scan a large part of the partition or just a small part. An index
will be helpful in the latter case but not the former.

Partition pruning can be performed not only during the planning of a given query, but aso during its
execution. Thisisuseful asit can allow more partitions to be pruned when clauses contain expressions
whose values are not known at query planning time; for example, parameters defined in a PREPARE
statement, using a value obtained from a subquery or using a parameterized value on the inner side of
anested loop join. Partition pruning during execution can be performed at any of the following times:

» During initialization of the query plan. Partition pruning can be performed here for parameter
values which are known during the initialization phase of execution. Partitions which are pruned
during this stage will not show up in the query's EXPLAI Nor EXPLAI N ANALYZE. It is possible
to determine the number of partitions which were removed during this phase by observing the
“Subplans Removed” property in the EXPLAI N output.

 During actual execution of the query plan. Partition pruning may also be performed here to remove
partitions using values which are only known during actual query execution. This includes values
from subqgueries and values from execution-time parameters such as those from parameterized
nested loop joins. Since the value of these parameters may change many times during the execution
of the query, partition pruning is performed whenever one of the execution parametersbeing used by
partition pruning changes. Determining if partitions were pruned during this phase requires careful
inspection of the| oops property in the EXPLAI N ANAL YZE output. Subplans corresponding to
different partitions may have different values for it depending on how many times each of them
was pruned during execution. Some may be shown as (never execut ed) if they were pruned
every time.

Partition pruning can be disabled using the enable_partition_pruning setting.

Note

Currently, pruning of partitions during the planning of an UPDATE or DELETE command
is implemented using the constraint exclusion method (however, it is controlled by the
enabl e_partition_pruning rather than constrai nt _excl usi on) — see the
following section for details and caveats that apply.

Also, execution-time partition pruning currently only occurs for the Append node type, not
Mer geAppend.

Both of these behaviors are likely to be changed in afuture release of PostgreSQL.

5.10.5. Partitioning and Constraint Exclusion

97

Data Definition

5.11

Constraint exclusion is a query optimization technique similar to partition pruning. While it is
primarily used for partitioning implemented using the legacy inheritance method, it can be used for
other purposes, including with declarative partitioning.

Constraint exclusion worksin avery similar way to partition pruning, except that it uses each table's
CHECK constraints — which gives it its name — whereas partition pruning uses the tabl€e's partition
bounds, which exist only in the case of declarative partitioning. Another difference is that constraint
exclusionisonly applied at plan time; thereis no attempt to remove partitions at execution time.

The fact that constraint exclusion uses CHECK constraints, which makes it slow compared to partition
pruning, can sometimes be used as an advantage: because constraints can be defined even on
declaratively-partitioned tables, in addition to their internal partition bounds, constraint exclusion may
be able to elide additional partitions from the query plan.

The default (and recommended) setting of constraint_exclusion is neither on nor of f, but an
intermediate setting called par ti ti on, which causes the technique to be applied only to queries
that are likely to be working on inheritance partitioned tables. The on setting causes the planner to
examine CHECK constraintsin all queries, even simple ones that are unlikely to benefit.

The following caveats apply to constraint exclusion:

» Congtraint exclusion is only applied during query planning; unlike partition pruning, it cannot be
applied during query execution.

» Constraint exclusion only works when the query's WHERE clause contains constants (or externally
supplied parameters). For example, a comparison against a non-immutable function such as
CURRENT_TI MESTAMP cannot be optimized, since the planner cannot know which child table the
function's value might fall into at run time.

» Keep the partitioning constraints simple, else the planner may not be able to prove that child
tables might not need to be visited. Use simple equality conditions for list partitioning, or smple
range tests for range partitioning, as illustrated in the preceding examples. A good rule of thumb
is that partitioning constraints should contain only comparisons of the partitioning column(s) to
constants using B-tree-indexable operators, because only B-tree-indexable column(s) are allowed
in the partition key.

» All congtraints on all children of the parent table are examined during constraint exclusion, so
large numbers of children are likely to increase query planning time considerably. So the legacy
inheritance based partitioning will work well with up to perhaps a hundred child tables; don't try
to use many thousands of children.

Foreign Data

PostgreSQL implements portions of the SQL/MED specification, allowing you to access data that
resides outside PostgreSQL using regular SQL queries. Such dataisreferred to asforeign data. (Note
that this usage is not to be confused with foreign keys, which are a type of constraint within the
database.)

Foreign data is accessed with help from a foreign data wrapper. A foreign data wrapper is alibrary
that can communicate with an external data source, hiding the details of connecting to the data source
and obtaining datafrom it. There are some foreign datawrappersavailableascont r i b modules; see
Appendix F. Other kinds of foreign data wrappers might be found as third party products. If none of
the existing foreign data wrappers suit your needs, you can write your own; see Chapter 57.

To access foreign data, you need to create a foreign server object, which defines how to connect to
a particular external data source according to the set of options used by its supporting foreign data
wrapper. Then you need to create one or more foreign tables, which define the structure of the remote
data. A foreign table can be used in queries just like anormal table, but aforeign table has no storage
inthe PostgreSQL server. Whenever it isused, PostgreSQL asksthe foreign datawrapper to fetch data
from the external source, or transmit datato the external source in the case of update commands.

98

Data Definition

5.12.

5.13

Accessing remote data may require authenticating to the external data source. This information can
be provided by a user mapping, which can provide additional data such as user names and passwords
based on the current PostgreSQL role.

For additional information, see CREATE FOREIGN DATA WRAPPER, CREATE SERVER,
CREATE USER MAPPING, CREATE FOREIGN TABLE, and IMPORT FOREIGN SCHEMA.

Other Database Objects

Tables are the central objectsin arelational database structure, because they hold your data. But they
are not the only objectsthat exist in adatabase. Many other kinds of objects can be created to make the
use and management of the data more efficient or convenient. They are not discussed in this chapter,
but we give you alist here so that you are aware of what is possible;

* Views

 Functions, procedures, and operators
» Datatypes and domains

» Triggers and rewrite rules

Detailed information on these topics appearsin Part V.

Dependency Tracking

When you create complex database structures involving many tables with foreign key constraints,
views, triggers, functions, etc. you implicitly create a net of dependencies between the objects. For
instance, a table with aforeign key constraint depends on the table it references.

To ensure the integrity of the entire database structure, PostgreSQL makes sure that you cannot drop
objects that other objects still depend on. For example, attempting to drop the products table we
considered in Section 5.3.5, with the orders table depending on it, would result in an error message
likethis:

DROP TABLE products;

ERROR: cannot drop table products because ot her objects depend on
it

DETAIL: constraint orders_product_no_fkey on table orders depends
on table products

HI NT: Use DROP ... CASCADE to drop the dependent objects too.

Theerror message containsauseful hint: if you do not want to bother deleting all the dependent objects
individually, you can run:

DROP TABLE products CASCADE;

and all the dependent objects will be removed, as will any objects that depend on them, recursively.
In this case, it doesn't remove the orders table, it only removes the foreign key constraint. It stops
there because nothing depends on the foreign key constraint. (If you want to check what DROP . . .
CASCADE will do, run DROP without CASCADE and read the DETAI L output.)

Almost all DROP commands in PostgreSQL support specifying CASCADE. Of course, the nature of
the possible dependencies varies with the type of the object. You can also write RESTRI CT instead
of CASCADE to get the default behavior, which is to prevent dropping objects that any other objects
depend on.

99

Data Definition

Note

According to the SQL standard, specifying either RESTRI CT or CASCADE is required in
a DROP command. No database system actually enforces that rule, but whether the default
behavior is RESTRI CT or CASCADE varies across systems.

If a DROP command lists multiple objects, CASCADE is only required when there are dependencies
outside the specified group. For example, when saying DROP TABLE t abl, tab2 theexistence
of aforeign key referencingt ab1 fromt ab2 would not mean that CASCADE is needed to succeed.

For user-defined functions, PostgreSQL tracks dependencies associated with a function's externally-
visibleproperties, such asitsargument and result types, but not dependenciesthat could only be known
by examining the function body. As an example, consider this situation:

CREATE TYPE rai nbow AS ENUM ('red', 'orange', 'vyellow,
"green', 'blue', 'purple');

CREATE TABLE ny_col ors (col or rai nbow, note text);

CREATE FUNCTI ON get _col or_note (rai nbow) RETURNS text AS
' SELECT note FROM ny_col ors WHERE col or = $1'
LANGUACE SQ.;

(See Section 38.5 for an explanation of SQL-language functions.) PostgreSQL will be aware that the
get _col or _not e function dependsonther ai nbowtype: dropping thetypewould force dropping
the function, because its argument type would no longer be defined. But PostgreSQL will not consider
get _col or _not e todependontheny_col or s table, and sowill not drop thefunctionif thetable
isdropped. While there are disadvantages to this approach, there are also benefits. The function is still
valid in some sense if the table is missing, though executing it would cause an error; creating a new
table of the same name would allow the function to work again.

100

Chapter 6. Data Manipulation

The previous chapter discussed how to create tables and other structures to hold your data. Now it is
time to fill the tables with data. This chapter covers how to insert, update, and delete table data. The
chapter after thiswill finally explain how to extract your long-lost data from the database.

6.1. Inserting Data

When atableis created, it contains no data. The first thing to do before a database can be of much use
isto insert data. Data is conceptually inserted one row at atime. Of course you can aso insert more
than one row, but there is no way to insert less than one row. Even if you know only some column
values, a complete row must be created.

To create anew row, use the INSERT command. The command requires the table name and column
values. For example, consider the products table from Chapter 5:

CREATE TABLE products (
product _no i nteger,
name text,
price nuneric

)

An example command to insert arow would be:

I NSERT | NTO products VALUES (1, 'Cheese', 9.99);

The datavalues are listed in the order in which the columns appear in the table, separated by commas.
Usually, the data values will be literals (constants), but scalar expressions are also allowed.

The above syntax has the drawback that you need to know the order of the columnsin the table. To
avoid thisyou can asolist the columns explicitly. For example, both of the following commands have
the same effect as the one above:

I NSERT | NTO products (product_no, nane, price) VALUES (1, 'Cheese',

9.99);
I NSERT | NTO products (name, price, product_no) VALUES (' Cheese',
9.99, 1);

Many users consider it good practice to always list the column names.

If you don't have valuesfor all the columns, you can omit some of them. In that case, the columns will
be filled with their default values. For example;

| NSERT | NTO products (product_no, name) VALUES (1, 'Cheese');

I NSERT | NTO products VALUES (1, 'Cheese');

The second form is a PostgreSQL extension. It fills the columns from the left with as many values as
are given, and the rest will be defaulted.

For clarity, you can also request default values explicitly, for individual columnsor for the entire row:

I NSERT | NTO products (product_no, nanme, price) VALUES (1, 'Cheese',
DEFAULT) ;

101

Data Manipulation

I NSERT | NTO products DEFAULT VALUES,;

Y ou can insert multiple rowsin a single command:

I NSERT | NTO products (product_no, nane, price) VALUES
(1, 'Cheese', 9.99),
(2, 'Bread', 1.99),
(3, "MIk', 2.99);

It isalso possible to insert the result of a query (which might be no rows, one row, or many rows):

I NSERT | NTO products (product_no, name, price)
SELECT product_no, name, price FROM new_products
WHERE r el ease_date = 'today';

This provides the full power of the SQL query mechanism (Chapter 7) for computing the rows to be
inserted.

Tip

When inserting a lot of data at the same time, consider using the COPY command. It is not
as flexible as the INSERT command, but is more efficient. Refer to Section 14.4 for more
information on improving bulk loading performance.

6.2. Updating Data

The modification of data that is already in the database is referred to as updating. Y ou can update
individual rows, al therowsin atable, or asubset of all rows. Each column can be updated separately;
the other columns are not affected.

To update existing rows, use the UPDATE command. This requires three pieces of information:

1. The name of the table and column to update
2. The new value of the column
3. Which row(s) to update

Recall from Chapter 5 that SQL does nat, in general, provide aunique identifier for rows. Thereforeit
is not always possible to directly specify which row to update. Instead, you specify which conditions
arow must meet in order to be updated. Only if you have a primary key in the table (independent
of whether you declared it or not) can you reliably address individual rows by choosing a condition
that matches the primary key. Graphical database access toolsrely on thisfact to allow you to update
rows individually.

For example, this command updates all products that have a price of 5 to have a price of 10:

UPDATE products SET price = 10 WHERE price = 5;

This might cause zero, one, or many rows to be updated. It is not an error to attempt an update that
does not match any rows.

Let'slook at that command in detail. First is the key word UPDATE followed by the table name. As
usual, the table name can be schema-qualified, otherwise it is looked up in the path. Next is the key
word SET followed by the column name, an equal sign, and the new column value. The new column
value can be any scalar expression, not just a constant. For example, if you want to raise the price of
all products by 10% you could use:

102

Data Manipulation

UPDATE products SET price = price * 1.10;

Asyou see, the expression for the new value can refer to the existing value(s) in the row. We also left
out the WHERE clause. If it is omitted, it means that all rows in the table are updated. If it is present,
only those rows that match the WHERE condition are updated. Note that the equals sign in the SET
clauseisan assignment while the onein the WHERE clause isacomparison, but thisdoes not create any
ambiguity. Of course, the WHERE condition does not have to be an equality test. Many other operators
are available (see Chapter 9). But the expression needs to evaluate to a Boolean result.

Y ou can update more than one column in an UPDATE command by listing more than one assignment
in the SET clause. For example:

UPDATE nytable SET a =5, b =3, ¢ =1 WHERE a > 0;

6.3. Deleting Data

So far we have explained how to add datato tables and how to change data. What remainsisto discuss
how to remove data that is no longer needed. Just as adding datais only possible in whole rows, you
can only remove entire rows from atable. In the previous section we explained that SQL does not
provide a way to directly address individual rows. Therefore, removing rows can only be done by
specifying conditionsthat the rowsto be removed haveto match. If you haveaprimary key inthetable
then you can specify the exact row. But you can also remove groups of rows matching a condition,
or you can remove all rows in the table at once.

Y ou use the DEL ETE command to remove rows; the syntax isvery similar to the UPDATE command.
For instance, to remove all rows from the products table that have a price of 10, use:

DELETE FROM products WHERE price = 10;

If you simply write:

DELETE FROM product s;

then all rows in the table will be deleted! Caveat programmer.

6.4. Returning Data From Modified Rows

Sometimes it is useful to obtain data from modified rows while they are being manipulated. The
| NSERT, UPDATE, and DELETE commands all have an optional RETURNI NG clause that supports
this. Use of RETURNI NG avoids performing an extra database query to collect the data, and is
especialy valuable when it would otherwise be difficult to identify the modified rows reliably.

The allowed contents of a RETURNI NG clause are the same as a SELECT command's output list (see
Section 7.3). It can contain column names of the command's target table, or value expressions using
those columns. A common shorthand is RETURNI NG * , which selects all columns of the target table
in order.

Inan | NSERT, the dataavailable to RETURNI NGistherow asit wasinserted. Thisisnot so useful in
trivial inserts, sinceit would just repeat the data provided by the client. But it can be very handy when
relying on computed default values. For example, when using aser i al column to provide unique
identifiers, RETURNI NG can return the ID assigned to a new row:

CREATE TABLE users (firstnane text, |lastnanme text, id serial
primary key);

103

Data Manipulation

I NSERT | NTO users (firstnane, |astnanme) VALUES ('Joe', 'Cool")
RETURNI NG i d;

The RETURNI NGclauseis also very useful with | NSERT ... SELECT.

Inan UPDATE, thedataavailableto RETURNI NGisthe new content of the modified row. For example:

UPDATE products SET price = price * 1.10
WHERE price <= 99.99
RETURNI NG nane, price AS new price;

In a DELETE, the data available to RETURNI NGis the content of the deleted row. For example:

DELETE FROM product s
WHERE obsol eti on_date = 'today'
RETURNI NG *;

If there are triggers (Chapter 39) on the target table, the data available to RETURNI NGis the row as
modified by the triggers. Thus, inspecting columns computed by triggersis another common use-case
for RETURNI NG,

104

Chapter 7. Queries

The previous chapters explained how to createtables, how tofill themwith data, and how to manipulate
that data. Now we finally discuss how to retrieve the data from the database.

7.1. Overview

The process of retrieving or the command to retrieve data from a database is called a query. In SQL
the SELECT command is used to specify queries. The general syntax of the SELECT command is

[WTH wi th_queries] SELECT select |ist FROMtabl e_expression
[sort_specification]

The following sections describe the details of the select list, the table expression, and the sort
specification. W TH queries are treated last since they are an advanced feature.

A simple kind of query has the form:

SELECT * FROM t abl el;

Assuming that there is atable called t abl el, this command would retrieve al rows and all user-
defined columns from t abl el. (The method of retrieval depends on the client application. For
example, the psgl program will display an ASCII-art table on the screen, while client libraries will
offer functionsto extract individual valuesfrom the query result.) The select list specification* means
all columns that the table expression happens to provide. A select list can also select a subset of the
available columns or make calculations using the columns. For example, if t abl el has columns
named a, b, and ¢ (and perhaps others) you can make the following query:

SELECT a, b + ¢ FROM t abl el;
(assuming that b and ¢ are of anumerical datatype). See Section 7.3 for more details.

FROM tabl el is a simple kind of table expression: it reads just one table. In general, table
expressions can be complex constructs of base tables, joins, and subqueries. But you can also omit the
table expression entirely and use the SELECT command as a calculator:

SELECT 3 * 4;
Thisis more useful if the expressions in the select list return varying results. For example, you could

call afunction thisway:

SELECT random();

7.2. Table Expressions

A table expression computes a table. The table expression contains a FROMclause that is optionally
followed by WHERE, GROUP BY, and HAVI NG clauses. Trivia table expressions simply refer to a
table on disk, a so-called base table, but more complex expressions can be used to modify or combine
base tables in various ways.

The optional WHERE, GROUP BY, and HAVI NG clauses in the table expression specify a pipeline
of successive transformations performed on the table derived in the FROM clause. All these

105

Queries

transformations produce a virtual table that provides the rows that are passed to the select list to
compute the output rows of the query.

7.2.1.