PostgreSQL 9.5.16 Documentation

The PostgreSQL Global Development Group

PostgreSQL 9.5.16 Documentation
by The PostgreSQL Global Development Group
Copyright © 1996-2019 The PostgreSQL Global Development Group

Legal Notice

PostgreSQL is Copyright © 1996-2019 by the PostgreSQL Global Development Group.
Postgres95 is Copyright © 1994-5 by the Regents of the University of California.

Permission to use, copy, modify, and distribute this software and its documentation for any purpose, without fee, and without a written
agreement is hereby granted, provided that the above copyright notice and this paragraph and the following two paragraphs appear in all
copies.

IN NO EVENT SHALL THE UNIVERSITY OF CALIFORNIA BE LIABLE TO ANY PARTY FOR DIRECT, INDIRECT, SPECIAL,
INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING LOST PROFITS, ARISING OUT OF THE USE OF THIS SOFTWARE
AND ITS DOCUMENTATION, EVEN IF THE UNIVERSITY OF CALIFORNIA HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

THE UNIVERSITY OF CALIFORNIA SPECIFICALLY DISCLAIMS ANY WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE SOFTWARE PRO-
VIDED HEREUNDER IS ON AN “AS-IS” BASIS, AND THE UNIVERSITY OF CALIFORNIA HAS NO OBLIGATIONS TO PROVIDE
MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR MODIFICATIONS.

Table of Contents

Preface xlii
1. What iS POStZIESQLT ...ccuuiiiiiiiiiieeceeteeet ettt st xlii
2. A Brief History of PoStreSQLu........coicuiiiiiirieiiieiieieecieeeceiteste ettt sve e beesnesae e xliii

2.1. The Berkeley POSTGRES Projectcceecveviiiiiieniienieeieenieenie e sve e xliii
2.2, POSEEIESOS ..ottt ettt ettt ettt st sttt st e et e bae st e enbeebee s xliii
2.3, POSEEIESQLou. ittt ettt st ettt et e sabeebeebee s xliv
3. COMNVENTIONS ...ttt ettt ettt ettt et e bt e atesaesat e be s bt easenbesbeensesaeemaenbeeanensene xliv
4. Further INfOrmation........coeoeerieririiniinieiencetee ettt ettt ettt saee e s saesaeens xlv
5. Bug Reporting GUIdEIINES........cccueiriieriieiieiieiieeieeite ettt ettt sttt xlv
5.1, Tdentifying BugScooieriiiiiiiieiece ettt st xlvi
5.2. What t0 REPOTT ..ottt sttt ettt st e xlvi
5.3. Where to Report BUZS ...c..coviiiiiiiieiiiiieiteiteeeeette ettt e xlviii
I. Tutorial 1
1. GEttING STATTEAeeeniiiieieieeiieeee ettt st e 1
1.1 INSEALIALION ..ottt et sttt st sttt et en 1
1.2. Architectural Fundamentals............ccoceriiriiriiiniiiieiieeceeceee e 1
1.3. Creating a Databasececueiuieieriieiieerie ettt ettt ettt et saeesaesbeeneens 2
1.4. Accessing @ Databasecooeeriiriiiriiiiiiieetee ettt 3
2. The SQL LaNGUAZEcovveiriiiiiieieenite ettt ettt st sa e st sttt e sbe e saneesbeenbee e 5
2.1, INEEOAUCTION 1ttt ettt et sttt e bttt et e e st e st e s be et e beeaeenes 5
2.2, COMCEPLS .uveeneeeiieeieeieeeite ettt e et st e b e bt e sat e e bt e sbtesate e bt e s bt esaeesabe e bt esbeesabeenbeesaeesaneen 5
2.3. Creating @ NeW Tablecccoviiiiiiiieieeee ettt 5
2.4. Populating a Table With ROWScccoeiiiiiiiiiiiiiiieeeecee e 6
2.5. QUErying @ TaDIEcc.coiiiiiiiiiiiiiee et st 7
2.6. Joins Between Tables........cocoviiiiiiiiiiiiieeeceereeesest et 9
2.7. Aggregate FUNCHIONS......ccccoviiiiiiieeteteeitete ettt sttt 11
2.8 UPAALES ..ottt sttt et sttt ettt b ettt et sa e bbbt ettt eae e 12
2.9, DCIETIONS ...conveeeenieieeiteteettete sttt ettt sttt sttt b ettt ebt et st sbe et et ebeenees 13
3. AdVANCEd FRATUIES ...c..eeiiiiiiiiiieiietceitctee ettt ettt ettt ettt s ennens 14
3.1 INTOAUCTION «.nveiiiiiiieiieitete ettt ettt ettt ettt eb s 14
3.2 VIBWS ittt ettt sttt ettt et sttt ettt na e sttt et eae e 14
3.3, FOTEIZN KEYS...uiiiiiiiiiiiieeie ettt ettt sttt ettt e bt e sbeeseneenbeenbeesene 14
3.4, TTANSACHIONS ..c.eevveniieiieteeitete sttt ettt ettt et sttt e st e e sbtebeesaesaeesbesbeeesemteeaeenees 15
3.5. WIndow FUNCHONSccuiiiiriiiiiiinieiececeteeceteste ettt st 17
3.6. INNETILANCE ...c.eeiiiiiiiciiecc ettt sttt 20
3.7 CONCIUSION ...ttt ettt ettt ettt sa et esae st e bt eneeaeemnes 21

I1. The SQL Language 22

4. SQL SYNEAX .eontiiieiieiieiete ettt ettt ettt ettt et e ae st h e n et ae e e nesreeanenee 24

4.1, LeXiCal SIUCLUTE.eivuiiiiiiiieteeitt ettt ettt ettt st sbe et e st e sbeesaee st ens 24
4.1.1. Identifiers and Key Words.........ccccceeveeriiiiniiniiniineeeeneeeieeeeiee e 24
1.2, CONSLANLS .e.uveeutieiteeieetee sttt ettt et st e bt e bt e st e e bt e bt e sbeesbe e bt enbeesanesaeeenbeas 26
4.1.2.1. String CONSLANESeeouervereietierieieeeeeeenteeeeete et eee et eesee s eeeseeeneenes 26

4.1.2.2. String Constants with C-style EScapes.........cccceccevirrenerieneneenne 26

4.1.2.3. String Constants with Unicode Escapes.......c..ccccoecvrreenereenenennnnne. 28

4.1.2.4. Dollar-quoted String CONStaNtscceeeeerierreerienieeieneneeee e 28

4.1.2.5. Bit-String CONSLANLSc..ccveueeurririinrerereeeieeestenteeeeeee e e seeaenenene 29

4.1.2.6. NUMEIIC CONSLANLSovereieniietieienieeieniesiteie ettt sttt sbe e 29

4.1.2.7. Constants of Other TYPEScccevereerererienenieieneeee e 30

iii

1.3, OPCTALOTSeeuvieiieeieeiiesite et et e sitesteeabte bt e satesabeesbeesasesateebeesseesssesnseeseenaees 31

4.1.4. SPecial CharaClers........cevueruersiieriieriestiesieeste st et esiteseesbeesbeesbeesaresnseenbeas 31
4.1.5. COMMENLS ...t 32
4.1.6. Operator PreCedeNCeoouiriiiriirieniieiieteee ettt 32

4.2, Value EXPIESSIONS......eiiuiiriiiiiieiienite ettt ettt ettt sttt et e st e bt e st e sateesbeesaeesaeeens 33
4.2.1. Column References..........coceoerieieriinieninieneneeieeeeeteeee et 34
4.2.2. Positional Parameters.........cceevueerierieriiiinienienieeieeitesee et 34
4.2.3. SUDSCIIPLS ..ottt ettt et 35
4.2.4. Field SEIECHONooueiiiiiiieiieiieeiteetee ettt st 35
4.2.5. Operator INVOCAtIONSc..coueevuiriiiiiiieiieie et 36
4.2.6. FUNCHON CallSeoiiiiiiiiiiieeiietete ettt s 36
4.2.77. Aggregate EXPreSSIONS.cccueiviiiiiirieriierieentenite ettt st 37
4.2.8. Window Function Calls...........cceeruiririeninierieieeeeeeee e 39
4.2.9. TYPE CaSS .. s 41
4.2.10. Collation EXPreSSionsccceeeeuertieienieneeniesieeiesieeieete st eee et 41
4.2.11. Scalar SUDQUETIES........covirieiirtieietieiieee ettt ettt 42
4.2.12. Array CONSLIUCTOTS .. .veenvienieriienieeniterteeieeeree st et esreesbeesreesseesbeesaresneeebees 42
4.2.13. ROW CONSLIUCLOTS....cuveeurenierrienieenitentteieesieesiteereesseesieeeteesseesreesmnesaneenbees 44
4.2.14. Expression Evaluation RuUlescccccocoviinininiininiiicccee 45

4.3. Calling FUNCHONS.ccuteiiriieiintieterieeterte sttt ettt sttt et sbe e b e 47
4.3.1. Using Positional NOtationcccueverierireenienenienienieeieneeeene e 47
4.3.2. Using Named NOtAtioNcccevueeieriirieniineeienentenienitetesieete et 48
4.3.3. Using Mixed NOtation......c..ccoeriieiiniirieniinienienenteeseeteseeee et 48

5. Data DefINItIONccoiiiiiiiiiiiicieieiccec et 50
5.1, Table BaSICScouiiuiiiiiiiiicieieireee e e 50
5.2. Default ValUEScccovuiiiiiiiiiiiiiiiiiiictcteeeee et 51
5.3 CONSLIANEScuiiiiiiiiieeiee ettt sttt s 52
5.3.1. Check CONSLIAINESo.ceuiiuiriiiiieiiiiiietiteeee e 52
5.3.2. Not-NUll CONSLIAINLSooviiiiiiiiiiiiiiiiiieieeeeeeese e 54
5.3.3. UnNiqUe CONSLIAINES. ..c.uveruiertieriienieeieenteeteeieesieesteeteesbeesteeteesbeesaresaseenseas 55
5.3.4. Primary KEYS.....cueoiieriirieiiiesieeieetest ettt st s 56
5.3.5. FOr@ign KEYS ...ccuviiiiiiiiiiiiiiesteeeetet ettt e 56
5.3.6. Exclusion CONSraintsccccveiiiiiiiiiiiiiiieiiiicicseceeece e 59

5.4, SyStem COIUMIS ...c..veitiiriieiiieieeite ettt ettt sttt e st st e bt et e sateebeebeesaee 59
5.5. Modifying TabIes........ccoociiriiriiiiiiiiiiieieeeceeeeeeee et 61
5.5.1. Adding @ COIUMN.....cccoeiiiiiiiiiieieic e 61
5.5.2. Removing @ COIUMINcccoeviiiiiiiiiiiiieieeecteeeee e 62
5.5.3. Adding @ COonStraintccuevuieiiiriiiienienieete et 62
5.5.4. Removing @ CONSIAINEccuevuiiiiiriiiieiiiieiceeeete e 62
5.5.5. Changing a Column’s Default Value............cccccoeveninienenineeeceeeeeee, 63
5.5.6. Changing a Column’s Data TYPEccceveruieiinieieieieereeeee e 63
5.5.7. Renaming @ COIUMN ...cc.eeuiiiiiiieiiiieieie e 63
5.5.8. Renaming @ Tablecccoeieiiiiiiiiiniiiiee e 63

5.6, PLIVIIEZES ..ttt ettt sttt et 64
5.7. ROW SECUTILY POLICIES .. .cueeiiitiiiiiiiiiieieeitee ettt 64
5.8 SCHEIMAS ...ttt e 69
5.8.1. Creating @ SCheMAcc.eviiiiiiiiiiitee e 70
5.8.2. The Public SChemaccccoevieiiiiiniiiiiiciciecneeeeee e 71
5.8.3. The Schema Search Path..........c..cccocoiiiiiiiiiiiiiiceece 71
5.8.4. Schemas and Privileges..........coceevuiririineninieniinieneneeeenesteesee e 73
5.8.5. The System Catalog SChemac.ccoceveririininiieninciicneceeeeeceeene 73
5.8.60. USAZE PALEINS ...ccuveveiiiiiiniiiiiieetentceitete sttt sttt 73

v

5.8.7. POTtaADIIILY ...ceuviiiiiiiieieeite ettt st 74

5.9 INNETILANCEceoiiiiiiiiiiicic e 74
5.9 1. CAVEALS ..ot Tl

5.10. PaTtIIONINE «..veevieiiiieiieiie ettt sttt ettt et sttt e sbt e sate e be e bt e saneebeebeesaee 78
S.T0.1. OVEIVIEW . 78
5.10.2. Implementing Partitioningcocceceeverierreniinieenieneenenenrereneeeesneeneennes 79
5.10.3. Managing Partitionsccceceeveeririenienieieniieeere e 82
5.10.4. Partitioning and Constraint EXCIusioncccceeevvieveninieninieccnceeenne. 82
5.10.5. Alternative Partitioning Methods..........c..cccceeiiviiriniiiininieencceeeenne, 84
5.10.6. CAVEALS ..ttt ettt ettt st st b e st b e st ebeas 84
S5.11.FOreign Data ..cc..couiiiiiiiiiiiieieetec ettt ettt st 85
5.12. Other Database ODJECLSeerueruerieriieiieieeie ettt ettt see st ae s enee e eaee e 86
5.13. Dependency Trackingccoeereiieienieieieeeee et 86
6. Data Manipulation.........ccueeuieiierieienie ettt ettt ettt e e s bt et esbe st e b sbeeneeseeeaeeneas 88
6.1. INSErting DAtaocuiiiiiiiieie ettt 88
6.2. Updating Data.........cocevierieieirininiiiciereeeteeseseee ettt s 89
6.3. Deleting Data.......c.coeviviirieiiiiiiiniieteret ettt s 90
6.4. Returning Data From Modified ROWSc.ccoceoviiniiiiiiniiinicecceeeecee, 90
T QUBTIES ..t eetie e ettt e ettt e et e e ettt e e et e e eeateeeetaeeeeaaeeeeaseeeateseentaeeetseeeatsaeenteseeteaeeaeeeeateeenareeenanes 92
T 1 OVEIVIEW ittt ettt sttt ettt st 92
7.2. Table EXPIESSIONScouveiiiieiintieiinieetente sttt ettt ettt et bttt sate e b eae e eanenee 92
7.2.1. The FROM CIAUSE.....c.cevruiriiriinieieiieiieiietiteiee ettt sttt 93
7.2.1.1. Joined Tablesccccoveiiiiininiiieiiieiceeee e 93

7.2.1.2. Table and Column AIASES.......c.ccoerverereerienieienienieieneetesie e 97

7.2.1.3. SUDQUETIESeeuveeniieiieeieeieesiteeteeie et e ere et e st sreebeenbeesebeeseeaeesees 98

7.2.1.4. Table FUNCHONS ..c..cocviriiriiiiniieienieeiceeeetcetcetene et 98

7.2.1.5. LATERAL SUDQUETIESveeuveeiieeiieeieeiieeieenieenieesreeeeesieesereeveeseesens 99

7.2.2. The WHERE ClaUSE......ccoeoiimiriiiiiiiiiiiiciicieececetec e 101
7.2.3. The GROUP BY and HAVING ClauSes........ccccecevveieiriririinieicieiiiicsienene 101
7.2.4. GROUPING SETS, CUBE, and ROLLUP ...cccevuiiiieiiiiiiniie et 104
7.2.5. Window Function Processingcecueevuerrieenieniiensieenienieeieesiee e 106

7.3 SEIECt LSS ..ot s 106
7.3.1. Select-List ItEIMSccevieiirieiiiereeeneerete ettt 107
7.3.2. Column Labelsc.coevieiiniiiininieienceceee e 107
733 DISTINCT ueioueeueereeieetenieeeteeteeseesae s esse st e s e aeeaeesae st esnesaeesne st eaeesaesaeennenaeen 108

7.4. Combining QUETIES......cc.ceueeuiriieietieitete sttt ettt et sne s aeeaeesae e enesnees 108
7.5, S0TtING ROWS ..ottt e 109
7.6. LIMIT QN OFFSET.couieiiiieieiieieeteeteete st eeeeie et et saeeeesaesseesaesneeaesaeeseesaesaeennesneas 110
TTVALUES LSS et s 110
7.8. wITH Queries (Common Table EXPressions)ccceeeeveereriereneenienieeieneeeceeeenens 111
7.8.1. SELECT 1N WITH .cuiiuiiiiiiieiiii ettt sttt e s 111
7.8.2. Data-Modifying Statements in WITHcccceveereererierienieeienieeeeneeeeeeeenaea 115

8. DALA TYPES ..ttt ettt et ettt st e b e b sttt e saeenaes 117
8.1 NUMETIC THPES ...ttt ettt et sttt ettt nae e 118
8.1 1. INtEZET TYPES ... e 119

8.1.2. Arbitrary Precision NUMDETSccccceviririnienienieieineneneceeeeese e 119

8.1.3. Floating-Point TYPESccceruerieriiniieienieeienieeteiesitee et 121

814, SErTal TYPES ...ecuvetieuieiieieeie sttt ettt ettt sb e 122

8.2. MONELATY TYPES ..cuveeieniiriienienieeiteteet ettt sttt ettt sttt et e 123
8.3, Character TYPES ..c..eeueeruiriieienieeiteteeieete ettt ettt ettt 123
8.4. BINAry Data TYPEScevverueeierieriieiinitetesteeteste sttt sttt sttt e 125
8.4.1. bytea HEX FOIMAL.......ccooviuviiiiiiiiiiie et 126

8.4.2. bytea Escape FOrmat..........ccceevieriiiiiiinieniiiieeteete et 126

8.5. Date/TimMe TYPES..cueiriieiiiriieiiteiteree sttt sttt sttt et e st et esbeesabesaneenne 128
8.5.1. Date/Time INPULcccueerieiiiiiiiieeccteteee ettt 129
8.5. 1. 1. DALeS ... 130

8.5.1.2. TIMES ..t 130

8.5.1.3. TIME STAMPS...eeeveriiiriiiiieiieeriteee ettt ettt 131

8.5.1.4. Special ValUesc.ccoceevuivieiiniiiiiiiieieneceeeeeee e 132

8.5.2. Date/Time OULPULc..coeeiiriieieiieiieteeceeese ettt s 133
8.5.3. TIME ZONES ...ccneeeiiiiiieiieeiieeiteeite ettt ettt ettt ettt st e beesaee s 134
8.5.4. Interval INPUL.....c..occiiiiiiiiee e 135
8.5.5. Interval OULPULceeiiiiiiiiiiiiceeee e 137

8.6. BOOLEAN TYPEL ...ueieiiieieeiieieeieete ettt ettt et sttt be et sae e nae e 138
8.7. Enumerated TYPESccuoiuiiiiiiiiiiiiiciet e e 139
8.7.1. Declaration of Enumerated TYPes.......cccecevivvenienieinininenenieieieeneseeeenne 139
8.7.2. OFAETING ...ttt ettt ettt ettt b et be et sae st saesbeeneeneeene 140
8.7.3. TYPE SALCLY ...ttt b 140
8.7.4. Implementation Details..........cccoieieiiiiiiiniiieneeee e 141

8.8, GEOMELIIC TYPES ..ttt ettt ettt ettt ettt sbe et be s bt sbe et e e e 141
881 POINLS ..ottt e e 142
88 2L LINES ettt e e 142
8.8.3. LINE SEZMENLS.......eeuiiiiriieiirieiieieeitete ettt ettt et eae 142
8.8 BOXES..c.uiieiieiieiiiitstetcte et et 142
8.8.5. PathS ..o e 143
8.8.0. POLYZOMNS.....eiiiiiiiieiiiiiiieeereet ettt st s 143
8.8.7. CICIES . e 143

8.9. NetWOrk Address TYPES....cccueecveerieerieiieeieerite st eteeitesiteete et e steesbesbeesbeesnesnseenne 144
BL0.1L LNET ittt e 144
8.0, 2. CAAT ittt e 144
8.0.3. ANEE V8. Ca AT ttitiiiiiiierieeit ettt ettt sttt et e sbt e st st b e aee et 145
8.9.4. MACAAAL tuttetieriieiiteiteete ettt ettt e e sttt ettt e bt e st st e bt e it e sanes 145

810, Bit SHNEZ TYPES cnveteniieiieriieiieeitesite sttt sttt ettt sttt e st sbeesbeesaaesaneenne 146
.11, TeXt SEATCH TYPES ..couveereieriieiiieiterte ettt ettt ettt st et e be e saaesane e 146
Bl L. L. £ SVECEOT totteiieiieetteete ettt ettt ettt st ettt et 147

LT B o b1 oy PSR PRRP 148

812, UUID TYPE -ttt sttt ettt sttt ettt st sttt ebe b sbeneens 149
813, XML TYPE vttt ettt ettt ettt ettt et st sttt sbe et benaene 150
8.13.1. Creating XML ValUescccccoieiiiiiniiiiniiicienieeeeeee e 150
8.13.2. Encoding Handlingc..ccccoiiiiiiniiiiniiiiineceecceeeeseeeee 151
8.13.3. Accessing XML Values..........cccoeiiviiiiiiiniiiiiinicccece e 151

814, ISON TYPES ..ttt et sttt ettt ettt sae sttt ebe b b naene 152
8.14.1. JSON Input and Output SYNLaX.......ccceeveeriuersieeneenienieenieneeneeeieeseeeneees 153
8.14.2. Designing JSON documents effectivelycccceveerereerienencieneneeieene 154
8.14.3. ysonb Containment and EXiSteNCe..........cccceeoveeeeiiieeiie e 155
8.14.4. 350nD INAEXING.....eeiiieiieiiiieiieeetee ettt 156

BLL5. ATTAYS .ottt b e s bt et b e sttt e b et s b e et e bbbt eat e e eas 158
8.15.1. Declaration Of Array TYPeS.....cceeeevuerieriereiieieniieiesie et 158
8.15.2. Array Value INPUL.........cooiiiiiiiiiieiisieeseeteeteeee et 159
8.15.3. ACCESSING ATTAYS ..eouviriieiirieriieieetteie sttt ettt ettt et et sbe e i e 161
8.15.4. MOAIfYING ATTAYS...cuirueeiirierienienitetesieete sttt sttt et naeeae 162
8.15.5. Searching in AITAYS......ccocererieriirieiinieieneetetestt ettt s 165
8.15.6. Array Input and OUtPUt SYNTAX......ccueveeriererienienieieneeteneeeee e 166

8.16. COMPOSILE TYPES ..veeuveenereriieriieiieniieeieeieesttesteereesseestteeseeseesseesssesseesseesssessennne 167

Vi

8.16.1. Declaration of COompOSIte TYPES.....ccueerreriuirriierienierieeniienre et eieesee e 168

8.16.2. Constructing Composite ValUes.........ccoveriverriienienieniieniieniesieenieeseenenes 169
8.16.3. Accessing CompoOSIte TYPES .eevvveruvirriienierieriieniienie ettt 169
8.16.4. Modifying CompoSite TYPES.....uervirrrierieriiiriieniienieeieenite st e e 170
8.16.5. Using Composite Types in QUETIES........cevcuerrvierierierrieeniienienieenieesieenaes 170
8.16.6. Composite Type Input and Output SYNtax.........ceceecvevrveeenerveeneneecnennene 173

817, RANEE TYPES ettt e 174
8.17.1. Built-in Range TYPEScoceevieimirieiiirieienecieeseeeteeeee e 174
8172 EXAMPIES.....couiiiiiiiiiiiieeieneeeteetete ettt s 174
8.17.3. Inclusive and Exclusive Boundsc..cceceeviiniiniieniiinienicnieeieceeee, 175
8.17.4. Infinite (Unbounded) RaNges.........cccoeieriiririeienieeeeeeere e 175
8.17.5. Range INPUt/OULPUL.......cooeiiiiiiiiriiiiieteete ettt 175
8.17.6. Constructing RAaNgesccceevveiuieieiiiiieeseeeiest et 176
8.17.7. Discrete Range TYPES ...cc.eeueeeeruieiieriirieiesieeteteet ettt 177
8.17.8. Defining New Range TYPESc.cecvevuirieriiniiierieniieieeeeesee e 177
8.17.9. INAEXING ..ttt st s 178
8.17.10. Constraints on Ranges...........cceeeeriirierieniiieiieniieiesieete e 178

8.18. Object Identifier TYPES ...cccoverveiriririirieicieteteteeseeee ettt 179
819, PEIST TYPC .ttt bttt 181
8.20. PSEUAO-TYPESenveitentiriieiiesieeite ettt et sttt sttt 181
9. FUNCtions and OPETALOLScecuerueruierieniieienieeterie sttt sttt site sttt estesb et e bt sbeeneesaeeaenaeas 184
0.1. LOZICAl OPEIALOLS «.....eeuiiiieniiiiriieienieetenteeite ettt sttt sat ettt e saesatenaesbeesnenaeene 184
0.2. ComPAriSON OPETALOTS......ccueruerrieieriierenteeitenteeteertesieetentesteestesteeseessesaeensesbeessensenne 184
9.3. Mathematical Functions and OPerators............eceereerieerueeneeneesireeneennesseensesneeens 186
9.4. String Functions and OPEratorsSeceereerieerieeneerueeieenieeneesseesseesseesseessessseens 190
0.4, 1. FOTTMAL tuvtetierteeteeritert e et et estteste et e s it e e sbeeabeesbtessbesaseebeesssesaseenbeesssesnseenne 203

9.5. Binary String Functions and OPeratorscoceerueerverrieereeneesieenieeneesseenieeneeens 205
9.6. Bit String Functions and OPEeratorsceeverrieerierieriieeniientesieenieenieesveesieenieens 207
0.7. Pattern MatChiNgcccceeviiiiiiiieiieiie ettt sttt sttt sbe e st e e b 208
9.7 1. LIKE ttiiiiiiiieieetiteee ettt st 209
9.7.2. SIMILAR TO Regular EXPressionscceceevveenienieniieeniienienieenieesieeieenne 210
9.7.3. POSIX Regular EXPressionsco.eieerierieriienienienieenieesieeeeesiee e seeenne 211
9.7.3.1. Regular Expression Detailscccccooeerierieeniiniienneenienieeceeene 214

9.7.3.2. Bracket EXPressionscocceceveeieriineenienieneneereieeeere e 216

9.7.3.3. Regular Expression ESCapes........c.cccceceevirienininciinineciiceenene 217

9.7.3.4. Regular Expression MetasyntaxX........cccceeeveevveneecieniieneeneencennennens 219

9.7.3.5. Regular Expression Matching Rulesccccocceciiieiininnenennen. 221

9.7.3.6. Limits and Compatibilityc..ccccceirvieniriiineniniiieeccecceeene 222

9.7.3.7. Basic Regular EXpressionscccccoeeveeviiieieniniienicicncnceeenne 223

9.8. Data Type Formatting FUnCtionsccccoueceririnenenieieinenineneneeeeeeiesie e 223
9.9. Date/Time Functions and OPErators.........c.cccecerereruerierereenuenenenseeeeeesesenuennes 230
9.9.1. EXTRACT, AT E_PATE titiiieiriieeeeiiiieeeeeiteeeeeeettereeeeetreeeeesesreeeeeessreseeeennnnes 236

LS e R o o o U b o L RO URT ST TRRPRR PR 239
9.9.3. AT TIME ZONE....ciiiiiiiiiiiiiiiiiienie et sic ettt s e s 240
9.9.4. Current Date/TIimecceevuirieeiiiniiieesitee et 241
9.9.5. Delaying EXECULION.cc.eeriiriiieniiiieiesiteesieetee et 243

9.10. Enum Support FUNCHONSc..cotiriiiiieieniieiieieeiteie ettt 243
9.11. Geometric Functions and OPerators...........cocceceevererierieneenienieeieneseenieneeeenieene 244
9.12. Network Address Functions and Operators..........c.ccecuevereeriereenieneneenenenseenenne 248
9.13. Text Search Functions and Operators............ceccevererierienierieneenieneneeneseerenieene 251
9.14. XML FUNCHONS ..ottt sttt s s 254
9.14.1. Producing XML CONtent..........coceeueruerieienerienenienienieerenieeeeneeseeeeennens 255

Vii

9.14.1.1. XMLCOMMENT 1vveeeeerirrreeeeeiirreeeeeeirreeeeesireeeeeesiareeeeeessreseeesireeeeeenns 255

9.14.1.2. XINLCONCAL teuveeteeriieeieeieesite et eteesiteste et esbeesbe e bt enbeesabeebeebee s 255

9.14.1.3. XIMLELEMENT weerrtieriiieieeieeniteeteeieenite et eie et steebeesbeesateeseebee s 256

9.14.1.4. XINLEOTEST teteetieriieeieeitesite ettt ettt et ste ettt st ebeeaee s 257

0. 14.1.5. RIMLIPL cuviuiiiiiiiiiiiieiiciieee e s 258

9.14.1.6. XINLT OO teueiruieiieeriteeieee ettt ettt sttt et et e b b 258

.14, 1.7, XIMLAGG ctteerreeeriireerrieeireeesteeetreesesreesseaessseeesssseessseeesssesasssesensses 258

9.14.2. XML PrediCatesccoveeierriienierieeieeniteeie ettt sttt 259
9.14.2.1. IS DOCUMENT ..ecuteutieueererieenrenieeeeeteeneeeesreenesseeene s eneenesaeennesnens 259

9.14.2.2. IS NOT DOCUMENT....ccuirtiiiuiimiiriineitiietesseiestesse e 259

9.14.2.3. XMLEXTISTS uteiuieueeiieieeeesieenesieeeete et eae st ene s e sseeneeaesaeene s 259

9.14.2.4. xml_is_well fOTrMEQ .iiiiiiiiiiiieiiiirrieeeeeeeeeeeeeeeeeeeeeeannns 260

9.14.3. Processing XMLcccccevivirinienienieteiniineneeeeeiteie et saene 261
9.14.4. Mapping Tables to XML........ccccceoeirinineneieieintne et neene 262

9.15. JSON Functions and OPEIatorscceeveeeuirerreruenueueteenensessessenseeeessessessennes 265
9.16. Sequence Manipulation FUNCHONSc..ccceciririninenierieiienineeeeeeeeee e 274
9.17. Conditional EXPreSSiOnsccceceririirieieieiriininienieieeetee et stesieseeeeseeveeae e saennen 276
0. 17,1 CASE ettt sttt et s sttt 276
9.17.2. CORLESCE vttt sttt sn s eas s sa s 278
0173 NULLIE ottt 278
9.17.4. GREATEST aNd LEAST....ciiiiiiiiiiiiiiiiieiiieiieenc et 279

9.18. Array Functions and OPEratorscoeecueruereeriererienienieienieeeesiesieeniesieesenienne 279
9.19. Range Functions and OPerators...........co.cecueruereerererieneneenienieeeenieseeniesieenenienne 282
0.20. Aggregate FUNCHONSc..cocuiririiieiietenieetete ettt ettt ene 285
9.21. WIndow FUNCHONScouiiiiiiiiiiiiiiicicicteeeseseeeee e 291
0.22. SUDQUETY EXPIESSIONS ...eeeruvieiieiieriiieieeniiesiieesieenitesitesteesaeesseesseeseenseesssesnsesnseens 293
0.22. 1. EXISTS ittt sttt st 293
9.22. 2. TNttt e 294
9.22.3. NOT INuuiiuiiiiiiiiiieiete ettt st 294
9.22.4. ANY/SOME ...uiuiiiiiiiiiiiiciieie sttt st 295
9.22.5. ALL ittt e 295
9.22.6. Single-row COMPATISONeevvierreriieniienieeieeniteste st esteesreeeeesbeesreseeenne 296

9.23. Row and Array COMPATISONS ...c..eeruverrueeriieriieriieeniteniteeieesieesieesteesseesseesseenseesseens 296
0.23. 1 TNttt ettt bbbttt s et bttt et naene 296
9.23.2. NOT INuetiiiruieieieeieeteeitete et eeesae st st e e st e e et st enesae s e st eaeeaesaeennenaeen 297
9.23.3. ANY/SOME (AITAY) .veervveeurerreeniieneerieenieestesseesseestesseesseessesssessseessessseenne 297
9.23.4. ALL (AITAY) cvveeuveereeniteeieeteesiteete et esttesitesbeesbeesatesateesbeesasesateeabeesasesaneenne 297
9.23.5. Row Constructor COMPAriSON.........cceeueeueruieieruerierenieerenreeeeseeseenennens 298
9.23.6. Composite Type COMPAriSON.........cccueruieiiruieieeriirieieneeresie e e e 299

9.24. Set Returning FUNCHIONScccectririirienieieiniinineneeteeetee sttt 299
9.25. System Information FUNCHONScccouerieirinininiiicicieenceceeceeeecee e 302
9.26. System Administration FUNCHONScc.cceceriririrenierieiiinineeeeeeeeee e 315
9.26.1. Configuration Settings FUNCHONS.........cccccvevverieiieinineninieieieeeeseseneene 315
9.26.2. Server Signaling FUNCHioONScceceririnenienierininine e 316
9.26.3. Backup Control FUNCHIONSc.ccoceeiiiriiiiniiiieneeieiesi e 316
9.26.4. Recovery Control FUNCHONScccevvevieiininiinieiieiesiceeeeee e 318
9.26.5. Snapshot Synchronization FUNCHONScccceceererienenieiiininiencnceeene 320
9.26.6. Replication FUNCLONSccccocuiriiiiniiniiiinieieneeeeeseeeeeee e 321
9.26.7. Database Object Management FUnCtions.........c..cecceveveeveneniencncenennen. 324
9.26.8. Index Maintenance FUNCIONScccecivuivierieieieinirienieieieiceeceesieene 326
9.26.9. Generic File Access FUNCONS...........ccoeiiiriiieiieinineniciciciceececeene 327
9.26.10. Advisory Lock FUNCHONS......c.c.cecvierieeieeiieniiecieeieesieeeee e sve e 328

viii

0.27. Trig@er FUNCHONS ...cccueeriiiiiiiiieiieeiie ettt sttt sttt e e b 330

9.28. Event Trigger FUNCHIONSccoeerieriiiiieiieniie ettt ettt ettt e 330
9.28.1. Capturing Changes at Command End..........cccceevueriiiniiniiniiinienienieenne 330
9.28.2. Processing Objects Dropped by a DDL Commandcoceeveeriennenne 331
9.28.3. Handling a Table Rewrite Eventcccccoeoeiniiniiniiinienienceieeeieeieee 333

10. TYPE CONVEISION.......euieuiiiieiiitietietenttetenie ettt ettt saeene b e seeesaesaeesnesaesaeesnesueennenneene 334

TO. L. OVETVIEW ..ottt ettt ettt ettt e b e st st st e bt e s bt e sabeebeenbee s 334

10.2. OPETALOLSonviiieiiieiierenieetete ettt ettt ettt ettt e st s e s e ne e enesaeenesnees 335

10.3. FUNCHOMS <.ttt sttt ettt ettt et sat e st esbeesaeesabeebeenbee s 339

10.4. Valte StOTAZE......ceeruieiiiiiiiiieiieie ettt sttt s s 343

10.5. UNION, CASE, and Related CONSIUCES.uuveeeiiriieeeeeeeeeeeeiiieieeeieeeee e e e eeeeeeeennaes 344

L1 TIAEXES ..ottt ettt ettt b et e et e s et e e st e te s bt e tebees e et e eseeneesaeeneesesneensenseane 346

T1.1. INEOAUCHION ..ttt ettt ettt s aesne s 346

L1.2. TACK TYPES.cuttniatietieieiteeteste et ettt ettt ettt ettt ettt et s bt et e st eneenaesaeeaesnean 347

11.3. Multicolumn INAEXESceveruieuieiieiieierie ettt 349

11.4. Indexes and ORDER BYcocuirieeuieriirieeienieeitetesttentesteeneestesstesesseensesseeseenaesaeensesseas 350

11.5. Combining Multiple INAEXEScoceeriirerieriinieiereetee et 351

11.6. UNIQUeE INAEXESvevienieiieiieieeieeeeiee ettt ettt ettt et st 352

11.7. Indexes 0n EXPreSSIONSccueeeeriirieeriiniiienieniteiesieeteste sttt 352

11.8. Partial INAEXESc.coeeviiriiiiiieeiieieiceeeetee ettt s 353

11.9. Operator Classes and Operator Familiesc..cccveevenenieneniniinienienciceeee 355

11.10. Indexes and CoOllations..........ceeevuirerriererienienteieneetesee ettt s 357

11.11. Examining INdeX USAZe........coceevuirerriiririenieniieienieetenie sttt 357

12. FUll TEXt SEATCH ..c.eouiiiiiiiiiiiiieteieeeeee sttt ettt s 359

12,1, INEFOAUCHION w...eniiiiieiienienicciteeetetc ettt sttt ettt 359
12.1.1. What Is @ DOCUMENE?.......ooiriiiiniiiiiniieienicrteeeeteseeee et 360
12.1.2. Basic TexXt MatChingcocceevieriiriiieniienie ettt ettt 360
12.1.3. CONTIGUIALIONS ...cuvveriiieiieiieniieeieeiteniee sttt ebee st eteebee st e s besabeenbeesanesaees 361

12.2. Tables and INAEXES.......coeecueririenirieieniinieieeeete ettt s 362
12.2.1. Searching @ Table..........coocieriiiiiienienieiieeiecee et 362
12.2.2, Creating INAEXES ...ccveeveeriieriieiiieiierite sttt ettt ettt 363

12.3. Controlling TexXt SEarch........cceiviiriiiiiiiiiieeeeee et 364
12.3.1. Parsing DOCUMENLSccceeriirieiiiiniieiieeieeiee ettt et 364
12.3.2. Parsing QUETIESccueeueereruieieiiriterenteetere ettt sie et enesaeene e 365
12.3.3. Ranking Search Resultsccccoceeiiniiiininiiniiccnecceececeeeee 367
12.3.4. Highlighting ReSUILScc.cociiiiiiiiiiiiiieiiiecceceneeeeeeee e 369

12.4. Additional FEAtUIEScooeiiiiiiiiiiieiiieieeieetteteete ettt st s 370
12.4.1. Manipulating DOCUMENLS.........ccccocieiiiriiiiniiiieie e 370
12.4.2. Manipulating QUETIES........cc.cecueruirieiiiriieieiieeeie et e 371

12.4.2.1. QUEry REWITtNGccveetieieieeiieie ettt 372
12.4.3. Triggers for Automatic Updatesceceveerenerienenieieneeceee e 373
12.4.4. Gathering Document StatiStiCsceeeeruerueeriererienesieeienieeeenee e 374

12,5, PAISEIS ettt ettt ettt st b et st e aee s 375

12.6. DICHIONATIIES.ceeeneieeienieiteeiteieet ettt sttt ettt et s e et sbe st e b e s bt et esbeeaeenaesaeeaesbeas 377
12.6.1. StOP WOIAS ..ttt e 378
12.6.2. Simple DICIONATYc.coeviriiriiiiieiiiniieiseeeeeeeee ettt 379
12.6.3. Synonym DiCtONALYcc.coeeieririenieniieieieetene st 380
12.6.4. Thesaurus DICHONATYccuevieieririeieniieieeetene sttt 381

12.6.4.1. Thesaurus Configurationcc.ccoceeveererieneneeneenenieneneeieneene 382
12.6.4.2. Thesaurus EXampleccccocerieriniiiininiinineienceeeneneeieee 383
12.6.5. ISpell DICHONAIY.....cccuevtieiiiiriiiniirieeienieeteieetenee ettt s 384
12.6.6. SNOWDAIl DICHONATYeovuviiniieiieeiieieeiteeie ettt 385

ix

12.7. Configuration EXample.........cceeriiiiiiriiiiiinieiieeeente ettt 385

12.8. Testing and Debugging Text Searchccccoeveevieniiiiieenieniiiieecenee e 387
12.8.1. Configuration TESTING.....cc.cevvirriierierieriieieeee ettt 387
12.8.2. ParSer TESHINZ ...ccouveeuiieiieiieniie ettt sttt sttt ettt 389
12.8.3. Dictionary TeStNG......cceevuieriiiieiiienee ettt ettt 390

12.9. GIN and GiST INdeX TYPESeeveeiiruieiiriieieienieeiesteeeeste et 391

12.10. PSQL SUPPOTLL....eeiniiiieiiiieieieetete ettt ettt e ne e 392

12,11, LAMIEALIONS . ..eeuveetieriteeieeiee sttt et e et e st sat e e bt e satesbtesabeesbeesaeesabeebeenaee s 394

12.12. Migration from Pre-8.3 Text Search..........cccocociviiiiniiininiiiccceeee 395

13. ConcurrencCy CONIOL......cc.eoiiiiiiiiiieieieee ettt 396

13,1, INEFOAUCTION ...ttt ettt st e sat e st beenaee s 396

13.2. Transaction ISOIAtIONc.ccueeuieiiiriieiieieee et 396
13.2.1. Read Committed Isolation Levelccccoocieiiniiiininiiiieececee e 397
13.2.2. Repeatable Read Isolation Level..........ccoevevieciriinininincnicieieencnene 399
13.2.3. Serializable Isolation Level.........ccccoovviiciieiiiniiiiieieeeeceeeee e 400

13.3. EXPLCIt LOCKING ..ottt 402
13.3.1. Table-1eVel LOCKScccieriieiieiieciiesie ettt 402
13.3.2. ROW-1EVEI LOCKS ...ccvvieiieiieeiiicieeieesee ettt 405
13.3.3. Page-1evel LOCKScc.coiiiiriiiieniiiieesteeeetee e 406
13.3.4. DEAdIOCKS.coueeieiiieieniieieteetee ettt e 406
13.3.5. AdVISOIY LOCKS ...cuiiiiiiiiiiiiiieeteet et 407

13.4. Data Consistency Checks at the Application Level.........c..ccoccvivvinenviininnnennen. 408
13.4.1. Enforcing Consistency With Serializable Transactions.......c...c.ccccceeuenne.. 408
13.4.2. Enforcing Consistency With Explicit Blocking Lockscccccveeevennenne 409

13,5, CAVEALS ...ttt ettt ettt ettt sttt st s 410

13.6. LocKing and INAEXES.......ccocueeueiriieiieeieeitesiie ettt ettt st e e e st eaeenaee s 410

14, PerfOrmance TIPS ..eccveeeveeruierieriiieiiesie ettt e site et et esitestesbeesbeesabessbeesbaesasessseenseesnsesnseenne 412

14.1. USING EXPLATN teevuveerueerteerreerueerieessteeseesseesssesssessseesssesssessseessesssesssesssesssesssessseess 412
14.1.1. EXPLAIN BaSICS ..uveuiiiiiiiiiiiiiiiiciciciccccccc e 412
14.1.2. EXPLAIN ANALYZE .ottt st ene e 418
T4, 1.3 CAVEALS ..ottt ettt ettt et et ettt 421

14.2. Statistics Used by the Plannerocccoceeviiiiiiiniiniinieececeeeeee e 422

14.3. Controlling the Planner with Explicit JOIN Clauses.........cccecuervveenienieerieenieenneen. 424

14.4. Populating a Databasecccceceeeuirierieniirienienieienieeeene et 426
14.4.1. Disable AUtOCOMIMIL.....cccceriiriiiriiinieriieieeiee ettt 426
14.4.2. USE COPY .utitieuieiesiieieetieiesteetesteseeete st e e e st enteseesneensesseensenseeneesesneensesnens 426
14.4.3. REMOVE INAEXEScouvirmiiiiiiniiiiieeieetc ettt 426
14.4.4. Remove Foreign Key Constraintsccocoeceverieneneniienieneeneneenennens 427
14.4.5. Increase maintenance_WOTK_MEM..coviuueeeeeeeeeeeeeeeeeieiinrrrrrreeeeeeeeeeeeeeens 427
14.4.6. INCrease Mmax_ Wal S1Ze .iuuuiuuuuiieeieeieeeeeeeeeeeeeeie e e e e e e eeeeeeereeeaaaaas 427
14.4.7. Disable WAL Archival and Streaming Replicationcccccceeerceeennen. 427
14.4.8. RuUn ANALYZE AftErWardS........cceeverieiiiieniieniiesieeieeieeseeeeeeveesseeseneennas 428
14.4.9. Some Notes About Pg_dUMP....c..cceeiruirrinenienieieirenenretereeeeeeeresreneens 428

14.5. Non-Durable SEttingsc.ceeeeueieirinenienieieinene ettt ettt 429

III. Server Administration 430
15. Installation from SOUrce COAEcccuiiieuiiiiiiieciie ettt eete e e evee e vee e 432

15.1. SNOIt VEISION ..ottt ettt e et e et e e eveeeeteeeeaveeesasseenereeennns 432

15.2. REQUITEIMEGIIES «.c..eenviiienieiieiieieett ettt ettt sttt st et sae st e e sbe et et ebee e et eae b 432

15.3. Getting The SOUICE....c..ooueiiiriiriieiireeeeeteetete ettt 434

15.4. Installation ProCedure...........c..coeeviiiiiiiiiiieceiec ettt et e 434

15.5. Post-INStallation SETUP......cceervieriieriieriieeieeieerteete ettt steste et eseeesaeesebeeseenaee s 444

15.5.1. Shared LIDIari€scooviveiieiiiireieeeeiieeeeeeeeteee e eeireeeeeeevee e eeeareeeeeeeannes 444

15.5.2. Environment Variablesccccoveriererieiieniniiencieeeneercreeeeie e 445

15.6. Supported PIatfOrmscocueeviiiiiiinieiiieieie ettt 446
15.7. Platform-specific INOLEScevveiriieiiiiieeieenite ettt st 446
IS 7.1 ALX e 446
I5.7.1.1. GCC ISSULS ...ttt sttt 447

15.7.1.2. Unix-Domain Sockets Broken...........ccceceeveeniinnenneenieniiennenne 447

15.7.1.3. Internet Address ISSUES.cocueevierieniiiiierienie et 447

15.7.1.4. Memory Managementcccccoeecuerreeeenieneereeneneenneseenenene 448

References and ReSOUICESccccovveeieiniiniiniieiienieceeeeeeeeee 449

I5.7.2. CYGWIN ..o et 449
15730 HP-UX .ottt ettt sttt st 450
I5.7.4. MACOS ...ttt ettt 451
15.7.5. MinGW/Native WINAOWSccoirierieriieieniieienie ettt eee e 451
15.7.5.1. Collecting Crash Dumps on Windowsccccecceveevenencenennen. 452

15.7.6. SCO OpenServer and SCO UnixWare..........cccoeereereneeiienenienenceeneee 452
15.7.6.1. SKUNKWALEooutiiiiiieieitieiesteeitee ettt 452

15.7.6.2. GNU MaKE ..ottt s 452

15.7.6.3. ReAdIINE........coueuriiiiiiiieicicieccre et 453

15.7.6.4. Using the UDK on OpenServer..........ccccecuevereenieneneeneneenuenenne 453

15.7.6.5. Reading the PostgreSQL Man Pages.........ccccocevererienenennencne 453

15.7.6.6. C99 Issues with the 7.1.1b Feature Supplementcc.c...... 453

15.7.6.7. Threading on UnixXWareccoceveevienienienieneeniencnieneneeieniene 454

I5.7.7. SOIALIS ..ttt e 454
15.7.7.1. Required TOOIS ...ccceerrvieriieeiieiieiiesie ettt 454

15.7.7.2. Problems with OpenSSLccocevvieriiiiiienienieeeeeesee e 454

15.7.7.3. configure Complains About a Failed Test Program 454

15.7.7.4. 64-bit Build Sometimes Crashes........c..coceeeveevenerienenencrenene 454

15.7.7.5. Compiling for Optimal Performance............cccceevveereenieniuennnenne 455

15.7.7.6. Using DTrace for Tracing PostgreSQLcccccoeveevieniinvieniennne 455

16. Installation from Source Code on WIndOWSc.coceeceeriirienieninienieneeieneeeeneneerennene 456
16.1. Building with Visual C++ or the Microsoft Windows SDK.........c..ccccceceveeciinninne 456
16. 1.1, REQUITEMENLS ...eouvveiiieiiieiieniie ittt sttt ettt ettt sbe e e s 457
16.1.2. Special Considerations for 64-bit Windowscccceceecveerirceenenccennennen. 459
16.1.3. BUIIAING ..ottt ettt 459
16.1.4. Cleaning and InStallingcccccocueveniiiiininiiniiieeneeceeeee e 459
16.1.5. Running the Regression Tests.........ccccoievierieiieniiiienienieieieecceceeeee 460
16.1.6. Building the Documentation..............cccceceruieiieniiienenenieieeee e 460

16.2. Building libpq with Visual C++ or Borland CH+.......cooeeviiiiiiiiiniiiiiiieeceeene 461
16.2.1. Generated FIlesccooieiirieiieiiiieeseee e 461

17. Server Setup and OPErationccoceeeererieriertieienteeterie st etesteeteentesaeeeesaeestestesbeensenseens 463
17.1. The PostgreSQL USer ACCOUNLcovuuiriiriiiiniiinienieeieeteeee et 463
17.2. Creating a Database CIUSLETcceeeeriiririeieeiieieee et 463
17.2.1. Use of Secondary File SYStems..........ccccecererienereeneneeieneecee e 464
17.2.2. Use of Network File SyStemsccceeeevieniriienenieneneeieeecee e 464

17.3. Starting the Database SEIVET..........cccceviririeririeieneeeseeeeseee et 465
17.3.1. Server Start-up Failuresccocooieveriiiininiineieeseeeceee e 466
17.3.2. Client Connection Problemscccocoeivenieniiiniiniinininicieieeeeeeneene 467

17.4. Managing Kernel ReSOUICES..........coceevuireriiniiniiiinieiecteesteeeeeee e 468
17.4.1. Shared Memory and SEmaphorescccceeeveerereenenennienineeneneeeennees 468
17.4.2. systemd RemoveIPC.........cc.cocoviiiiiiniiiiiincnceeeeeeeee e 473
17.4.3. Resource LIMILSccccueieiiiniiniiieiiiiiiieieeeeeeese e 474

Xi

17.4.4. Linux Memory OVErCOMMILc.cereerrierierrieerieeieeieeneesieeeteenseesnesnees 475

17.4.5. Linux HUuge Pagesc.covieiiiiiieiieieeieeiecteeee ettt 476

17.5. Shutting DOWn the SEIVET........cociiiiiiiiiiieiieeieeeerite ettt 477
17.6. Upgrading a PostgreSQL CIUSLETcccueevuieriiriieiiieniieeieeieesite st 478
17.6.1. Upgrading Data via pg_dumpall..........ccceverriiniiniinniinienienieeeeneeee, 479
17.6.2. Upgrading Data via pg_upgradec..ccceeveeveenereeneneerenineeieneenennees 480
17.6.3. Upgrading Data via Replication...........cccceeeveeniiieneninienineccnceenene 480

17.7. Preventing Server SPOOfINGccoeieriiriiieniinieieneceenie et 480
17.8. ENCryption OPLONS.oueeieiieiieiieiieienie ettt ettt s 481
17.9. Secure TCP/IP Connections with SSLc.cccooiiriiniiiniiniiniieeeeceeeeeee 482
17.9.1. Using Client CertifiCatesccceoeevieririienieiienieiieieseeeeie e 483
17.9.2. SSL Server File USagecccciiiiiiiiiiiiiiciine e 483
17.9.3. Creating CertifiCates.........coererueruerririnrinenienieeeeee e sreteseeeneeresressenaens 484
17.10. Secure TCP/IP Connections with SSH Tunnelsccccoceverieiininienciceeee. 485
17.11. Registering Event Log on WindoOwscccoeeeririeiienenienenieeeeeee e 486
18. Server CONfIGUIATIONoiutiieiietieie ettt ettt ettt sttt et b et e sbeestenaesbeeneenbeene 488
18.1. Setting Parametersceouerueeieriinieeierie ettt et 488
18.1.1. Parameter Names and Values..........cccooeeeieriniieninienenieieeeeee e 488
18.1.2. Parameter Interaction via the Configuration File..........ccccccocenininnnncn. 488
18.1.3. Parameter Interaction via SQL...........ccccoeiiiiiiiiiiiieiieeeeceee e e 489
18.1.4. Parameter Interaction via the Shell..........ccccoeeiiiinininiiiiniiiiee 490
18.1.5. Managing Configuration File Contents...........ccoccoceevenervieneneencncenennen. 490

18.2. File LOCAtIONS ...cueveiiiiiiiiiiiiicieeteiteeece ettt s 491
18.3. Connections and AuthentiCation...........coceverierierieneerienenieneneerenieeieenee e 492
18.3.1. CONNECLION SELLNES ..cuvverevienrierieeniieeieenieenteeteerieesteebeesieesieesebeeseesseesnnas 492
18.3.2. Security and AuthentiCatioN...........cecveereerieirieenienieeieeneeneeseeesreesieesnees 495

18.4. ReSOUrCe CONSUMPLION....ccuuiriieriieriieeieeieeniteeteenteentresseeseesseessessseesseesssesssessseess 497
L84, 1. IMBIMOTY ..ottt ettt ettt sttt ettt et e s b st e sateebaesanesaees 497
1842, DASK ettt sttt e 499
18.4.3. Kernel Resource USage..........cocueeruierieiiienieiniienieeieeieeseesee st eniee e 499
18.4.4. Cost-based Vacuum Delayccceeceeriieniiiniiniinieeieenieeeeeeeeesee e 500
18.4.5. Background WIILeT........ccoueviiiiieiiieniie ittt 501
18.4.6. Asynchronous Behavior.............cocceeviiiiieiieiniiniinieeeeeeeeeeeeeee e 501

18.5. Write Ahead LOZ ..cveoiiiiiieiiiciie et 502
I8.5. 1. SENS.....eeivieiieiiriieieeteetee ettt s s 502
18.5.2. CheCKPOINLS.....couiiieiieiieiiiiieeenie ettt s 506
18.5.3. ArChIVING ..o e 507

18.6. REPLICALION.ceiiiiiiieiiiiciceee et s 508
18.6.1. Sending SETVET(S)..cc.veerveerueiriiiieeieente ettt ettt 508
18.6.2. IMASIET SEIVET ...eeuveiiiiiiieiieniie ettt ettt ettt et ettt st e b e saee e 509
18.6.3. Standby SEIVETSccccceeuiriririnieieietetterenenteeetet ettt saene 509

18.7. QUErY PIANNINGeeeieiiiieiieieeiee ettt s 511
18.7.1. Planner Method Configuration..............cecevueeeieneieenieneeieneecee e 511
18.7.2. Planner Cost CONSLANLSc..ceeeruirierientieienieeieniesiceeesteeeeseeeseeneeseeeeesaeas 512
18.7.3. Genetic QUErY OPtiMIZercovueeueeriertieienieeienieeitee sttt eeee e 513
18.7.4. Other Planner OPtions...........ccceeereerieriieienieeienenieeie et seeae e 514

18.8. Error Reporting and LOZ@INGccceeviiriiieniinieiinieeieneeteesiteeie e 516
18.8.1. WHere TO LOZ ..cueiuieiiiiiiiiieteeeteest ettt 516
18.8.2. WHen TO Lo ..couveiieiiiieiiiiieteccteest ettt s 518
18.8.3. What TO LLOZ «..eeveiieiiiieieiceteeteet ettt 520
18.8.4. Using CSV-Format Log Outputccccecueverienerienenenienieneenie e 523
18.8.5. Process THtle ... c.eeeeruirieierieriieieniieiesiceteste sttt 525

Xii

18.9. RUN-IME StATISTICS. .uvviieeiurieeeeeiiireeeeeeiireeeeeeireeeeeeetreeeeeeerreeeeeseareeeeeesareeeeesnareeeees 525

18.9.1. Query and Index StatisticS COIECLOTcc.eevueerierrieriienieeieeieeieeeee e 525
18.9.2. StatisticS MONILOTINGccouveruririeeiieniierteeieeieesteeieete et tesbeenbeesaeesaees 526
18.10. Automatic VACUUMINGeeeveriieriieiieeiteniieeieesteesiteeteeteesteesateesseesbeesaseeseenseens 526
18.11. Client Connection Defaultscccccoieieriinieniniiiienieieeceeeeeeeeeeeiene 528
18.11.1. Statement Behavior.........ccccecvevirieiiniiiiiieiecccecceece e 528
18.11.2. Locale and FOrmattingc.ccoceeeverieieniniiencnieeneereceeeee e 532
18.11.3. Shared Library Preloadingccccceieceniniiniiiininieicieecceceeeee 534
18.11.4. Other Defaults.........coceeviiriiiieiiiiie et 535
18.12. Lock ManagemeNntcccueeuieuieiiiriieiiniieeeieeiteteete et s 536
18.13. Version and Platform Compatibilityc.cccceciniiiiniiiininiiiiccceceee 537
18.13.1. Previous PostgreSQL Versionscecceeeeeenereeneneeieneecesie e 537
18.13.2. Platform and Client Compatibility...........ccccoeeervirrererenenieneeeninenennne 539
18.14. Error Handlingc..cccoveiririiniiieieiniieieieeceeeeiese ettt ettt s 539
18.15. Preset OPtiONS. ..c.ueeuieieieieiieieetiete ettt ste ettt sttt ettt e sttt e be st e e eeeseeseesaeeaesneas 540
18.16. CUStOMIZEd OPLIONS ...uveeeeiieeieiieiieie sttt ettt ettt ettt ettt eeeaeeseesaeeaesaeas 541
18.17. DeVElOPEr OPLIONSeeviruieiietieiieieete st eitente ettt ettt sttt et et eaeesaesaeeae b 541
18.18. SHOIT OPIONS ...ttt ettt ettt sttt st e b s bt et beeaee e saeeae b 544
19. Client AUKENTICALIONeueeuieiiriieierieeieteet ettt sttt ettt et b sbtesbesbeessenaeene 546
19.1. The pg_hba.conf File ..ot 546
19.2. USer NamME MAPS ...c..eeveriiriiiiiniieiinieetesie ettt ettt ettt ettt eae e 552
19.3. Authentication Methodscccceoireiriiniiiininieieeeeeeeeeee e 554
19.3.1. Trust AuthentiCationccceceerereereniieiienieiene sttt 554
19.3.2. Password AUthentiCationcocceeueeeevienerienenieieneeeene e 554
19.3.3. GSSAPI AUthentiCationccceeevuereerienenieneniieieneeeenee e 554
19.3.4. SSPI AUthentiCation.........coeecverierieiiniieienientenienieetenie ettt enenieene 556
19.3.5. Ident AUthentiCation.........c.ccecverierieiinieiienienienieneetenie ettt eereieae 556
19.3.6. Peer AUthentiCation...........cocevuerireenienieieninieneneeieseerenr e 557
19.3.7. LDAP AUthentiCationccccceereenierieieniniienienieieneerenreeeeseeseeeaenneen 558
19.3.8. RADIUS AuthentiCationcccccoceeruerieeieniiereeneneenieneerenreeeeseeseenennen 559
19.3.9. Certificate AUthenticationcocceevereecieniieieneniieneneereneeeee e 560
19.3.10. PAM AUthentiCationcccceereenieniieieniieieenieneeieneerereeeeee e 561

19.4. Authentication Problemsccceieviiniiiiniinieiiinicccceceseec e 561
20. Database ROIES.........cc.eoieiiriiiieieiieeeet ettt e st 563
20.1. Database ROIESccceeriiriiiiiiiieiie ettt ettt st 563
20.2. ROIE ALITDULES.....cuteeeieiieiieeieeitert ettt ettt ettt 564
20.3. Role MemDbBEeTShIpcceoouiiiiiiiiiiiiieieiecie et 565
20.4. Dropping ROIES.........ccuiiiiiiiiiieiiceee ettt 566
20.5. FUNCHON SECUIILYcuiiuiiiiiieiieieiieiete ettt ettt 567
21. Managing Databasesc.cceeiereiierieitieieeie ettt et ettt be ettt nee s e e eaean 568
211, OVEIVIEW .ttt ettt sttt ettt ettt e a et e sae et e s bt ese et e ebeeneesaeemeesesbeensenseens 568
21.2. Creating @ Database.........cceveeierieriieienieeiee ettt st eae 568
21.3. Template Databasescccccoooiiiiiiiiiiiiiiiic e 569
21.4. Database CONfIGUIALIONcecueruiiuieieniieiienieeceie ettt ettt see st sbe e eae 570
21.5. Destroying a Databasececueveiieieniiieniieee sttt 571
21.6. TabDIESPACEScuventeeieniitiete sttt ettt ettt et e e sttt e bt et sttt e st st e besbeente i eae 571
22, LLOCAIZALION .. ettt ettt ettt ettt st et b ettt eb e sbe bt et bt s et eae et saeeaenbeas 574
22.1. LOCALE SUPPOIT...cuiiriiiiiriieiiiniieiterteeitete sttt ettt sttt ettt et e sbe st e b sbeensenaeeae 574
22.1. 1. OVEIVIEW ..ottt ettt ettt ettt ettt et sttt et e bt eae b 574
22.1.2. BERAVIOT ..ottt 575
22.1.3. PTODICINS ..ouveiiiiniiiieiieiteteiceteeei sttt sttt s 576

22.2. COllation SUPPOTIL....cccueerieeiieriierieeieerteentesteesteesteestessseesseesssesseesseesseesssesssessseens 576

xiii

22.2.1. CONCEPLS..eeeureririeieerieeieettesteste et esttestesbeesbeesstesaseesbeesasesaseenbeesasesnseense 576

22.2.2. Managing CollatioNSeeeveruerrieenienieeieeniiesteeieesieessesseesbeesnesseenne 578

22.3. Character SEt SUPPOTL......cevteruieriierieerieertesteerieeritesitesbeesaeesseesbeesseesseesbeensesnseens 579
22.3.1. Supported Character SELS.........ccceeveerieriiersiienienieeeerite et et enree e eae e 579
22.3.2. Setting the Character Set.........cccceevierieriieiiiienieeieeie ettt et 582
22.3.3. Automatic Character Set Conversion Between Server and Client........... 583
22.3.4. Further Readingccccoceviiiiiniiiiiiiinieieniceccceeneerce e 585

23. Routine Database Maintenance TasKs.........coceevuerriiinieniieniieenienieeieente et 586
23.1. ROUtINE VACUUMINGooviiiiiiieiieiiniieienieeeete ettt 586
23.1.1. Vacuuming BasiCscc.cccuiriiiiiniiiiiiiiieieicece e e 586
23.1.2. Recovering DisK SPaceccccoirieiiiiiiiiiniiicicicenecee e 587
23.1.3. Updating Planner StatiStiCsceeouerueruierierieiieneeieriesieeie e eee e 588
23.1.4. Updating The Visibility Mapccccceverrirenenieneeinirenienierereeeiesrenienaens 589
23.1.5. Preventing Transaction ID Wraparound Failures............ccccccceeerenenennene 589
23.1.5.1. Multixacts and Wraparound...........c.ccceeeeeeeerineneneeneeenrenennennes 592

23.1.6. The Autovacuum Daemoncoceeverieiiininiienieeeseeeeee e 592

23.2. Routine REINAEXINGcoveveureuiriiriiniiieieieieieeseseeteeete ettt s 593
23.3. Log File MainNtenanCe.coeeterueruieieniieiieniesiteniesieeitesteeteetesteeeeseesaeenaesbeeneenneene 594
24. Backup and RESTOTEcccueiuiiiiiiiieienicetee ettt s 596
24.1. SQL DU ..ottt sttt s s 596
24.1.1. Restoring the DUmMPcccooeiviiniiiiniiniiiceeeeeeeeeeeee e 596
24.1.2. Using pg_dumpall......c..ccceeeeviiniriinenieiineetenereeiesieeteseeeesee e 597
24.1.3. Handling Large Databasescccceeereeienirienenienienieeieneeeenee e 598

24.2. File System Level BaCKUPcccovviiiiiiriieieeie ettt s eie e 599
24.3. Continuous Archiving and Point-in-Time Recovery (PITR)........c.cccccevenieienenne 600
24.3.1. Setting Up WAL ATChIVING....cccuerciiiriierienieeitenteste ettt 601
24.3.2. Making a Base Backupcccecueviiiiriiiniiniiiiiicicecceee e 603
24.3.3. Making a Base Backup Using the Low Level APcccocceeviinininnne 604
24.3.4. Recovering Using a Continuous Archive Backupccocceeveevieniiennenns 605
24.3.5. TIMEINES.......oouiiiiiiiiiiiiirccee e 607
24.3.6. Tips and EXaMPIEScc.eevvierieriiiiiieniieeiecieesiteete ettt 608
24.3.6.1. Standalone Hot Backupscccecceeviiiieniienicnieeicenienieeeeene 608

24.3.6.2. Compressed ATChive LOgSc.coveeriirierieenienieeieeie e 609

24.3.6.3. archive_command SCIPLS .ioceeveerierienrieeniienieeieeniee e 609

2437, CAVEALS ..ttt ettt ettt s bttt s bt e bt e st st e be e st e et e b e st e eabe e 609

25. High Availability, Load Balancing, and Replication.............cccccecereeveniniininicnincennennen. 611
25.1. Comparison of Different SOIUtIONS..........ccceuirieiiririieninieieeeere e 611
25.2. Log-Shipping Standby ServVers.........ccccoceceriiieiiniiiieniieicieeeeeese e 614
25.2.1. PIANNING 1.ttt ettt ettt ettt 615
25.2.2. Standby Server OPerationccecceceeeeeruereeriereeienieseeeieseeeeseeseeeneesneas 615
25.2.3. Preparing the Master for Standby Serversc.ccooceveeiereeceneneenennen. 616
25.2.4. Setting Up a Standby SEIVer.........ccceeuierienieiienerieiesieeese e 616
25.2.5. Streaming Replication..........ccceveeieiienieiiiniieiere e 617
25.2.5.1. AUtheNtiCAtIONeeuieieiiiiieieiteeieie ettt 618

25.2.5.2. MONIEOTING ... vetieutentietieieetteiesteeite e et et seeeee st eete st eseeneesaeeaesaeas 618

25.2.6. Replication SIOLSccoeruiririinieieieieiietirenieeeeet et sttt 619
25.2.6.1. Querying and manipulating replication slotscccccccevceeuennen. 619

25.2.6.2. Configuration EXamplecc.cecevirieniiiineninieneniencsceeeee 619

25.2.7. Cascading RepliCationcccccoerienienieieninienieneeiesieeenieeee e 620
25.2.8. Synchronous Replicationcecceverievieneriienenieneneereneeeenie e 620
25.2.8.1. Basic Configuration...........ccoceeeevenieneeneneenienenrenieeeenee e 620

25.2.8.2. Planning for Performance.............ccccocevireencneniicninieencncencnnen. 621

Xiv

25.2.8.3. Planning for High Availabilityccccceeveeniiniiinniinienieeieeeene 622

25.2.9. Continuous archiving in standbycccceecceerieriierieenienieeieenieesieeieenne 622

253 FallOVET ...t 623
25.4. Alternative Method for Log Shippingc.ccoveevienienieinieniiiieeeeee e 623
25.4.1. ITMPIEMENLALIONveeniieiieiiieiieeie ettt ettt ettt e sb e s b eate e 624
25.4.2. Record-based Log Shipping........cccccceeeecienieiieninienieneereneeeenie e 625

25.5. HOt StandDbycc.eeieiieiiiiiniieieeeeeteeete ettt 625
25.5.1. USEI’'S OVEIVIEW....eeuiiiiieiieiieeiieeitesiteete et e bt st st sbeesatesteesbeesabesaaeenne 625
25.5.2. Handling Query Conflictsccccoouevierieiiinieiieniiecienececeeeeee e 627
25.5.3. AdMiIniStrator’s OVEIVIEWcccueevueeriierieriieeniientenieeniteseeeteenbeesreseeenne 629
25.5.4. Hot Standby Parameter Reference............c.cccccooiiiiiiiiiiiniiiinincnen. 632
25.5.5. CAVEALS ..uveeiteieteieeeet ettt ettt ettt st et ettt sate et 632

26. RecovVery CONTIGUIATIONcouieuieiiiiiieieetieteet ettt sttt e st st e e sbe et sbe e eneesaeeneesneas 634
26.1. Archive ReCOVErY SEttNESccceruerieiieriieienieeieie ettt st 634
26.2. Recovery Target SELUIESceeveruerieientieiienie ettt sttt et sbe e eae 635
26.3. Standby Server SNcceeveruirierientieiere ettt ettt see et ee e eae 636
27. Monitoring Database ACHVILYcceeruerieieririenieeieest ettt e e sae e saeas 638
27.1. Standard UnixX TOOIScc.ceouiririiriiiieiesieeee ettt 638
27.2. The Statistics COIECTOT.ccuiiririirriieieieteiteeste ettt s 639
27.2.1. Statistics Collection CONfIUIAtIONccuevveeiererienienieienieeeene e 639
27.2.2. VIEWINE STALISTICS ...eeuvevientiieeienieniteiesitete ettt sttt eiee e saeeae i 640
27.2.3. Statistics FUNCHONSc.cccoviriiriiieiiiiiciiieiceeeeee et 654

27.3. VIEBWING LOCKS ...cuveiieiiiiieiisieeiteeseetest ettt ettt s 656
27.4. DyNAMIC TIACINE ..evveuviieeiiniiriienienieetesteeetete ettt ettt sttt eae 656
27.4.1. Compiling for Dynamic TraCing.........cecceevuervveereeniiensieeneenresieesieeneenenes 656
27.4.2. Built-in Probesccccceviiiiiiiniiiiiiiiiiiiiceceeceeeeee e 656
27.4.3. USING PTODESocuviiiieiieeiieitesiteete ettt sttt sttt st e e e 665
27.4.4. Defining NEW ProDesccocieeiiiiiienieiieiitesiieeieeie et 666

28. Monitoring DiSK USAZEcoveeuieriieriieiieiie ittt sttt e st ste et esbtesabesbeesbeesasesaseenne 668
28.1. Determining DisK USAZEcccueerueeriiiriieniienieeieeitesite ettt sttt s 668
28.2. Disk Full Failure.........cccccoiiiiiiiiiiiiiiiiiiiccccc e 669
29. Reliability and the Write-Ahead LOg......cccceeriiiiiiiiiniieiiiieeteeeee ettt 670
29.1. ReIabIlity ..oovviiiiiiiiiiiiicicii e 670
29.2. Write-Ahead Logging (WAL)ccccooiiiiiiniiieneceeecreseeecre et 672
29.3. Asynchronous COMMIUL..........cecueririerieniieieniineee ettt eee e enesneene 672
29.4. WAL CONfIZUIALIONooviiiiiiieiiiiiiieienteeiete ettt 674
29.5. WAL INEEINALS ...coouiiiiiiiiiiiieiteieeete ettt ettt ettt ettt 677
30. Re@IeSSION TESTSeouiiiiiiiiiiieieeieeee ettt e st s 678
30.1. RUnning the TeSEScoiiiiriiiiiiiiiiieeeee e 678
30.1.1. Running the Tests Against a Temporary Installation.............ccccceceeuenene 678
30.1.2. Running the Tests Against an Existing Installationccccceveecennene 678
30.1.3. Additional TeSt SUILESccueeverterrieriieiieie ettt ettt 679
30.1.4. Locale and Encoding..........ccccoerveeveerininiinienienieieeeeneneseeeeeee e 679
30.1.5. EXIIA TESES...eeutetieuieiieiieie sttt ettt sttt sttt sae st sbe e e eae 680
30.1.6. Testing HOt Standbycoceeoveiiiieiiinieiineeiee e 680

30.2. TeSt EVAlUALION ..c..eiuieiiiiieieriieiieiesitetesteete ettt st 681
30.2.1. Error Message Differences.........cocueveveeviereiienienienieneeienceceeseeeniene 681
30.2.2. Locale Differencesc.cceeeverierieieininiinieicicieeecseseeeeeeee e 681
30.2.3. Date and Time Differencesccccceeevevinenicnienieininencceeeeeeeeeenes 682
30.2.4. Floating-Point Differences.........cccceoeveevienerienenienienenieneeeeneseevenene 682
30.2.5. Row Ordering Differencescoccecereevienenienenienicninieneeeeeseeenene 682
30.2.6. Insufficient Stack Depthi.........ccceecvieriiinieniiiiiieieceeeeese e 683

XV

30.2.7. The “random’” TESt.......ccoviuiiiiieiirreee et et eeeree e eeeere e e eeereeeeeenannes 683

30.2.8. Configuration Parameters.........cccecueerueerieriiennieeniienieeieenieesee e eniee e 683

30.3. Variant Comparison Filesccccovviiiriiniiniiiiiiienie et 683
30,4, TAP TESES c..eieeireieeiieteeit ettt ettt ettt ettt et sae et sae st enesaeesnenneene 684
30.5. Test Coverage EXamination.......c..coccecuevuieieruinienienenienieneeresieeeeseeeeenesieenenneene 685
IV. Client Interfaces 686
R B 110] oo I G 1) ¥ TPt 688
31.1. Database Connection Control FUNCtions...........cccccevieriernieniiinenneeniciieeeeeene 688
31.1.1. ConNECtion STrNEScccuiruiiieiiiiieiieit ettt 694
31.1.1.1. Keyword/Value Connection Stringsc..ceceeevvereeeeerrerennennes 694

31.1.1.2. Connection URISc..ccoviiiiiiiniiniiiiieieeiecicetceeceeeeeseeeeee 695

31.1.2. Parameter Key WOrdSccccciiiiiiiiiiiiiiiiccc e 695

31.2. Connection Status FUNCHONScceeiiriiiiiiiiieie et 699
31.3. Command Execution FUNCHONSccccevieriieiiieniesie e eve e sve e 704
31.3.1. Main FUNCHONSoocviieieeiieiieciecie ettt eeee et eae e sieeseneebeeaeesaeeennas 704
31.3.2. Retrieving Query Result Informationcccceeeeveneniiencnicenencnienene 711
31.3.3. Retrieving Other Result Informationccoceveeveninneninieneninienene 715
31.3.4. Escaping Strings for Inclusion in SQL Commands.........c.ccecevereeuennenne 715

31.4. Asynchronous Command Processing.........c..ceccevererienienienienennienenieneneeienieene 718
31.5. Retrieving Query Results ROW-BY-ROWcccooviriiiininiiiiniiiincicienceieee 722
31.6. Canceling QUeries in PrOgress.........ccocveriiririenenenienientciesieetesesteiesieerenieae 723
31.7. The Fast-Path INterface..........cccceoeririiiniriiniiniiicneceetceecetese e 724
31.8. Asynchronous NOtHICAIONeeruieriieriierieeie ettt ettt ste e eeee s 725
31.9. Functions Associated with the COPY Commandcc.coceeeverernieneniencnencrenenne 726
31.9.1. Functions for Sending COPY Data.......ccceecuerviierienieniienieniesieeieeneeeeees 726
31.9.2. Functions for Receiving COPY Data........cccevviierieniiniiienienienieeeeneeeen 727
31.9.3. Obsolete Functions for COPYcccecuirieriineirienienieienieeeeneeeenesieereniene 728
31.10. Control FUNCHIONSooeeiiniirieienietenceiete ettt ettt 730
31.11. Miscellaneous FUNCHONScocovierieriiriiniiiieienceieieeecteeiceeesee et 731
31.12. NOtICE PrOCESSING ...uveeiiiiiieiiiiiesiie ettt ettt ettt sttt sbee st e eaee s 733
31,13, EVENE SYSTEIM c..eeiiiiiieiieeiieeieesite sttt ettt ettt sit e st esaeesaee st e ebeesbeesateebeebeens 734
31131 EVENt TYPLS ..ottt ettt et 734
31.13.2. Event Callback Procedure............ccccevieriiirniiinienieniiinienieeieeeeeee 736
31.13.3. Event Support FUNCHONScc.cocviviiiieiiniiicieniceeeece e 737
31.13.4. Event EXamplecccoooiiiiiiiiiniiiiiieeecceeee e 738
31.14. Environment Variablesccccceviiiiiiiiiniiniiiienieeieeeest et 740
31.15. The PasswWord Filec.ccoovieeiiiiiiiieeieeeee ettt e 742
31.16. The Connection Service FIleccocvieriiriieiiieiecie et 742
31.17. LDAP Lookup of Connection Parameters.............ceceveeeerieneenienenienenceienene 743
3118, SSL SUPPOTL..cuueiiiiiiieiieiieeteette ettt ettt ettt et st e e b 744
31.18.1. Client Verification of Server Certificatescceeueevriereescreecreereeseennnes 744
31.18.2. Client CertifiCates......c.eecvierueerieerieriienieeiieesreeseesaeeieeseresssesseenseesseensnas 745
31.18.3. Protection Provided in Different Modesccoeeueeviiereencienciieneeneenen. 745
31.18.4. SSL Client File USage.......cccerueruieriirieienieiieieniteiesieeeenee st 747
31.18.5. SSL Library InitialiZationc.cccceeeerienerienienieieneeeene e 747
31.19. Behavior in Threaded Programs...........cccccoevieninenieninieienieienceeeeseeeeae 748
31.20. Building libpgq Programs..........c..ccceecuererieniniininenienienieeiesieeee et 749
31.21. EXample Programs.cccccoeeiererienieninieieneete ettt ettt 750
32, Lar@E ODJECLS ..cuveveeniiieenienieeiteieet ettt ettt ettt b ettt et ae st e b s b et et sbee bt saeeaesbeeanenbeene 760
32,1 TEOAUCHION ...ttt sttt ettt ae s eae 760
32.2. Implementation FEAtUIESccccueviiiriierienieeiieitesie ettt st 760

xvi

32.3. CHEnt INterfaCeS......uvveeeiieiieiee et e e e eeare e e e earreee s 760

32.3.1. Creating a Large ODJECt........cevueruirriienienieniteniteete ettt 761
32.3.2. Importing a Large ObJECT......ccocuevuiriiierienieiieeriterte ettt 761
32.3.3. Exporting a Large ObJECt.......cccuevuirriiinieniieiieeitenieeieesiteste et 762
32.3.4. Opening an Existing Large Object.........ccecervvienienieniiienienieeieeieeseeene 762
32.3.5. Writing Data to a Large ObjJect.........covieviiiriiiinieniieniieieneeeieeeeeeee 762
32.3.6. Reading Data from a Large Objectcoccecvevieviiiiininiicninicenecieene 763
32.3.7. Seeking in a Large ObJect.......c..cocuevuirieiiiniiieniinicieneeeceeeceseerenene 763
32.3.8. Obtaining the Seek Position of a Large Object.........ccccevirieniniicenncnne 763
32.3.9. Truncating a Large ObJectcccecuirieiiniiieiiinieieececeeece e 764
32.3.10. Closing a Large Object DeSCIIPLOrc.cocuevuirieiinieieniiieciesecieine 764
32.3.11. Removing a Large ODbJectcocuerviiiriiriiiiiiiiieieeeeeeeeeee e 764

32.4. Server-side FUNCHONSc.ooieiiiiiieiesiieiee ettt 765
32.5. EXamPle Programcocoiieiiiiiieieniieieie ettt 766
33. ECPG - Embedded SQL in C.....ocooiiiiiiriiiiieicieietnesestetereteie ettt e 772
33.1. The CONCEPL...ccueirutieiieiieeitetteette sttt ettt ettt st sttt beesbee s e beeree s 772
33.2. Managing Database CONNECTIONSccueruieruiruierierienienieeiietesteeteneesieeneeseeesseneeene 772
33.2.1. Connecting to the Database Serverc.ccoceverieieniniienenienenceenene 772
33.2.2. ChooSing @ CONNECLIONceuvetirtieiinieeienieeitetesttetesieeeteneesiee e sbeeneenieeae 774
33.2.3. CloSing @ CONNECHION........erueruiertirtieiinieeienieeiteteste et eiee st st e e sbeeaeenieeae 775

33.3. Running SQL Commands..........c.ccecueuerierieniirienenentenienitetesieete s sieesiesieesenieene 775
33.3.1. Executing SQL Statementsccccecuereeruererienieneeienieneeneseeneesieenenienne 775
33.3.2. USING CUISOTS.....eutiiiieeierieeiienieetteteeieete st eitete st ettt estesaesaeesaesbeesneniene 776
33.3.3. Managing Transactionscocceeevuereeruenerienieneeienieeeenieseensesieenenienne 777
33.3.4. Prepared StatemMeNtS.cccueerveerverierriienienieeieesieesteeteesieesnesseenaeesanesnnas 777

33.4. USING HOSt VAriabIescccuieriieriieiiieiieriesie ettt st eae e 778
3341 OVEIVIEW ..oviiiiiiiciciceeee ettt e 778
33.4.2. Declare SECHONS.ccccveuiiuiiiiiiiiciiieit et e 778
33.4.3. Retrieving QUery ReSUItScccueviiiriiinieniiiiieieteeeetese e 779
33.4.4. TYPE MAPPING .ottt ettt ettt sttt et sttt e st e st eebeesaeesaeas 780
33.4.4.1. Handling Character Stringscccecueevveereeneerieenieeneesieesieennens 781

33.4.4.2. Accessing Special Data TYPes......cocuevvveeveenieriieeneenienieeeeieene 781

33.4.4.2.1. timestamp, datececceeveeriirrienienieeeeee e 782
33.4.4.2.2.INEIVALoviiiiiiiiiiiec e 782

33.4.4.2.3. numeric, decimal..........ccceeeeeriiiiieeeeiiiiee e 783

33.4.4.3. Host Variables with Nonprimitive Typesc..cccccccoeveninenennen. 784

33.4.4.3. 1. ATTAYS .ooiiiiiiiiieeeeeee e 784

33.4.4.3.2. STIUCHUIES «..uveeneeeiieeiieeeeenite ettt st e siee st e e 785

33.4.4.3.3. Typedefs......ccooiiiiiiiiiicccee e 786

33.4.4.3.4. POINEETS «..ceouveeeeeiiieieeitenite ettt sttt 787

33.4.5. Handling Nonprimitive SQL Data TYPes.......cccceveereriereenieieneneeieene 787
334510 ALTAYS cuveeieeiiieeieeiee ettt ettt ettt sttt e 787

33.4.5.2. ComPOSILE TYPES ..cvervirerenreieiinierienietereteie ettt s 789

33.4.5.3. User-defined Base TYPESc.ccceeverererieieininiinienieneeeeieeene e 791

33.4.0. INAICALOLS.eeueetieeieeieieete ettt ettt st sbe e e e 792

33.5. Dynamic SQL....c.coiiiiiiriiiiiiiiineteeeet et 792
33.5.1. Executing Statements without a Result Setcccccocevvininieneninienene 792
33.5.2. Executing a Statement with Input Parametersccccecceverienenencenene 793
33.5.3. Executing a Statement with a Result Setc..coceevivenininiininienene 793

33.0. PELYPES LADTATY ..c.eeiiiiiiiiiiiieetetetee ettt st 794
33.0.1. Character StINZS.......coceeruererienieniteteeeeteste ettt ettt s eene e e 795
33.6.2. The NUMETIC TYPE .o.veeeeieeiieiieeieeieeieerteete ettt ettt saee e 795

xVii

33.6.3. The date TYPE...cccveeruierieeiieiteieete ettt ettt sttt et st e e e e 797

33.6.4. The timestamp TYPE.....cevveeriierieriieiienteeie ettt ettt 801
33.6.5. The INterval TYPEeevueeriiiiiiiieeieeeteee ettt 804
33.6.6. The decimal TYPE.....eeveeriiiiiieieeieeieesteete ettt 805
33.6.7. errno Values of pEtypeslibcccueeviiiiiiriiniiiiiiiieieeeetee e 805
33.6.8. Special Constants of pgtypeslib.........ccocevviriiiniiniiiniiiinieeeeeeeeee, 806

33.7. USING DESCIIPLOT ATEASeoruirueeniiriienreiiniietieitetenieeeresreeaeeresteeeesaesneesnesaeesnenneens 807
33.7.1. Named SQL DeScriptor AT€ascccecereeierienieieniineeneneeneseenenene 807
33.7.2. SQLDA DeSCIiPtOr ATEAScocvieureiiruieienieeierenieereereeeeesaeseesnesreenenene 809
33.7.2.1. SQLDA Data StruCtUure...........ccceereueeercrieeriieeeireeereeesreeenreeeneeens 810

33.7.2.1.1. sqlda_t StrUCtUTeccceeriiriieiiinieeieeeeeee e 810

33.7.2.1.2. 8qQIvar_t StrUCTUTE.......cccveeriiriieeeie et 811

33.7.2.1.3. struct sqlname StruCturecccceeeeerieeneeneereeenieeneenane 811

33.7.2.2. Retrieving a Result Set Using an SQLDAcccccoceiininiiennnne 812

33.7.2.3. Passing Query Parameters Using an SQLDA..........ccccoecerieennen. 813

33.7.2.4. A Sample Application Using SQLDAccccoeviiinieninceenen. 814

33.8. Error Handlingcoueeuieiiiiiiieieiieiest ettt 820
33.8.1. Setting CallbDaCKScccevuererieriiiieieetete ettt 820
3382 SQLCA ettt st st 822
33.8.3. SQLSTATE VS. SQLCODE .cutruirieieieireiieiestestetenenteneeressesaesaesseneenessesnesenns 823

33.9. Preprocessor DIT@CLIVESovuiriiriirieieniieieieetete sttt sttt 827
33.9.1. Including FIlescccooeeviniiiiniiieicctceeeeeetee e 827
33.9.2. The define and undef DireCtivescccceverierienierienenrieneneeneneeieniene 827
33.9.3. ifdef, ifndef, else, elif, and endif Directives.........cooovvvvvviciieniieieeeeneeeennn. 828
33.10. Processing Embedded SQL Programs............cceevevieerieeneenieinieenieeneesieeieeeens 829
33.11. Library FUNCHONScovuiiiiieiieriieeieeitesite sttt st sttt sve e esaeeseteenseensee s 830
33,12, LarZe ODJECLS...ceeuiieiieriieeiieieenite sttt esitesiteebe et e sitesabeesaeesaeesabeenseenseesabeensaenseens 830
33.13. CA+ APPLICALIONS .evvieniiiriiieiieiiesiieeiterte st eteesitesttesbeesaeesatesbeeseesseesabeenseenseens 832
33.13.1. Scope for Host Variables..........ccceeviierieniierniieniienieeieenitesee e 832
33.13.2. C++ Application Development with External C Module....................... 834
33.14. Embedded SQL COmMmMANSccueeeeviieeiiieiiieerrieerieeeireeeireeeeneesseeessveseenens 836
ALLOCATE DESCRIPTORcceoiiiiiiiiiitniniineneeteiteie ettt 836
CONNECT ...ttt sttt et 838
DEALLOCATE DESCRIPTORcc.cotiiiiiiiriniinienienietcieese et 841
DECLARE ...ttt ettt ettt ettt et e estesneeneeenean 842
DESCRIBE ..ottt ettt ettt sne et e st entesneenesnean 844
DISCONNECT ..ottt ettt ettt ettt besseensesseeneesaesneesesnean 845
EXECUTE IMMEDIATEcc.ooiioieeteeeetee ettt 847

GET DESCRIPTOR ..ottt ettt e 848
OPEN .ottt ettt ettt h ettt ettt et et b et e et e e e teeneeneeaean 851
PREPARE ...ttt ettt sttt et eae s 853

SET AUTOCOMMITc.coiiiiieiieeeseet ettt 854

SET CONNECTION ..ottt ettt ettt et eae 855

SET DESCRIPTOR ..ottt 856
TYPE. .ttt ettt sttt st nae s 858

VAR ettt ettt b ettt sbe e nbe s 860
WHENEVER ...ttt st sttt e 861
33.15. Informix Compatibility MOdecccoeeieriiriinininienienicieeeese e 863
33.15.1. Additional TYPES ..c..eeveeierierieniiniieierieeie ettt st 863
33.15.2. Additional/Missing Embedded SQL Statementscc.ccoceeverercuenncnne 863
33.15.3. Informix-compatible SQLDA Descriptor Areas........c..ccoceeceereneecvenncnne 864
33.15.4. Additional FUNCHONS......c.eeviriirieiinieieneeteieniteeeeee e 867

XViii

33.15.5. Additional CONSLANTS..........cceeviurieeeirireeeeeerirreeeeeerrreeeeeeereeeeeesareeeeeenannes 875

33,16, INLETNALS ...eonieiiieiiieieete ettt ettt st sttt et sttt sbee st e b e b 876
34. The Information SChEMA.cc.eeeuiiriiiiiiiiietieeteeee ettt st ettt be e e s 879
34.1. The SCHEMIA ...ccueiiiiiiiiiiieeie ettt ettt sttt st e b e b 879
34.2. DAta TYPES .eeuveeieeinieeiteeite ettt ettt ettt sttt et e st st e sbe e s bt st e et e bt st ebeebee s 879
34.3. information_schema_catalog_ _NAME ..oeieeeeiireeeeeeeirreeeeeeireeeeeessreeeeesereeeees 880
34.4. administrable_role_authorizZationsS . iiieeeeeeeeeeeeeesirareeeeeeees 880
R R Tt o NIk Ty o Y SN oo N I =Y TP 880
3.0, A LA UL @S utiiiii it eeeee e ettt eee e e e et e e et e e e e e e e e e eetraeeeeenrraeaas 881
R Y BC) N o Kk ol = o= 1= o= RO RRRRRY 885
34.8. check_constraint_roULine_USAGE .ccieeeiiiiiiieeeeciieee et eeevree e e e erree s 886
34.9. CheCk _CONSETAINES ittt ee e e eeee e s e e e e e eeeeeeeeseessassrannreeees 886
34,10, COL LAt 10N utiiiiiiiiiiieeeieiireeeeeetee e e eetre e e e eeteeeeeeetteeeeeseataeeeeeenraeeeeeansaeeeeeanraaeans 887
34.11. collation_character_set_applicability .ccoieiiiiiieiiiiieeeeeieenn. 887
34.12. coOlUumN_dOMAIN_USAGE wuiriieeiriieeeeeiireeeeeeiteeeeeeitteeeeeeetreeeessassaseeeesnsreeeeessssseeeas 888
34,13, COLUMN_ 0P IOMNS ttttieiieiiiieeieeiieeeeeettteeeeeetteeeeeetbeeeeeseabaeeeeessraeeeeesnsaeeeesassranens 888
34.14. COLUMN_PTiViLEGES wtitiiiiieiiieeiiieeetieeeiteeeteeesteeeeteesbteesaeeessteessseeenaseesanseas 889
34,15, COLUMN_ UL TS AT ciutiiiittieeitieeeiteeeeteeeeiteeeeteeeereeeetseeeeteseessseeeeseeeeasesaesseseeneeas 889
34,16, COLUIMIIS vieeuvieeeitieeeiteeeetee ettt e eeteeeeteeeeteeeeaeeeeaaaeeetseeeeaseeessseeseseensseeesseeensseeeensens 890
34.17. constraint_COLUMN_USATE wiiiiireeirereeireeeireeeereeeereeeeteeeenseeeeeseeessesensseseesnens 895
34.18. COnStraint_tabl e USATE.iiiiieiiieeeieeeeireeeereeeeveeeetreeessreeeesseessesensseseeanens 896
34.19. data_tyPe PrivVileges e iieeeiieeeireeeereeeereeeeteeeeetreeeesseesseeeeareseeanens 896
34.20. AOMAIN. CONSETAITNITES tteteettttiteteeeeeeeeeeeeeeeeeeeeeeeaeeeaaeaeeeeeeeeeereeeeae——aaaaaaaaees 897
3421, AOMain_ UL _USATC it iiiurieeieireeeeeeeiteeeeeeeiereeeeesteeeeeeetaeeeeessraeeeeesareeeeennreeeees 898
34,22, AOMAIIIS tieetrieeirieeetieeeteeeetee ettt e eetaeeeteeeeaeeesasaeesaseeesseeensseasnsseesssseesssesenssesansens 898
R TR =S 1=Y o ol o4 o Y= 1= SO 901
3.2, ENIAD L A, T O LS e et e ettt ————aaeaae e e e e et e et —————————————an 904
34.25. foreign_data WrapPer OPtiONS iieieeiiiieeeeeeeitreeeeeeireeeeeentreeeeeeerreeees 905
34.26. fOreign._data WIaPPEIS cieerreeeeeerrreeeeieitrreeeeeiireeeeeeeireeeeeeiireeeeeesisreseeesnirreees 905
34,27, foreign._ Ser Vel 0P IONS iiiiiiiireieeeeeitreeeeeeereeeeeeetreeeeeerraeeeeeetreeeeeeerraee s 905
RE 2 T Fehar=h Re po H-1= Y on 14 =Y of - DU USSR SRR 906
34.29. foreign_ table OPLioNS . ieieeeiiireeeeeeereeeeeeeetre e e e e e e e et eeeeerraee s 906
34.30. £OrEign £ AD LS tiuiiiiiiiiiiee ettt e e eeeteee e eeere e e e et e e e e etra e e e e ae e e e e etraaeeeearraee s 907
34.3]. Ky _COLUMN_USATC e iiiiurieeieerreeeeeeirreeeeeeitreeeeeeiteeeeeeesreeeeeeeraeeeeessreeeeeeerreeeas 907
T R TN ot 1=y =S o= TSP 908
3433, referential CONSTTAINES wiririiiiiieieeeieeeeeeeeierrrerreeeeeeeeeeeesesesssasaasaeeeeees 911
34.34. role_COLUMN__GIANTS tirieeieeiieeeeieireeeeeeeitreeeeeeireeeeeeeisreeeeeeeraseeeessreseessesseeens 912
34.35. role _roULiNe _GrantS e ieiiieeeeeeireeeeeeereee e e eetre e e e e eeataeeeeeerreeeeeenraaeeas 912
34.30. rOle_L£able_gLants ciiiieciiieeeeeiieeeeeeeitteeeeeeiteeeeeeetreeeeeeetaeeeeeesreeeeeeenreeeeas 913
34,37, rOle UGt _GraNT S uiiiiiiiiiieeieeitieeeeeeitteeeeeetteeeeeeetteeeeeeetreeeeesasraeeeeeansreeeeeaanseeeeas 914
34.38. 101 _USAGE_GTANES wttreiciieeriieeirieeeiteeeaieeesseeesseesssseesseeeansseessssesssseessseessnses 914
34.30. rOULINE_PTrivViLleges ieriiieriieeiieeeiieeeiieeeiteesteeesateesteeeetreesseeessseeennseesensens 915
34,40, LOUL AN S cetttiieeeeiitiee e ettt e e ettt e e e ettee e e e e etae e e e eettaeeeeeeataaeeeeaataeeeeeanbreeeeeanraaaeas 916
34,41, SCREMAT A ceetiiieeieiiieee ettt e ettt e e et e e e e e e e e et e e e e e tt e e e e e e abae e e e eanbraeeeeanrraaeas 922
3.4 SO OUEIICE S cutuiieeieitiieeeeeeitreeeeeette e e e e etttteeeesetaeeeeeattaaeeeanataeaaeearraaeeeaanrraaeeeaaraaaens 922
34,43, SOl _fEALUTES cieiirieeeeeciieeeeeeiteeeeeettteeeesetteeeeeetreeeeesestaeeeessssaseeeanssreseeeannseeeens 923
3444, sql_implementation_iNFO e eeiee et eeie e et e e e eeaneas 924
3445, SAL_LANGUAGES ceeetieieteeeetieeeetreeeeteeeeeteeeeteeesseeeeseeeeaseeentsssansssesesseesssesansseseeseeas 925
34.46. SAL_PACKAGES wereeiieieiieeitiieeetieeeetteeeeteeeeiteeeeteeeebeeeeaaeeeetaeeenteeeeaaeeeareeenareeeenreas 925
B AT . SOl AT E S uuiiiitieeetieeete e ettt e et e et e et e et et e e et e e et e e etaeeetbeeeaaeeeabeeenareeeareas 926
R T Ye A= B - B s e SO RSP RRRRR 926
34.49. Sl _S1izZing_ ProfileS ciiiiieiieiieieeeiee et s 927

Xix

34.50. LAl e COMSTTAINES teettteeetititteeeeeeeee e e e e e e e e ettt eeeeaeeeeeeeeeeeeereeeaaenaaaaaaaaeees 927

REZ BN B =Y N RN o % ok v R =T 1= Y- FUU USSR RRI 928
34,52, LADLES tettiriteeite ettt ettt sttt ettt et ht e st e bt e ht e st e e bt e sabeebeebee s 929
34,53, L AN S FOTMS ttutiiutieiienite et eite it e sttt e bt e stte s et e e bt e bt e sbtesabe e bt esbeesabeenbeebeesateenbeebeens 930
34.54. triggered_UpPdate_COLUMNS .iicouiireeeerirreeeeeeitreeeeeeetreeeeeeeareeeeeeeareeeeeeenrreeees 931
7/ BT TR o ok e 1 =8 o= SRS 931
7 T SR DTG Lol o o A I =Y 1= USRS 933
K7 e B DIt TN o b ok B B =Y oY= B P 933
K7 et R PET=Vallile IS8 s 1=Ye L o g o 1=Y= SOUN SRS 934
K7 Ne1* BEDETSValll (o) o) ok Bale o) o) sl e s k= NSNS 936
34,600, USET_TMAPDPINGS teerrrrerrreeriieeesteesasreesteeeasseeesseeesseesssseesssseeassseessssesssseesssseessssens 936
34.61. VieW_COLUMN_USAGE tiirrieeeeerrreeeeeirrreeeeeeteeeeeeeisreeeeseesreeseseassaseesassressessssseeens 937
34.62. VieW _ToULINE_USAGE tiriiiieiiiiieeeeeiiieeeeeeiteeeeeeetteeeeeeetreeeeeeenraeeeeesarreeeeeeenseeeeas 938
34,603, VieW £ AL USAGC citiiiiiieeetieeeeteeeeeteeeeitee e et e e eteeeeae e et e e et e e et e e eteeeeaeeeeaneas 938
B0, VIEWS ettt et ettt e e et e e e et e e e teeeeaeeeeaneas 939
V. Server Programming 941
35. EXtending SQL.......ooiiiieeeteee ettt sttt 943
35.1. How EXtensibility WOTKS.......cccccoiiieiieniiiiiniiiieie ettt 943
35.2. The PostgreSQL Type SYStEIM...c..cceeiiriiriiriiiieieneeieniesitetesteete et 943
35.2.1. BASE TYPES w.euveniiiieiirieeienieeiteteei ettt ettt ettt s 943
35.2.2. COMPOSIEE TYPES ...eeuvirrieiirierireiinitetesieete sttt sttt sttt nie e 943
35.2.3. DOMAINS «..euviiriniieiiiienieeiesieeit ettt sttt ettt et et sae st s neeene 944
35.2.4. PSEUAO-TYPES ..eeruvieniieeiieeieeitesite ettt sttt site sttt e saaesabeeaeesaeesenas 944
35.2.5. POlymOTPhic TYPES ..eevvveeeiiiiieriieeiieeieenteete ettt 944

35.3. User-defined FUNCHONS.......coceeierierieieninietieteenecteniceie ettt 945
35.4. Query Language (SQL) FUNCLIONScovieriiiiiieiienie ettt 945
35.4.1. Arguments for SQL FUNCHONSccceevieriiiiiieieieeeeteeee e 946
35.4.2. SQL Functions on Base TYPeSccccuevieriierriienienieniieniienteeieeieesee e 947
35.4.3. SQL Functions on Composite TYPEScccuervveerieniiriiienienienieenieeneenees 949
35.4.4. SQL Functions with Output Parameterscc.ccoeceevvivenieniersieeneeneennne. 951
35.4.5. SQL Functions with Variable Numbers of Arguments.............cccccevueeneee. 952
35.4.6. SQL Functions with Default Values for Arguments...........cceceeveeneenee. 953
35.4.7. SQL Functions as Table SOUICEScccccvreririeerciieeeiie e eeree e 954
35.4.8. SQL Functions Returning Setsccccoveevieienieciininieenineeeneereiene 955
35.4.9. SQL Functions Returning TABLEccccceverierienieieniieeenie e seeneneene 957
35.4.10. Polymorphic SQL FUnctionscccccceeeieiinieiininicncnecienecnenene 957
35.4.11. SQL Functions with Collations............cccccueerciieersiieeeiie e esreeeevee e 959

35.5. Function OVerloadingcccccueerirririenienieininineneeeeeeteeseeeresseseeeeeenesae e 960
35.6. Function Volatility CategOriesccevuereeeiruirerenienieieieenieeresreseeeeneenesresaesaennes 960
35.7. Procedural Language FUnCtionsc.ccceceeininenenieieinenincsesieeeeeieee e 962
35.8. Internal FUNCHONSoouiiiiiieieieeiee ettt 962
35.9. C-Language FUNCLONS.ccccurtririiieieieteieenieseetetete et s 962
35.9.1. Dynamic Loading.........ceocererieriinieniiiieieseeteesi et 963
35.9.2. Base Types in C-Language Functions.........c..ccoceeeevenerienencenencncenene 964
35.9.3. Version 0 Calling CONVENtIONSccceevueruerienienienienieneeneseenienieeeeniene 967
35.9.4. Version 1 Calling CONVENLIONSceceeveereerierienieerienieneeneseeniesieeeenienne 969
35.9.5. WIting COde......eouiiiiriieiiniieiieieeiteeetete ettt 971
35.9.6. Compiling and Linking Dynamically-loaded Functions...........c..cccceueu. 972
35.9.7. CompoSsite-type ATZUIMENLScoeevvereeierierienienteetenieeeeneeseeniesieenensenne 974
35.9.8. Returning Rows (Composite TYPES) ..ccvuververrriereeerieniienirenreeieenieeseeenenes 975
35.9.9. RETUIMING SELS..ccuviiitierieeiieiierieeieeieesiteetesteesteesiteebeesaeesaressseeseesaeesanas 977

XX

35.9.10. Polymorphic Arguments and Return TyPesccocevvvverienierciienieencennnn. 982

35.9.11. Transform FUNCHONSc.ccecveriirieriinieieneeieienteteteeeesee e 984
35.9.12. Shared Memory and LWLOCKSccocueviiiiiiinieniiiieeiesieeeeeeeee, 984
35.9.13. Using C++ for EXtensibility.......cccccceevieriiiiiiienienieeieeniienieeieeeeee e 985
35.10. User-defined AZETEZALEScoceeruiirriierieniieeieenitesite et esieesite e eteesieesteeseenaee s 985
35.10.1. Moving-Aggregate MOdE.........cocuerriierierieriiieiienieeeeiteete et 987
35.10.2. Polymorphic and Variadic AgEregates..........ccceeecverievenereeneneecnennenne 988
35.10.3. Ordered-Set AGEIregates.cceeeevuiruierierierierenieerenre e oo sreenenene 990
35.10.4. Support Functions for AgEregatesc.ccecvevuerievienieeeneneeneneeeenene 991
35.11. User-defined TYPEScc.eeveririeiiiieienieeicie ettt 992
35.11.1. TOAST CoONSIderationscceueeueeerieerienierieenitenteeieeneeesiteseeenieeseeesaees 994
35.12. User-defined OPEIatorS..........ceceeueererierreeetruinenensensetetesessessessesseeeseesessessesaennes 996
35.13. Operator Optimization Information...........cc.cecceveveriecieirnenineneneneeeeeneneneenes 997
35.13.1. COMMUTATOR c.eviuiiuiiitieee sttt ettt ettt s st 997
35.13.2. NEGATOR .eeeuiruiriireienrenteteetestesseteseesteue st ssesesesteneesesbesaessensensenesuessensenne 998
35.13.3. RESTRICT weutruiniireieneenteutetestesteeeneeseeue st st ssesenteneesesbesaesaesseneenesuessenenne 998
35,1314, TOTIN sttt sttt sttt sttt st e 999
35.13.5. HASHES ettt sttt sttt ettt s s e 999
35.13.0. MERGES . c.eeutiutiutititeiereiteiteiesie sttt sae st se et ese b sae s s en et enesuenen 1000
35.14. Interfacing Extensions To INdeXes.........cccoveeviererieniinienieniiiencnieen e 1001
35.14.1. Index Methods and Operator Classescoeevuerereenenieneneeeenennes 1001
35.14.2. Index Method Strategiesceceveriererienienieieneeiene e 1002
35.14.3. Index Method Support ROUHINEScoeveeienieiiniiiininieicneeeeee 1004
35.14.4. AN EXAMPIE ..oovviiiiiiieeiieieeteete ettt ettt e 1007
35.14.5. Operator Classes and Operator Families...........cccccoveveevienienvennieeneenns 1009
35.14.6. System Dependencies on Operator CIassescocveevveereerveesueeneenns 1011
35.14.7. Ordering OPETatOrSccueerveereerierrreerieeniesreesieesieeseeesseesseesssesssessseenns 1012
35.14.8. Special Features of Operator Classes..........cvevveereerieenieeneenvennieenieenns 1013
35.15. Packaging Related Objects into an EXtENSioncceceeeeeeniierieniiennieeneennennne 1013
35.15.1. Defining EXtension ObJECEScovveerierierieenieenienieeieeniee e eveeieens 1014
35.15.2. EXtension Files........ccccoiriiiiinieiiiniiieniciicienteeeseceeee st 1014
35.15.3. Extension Relocatabilityccoceevieenieniiiiiniienieiieeieeeeseeeeeeeee 1016
35.15.4. Extension Configuration Tables...........ccecveriierieenienieinieeneenieeieeieee 1017
35.15.5. EXtension UpPdatescoceerieriirieinienieiieeieesiee st 1018
35.15.6. Extension EXamplecccccovieiiniiiininiiinieeeeeeeeeeee 1019
35.16. Extension Building InfrastrucCturecocceceverieniinieiinieiencceeeneeeeee 1020
B0, TIIZEETS ..ottt ettt et st st e b e e n e e eanesaeeaeen 1023
36.1. Overview of Trigger Behavior..........ccccccoeiiiiiininiiiiiiececeeeee e 1023
36.2. Visibility of Data Changes...........ccoouerverrieiniinienieenieeeieeieee et 1025
36.3. Writing Trigger FUnctions in Cccooceiiiieiieniniereeeeeee e 1026
36.4. A Complete Trigger EXample.......ccceeveriiiniiiieniiiienieneeeeeeee e 1028
37 EVENE TIIZEETS -eneteeiiete ettt sttt ettt ettt st e e bt et e b e e bt et e eae et e naesnean 1032
37.1. Overview of Event Trigger Behaviorccoccoiiiieiiiieiinieeceeeeee 1032
37.2. Event Trigger Firing MatriXcocueiirieninieieneeieieee et 1033
37.3. Writing Event Trigger Functions in C...........cocceiirieiinieiinieenceieese e 1037
37.4. A Complete Event Trigger EXampleccoccoveiirieninieniniiienccieeee e 1038
37.5. A Table Rewrite Event Trigger Example..........ccccoooeiinieniniineniiiecncceee 1040
38. The RUIE SYSTEIMeoutiiiiiieieiiieieteeiteee ettt sttt st saeen 1041
38.1. The QUETY TIEC.....ceteiieiieiiiiieieiteeiteteetete sttt ettt 1041
38.2. Views and the Rule SyStemc..cocveviriiniiniiniininieeeeeeeeeeeeeseee e 1043
38.2.1. How SELECT Rules WOrKcccocoviiiiiiiiiiicicicicicccccce 1043
38.2.2. View Rules in Non-SELECT Statementscoccecvereeeeenereenreneevennenne 1048

xxi

38.2.3. The Power of Views in PostgreSQLccocvvvieniiniiinieenienieeieeeene 1049

38.2.4. UPAAtiNg @ VIBW....ccueeruieriiiiieniteniieeteeitenite st e sttt eveesieesitessveeiee e 1049

38.3. MaterialiZe€d VIEWSccceevuirieiiniiriiiieieeiesecete ettt sne e 1050
38.4. Rules on INSERT, UPDATE, aNd DELETEcccecivuiiuinieiiiiiiniiiiiieieee e 1052
38.4.1. How Update Rules WOTKcccoocuiriiiiniiniiiiiiiieicieeeeeeeeeeeee 1053
38.4.1.1. A First Rule Step by Step.....cocevvieinieniiriiiiierieeeeeeeeeece 1054

38.4.2. Cooperation With VIEWS.......cc.ccceeviiriiiiiniiiiiinieeccecececreeeeeee 1057

38.5. Rules and Privilegescccoceeoieiiiiiiiiiieiinieieeeeeeeeee e 1063
38.6. Rules and Command STatUs..........coueevuerrieenierieniieenienieeieesie et 1065
38.7. Rules Versus TIIZZETSccuirieruiriirieiieieiieeeie ettt 1065
39. Procedural LangUagesc.ccccueiuiiiiiiiiiieiceceneee e e s 1069
39.1. Installing Procedural Languagescccccoeeviiiiiiiiiiiniiiniccncceceeeceee 1069
40. PL/pgSQL - SQL Procedural Languageccocceeveerierieiniienienieenieeneeeeeeeeseeeeee e 1072
40. 1. OVEIVIEW ...utitieiieitieiieite ettt ettt ettt e sttt et eb et esbe et e s ae s st e besbeentesaeeneesaesneesesseans 1072
40.1.1. Advantages of Using PL/PZSQLcociriiiiiiiieiieieeeceee e 1072
40.1.2. Supported Argument and Result Data Types........ccecevereenenenciencnenne 1072

40.2. Structure of PL/PZSQL.....c..iiiiiiieieeeee ettt 1073
40.3. DECLATALIONScueeeieneeieeiieieeteet ettt sttt ettt et esbe st e e sbe et e sbeestesbesbeennenbeens 1075
40.3.1. Declaring Function Parameters...........c.ccoccevererieniinienincenenenienenene 1075
40.3.2. ALTIAS ottt sttt et s 1078
40.3.3. COPYING TYPES -vveviemiiriiriieieniteteettete sttt ettt st sie e 1078
40.3.4. ROW TYPES...uteiteniiniieienieeitentest ettt sttt ettt st sie e 1078
40.3.5. RECOIA TYPES .veeuvivieniiiiiiieienitetesieeiteste sttt ettt 1079
40.3.6. Collation of PL/pgSQL Variablesc.ccceerervienenienencenienenienenens 1079

40.4. EXPIESSIONS ..uuterutierieriierieesieesitesteesteesseesstesseesseesseesseesseesseesssesssessseesssesssessseenns 1081
40.5. BaSIC STAtBIMENLS....ccuveruiruriiinieetinttetenieniteteettet st et sae st estesieeneesaeeseesaesseennenieens 1081
40.5.1. ASSIZNMENLE «..eeeuvieniieiieeieenieeete et eritestte st et e stesete e beesasesebeesbeesasesasesnnes 1081
40.5.2. Executing a Command With No Result........cc.ccocevviiniiniinnienienenne. 1082
40.5.3. Executing a Query with a Single-row Result..........cccccocveveiiriiiniennenne. 1082
40.5.4. Executing Dynamic Commandscccceerierienieenieniieniennieenieneeennes 1084
40.5.5. Obtaining the Result Status........cccovverieriienienienieeeereeeeeeeee e 1087
40.5.6. Doing Nothing At Allcccceviiriiiiniinieeieeteteee et 1088

40.6. CONLIOL SIIUCTUTESovirurerieiieireniietenierteteeitete ettt ebe st e et eseesaesaeenesieeas 1089
40.6.1. Returning From a FUNCHONcccooviiriiiiiiiiieccceceecee 1089
40.6.1.1. RETURN ...ettieiieieriterenieeiteteeieeresreesresaessnessesaeesnesseennessessnennesnens 1089

40.6.1.2. RETURN NEXT and RETURN QUERYccccccevieuerueeeerueneenennenns 1089

40.6.2. CoNAItIONALS ...c..veereiiiiiiieeieeeteee ettt et 1091
40.6.2.1. IF~THEN ..eotttieittiietenieetete et et sreeee e e e s eesae e e sae e enesaeens 1091

40.6.2.2. IF-THEN=ELSE .e.eettiiuieietieieeiesteeeesieeeesresieeee e eeesseseenesneens 1092

40.6.2.3. IF—THEN=ELSTIF .c.eectserterteeeeeerrinrenrensenteneesessessessesenseneesessenses 1092

40.6.2.4. SIMPLE CASE ..eoiiruieieitieiesieeitete et eee sttt st eeeeesee e saesnens 1093

40.6.2.5. Searched CASE......cooiiieierieeieie ettt 1094

40.6.3. SIMPIE LOOPS .ttt 1094
40.6.3.1. LOOP utieutitieieeieeteete st e ettt sttt bt et e e sbt et bt et e sbe e ennesbens 1094

40.6.3.2. EXTIT cutruiriiieieieteiteie sttt sae st st st et ese st sae st eneenenen 1095

40.6.3.3. CONTINUE ..eteteuierierententetenreseene st ssesenesteneesessessessesaenneneeneesenes 1095

40.6.3.4. WHILE tvevvireieeeeeieeiesie ettt sttt et sae s eneeaenen 1096

40.6.3.5. FOR (Integer Variant)coceevereerienereenieneenieneeienieseenienieens 1096

40.6.4. Looping Through Query Resultscoceveririieninieniniiienenenenene 1097
40.6.5. Looping Through ATTaYsc..ccceveeierereeneninienieneenie et seenienieens 1098
40.6.6. Trapping EITOTSc..cooeriiiiiiniiiirieeiene ettt 1099
40.6.6.1. Obtaining Information About an Error..........cccccocceeenenicnennns 1101

XXii

40.6.7. Obtaining Execution Location Information...........ccccceeceevevervieenvennenne. 1102

40.7. CULSOTS...veeuriteeterieetenteeit et eteeteset et e s bt st esbesutessesbeestesaesasesesteensenseemeesaesueennenseas 1103
40.7.1. Declaring Cursor Variables..........cocverieriienienienieeieeniesieeieesee e 1103
40.7.2. OPeNING CUTSOTSeerureruieeriieriieeieenitesitesteenttestesteenbeestesasesbeesaeesasesases 1104

40.7.2.1. OPEN FOR QUL Y eeeeerrreeeeeirreeeeeeirrreeeeeiirereeeesisrreeeeseissseeeesineeens 1104
40.7.2.2. OPEN FOR EXECUTE ..ooiviiiriiiiiiiiiiieieieiecsnc e 1105
40.7.2.3. Opening a Bound Cursor...........c.ccecererienieniecienieieneneenenneens 1105
40.7.3. USING CUISOIS.......eieuieuieiieieienieetetteeesteseeere st ene st eneeaesaeeeesaesanesnesneens 1106
40.7.3. 1. FETCH ottt ettt ettt ne s 1106
40.7.3.2. MOVE 1utteueiteeuieteeeeeste st eteste et etesaeeaesaeesten e sseensesseeneesseeneensenneens 1106
40.7.3.3. UPDATE/DELETE WHERE CURRENT OF .ccceevuirieienienieiennenns 1107
40.7.3.4. CLOSE tteutttieuieieettete st te et et et ettt s et eese e s et et e sbeeneennesnens 1107
40.7.3.5. Returning CUISOIScccuerueeierierienienieeienieeeeeeeseeeeeseeseensesnens 1107
40.7.4. Looping Through a Cursor’s Result.........c..cccccueevrvirinineneneceeenenennens 1109

40.8. Errors and MESSAZES.........ccuiiuiiiiiiiiiiiiiciiieiee ettt s 1109
40.8.1. Reporting Errors and MeSSagesceeeeruervevereininrenenieneeeeeeenennens 1109
40.8.2. ChecKing ASSEITIONScceeruerrieieriieientesieentesteeeenteeteentesteeeesbesseenaesseens 1111

40.9. Trig@er PrOCEAUIEScouveiiriieiiriieierieeiieieet ettt ettt sttt st et sae st e sbeens 1111
40.9.1. Triggers on Data Changes...........ccoceeeeerireenenerienenienie et 1112
40.9.2. Triggers on EVENLScc.covieriiiiiiiiniiiieieieeesieeteseeee et 1118

40.10. PL/pgSQL Under the HOOdcocereriiiiiniiiiniiienienteesteeeetenee st 1119
40.10.1. Variable SUDStItUIONccoeriieiiriieienicrceiesceeeeeee et 1119
40.10.2. Plan Cachingccccevueruerienieniieiinieetenie ettt 1121

40.11. Tips for Developing in PL/PESQL......ccccciviiiiniiiiniiieienieienceeeneseeienee 1123
40.11.1. Handling of Quotation Markscccceecueeriienieniiiinienienieeieesee e 1123
40.11.2. Additional Compile-time Checksccevierieriiiinienienieeieereeeeeeae 1124

40.12. Porting from Oracle PL/SQL........ccccooiiiriiiiiiiienie ittt 1125
40.12.1. Porting EXamPIeS......cccueerieriiriiieniienienieeiteste ettt 1126
40.12.2. Other Things to Watch FOr.........ccccevviiviiiiniiniiniiiieeeeeeeeee e 1131

40.12.2.1. Implicit Rollback after EXCeptions...........ccecueevuerreeniensiennieenne 1131

40.12.2.2. EXECUTE tueoiiieiiitiiniie sttt s 1132

40.12.2.3. Optimizing PL/pgSQL Functions.........c..cccecueevverneeniensienneenne 1132

40.12.3. APPENAIX.cnviiiiiiiiieriieiieeriteete ettt st ettt ste bt e st e st ebeesaaeseeeans 1132

41. PL/Tcl - Tcl Procedural Language.............ccceveeieriieeenienienieneeieieeeeeese e 1135

AL 1. OVETVIEW ittt ettt ettt et sttt e be e st e bt e bt e setesabeebeesateenbeebeenne 1135

41.2. PL/Tcl Functions and ATZUMENTS.........cc..ccuerieiuinienierenieienieereneeeeesaeseennesnens 1135

41.3. Data Values in PL/TCL..c...ooiiiiiiiiiiiiieieeeee et 1136

41.4. Global Data in PL/TCL ..c..cooiiieiieieieseeeee et 1137

41.5. Database Access from PL/TCloooviiiiiiiiiiiiiiicieeeecceeeeee e 1137

41.6. Trigger Procedures in PL/TClccccooiiininiiniiiiiiiecicetececseeeeeeeeee s 1139

41.7. Event Trigger Procedures in PL/TClL.........cccoooiiiiiiiiiiiieeceeeee e 1141

41.8. Modules and the unknown Command............ccccooeeriererienenierieneeene e 1142

41.9. Tcl Procedure NAMEScc.eecierieruieiienieeiieieettete ettt sttt e eseeseesieenaesiens 1142

42. PL/Perl - Perl Procedural Language............cccooeeierieieniinieienieeieeeice e 1143

42.1. PL/Perl Functions and ATZUMENTS.c..ceouerierueneeriereneeniesieeteneeeeeseeseeniesieens 1143

42.2. Data Values in PL/Perl.........cccooiiiiiiiiiiiiiiiieieeeteestee et 1147

42.3. BUilt-in FUNCHONS ..c..eeutiiiiiiiiieieicetesetee ettt st 1147
42.3.1. Database Access from PL/Perl..........ccoocooeiviniiiiniiniininienenecnee 1147
42.3.2. Utility Functions in PL/Perl.........ccccocoiiiiininiiiiinicinceiceeeeeee 1150

42.4. Global Values in PL/Perlccccooiiviiiiiiiiiniiiiniteeteesteeseetene e 1151

42.5. Trusted and Untrusted PL/PEr]ccoccooieviiniiiiniiienenieeneeeneeeene st 1152

42.6. PL/PEIT TIIZEEIS ..veeuveiiriiiiinieeiteeieeteste ettt ettt sttt sae s s s aesieeas 1153

XXiil

42.7. PL/Per] EVENt TIIZEETSvevvueeiieriieeieeiteniteeieeitesite sttt esieesitesnseeieesitesseenseenes 1155
42.8. PL/Perl Under the HOOdc.cocueriiiiniiiiiiniciincceccceeeseetesec e 1155
42.8.1. CONIGUIALION ...veeneieiieiiieiieeteeie ettt ettt st et e e e s 1155
42.8.2. Limitations and Missing Features..........ccovievviervieinienienienieenieeeeeane 1156

43. PL/Python - Python Procedural Language...........cccocuevieriiiniienieniieiienieeeeeeeseeeee e 1158
43.1. Python 2 vs. Python 3.......coioiiiiiiiceeeeeeeeest e 1158
43.2. PL/Python FUNCHONScc.cocuiiiiiiiiiienienicieeicceeete et 1159
43.3. DAt VAIUESoeiiiiieeiiieeiie ettt e et e e etee e sbe e et eeenaeeentaeeensaeeenaeesnraeens 1160
43.3.1. Data Type Mapping.........ccccceeeecuenieienieieeieneeeesre e e 1161
43.3.2. NULL NONC....eieieiieiieierit ettt ettt et ene e sneens 1161
43.3.3. AITAYS, LISES c.eiiuiieiieiieiieeiteet ettt 1162
43.3.4. COMPOSILE TYPES..cvieuiereieiieiteetieieeteeie sttt sttt et eeene 1162
43.3.5. Set-returning FUNCHONS.........coieiiiiieieriiieecee e 1164

43.4. Sharing Data.......cceeoueiiiieiieiieeeee ettt sttt et et 1165
43.5. Anonymous Code BIOCKSc.coiuiriiiriiniiiiiiieicieececc e 1166
43.6. Trig@er FUNCHIONSeoiuiiiiiiiiieieeitetesteeiee ettt sttt et st 1166
43.7. DAtabDaSE ACCESS ..eeveeruieeerieiieeniierteesieesteessteeseesseessaesseesseesseesssessseesseessesssessseenes 1167
43.7.1. Database Access FUNCHONS.......cccveiiieieeciieieniecie e 1167
43.7.2. Trapping EITOTScc.cooiiiiiiiiiiieieieetec ettt 1169

43.8. EXpLiCit SUDIIraNSACIONSeeueeueiriiiienieniieienttete sttt ettt sttt st sieens 1170
43.8.1. Subtransaction Context Managersccoereevuerieneenieneeneenenieeneneens 1170
43.8.2. Older Python VErsionsc..ceceveeienereeneninieneneeniesceeenie et 1171

43.9. Utility FUNCHONSeoutiiiiiiiiirieetisiceteseeitceet ettt sttt st 1172
43.10. Environment Variablescccccueeriierienieiiiieniteniiesieesieenieesveeieeseeesinesseenseenes 1172
44. Server Programming INEEITaCEoccueviiiiriiiiiieiierieeieeecte et 1174
44.1. Interface FUNCHONSc..eotiiirieiiniiiieniericeecetest ettt 1174
SPILCONNECT c.ceeviiiiiiiieeeeeeeeeeeeeee ettt e e e e e e e e e e e s s s s aaeareeeeeeeeeeas 1174
SPILAINISN .ot 1176
SPIPUSI .ttt st ettt et 1177

N o I 070 o T OO OO P USRI UTURRRPRRPRIRt 1178
SPI_EXECULE....c..eeiiiieiriiieiente ettt ettt ettt ettt sa et st st sneeae 1179
SPI_EXEC.c.ueiiieiiiiieiieteeteeteet ettt sttt et st 1182
SPI_execute_ With_args........cccceviiiiiienieniiiieetee ettt st 1183
SPI_PIEPATE.......eoiiiiiiiiieieieet ettt ettt et st 1185

S PIePATE_CUISOTeeiiiiitieiieeiieeieeite sttt sttt st ettt esitesareebee e 1187
SPI_PIrepare_Paramsc.ccecerueeueeieniiereenuieeenieseeresieene oo seene s ene e ene 1188
SPI_gEtargCOUNLcc.coiiiiiiieieiieeeeeee et s 1189
SPI_getargtypeid.......c.ccoevuiriiiieiiiieieeeee e e 1190
SPILiS_CUISOT_PLAN .uviiiiiiiieiieiiieeetet ettt st 1191
SPIL_eXECULE_PlaN....cecuiiiiiiiiiiiieiiieieeterte ettt 1192
SPI_execute_plan_with_paramlist...........cccoceeriererierenienieneeene e 1194

P EXECP ettt st sttt et 1195
SPI_CUISOT_OPEIL....eiuiiiiiiiiieiteeiieeteetesite ettt sttt sttt re e 1196
SPI_cursor_open_With_argscccceeieieririeniiieesiee e 1198
SPI_cursor_open_with_paramlist...........cccoceevierinieiinieniineeene e 1200
SPLCUISOT_fIN..cciiiiiieeeeeeeeeee ettt e e e e e e e e e e eeeeeeeaeeeeeas 1201

SPL CUISOT_fEUCR ..ot e e e e et e eaeaee s 1202

SPI CUISOT_INOVE .ttt ettt e e e e e e e e e e e e s e e s aaaeseeeeeaeeseeas 1203
SPI_SCIOll_CUISOT_TEECH ...t e e e e e e 1204
SPI_SCIOIl_CUISOI_INIOVE ...vvviviiiiiieieeeeeeeeeeeeeeeeeea ettt eeeee e e e e e e e e s e e aaaasesseeeeeeeeeeas 1205

SP L CUISOT_CLOSE....c ittt ettt e e e e e e e e e e e e s e e aaaaseareeeeaeeeeeas 1206
SPI_KEEPPIAN ..ottt ettt ettt sttt ettt st ebeeaee e 1207

XXV

SPI_SAVEPIAN ...c..tiiiiiiieiieeitete ettt sttt st et ee 1208

44.2. Interface SUpPOTt FUNCHIONSeovviiiiiiniieiiiiiieeiteiie sttt st 1209
SPI_fNAME.....coiiiiiiiiiiiieieee ettt s 1209
SPIL_ANUMDEToviiiiiiiieiiccte ettt 1210
SPI_ZELVALUE ...ttt sttt st et 1211
SPI_getbinValcocuiiiiiiiiiiiieieeeeee et 1212
SPL_GEILYPE ..ottt e e 1213
SPL_EttyPeid....c..oouiiiiiieiiii e 1214
SPI_gEtrelNameeevueiriiiiieiierie ettt st 1215
SPI_gEtNSPNAME.coueiiiiiiiiiiieieeieeee et st 1216

44.3. Memory Managementcccoieieririeiinieeeeie et 1217
SPIL_PAILOC ...ttt et sttt 1217
SPILIEPAllOC ... ittt et 1219
N 2 (5 (<O U SRR RRRSPR 1220
SPIL_COPYLUPIE ...ttt 1221
SPIL_IEtUINTUPIEeveiniiiiiiiiieieeeeeeete ettt s 1222
SPL_MOAIFYTUPLE ...ttt 1223
SPL_ATEEIUPIE. ..ottt st 1225
SPL_freetuptable.cc.ovuieiiriiiieieeeeee ettt 1226
SPL_AT@EPIAN. ..ottt st 1227

44.4. Visibility of Data Changes..........c.cceeererieriinieniinieieneeteestete et 1228

44.5. EXAMPIEGS ..evevieiiiiiiiieieeiteteeieete sttt ettt ettt ettt et s 1228

45. Background Worker PrOCESSES......cc.eevviririirieniriiiieiteiericetenieeteesieete et 1232
46. LogiCal DECOTINGcceiriiriiiiiiietiiietee ettt sttt ettt st sbesieean 1235

46.1. Logical Decoding EXamPIes........cccecverieriiiiiienieniienieeieenee e eieenieeseeeeseenieenns 1235

46.2. Logical Decoding CONCEPLSeerueerrreerieeriierieerieeniiesteesseenieesreeseesseessessseesseenns 1237
46.2.1. Logical DecOdiNg........cccveruieriiriiieniienieeie ettt ettt 1237
46.2.2. RepliCAtioN SIOLScevuviriieiieniieeiieiteste ettt ettt 1237
46.2.3. OULPUL PIUZINS ...eonviiiiiiiieiieeieeie ettt ettt et 1238
46.2.4. Exported SNapShOLS.......ceoviiriiiiiieiienieeiteitetese ettt 1238

46.3. Streaming Replication Protocol Interfacecocevvveevieniinienninnienieeieeieene 1238

46.4. Logical Decoding SQL Interface...........ccocueriievieniiiieniieienieciceee e 1238

46.5. System Catalogs Related to Logical Decodingcccceeveerieivienneenienniennieenne 1239

46.6. Logical Decoding Output PIUZINScccoccuiviiiiiniiiiniiieienicieneeeene e 1239
46.6.1. Initialization FUNCHONc.cooviiriiiiiiirieriieteeee e 1239
46.6.2. CaAPADILILIES ...eveeneeeieieeiieierieee ettt sttt et et eesaesnnesesneens 1239
46.6.3. OULPUL MOAES.......oovieiiiiiiieiiiiecieeeee et 1240
46.6.4. Output Plugin Callbackscccooieviiniiiiiiiiiiiiiiicecceeeceee 1240

46.6.4.1. Startup Callbackcccceeveirieriiiiiiiiiieeeeeeeeeeeeeeeee 1240

46.6.4.2. Shutdown Callback..........cceeieiirieniiieieieececeee e 1240

46.6.4.3. Transaction Begin Callbackcccoceeoeeiiniininieiinceeee, 1241

46.6.4.4. Transaction End Callbackcceccenirieiiniiiniiiieeee 1241

46.6.4.5. Change Callbackccceiirieiinienineeieeeee e 1241

46.6.4.6. Origin Filter Callback.........ccccccceveerenenieninieieneeieneeeeieeee 1241

46.6.5. Functions for Producing OUtpuL..........c.ccoceeveririeninieninceieneeeeeneeene 1242

46.7. Logical Decoding Output WIILETSc..ceveruerierieniieienienieienieete e eee e seeniesiens 1242

46.8. Synchronous Replication Support for Logical Decoding..........ccccceceeverienenncnne 1242

47. Replication Progress TraCKingcccceverierieririenienieienceee ettt 1244

XXV

VI. Reference 1245

1. SQL COMMANGS....cutiiieiiiiiiieeciie et e ettt ete e st e e sbeeesbaeesbeeeseseeessaeesseesssseesssseessseaans 1247
ABORT ...ttt e et e st et s ae et e beete et e st eneenseennesenraens 1248
ALTER AGGREGATEcoitoiiieteeeteese ettt sttt eseesse e nsesneens 1250
ALTER COLLATION ..ottt ettt ettt sttt ae st se et ente s eneessesneensesseens 1252
ALTER CONVERSIONoiiiiiiiiieiie ettt ettt et veeve et e s veebeesveeseseenseesee e 1254
ALTER DATABASE ...ttt ettt st ve et veebeeveesebeensaeree e 1256
ALTER DEFAULT PRIVILEGESc.ooooiiiiii ettt ve e 1259
ALTER DOMALIN ...ttt ettt et et tte s veeste e taesveese e teessbeesseeseesssassseeseenes 1262
ALTER EVENT TRIGGERc.ccoteiiiiieiiiieeieieetecteete ettt saeeveens 1266
ALTER EXTENSIONooiiiiiiiiiiicieeteeteste ettt et ee ettt eveesaesve s eaesreens 1267
ALTER FOREIGN DATA WRAPPERc.occocitiiiiiiteeieieeeeeeteete et 1271
ALTER FOREIGN TABLEcc.ocotiiiiiieiiiteeeeieeteeteete ettt ettt sve e saeevnens 1273
ALTER FUNCTIONoooiiiiiiiiiieecieeteetecte ettt ere e sae et veste s e ereesaesaeernenessnens 1278
ALTER GROUPociiiiiiiteceeeeeee ettt ettt ettt e e e beste b e eteesaesaeesaenasrnens 1281
ALTER INDEXc.uiiiiitiiieiteeeeieete ettt ettt ettt esseete e sae e ebesveessesseesaesaeersessansnens 1283
ALTER LANGUAGEoooiiiiiieeetectetese ettt ettt e b e te s sveesaesaeesaesesrnens 1286
ALTER LARGE OBJECTc.ooiiiieiicieeesiecteieeteete et eee et eveste s sveesnesaeesnessasvnens 1287
ALTER MATERIALIZED VIEWoooiiiiiiiiiieiieeieteeteeee ettt eve e esae v e nasveens 1288
ALTER OPERATORcooiiiiiiiieiieieeteetesteeetete ettt eteesae e eseesesseessesseesaessessnessansenns 1290
ALTER OPERATOR CLASS......oi ottt et eee e seesesteessesseesaesaessaessassaens 1292
ALTER OPERATOR FAMILYcoootiitiiiiitieiieieeeieee ettt sieeeese st essesseeseesaessnesassnens 1294
ALTER POLICYootiitieiietieieie ettt eteteeteestesveestesteessessessaessasseessessesssessassesssensenses 1298
ALTER ROLEccuiiiiitieiesieeieieeeet ettt ste sttt et eveesaesae st esbesseessesseesaessesssessansanns 1300
ALTER RULEocutiiiitieiesiecieteetee ettt ste sttt et ste et saesstesbesssessesseesaessesssensansanns 1304
ALTER SCHEMAoootieieiitcieieeeete ettt ste et e e steesaesaessaessessaessesseesaessesssensansanns 1305
ALTER SEQUENCE........coiiiiieiieieieeteie sttt ste e sae e sesteessesseesaessessnensansanns 1306
ALTER SERVER.........oooiiiiiiiieieeeeetee sttt ettt ste s sseeseessesnaensensnens 1309
ALTER SYSTEM.....coiiieieiieieiieeete ettt sttt te e ssaesesseessesssesaessesnnensansanns 1311
ALTER TABLEooiiieeeeeee ettt ettt sttt et eneessesnaensensaens 1313
ALTER TABLESPACEcoioieieieeeteeete ettt ettt esaesse e nsessnens 1325
ALTER TEXT SEARCH CONFIGURATIONccccomieieiirieieeieieee e 1327
ALTER TEXT SEARCH DICTIONARYooooiiiiieiieciie ettt sve e esvee e 1329
ALTER TEXT SEARCH PARSERcoiiiiiieeetee ettt ve e 1331
ALTER TEXT SEARCH TEMPLATEccovoiiiiiieieee et evee s 1332
ALTER TRIGGERccuiitiiiiieeeeece ettt ettt et veeve v e s ebeeseeree e 1333
ALTER TYPE......o oottt ettt ettt e et e s ebeesbeebeessbaesseebeanes 1335
ALTER USER ..ottt ettt ve ettt e b e e be e baessbeesseeseessbassseenseenes 1339
ALTER USER MAPPINGoooviitiiiitieiecieceeeieeteete ettt ettt et eve e sae s saeeveens 1340
ALTER VIEW ...ooitiiiiitiieeceeeeteeeete ettt ettt ettt et et ae et beetseaseeveesaesaeessesanreens 1342
ANALYZE ...ttt ettt ettt ettt ete et s ae s ebeeteenteeseesaesaeersesenreans 1344
BEGIN ..ottt ettt ettt ettt e vt et e ete e e e s aeess et e eteenbeeteertesaeereebenreans 1347
CHECKPOINTttiititittettette ettt steeve et e sivesveebeestaessaeesseesseesssasssesnsessssanseesnses 1349
CLOSE ..ottt ettt ettt ettt et e te e e s te e st e b e et s esbeeteesbesaeeraebeereensenreenes 1350
CLUSTER ...ttt ettt ettt vttt e et e s e ereesaesseesaessesseensenseenes 1352
COMMENT ...ttt ettt ettt s ve et e s teesb e b e e teesseeseesaesseesaessesssessenseenes 1355
COMMIT ...ttt ettt ettt et st b e s te e st e b e e taessaeseessesaeesaessasseessenseenes 1359
COMMIT PREPARED.........ccotiiiitieieitieieteetete ettt ettt e e be v ensesne e 1360
COPY ettt ettt ettt ettt e e te e b e e aeesbe s ae e st e b e esaesbeeseere e beera e beeteensenneenes 1362
CREATE AGGREGATEcoootiiieteiteeteteetete ettt ettt s e e sae e ba v s e s ens 1372
CREATE CAST ...ttt ettt ettt st et ve st b et e s sse e st e saeesaessansaessenseens 1378

XXVi

CREATE COLLATION.......cciiiiiiiiiiiiiitiieieeeee ettt 1383

CREATE CONVERSIONcccoiiiiiiiiiiiiiieicicsecee e 1385
CREATE DATABASEcoooiiiiiiiiiiiiiiceee e 1387
CREATE DOMAIN......coiiiiiiiiiiiineeeee et 1390
CREATE EVENT TRIGGER.........cccccooiiiiiiiiiiiiiiiiiiicececc s 1393
CREATE EXTENSION......ccoiiiiiiiiiiiiiiiiiecec e 1395
CREATE FOREIGN DATA WRAPPER..........ccccooiiiiiiiiiieececceeeeeeee e 1397
CREATE FOREIGN TABLEc.oooiiiiiiiiieeeeereeeeteeeeeeee e 1399
CREATE FUNCTIONottt 1403
CREATE GROUP ..ottt 1411
CREATE INDEX........oooiiiiiii ittt s 1412
CREATE LANGUAGEc..ooiiiiiiiiiiieee et 1419
CREATE MATERIALIZED VIEWcooiiiiiiiiiiiiiiiiiceece e 1422
CREATE OPERATORociiiiiiiiiiiiiee e 1424
CREATE OPERATOR CLASS ... 1427
CREATE OPERATOR FAMILYccooiiiiiiiiiiiiiiicc e 1430
CREATE POLICY ...t 1432
CREATE ROLEo 1437
CREATE RULE.......ccoiiiiiiiieicietete sttt sttt ettt s 1442
CREATE SCHEMAoouiiiiiiiiicieietee ettt sttt et s 1445
CREATE SEQUENCEccciiiiiiiiiiiiintieeeeeeetetse ettt ettt 1448
CREATE SERVERcoiiiiiiiiiiiiiet ettt 1452
CREATE TABLE ..ottt 1454
CREATE TABLE AS ..ottt 1469
CREATE TABLESPACE.......cccoiiiiiiiitiiieceeee ettt 1472
CREATE TEXT SEARCH CONFIGURATION........ccccoceoiiiiiiiniiniinieieicecieeneane 1474
CREATE TEXT SEARCH DICTIONARYcccceiiiiiininiiiiiiiiiniieiceeeeecee s 1476
CREATE TEXT SEARCH PARSERcccccooiiiiiiiiiiiiiiiciiecececcs 1478
CREATE TEXT SEARCH TEMPLATE.........ccccccocoviiiniiiiiiiiniciecieeceeece 1480
CREATE TRANSFORM........cooiiiiiiiiiiiiiiiicicec e 1482
CREATE TRIGGER.........ccooiiiiiiiiiiiiiiiicicic et 1485
CREATE TYPE ...t 1491
CREATE USER.......cciiiiiiiiiiiciiiicee et 1500
CREATE USER MAPPING........ccccciiiiiiiiiiiiiiiiccceeeceec s 1501
CREATE VIEW ..ottt 1503
DEALLOCATEoooiiiiieteeeeeeeet ettt sttt sttt et s 1508
DECLARE ...ttt st s 1509
DELETE ...ttt e e 1513
DISCARD ...ttt et st sae e 1516
DO et s 1518
DROP AGGREGATE.........ooiiiiiiiiiiiceeeceeee e 1520
DROP CAST ..o s 1522
DROP COLLATION ..ottt e 1524
DROP CONVERSIONot 1525
DROP DATABASE ... e 1526
DROP DOMAIN ..ot e s 1527
DROP EVENT TRIGGERcccooiiiiiiiiiiiiiienicecetne sttt 1528
DROP EXTENSION ..ottt sttt et 1529
DROP FOREIGN DATA WRAPPERccoccoiiiiiiiiiniicicieteeeeeeeeeeeee e 1531
DROP FOREIGN TABLE........cccooiiiiiiiiiiiiiieiceeetee sttt 1532
DROP FUNCTIONcooiiiiiiiiiiniiicteteteteteeste ettt 1533
DROP GROUP ..ottt s 1535

XXVii

DROP INDEXcoouiiiiiiiiiiiiiiiiictetc ettt 1536

DROP LANGUAGEccoiiiiiiiiiiiiiiicicc e 1538
DROP MATERIALIZED VIEWc.cccoiiiiiiiiiiiiiiiiiiiiciecteeceeeeeeecc s 1540
DROP OPERATORccoiiiiiiiiiiiiiicicciiccc e 1542
DROP OPERATOR CLASS ..ot 1544
DROP OPERATOR FAMILYcccccooiiiiiiiiiiiiiiiiiiccccceeece e 1546
DROP OWNEDooiiiiiiiiiicietete ettt sttt sttt et sne s 1548
DROP POLICY ...ttt ettt st et s 1550
DROP ROLE ..ottt ettt s 1551
DROP RULE ...ttt ettt e e 1553
DROP SCHEMA ...ttt st s 1555
DROP SEQUENCE........ccooiiiiiiiiieitceeee ettt e s 1557
DROP SERVER.......cocoiiiiiiie ettt s 1558
DROP TABLE ...ttt et s 1559
DROP TABLESPACE ..ot 1561
DROP TEXT SEARCH CONFIGURATIONccccciiiiiiiiiiiiiiiiici e 1563
DROP TEXT SEARCH DICTIONARYccooiiiiiiiiiiiiiiiiciic e 1565
DROP TEXT SEARCH PARSERccoooiiiiiiccc e 1566
DROP TEXT SEARCH TEMPLATEccoccoiiiniiiiiniiriicieeteeeeseeeeeeeeee e 1567
DROP TRANSFORMociiiiiiiiiieieieteiteteseteeeeet ettt s 1568
DROP TRIGGERooiiiiiiiiiiiiiiicieeteteseeeeee ettt 1570
DROP TYPE ...ttt sttt s 1572
DROP USER ...ttt sttt s 1573
DROP USER MAPPINGoociiiiiiiiiiiiiiiciecectetre sttt 1574
DROP VIEW ..ottt sttt s 1576
END Lo 1577
EXECUTE ..ottt 1578
EXPLAIN ..ot 1580
FETCH ...t s 1585
GRANT Lottt s 1589
IMPORT FOREIGN SCHEMAcccoiiiiiiiiiiiiicnscceeeeeeeeeec s 1596
INSERT ..o 1598
LISTEN L.t 1605
LIOAD ..ot 1607
LIOCK ..ttt et sttt et s 1608
IMOVE. ...ttt ettt et e sae e nesaeas 1611
INOTIFY ..ottt et s st e s neeneas 1613
PREPARE ...ttt s 1616
PREPARE TRANSACTIONccooiiiiiiiieieiceeteest et 1619
REASSIGN OWNED ..ottt 1621
REFRESH MATERIALIZED VIEWcccooiiiiiiiiiiiiiiieieneceeeee e 1623
REINDEXo e 1625
RELEASE SAVEPOINTooii e e 1628
RESET ... et 1630
REVOKE ... e e 1632
ROLLBACK ...t e s 1636
ROLLBACK PREPAREDoociiiiiiiieiiitinenieeceeitne sttt 1637
ROLLBACK TO SAVEPOINTccoooiiiiiiinieiceeietne sttt 1639
SAVEPOINT ..ottt sttt ettt s 1641
SECURITY LABEL......coiiiiiiiiiiiiiteteteteese ettt 1643
SELECT ...ttt sttt sttt s 1646
SELECT INTO ..ottt sttt s 1667

XXVili

SET CONSTRAINTSooiiiiiiiiiiiiineeeee ettt 1672
SET ROLE ..ot 1674
SET SESSION AUTHORIZATION.........ccociiiiiiiiiiiiiiiicieicccieeeceecc s 1676
SET TRANSACTION ..ottt 1678
SHOW .ttt sttt sttt et st sne e 1681
START TRANSACTION ..ottt sttt ettt naen 1683
TRUNCATE ...ttt ettt sttt ettt ettt e 1684
UNLISTENttt ettt ettt ettt see st ettt eb et e e et eae b naen 1687
UPDATE ...ttt ettt sttt sttt et ettt et ae b e 1689
VACUUM ..ottt sttt ettt ettt st st et ettt ebt et besse e eneenesbenaens 1694
VALUES ...ttt ettt st ettt ettt et naen 1697
I1. PostgreSQL Client APPIICALIONScc.eerueruieiiriieierieeetesee sttt etce ettt sae et ee e ene 1700
CIUSEEIAD ..ttt sttt et st e sae e e e be e 1701
CIEALEAD. ...ttt et b ettt b ettt et nae st et sreen 1704
CIEALCLAIIZ ..ottt ettt et b et e bt et e s bt s bt et e sb e et e s bt estenbesaeenenbens 1708
CTEALEUSET «.veeeeateenieesite et eetee sttt et e bt e s bt e et e e bt e beesabe e bt e beesab e e bt esbeesasesmbeebeesbneensesseenne 1711
ATOPAD ...ttt ettt ettt b ettt et nbe st eaeebeen 1716
ATOPLANEZ ...ttt b ettt ettt e b s bt ettt eseenaesbeeaenbeens 1719
ATOPUSET ...ttt ettt ettt b et s bt et s bt s bt et sb e eate st eatenaesbeebenbeens 1722
BCPE e euveveemtenteett et et e et sh e st e bt e bt et e bt e a e h e e a e bt bt et bt ea et eh e e bt e bt s bt e b e eh e ea b e bt ebtenaeebeebenbeen 1725
PE_DASEDACKUP ...t 1728
PEDENCH. ..ttt st 1734
PECOMIIZ ¢ttt ettt ettt s bt et sb e ebt e e sbeeae b ea 1746
PE_QUINIP ottt ettt ettt et e st e e bt e tee st e esbeebeesebesnbeebeesabeenbeebeenes 1749
PE_AUMPALL....eiiiiiieiiieieeeee ettt st ettt st et e et e sabeenbeebee e 1761
PEASTEAAY c..eeeteentieiie ettt ettt ettt et st e bttt st e et e e bt e sabeenbeebeesateenbeebeens 1767
PE_TECEIVEXIOZ ¢ ueieuiieiiiieiieitteeiit ettt ettt et st e e bt e bt e st e esbeebeesabeenbeeseesasesnseeseenns 1770
PE_TECVIOZICAL ittt ettt st ettt st et e beesateenbeebee e 1774
PE_TESTOTE .eeieeneieiie ettt ettt et et e stt e et e e bt esbtesabe e bt e beesabeenbeenbeessbeenbeebeesasesnseeseenns 1778
PSGL ettt sttt sttt e bt e et e e be e beesateebeebee e 1786
FEINAEXAD ..o 1818
VACUUMAD ... 1821
II1. PostgreSQL Server APPliCAtiONSc..coceecveriieeeniirienienieerenreeeete e s e sae e 1825
IIEEAD -ttt sttt ettt ettt e 1826
PE_ArChiVECIEANUP ..ottt 1830
PE_CONLIOIAALA ...ttt et 1832
P Ctl e st 1833
PETESEEXIOR ..o s 1839
PE_TEWINA .ttt ettt st e bbbttt b e st e e e bt e st e e nee e 1841
e (ST A £5) 4 O SPTUU O URSUURRRPRO 1844
PELEST_LIMINE ..entitienieitieitest ettt ettt ettt ettt et e st e et esae s st e be st e enteseeeneesbesseenesrens 1846
PEUPETAAE ...ttt ettt et sttt et st e b e st e e e bbb e b e e 1850
PE_XIOZAUIMP ...ttt ettt sttt b et st et esae st enaesaens 1857
POSEETES ...ttt st b e et s s s a e 1859
POSEIMASTET ...ttt ettt ettt ettt b et e bt bt et e eb e et e st e e st e s bt s bt et e sbeentenbeeaeenbesbeensenbeens 1867

XXIX

VII. Internals 1868
48. Overview of PostgreSQL INternalsccccveeueriiienieniieniieiienieeieeite e 1870
48.1. The Path Of @ QUETYcoouiiiiiiiiiiiiieeeete ettt st 1870
48.2. How Connections are Establishedccccoceviniiiininiininiiinccneeicnee 1870
48.3. The Parser StaAZeccccecveviirieiiniieienieneeteetetestc et sttt nesieas 1871
G T B o < USSP 1871
48.3.2. Transformation ProCESS........ccueevcviierciirieiireriieesiee et 1872

48.4. The PostgreSQL Rule Systemcccccceieiiniiiiiniiieneneeieneceese e 1872
48.5. Planner/OPtimiZercocvecuiruieiiniieienieiieieeeteee ettt st s 1872
48.5.1. Generating Possible Plans............c.cccooiiiiiiiiiiiccee 1873

48.0. EXCCULOTceeetiieiiieeeiieeeieeeeiieeetteeetteesteeesnteeeesseeessseeensseesnseeensseeansseessseesnseeenn 1874
49. SyStem CatalOogsceeiuiiuiiiiiiiiiii e 1876
4O.1. OVEIVIEW ..uvieeieeiiieiiesiiesiteesteesteestteeteesseesssesssaesseessaessseeseesseesssessseesseesssesssessseees 1876
VAL BN 0¥ JIE-Ye fo fial=Yo 1= o =SONON USSR 1877
T T oY =Y (USRS 1880
VLR R oY HE-Y (1) < O USROS 1882
Vi1 s T oY JE= 111 o b oo Yo FUUUUU OO U PR PPN 1883
40 0. PG AT E LA eiuiiiiiiie et ettt ettt e e e et et e e et e e et e e e etaeeetaaeeraaans 1884
0. PG AT ETIIUL @ tiitieiiiiie ettt ettt ett et e e et e e et e e et e e et e e eetae e etteeeteeeeraaeenraeeas 1884
9.8, PG AUE NI i iiiiiiiiie et ettt ettt ett et e et e et e e e e tb e e et e e e taeeeteeeeaaeeearaeeas 1887
49.9. PG AUL N IMEMDE TS ceitreiiiieitreieeeeiireeeeeerteeeeeestaeeeeeesareeeeeesreeeeeesiareeseeensareeeenans 1889
LS B O oY B o I= V=1 TSRO 1889
VLS B O R oY B ol = V=1 DU TSROSO PPN 1891
Vil B B oY B cle Y R =Nl K o) s RO PPRN 1895
VIO B I TR oYe M el o F=3 uliar= e I ok AU OO PPPRN 1896
49,14, DG CONVEISIOMN tiittttriieeeeitreeeeeeitreeeeeeeaeeeeeeetreeeeeestreeeeeesrreeeeeenareeeeeeessreeeenans 1899
Vi B BT oYe fl e =N o= o =N =T = O OO PP PR 1899
49.16. pg_db_T0le_SEtEANG citririieieeiirreeeeeeirreeeeeeireeeeeeerreeeeeeireeeeeeeiareeeeeeetreeeeeans 1902
49.17. PG_AefAULE_ACL etiiiriieeieiiirieeeeeiiireeeeeeireeeeeeeireeeeeesareeeeeeirreeeeesiareeeeeeerreeeeeaas 1902
Vil B P oYe fie I=Y o 1= oo DUUUN U OSSP UEURUU P PPN 1903
Vil B KO eYe fie [=Y-Tob ok o) ok e) o WUUNNNNUUUUUN OO USROS U RO PPN 1904
49 .20, PG ENIUM tttteeietrrieeeeeitreeeeeeeireeeeeetireeeeeeetsreeeeestareeeeeeasreseeeseasseeeeeaisrseeeeeasreeeenans 1905
VA1 I W oY BTN TRV o R il ok K o 13 o NSRRI 1905
49.22 . PG XL ENSION tettieriiiertieeriee et e eteesteeeete e e steeesbee e tbeeesree e taeeetaeeenaaeenraeens 1906
49.23. pg_foreign_data_WIaDDEOT eiierceeeeireeesreresiseeesseeasssessssseesssseensssesssseeens 1907
VAL I B oYe J o B at=F: e oo W =T=0 Lo oS a S SUS 1908
Vi1 I T oTo J o b ar=F: e s o N o1 o1 It =D USSR 1909
T T o Yo B Yo 1= SRS 1909
VLS I eTe B Y s =S ok I o = TSR 1912
49.28. DG_LANGUAGE teruveeerurieeeieeeiieeeiteeeisteessteeateeeaseeessseeassseesasseesnsseesssseessssessnseeens 1913
L IA° B oY BRI R e 1=Ye) o By [=Ye uiNUU USRS 1914
49.30. pg_largeobjeCt_METATALTA wviieerrreeriieeeiieeeieeeeteeeeieeeeaeeeeteeesareesareesnreeens 1915
49.3 1. PO _NAMESPACE eveeerurieeiiieeiieeeitieeeitteestteeateeeetteesbeeessteesasseesseeesasseesaseeesnseeens 1915
VI R oTe B o) o Toh KL= =1 = T PSR PPRURPSRR 1916
Vi1 BRI I eYe fle) o 1= b =Y ol o 3 NN TSP UUURR O PPN 1917
49.34. PG_OPTAMI LY 1ietieieiiei ettt ettt et et e et e et e et e e et e e ete e e etaaeeraeaas 1917
49,35, PG P IEEMP LAt tiiiiiiiietieeeciieeeit et e et e et e et e et e et eeeate e eetae e ete e e etaaeeraeans 1918
40,30, PO DO LA CF eettiieiiieeeiteeeetee ettt e ettt e et e e et e e et e e e te e e et e e e e b e e eeataeetbeeentteeeaaaeearaeaas 1919
VLS R IR o Yo B o} ot Y RSOOSR P PPN 1920
VTS R T T o Yo B ar=t o Ve 1= DU UUU TSROSO 1924
49.39. pg_replicCation _OrigiN . ceiieeeeeerireeeeeenitreeeeeenreeeeeeerreeeeeeearreeeeens 1925

XXX

VLS R I oY B =3 2 o Iy ol = SO USSP PPPRTN 1926

4O.41. PG _SECLADEL wrriiiieeitrieeeeecireee e eeetree e e eeeae e e eestae e e e eeetreeeeeeiraeeeeearaeeeeeerraeeeeaas 1926
49,42, DG _SNACDENA wrriiiieiirieeeeeiitreeeeeeeireeeeeeeaeeeeeeetreeeeeeeiareeeeeeerreeeeeaiareeeeeeerrreaeeans 1927
V1SRG I eYe MY oo L=< oh okl o Yl Kol o PHRNURUUNNN U NS RO U TP PPN 1928
49,44, PG _SNSECLADEL ciitiitriie ettt eecte e e ee e e e e e e e e e era e e e e e etraaaeeas 1929
VL8 RS T oYe B R uf= N ol = i I < BSOS U USSP OO PPN 1930
49.46. PG_ LA ESPACE tererreeerreeerieeesireesiereesrteaateeessaeesseaassseeaasseeersaeansbeeasaeearaeens 1932
VO I <To B o =Y o R e Y 11 USSP 1932
VSR 2 oYo I ot ok e o 1= ol PRSP 1933
VAR 10 I oTo H ot =T eTe Y o B e SN USSP 1935
49.50. PG_t S _CONT LG _MAP tttrttrerierartreeriereeritreeateeeaseeessseeassseessssesssssesassseessssesssseenns 1935
V21 IRl B oo B o= T e I USRS 1936
Vi IR VR oTe B =T o Y- af =1 ol PRSI 1936
VL BT B oo B =T o= 11} = USSR 1937
T Y B eTe B oYy o 1= WSS 1938
40,55, PG _USET _MAPDING tteiiieiiierieeiieesteesteestteete et esteesbeeseesseessseenseenseessseeseenseenes 1946
49.56. SYSLEM VIBWS ..cuveuiiuiiiiiiiiiititeieteit ettt sttt sttt et eae b b e e enesvesaens 1947
49.57. pg_available_eXLENSI10NS wiiiiiieeeeeiiieeeeeeiireeeeesirreeeeessreeseesesreseeanes 1948
49.58. pg_available_ eXtenSion_VeIrSiONnsS . iieoieeeiieeenreeeieeeeseeens 1948
40,50, DO CUT SOOI Suuiiiiitieeetieeeeieeeete e ettt e eetteeeete e e ettt e eeaeeeeaeeeetseeeesseeetseesesseeesaaeenreeeas 1949
49.60. PG_file SEttINgS.iiiiiiiiieeiiieeiteeeiiee e et e eeteeesteeeeteeeetreeeetaeeeetseeeaaeeeraeans 1950
0 0], DO GTOUD eeeittieeitiieeeiieeeete e et e ettt e ete e e eteeeebeeeeaaeeeeaaeeeatseeeetseeetaeeetseeeraeeaaraeans 1951
VLS N Y o Yo B I ot 1= 5 4= Y= TR P PPN 1951
VS R IR oY B N Yo =TT SRR 1952
L Y B oY B =N oV =3 2= T RSP URRRPPPRN 1955
VLS N I oY B o Yo Y I K ok K =Y= T OO PPN 1956
49.66. pg_prepared _StatemMENT S i ereeeeeerireeeeeeiitreeeeeeiirreeeeesireeeeeeeisreeeesans 1956
49.607. PY_PTrePaATrea_XACES wiiitirireeeeeerireeeeenirreeeeenireeeeeesireseeesiirrreeeesireeseeessrreeeenns 1957
49.68. pg_replication _0rigin_ STatUS e eereeeeeiirreeeeeiireeeeeenireeeeenns 1958
49.69. Pg_rePlicCation_SLOTS irieeeeiirreeeeenireeeeeeiireeeeeeiirreeeeenireeeeeeeirreeeeeans 1958
4O.70. G T OLES teeiieitrrieeeeeireeeeeeeireee e eettre e e e eetae e e eeetae e e e e enareeeeeairataeeearaeeeeeatraaaeaaas 1960
Q0.7 L. PG TULES teeieeitreeee ettt eeete e e eetre e e eeeae e e e eeettae e e e eeetreeeeeeearraeeeenareeeeeeerreeeeeans 1961
49,72, PG _SECLADELS wivieeeitrieeeeeiitreeeeeectreeeeeeeae e e eee e e e e eeetre e e e e e erbaeeeeeraeeeeeetraeaeeaas 1962
4.7 3, PG SEEEANITS trreeeieeitriieeeeiireeeeeecireeeeeecrr e e e eeetre e e e e eetreeeeeeebraeeeeeataeeeeeatraeaeaaas 1962
VL L B oTe BN = s E=Yo Lo) USSP 1965
E L A T oTe = o= o S USSR 1966
L L T oo B oY < 2 =Y PSS 1969
49.77. PG _tiMEZONE_ADDIEVS tiricieeeriiieeiirierireeateeesteeesseeessseesssseeesseesssseesssseesseeens 1970
49.78. PG_t iMEZONE_NAMES teveeerureeerireeeiereertreeateeesseeesseeessseessssesssssessssseessssesssseesns 1970
T A eTe B U = Y=S oSSR 1971
49.80). PG _US T MAPDINIGS teeeutieeiuieeerireeeiereestteeateeeeseeesreeeasseesssseesssseeassseessssessnseeens 1971
TR B oo B =0 £ ST RUSRR 1972
50. Frontend/Backend ProtOCOl............eeevieiiiiiieiieeie ettt ee e eteesaee e eveeseeesene s 1973
50,1 OVEIVIEW ..veeuvieiiieiiieieesiiesteesteesteeseteeseeseessseesesseessaessseesseeseesssesssessessssesssesnses 1973
50.1.1. MeSSaZING OVEIVIEW.....ecueeiiriieienieeiienieitieienieeete sttt seeeete st eee e eae 1973
50.1.2. Extended QUEry OVEIVIEWccererierieriieienienienienieenee e eite e 1974
50.1.3. Formats and Format Codesc.ccecuererienieninienineenieneeteicseeeeeenee 1974

50.2. MeESSAZE FLOW ..ottt 1975
50.2. 1. STATT-UP..ceutitieieeieeeete ettt ettt sttt et 1975
50.2.2. SIMPIE QUETY ..couviiiiiiiiiniieiieieeteseeteest ettt 1977
50.2.3. Extended QUETYccccoerieriirerienienienierieeieieeite et 1978
50.2.4. Function Call.......c.ccooeriiieiiiniiniinierieneneeeieeteee et 1981

XXXI

50.2.5. COPY OPEIAtiONSeevuvirniieiierieeiieniieniteeieenieenieesteesseesseesisesseesseesaees 1982

50.2.6. Asynchronous OPETations.........c.eevveereereersreereeneenreenieeseeseeesseesseeseens 1983
50.2.7. Canceling Requests in Progress.......oocevevciienienieniiieniienieniceicesee e 1984
50.2.8. Terminationcccccueiiiiiiiiiiniiiiiii e 1984
50.2.9. SSL Session EnCryption..........ccceeecueevieniiniiiinienienieerieeneesieesieesiee s 1985

50.3. Streaming Replication Protocol............cccccirieviininiieniinieiinicienceeeeeeeeeeeee 1985
50.4. Message Data TYPESc.cevuireerieniirieiieeeieecetese et 1991
50.5. MesSage FOrMALScc.coeeiiiieiiiniieieieeeee ettt 1992
50.6. Error and Notice Message Fieldsc.ccccooiivininiiiiiniiiiniceceeeecee 2007
50.7. Summary of Changes since Protocol 2.0...........c..ccceeiiiiiiniiiiniiiciineceee 2009
51. PostgreSQL Coding CONVENTIONScccoeeiiriiiiiiiiiieierieeieiceeeee et 2011
ST.1 FOTMAEIE «euveeniieiiiieieeiee ettt ettt sttt e s e st be e sbeesaaeeanes 2011
51.2. Reporting Errors Within the Server...........ccoceviiiiieiinienineeeeeeee e 2011
51.3. Error Message Style GUIde.........c.oeoueiieierinieieieeeieeeee e 2014
51.3.1. What GOEs WHETEcceeriiiriieniiiiieiteieceteeeetese ettt 2014
51.3.2. FOIMALING ..ottt sttt 2015
51.3.3. QUOtation IMArKScccviiiiiieiiieeeiee et et 2015
51.3.4. USE Of QUOLES......eiieiieeeiee ettt ettt et eeaeeeeaes 2015
51.3.5. Grammar and Punctuationccccceceeirenenieieiiniineneneereeeeeenene 2016
51.3.6. Upper Case vs. LOWEr Caseccceveerierieieniinienieneeie et 2016
51.3.7. Avoid Passive VOICEcccocevuiriiieieieiiniiisiceceeeecee et e 2016
51.3.8. Present vs. Past TENSEcccoevveieiiiiiniiiiicicicce e 2016
51.3.9. Type Of the ObJECt......couiriiriiriiiiiniiiieeeeeetee e 2017
51.3.10. Brackets......couevuiiiieiiiiiiiiicicteeee e e 2017
51.3.11. Assembling Error MeSSagesc.cevvverierciierieenieniienieeneesveesveesieesenens 2017
51.3.12. Reasons for EITOrs........cccociviviiiiiiiiiiiiiicicciccccececeee 2017
51.3.13. Function Namesc.ccceviruiriiiiiiiiiiiiieieeeeeeecec st 2017
51.3.14. Tricky WOrds t0 AVOId......ccceevcueriiiiniienieniieieeneesie et 2018
51.3.15. Proper SPEIliNg......cceecuiriiinieriiiiieniteste ettt ettt e 2018
51.3.16. LOCAlIZAtION.cveuieiiiiiiiiiiiciciccceee e 2019

52. Native Language SUPPOTL.......cocuieiiierierieeitienteete et esite ettt esieeste st esbeesieesitessbeesaeesaees 2020
52.1. For the Translatorcccccueiiiiiiiiiiiiiiiiiiiiccece e 2020
52.1.1. REQUITEIMENLScouvieiieiiiiiieiienite ettt ettt sttt ebe et sateebeesaeesaee s 2020
52.1.2. CONCOPLS...convieeenririeeireieeiieteette ettt ettt st s e sre s sae e 2020
52.1.3. Creating and Maintaining Message Catalogscccoceveevvenreneevennennes 2021
52.1.4. Editing the PO FleSccccociiiniiiiiiiiiniencnceceecec e 2022

52.2. For the Programmer.........c..cccccoueiiiiiiiiniiniineeeeneeeeteeeeeeee e 2022
52.2.1. MECHANICS ...ttt ettt et e 2023
52.2.2. Message-writing Guidelinesccccooeeiiiiiiiniiiininiicececeee 2024

53. Writing A Procedural Language Handlerccccooceeiiiiiiiiinienieeeeeeeeceeeee 2026
54. Writing A Foreign Data WIaAPPETcc.coveiriririnieieietniietesrcteeeeeieee et 2029
54.1. Foreign Data Wrapper FUNCHONScccccecirininininieieieeneeeseiceeeeeeenie s 2029
54.2. Foreign Data Wrapper Callback ROULINES...........ccovevvecveirininiinienicieecieenenans 2029
54.2.1. FDW Routines For Scanning Foreign Tablesc.ccocoeeevecreeninennenn 2029
54.2.2. FDW Routines For Scanning Foreign Joins........c.ccoceveierienenienenenne. 2031
54.2.3. FDW Routines For Updating Foreign Tablesccoccvoeroienineeienncnne. 2032
54.2.4. FDW Routines For Row Lockingc.cceceviivieniniinininicnineeeee 2035
54.2.5. FDW Routines for EXPLAIN......cccceviiiiiiniiiiiieieneceec s 2036
54.2.6. FDW Routines for ANALYZE......ccoceiviiiiiiiiiiiienececsecseeeas 2037
54.2.7. FDW Routines For IMPORT FOREIGN SCHEMA.......ccoooviviiiiiivinennnn. 2038

54.3. Foreign Data Wrapper Helper FUunctions...........c.ccecuevevievenenncncniencneeienenes 2038
54.4. Foreign Data Wrapper Query Planning.........cccccoccecvevinieninenncncnieneneeienenes 2039

XXXIT

54.5. Row Locking in Foreign Data Wrappers.........ccceceevierieriieeneenienieeieeneeseeenees 2041

55. Writing A Table Sampling Method..........ccccoviiriiiiiiinienieeieeeeeee e 2043
55.1. Sampling Method Support FUNCHONScovuiiriiriiiiniienieciteeeeeee e 2043

56. Writing A Custom Scan ProVIdercocierieriiiiiiniinieeieceeestetete e 2046
56.1. Creating Custom Scan Pathsccoceoiiiniiniiiiiiieecceeeee e 2046
56.1.1. Custom Scan Path Callbackscccccocevvieiiininiininininiccencee 2047

56.2. Creating Custom Scan Plansccoceviniiiininiiniiniiccceeeeecee 2047
56.2.1. Custom Scan Plan Callbackscccceevviiriiiinieniiniiiiiienieniceeeseeneen 2048

56.3. Executing CUSLOM SCANSceouemiriieiieiieienieerenie ettt sne e 2048
56.3.1. Custom Scan Execution Callbacksccccceeveeviiniinniinieniiinneeneennenn 2049

57. Genetic QUETY OPHIMUZETccueeiiriiiieiieiieieeti ettt st 2051
57.1. Query Handling as a Complex Optimization Problem.............ccccooceienrennnnnne. 2051

57.2. Genetic AIZOTItRMSc.coiuiiuiiiiitieieie et 2051

57.3. Genetic Query Optimization (GEQO) in PostgreSQLccccovverieienieiennnnne. 2052
57.3.1. Generating Possible Plans with GEQO...........cccccociiiininiiiiiiieeee 2053

57.3.2. Future Implementation Tasks for PostgreSQL GEQOccccuenene. 2053

57.4. Further REaAdiNgcceeieiiiiiiiiieieieeee ettt 2054

58. Index Access Method Interface Definitionccccooceeverieieninieninieieeeeeeeeeeee 2055
58.1. Catalog Entries for INAEXEScc.cevueririeniniiieienieieeieeeete e 2055

58.2. Index Access Method FUNCLIONS..........cceieiiiiininieicicieeeceeeceeeeeeeee e 2056

58.3. INAEX SCANMINEZ ..c..eevviniiiieiiiiieienteeteeee ettt ettt ettt 2060

58.4. Index Locking Considerations..........c..ceceeruereerienerienieneenieneeeenieseenienseeeenseenes 2061

58.5. Index Uniqueness ChECKS.........coerieriirieniineiienenteieeteeseete et 2063

58.6. Index Cost Estimation FUNCHONS......c..cocueviirirriininiiniinieieneeeeneeeeeseeeeeeeee 2064

59. GIST INAEXEScouvirieriiiienitetieitetest ettt ettt sttt ettt ettt st ebae b bt esaeeae 2067
59.1. TNEOAUCHION «...veniiiiiiieiieit ittt ettt ettt et 2067

59.2. Built-in Operator ClaSSESc.eereeruerrieerieenieeieeieeeneesteeteesieesresseenseesssesnesnnes 2067

59.3. EXIENSIDIIILY ...couveiieiieiieiieiciteescet ettt ettt 2068

59.4. TMPIEMENTALION......eiitieiiiriieeieeiee ettt et eesbe st e ebee st e sateebeesaeesanesanes 2076
59.4.1. GiST buffering build.........cc.coceeviiniriiininiiiicccecceeeeeeee 2076

59.5. EXAMPIES ...eouviiiiiiiiiiiiiiieiie ettt ettt ettt sttt st ettt e et sanesats 2076

60. SP-GiST INAEXES ...c..eouvemiiriieiiniieientteteteee ettt ettt ettt e sae e 2078
60.1. TNErOAUCHION ..ottt 2078

60.2. Built-in Operator CIASSESc..cceecueriieeeriineeienenrereeieereereeresre e enesneeee 2078

60.3. EXEENSIDIILY ...eeueeueitiriirtinieteieeer ettt 2078

60.4. IMPIeMENtAtION......c.eoiuieiiiiiieierieetete ettt 2085
60.4.1. SP-GIST LIMILS..c..eoteieiriririnteieieteeeteeesteseeeeee et ene e 2085

60.4.2. SP-GiST Without Node Labels.......ccccceiverenienieininininieiciececeennene 2085

60.4.3. “All-the-same” Inner Tuples..........cccccceiiiiiiiiiiiniiiiiceeeeeeee 2085

LU 2 111 o) 11 OSSP 2086

61, GIN INAEXES -...veeneeeeeiieieetiete ettt ettt ettt et et sat et e s bt et et e e st et e eaeentesae e st eteeseeneenaeenes 2087
61.1. INErOAUCHION ...ttt ettt ettt b et e e 2087

61.2. Built-in Operator CIASSEScecveeeerterierienieeienieetenteeseeee st eeesiesee e sbeeneeseeens 2087

61.3. EXIENSIDIIIEY . ..ceueetieiieiieiieie ettt ettt 2088

61.4. IMPIEMENTAtION.......eouiriiriiieieiieirie sttt ettt ettt ene e e 2001
61.4.1. GIN Fast Update Technique..........cceceevuerienieniinieniieeneneeeeeeeeeeeee 2091

61.4.2. Partial Match AlgOrithmcccoocevviiniiiiiiniiieee e 2001

61.5. GIN Tips and TTICKSeeueeriiriieieitieiieieetete ettt 2092

61.6. LIMITALIONS ...c.veureuiiiiiiiiinieicieietete sttt ettt ettt 2093

61.7. EXAMPLES ..ttt ettt ettt sttt 2093

62. BRIN INAEXEScouiiiiiiiiieiiciiciiciisteteteeetett ettt st 2094
62.1. TNIOAUCTION ...ttt ettt 2094

XXXi11

62.1.1. IndeX MaINtENANCEcceeviureeeeeeirreeeeeeitreeeeeeeitreeeeeeereeeeeesesrereeeeerseeeeens 2094

62.2. BUilt-in Operator ClaSSeseevveerierrierrieeniieeieeieeniteste st enieesitesreenbeesieesanesnnes 2094

62.3. EXENSIDIIILY ...eovuiiiiiiiiiiiiiiieeccte ettt et 2095

63. Database PhySical STOTQZEcccueervierieriiiiieriteeie ettt ettt st et 2099
63.1. Database File LayOul.......c.ccoevieiiiniiiiiiiieniteeieeceteee ettt 2099

03.2. TOAST .ttt et ettt b ettt b e eb b b naen 2101
63.2.1. Out-of-line, on-disk TOAST StOTaZecercverrreereeriieiienienieeeereeeneeenn 2102

63.2.2. Out-of-line, in-memory TOAST Storage..........cccceceeeevererceenreneeceennennes 2103

63.3. Free Space Mapcoieiiiiiiiiiiciceee e 2104

63.4. VISIDIIIEY IMAD ...eetieiieiieiiee ettt ettt et s e ene e 2104

63.5. The Initialization FOTKcoccoiiiiiiiiiiiiieee e 2105

63.6. Database Page Layoutcceoiiuieieiiieierieeee et 2105

64. BKI Backend INterface.coeevuiiuiiiiiiiiieeiee et 2109
64.1. BKI File FOMALocuieiiiiiiiieiiceeeeee ettt 2109

64.2. BKIT COMMANGScueiiieiieiiiiieieiteeeiee ettt ettt st sb e see s 2109

64.3. Structure of the Bootstrap BKI File.........ccccoceeiiiiiiiniiiiiieeceeeee 2110

4.4, EXAMPLEeeiiiniiiiiiieiieitee ettt ettt sttt b et nae e 2111

65. How the Planner USes StatiStiCSceueruerieriertieieniiriieientteitenteeicete ettt 2112
65.1. Row Estimation EXamples.........cccecueririiniiiinieninieieeeecetee e 2112

65.2. Planner Statistics and SECULILYccerieririerienenierieeteteseete et 2117

VIII. Appendixes 2119
A. PoStgreSQL Error COAESc.uivuiiiiiiiiiieniietinieeitente sttt ettt sttt 2120
B. Date/Time SUPPOTTeeeiieiierieeiietieete et eitesiteste et esitestesateesseessaessseenseesseesssessesnseesssens 2128
B.1. Date/Time Input INterpretationceeeeerierrieereeniesieeeesee e eieesieeseeeaeeseee e 2128

B.2. Handling of Invalid or Ambiguous Timestamps..........ccccceereerierrieeneenieenieeneenne 2129

B.3. Date/Time Key WOTdS........cooveriiriiiiieiieniie ittt sttt sttt 2130

B.4. Date/Time Configuration Filesccccoceviiiiiiiieniiiiieicie et 2131

B.5. HiStOTy Of UNILS ...eoevieiiiiiiiiieiiesite ettt sttt sttt et sbeebee e 2132

C. SQL KEY WOTAS.....ceiieiiieiieiieeieetteste ettt ettt st e sttt st e sbeesatesat e e sbeesbtesatesbeesaeesaeens 2134
D. SQL CONOIMANCEccuvviiiiiieeiiieeiieeiee et eeiteesteeesteeesaee e beeeseseeesseeesseesssseesssseessseanns 2157
D.1. Supported FEATUIEScooviiiiiiiiiiiiieeieerite ettt sttt 2158

D.2. Unsupported FEAtUIEScceevuiiriiiiiiiieriieiieeieeite sttt 2174

E. ReEIEASE INOLES ...ttt ettt et ettt be e st e et et e sbaesaneeates 2189
E 1. REIEASE 9.5.16 ettt ettt sttt st e 2189
E.1.1. Migration to Version 9.5.16.......c..ccccocveiiriiiiiiiiiniiiccececeeeeeee 2189

E 1.2 Changesoouioieiiiiiieceecee e 2189

E.2. REIEASE 9.5.15 ..ottt ettt st 2192
E.2.1. Migration to Version 9.5.15.....ccccccoevrininiineneieieenenesreereeeeeennene 2192

E.2.2. Changescouooiiiiiiiiiiecer e 2192
E.3.REIEASE 9.5.14 ..ottt ettt st 2196
E.3.1. Migration to Version 9.5.14........cccccevrimimineneneinneneseeeeeeeeenee 2196

E.3.2. Changescc.ooiiiiiiiiiicc e 2196

E 4. Release 9.5.13 ...ttt ettt sttt et st 2199
E.4.1. Migration to Version 9.5.13........cccccevirimininineenencneierereeeeeenee 2199

E.4.2. CRANGES ..ceveiiiieieieeteteee ettt sttt 2199

E.5. REICASE 9.5.12 ..ottt sttt et st 2202
E.5.1. Migration to Version 9.5.12......cccccoceviiniiiniiiniinienineeneneeeeeeeeeeee 2202

E.5.2. CRANGES ..cvviiieiieniiiieeieteeeet ettt st 2202

E.0. RelEase 9.5. 11 ..couiiiiiiiiiicieeeeteeeee ettt sttt 2203
E.6.1. Migration to Version 9.5.11.....coociviiinieniiniieieeecie ettt 2203

EL0.2. CRANZES ..ovveeeieeiiieiieieeete ettt ettt ettt et et esateebeesseesabesnbaenseenane s 2204

XXXIV

E.7. REIEASE 0.5.10 .euuveiiiieeeeeee e e e e e e e e etra e e e e 2206

E.7.1. Migration to Version 9.5.10......ccccoeviiriiriiiniiiiiienienie ettt 2206
E.7.2. CRANEES .vveeiieeiiteiteteete ettt sttt st ettt et st e e s 2206

E.8. Release 9.5.9 ... 2208
E.8.1. Migration to Version 9.5.9.......ccociriiiiiiniiiiiiieteeeeieeee e 2209
E.8.2. CRANEESeoiieiieiirieeieieeecteeee ettt 2209

E.O. REIEASE 9.5.8 ...ttt st 2210
E.9.1. Migration to Version 9.5.8.........ccccoiiiiiiiiiiiniiiieeneceeeeeeee 2210
E.9.2. Changescouieieiiiiiieieeeecereeeee e 2210

E.10. REIEASE 9.5.7 ..ottt ettt st st 2215
E.10.1. Migration to Version 9.5.7ccccocioiiiiiiiiiiiiiii e 2215
E.10.2. Changescc.ceeveeieenieniieieeiteete ettt ettt ettt 2215

E. 11 REIEASE 9.5.6 ettt st 2219
E.11.1. Migration to Version 9.5.6.....c..cccccevirinininenienieinenenesrereeeeeneenennene 2219
E.11.2. Changescocooouiiiiiiiiiiieicices e 2219
E.12.ReICASE 9.5.5 ..ottt st 2223
E.12.1. Migration to Version 9.5.5.....ccccceeevirininineneieieene e 2223
E.12.2. ChanEES ..coovieuieiiiiieieieeeeee ettt et 2223
E.13.RElEASE 9.5.4 ..ot 2227
E.13.1. Migration to Version 9.5.4......cccccoceviiriiiiiininieneieee et 2227
E.13.2. Changes ...coueeueeiirieiieniieiteieeicete sttt st st 2227

E.14. Release 9.5.3 ..ot 2231
E.14.1. Migration to Version 9.5.3......ccccoceriiririniininieneneeneneetenieneee e 2231
E.14.2. CRANZES ...eevvveeiiieiieriieeie ettt ete ettt e st ste e be et e seteebeessaesnseenbaenseesnnes 2231

E 15 ReICASE 9.5.2 ..ottt sttt st 2233
E.15.1. Migration to Version 9.5.2......cccccevverieriiniiienienienieenieeseesteeveeniee s 2233
E.15.2. ChANGES ...eovvveeiiieiieniieeie ettt ettt ettt st et e s e sabesbeenaeesaee s 2234

E.16. Release 9.5.1 ..couiiiiiiiiiiiiiiee ettt ettt s s 2236
E.16.1. Migration to Version 9.5.1......ccccoeviiriiniiniiiiiieiesieeeesee et 2236
E.16.2. ChanGEs ...cccueeviiiiieniienieeieesiteeite ettt sttt ettt e be et esaeesaee s 2236
E.17.REICASE 0.5 ..ottt sttt et st 2238
E. 171 OVEIVIEW .ontiiiiniiiieiiciteteteecctese ettt st 2238
E.17.2. Migration to Version 9.5........cccccerviiinieriiiniiiiieitesieeieesteeee e 2238
E.17.3. Changesc.ooeeiiiiieieieeieieecceeseetee ettt 2239

B L7301, SEIVET .ottt ettt 2240

E.17.3. 1.1, INAEXES.ccueeeiiiiiiiieeiieieeeteeeete ettt 2240

E.17.3.1.2. General Performance..........c.cccceccevuerneineenicnneencennnen. 2240

E.17.3.1.3. MONItOTING....c..oouiiiiiiiiiiieieieeeeeeieeeee e 2241

E.17.3.1.4. SSL ottt 2241

E.17.3.1.5. Server Settings........cceecereeriererieieeieeieseeee e 2241

E.17.3.2. Replication and ReCOVErYccccevererieiiinieiineeieeeeeeiee 2242

E.17.3.3. QUETIES «.veiieeieeeee e et 2243

E.17.3.4. Utility Commands...........cccceceeruereenenenienienieie e seeie e 2243

E.17.3.4.1. REINDEXcccioiiiiiiiiiininineniceeeeeeesreeeeeeeeneiee 2244

E.17.3.5. Object Manipulationc..cecceeeerienerienienieieneeeenieseeienieene 2244

E.17.3.5.1. Foreign Tablesccccoverieninienenieienceienesceeeieee 2245

E.17.3.5.2. Event TriEeTrS «...cc.eeeeienirienienieienieeenieete e 2245

E.17.3.6. Data TYPES .eeeevvirieeieieeiienieeitete ettt 2245

E.17.3.6.1. JSON Lottt e 2246

E.17.3.7. FUNCHONS. ...ttt 2246

E.17.3.7.1. System Information Functions and Views.................... 2246

E.17.3.7.2. AZEIEZALES...c.verueeniiiieiiinieeieeienieeiesieetesee et 2247

XXXV

E.17.3.8. Server-Side Languagesccccceveervierrieenienieeiieeneenieeieenieens 2247

E.17.3.8.1. PL/pgSQL Server-Side Languagec...ccoceevvveenueennnen. 2247

E.17.3.9. Client ApPlICAtIONScccveerierrieeniieiieeieesiee e eieesieesieeeieeniee e 2247

E.17.3.9.1. PSQL it 2248

E.17.3.9.1.1. Backslash Commands...........ccccceeueerueeruennennne. 2248

E.17.3.9.2. P2 dUMp..ccccoiiiiiiiiieiiieeecceeeeeee e 2249

E.17.3.9.3. PECtloniiieeeeeeeee e 2249

E.17.3.9.4. pg upgrade.........cceeueeiimirieninicienieeeeeeee e 2249

E.17.3.9.5. pgbenchc.ccocoiiiiiiiiiiceeeeee e 2249

E.17.3.10. SoUrce Code........ccueeiuiieeiieeiieecieeeeieeeeiee e e ereesveeessee e 2250
E.17.3.10.1. MS WINdOWSceevuieiiniieienienieieeieeieeie e 2251

E.17.3.11. Additional ModUIEScceeeurerrirrireirieriiesieecieesieesve e eiee s 2251

E.18. Prior REICASES.cccuiiciiiieiieiieiieciie ettt et et tee s veebe e teessveesbeeaeesebaenseeseees 2252
F. Additional Supplied MOAUIEScceerieriiieieiieieee ettt 2253
FoL. adMinNpackK......co.eeiiiiiiieiieeieeeee ettt sttt ettt 2254
F2. Uth_delay......cc.cooiiiiiiiiieeeee ettt 2255
F.2.1. Configuration Parameters...........c.coveeeerierieienienienie e 2255
F2.20 AUNOT contiiiiiee et st 2255

F3. QUEO_EXPIaAiN...ceiiiiiieiieieeiieeeee ettt st 2255
F.3.1. Configuration Parameters..........ccccoveriererieiienienienieneene et 2256
F3.2 EXAMPIE ..ottt 2257
330 AULNOT ccaiiiiie et 2257

Fid DIIEE_@IMN .ttt sttt ettt 2257
F4.1. EXamPple USAZEcoueeiiniiriiiiinieeienieeieeiesiteteteeeteee ettt 2258
Fid. 2. AUNOTLS .c..coiiiiiiiiiinecteeeee ettt 2258

FL5. DUIEE_ISt .eeeniieiieeiiieieeite ettt et ettt st et e bt e st e enbeebeesabeenbeebee e 2258
F.5.1. EXAMPIE USAZE ...eouveevieiiiiiieiiesiieeieenitesite sttt sete et e siee st sbeenaeesaee s 2259
FL5.20 AULNOTS .c..coiiiiiiiieietcceeeee ettt st 2259

FLB. CHKPASS.c. ittt ettt et st ettt st et e bt st e ebeebee e 2259
Fi6. 1. AULNOT ..ottt 2260

FL7. CIEXT ottt ettt sa et st sa et sae e 2260
F7.1.RAtIONALEoviiiiiiiieiceccccetecee e 2260
F7.2. HOW t0 USE It ..eeoiiiiiiiiieiciccceeeeceeee e 2261
F.7.3. String Comparison Behavior.........c..cccccoevieviinineniniencnccreeneceeene 2261
F.7.4, LIMITAtIONS ...vviiieiiieeiiieesiieeeteeetee et e eseteeestteesseeeeseeesseeesseesnssesssseeennes 2262
R TR N 4 T) RSP TRS 2262

FLBL CUDC...c. ettt ettt e e e et e e e ta e e e naaeenraeens 2263
Fi8. 1. SYNTAX ..ot e 2263

FLB.2. PreCiSION. ...cceeiiiieiieeciee ettt ettt e e e et e e abeesneeeenseeeenes 2263

FL8.3. USAZR ittt ettt et 2263

Fo8.4. DEfaUlLS ...c.veeeieiiieiieeiieee ettt ettt e e ba s e nnae s 2265

8.5, INOLES .eeetieiieceieete ettt ettt e e et e e e et e eebe e e esaeesabeesbeessaeesseensaeseesseean 2266

FL8.0. CreditS ..uviiiieeeiieiieiiesiie e et et e et e ete et e st e et e e e e saeesebeebeessaessbeensaenseensnean 2266

FLO. ABINK .ttt ettt st 2266
ADIINK COMMECT ..vviiiieieeeeeeeeeeeeeeeeeeeeee et e ettt eeeeeeeereseeeeseesesaaeeees 2267
ADIINK _ COMMECE_Uiiiiiiiiiieieeeeeeeeeeeeeee ettt ettt eeeeeeeereseesesseaasaaeeees 2270
ADINK _AISCOMMECT ..eeeiiiiieeieieeeeeeeeeeee ettt e e e e e e e e eeseesessaaaaaeeees 2271
ADINK .ttt 2272
ADIINK _EXEC wuvvveeeiiiiiieeee ettt e e e e e e e e e e e e e s e aasteeeeeeeeesessesessessnasasaaseens 2275
ADIINK_OPEN...cuiiiiiiieiieiereet ettt st 2277
ABINK_fELCh .o 2279

AN _CLOSE «eveveieiieeeeeeee ettt e e e e ettt e et eeeeeeessessesensnssasaaanees 2281

XXXVI

ADIINK_EITOT_MESSAZE ...cvveeneieiiieniieiienieeieerttesitesteesteesaeesate e bt esieesateebeenseesaee s 2284
ADINK_SENA_QUETY ...eeiiieiiieiieeiieeieeiteste ettt ettt ettt st e s s 2285
ADINK_IS_DUSY vttt ettt sttt st ettt e saee e s 2286
ABINK_ @Ot NOLIEY .ottt 2287
dBINK_GEt_TESULL...c..ioiiiiiiiieiieice e 2288
AbIinK_CaANCEI_qUETYeeviiriieniiiiiieiieeieete ettt ettt 2291
ADHNK GOt PKEY ..ottt 2292
dblink_build_SQl_NSETt.....ccceeriiriiiiienieeieeterteeeee ettt 2294
dblink_build_sql_delete.........cccuerierriiniiniieieieeeee e 2296
dblink_build_sql_update........cccceovieeriiriiniiiieieeeeee e 2298
FoLO. QIO AN ettt ettt ettt sttt s bt et e s e et esae et ennesnens 2300
F.10.1. CONfIGUIALION ..eonviiieiiiiieiieieeiee ettt st 2300
FL10.2. USAZE...iiiteiteeieeeetee ettt ettt 2300
FiL T IOt XSYIu ettt h ettt et st s bt et e bt et e sbeeseenaenbens 2300
FoI1.1. CONfIGUIALION ..eoutiiiiiiiiieiieiieicete ettt sttt 2300
FolT.2, USAZE. ittt ettt et 2301
Fo12. @arthdiStancecooveiuiiuieiinieiieteteseetee ettt st 2302
F.12.1. Cube-based Earth DiStancesccccevereevuenierienenienenenienieseeeeneeenee 2302
F.12.2. Point-based Earth DiStancescccccoeveevienierienineenenenienieneeeneeenee 2303
FoI3. I _fAW .ttt et 2304
Fo14. fuzzyStrmatCh.........cooviriiiiiiiiiiiiiieetee ettt 2306
FoI4. 1. SOUNAEX.c..iiiiiiiiiiiiiieieeiteeet ettt 2306
Fo14.2. LeVenshteinc.cocceviiririeiiiniiienientenesteteteetenee e et 2307
Fo14.3. MEtaPRONE.cc.viiiieiieeiiieieeiteete ettt ettt ettt st enaeesane s 2307
F.14.4. Double Metaphone..........cceevierieriiieniienieeiieieesee st see st eveesieesane s 2308
FUIS. RSEOTE .ottt sttt et st 2308
F.15.1. hstore External Representationcc.cceecvvevveeneenieenieeneenieenieeneenenenn 2308
F.15.2. hstore Operators and FUNCHIONSccceevviieniieniiniieiienienieeieeseeneeenn 2309
FoIS.3. TACXES ..ottt st 2313
Fi1S5.4. EXAMPIES ..couiiiiiiiiiiiieiieeiteiteete ettt st ettt st n 2313
FLIS.5. StAtISTICS covventieiieiirieeieieeeet ettt sttt s 2314
F.15.6. Compatibilitycoccecveriieieiinieienieniecnecceeee e 2314
Fo15.7. TranSfOrs «..ceeueieiienienieeieeteete ettt sttt st 2315
Fo15.8. AUTNOTSeeiiieiiiittetee ettt e 2315
FoLO. INTAZE ..ottt ettt et s 2315
Fo16. 1. FUNCHONS ..couvteiiieiiteiteete ettt ettt 2315
F.16.2. Sample USES.....cc.coiiiiiiiiieiieieeesieeeeeee et 2316
FoI7. ANTAITAY ..ottt st s 2317
F.17.1. intarray Functions and Operatorscccceeveeriienieeneeneeeneeneennnenn 2317
Fo17.2. INAEX SUPPOTL...ciriiiiiiiiiiiieeiieeieeeeteet ettt 2318
FI7.3. EXAMPIE ..o 2319
Fo17.4. Benchmarkcocoeoiiiiiiiiiiiieinee e 2319
Fo17.5. AUTNOTS ..ottt 2319
L8 STttt sttt b ettt nae st nbeen 2320
FL18.1. Data TYPES....eeouiiiiieiieriiiieeitese ettt ettt ettt e 2320
FLiI8.2. CaSES cueuiiteiieieee ettt st sttt 2321
F.18.3. Functions and OPEratorsc.cceeeeerieriierienienienienieenienieseeniesieeeeseeenee 2321
FoI8.4. EXAMPIES ...cuviiiieiiiiiiiiiieiteieeteete sttt sttt 2322
F.18.5. BibliOraphy.....cccoceiiriiriiiiniiiienieeteesiteteeetee et 2322
FoI8.0. AUNOT ...ttt 2323
FiLO. 10 ettt ettt ettt s 2323

XXXVii

F.19.1. RAtIONALEccvvvviieeeeiiiee et e eeevae e e eavee e e eeaaeeeeens 2323

F19.2. HOW t0 USE It ..cuoiiiiiiiiiiiiiiiicicicicccc e 2324
F.19.3. LIMItAtIONS c..coviiviiiiiieiiciiiciiceccct e e 2324
FiI19.4 AUNOT ...ttt 2324
F200 IEE . 2324
F20.1. DefiNitiONSccueeiiriieiiniieiieiieeeeenieeeeeee ettt 2324
F.20.2. Operators and FUNCHONSccccoirieniinieiieniiiiene e 2326
FL20.3. INACXES ettt ettt e n 2328
F20.4. EXAMPIE ..o 2329
F.20.5. TransfOrms ...ooveeveenieniieieeteeteeeet ettt 2331
FL20.6. AULNOTSeoiiiiiiiiiieiietceee ettt ettt e 2331
F21. PAGEINSPECT ..ttt ettt ettt sttt e bt e et et esaesaeenaesrens 2331
F21.1. FUNCHONS ...ttt st et 2331
F.22. pasSWOIACHECKeouiiiiiiieiieiiee ettt ettt 2335
F.23. pg buffercache........ccooeeuiiiiiieieeee e 2335
F.23.1. The pg_buffercache VIEW......cccooiiiiuiiieiieeeeee e 2336
F.23.2. Sample OULPULc..eeiiiiiiieiieiieesieetee et 2336
F.23.3. AUTNOTS ..ottt 2337
FL24. PECIYPLO ettt ettt st ettt st st nbe e 2337
F.24.1. General Hashing FUncCtions............coceveiieiieniinieniinienencnieceeeeee 2337
F24.1.1. Aigest () cooeieeeiie et eee ettt et et e et e e s e eta e e eveeeeans 2337

B2 1.2 NNAC () eeeeeeeeeeeeeeeeeee e e e e e e e et ese e e e e e aaaaaes 2337
F.24.2. Password Hashing FUNCHIONSccccverieieninienincinicnenieicseeeee 2338
F24.2.1. CTYDE () cterteeteieneeesie ettt ettt st et 2338
F24.2.2. GEN_SAL1E () torveeeeieiieeee et eeeee e ettt e erae e 2339
F.24.3. PGP Encryption FUNCHONS......ccceeiiiirieriieiieiteeesieeieeeee e 2340
F24.3.1. pgp_SYM_€NCIYPE () teeeerrrrrereeeiireeieeeeireeeeeeeitreeeeesereeeeeeeaneeees 2341
F24.3.2. pgp_sSyM_d@CIYPE () wieeeerrreeeeeeeireeeeeeeireeeeeeeteeeeeeeeveeeeeeeareeees 2341
F.24.3.3. pgp_pub_enCIrYPE () eeeeeeerreeeeeeeireeeeeeeireeeeeeetreeeeeeeveeeeeeenneeees 2341
F24.3.4. pgp_pub_deCIYPE () weeeeeerreeeeeeeireeeeeeeireeeeeeetreeeeeeevreeeeeeaneeees 2341
F24.3.5. DgP_Key_ 20 () ttteeeeiriieee et eeeeee e eeree et e e 2342
F.24.3.6. armor (), dEATMOT () covveeverrrrrreeeieieieeeeeeeeeeeessssnisnsrerreeeeeeeaseeas 2342
F24.3.7. pgp_armor_headers .oiieeecieeee et eeveee e 2342
F.24.3.8. Options for PGP Functions...........cccccocceeveciinieciinieicncneenneneens 2342
F.24.3.8.1. CIpher-algoc..ccceeeeiininiieninieieeieeeeeeee e 2343

F.24.3.8.2. cOMPIess-al@occcuevueruirieninieieniieienieeeene e 2343

F.24.3.8.3. compress-1evelccccoieieniniiiinieiiceeceeeee 2343

F.24.3.8.4. convert-Crlf........ccoooooviiniiiiiniiiiieeeeceeeeee 2343

F.24.3.8.5. disable-mdC.........ccccoueieirinininieieineneeeceeeeeeeene 2343

F.24.3.8.6. SESS-KEY .uveeuiiieriieieetieeeee et 2344

F.24.3.8.7. S2ZK-MOME.....c.erirririieiiiniinenienteeeeee et 2344

F.24.3.8.8. s2k-digest-algo.......ccceeriiririeninieeeieeeeee e 2344

F.24.3.8.9. s2K-CIpher-algoc..cccccevemenenienieinininieeceeeerenenne 2344
F.24.3.8.10. unicode-mode...........cccoverierenienenieieneeiene e 2344

F.24.3.9. Generating PGP Keys with GnuPG............ccccccconviiiinininninnn. 2345
F.24.3.10. Limitations of PGP Codeccccooveriirinieniniiincnieene, 2345
F.24.4. Raw Encryption FUNCtions..........c.cceceeviriinieninieniiieienecieieeeeeee 2345
F.24.5. Random-Data FUNCLIONSccccuevieiriniiiinienieeieine e 2346
F24.6. NOLES ..ttt st 2347
F.24.6.1. Configuration............coccecveriereenieneenienenienieniceiesieete e 2347
F.24.6.2. NULL Handlingc..ccccevemiininennenenieienceienceeene e 2347
F.24.6.3. Security Limitationscccceeveereenieenieenienieesieesieeseeeieenieenns 2347

XXXVIii

F.25.

F.26.

F27.

F.28.

F.29.

F.30.

F31.

F.32.

F.24.6.4. Useful Readingc.cccveiiierieriiieiienieeieeitesieeieesee e 2348

F.24.6.5. Technical References..........ccccccceveeviencriicninieeniinceicncnicieneee 2348
F24.7. AUNOT ...ttt e 2348
PE_{TEESPACEIMNAD ..ottt ettt ettt ettt sat et e st e st e e beesaeesaee s 2349
F25.1. FUNCHONS ..ottt 2349
F.25.2. Sample OULPULc..cocviiiiiiiiiieieniecieeeecrereeeete e 2349
F25.3. AUNOT ...ttt 2350
PE_PIEWAITIL ..c.iiiiiiiiiiiiiiiie sttt ettt e sa e e e st sae e e b e saeesan s 2350
FL26. 1. FUNCHONS ..cvvteiiieiteiteete ettt st 2350
F.26.2. AUTNOT ...t 2351
PEIOWIOCKS ...ttt e s 2351
FL27. 1. OVEIVIEW ..ttt ettt 2351
F.27.2. Sample OULPULoovviiriiiiiiiienieeieetetcee ettt 2352
F27.3. AUNOT ..o 2352
PE_StAL_SEALEIMEIIES ... ettt ettt ettt st sat e b e et e st ebeesbeesaee s 2352
F.28.1. The pg_stat_statements VIEWccccceieiuieieiiieeeieeecieeeeeee e 2352
F.28.2. FUNCLIONS ...ttt e et 2355
F.28.3. Configuration Parameters...........ccoceeeererienieniinieneneeie et 2355
F.28.4. Sample OULPUL ...c..eeviiiiiiieiirieeiesieeteestee et 2356
F28.5. AUNOTIS......oiiiiiiiiiiietee ettt 2357
PESTALEUPLL ...ttt sttt ettt ettt ettt sbeea 2357
F.29.1. FUNCHOMNS ...ttt sttt 2357
F.29.2. AUTNOTS....c..oiiiiiiiiiicieeece ettt 2361
PEIEIM ittt ettt ettt b et s e st b et b et e b bbb eas 2361
F.30.1. Trigram (or Trigraph) CONCEPLS......cevvververerirreerierieerieeneesreerreenieesnnens 2361
F.30.2. Functions and OPEratorscceecveereerieriieenieeneesieenieeseesressseesseesnes 2361
F.30.3. INAEX SUPPOTL...eiiiiiiiiriiiiiieiieste ettt sttt e st esiee st ebeenaeesaee s 2362
F.30.4. Text Search INtegrationceecueeieenienieniiienieeneesie ettt seee s 2363
F.30.5. REfEINCEScoveeniiiieiiiiieiicicccenetccctctc e 2364
F.30.6. AUTNOTS......ooiiiiiiiiieieieectceeeetee ettt 2364
POSEETES_TAW .ttt ettt et s 2364
F.31.1. FDW Options of postgres_fdwcccceeviviiinieniiniieiieieiceeeeeen 2365

F.31.1.1. Connection OPLioNS.......cc.eeeveereeerieerierrieenieenieeiieesieesieeesieenieenns 2365

F.31.1.2. Object Name Optionscccccereevuerereenieneenueneeeenreneennennens 2365

F.31.1.3. Cost Estimation Options............ceccecereeienieneereeneereeneneennenneens 2366

F.31.1.4. Updatability OPtionsc..ceceeeuerienienerieienieeeneerenreseenenieens 2367

F.31.1.5. Importing OPtionsc.cceeeevuirienienenieieneeieee e 2367
F.31.2. Connection Managementcoceeceeruerieieniieieniinieeene e 2368
F.31.3. Transaction Management............coccecueruiiieieniiiienieieeene e 2368
F.31.4. Remote Query OptimiZationccocuevueeuierierieeienieeecenee et eeeeee e 2368
F.31.5. Remote Query Execution Environmentccccoeceevinenienencenenenne. 2368
F.31.6. Cross-Version Compatibility........c.cccceceeimrenenereeinienenenrenrereeeeeennene 2369
F31.7. EXAMPIES...ooiiiiiiiiiiiiiiici e 2369
F31.8. AUNOT ..o 2369
BB ettt ettt ettt b ettt b e e a e et b et sh b e et e bt e sh e e et e e bt e sbe e e bt e bt e sbaeeabeebee e 2370
F32.1. RAtONALE ...ttt e 2370
F32.20 SYNEAX c.tiiiieiieiee ettt e et 2370
F.32.3. PreCISION ..ottt et 2371
Fl32.4, USAZE..c..ieutiiieiieeeeetet ettt st st 2372
FL32.5. NOLES -ttt ettt ettt st sttt 2372
F32.60. Credits c..covveiiieeiirieeienieeiteeeteete ettt st sttt 2373
SEPESAL cevtentettentiete ettt ettt et sttt et a e et eaees 2373

XXXIX

F.34.

F.35.

F.36.

F.37.
F.38.
F.39.

F.40.

F41.

F42.

F43.

F44.

F.33. 1. OVEIVIEW oottt ettt eetre e e e et e e e eeaaeeeeeeeataeeeeens 2373

F.33.2. INStallation.......coouerieieniinieiinceieniceteteeie ettt 2374
F.33.3. RegIession TESES....ccoueriiriieniienieeieeiteste ettt ettt s n 2375
F.33.4. GUC Parametersc.ccoceeeueeeeienerienienietenieeeenteneeene e enesnesneennesseenne 2376
F.33.5. FEALUIESovvieieniirieeiieieecteeeeeeseet ettt 2376

F.33.5.1. Controlled Object Classesccccveeruerreernieerienieerneeniesieenieenne 2376

F.33.5.2. DML PermiSSions.......c.ccceerieerieenieerienieenieesieeseeesieesieesseeenieenns 2376

F.33.5.3. DDL PErmiSSIONsccc.ceveerierrieenieenienieenieesiieesieesieesiteeeeesieenns 2377

F.33.5.4. Trusted Proceduresccooueeveeniinienieeniienieeeeieenteeieeeee 2378

F.33.5.5. Dynamic Domain Transitions...........c..cececevvieviniencncneenennenns 2379

F.33.5.6. MASCEIlAN@OUSeevuverivieiiiriieeieeiee ettt 2380
F.33.6. Sepgsql FUNCLIONSc.ooiiiiiiiieiirieeieeeeeeee e 2380
F.33.7. LIMItAtIONS ..ottt sttt e st sae e 2380
F.33.8. External RESOUICES.c...covuiiriieriiiiiiiteiceteeeetcee e 2381
F.33.9. AUNOT ..o 2381
] 1) OO OSSPSR 2381
F.34.1. refint — Functions for Implementing Referential Integrity................... 2381
F.34.2. timetravel — Functions for Implementing Time Travel 2382
F.34.3. autoinc — Functions for Autoincrementing Fieldsc..cccccoceevennene 2383
F.34.4. insert_username — Functions for Tracking Who Changed a Table....... 2383
F.34.5. moddatetime — Functions for Tracking Last Modification Time.......... 2383
SSIINTO ettt ettt 2383
F.35.1. Functions Providedcccoocevininiinininieninienccecneeteeseeeeeee 2383
F35.20 AUTNOT ..ottt 2385
EADIETUNC ...ttt 2385
F.36.1. Functions Providedccccoceevinirienininiiininienencecnecteneeeeeesenee 2385

Fo360.1.1. NOTIMAL TANG ttttttieeeeeee e e e e e e e e e eeeeee et reseeaaeaeaaaees 2386

FL30.1. 2. CroS STl (EEKE) teeeeeeeeeeeeeeeeeeeeeee e e e e e e e e e et ereseeeaeaeaaaees 2386

FL36.1.3. CroSStaAbN (EEXE) aeteeeeeieeeeeeeieeeeeeeeeeeeeeeeeeeeeeeeereeeeeeeseaaaees 2388

F.36.1.4. crosstab (LeXt, TeXE) wrrrrriiiiiieeieeieeeeeeesiiiinieieeeeeeeeeeeeas 2390

F.30.1.5. CONNECEDY ittt e 2392
F30.2. AUNOT ...ttt 2395
BCIL 1ttt ettt ettt ettt sttt et e et h e et h ettt et e a e eaeeneeb e eneneeee 2395
EEST_dECOAING ...ttt ettt st ettt st e e b 2396
ESEATCRZ ..ttt ettt et et st ettt et ebeesbee e 2396
F.39.1. Portability ISSUESc.ccieiiiiiriiiiniieieiececteeec e 2396
F.39.2. Converting a pre-8.3 Installation...........cc.eceeuieieninienenenieneneceene 2397
F.39.3. REEIENCESeeuiieiieiiieeit ettt 2397
ESTTL_SYSTEIM_TOWS..e.ueieiiiieeeiieeniteentee ettt ettt enieeessmteesmteesaraeesabeeesneeesaneeesaneeennee 2397
F40.1. EXAMPIES ...cooiiiiiiiiiiiiiieeer e 2398
ESIN_SYSEIM_TIIME ...eeeutieeienieeeeeteeteeite et ete et st es e e ese et e s be et e saeeseentesbeeneenaeenee 2398
FAT.1. EXaMPIES...c.oiiiiiiiiiiiiiiicece e 2398
UNACCEIIE ¢ttt iiiieeeiiee ettt rtt e e et et ettt e e sttt e e eat e e sateeebeeeemeeesnneesaneeeeaneeesareeesareenan 2399
F42.1. CONfIGUIALION ..ottt st 2399
Fid2.2. USAZE....oiiiiiiiii 2399
Fi42.3. FUNCHONS ...ttt sttt 2400
TULA= 0SSP ettt sttt sttt ettt ettt et et e bt et s bt ea e s bt et e s bt s bt et e s bt e st e sbeeatenbesbeenbenbens 2401
F43.1. uuid—05sp FUNCHONSocooviiiiiiiiciiicce e 2401
F43.2. Building utid—0SSD ceoeeeeriiriiiinieniteniesiteieteeeteee et 2402
Fid3.3. AUNOT ..ottt 2402
KINUZ .ottt ettt et b et bt na e 2403
F.44.1. Deprecation INOTICEcecveerierieeiiienieniesteesieenitesveesteesieesneeeseenaeessnes 2403

xl

F.44.2. Description of FUNCHONScoocuiriiiinienieiiieiteeesieeieeee e

| S B Bt oYX ol o W o= o 1 I = J U S USROS PRSP

F.44.3.1. Multivalued Results.........cc.ceceeviimieniniriieniniiiinceienceeeieneene

F.44.4. XSLT FUNCHONS ...c..coviiiiiiiiiiniieienieeeeieeieetetceeete e

FA4. 4.1, X8 1t _rOCESS wtiiiiiitieee ettt et eeeee e e e

FiA4.5. AUTNOT ..ottt ettt e

G. Additional Supplied Programscccceceeciiririieniiieneniceieeereeeeee e
G.1. Client APPLCALIONSc..oeueeiiiiieieiieieieeeete ettt
OLAZNAIMIE ...ttt ettt sttt e bt st e b e e s bt e satesbeesbeesaee s

VACUUITLO ¢ttt ettt ettt ettt sttt e bt e st e bt e s bt e satesbeenseenaee s

G.2. Server APPLCALIONSccccouiiiiiiiiiiiieiieiee ettt
PE_STANADY ..ottt et

H. EXternal PrOJECEScouveiiiiiiiiieeieetteetee ettt sttt st e
H.1. Client INterfaces.coveiuieuieiieiieieeeetestee ettt sttt st seens

H.2. Administration TOOIScc.ecouiiieiiiiiiieieeeee ettt

H.3. Procedural Languages...........coceerueruirrienierieieei ettt st

Ho4. EXEENSIONS.....etieitiiieiteiteeitete ettt ettt ettt ettt ettt et sb et esbe et e saesseeaenbens

L. The Source Code REPOSITOTYcccuevuiriiriiriieiinieeieie sttt sttt
L.1. Getting The SOUICe Via Gilc.cecevirriererieiiniieieetcetere sttt

J. DOCUMENEALION ...ttt sttt sb ettt et st e e s bt ebt et s bt et e sbeeatesaesseenbenbeens
Jo 1 DOCBOOK ..ttt st

J.2. TOOL SEES ..ttt sttt ettt s
J.2.1. Installation on Fedora, RHEL, and Derivatives...........ccccceeeovvvevevivinnennnnns

J.2.2. Installation on FreeBSDccccooiiiiiiiiiiniiiiiinicieeeeeceeeeeeeesee

J.2.3. Debian Packages........cccueeviieriieriieiieiienieeie ettt ettt

JL2040 O8 X oottt s

J.2.5. Manual Installation from SOUICE........ccccoereeriririieninieiinceencereeeee

J.2.5.1. Installing OpenJadeccceevueevieiniienieniieiiesieeieesee e

J.2.5.2. Installing the DocBook DTD Kit........ccceceeviiniinniennienienieeieene

J.2.5.3. Installing the DocBook DSSSL Style Sheetsccccccoeveevueenieene

J.2.5.4. Installing JadeTeXcccevierieriiiiniienieeieciee et

J.2.6. Detection DY CONEigUTE ivmiiriiriieniienieeieeitesite ettt sttt

J.3. Building The DOCUMENLAION.......cccuirriiiriieriieiieeieeniie sttt e st iee e

J31 HTML ettt

J.3.2 MIANPAZES. ..ottt ettt e

J.3.3. Print Output via JadeTeXcccociviriiiniiiiiiceieeeeeeeeeeeee

J.3.4. OVETlOW TEXE..eiiuiiiiiiiieiieeteeteee ettt ettt

J.3.5. Print Output via RTF ...

J.3.6. Plain Text FIlescoouiiiiiiiiiiiiiietetceeteteee e

J.3.7. Syntax ChECK....ooveiiieiiiiiieiieteeeeeteeete et

J.4. Documentation AULROTINGcccueririiererieieetiee ettt

JAA 1. EMACS/PSGML.....ooiiiiiiiiiiiieeeeeteteete ettt

J.4.2. Other EMAcs MOAEScocueiviiiriiiiiiiieienieeiteteee ettt

J.5. StYL1E GUIAE. ..ottt ettt et st
J.5.1. Reference Pagescoooveiieiiiiieieieeec e

KL ACTONYIMNS .ottt ettt st ettt sttt e sbe e st ebeesbeesaee s

Bibliography
Index

xli

Preface

This book is the official documentation of PostgreSQL. It has been written by the PostgreSQL devel-
opers and other volunteers in parallel to the development of the PostgreSQL software. It describes all
the functionality that the current version of PostgreSQL officially supports.

To make the large amount of information about PostgreSQL manageable, this book has been orga-
nized in several parts. Each part is targeted at a different class of users, or at users in different stages
of their PostgreSQL experience:

« Part I is an informal introduction for new users.

« Part II documents the SQL query language environment, including data types and functions, as well
as user-level performance tuning. Every PostgreSQL user should read this.

« Part III describes the installation and administration of the server. Everyone who runs a PostgreSQL
server, be it for private use or for others, should read this part.

« Part IV describes the programming interfaces for PostgreSQL client programs.

+ Part V contains information for advanced users about the extensibility capabilities of the server.
Topics include user-defined data types and functions.

« Part VI contains reference information about SQL commands, client and server programs. This part
supports the other parts with structured information sorted by command or program.

« Part VII contains assorted information that might be of use to PostgreSQL developers.

1. What is PostgreSQL?

PostgreSQL is an object-relational database management system (ORDBMS) based on POSTGRES,
Version 4.2', developed at the University of California at Berkeley Computer Science Department.
POSTGRES pioneered many concepts that only became available in some commercial database sys-
tems much later.

PostgreSQL is an open-source descendant of this original Berkeley code. It supports a large part of
the SQL standard and offers many modern features:

« complex queries

- foreign keys

. triggers

« updatable views

« transactional integrity

« multiversion concurrency control

Also, PostgreSQL can be extended by the user in many ways, for example by adding new

« data types

« functions

+ operators

« aggregate functions
« index methods

1. http://db.cs.berkeley.edu/postgres.html

xlii

Preface

« procedural languages

And because of the liberal license, PostgreSQL can be used, modified, and distributed by anyone free
of charge for any purpose, be it private, commercial, or academic.

2. A Brief History of PostgreSQL

The object-relational database management system now known as PostgreSQL is derived from the
POSTGRES package written at the University of California at Berkeley. With over two decades of
development behind it, PostgreSQL is now the most advanced open-source database available any-
where.

2.1. The Berkeley POSTGRES Project

The POSTGRES project, led by Professor Michael Stonebraker, was sponsored by the Defense Ad-
vanced Research Projects Agency (DARPA), the Army Research Office (ARO), the National Science
Foundation (NSF), and ESL, Inc. The implementation of POSTGRES began in 1986. The initial con-
cepts for the system were presented in The design of POSTGRES , and the definition of the initial
data model appeared in The POSTGRES data model . The design of the rule system at that time was
described in The design of the POSTGRES rules system. The rationale and architecture of the storage
manager were detailed in The design of the POSTGRES storage system .

POSTGRES has undergone several major releases since then. The first “demoware” system became
operational in 1987 and was shown at the 1988 ACM-SIGMOD Conference. Version 1, described in
The implementation of POSTGRES , was released to a few external users in June 1989. In response to
a critique of the first rule system (A commentary on the POSTGRES rules system), the rule system
was redesigned (On Rules, Procedures, Caching and Views in Database Systems), and Version 2
was released in June 1990 with the new rule system. Version 3 appeared in 1991 and added support
for multiple storage managers, an improved query executor, and a rewritten rule system. For the most
part, subsequent releases until Postgres95 (see below) focused on portability and reliability.

POSTGRES has been used to implement many different research and production applications. These
include: a financial data analysis system, a jet engine performance monitoring package, an aster-
oid tracking database, a medical information database, and several geographic information systems.
POSTGRES has also been used as an educational tool at several universities. Finally, Illustra Infor-
mation Technologies (later merged into Informix?, which is now owned by IBM?) picked up the code
and commercialized it. In late 1992, POSTGRES became the primary data manager for the Sequoia
2000 scientific computing project®.

The size of the external user community nearly doubled during 1993. It became increasingly obvious
that maintenance of the prototype code and support was taking up large amounts of time that should
have been devoted to database research. In an effort to reduce this support burden, the Berkeley
POSTGRES project officially ended with Version 4.2.

2. http://www.informix.com/

3.

http://www.ibm.com/

4. http://meteora.ucsd.edu/s2k/s2k_home.html

xliii

Preface

2.2. Postgres95

In 1994, Andrew Yu and Jolly Chen added an SQL language interpreter to POSTGRES. Under a
new name, Postgres95 was subsequently released to the web to find its own way in the world as an
open-source descendant of the original POSTGRES Berkeley code.

Postgres95 code was completely ANSI C and trimmed in size by 25%. Many internal changes im-
proved performance and maintainability. Postgres95 release 1.0.x ran about 30-50% faster on the
Wisconsin Benchmark compared to POSTGRES, Version 4.2. Apart from bug fixes, the following
were the major enhancements:

+ The query language PostQUEL was replaced with SQL (implemented in the server). (Interface
library libpq was named after PostQUEL.) Subqueries were not supported until PostgreSQL (see
below), but they could be imitated in Postgres95 with user-defined SQL functions. Aggregate func-
tions were re-implemented. Support for the GROUP BY query clause was also added.

+ A new program (psql) was provided for interactive SQL queries, which used GNU Readline. This
largely superseded the old monitor program.

« A new front-end library, 1ibpgtcl, supported Tcl-based clients. A sample shell, pgtclsh, pro-
vided new Tcl commands to interface Tcl programs with the Postgres95 server.

« The large-object interface was overhauled. The inversion large objects were the only mechanism
for storing large objects. (The inversion file system was removed.)

+ The instance-level rule system was removed. Rules were still available as rewrite rules.

« A short tutorial introducing regular SQL features as well as those of Postgres95 was distributed
with the source code

+ GNU make (instead of BSD make) was used for the build. Also, Postgres95 could be compiled
with an unpatched GCC (data alignment of doubles was fixed).

2.3. PostgreSQL

By 1996, it became clear that the name “Postgres95” would not stand the test of time. We chose a new
name, PostgreSQL, to reflect the relationship between the original POSTGRES and the more recent
versions with SQL capability. At the same time, we set the version numbering to start at 6.0, putting
the numbers back into the sequence originally begun by the Berkeley POSTGRES project.

Many people continue to refer to PostgreSQL as “Postgres” (now rarely in all capital letters) because
of tradition or because it is easier to pronounce. This usage is widely accepted as a nickname or alias.

The emphasis during development of Postgres95 was on identifying and understanding existing prob-
lems in the server code. With PostgreSQL, the emphasis has shifted to augmenting features and capa-
bilities, although work continues in all areas.

Details about what has happened in PostgreSQL since then can be found in Appendix E.

3. Conventions

The following conventions are used in the synopsis of a command: brackets ([and 1) indicate optional
parts. (In the synopsis of a Tcl command, question marks (?) are used instead, as is usual in Tcl.)

xliv

Preface

Braces ({ and }) and vertical lines (|) indicate that you must choose one alternative. Dots (. . .) mean
that the preceding element can be repeated.

Where it enhances the clarity, SQL commands are preceded by the prompt =>, and shell commands
are preceded by the prompt $. Normally, prompts are not shown, though.

An administrator is generally a person who is in charge of installing and running the server. A user
could be anyone who is using, or wants to use, any part of the PostgreSQL system. These terms
should not be interpreted too narrowly; this book does not have fixed presumptions about system
administration procedures.

4. Further Information

Besides the documentation, that is, this book, there are other resources about PostgreSQL:

Wiki
The PostgreSQL wiki’ contains the project’s FAQ® (Frequently Asked Questions) list, TODO’
list, and detailed information about many more topics.

Web Site

The PostgreSQL web site® carries details on the latest release and other information to make your
work or play with PostgreSQL more productive.

Mailing Lists

The mailing lists are a good place to have your questions answered, to share experiences with
other users, and to contact the developers. Consult the PostgreSQL web site for details.

Yourself!

PostgreSQL is an open-source project. As such, it depends on the user community for ongoing
support. As you begin to use PostgreSQL, you will rely on others for help, either through the
documentation or through the mailing lists. Consider contributing your knowledge back. Read
the mailing lists and answer questions. If you learn something which is not in the documentation,
write it up and contribute it. If you add features to the code, contribute them.

5. Bug Reporting Guidelines

When you find a bug in PostgreSQL we want to hear about it. Your bug reports play an important part
in making PostgreSQL more reliable because even the utmost care cannot guarantee that every part
of PostgreSQL will work on every platform under every circumstance.

The following suggestions are intended to assist you in forming bug reports that can be handled in an
effective fashion. No one is required to follow them but doing so tends to be to everyone’s advantage.

We cannot promise to fix every bug right away. If the bug is obvious, critical, or affects a lot of users,
chances are good that someone will look into it. It could also happen that we tell you to update to a
newer version to see if the bug happens there. Or we might decide that the bug cannot be fixed before

PN

https://wiki.postgresql.org
https://wiki.postgresql.org/wiki/Frequently _Asked_Questions
https://wiki.postgresql.org/wiki/Todo
https://www.postgresql.org

xly

Preface

some major rewrite we might be planning is done. Or perhaps it is simply too hard and there are
more important things on the agenda. If you need help immediately, consider obtaining a commercial
support contract.

5.1. Identifying Bugs

Before you report a bug, please read and re-read the documentation to verify that you can really do
whatever it is you are trying. If it is not clear from the documentation whether you can do something
or not, please report that too; it is a bug in the documentation. If it turns out that a program does
something different from what the documentation says, that is a bug. That might include, but is not
limited to, the following circumstances:

« A program terminates with a fatal signal or an operating system error message that would point to
a problem in the program. (A counterexample might be a “disk full” message, since you have to fix
that yourself.)

« A program produces the wrong output for any given input.
« A program refuses to accept valid input (as defined in the documentation).

« A program accepts invalid input without a notice or error message. But keep in mind that your idea
of invalid input might be our idea of an extension or compatibility with traditional practice.

» PostgreSQL fails to compile, build, or install according to the instructions on supported platforms.
Here “program” refers to any executable, not only the backend process.

Being slow or resource-hogging is not necessarily a bug. Read the documentation or ask on one of
the mailing lists for help in tuning your applications. Failing to comply to the SQL standard is not
necessarily a bug either, unless compliance for the specific feature is explicitly claimed.

Before you continue, check on the TODO list and in the FAQ to see if your bug is already known.
If you cannot decode the information on the TODO list, report your problem. The least we can do is
make the TODO list clearer.

5.2. What to Report

The most important thing to remember about bug reporting is to state all the facts and only facts. Do
not speculate what you think went wrong, what “it seemed to do”, or which part of the program has a
fault. If you are not familiar with the implementation you would probably guess wrong and not help
us a bit. And even if you are, educated explanations are a great supplement to but no substitute for
facts. If we are going to fix the bug we still have to see it happen for ourselves first. Reporting the bare
facts is relatively straightforward (you can probably copy and paste them from the screen) but all too
often important details are left out because someone thought it does not matter or the report would be
understood anyway.

The following items should be contained in every bug report:

« The exact sequence of steps from program start-up necessary to reproduce the problem. This should
be self-contained; it is not enough to send in a bare SELECT statement without the preceding
CREATE TABLE and INSERT statements, if the output should depend on the data in the tables.
We do not have the time to reverse-engineer your database schema, and if we are supposed to make
up our own data we would probably miss the problem.

xlvi

Preface

The best format for a test case for SQL-related problems is a file that can be run through the psql
frontend that shows the problem. (Be sure to not have anything in your ~/.psqglrc start-up file.)
An easy way to create this file is to use pg_dump to dump out the table declarations and data
needed to set the scene, then add the problem query. You are encouraged to minimize the size of
your example, but this is not absolutely necessary. If the bug is reproducible, we will find it either
way.

If your application uses some other client interface, such as PHP, then please try to isolate the
offending queries. We will probably not set up a web server to reproduce your problem. In any case
remember to provide the exact input files; do not guess that the problem happens for “large files”
or “midsize databases”, etc. since this information is too inexact to be of use.

+ The output you got. Please do not say that it “didn’t work™ or “crashed”. If there is an error message,
show it, even if you do not understand it. If the program terminates with an operating system error,
say which. If nothing at all happens, say so. Even if the result of your test case is a program crash
or otherwise obvious it might not happen on our platform. The easiest thing is to copy the output
from the terminal, if possible.

Note: If you are reporting an error message, please obtain the most verbose form of the mes-
sage. In psql, say \set VERBOSITY verbose beforehand. If you are extracting the message
from the server log, set the run-time parameter log_error_verbosity to verbose so that all de-
tails are logged.

Note: In case of fatal errors, the error message reported by the client might not contain all the
information available. Please also look at the log output of the database server. If you do not
keep your server’s log output, this would be a good time to start doing so.

« The output you expected is very important to state. If you just write “This command gives me that
output.” or “This is not what I expected.”, we might run it ourselves, scan the output, and think it
looks OK and is exactly what we expected. We should not have to spend the time to decode the
exact semantics behind your commands. Especially refrain from merely saying that “This is not
what SQL says/Oracle does.” Digging out the correct behavior from SQL is not a fun undertaking,
nor do we all know how all the other relational databases out there behave. (If your problem is a
program crash, you can obviously omit this item.)

» Any command line options and other start-up options, including any relevant environment variables
or configuration files that you changed from the default. Again, please provide exact information.
If you are using a prepackaged distribution that starts the database server at boot time, you should
try to find out how that is done.

+ Anything you did at all differently from the installation instructions.

+ The PostgreSQL version. You can run the command SELECT version (); to find out the version
of the server you are connected to. Most executable programs also support a -—version option; at
least postgres —--versionandpsgl --version should work. If the function or the options do
not exist then your version is more than old enough to warrant an upgrade. If you run a prepackaged
version, such as RPMs, say so, including any subversion the package might have. If you are talking
about a Git snapshot, mention that, including the commit hash.

If your version is older than 9.5.16 we will almost certainly tell you to upgrade. There are many bug
fixes and improvements in each new release, so it is quite possible that a bug you have encountered

xlvii

Preface

in an older release of PostgreSQL has already been fixed. We can only provide limited support
for sites using older releases of PostgreSQL; if you require more than we can provide, consider
acquiring a commercial support contract.

 Platform information. This includes the kernel name and version, C library, processor, memory
information, and so on. In most cases it is sufficient to report the vendor and version, but do not
assume everyone knows what exactly “Debian” contains or that everyone runs on i386s. If you have
installation problems then information about the toolchain on your machine (compiler, make, and
so on) is also necessary.

Do not be afraid if your bug report becomes rather lengthy. That is a fact of life. It is better to report
everything the first time than us having to squeeze the facts out of you. On the other hand, if your
input files are huge, it is fair to ask first whether somebody is interested in looking into it. Here is an
article’ that outlines some more tips on reporting bugs.

Do not spend all your time to figure out which changes in the input make the problem go away. This
will probably not help solving it. If it turns out that the bug cannot be fixed right away, you will still
have time to find and share your work-around. Also, once again, do not waste your time guessing why
the bug exists. We will find that out soon enough.

When writing a bug report, please avoid confusing terminology. The software package in total is
called “PostgreSQL”, sometimes “Postgres” for short. If you are specifically talking about the back-
end process, mention that, do not just say ‘“PostgreSQL crashes”. A crash of a single backend process
is quite different from crash of the parent “postgres” process; please don’t say “the server crashed”
when you mean a single backend process went down, nor vice versa. Also, client programs such as the
interactive frontend “psql” are completely separate from the backend. Please try to be specific about
whether the problem is on the client or server side.

5.3. Where to Report Bugs

In general, send bug reports to the bug report mailing list at
<pgsgl-bugs@lists.postgresgl.org>. You are requested to use a
descriptive subject for your email message, perhaps parts of the error message.

Another method is to fill in the bug report web-form available at the project’s web site'®. Entering a
bug report this way causes it to be mailed to the <pgsgl-bugs@lists.postgresgl.org> mailing
list.

If your bug report has security implications and you’d prefer that it not become immediately vis-
ible in public archives, don’t send it to pgsgl-bugs. Security issues can be reported privately to
<security@postgresqgl.org>.

Do not send bug reports to any of the wuser mailing lists, such as
<pgsqgl-sgl@lists.postgresqgl.org> oOr <pgsgl-general@lists.postgresqgl.org>.
These mailing lists are for answering user questions, and their subscribers normally do not wish to
receive bug reports. More importantly, they are unlikely to fix them.

Also, please do not send reports to the developers’ mailing list
<pgsgl-hackers@lists.postgresqgl.org> This list is for discussing the development of
PostgreSQL, and it would be nice if we could keep the bug reports separate. We might choose to take
up a discussion about your bug report on pgsgl-hackers, if the problem needs more review.

9. http://www.chiark.greenend.org.uk/~sgtatham/bugs.html
10. https://www.postgresql.org/

xIviii

Preface

If you have a problem with the documentation, the best place to report it is the documentation mailing
list <pgsgl-docs@lists.postgresgl.org>. Please be specific about what part of the documen-
tation you are unhappy with.

If your bug is a portability problem on a non-supported platform, send mail to
<pgsgl-hackers@lists.postgresql.org>, so we (and you) can work on porting PostgreSQL
to your platform.

Note: Due to the unfortunate amount of spam going around, all of the above lists will be moder-
ated unless you are subscribed. That means there will be some delay before the email is deliv-
ered. If you wish to subscribe to the lists, please visit https://lists.postgresql.org/ for instructions.

xlix

l. Tutorial

Welcome to the PostgreSQL Tutorial. The following few chapters are intended to give a simple in-
troduction to PostgreSQL, relational database concepts, and the SQL language to those who are new
to any one of these aspects. We only assume some general knowledge about how to use computers.
No particular Unix or programming experience is required. This part is mainly intended to give you
some hands-on experience with important aspects of the PostgreSQL system. It makes no attempt to
be a complete or thorough treatment of the topics it covers.

After you have worked through this tutorial you might want to move on to reading Part II to gain a
more formal knowledge of the SQL language, or Part IV for information about developing applica-
tions for PostgreSQL. Those who set up and manage their own server should also read Part III.

Chapter 1. Getting Started

1.1. Installation

Before you can use PostgreSQL you need to install it, of course. It is possible that PostgreSQL is
already installed at your site, either because it was included in your operating system distribution
or because the system administrator already installed it. If that is the case, you should obtain infor-
mation from the operating system documentation or your system administrator about how to access
PostgreSQL.

If you are not sure whether PostgreSQL is already available or whether you can use it for your ex-
perimentation then you can install it yourself. Doing so is not hard and it can be a good exercise.
PostgreSQL can be installed by any unprivileged user; no superuser (root) access is required.

If you are installing PostgreSQL yourself, then refer to Chapter 15 for instructions on installation,
and return to this guide when the installation is complete. Be sure to follow closely the section about
setting up the appropriate environment variables.

If your site administrator has not set things up in the default way, you might have some more work to
do. For example, if the database server machine is a remote machine, you will need to set the PGHOST
environment variable to the name of the database server machine. The environment variable PGPORT
might also have to be set. The bottom line is this: if you try to start an application program and it
complains that it cannot connect to the database, you should consult your site administrator or, if
that is you, the documentation to make sure that your environment is properly set up. If you did not
understand the preceding paragraph then read the next section.

1.2. Architectural Fundamentals

Before we proceed, you should understand the basic PostgreSQL system architecture. Understanding
how the parts of PostgreSQL interact will make this chapter somewhat clearer.

In database jargon, PostgreSQL uses a client/server model. A PostgreSQL session consists of the
following cooperating processes (programs):

+ A server process, which manages the database files, accepts connections to the database from client
applications, and performs database actions on behalf of the clients. The database server program
is called postgres.

« The user’s client (frontend) application that wants to perform database operations. Client applica-
tions can be very diverse in nature: a client could be a text-oriented tool, a graphical application, a
web server that accesses the database to display web pages, or a specialized database maintenance
tool. Some client applications are supplied with the PostgreSQL distribution; most are developed
by users.

As is typical of client/server applications, the client and the server can be on different hosts. In that
case they communicate over a TCP/IP network connection. You should keep this in mind, because
the files that can be accessed on a client machine might not be accessible (or might only be accessible
using a different file name) on the database server machine.

The PostgreSQL server can handle multiple concurrent connections from clients. To achieve this
it starts (“forks™) a new process for each connection. From that point on, the client and the new

Chapter 1. Getting Started

server process communicate without intervention by the original postgres process. Thus, the master
server process is always running, waiting for client connections, whereas client and associated server
processes come and go. (All of this is of course invisible to the user. We only mention it here for
completeness.)

1.3. Creating a Database

The first test to see whether you can access the database server is to try to create a database. A running
PostgreSQL server can manage many databases. Typically, a separate database is used for each project
or for each user.

Possibly, your site administrator has already created a database for your use. He should have told you
what the name of your database is. In that case you can omit this step and skip ahead to the next
section.

To create a new database, in this example named mydb, you use the following command:

$ createdb mydb

If this produces no response then this step was successful and you can skip over the remainder of this
section.

If you see a message similar to:
createdb: command not found

then PostgreSQL was not installed properly. Either it was not installed at all or your shell’s search
path was not set to include it. Try calling the command with an absolute path instead:

$ /usr/local/pgsql/bin/createdb mydb

The path at your site might be different. Contact your site administrator or check the installation
instructions to correct the situation.

Another response could be this:

createdb: could not connect to database postgres: could not connect to server: No such f
Is the server running locally and accepting
connections on Unix domain socket "/tmp/.s.PGSQL.5432"?

This means that the server was not started, or it was not started where createdb expected it. Again,
check the installation instructions or consult the administrator.

Another response could be this:

createdb: could not connect to database postgres: FATAL: role "Jjoe" does not exist

where your own login name is mentioned. This will happen if the administrator has not created a
PostgreSQL user account for you. (PostgreSQL user accounts are distinct from operating system user
accounts.) If you are the administrator, see Chapter 20 for help creating accounts. You will need to
become the operating system user under which PostgreSQL was installed (usually postgres) to
create the first user account. It could also be that you were assigned a PostgreSQL user name that is
different from your operating system user name; in that case you need to use the —U switch or set the
PGUSER environment variable to specify your PostgreSQL user name.

If you have a user account but it does not have the privileges required to create a database, you will
see the following:

Chapter 1. Getting Started

createdb: database creation failed: ERROR: permission denied to create database

Not every user has authorization to create new databases. If PostgreSQL refuses to create databases
for you then the site administrator needs to grant you permission to create databases. Consult your
site administrator if this occurs. If you installed PostgreSQL yourself then you should log in for the
purposes of this tutorial under the user account that you started the server as. '

You can also create databases with other names. PostgreSQL allows you to create any number of
databases at a given site. Database names must have an alphabetic first character and are limited to 63
bytes in length. A convenient choice is to create a database with the same name as your current user
name. Many tools assume that database name as the default, so it can save you some typing. To create
that database, simply type:

$ createdb

If you do not want to use your database anymore you can remove it. For example, if you are the owner
(creator) of the database mydb, you can destroy it using the following command:

$ dropdb mydb

(For this command, the database name does not default to the user account name. You always need to
specify it.) This action physically removes all files associated with the database and cannot be undone,
so this should only be done with a great deal of forethought.

More about createdb and dropdb can be found in createdb and dropdb respectively.

1.4. Accessing a Database

Once you have created a database, you can access it by:

» Running the PostgreSQL interactive terminal program, called psqgl, which allows you to interac-
tively enter, edit, and execute SQL commands.

» Using an existing graphical frontend tool like pgAdmin or an office suite with ODBC or JDBC
support to create and manipulate a database. These possibilities are not covered in this tutorial.

« Writing a custom application, using one of the several available language bindings. These possibil-
ities are discussed further in Part IV.

You probably want to start up psql to try the examples in this tutorial. It can be activated for the mydb
database by typing the command:

$ psql mydb

If you do not supply the database name then it will default to your user account name. You already
discovered this scheme in the previous section using createdb.

In psql, you will be greeted with the following message:

1. As an explanation for why this works: PostgreSQL user names are separate from operating system user accounts. When
you connect to a database, you can choose what PostgreSQL user name to connect as; if you don’t, it will default to the same
name as your current operating system account. As it happens, there will always be a PostgreSQL user account that has the
same name as the operating system user that started the server, and it also happens that that user always has permission to
create databases. Instead of logging in as that user you can also specify the —U option everywhere to select a PostgreSQL user
name to connect as.

Chapter 1. Getting Started

psgl (9.5.16)
Type "help" for help.

mydb=>
The last line could also be:
mydb=+#

That would mean you are a database superuser, which is most likely the case if you installed the
PostgreSQL instance yourself. Being a superuser means that you are not subject to access controls.
For the purposes of this tutorial that is not important.

If you encounter problems starting psqgl then go back to the previous section. The diagnostics of
createdb and psql are similar, and if the former worked the latter should work as well.

The last line printed out by psql is the prompt, and it indicates that psql is listening to you and that
you can type SQL queries into a work space maintained by psgl. Try out these commands:

mydb=> SELECT version();
version

PostgreSQL 9.5.16 on i586-pc-linux—-gnu, compiled by GCC 2.96, 32-bit
(1 row)

mydb=> SELECT current_date;
date

2002-08-31
(1 row)

mydb=> SELECT 2 + 2;

?column?

The psgl program has a number of internal commands that are not SQL commands. They begin with
the backslash character, “\”. For example, you can get help on the syntax of various PostgreSQL SQL
commands by typing:

mydb=> \h

To get out of psql, type:
mydb=> \q

and psgl will quit and return you to your command shell. (For more internal commands, type \ 2 at
the psgl prompt.) The full capabilities of psql are documented in psql. In this tutorial we will not
use these features explicitly, but you can use them yourself when it is helpful.

Chapter 2. The SQL Language

2.1. Introduction

This chapter provides an overview of how to use SQL to perform simple operations. This tutorial
is only intended to give you an introduction and is in no way a complete tutorial on SQL. Numer-
ous books have been written on SQL, including Understanding the New SQL and A Guide to the
SQL Standard. You should be aware that some PostgreSQL language features are extensions to the
standard.

In the examples that follow, we assume that you have created a database named mydb, as described in
the previous chapter, and have been able to start psql.

Examples in this manual can also be found in the PostgreSQL source distribution in the directory
src/tutorial/. (Binary distributions of PostgreSQL might not compile these files.) To use those
files, first change to that directory and run make:

$ ed/src/tutorial
S make

This creates the scripts and compiles the C files containing user-defined functions and types. Then, to
start the tutorial, do the following:

S ed/tutorial
$ psql -s mydb

mydb=> \i basics.sql

The \ i command reads in commands from the specified file. psql’s —s option puts you in single step
mode which pauses before sending each statement to the server. The commands used in this section
are in the file basics.sql.

2.2. Concepts

PostgreSQL is a relational database management system (RDBMS). That means it is a system for
managing data stored in relations. Relation is essentially a mathematical term for zable. The notion
of storing data in tables is so commonplace today that it might seem inherently obvious, but there
are a number of other ways of organizing databases. Files and directories on Unix-like operating
systems form an example of a hierarchical database. A more modern development is the object-
oriented database.

Each table is a named collection of rows. Each row of a given table has the same set of named
columns, and each column is of a specific data type. Whereas columns have a fixed order in each row,
it is important to remember that SQL does not guarantee the order of the rows within the table in any
way (although they can be explicitly sorted for display).

Tables are grouped into databases, and a collection of databases managed by a single PostgreSQL
server instance constitutes a database cluster.

Chapter 2. The SQL Language

2.3. Creating a New Table

You can create a new table by specifying the table name, along with all column names and their types:

CREATE TABLE weather (

city varchar (80),

temp_lo int, -— low temperature
temp_hi int, —— high temperature
prcp real, —-— precipitation
date date

)

You can enter this into psgl with the line breaks. psgl will recognize that the command is not
terminated until the semicolon.

White space (i.e., spaces, tabs, and newlines) can be used freely in SQL commands. That means you
can type the command aligned differently than above, or even all on one line. Two dashes (“--") in-
troduce comments. Whatever follows them is ignored up to the end of the line. SQL is case insensitive
about key words and identifiers, except when identifiers are double-quoted to preserve the case (not
done above).

varchar (80) specifies a data type that can store arbitrary character strings up to 80 characters in
length. int is the normal integer type. real is a type for storing single precision floating-point num-
bers. date should be self-explanatory. (Yes, the column of type date is also named date. This might
be convenient or confusing — you choose.)

PostgreSQL supports the standard SQL types int, smallint, real, double precision,
char (N), varchar (N), date, time, timestamp, and interval, as well as other types of general
utility and a rich set of geometric types. PostgreSQL can be customized with an arbitrary number of
user-defined data types. Consequently, type names are not key words in the syntax, except where
required to support special cases in the SQL standard.

The second example will store cities and their associated geographical location:

CREATE TABLE cities (
name varchar (80),
location point

)i

The point type is an example of a PostgreSQL-specific data type.

Finally, it should be mentioned that if you don’t need a table any longer or want to recreate it differ-
ently you can remove it using the following command:

DROP TABLE tablename;

2.4. Populating a Table With Rows

The INSERT statement is used to populate a table with rows:

INSERT INTO weather VALUES (’San Francisco’, 46, 50, 0.25, 71994-11-27");

Chapter 2. The SQL Language

Note that all data types use rather obvious input formats. Constants that are not simple numeric values
usually must be surrounded by single quotes (), as in the example. The date type is actually quite
flexible in what it accepts, but for this tutorial we will stick to the unambiguous format shown here.

The point type requires a coordinate pair as input, as shown here:

INSERT INTO cities VALUES (’San Francisco’, ' (-194.0, 53.0)");

The syntax used so far requires you to remember the order of the columns. An alternative syntax
allows you to list the columns explicitly:

INSERT INTO weather (city, temp_lo, temp_hi, prcp, date)
VALUES (’San Francisco’, 43, 57, 0.0, 71994-11-29");

You can list the columns in a different order if you wish or even omit some columns, e.g., if the
precipitation is unknown:

INSERT INTO weather (date, city, temp_hi, temp_lo)
VALUES (’1994-11-29’, 'Hayward’, 54, 37);

Many developers consider explicitly listing the columns better style than relying on the order implic-
itly.
Please enter all the commands shown above so you have some data to work with in the following

sections.

You could also have used copy to load large amounts of data from flat-text files. This is usually
faster because the COPY command is optimized for this application while allowing less flexibility than
INSERT. An example would be:

COPY weather FROM ’ /home/user/weather.txt’;

where the file name for the source file must be available on the machine running the backend process,
not the client, since the backend process reads the file directly. You can read more about the copy
command in COPY.

2.5. Querying a Table

To retrieve data from a table, the table is queried. An SQL SELECT statement is used to do this. The
statement is divided into a select list (the part that lists the columns to be returned), a table list (the
part that lists the tables from which to retrieve the data), and an optional qualification (the part that
specifies any restrictions). For example, to retrieve all the rows of table weather, type:

SELECT * FROM weather;

Here = is a shorthand for “all columns”. ! So the same result would be had with:
SELECT city, temp_lo, temp_hi, prcp, date FROM weather;

The output should be:

city | temp_lo | temp_hi | prcp | date

1.

While SELECT =« is useful for off-the-cuff queries, it is widely considered bad style in production code, since adding a

column to the table would change the results.

Chapter 2. The SQL Language

——————————————— t———— - —————
San Francisco | 46 | 50 | 0.25 | 1994-11-27
San Francisco | 43 | 57 | 0 | 1994-11-29
Hayward | 37 | 54 | | 1994-11-29
(3 rows)

You can write expressions, not just simple column references, in the select list. For example, you can
do:

SELECT city, (temp_hi+temp_lo)/2 AS temp_avg, date FROM weather;

This should give:

city | temp_avg | date
,,,,,,,,,,,,,,, T
San Francisco | 48 | 1994-11-27
San Francisco | 50 | 1994-11-29
Hayward | 45 | 1994-11-29
(3 rows)

Notice how the AS clause is used to relabel the output column. (The As clause is optional.)

A query can be “qualified” by adding a WHERE clause that specifies which rows are wanted. The WHERE
clause contains a Boolean (truth value) expression, and only rows for which the Boolean expression
is true are returned. The usual Boolean operators (AND, OR, and NOT) are allowed in the qualification.
For example, the following retrieves the weather of San Francisco on rainy days:

SELECT % FROM weather
WHERE city = ’San Francisco’ AND prcp > 0.0;

Result:

San Francisco
(1 row)

You can request that the results of a query be returned in sorted order:

SELECT x FROM weather
ORDER BY city;

city | temp_lo | temp_hi | prcp | date
——————————————— B e e R T
Hayward | 37 | 54 | | 1994-11-29
San Francisco | 43 | 57 | 0 | 1994-11-29
San Francisco | 46 | 50 | 0.25 | 1994-11-27

In this example, the sort order isn’t fully specified, and so you might get the San Francisco rows in
either order. But you’d always get the results shown above if you do:

SELECT * FROM weather
ORDER BY city, temp_lo;

You can request that duplicate rows be removed from the result of a query:

SELECT DISTINCT city
FROM weather;

Hayward
San Francisco
(2 rows)

Chapter 2. The SQL Language

Here again, the result row ordering might vary. You can ensure consistent results by using DISTINCT

and ORDER BY together:

SELECT DISTINCT city
FROM weather
ORDER BY city;

2.6. Joins Between Tables

Thus far, our queries have only accessed one table at a time. Queries can access multiple tables at
once, or access the same table in such a way that multiple rows of the table are being processed at the
same time. A query that accesses multiple rows of the same or different tables at one time is called
a join query. As an example, say you wish to list all the weather records together with the location
of the associated city. To do that, we need to compare the city column of each row of the weather
table with the name column of all rows in the cities table, and select the pairs of rows where these

values match.

Note: This is only a conceptual model. The join is usually performed in a more efficient manner
than actually comparing each possible pair of rows, but this is invisible to the user.

This would be accomplished by the following query:

SELECT «
FROM weather, cities
WHERE city = name;
city | temp_lo
_______________ [P
San Francisco | 46
San Francisco | 43

(2 rows)

Observe two things about the result set:

1994-11-27
1994-11-29

San Francisco
San Francisco

(-194,53)
(-194,53)

+ There is no result row for the city of Hayward. This is because there is no matching entry in the
cities table for Hayward, so the join ignores the unmatched rows in the weather table. We will
see shortly how this can be fixed.

2.

In some database systems, including older versions of PostgreSQL, the implementation of DISTINCT automatically orders

the rows and so ORDER BY is unnecessary. But this is not required by the SQL standard, and current PostgreSQL does not
guarantee that DISTINCT causes the rows to be ordered.

Chapter 2. The SQL Language

« There are two columns containing the city name. This is correct because the lists of columns from
the weather and cities tables are concatenated. In practice this is undesirable, though, so you
will probably want to list the output columns explicitly rather than using »:

SELECT city, temp_lo, temp_hi, prcp, date, location
FROM weather, cities
WHERE city = name;

Exercise: Attempt to determine the semantics of this query when the WHERE clause is omitted.

Since the columns all had different names, the parser automatically found which table they belong to.
If there were duplicate column names in the two tables you’d need to gualify the column names to
show which one you meant, as in:

SELECT weather.city, weather.temp_lo, weather.temp_hi,
weather.prcp, weather.date, cities.location
FROM weather, cities
WHERE cities.name = weather.city;

It is widely considered good style to qualify all column names in a join query, so that the query won’t
fail if a duplicate column name is later added to one of the tables.

Join queries of the kind seen thus far can also be written in this alternative form:

SELECT «
FROM weather INNER JOIN cities ON (weather.city = cities.name);

This syntax is not as commonly used as the one above, but we show it here to help you understand the
following topics.

Now we will figure out how we can get the Hayward records back in. What we want the query to do
is to scan the weather table and for each row to find the matching cities row(s). If no matching
row is found we want some “empty values” to be substituted for the cities table’s columns. This
kind of query is called an outer join. (The joins we have seen so far are inner joins.) The command
looks like this:

SELECT «
FROM weather LEFT OUTER JOIN cities ON (weather.city = cities.name);

city | temp_lo | temp_hi | prcp | date | name | location
——————————————— B E e e bt Tt e
Hayward | 37 | 54 | | 1994-11-29 | |
San Francisco | 46 | 50 | 0.25 | 1994-11-27 | San Francisco | (-194,53)
San Francisco | 43 | 57 | 0 | 1994-11-29 | San Francisco | (-194,53)

(3 rows)

This query is called a left outer join because the table mentioned on the left of the join operator will
have each of its rows in the output at least once, whereas the table on the right will only have those
rows output that match some row of the left table. When outputting a left-table row for which there is
no right-table match, empty (null) values are substituted for the right-table columns.

Exercise: There are also right outer joins and full outer joins. Try to find out what those do.

We can also join a table against itself. This is called a self join. As an example, suppose we wish to
find all the weather records that are in the temperature range of other weather records. So we need to
compare the temp_lo and temp_hi columns of each weather row to the temp_lo and temp_hi
columns of all other weather rows. We can do this with the following query:

10

Chapter 2. The SQL Language

SELECT Wl.city, Wl.temp_lo AS low, Wl.temp_hi AS high,
W2.city, W2.temp_lo AS low, W2.temp_hi AS high
FROM weather Wl, weather W2
WHERE Wl.temp_lo < W2.temp_lo
AND Wl.temp_hi > W2.temp_hi;

city | low | high | city | low | high
——————————————— s et e e Atk
San Francisco | 43 | 57 | San Francisco | 46 | 50
Hayward | 37 | 54 | San Francisco | 46 | 50
(2 rows)

Here we have relabeled the weather table as w1 and w2 to be able to distinguish the left and right side
of the join. You can also use these kinds of aliases in other queries to save some typing, e.g.:

SELECT «
FROM weather w, cities c¢
WHERE w.city = c.name;

You will encounter this style of abbreviating quite frequently.

2.7. Aggregate Functions

Like most other relational database products, PostgreSQL supports aggregate functions. An aggregate
function computes a single result from multiple input rows. For example, there are aggregates to
compute the count, sum, avg (average), max (maximum) and min (minimum) over a set of rows.

As an example, we can find the highest low-temperature reading anywhere with:

SELECT max (temp_lo) FROM weather;

If we wanted to know what city (or cities) that reading occurred in, we might try:

SELECT city FROM weather WHERE temp_lo = max(temp_1lo); WRONG

but this will not work since the aggregate max cannot be used in the WHERE clause. (This restriction
exists because the WHERE clause determines which rows will be included in the aggregate calculation;
so obviously it has to be evaluated before aggregate functions are computed.) However, as is often the
case the query can be restated to accomplish the desired result, here by using a subquery:

SELECT city FROM weather
WHERE temp_lo = (SELECT max (temp_lo) FROM weather);

San Francisco
(1 row)

11

Chapter 2. The SQL Language

This is OK because the subquery is an independent computation that computes its own aggregate
separately from what is happening in the outer query.

Aggregates are also very useful in combination with GROUP BY clauses. For example, we can get the
maximum low temperature observed in each city with:

SELECT city, max(temp_1lo)
FROM weather
GROUP BY city;

city | max
,,,,,,,,,,,,,,, I
Hayward | 37

San Francisco | 46

(2 rows)

which gives us one output row per city. Each aggregate result is computed over the table rows match-
ing that city. We can filter these grouped rows using HAVING:

SELECT city, max(temp_1lo)
FROM weather
GROUP BY city
HAVING max (temp_lo) < 40;

city | max
_________ b
Hayward | 37
(1 row)

which gives us the same results for only the cities that have all temp_1lo values below 40. Finally, if
we only care about cities whose names begin with “S”, we might do:

SELECT city, max(temp_1lo)
FROM weather
WHERE city LIKE ’'S%'@®
GROUP BY city
HAVING max (temp_lo) < 40;

© The LIKE operator does pattern matching and is explained in Section 9.7.

It is important to understand the interaction between aggregates and SQL’s WHERE and HAVING
clauses. The fundamental difference between WHERE and HAVING is this: WHERE selects input rows
before groups and aggregates are computed (thus, it controls which rows go into the aggregate com-
putation), whereas HAVING selects group rows after groups and aggregates are computed. Thus, the
WHERE clause must not contain aggregate functions; it makes no sense to try to use an aggregate to
determine which rows will be inputs to the aggregates. On the other hand, the HAVING clause al-
ways contains aggregate functions. (Strictly speaking, you are allowed to write a HAVING clause that
doesn’t use aggregates, but it’s seldom useful. The same condition could be used more efficiently at
the WHERE stage.)

In the previous example, we can apply the city name restriction in WHERE, since it needs no aggregate.
This is more efficient than adding the restriction to HAVING, because we avoid doing the grouping and
aggregate calculations for all rows that fail the WHERE check.

12

Chapter 2. The SQL Language

2.8. Updates

You can update existing rows using the UPDATE command. Suppose you discover the temperature
readings are all off by 2 degrees after November 28. You can correct the data as follows:

UPDATE weather

SET temp_hi = temp_hi - 2, temp_lo = temp_lo - 2
WHERE date > 71994-11-28';

Look at the new state of the data:

SELECT = FROM weather;

city | temp_lo | temp_hi | prcp | date
——————————————— B et B et T T e
San Francisco | 46 | 50 | 0.25 | 1994-11-27
San Francisco | 41 | 55 | 0 | 1994-11-29
Hayward \ 35 | 52 | | 1994-11-29
(3 rows)

2.9. Deletions

Rows can be removed from a table using the DELETE command. Suppose you are no longer interested
in the weather of Hayward. Then you can do the following to delete those rows from the table:

DELETE FROM weather WHERE city = ’'Hayward’;
All weather records belonging to Hayward are removed.

SELECT * FROM weather;

city | temp_lo | temp_hi | prcp | date
——————————————— B i B e et T T
San Francisco | 46 | 50 | 0.25 | 1994-11-27
San Francisco | 41 | 55 | 0 | 1994-11-29

(2 rows)

One should be wary of statements of the form

DELETE FROM tablename;

Without a qualification, DELETE will remove all rows from the given table, leaving it empty. The
system will not request confirmation before doing this!

13

Chapter 3. Advanced Features

3.1. Introduction

In the previous chapter we have covered the basics of using SQL to store and access your data in
PostgreSQL. We will now discuss some more advanced features of SQL that simplify management
and prevent loss or corruption of your data. Finally, we will look at some PostgreSQL extensions.

This chapter will on occasion refer to examples found in Chapter 2 to change or improve them, so
it will be useful to have read that chapter. Some examples from this chapter can also be found in
advanced. sql in the tutorial directory. This file also contains some sample data to load, which is
not repeated here. (Refer to Section 2.1 for how to use the file.)

3.2. Views

Refer back to the queries in Section 2.6. Suppose the combined listing of weather records and city
location is of particular interest to your application, but you do not want to type the query each time
you need it. You can create a view over the query, which gives a name to the query that you can refer
to like an ordinary table:

CREATE VIEW myview AS
SELECT city, temp_lo, temp_hi, prcp, date, location
FROM weather, cities
WHERE city = name;

SELECT * FROM myview;

Making liberal use of views is a key aspect of good SQL database design. Views allow you to en-
capsulate the details of the structure of your tables, which might change as your application evolves,
behind consistent interfaces.

Views can be used in almost any place a real table can be used. Building views upon other views is
not uncommon.

3.3. Foreign Keys

Recall the weather and cities tables from Chapter 2. Consider the following problem: You want
to make sure that no one can insert rows in the weather table that do not have a matching entry
in the cities table. This is called maintaining the referential integrity of your data. In simplistic
database systems this would be implemented (if at all) by first looking at the cities table to check
if a matching record exists, and then inserting or rejecting the new weather records. This approach
has a number of problems and is very inconvenient, so PostgreSQL can do this for you.

The new declaration of the tables would look like this:

CREATE TABLE cities (
city varchar (80) primary key,
location point

14

Chapter 3. Advanced Features

CREATE TABLE weather (
city varchar (80) references cities(city),
temp_lo int,
temp_hi int,
prcp real,
date date
)i

Now try inserting an invalid record:
INSERT INTO weather VALUES (’'Berkeley’, 45, 53, 0.0, ’1994-11-28");

ERROR: insert or update on table "weather" violates foreign key constraint "weather_cit
DETAIL: Key (city)=(Berkeley) 1is not present in table "cities".

The behavior of foreign keys can be finely tuned to your application. We will not go beyond this simple
example in this tutorial, but just refer you to Chapter 5 for more information. Making correct use of
foreign keys will definitely improve the quality of your database applications, so you are strongly
encouraged to learn about them.

3.4. Transactions

Transactions are a fundamental concept of all database systems. The essential point of a transaction is
that it bundles multiple steps into a single, all-or-nothing operation. The intermediate states between
the steps are not visible to other concurrent transactions, and if some failure occurs that prevents the
transaction from completing, then none of the steps affect the database at all.

For example, consider a bank database that contains balances for various customer accounts, as well
as total deposit balances for branches. Suppose that we want to record a payment of $100.00 from
Alice’s account to Bob’s account. Simplifying outrageously, the SQL commands for this might look
like:

UPDATE accounts SET balance = balance - 100.00
WHERE name = ’Alice’;
UPDATE branches SET balance = balance - 100.00
WHERE name = (SELECT branch_name FROM accounts WHERE name = ’'Alice’);
UPDATE accounts SET balance = balance + 100.00
WHERE name = ’Bob’;
UPDATE branches SET balance = balance + 100.00
WHERE name = (SELECT branch_name FROM accounts WHERE name = ’'Bob’);

The details of these commands are not important here; the important point is that there are several
separate updates involved to accomplish this rather simple operation. Our bank’s officers will want to
be assured that either all these updates happen, or none of them happen. It would certainly not do for
a system failure to result in Bob receiving $100.00 that was not debited from Alice. Nor would Alice
long remain a happy customer if she was debited without Bob being credited. We need a guarantee
that if something goes wrong partway through the operation, none of the steps executed so far will
take effect. Grouping the updates into a transaction gives us this guarantee. A transaction is said to
be atomic: from the point of view of other transactions, it either happens completely or not at all.

15

Chapter 3. Advanced Features

We also want a guarantee that once a transaction is completed and acknowledged by the database
system, it has indeed been permanently recorded and won’t be lost even if a crash ensues shortly
thereafter. For example, if we are recording a cash withdrawal by Bob, we do not want any chance that
the debit to his account will disappear in a crash just after he walks out the bank door. A transactional
database guarantees that all the updates made by a transaction are logged in permanent storage (i.e.,
on disk) before the transaction is reported complete.

Another important property of transactional databases is closely related to the notion of atomic up-
dates: when multiple transactions are running concurrently, each one should not be able to see the
incomplete changes made by others. For example, if one transaction is busy totalling all the branch
balances, it would not do for it to include the debit from Alice’s branch but not the credit to Bob’s
branch, nor vice versa. So transactions must be all-or-nothing not only in terms of their permanent
effect on the database, but also in terms of their visibility as they happen. The updates made so far by
an open transaction are invisible to other transactions until the transaction completes, whereupon all
the updates become visible simultaneously.

In PostgreSQL, a transaction is set up by surrounding the SQL commands of the transaction with
BEGIN and COMMIT commands. So our banking transaction would actually look like:

BEGIN;

UPDATE accounts SET balance = balance - 100.00
WHERE name = 'Alice’;

-— etc etc

COMMIT;

If, partway through the transaction, we decide we do not want to commit (perhaps we just noticed that
Alice’s balance went negative), we can issue the command ROLLBACK instead of COMMIT, and all our
updates so far will be canceled.

PostgreSQL actually treats every SQL statement as being executed within a transaction. If you do not
issue a BEGIN command, then each individual statement has an implicit BEGIN and (if successful)
coMMIT wrapped around it. A group of statements surrounded by BEGIN and COMMIT is sometimes
called a transaction block.

Note: Some client libraries issue BEcTN and comutT commands automatically, so that you might
get the effect of transaction blocks without asking. Check the documentation for the interface you
are using.

It’s possible to control the statements in a transaction in a more granular fashion through the use of
savepoints. Savepoints allow you to selectively discard parts of the transaction, while committing the
rest. After defining a savepoint with SAVEPOINT, you can if needed roll back to the savepoint with
ROLLBACK TO. All the transaction’s database changes between defining the savepoint and rolling
back to it are discarded, but changes earlier than the savepoint are kept.

After rolling back to a savepoint, it continues to be defined, so you can roll back to it several times.
Conversely, if you are sure you won’t need to roll back to a particular savepoint again, it can be
released, so the system can free some resources. Keep in mind that either releasing or rolling back to
a savepoint will automatically release all savepoints that were defined after it.

All this is happening within the transaction block, so none of it is visible to other database sessions.
When and if you commit the transaction block, the committed actions become visible as a unit to
other sessions, while the rolled-back actions never become visible at all.

16

Chapter 3. Advanced Features

Remembering the bank database, suppose we debit $100.00 from Alice’s account, and credit Bob’s
account, only to find later that we should have credited Wally’s account. We could do it using save-
points like this:

BEGIN;

UPDATE accounts SET balance = balance - 100.00
WHERE name = ’'Alice’;

SAVEPOINT my_savepoint;

UPDATE accounts SET balance = balance + 100.00
WHERE name = ’'Bob’;

-— oops ... forget that and use Wally’s account

ROLLBACK TO my_savepoint;

UPDATE accounts SET balance = balance + 100.00
WHERE name = ’"Wally’;

COMMIT;

This example is, of course, oversimplified, but there’s a lot of control possible in a transaction block
through the use of savepoints. Moreover, ROLLBACK TO is the only way to regain control of a transac-
tion block that was put in aborted state by the system due to an error, short of rolling it back completely
and starting again.

3.5. Window Functions

A window function performs a calculation across a set of table rows that are somehow related to the
current row. This is comparable to the type of calculation that can be done with an aggregate function.
But unlike regular aggregate functions, use of a window function does not cause rows to become
grouped into a single output row — the rows retain their separate identities. Behind the scenes, the
window function is able to access more than just the current row of the query result.

Here is an example that shows how to compare each employee’s salary with the average salary in his
or her department:

SELECT depname, empno, salary, avg(salary) OVER (PARTITION BY depname) FROM empsalary;

depname | empno | salary | avg
——————————— -t
develop | 11 | 5200 | 5020.0000000000000000
develop | 7 4200 | 5020.0000000000000000
develop | 9 | 4500 | 5020.0000000000000000
develop | 8 | 6000 | 5020.0000000000000000
develop | 10 | 5200 | 5020.0000000000000000
personnel | 5 | 3500 | 3700.0000000000000000
personnel | 2 | 3900 | 3700.0000000000000000
sales | 3 4800 | 4866.6666666666666667
sales | 1] 5000 | 4866.6666666666666667
sales | 4 | 4800 | 4866.6666666666666667
(10 rows)

The first three output columns come directly from the table empsalary, and there is one output row
for each row in the table. The fourth column represents an average taken across all the table rows that
have the same depname value as the current row. (This actually is the same function as the regular avg
aggregate function, but the OVER clause causes it to be treated as a window function and computed
across an appropriate set of rows.)

17

Chapter 3. Advanced Features

A window function call always contains an OVER clause directly following the window function’s
name and argument(s). This is what syntactically distinguishes it from a regular function or aggregate
function. The OVER clause determines exactly how the rows of the query are split up for processing by
the window function. The PARTITION BY list within OVER specifies dividing the rows into groups, or
partitions, that share the same values of the PARTITION BY expression(s). For each row, the window
function is computed across the rows that fall into the same partition as the current row.

You can also control the order in which rows are processed by window functions using ORDER BY
within ovER. (The window ORDER BY does not even have to match the order in which the rows are
output.) Here is an example:

SELECT depname, empno, salary,
rank () OVER (PARTITION BY depname ORDER BY salary DESC)
FROM empsalary;

depname | empno | salary | rank
——————————— e e
develop | 8 | 6000 | 1
develop | 10 | 5200 | 2
develop | 11 | 5200 | 2
develop | 9 | 4500 | 4
develop | 7 4200 | 5
personnel | 2 | 3900 | 1
personnel | 5 3500 | 2
sales | 1] 5000 | 1
sales | 4 | 4800 | 2
sales | 3 4800 | 2
(10 rows)

As shown here, the rank function produces a numerical rank within the current row’s partition for
each distinct ORDER BY value, in the order defined by the ORDER BY clause. rank needs no explicit
parameter, because its behavior is entirely determined by the OVER clause.

The rows considered by a window function are those of the “virtual table” produced by the query’s
FROM clause as filtered by its WHERE, GROUP BY, and HAVING clauses if any. For example, a row
removed because it does not meet the WHERE condition is not seen by any window function. A query
can contain multiple window functions that slice up the data in different ways by means of different
OVER clauses, but they all act on the same collection of rows defined by this virtual table.

We already saw that ORDER BY can be omitted if the ordering of rows is not important. It is also
possible to omit PARTITION BY, in which case there is just one partition containing all the rows.

There is another important concept associated with window functions: for each row, there is a set of
rows within its partition called its window frame. Many (but not all) window functions act only on
the rows of the window frame, rather than of the whole partition. By default, if ORDER BY is supplied
then the frame consists of all rows from the start of the partition up through the current row, plus any
following rows that are equal to the current row according to the ORDER BY clause. When ORDER BY
is omitted the default frame consists of all rows in the partition. ' Here is an example using sum:

SELECT salary, sum(salary) OVER () FROM empsalary;

salary | sum
,,,,,,,, IS

5200 | 47100

5000 | 47100

1. There are options to define the window frame in other ways, but this tutorial does not cover them. See Section 4.2.8 for

details.

18

Chapter 3. Advanced Features

3500 | 47100
4800 | 47100
3900 | 47100
4200 | 47100
4500 | 47100
4800 | 47100
6000 | 47100
5200 | 47100
(10 rows)

Above, since there is no ORDER BY in the OVER clause, the window frame is the same as the partition,
which for lack of PARTITION BY is the whole table; in other words each sum is taken over the whole
table and so we get the same result for each output row. But if we add an ORDER BY clause, we get
very different results:

SELECT salary, sum(salary) OVER (ORDER BY salary) FROM empsalary;

salary | sum
,,,,,,,, IS
3500 | 3500
3900 | 7400
4200 | 11600
4500 | 16100
4800 | 25700
4800 | 25700
5000 | 30700
5200 | 41100
5200 | 41100
6000 | 47100
(10 rows)

Here the sum is taken from the first (lowest) salary up through the current one, including any dupli-
cates of the current one (notice the results for the duplicated salaries).

Window functions are permitted only in the SELECT list and the ORDER BY clause of the query. They
are forbidden elsewhere, such as in GROUP BY, HAVING and WHERE clauses. This is because they
logically execute after the processing of those clauses. Also, window functions execute after regular
aggregate functions. This means it is valid to include an aggregate function call in the arguments of a
window function, but not vice versa.

If there is a need to filter or group rows after the window calculations are performed, you can use a
sub-select. For example:

SELECT depname, empno, salary, enroll_date
FROM
(SELECT depname, empno, salary, enroll_date,
rank () OVER (PARTITION BY depname ORDER BY salary DESC, empno) AS pos
FROM empsalary
) AS ss
WHERE pos < 3;

The above query only shows the rows from the inner query having rank less than 3.

When a query involves multiple window functions, it is possible to write out each one with a separate
OVER clause, but this is duplicative and error-prone if the same windowing behavior is wanted for
several functions. Instead, each windowing behavior can be named in a WINDOW clause and then
referenced in OVER. For example:

19

Chapter 3. Advanced Features

SELECT sum(salary) OVER w, avg(salary) OVER w
FROM empsalary
WINDOW w AS (PARTITION BY depname ORDER BY salary DESC);

More details about window functions can be found in Section 4.2.8, Section 9.21, Section 7.2.5, and
the SELECT reference page.

3.6. Inheritance

Inheritance is a concept from object-oriented databases. It opens up interesting new possibilities of
database design.

Let’s create two tables: A table cities and a table capitals. Naturally, capitals are also cities, so
you want some way to show the capitals implicitly when you list all cities. If you’re really clever you
might invent some scheme like this:

CREATE TABLE capitals (

name text,

population real,

altitude int, -— (in ft)
state char (2)

)

CREATE TABLE non_capitals (

name text,
population real,
altitude int -— (in ft)

)i

CREATE VIEW cities AS
SELECT name, population, altitude FROM capitals
UNION
SELECT name, population, altitude FROM non_capitals;

This works OK as far as querying goes, but it gets ugly when you need to update several rows, for one
thing.

A better solution is this:

CREATE TABLE cities (

name text,

population real,

altitude int -—— (in ft)
)i

CREATE TABLE capitals (

state char (2)
) INHERITS (cities);

In this case, a row of capitals inherits all columns (name, population, and altitude) from its
parent, cities. The type of the column name is text, a native PostgreSQL type for variable length

20

Chapter 3. Advanced Features

character strings. State capitals have an extra column, state, that shows their state. In PostgreSQL,
a table can inherit from zero or more other tables.

For example, the following query finds the names of all cities, including state capitals, that are located

at an altitude over 500 feet:

SELECT name, altitude
FROM cities
WHERE altitude > 500;

which returns:

name | altitude
___________ b
Las Vegas | 2174
Mariposa | 1953
Madison | 845
(3 rows)

On the other hand, the following query finds all the cities that are not state capitals and are situated at
an altitude over 500 feet:

SELECT name, altitude
FROM ONLY cities
WHERE altitude > 500;

name | altitude
___________ b
Las Vegas | 2174
Mariposa | 1953
(2 rows)

Here the oNLY before cities indicates that the query should be run over only the cities table, and
not tables below cities in the inheritance hierarchy. Many of the commands that we have already
discussed — SELECT, UPDATE, and DELETE — support this ONLY notation.

Note: Although inheritance is frequently useful, it has not been integrated with unique constraints
or foreign keys, which limits its usefulness. See Section 5.9 for more detail.

3.7. Conclusion

PostgreSQL has many features not touched upon in this tutorial introduction, which has been oriented
toward newer users of SQL. These features are discussed in more detail in the remainder of this book.

If you feel you need more introductory material, please visit the PostgreSQL web site? for links to
more resources.

2. https://www.postgresql.org

21

Il. The SQL Language

This part describes the use of the SQL language in PostgreSQL. We start with describing the general
syntax of SQL, then explain how to create the structures to hold data, how to populate the database,
and how to query it. The middle part lists the available data types and functions for use in SQL
commands. The rest treats several aspects that are important for tuning a database for optimal perfor-
mance.

The information in this part is arranged so that a novice user can follow it start to end to gain a full
understanding of the topics without having to refer forward too many times. The chapters are intended
to be self-contained, so that advanced users can read the chapters individually as they choose. The
information in this part is presented in a narrative fashion in topical units. Readers looking for a
complete description of a particular command should see Part VI.

Readers of this part should know how to connect to a PostgreSQL database and issue SQL commands.
Readers that are unfamiliar with these issues are encouraged to read Part I first. SQL commands are
typically entered using the PostgreSQL interactive terminal psql, but other programs that have similar
functionality can be used as well.

Chapter 4. SQL Syntax

This chapter describes the syntax of SQL. It forms the foundation for understanding the following
chapters which will go into detail about how SQL commands are applied to define and modify data.

We also advise users who are already familiar with SQL to read this chapter carefully because it
contains several rules and concepts that are implemented inconsistently among SQL databases or that
are specific to PostgreSQL.

4.1. Lexical Structure

SQL input consists of a sequence of commands. A command is composed of a sequence of tokens,
6,9

terminated by a semicolon (“;”). The end of the input stream also terminates a command. Which
tokens are valid depends on the syntax of the particular command.

A token can be a key word, an identifier, a quoted identifier, a literal (or constant), or a special
character symbol. Tokens are normally separated by whitespace (space, tab, newline), but need not
be if there is no ambiguity (which is generally only the case if a special character is adjacent to some
other token type).

For example, the following is (syntactically) valid SQL input:

SELECT % FROM MY_TABLE;
UPDATE MY_TABLE SET A = 5;
INSERT INTO MY_TABLE VALUES (3, ’"hi there’);

This is a sequence of three commands, one per line (although this is not required; more than one
command can be on a line, and commands can usefully be split across lines).

Additionally, comments can occur in SQL input. They are not tokens, they are effectively equivalent
to whitespace.

The SQL syntax is not very consistent regarding what tokens identify commands and which are
operands or parameters. The first few tokens are generally the command name, so in the above ex-
ample we would usually speak of a “SELECT”, an “UPDATE”, and an “INSERT” command. But for
instance the UPDATE command always requires a SET token to appear in a certain position, and this
particular variation of INSERT also requires a VALUES in order to be complete. The precise syntax
rules for each command are described in Part VI.

4.1.1. Identifiers and Key Words

Tokens such as SELECT, UPDATE, or VALUES in the example above are examples of key words, that
is, words that have a fixed meaning in the SQL language. The tokens MY_TABLE and A are exam-
ples of identifiers. They identify names of tables, columns, or other database objects, depending on
the command they are used in. Therefore they are sometimes simply called “names”. Key words and
identifiers have the same lexical structure, meaning that one cannot know whether a token is an iden-
tifier or a key word without knowing the language. A complete list of key words can be found in
Appendix C.

SQL identifiers and key words must begin with a letter (a-z, but also letters with diacritical marks
and non-Latin letters) or an underscore (_). Subsequent characters in an identifier or key word can be
letters, underscores, digits (0-9), or dollar signs ($). Note that dollar signs are not allowed in identifiers
according to the letter of the SQL standard, so their use might render applications less portable. The

24

Chapter 4. SQL Syntax

SQL standard will not define a key word that contains digits or starts or ends with an underscore, so
identifiers of this form are safe against possible conflict with future extensions of the standard.

The system uses no more than NAMEDATALEN-1 bytes of an identifier; longer names can be written
in commands, but they will be truncated. By default, NAMEDATALEN is 64 so the maximum identifier
length is 63 bytes. If this limit is problematic, it can be raised by changing the NAMEDATALEN constant

in src/include/pg_config_manual.h.

Key words and unquoted identifiers are case insensitive. Therefore:

UPDATE MY_TABLE SET A = 5;

can equivalently be written as:

uPDaTE my_TabLE SeT a = 5;

A convention often used is to write key words in upper case and names in lower case, e.g.:

UPDATE my_table SET a = 5;

There is a second kind of identifier: the delimited identifier or quoted identifier. It is formed by en-
closing an arbitrary sequence of characters in double-quotes ("). A delimited identifier is always an
identifier, never a key word. So "select" could be used to refer to a column or table named “select”,
whereas an unquoted select would be taken as a key word and would therefore provoke a parse
error when used where a table or column name is expected. The example can be written with quoted
identifiers like this:

UPDATE "my_table" SET "a" = 5;

Quoted identifiers can contain any character, except the character with code zero. (To include a double
quote, write two double quotes.) This allows constructing table or column names that would otherwise
not be possible, such as ones containing spaces or ampersands. The length limitation still applies.

A variant of quoted identifiers allows including escaped Unicode characters identified by their code
points. This variant starts with Us (upper or lower case U followed by ampersand) immediately before
the opening double quote, without any spaces in between, for example Us"foo". (Note that this
creates an ambiguity with the operator &. Use spaces around the operator to avoid this problem.) Inside
the quotes, Unicode characters can be specified in escaped form by writing a backslash followed by
the four-digit hexadecimal code point number or alternatively a backslash followed by a plus sign
followed by a six-digit hexadecimal code point number. For example, the identifier "data" could be
written as

Us"d\0061t\+000061"
The following less trivial example writes the Russian word “slon” (elephant) in Cyrillic letters:

U&"\0441\043B\043E\043D"

If a different escape character than backslash is desired, it can be specified using the UESCAPE clause
after the string, for example:

U&"d!0061t!+000061" UESCAPE ' !’

25

Chapter 4. SQL Syntax

The escape character can be any single character other than a hexadecimal digit, the plus sign, a single
quote, a double quote, or a whitespace character. Note that the escape character is written in single
quotes, not double quotes.

To include the escape character in the identifier literally, write it twice.

The Unicode escape syntax works only when the server encoding is UTF8. When other server encod-
ings are used, only code points in the ASCII range (up to \007F) can be specified. Both the 4-digit
and the 6-digit form can be used to specify UTF-16 surrogate pairs to compose characters with code
points larger than U+FFFF, although the availability of the 6-digit form technically makes this un-
necessary. (Surrogate pairs are not stored directly, but combined into a single code point that is then
encoded in UTF-8.)

Quoting an identifier also makes it case-sensitive, whereas unquoted names are always folded to lower
case. For example, the identifiers FOO, foo, and "foo" are considered the same by PostgreSQL, but
"Foo" and "FOO" are different from these three and each other. (The folding of unquoted names to
lower case in PostgreSQL is incompatible with the SQL standard, which says that unquoted names
should be folded to upper case. Thus, foo should be equivalent to "FOO" not "foo" according to the
standard. If you want to write portable applications you are advised to always quote a particular name
or never quote it.)

4.1.2. Constants

There are three kinds of implicitly-typed constants in PostgreSQL: strings, bit strings, and numbers.
Constants can also be specified with explicit types, which can enable more accurate representation and
more efficient handling by the system. These alternatives are discussed in the following subsections.

4.1.2.1. String Constants

A string constant in SQL is an arbitrary sequence of characters bounded by single quotes (), for
example ' This is a string’. To include a single-quote character within a string constant, write
two adjacent single quotes, e.g., ' Dianne”s horse’. Note that this is not the same as a double-quote
character (").

Two string constants that are only separated by whitespace with at least one newline are concatenated
and effectively treated as if the string had been written as one constant. For example:

SELECT '’ foo’
"bar’;

is equivalent to:

SELECT ' foobar’;

but:

SELECT ' foo’ "bar’;

is not valid syntax. (This slightly bizarre behavior is specified by SQL; PostgreSQL is following the
standard.)

26

Chapter 4. SQL Syntax

4.1.2.2. String Constants with C-style Escapes

PostgreSQL also accepts “escape” string constants, which are an extension to the SQL standard.
An escape string constant is specified by writing the letter E (upper or lower case) just before the
opening single quote, e.g., E’ foo’. (When continuing an escape string constant across lines, write
E only before the first opening quote.) Within an escape string, a backslash character (\) begins a
C-like backslash escape sequence, in which the combination of backslash and following character(s)
represent a special byte value, as shown in Table 4-1.

Table 4-1. Backslash Escape Sequences

Backslash Escape Sequence Interpretation

\b backspace

\f form feed

\n newline

\r carriage return

\t tab

\o, \oo, \ooo (0c=0-7) octal byte value

\xh, \xhh (h=0-9,A-F) hexadecimal byte value

\uxxxx, \Uxxxxxxxx (x=0-9, A -F) 16 or 32-bit hexadecimal Unicode character
value

Any other character following a backslash is taken literally. Thus, to include a backslash character,
write two backslashes (\\). Also, a single quote can be included in an escape string by writing \’, in
addition to the normal way of ”.

It is your responsibility that the byte sequences you create, especially when using the octal or hex-
adecimal escapes, compose valid characters in the server character set encoding. When the server
encoding is UTF-8, then the Unicode escapes or the alternative Unicode escape syntax, explained in
Section 4.1.2.3, should be used instead. (The alternative would be doing the UTF-8 encoding by hand
and writing out the bytes, which would be very cumbersome.)

The Unicode escape syntax works fully only when the server encoding is UTF8. When other server
encodings are used, only code points in the ASCII range (up to \u007F) can be specified. Both the
4-digit and the 8-digit form can be used to specify UTF-16 surrogate pairs to compose characters
with code points larger than U+FFFF, although the availability of the 8-digit form technically makes
this unnecessary. (When surrogate pairs are used when the server encoding is UTF8, they are first
combined into a single code point that is then encoded in UTF-8.)

Caution

If the configuration parameter standard_conforming_strings is off, then Post-
greSQL recognizes backslash escapes in both regular and escape string con-
stants. However, as of PostgreSQL 9.1, the default is on, meaning that back-
slash escapes are recognized only in escape string constants. This behavior
is more standards-compliant, but might break applications which rely on the
historical behavior, where backslash escapes were always recognized. As a
workaround, you can set this parameter to of £, but it is better to migrate away
from using backslash escapes. If you need to use a backslash escape to rep-
resent a special character, write the string constant with an k.

In addition to standard_conforming_strings, the configuration parameters
escape_string_warning and backslash_quote govern treatment of backslashes
in string constants.

27

Chapter 4. SQL Syntax

The character with the code zero cannot be in a string constant.

4.1.2.3. String Constants with Unicode Escapes

PostgreSQL also supports another type of escape syntax for strings that allows specifying arbitrary
Unicode characters by code point. A Unicode escape string constant starts with Us (upper or lower
case letter U followed by ampersand) immediately before the opening quote, without any spaces in
between, for example Us’ foo’ . (Note that this creates an ambiguity with the operator &. Use spaces
around the operator to avoid this problem.) Inside the quotes, Unicode characters can be specified
in escaped form by writing a backslash followed by the four-digit hexadecimal code point number
or alternatively a backslash followed by a plus sign followed by a six-digit hexadecimal code point
number. For example, the string " data’ could be written as

Us’d\0061t\+000061"
The following less trivial example writes the Russian word “slon” (elephant) in Cyrillic letters:

Us&’\0441\043B\043E\043D’

If a different escape character than backslash is desired, it can be specified using the UESCAPE clause
after the string, for example:

U&’d!0061t!+000061" UESCAPE ’!’

The escape character can be any single character other than a hexadecimal digit, the plus sign, a single
quote, a double quote, or a whitespace character.

The Unicode escape syntax works only when the server encoding is UTF8. When other server encod-
ings are used, only code points in the ASCII range (up to \007F) can be specified. Both the 4-digit
and the 6-digit form can be used to specify UTF-16 surrogate pairs to compose characters with code
points larger than U+FFFF, although the availability of the 6-digit form technically makes this unnec-
essary. (When surrogate pairs are used when the server encoding is UTF 8, they are first combined into
a single code point that is then encoded in UTF-8.)

Also, the Unicode escape syntax for string constants only works when the configuration parameter
standard_conforming_strings is turned on. This is because otherwise this syntax could confuse clients
that parse the SQL statements to the point that it could lead to SQL injections and similar security
issues. If the parameter is set to off, this syntax will be rejected with an error message.

To include the escape character in the string literally, write it twice.

4.1.2.4. Dollar-quoted String Constants

While the standard syntax for specifying string constants is usually convenient, it can be difficult to
understand when the desired string contains many single quotes or backslashes, since each of those
must be doubled. To allow more readable queries in such situations, PostgreSQL provides another
way, called “dollar quoting”, to write string constants. A dollar-quoted string constant consists of a
dollar sign ($), an optional “tag” of zero or more characters, another dollar sign, an arbitrary sequence
of characters that makes up the string content, a dollar sign, the same tag that began this dollar quote,
and a dollar sign. For example, here are two different ways to specify the string “Dianne’s horse”
using dollar quoting:

$$Dianne’s horses

28

Chapter 4. SQL Syntax
$SomeTag$Dianne’s horse$SomeTag$

Notice that inside the dollar-quoted string, single quotes can be used without needing to be escaped.
Indeed, no characters inside a dollar-quoted string are ever escaped: the string content is always writ-
ten literally. Backslashes are not special, and neither are dollar signs, unless they are part of a sequence
matching the opening tag.

It is possible to nest dollar-quoted string constants by choosing different tags at each nesting level.
This is most commonly used in writing function definitions. For example:

Sfunction$
BEGIN
RETURN ($1 ~ g[\t\r\n\v\\1q);
END;
Sfunction$

Here, the sequence g [\t\r\n\v\\1s$gs represents a dollar-quoted literal string [\t\r\n\v\\],
which will be recognized when the function body is executed by PostgreSQL. But since the sequence
does not match the outer dollar quoting delimiter $functions$, it is just some more characters within
the constant so far as the outer string is concerned.

The tag, if any, of a dollar-quoted string follows the same rules as an unquoted identifier, except that
it cannot contain a dollar sign. Tags are case sensitive, S0 Stag$String contentS$tag$ is correct,
but $TAGSString content$tags$ is not.

A dollar-quoted string that follows a keyword or identifier must be separated from it by whitespace;
otherwise the dollar quoting delimiter would be taken as part of the preceding identifier.

Dollar quoting is not part of the SQL standard, but it is often a more convenient way to write com-
plicated string literals than the standard-compliant single quote syntax. It is particularly useful when
representing string constants inside other constants, as is often needed in procedural function defini-
tions. With single-quote syntax, each backslash in the above example would have to be written as four
backslashes, which would be reduced to two backslashes in parsing the original string constant, and
then to one when the inner string constant is re-parsed during function execution.

4.1.2.5. Bit-string Constants

Bit-string constants look like regular string constants with a B (upper or lower case) immediately
before the opening quote (no intervening whitespace), e.g., B’ 1001’ . The only characters allowed
within bit-string constants are 0 and 1.

Alternatively, bit-string constants can be specified in hexadecimal notation, using a leading x (upper
or lower case), e.g., X’ LFF’ . This notation is equivalent to a bit-string constant with four binary digits
for each hexadecimal digit.

Both forms of bit-string constant can be continued across lines in the same way as regular string
constants. Dollar quoting cannot be used in a bit-string constant.

4.1.2.6. Numeric Constants

Numeric constants are accepted in these general forms:

digits

digits. |[digits] [e[+-]digits]
[digits] .digits[e[+-]digits]
digitse[+-]digits

29

Chapter 4. SQL Syntax

where digits is one or more decimal digits (O through 9). At least one digit must be before or
after the decimal point, if one is used. At least one digit must follow the exponent marker (e), if one
is present. There cannot be any spaces or other characters embedded in the constant. Note that any
leading plus or minus sign is not actually considered part of the constant; it is an operator applied to
the constant.

These are some examples of valid numeric constants:

42

35

4.

.001

5e2
1.925¢-3

A numeric constant that contains neither a decimal point nor an exponent is initially presumed to be
type integer if its value fits in type integer (32 bits); otherwise it is presumed to be type bigint
if its value fits in type bigint (64 bits); otherwise it is taken to be type numeric. Constants that
contain decimal points and/or exponents are always initially presumed to be type numeric.

The initially assigned data type of a numeric constant is just a starting point for the type resolution
algorithms. In most cases the constant will be automatically coerced to the most appropriate type de-
pending on context. When necessary, you can force a numeric value to be interpreted as a specific data
type by casting it. For example, you can force a numeric value to be treated as type real (float4)
by writing:

REAL ’1.23" —-- string style
1.23::REAL —-— PostgreSQL (historical) style

These are actually just special cases of the general casting notations discussed next.

4.1.2.7. Constants of Other Types

A constant of an arbitrary type can be entered using any one of the following notations:

type ' string’
! string’ ::type
CAST ("string’ AS type)

The string constant’s text is passed to the input conversion routine for the type called ¢ ype. The result
is a constant of the indicated type. The explicit type cast can be omitted if there is no ambiguity as to
the type the constant must be (for example, when it is assigned directly to a table column), in which
case it is automatically coerced.

The string constant can be written using either regular SQL notation or dollar-quoting.

It is also possible to specify a type coercion using a function-like syntax:
typename (' string’)

but not all type names can be used in this way; see Section 4.2.9 for details.

The : :, CAST (), and function-call syntaxes can also be used to specify run-time type conversions of
arbitrary expressions, as discussed in Section 4.2.9. To avoid syntactic ambiguity, the type ’ string’
syntax can only be used to specify the type of a simple literal constant. Another restriction on the type

30

Chapter 4. SQL Syntax

" string’ syntax is that it does not work for array types; use : : or CAST () to specify the type of an
array constant.

The cAST () syntax conforms to SQL. The type ’string’ syntax is a generalization of the standard:
SQL specifies this syntax only for a few data types, but PostgreSQL allows it for all types. The syntax
with : : is historical PostgreSQL usage, as is the function-call syntax.

4.1.3. Operators

An operator name is a sequence of up to NAMEDATALEN-1 (63 by default) characters from the follow-
ing list:

+-F/<>=~1@# D &I ?

There are a few restrictions on operator names, however:

« —-and /=« cannot appear anywhere in an operator name, since they will be taken as the start of a
comment.

« A multiple-character operator name cannot end in + or —, unless the name also contains at least one
of these characters:

~l@#DP N&I?

For example, @- is an allowed operator name, but «- is not. This restriction allows PostgreSQL to
parse SQL-compliant queries without requiring spaces between tokens.

When working with non-SQL-standard operator names, you will usually need to separate adjacent
operators with spaces to avoid ambiguity. For example, if you have defined a left unary operator
named @, you cannot write X«@Y; you must write X~ @Y to ensure that PostgreSQL reads it as two
operator names not one.

4.1.4. Special Characters

Some characters that are not alphanumeric have a special meaning that is different from being an
operator. Details on the usage can be found at the location where the respective syntax element is
described. This section only exists to advise the existence and summarize the purposes of these char-
acters.

A dollar sign (s) followed by digits is used to represent a positional parameter in the body of
a function definition or a prepared statement. In other contexts the dollar sign can be part of an
identifier or a dollar-quoted string constant.

« Parentheses (()) have their usual meaning to group expressions and enforce precedence. In some
cases parentheses are required as part of the fixed syntax of a particular SQL command.

« Brackets ([1) are used to select the elements of an array. See Section 8.15 for more information on
arrays.

« Commas (,) are used in some syntactical constructs to separate the elements of a list.

31

Chapter 4. SQL Syntax
« The semicolon (;) terminates an SQL command. It cannot appear anywhere within a command,
except within a string constant or quoted identifier.

« The colon (:) is used to select “slices” from arrays. (See Section 8.15.) In certain SQL dialects
(such as Embedded SQL), the colon is used to prefix variable names.

+ The asterisk (x) is used in some contexts to denote all the fields of a table row or composite value.
It also has a special meaning when used as the argument of an aggregate function, namely that the
aggregate does not require any explicit parameter.

« The period (.) is used in numeric constants, and to separate schema, table, and column names.

4.1.5. Comments

A comment is a sequence of characters beginning with double dashes and extending to the end of the
line, e.g.:

—— This 1is a standard SQL comment

Alternatively, C-style block comments can be used:

/* multiline comment
* with nesting: /* nested block comment =/

*/

where the comment begins with /» and extends to the matching occurrence of » /. These block com-
ments nest, as specified in the SQL standard but unlike C, so that one can comment out larger blocks
of code that might contain existing block comments.

A comment is removed from the input stream before further syntax analysis and is effectively replaced
by whitespace.

4.1.6. Operator Precedence

Table 4-2 shows the precedence and associativity of the operators in PostgreSQL. Most operators
have the same precedence and are left-associative. The precedence and associativity of the operators
is hard-wired into the parser.

You will sometimes need to add parentheses when using combinations of binary and unary operators.
For instance:

SELECT 5 ! - 6;
will be parsed as:
SELECT 5 ! (- 6);

because the parser has no idea — until it is too late — that ! is defined as a postfix operator, not an
infix one. To get the desired behavior in this case, you must write:

SELECT (5 !) - 6;

This is the price one pays for extensibility.

32

Table 4-2. Operator Precedence (highest to lowest)

Chapter 4. SQL Syntax

Operator/Element Associativity Description
left table/column name separator
left PostgreSQL-style typecast

[] left array element selection

+ - right unary plus, unary minus

~ left exponentiation

x /% left multiplication, division,
modulo

+ - left addition, subtraction

(any other operator) left all other native and user-defined
operators

BETWEEN IN LIKE ILIKE range containment, set

SIMILAR membership, string matching

<>=<=>=<> comparison operators

IS ISNULL NOTNULL IS TRUE, IS FALSE, IS
NULL, IS DISTINCT FROM,
etc

NOT right logical negation

AND left logical conjunction

OR left logical disjunction

Note that the operator precedence rules also apply to user-defined operators that have the same names
as the built-in operators mentioned above. For example, if you define a “+” operator for some custom
data type it will have the same precedence as the built-in “+” operator, no matter what yours does.

When a schema-qualified operator name is used in the OPERATOR syntax, as for example in:

SELECT 3 OPERATOR (pg_catalog.+) 4;

the OPERATOR construct is taken to have the default precedence shown in Table 4-2 for “any other
operator”. This is true no matter which specific operator appears inside OPERATOR () .

Note: PostgreSQL versions before 9.5 used slightly different operator precedence rules. In partic-
ular, <= >=and <> used to be treated as generic operators; 1s tests used to have higher priority;
and NnoT BETWEEN and related constructs acted inconsistently, being taken in some cases as hav-
ing the precedence of noT rather than BETweEN. These rules were changed for better compliance
with the SQL standard and to reduce confusion from inconsistent treatment of logically equivalent
constructs. In most cases, these changes will result in no behavioral change, or perhaps in “no
such operator” failures which can be resolved by adding parentheses. However there are corner
cases in which a query might change behavior without any parsing error being reported. If you
are concerned about whether these changes have silently broken something, you can test your
application with the configuration parameter operator_precedence_warning turned on to see if
any warnings are logged.

33

Chapter 4. SQL Syntax

4.2. Value Expressions

Value expressions are used in a variety of contexts, such as in the target list of the SELECT command,
as new column values in INSERT or UPDATE, or in search conditions in a number of commands. The
result of a value expression is sometimes called a scalar, to distinguish it from the result of a table
expression (which is a table). Value expressions are therefore also called scalar expressions (or even
simply expressions). The expression syntax allows the calculation of values from primitive parts using
arithmetic, logical, set, and other operations.

A value expression is one of the following:

+ A constant or literal value

+ A column reference

« A positional parameter reference, in the body of a function definition or prepared statement
+ A subscripted expression

« A field selection expression
« An operator invocation
A function call

+ An aggregate expression

« A window function call

« A type cast

« A collation expression

+ A scalar subquery

« An array constructor

+ A row constructor

+ Another value expression in parentheses (used to group subexpressions and override precedence)

In addition to this list, there are a number of constructs that can be classified as an expression but do
not follow any general syntax rules. These generally have the semantics of a function or operator and
are explained in the appropriate location in Chapter 9. An example is the IS NULL clause.

We have already discussed constants in Section 4.1.2. The following sections discuss the remaining
options.

4.2.1. Column References

A column can be referenced in the form:

correlation.columnname

correlation is the name of a table (possibly qualified with a schema name), or an alias for a table
defined by means of a FROM clause. The correlation name and separating dot can be omitted if the
column name is unique across all the tables being used in the current query. (See also Chapter 7.)

34

Chapter 4. SQL Syntax

4.2.2. Positional Parameters

A positional parameter reference is used to indicate a value that is supplied externally to an SQL
statement. Parameters are used in SQL function definitions and in prepared queries. Some client
libraries also support specifying data values separately from the SQL command string, in which case
parameters are used to refer to the out-of-line data values. The form of a parameter reference is:

Snumber

For example, consider the definition of a function, dept, as:

CREATE FUNCTION dept (text) RETURNS dept
AS $$ SELECT * FROM dept WHERE name = $1 $$
LANGUAGE SQL;

Here the s1 references the value of the first function argument whenever the function is invoked.

4.2.3. Subscripts

If an expression yields a value of an array type, then a specific element of the array value can be
extracted by writing

expression|subscript]
or multiple adjacent elements (an “array slice”) can be extracted by writing
expression|lower_subscript:upper._subscript]

(Here, the brackets [] are meant to appear literally.) Each subscript is itself an expression, which
must yield an integer value.

In general the array expression must be parenthesized, but the parentheses can be omitted when
the expression to be subscripted is just a column reference or positional parameter. Also, multiple
subscripts can be concatenated when the original array is multidimensional. For example:
mytable.arraycolumn[4]

mytable.two_d_column[17] [34]

$1[10:42]

(arrayfunction(a,b)) [42]

The parentheses in the last example are required. See Section 8.15 for more about arrays.

4.2.4. Field Selection

If an expression yields a value of a composite type (row type), then a specific field of the row can be
extracted by writing

expression.fieldname

In general the row expression must be parenthesized, but the parentheses can be omitted when the
expression to be selected from is just a table reference or positional parameter. For example:

35

Chapter 4. SQL Syntax

mytable.mycolumn
$1.somecolumn
(rowfunction(a,b)) .col3

(Thus, a qualified column reference is actually just a special case of the field selection syntax.) An
important special case is extracting a field from a table column that is of a composite type:

(compositecol) .somefield
(mytable.compositecol) .somefield

The parentheses are required here to show that compositecol is a column name not a table name,
or that mytable is a table name not a schema name in the second case.

You can ask for all fields of a composite value by writing . *:
(compositecol) . *

This notation behaves differently depending on context; see Section 8.16.5 for details.

4.2.5. Operator Invocations

There are three possible syntaxes for an operator invocation:

expression operator expression (binary infix operator)
operator expression (unary prefix operator)
expression operator (unary postfix operator)

where the operator token follows the syntax rules of Section 4.1.3, or is one of the key words AND,
OR, and NOT, or is a qualified operator name in the form:

OPERATOR (schema.operatorname)

Which particular operators exist and whether they are unary or binary depends on what operators have
been defined by the system or the user. Chapter 9 describes the built-in operators.

4.2.6. Function Calls

The syntax for a function call is the name of a function (possibly qualified with a schema name),
followed by its argument list enclosed in parentheses:

function_name ([expression [, expression ...]])

For example, the following computes the square root of 2:

sqrt (2)

The list of built-in functions is in Chapter 9. Other functions can be added by the user.

When issuing queries in a database where some users mistrust other users, observe security precau-
tions from Section 10.3 when writing function calls.

The arguments can optionally have names attached. See Section 4.3 for details.

36

Chapter 4. SQL Syntax

Note: A function that takes a single argument of composite type can optionally be called using
field-selection syntax, and conversely field selection can be written in functional style. That is, the
notations col (table) and table.col are interchangeable. This behavior is not SQL-standard
but is provided in PostgreSQL because it allows use of functions to emulate “computed fields”.
For more information see Section 8.16.5.

4.2.7. Aggregate Expressions

An aggregate expression represents the application of an aggregate function across the rows selected
by a query. An aggregate function reduces multiple inputs to a single output value, such as the sum or
average of the inputs. The syntax of an aggregate expression is one of the following:

aggregate_name (expression [, ... 1 [order_by clause]) [FILTER (WHERE filter_clause) |
aggregate_name (ALL expression [, ...] [order_by clause]) [FILTER (WHERE filter_clause
aggregate_name (DISTINCT expression [, ...] [order_by clause]) [FILTER (WHERE filter c
aggregate_name (%) [FILTER (WHERE filter _clause)]

aggregate_name ([expression [, ...] 1) WITHIN GROUP (order_by_clause) [FILTER (WHER

where aggregate_name is a previously defined aggregate (possibly qualified with a schema name)
and expression is any value expression that does not itself contain an aggregate expression or a
window function call. The optional order_by clause and filter_ clause are described below.

The first form of aggregate expression invokes the aggregate once for each input row. The second
form is the same as the first, since ALL is the default. The third form invokes the aggregate once for
each distinct value of the expression (or distinct set of values, for multiple expressions) found in the
input rows. The fourth form invokes the aggregate once for each input row; since no particular input
value is specified, it is generally only useful for the count (x) aggregate function. The last form is
used with ordered-set aggregate functions, which are described below.

Most aggregate functions ignore null inputs, so that rows in which one or more of the expression(s)
yield null are discarded. This can be assumed to be true, unless otherwise specified, for all built-in
aggregates.

For example, count (x) yields the total number of input rows; count (£1) yields the number of
input rows in which £1 is non-null, since count ignores nulls; and count (distinct f£1) yields
the number of distinct non-null values of £1.

Ordinarily, the input rows are fed to the aggregate function in an unspecified order. In many cases
this does not matter; for example, min produces the same result no matter what order it receives
the inputs in. However, some aggregate functions (such as array_agg and string_agg) produce
results that depend on the ordering of the input rows. When using such an aggregate, the optional
order_by_clause can be used to specify the desired ordering. The order_by_clause has the
same syntax as for a query-level ORDER BY clause, as described in Section 7.5, except that its expres-
sions are always just expressions and cannot be output-column names or numbers. For example:

SELECT array_agg(a ORDER BY b DESC) FROM table;

When dealing with multiple-argument aggregate functions, note that the ORDER BY clause goes after
all the aggregate arguments. For example, write this:

SELECT string_agg(a, ’,’ ORDER BY a) FROM table;

37

Chapter 4. SQL Syntax

not this:
SELECT string_agg(a ORDER BY a, ’,’) FROM table; -- incorrect

The latter is syntactically valid, but it represents a call of a single-argument aggregate function with
two ORDER BY keys (the second one being rather useless since it’s a constant).

If DISTINCT is specified in addition to an order_by_clause, then all the ORDER BY expressions
must match regular arguments of the aggregate; that is, you cannot sort on an expression that is not
included in the DISTINCT list.

Note: The ability to specify both prsTINCT and orDER BY in an aggregate function is a Post-
greSQL extension.

Placing ORDER BY within the aggregate’s regular argument list, as described so far, is used when
ordering the input rows for a “normal” aggregate for which ordering is optional. There is a subclass
of aggregate functions called ordered-set aggregates for which an order_by_clause is required,
usually because the aggregate’s computation is only sensible in terms of a specific ordering of its
input rows. Typical examples of ordered-set aggregates include rank and percentile calculations. For
an ordered-set aggregate, the order_by_clause is written inside WITHIN GROUP (...), as shown
in the final syntax alternative above. The expressions in the order._by_clause are evaluated once
per input row just like normal aggregate arguments, sorted as per the order_by clause’s require-
ments, and fed to the aggregate function as input arguments. (This is unlike the case for a non-WITHIN
GROUP order._by_clause, which is not treated as argument(s) to the aggregate function.) The argu-
ment expressions preceding WITHIN GROUP, if any, are called direct arguments to distinguish them
from the aggregated arguments listed in the order_by_clause. Unlike normal aggregate arguments,
direct arguments are evaluated only once per aggregate call, not once per input row. This means that
they can contain variables only if those variables are grouped by GROUP BY; this restriction is the same
as if the direct arguments were not inside an aggregate expression at all. Direct arguments are typi-
cally used for things like percentile fractions, which only make sense as a single value per aggregation
calculation. The direct argument list can be empty; in this case, write just () not (=) . (PostgreSQL
will actually accept either spelling, but only the first way conforms to the SQL standard.)

An example of an ordered-set aggregate call is:

SELECT percentile_cont (0.5) WITHIN GROUP (ORDER BY income) FROM households;
percentile_cont

which obtains the 50th percentile, or median, value of the income column from table households.
Here, 0. 5 is a direct argument; it would make no sense for the percentile fraction to be a value varying
across rows.

If FILTER is specified, then only the input rows for which the rfilter clause evaluates to true are
fed to the aggregate function; other rows are discarded. For example:

SELECT

count (#) AS unfiltered,

count (*) FILTER (WHERE i1 < 5) AS filtered
FROM generate_series(1,10) AS s(i);
unfiltered | filtered

38

Chapter 4. SQL Syntax

The predefined aggregate functions are described in Section 9.20. Other aggregate functions can be
added by the user.

An aggregate expression can only appear in the result list or HAVING clause of a SELECT command.
It is forbidden in other clauses, such as WHERE, because those clauses are logically evaluated before
the results of aggregates are formed.

When an aggregate expression appears in a subquery (see Section 4.2.11 and Section 9.22), the aggre-
gate is normally evaluated over the rows of the subquery. But an exception occurs if the aggregate’s
arguments (and filter_clause if any) contain only outer-level variables: the aggregate then be-
longs to the nearest such outer level, and is evaluated over the rows of that query. The aggregate
expression as a whole is then an outer reference for the subquery it appears in, and acts as a constant
over any one evaluation of that subquery. The restriction about appearing only in the result list or
HAVING clause applies with respect to the query level that the aggregate belongs to.

4.2.8. Window Function Calls

A window function call represents the application of an aggregate-like function over some portion of
the rows selected by a query. Unlike regular aggregate function calls, this is not tied to grouping of the
selected rows into a single output row — each row remains separate in the query output. However the
window function is able to scan all the rows that would be part of the current row’s group according to
the grouping specification (PARTITION BY list) of the window function call. The syntax of a window
function call is one of the following:

function_name (|[expression [, expression ...]]) [FILTER (WHERE filter_clause)] OVER wind
function_name (|[expression [, expression ...]1]) [FILTER (WHERE filter clause)] OVER (wi
function _name (*) [FILTER (WHERE filter clause)] OVER window_name

function_name (*) [FILTER (WHERE filter clause)] OVER (window _definition)

where window_definition has the syntax

existing_window_name]
PARTITION BY expression [, ...]]
ORDER BY expression [ASC | DESC | USING operator] [NULLS { FIRST | LAST } 1 [, ...]1 1

frame_clause]

[
[
[
[

and the optional frame_clause can be one of

{ RANGE | ROWS } frame_start
{ RANGE | ROWS } BETWEEN frame_ start AND frame end

where frame_start and frame_end can be one of

UNBOUNDED PRECEDING
value PRECEDING
CURRENT ROW

value FOLLOWING
UNBOUNDED FOLLOWING

Here, expression represents any value expression that does not itself contain window function calls.

window_name is a reference to a named window specification defined in the query’s WINDOW clause.
Alternatively, a full window_definition can be given within parentheses, using the same syntax

39

Chapter 4. SQL Syntax

as for defining a named window in the winDow clause; see the SELECT reference page for details.
It’s worth pointing out that OVER wname is not exactly equivalent to OVER (wname) ; the latter im-
plies copying and modifying the window definition, and will be rejected if the referenced window
specification includes a frame clause.

The PARTITION BY option groups the rows of the query into partitions, which are processed sepa-
rately by the window function. PARTITION BY works similarly to a query-level GROUP BY clause,
except that its expressions are always just expressions and cannot be output-column names or num-
bers. Without PARTITION BY, all rows produced by the query are treated as a single partition. The
ORDER BY option determines the order in which the rows of a partition are processed by the window
function. It works similarly to a query-level ORDER BY clause, but likewise cannot use output-column
names or numbers. Without ORDER BY, rows are processed in an unspecified order.

The frame_clause specifies the set of rows constituting the window frame, which is a subset of the
current partition, for those window functions that act on the frame instead of the whole partition. The
frame can be specified in either RANGE or ROWS mode; in either case, it runs from the frame start
to the frame_end. If frame_end is omitted, it defaults to CURRENT ROW.

A frame_start of UNBOUNDED PRECEDING means that the frame starts with the first row of the
partition, and similarly a frame_end of UNBOUNDED FOLLOWING means that the frame ends with
the last row of the partition.

In RANGE mode, a frame start of CURRENT ROW means the frame starts with the current row’s
first peer row (a row that ORDER BY considers equivalent to the current row), while a frame _end
of CURRENT ROW means the frame ends with the last equivalent ORDER BY peer. In ROWS mode,
CURRENT ROW simply means the current row.

The value PRECEDING and value FOLLOWING cases are currently only allowed in ROWS mode. They
indicate that the frame starts or ends the specified number of rows before or after the current row.
value must be an integer expression not containing any variables, aggregate functions, or window
functions. The value must not be null or negative; but it can be zero, which just selects the current
TOW.

The default framing option is RANGE UNBOUNDED PRECEDING, which is the same as RANGE
BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW. With ORDER BRY, this sets the frame to be
all rows from the partition start up through the current row’s last ORDER BY peer. Without ORDER
BY, all rows of the partition are included in the window frame, since all rows become peers of the
current row.

Restrictions are that frame start cannot be UNBOUNDED FOLLOWING, frame_ end cannot be
UNBOUNDED PRECEDING, and the frame_end choice cannot appear earlier in the above list than the
frame_start choice — for example RANGE BETWEEN CURRENT ROW AND value PRECEDING is
not allowed.

If FILTER is specified, then only the input rows for which the filter clause evaluates to true
are fed to the window function; other rows are discarded. Only window functions that are aggregates
accept a FILTER clause.

The built-in window functions are described in Table 9-54. Other window functions can be added
by the user. Also, any built-in or user-defined normal aggregate function can be used as a window
function. Ordered-set aggregates presently cannot be used as window functions, however.

The syntaxes using » are used for calling parameter-less aggregate functions as window functions,
for example count (») OVER (PARTITION BY x ORDER BY y). The asterisk (x) is customarily
not used for non-aggregate window functions. Aggregate window functions, unlike normal aggregate
functions, do not allow DISTINCT or ORDER BY to be used within the function argument list.

Window function calls are permitted only in the SELECT list and the ORDER BY clause of the query.

40

Chapter 4. SQL Syntax

More information about window functions can be found in Section 3.5, Section 9.21, and Section
7.2.5.

4.2.9. Type Casts

A type cast specifies a conversion from one data type to another. PostgreSQL accepts two equivalent
syntaxes for type casts:

CAST (expression AS type)

expression: :type

The caST syntax conforms to SQL; the syntax with : : is historical PostgreSQL usage.

When a cast is applied to a value expression of a known type, it represents a run-time type conversion.
The cast will succeed only if a suitable type conversion operation has been defined. Notice that this is
subtly different from the use of casts with constants, as shown in Section 4.1.2.7. A cast applied to an
unadorned string literal represents the initial assignment of a type to a literal constant value, and so it
will succeed for any type (if the contents of the string literal are acceptable input syntax for the data
type).

An explicit type cast can usually be omitted if there is no ambiguity as to the type that a value expres-
sion must produce (for example, when it is assigned to a table column); the system will automatically
apply a type cast in such cases. However, automatic casting is only done for casts that are marked
“OK to apply implicitly” in the system catalogs. Other casts must be invoked with explicit casting
syntax. This restriction is intended to prevent surprising conversions from being applied silently.

It is also possible to specify a type cast using a function-like syntax:
typename (expression)

However, this only works for types whose names are also valid as function names. For example,
double precision cannot be used this way, but the equivalent float8 can. Also, the names
interval, time, and t imestamp can only be used in this fashion if they are double-quoted, because
of syntactic conflicts. Therefore, the use of the function-like cast syntax leads to inconsistencies and
should probably be avoided.

Note: The function-like syntax is in fact just a function call. When one of the two standard cast
syntaxes is used to do a run-time conversion, it will internally invoke a registered function to
perform the conversion. By convention, these conversion functions have the same name as their
output type, and thus the “function-like syntax” is nothing more than a direct invocation of the
underlying conversion function. Obviously, this is not something that a portable application should
rely on. For further details see CREATE CAST.

4.2.10. Collation Expressions

The cOLLATE clause overrides the collation of an expression. It is appended to the expression it
applies to:

expr COLLATE collation

where collation is a possibly schema-qualified identifier. The COLLATE clause binds tighter than
operators; parentheses can be used when necessary.

41

Chapter 4. SQL Syntax

If no collation is explicitly specified, the database system either derives a collation from the columns
involved in the expression, or it defaults to the default collation of the database if no column is
involved in the expression.

The two common uses of the COLLATE clause are overriding the sort order in an ORDER BY clause,
for example:

SELECT a, b, c FROM tbl WHERE ... ORDER BY a COLLATE "C";
and overriding the collation of a function or operator call that has locale-sensitive results, for example:
SELECT » FROM tbl WHERE a > ’foo’ COLLATE "C";

Note that in the latter case the COLLATE clause is attached to an input argument of the operator we
wish to affect. It doesn’t matter which argument of the operator or function call the COLLATE clause is
attached to, because the collation that is applied by the operator or function is derived by considering
all arguments, and an explicit COLLATE clause will override the collations of all other arguments.
(Attaching non-matching COLLATE clauses to more than one argument, however, is an error. For
more details see Section 22.2.) Thus, this gives the same result as the previous example:

SELECT * FROM tbl WHERE a COLLATE "C" > ’foo’;
But this is an error:
SELECT % FROM tbl WHERE (a > ’foo’) COLLATE "C";

because it attempts to apply a collation to the result of the > operator, which is of the non-collatable
data type boolean.

4.2.11. Scalar Subqueries

A scalar subquery is an ordinary SELECT query in parentheses that returns exactly one row with one
column. (See Chapter 7 for information about writing queries.) The SELECT query is executed and
the single returned value is used in the surrounding value expression. It is an error to use a query that
returns more than one row or more than one column as a scalar subquery. (But if, during a particular
execution, the subquery returns no rows, there is no error; the scalar result is taken to be null.) The
subquery can refer to variables from the surrounding query, which will act as constants during any
one evaluation of the subquery. See also Section 9.22 for other expressions involving subqueries.

For example, the following finds the largest city population in each state:

SELECT name, (SELECT max (pop) FROM cities WHERE cities.state = states.name)
FROM states;

4.2.12. Array Constructors

An array constructor is an expression that builds an array value using values for its member elements.
A simple array constructor consists of the key word ARRAY, a left square bracket [, a list of expressions
(separated by commas) for the array element values, and finally a right square bracket . For example:

SELECT ARRAY[1,2,3+4];
array

42

Chapter 4. SQL Syntax

By default, the array element type is the common type of the member expressions, determined using
the same rules as for UNION or CASE constructs (see Section 10.5). You can override this by explicitly
casting the array constructor to the desired type, for example:

SELECT ARRAY[1,2,22.7]::integer[];

{1,2,23}
(1 row)

This has the same effect as casting each expression to the array element type individually. For more
on casting, see Section 4.2.9.

Multidimensional array values can be built by nesting array constructors. In the inner constructors,
the key word ARRAY can be omitted. For example, these produce the same result:

SELECT ARRAY[ARRAY[1,2], ARRAY[3,4]];

{{1,2},{3,4}}
(1 row)

SELECT ARRAY[[1,2]1,1[3,411];

{{1,2},{3,4}}
(1 row)

Since multidimensional arrays must be rectangular, inner constructors at the same level must pro-
duce sub-arrays of identical dimensions. Any cast applied to the outer ARRAY constructor propagates
automatically to all the inner constructors.

Multidimensional array constructor elements can be anything yielding an array of the proper kind, not
only a sub-ARRAY construct. For example:

CREATE TABLE arr (fl int[], £2 int[]);
INSERT INTO arr VALUES (ARRAY[[1,2],([3,411, ARRAY[[5,6],[7,811);

SELECT ARRAY[fl, f2, " {{9,10},{11,12}}"::int[]] FROM arr;
array

{{{1,2},{3,4}},{{5,6},{7,8}},{{9,10},{11,12}}}
(1 row)

You can construct an empty array, but since it’s impossible to have an array with no type, you must
explicitly cast your empty array to the desired type. For example:

SELECT ARRAY[]::integer([];

43

Chapter 4. SQL Syntax

(1 row)

It is also possible to construct an array from the results of a subquery. In this form, the array construc-
tor is written with the key word ARRAY followed by a parenthesized (not bracketed) subquery. For
example:

SELECT ARRAY (SELECT oid FROM pg_proc WHERE proname LIKE ’'bytea%’);
array

{2011,1954,1948,1952,1951,1244,1950,2005,1949,1953,2006,31,2412,2413}
(1 row)

SELECT ARRAY (SELECT ARRAY[i, 1%2] FROM generate_series(1,5) AS a(i));

{{1,2},{2,4},1{3,6},{4,8},{5,10}}
(1 row)

The subquery must return a single column. If the subquery’s output column is of a non-array type,
the resulting one-dimensional array will have an element for each row in the subquery result, with an
element type matching that of the subquery’s output column. If the subquery’s output column is of an
array type, the result will be an array of the same type but one higher dimension; in this case all the
subquery rows must yield arrays of identical dimensionality, else the result would not be rectangular.

The subscripts of an array value built with ARRAY always begin with one. For more information about
arrays, see Section 8.15.

4.2.13. Row Constructors

A row constructor is an expression that builds a row value (also called a composite value) using
values for its member fields. A row constructor consists of the key word ROw, a left parenthesis, zero
or more expressions (separated by commas) for the row field values, and finally a right parenthesis.
For example:

SELECT ROW(1,2.5,"this is a test’);

The key word rROW is optional when there is more than one expression in the list.

A row constructor can include the syntax rowvalue. «, which will be expanded to a list of the ele-
ments of the row value, just as occurs when the . = syntax is used at the top level of a SELECT list (see
Section 8.16.5). For example, if table t has columns £1 and £2, these are the same:

SELECT ROW(t.*, 42) FROM t;
SELECT ROW(t.fl, t.f2, 42) FROM t;

Note: Before PostgreSQL 8.2, the . + syntax was not expanded in row constructors, so that writing
ROW (t.x, 42) created a two-field row whose first field was another row value. The new behavior
is usually more useful. If you need the old behavior of nested row values, write the inner row value
without . «, for instance row (t, 42).

44

Chapter 4. SQL Syntax

By default, the value created by a ROw expression is of an anonymous record type. If necessary, it can
be cast to a named composite type — either the row type of a table, or a composite type created with
CREATE TYPE AS. An explicit cast might be needed to avoid ambiguity. For example:

CREATE TABLE mytable(fl int, f2 float, £f3 text);

CREATE FUNCTION getfl (mytable) RETURNS int AS ’SELECT $1.f1l’ LANGUAGE SQL;

—-— No cast needed since only one getfl() exists
SELECT getfl (ROW(1,2.5,"this is a test’));
getfl

1
(1 row)

CREATE TYPE myrowtype AS (fl1 int, £f2 text, £3 numeric);
CREATE FUNCTION getfl (myrowtype) RETURNS int AS ’SELECT $1.f1’ LANGUAGE SQL;

—-— Now we need a cast to indicate which function to call:
SELECT getfl (ROW(1,2.5,"this is a test’));
ERROR: function getfl (record) is not unique

SELECT getfl (ROW(1l,2.5,’this is a test’)::mytable);
getfl

getfl

Row constructors can be used to build composite values to be stored in a composite-type table column,
or to be passed to a function that accepts a composite parameter. Also, it is possible to compare two
row values or test a row with IS NULL or IS NOT NULL, for example:

SELECT ROW(1l,2.5,’this is a test’) = ROW(1l, 3, ’'not the same’);
SELECT ROW (table.*) IS NULL FROM table; —— detect all-null rows

For more detail see Section 9.23. Row constructors can also be used in connection with subqueries,
as discussed in Section 9.22.

4.2.14. Expression Evaluation Rules

The order of evaluation of subexpressions is not defined. In particular, the inputs of an operator or
function are not necessarily evaluated left-to-right or in any other fixed order.

Furthermore, if the result of an expression can be determined by evaluating only some parts of it, then
other subexpressions might not be evaluated at all. For instance, if one wrote:

45

Chapter 4. SQL Syntax
SELECT true OR somefunc();

then somefunc () would (probably) not be called at all. The same would be the case if one wrote:
SELECT somefunc () OR true;

Note that this is not the same as the left-to-right “short-circuiting” of Boolean operators that is found
in some programming languages.

As a consequence, it is unwise to use functions with side effects as part of complex expressions. It is
particularly dangerous to rely on side effects or evaluation order in WHERE and HAVING clauses, since
those clauses are extensively reprocessed as part of developing an execution plan. Boolean expressions
(AND/OR/NOT combinations) in those clauses can be reorganized in any manner allowed by the laws
of Boolean algebra.

When it is essential to force evaluation order, a CASE construct (see Section 9.17) can be used. For
example, this is an untrustworthy way of trying to avoid division by zero in a WHERE clause:

SELECT ... WHERE x > 0 AND y/x > 1.5;
But this is safe:

SELECT ... WHERE CASE WHEN x > 0 THEN y/x > 1.5 ELSE false END;

A CASE construct used in this fashion will defeat optimization attempts, so it should only be done
when necessary. (In this particular example, it would be better to sidestep the problem by writing y
> 1.5xx instead.)

CASE is not a cure-all for such issues, however. One limitation of the technique illustrated above is
that it does not prevent early evaluation of constant subexpressions. As described in Section 35.6,
functions and operators marked IMMUTABLE can be evaluated when the query is planned rather than
when it is executed. Thus for example

SELECT CASE WHEN x > 0 THEN x ELSE 1/0 END FROM tab;

is likely to result in a division-by-zero failure due to the planner trying to simplify the constant subex-
pression, even if every row in the table has x > 0 so that the ELSE arm would never be entered at
run time.

While that particular example might seem silly, related cases that don’t obviously involve constants
can occur in queries executed within functions, since the values of function arguments and local
variables can be inserted into queries as constants for planning purposes. Within PL/pgSQL functions,
for example, using an IF-THEN-ELSE statement to protect a risky computation is much safer than just
nesting it in a CASE expression.

Another limitation of the same kind is that a CASE cannot prevent evaluation of an aggregate ex-
pression contained within it, because aggregate expressions are computed before other expressions
in a SELECT list or HAVING clause are considered. For example, the following query can cause a
division-by-zero error despite seemingly having protected against it:

SELECT CASE WHEN min (employees) > 0
THEN avg (expenses / employees)
END
FROM departments;

The min () and avg () aggregates are computed concurrently over all the input rows, so if any row
has employees equal to zero, the division-by-zero error will occur before there is any opportunity

46

Chapter 4. SQL Syntax

to test the result of min () . Instead, use a WHERE or FILTER clause to prevent problematic input rows
from reaching an aggregate function in the first place.

4.3. Calling Functions

PostgreSQL allows functions that have named parameters to be called using either positional or named
notation. Named notation is especially useful for functions that have a large number of parameters,
since it makes the associations between parameters and actual arguments more explicit and reliable.
In positional notation, a function call is written with its argument values in the same order as they
are defined in the function declaration. In named notation, the arguments are matched to the function
parameters by name and can be written in any order. For each notation, also consider the effect of
function argument types, documented in Section 10.3.

In either notation, parameters that have default values given in the function declaration need not be
written in the call at all. But this is particularly useful in named notation, since any combination of
parameters can be omitted; while in positional notation parameters can only be omitted from right to
left.

PostgreSQL also supports mixed notation, which combines positional and named notation. In this
case, positional parameters are written first and named parameters appear after them.

The following examples will illustrate the usage of all three notations, using the following function
definition:

CREATE FUNCTION concat_lower_or_upper (a text, b text, uppercase boolean DEFAULT false)
RETURNS text

AS
$$
SELECT CASE
WHEN $3 THEN UPPER(S1 || " 7 || $2)
ELSE LOWER(S$1 || " ' || $2)
END;
$S

LANGUAGE SQL IMMUTABLE STRICT;

Function concat_lower_or_upper has two mandatory parameters, a and b. Additionally there is
one optional parameter uppercase which defaults to false. The a and b inputs will be concatenated,
and forced to either upper or lower case depending on the uppercase parameter. The remaining
details of this function definition are not important here (see Chapter 35 for more information).

4.3.1. Using Positional Notation

Positional notation is the traditional mechanism for passing arguments to functions in PostgreSQL.
An example is:

SELECT concat_lower_or_upper ('Hello’, ’'World’, true);
concat_lower_or_upper

HELLO WORLD
(1 row)

All arguments are specified in order. The result is upper case since uppercase is specified as true.
Another example is:

47

Chapter 4. SQL Syntax

SELECT concat_lower_or_upper ('Hello’, ’'World’);
concat_lower_or_upper

hello world
(1 row)

Here, the uppercase parameter is omitted, so it receives its default value of false, resulting in
lower case output. In positional notation, arguments can be omitted from right to left so long as they
have defaults.

4.3.2. Using Named Notation

In named notation, each argument’s name is specified using => to separate it from the argument
expression. For example:

SELECT concat_lower_or_upper (a => "Hello’, b => ’"World’);
concat_lower_or_upper

hello world
(1 row)

Again, the argument uppercase was omitted so it is set to false implicitly. One advantage of using
named notation is that the arguments may be specified in any order, for example:

SELECT concat_lower_or_upper (a => 'Hello’, b => ’'World’, uppercase => true);
concat_lower_or_upper

HELLO WORLD
(1 row)

SELECT concat_lower_or_upper (a => ’"Hello’, uppercase => true, b => 'World’);
concat_lower_or_upper

HELLO WORLD

(1 row)
An older syntax based on ":=" is supported for backward compatibility:
SELECT concat_lower_or_upper (a := 'Hello’, uppercase := true, b := 'World’);

concat_lower_or_upper

HELLO WORLD
(1 row)

4.3.3. Using Mixed Notation

The mixed notation combines positional and named notation. However, as already mentioned, named
arguments cannot precede positional arguments. For example:

SELECT concat_lower_or_upper ('Hello’, ’'World’, uppercase => true);
concat_lower_or_upper

48

Chapter 4. SQL Syntax

HELLO WORLD
(1 row)

In the above query, the arguments a and b are specified positionally, while uppercase is specified by
name. In this example, that adds little except documentation. With a more complex function having
numerous parameters that have default values, named or mixed notation can save a great deal of
writing and reduce chances for error.

Note: Named and mixed call notations currently cannot be used when calling an aggregate func-
tion (but they do work when an aggregate function is used as a window function).

49

Chapter 5. Data Definition

This chapter covers how one creates the database structures that will hold one’s data. In a relational
database, the raw data is stored in tables, so the majority of this chapter is devoted to explaining how
tables are created and modified and what features are available to control what data is stored in the
tables. Subsequently, we discuss how tables can be organized into schemas, and how privileges can
be assigned to tables. Finally, we will briefly look at other features that affect the data storage, such
as inheritance, views, functions, and triggers.

5.1. Table Basics

A table in a relational database is much like a table on paper: It consists of rows and columns. The
number and order of the columns is fixed, and each column has a name. The number of rows is
variable — it reflects how much data is stored at a given moment. SQL does not make any guarantees
about the order of the rows in a table. When a table is read, the rows will appear in an unspecified
order, unless sorting is explicitly requested. This is covered in Chapter 7. Furthermore, SQL does not
assign unique identifiers to rows, so it is possible to have several completely identical rows in a table.
This is a consequence of the mathematical model that underlies SQL but is usually not desirable.
Later in this chapter we will see how to deal with this issue.

Each column has a data type. The data type constrains the set of possible values that can be assigned
to a column and assigns semantics to the data stored in the column so that it can be used for com-
putations. For instance, a column declared to be of a numerical type will not accept arbitrary text
strings, and the data stored in such a column can be used for mathematical computations. By contrast,
a column declared to be of a character string type will accept almost any kind of data but it does not
lend itself to mathematical calculations, although other operations such as string concatenation are
available.

PostgreSQL includes a sizable set of built-in data types that fit many applications. Users can also
define their own data types. Most built-in data types have obvious names and semantics, so we defer
a detailed explanation to Chapter 8. Some of the frequently used data types are integer for whole
numbers, numeric for possibly fractional numbers, text for character strings, date for dates, t ime
for time-of-day values, and t imestamp for values containing both date and time.

To create a table, you use the aptly named CREATE TABLE command. In this command you specify
at least a name for the new table, the names of the columns and the data type of each column. For
example:

CREATE TABLE my_first_table (
first_column text,
second_column integer

)

This creates a table named my_first_table with two columns. The first column is named
first_column and has a data type of text; the second column has the name second_column and
the type integer. The table and column names follow the identifier syntax explained in Section
4.1.1. The type names are usually also identifiers, but there are some exceptions. Note that the
column list is comma-separated and surrounded by parentheses.

Of course, the previous example was heavily contrived. Normally, you would give names to your
tables and columns that convey what kind of data they store. So let’s look at a more realistic example:

CREATE TABLE products (

50

Chapter 5. Data Definition

product_no integer,
name text,
price numeric

)

(The numeric type can store fractional components, as would be typical of monetary amounts.)

Tip: When you create many interrelated tables it is wise to choose a consistent naming pattern
for the tables and columns. For instance, there is a choice of using singular or plural nouns for
table names, both of which are favored by some theorist or other.

There is a limit on how many columns a table can contain. Depending on the column types, it is
between 250 and 1600. However, defining a table with anywhere near this many columns is highly
unusual and often a questionable design.

If you no longer need a table, you can remove it using the DROP TABLE command. For example:

DROP TABLE my_first_table;
DROP TABLE products;

Attempting to drop a table that does not exist is an error. Nevertheless, it is common in SQL script files
to unconditionally try to drop each table before creating it, ignoring any error messages, so that the
script works whether or not the table exists. (If you like, you can use the DROP TABLE IF EXISTS
variant to avoid the error messages, but this is not standard SQL.)

If you need to modify a table that already exists, see Section 5.5 later in this chapter.

With the tools discussed so far you can create fully functional tables. The remainder of this chapter is
concerned with adding features to the table definition to ensure data integrity, security, or convenience.
If you are eager to fill your tables with data now you can skip ahead to Chapter 6 and read the rest of
this chapter later.

5.2. Default Values

A column can be assigned a default value. When a new row is created and no values are specified
for some of the columns, those columns will be filled with their respective default values. A data
manipulation command can also request explicitly that a column be set to its default value, without
having to know what that value is. (Details about data manipulation commands are in Chapter 6.)

If no default value is declared explicitly, the default value is the null value. This usually makes sense
because a null value can be considered to represent unknown data.

In a table definition, default values are listed after the column data type. For example:

CREATE TABLE products (
product_no integer,
name text,
price numeric DEFAULT 9.99
)i

The default value can be an expression, which will be evaluated whenever the default value is inserted
(not when the table is created). A common example is for a t imestamp column to have a default of

51

Chapter 5. Data Definition

CURRENT_TIMESTAMP, so that it gets set to the time of row insertion. Another common example is
generating a “serial number” for each row. In PostgreSQL this is typically done by something like:

CREATE TABLE products (
product_no integer DEFAULT nextval (' products_product_no_seq’),

)

where the nextval () function supplies successive values from a sequence object (see Section 9.16).
This arrangement is sufficiently common that there’s a special shorthand for it:

CREATE TABLE products (
product_no SERIAL,

)

The sERIAL shorthand is discussed further in Section 8.1.4.

5.3. Constraints

Data types are a way to limit the kind of data that can be stored in a table. For many applications,
however, the constraint they provide is too coarse. For example, a column containing a product price
should probably only accept positive values. But there is no standard data type that accepts only
positive numbers. Another issue is that you might want to constrain column data with respect to other
columns or rows. For example, in a table containing product information, there should be only one
row for each product number.

To that end, SQL allows you to define constraints on columns and tables. Constraints give you as
much control over the data in your tables as you wish. If a user attempts to store data in a column
that would violate a constraint, an error is raised. This applies even if the value came from the default
value definition.

5.3.1. Check Constraints

A check constraint is the most generic constraint type. It allows you to specify that the value in
a certain column must satisfy a Boolean (truth-value) expression. For instance, to require positive
product prices, you could use:

CREATE TABLE products (

product_no integer,

name text,

price numeric CHECK (price > 0)
)i

As you see, the constraint definition comes after the data type, just like default value definitions.
Default values and constraints can be listed in any order. A check constraint consists of the key word
CHECK followed by an expression in parentheses. The check constraint expression should involve the
column thus constrained, otherwise the constraint would not make too much sense.

You can also give the constraint a separate name. This clarifies error messages and allows you to refer
to the constraint when you need to change it. The syntax is:

52

Chapter 5. Data Definition

CREATE TABLE products (

product_no integer,

name text,

price numeric CONSTRAINT positive_price CHECK (price > 0)
)i

So, to specify a named constraint, use the key word CONSTRAINT followed by an identifier followed
by the constraint definition. (If you don’t specify a constraint name in this way, the system chooses a
name for you.)

A check constraint can also refer to several columns. Say you store a regular price and a discounted
price, and you want to ensure that the discounted price is lower than the regular price:

CREATE TABLE products (
product_no integer,
name text,
price numeric CHECK (price > 0),
discounted_price numeric CHECK (discounted_price > 0),
CHECK (price > discounted_price)

The first two constraints should look familiar. The third one uses a new syntax. It is not attached to a
particular column, instead it appears as a separate item in the comma-separated column list. Column
definitions and these constraint definitions can be listed in mixed order.

We say that the first two constraints are column constraints, whereas the third one is a table constraint
because it is written separately from any one column definition. Column constraints can also be writ-
ten as table constraints, while the reverse is not necessarily possible, since a column constraint is
supposed to refer to only the column it is attached to. (PostgreSQL doesn’t enforce that rule, but you
should follow it if you want your table definitions to work with other database systems.) The above
example could also be written as:

CREATE TABLE products (
product_no integer,
name text,
price numeric,
CHECK (price > 0),
discounted_price numeric,
CHECK (discounted_price > 0),
CHECK (price > discounted_price)
)i

or even:

CREATE TABLE products (

product_no integer,

name text,

price numeric CHECK (price > 0),

discounted_price numeric,

CHECK (discounted_price > 0 AND price > discounted_price)
)i

It’s a matter of taste.

Names can be assigned to table constraints in the same way as column constraints:

CREATE TABLE products (

53

Chapter 5. Data Definition

product_no integer,

name text,

price numeric,

CHECK (price > 0),

discounted_price numeric,

CHECK (discounted_price > 0),

CONSTRAINT valid_discount CHECK (price > discounted_price)

It should be noted that a check constraint is satisfied if the check expression evaluates to true or the
null value. Since most expressions will evaluate to the null value if any operand is null, they will not
prevent null values in the constrained columns. To ensure that a column does not contain null values,
the not-null constraint described in the next section can be used.

5.3.2. Not-Null Constraints

A not-null constraint simply specifies that a column must not assume the null value. A syntax example:

CREATE TABLE products (
product_no integer NOT NULL,
name text NOT NULL,
price numeric

)

A not-null constraint is always written as a column constraint. A not-null constraint is functionally
equivalent to creating a check constraint CHECK (column_name IS NOT NULL), but in PostgreSQL
creating an explicit not-null constraint is more efficient. The drawback is that you cannot give explicit
names to not-null constraints created this way.

Of course, a column can have more than one constraint. Just write the constraints one after another:

CREATE TABLE products (

product_no integer NOT NULL,

name text NOT NULL,

price numeric NOT NULL CHECK (price > 0)
)i

The order doesn’t matter. It does not necessarily determine in which order the constraints are checked.

The NOT NULL constraint has an inverse: the NULL constraint. This does not mean that the column
must be null, which would surely be useless. Instead, this simply selects the default behavior that the
column might be null. The NULL constraint is not present in the SQL standard and should not be used
in portable applications. (It was only added to PostgreSQL to be compatible with some other database
systems.) Some users, however, like it because it makes it easy to toggle the constraint in a script file.
For example, you could start with:

CREATE TABLE products (
product_no integer NULL,
name text NULL,
price numeric NULL

)i

and then insert the NOT key word where desired.

54

Chapter 5. Data Definition

Tip: In most database designs the majority of columns should be marked not null.

5.3.3. Unique Constraints

Unique constraints ensure that the data contained in a column, or a group of columns, is unique among
all the rows in the table. The syntax is:

CREATE TABLE products (
product_no integer UNIQUE,
name text,
price numeric

)i
when written as a column constraint, and:

CREATE TABLE products (
product_no integer,
name text,
price numeric,
UNIQUE (product_no)

)i

when written as a table constraint.

To define a unique constraint for a group of columns, write it as a table constraint with the column
names separated by commas:

CREATE TABLE example (
a integer,
b integer,
c integer,
UNIQUE (a, c)
)i

This specifies that the combination of values in the indicated columns is unique across the whole
table, though any one of the columns need not be (and ordinarily isn’t) unique.

You can assign your own name for a unique constraint, in the usual way:

CREATE TABLE products (
product_no integer CONSTRAINT must_be_different UNIQUE,
name text,
price numeric

)i

Adding a unique constraint will automatically create a unique B-tree index on the column or group of
columns listed in the constraint. A uniqueness restriction covering only some rows cannot be written
as a unique constraint, but it is possible to enforce such a restriction by creating a unique partial index.

In general, a unique constraint is violated if there is more than one row in the table where the values of
all of the columns included in the constraint are equal. However, two null values are never considered
equal in this comparison. That means even in the presence of a unique constraint it is possible to
store duplicate rows that contain a null value in at least one of the constrained columns. This behavior

55

Chapter 5. Data Definition

conforms to the SQL standard, but we have heard that other SQL databases might not follow this rule.
So be careful when developing applications that are intended to be portable.

5.3.4. Primary Keys

A primary key constraint indicates that a column, or group of columns, can be used as a unique
identifier for rows in the table. This requires that the values be both unique and not null. So, the
following two table definitions accept the same data:

CREATE TABLE products (
product_no integer UNIQUE NOT NULL,
name text,
price numeric

)i

CREATE TABLE products (
product_no integer PRIMARY KEY,
name text,
price numeric

)

Primary keys can span more than one column; the syntax is similar to unique constraints:

CREATE TABLE example (
a integer,
b integer,
c integer,
PRIMARY KEY (a, c)
)i

Adding a primary key will automatically create a unique B-tree index on the column or group of
columns listed in the primary key, and will force the column(s) to be marked NOT NULL.

A table can have at most one primary key. (There can be any number of unique and not-null con-
straints, which are functionally almost the same thing, but only one can be identified as the primary
key.) Relational database theory dictates that every table must have a primary key. This rule is not
enforced by PostgreSQL, but it is usually best to follow it.

Primary keys are useful both for documentation purposes and for client applications. For example, a
GUI application that allows modifying row values probably needs to know the primary key of a table
to be able to identify rows uniquely. There are also various ways in which the database system makes
use of a primary key if one has been declared; for example, the primary key defines the default target
column(s) for foreign keys referencing its table.

5.3.5. Foreign Keys

A foreign key constraint specifies that the values in a column (or a group of columns) must match the
values appearing in some row of another table. We say this maintains the referential integrity between
two related tables.

Say you have the product table that we have used several times already:

56

Chapter 5. Data Definition

CREATE TABLE products (
product_no integer PRIMARY KEY,
name text,
price numeric

)

Let’s also assume you have a table storing orders of those products. We want to ensure that the orders
table only contains orders of products that actually exist. So we define a foreign key constraint in the
orders table that references the products table:

CREATE TABLE orders (
order_id integer PRIMARY KEY,
product_no integer REFERENCES products (product_no),
quantity integer

)i

Now it is impossible to create orders with non-NULL product_no entries that do not appear in the
products table.

We say that in this situation the orders table is the referencing table and the products table is the
referenced table. Similarly, there are referencing and referenced columns.

You can also shorten the above command to:

CREATE TABLE orders (
order_id integer PRIMARY KEY,
product_no integer REFERENCES products,
quantity integer

)i

because in absence of a column list the primary key of the referenced table is used as the referenced
column(s).

A foreign key can also constrain and reference a group of columns. As usual, it then needs to be
written in table constraint form. Here is a contrived syntax example:

CREATE TABLE tl (

a integer PRIMARY KEY,

b integer,

c integer,

FOREIGN KEY (b, c) REFERENCES other_table (cl, c2)
)i

Of course, the number and type of the constrained columns need to match the number and type of the
referenced columns.

You can assign your own name for a foreign key constraint, in the usual way.

A table can have more than one foreign key constraint. This is used to implement many-to-many
relationships between tables. Say you have tables about products and orders, but now you want to
allow one order to contain possibly many products (which the structure above did not allow). You
could use this table structure:

CREATE TABLE products (
product_no integer PRIMARY KEY,
name text,
price numeric

)i

57

Chapter 5. Data Definition

CREATE TABLE orders (
order_id integer PRIMARY KEY,
shipping_address text,

)

CREATE TABLE order_items (
product_no integer REFERENCES products,
order_id integer REFERENCES orders,
quantity integer,
PRIMARY KEY (product_no, order_id)

)i

Notice that the primary key overlaps with the foreign keys in the last table.

We know that the foreign keys disallow creation of orders that do not relate to any products. But what
if a product is removed after an order is created that references it? SQL allows you to handle that as
well. Intuitively, we have a few options:

+ Disallow deleting a referenced product
 Delete the orders as well
+ Something else?

To illustrate this, let’s implement the following policy on the many-to-many relationship example
above: when someone wants to remove a product that is still referenced by an order (via
order_items), we disallow it. If someone removes an order, the order items are removed as well:

CREATE TABLE products (
product_no integer PRIMARY KEY,
name text,
price numeric

)i

CREATE TABLE orders (
order_id integer PRIMARY KEY,
shipping_address text,

)

CREATE TABLE order_items (
product_no integer REFERENCES products ON DELETE RESTRICT,
order_id integer REFERENCES orders ON DELETE CASCADE,
quantity integer,
PRIMARY KEY (product_no, order_id)

Restricting and cascading deletes are the two most common options. RESTRICT prevents deletion of
a referenced row. NO ACTION means that if any referencing rows still exist when the constraint is
checked, an error is raised; this is the default behavior if you do not specify anything. (The essential
difference between these two choices is that NO ACTION allows the check to be deferred until later
in the transaction, whereas RESTRICT does not.) CASCADE specifies that when a referenced row is
deleted, row(s) referencing it should be automatically deleted as well. There are two other options:
SET NULL and SET DEFAULT. These cause the referencing column(s) in the referencing row(s) to be

58

Chapter 5. Data Definition

set to nulls or their default values, respectively, when the referenced row is deleted. Note that these
do not excuse you from observing any constraints. For example, if an action specifies SET DEFAULT
but the default value would not satisfy the foreign key constraint, the operation will fail.

Analogous to ON DELETE there is also ON UPDATE which is invoked when a referenced column is
changed (updated). The possible actions are the same. In this case, CASCADE means that the updated
values of the referenced column(s) should be copied into the referencing row(s).

Normally, a referencing row need not satisfy the foreign key constraint if any of its referencing
columns are null. If MATCH FULL is added to the foreign key declaration, a referencing row escapes
satisfying the constraint only if all its referencing columns are null (so a mix of null and non-null
values is guaranteed to fail a MATCH FULL constraint). If you don’t want referencing rows to be able
to avoid satisfying the foreign key constraint, declare the referencing column(s) as NOT NULL.

A foreign key must reference columns that either are a primary key or form a unique constraint.
This means that the referenced columns always have an index (the one underlying the primary key
or unique constraint); so checks on whether a referencing row has a match will be efficient. Since
a DELETE of a row from the referenced table or an UPDATE of a referenced column will require a
scan of the referencing table for rows matching the old value, it is often a good idea to index the
referencing columns too. Because this is not always needed, and there are many choices available on
how to index, declaration of a foreign key constraint does not automatically create an index on the
referencing columns.

More information about updating and deleting data is in Chapter 6. Also see the description of foreign
key constraint syntax in the reference documentation for CREATE TABLE.

5.3.6. Exclusion Constraints

Exclusion constraints ensure that if any two rows are compared on the specified columns or expres-
sions using the specified operators, at least one of these operator comparisons will return false or null.
The syntax is:

CREATE TABLE circles (

c circle,

EXCLUDE USING gist (c WITH &&)
)i

See also CREATE TABLE ... CONSTRAINT ... EXCLUDE for details.

Adding an exclusion constraint will automatically create an index of the type specified in the con-
straint declaration.

5.4. System Columns

Every table has several system columns that are implicitly defined by the system. Therefore, these
names cannot be used as names of user-defined columns. (Note that these restrictions are separate
from whether the name is a key word or not; quoting a name will not allow you to escape these
restrictions.) You do not really need to be concerned about these columns; just know they exist.

59

Chapter 5. Data Definition

oid
The object identifier (object ID) of a row. This column is only present if the table was created
using WITH 0OIDS, or if the default_with_oids configuration variable was set at the time. This

column is of type oid (same name as the column); see Section 8.18 for more information about
the type.

tableoid

The OID of the table containing this row. This column is particularly handy for queries that
select from inheritance hierarchies (see Section 5.9), since without it, it’s difficult to tell which
individual table a row came from. The tableoid can be joined against the oid column of
pg_class to obtain the table name.

xmin

The identity (transaction ID) of the inserting transaction for this row version. (A row version is
an individual state of a row; each update of a row creates a new row version for the same logical
row.)

cmin
The command identifier (starting at zero) within the inserting transaction.
Xmax

The identity (transaction ID) of the deleting transaction, or zero for an undeleted row version. It
is possible for this column to be nonzero in a visible row version. That usually indicates that the
deleting transaction hasn’t committed yet, or that an attempted deletion was rolled back.

cmax
The command identifier within the deleting transaction, or zero.
ctid

The physical location of the row version within its table. Note that although the ctid can be
used to locate the row version very quickly, a row’s ctid will change if it is updated or moved
by vacuuM FULL. Therefore ctid is useless as a long-term row identifier. The OID, or even
better a user-defined serial number, should be used to identify logical rows.

OIDs are 32-bit quantities and are assigned from a single cluster-wide counter. In a large or long-lived
database, it is possible for the counter to wrap around. Hence, it is bad practice to assume that OIDs
are unique, unless you take steps to ensure that this is the case. If you need to identify the rows in
a table, using a sequence generator is strongly recommended. However, OIDs can be used as well,
provided that a few additional precautions are taken:

« A unique constraint should be created on the OID column of each table for which the OID will
be used to identify rows. When such a unique constraint (or unique index) exists, the system takes
care not to generate an OID matching an already-existing row. (Of course, this is only possible if
the table contains fewer than 2** (4 billion) rows, and in practice the table size had better be much
less than that, or performance might suffer.)

+ OIDs should never be assumed to be unique across tables; use the combination of tableoid and
row OID if you need a database-wide identifier.

« Of course, the tables in question must be created WITH 0IDS. As of PostgreSQL 8.1, WITHOUT
01DS is the default.

60

Chapter 5. Data Definition

Transaction identifiers are also 32-bit quantities. In a long-lived database it is possible for transaction
IDs to wrap around. This is not a fatal problem given appropriate maintenance procedures; see Chapter
23 for details. It is unwise, however, to depend on the uniqueness of transaction IDs over the long term
(more than one billion transactions).

Command identifiers are also 32-bit quantities. This creates a hard limit of 2*? (4 billion) SQL com-
mands within a single transaction. In practice this limit is not a problem — note that the limit is on
the number of SQL commands, not the number of rows processed. Also, only commands that actually
modify the database contents will consume a command identifier.

5.5. Modifying Tables

When you create a table and you realize that you made a mistake, or the requirements of the appli-
cation change, you can drop the table and create it again. But this is not a convenient option if the
table is already filled with data, or if the table is referenced by other database objects (for instance a
foreign key constraint). Therefore PostgreSQL provides a family of commands to make modifications
to existing tables. Note that this is conceptually distinct from altering the data contained in the table:
here we are interested in altering the definition, or structure, of the table.

You can:

« Add columns

« Remove columns

« Add constraints

« Remove constraints

+ Change default values

+ Change column data types
« Rename columns

« Rename tables

All these actions are performed using the ALTER TABLE command, whose reference page contains
details beyond those given here.

5.5.1. Adding a Column

To add a column, use a command like:

ALTER TABLE products ADD COLUMN description text;

The new column is initially filled with whatever default value is given (null if you don’t specify a
DEFAULT clause).

You can also define constraints on the column at the same time, using the usual syntax:
ALTER TABLE products ADD COLUMN description text CHECK (description <> ");

In fact all the options that can be applied to a column description in CREATE TABLE can be used here.
Keep in mind however that the default value must satisfy the given constraints, or the AbD will fail.
Alternatively, you can add constraints later (see below) after you’ve filled in the new column correctly.

Tip: Adding a column with a default requires updating each row of the table (to store the new
column value). However, if no default is specified, PostgreSQL is able to avoid the physical update.
So if you intend to fill the column with mostly nondefault values, it's best to add the column with

61

Chapter 5. Data Definition

no default, insert the correct values using uppATE, and then add any desired default as described
below.

5.5.2. Removing a Column

To remove a column, use a command like:

ALTER TABLE products DROP COLUMN description;

Whatever data was in the column disappears. Table constraints involving the column are dropped, too.
However, if the column is referenced by a foreign key constraint of another table, PostgreSQL will
not silently drop that constraint. You can authorize dropping everything that depends on the column
by adding CASCADE:

ALTER TABLE products DROP COLUMN description CASCADE;

See Section 5.13 for a description of the general mechanism behind this.

5.5.3. Adding a Constraint

To add a constraint, the table constraint syntax is used. For example:

ALTER TABLE products ADD CHECK (name <> ");
ALTER TABLE products ADD CONSTRAINT some_name UNIQUE (product_no);
ALTER TABLE products ADD FOREIGN KEY (product_group_id) REFERENCES product_groups;

To add a not-null constraint, which cannot be written as a table constraint, use this syntax:

ALTER TABLE products ALTER COLUMN product_no SET NOT NULL;

The constraint will be checked immediately, so the table data must satisfy the constraint before it can
be added.

5.5.4. Removing a Constraint

To remove a constraint you need to know its name. If you gave it a name then that’s easy. Otherwise the
system assigned a generated name, which you need to find out. The psql command \d tablename can
be helpful here; other interfaces might also provide a way to inspect table details. Then the command
is:

ALTER TABLE products DROP CONSTRAINT some_name;
(If you are dealing with a generated constraint name like $2, don’t forget that you’ll need to double-
quote it to make it a valid identifier.)

As with dropping a column, you need to add CASCADE if you want to drop a constraint that something
else depends on. An example is that a foreign key constraint depends on a unique or primary key
constraint on the referenced column(s).

62

Chapter 5. Data Definition

This works the same for all constraint types except not-null constraints. To drop a not null constraint
use:

ALTER TABLE products ALTER COLUMN product_no DROP NOT NULL;

(Recall that not-null constraints do not have names.)

5.5.5. Changing a Column’s Default Value
To set a new default for a column, use a command like:

ALTER TABLE products ALTER COLUMN price SET DEFAULT 7.77;

Note that this doesn’t affect any existing rows in the table, it just changes the default for future INSERT
commands.

To remove any default value, use:
ALTER TABLE products ALTER COLUMN price DROP DEFAULT;

This is effectively the same as setting the default to null. As a consequence, it is not an error to drop
a default where one hadn’t been defined, because the default is implicitly the null value.

5.5.6. Changing a Column’s Data Type
To convert a column to a different data type, use a command like:

ALTER TABLE products ALTER COLUMN price TYPE numeric(10,2);

This will succeed only if each existing entry in the column can be converted to the new type by an
implicit cast. If a more complex conversion is needed, you can add a USING clause that specifies how
to compute the new values from the old.

PostgreSQL will attempt to convert the column’s default value (if any) to the new type, as well as
any constraints that involve the column. But these conversions might fail, or might produce surprising
results. It’s often best to drop any constraints on the column before altering its type, and then add back
suitably modified constraints afterwards.

5.5.7. Renaming a Column

To rename a column:

ALTER TABLE products RENAME COLUMN product_no TO product_number;

5.5.8. Renaming a Table

To rename a table:

ALTER TABLE products RENAME TO items;

63

Chapter 5. Data Definition

5.6. Privileges

When an object is created, it is assigned an owner. The owner is normally the role that executed the
creation statement. For most kinds of objects, the initial state is that only the owner (or a superuser)
can do anything with the object. To allow other roles to use it, privileges must be granted.

There are different kinds of privileges: SELECT, INSERT, UPDATE, DELETE, TRUNCATE,
REFERENCES, TRIGGER, CREATE, CONNECT, TEMPORARY, EXECUTE, and USAGE. The privileges
applicable to a particular object vary depending on the object’s type (table, function, etc). For
complete information on the different types of privileges supported by PostgreSQL, refer to the
GRANT reference page. The following sections and chapters will also show you how those
privileges are used.

The right to modify or destroy an object is always the privilege of the owner only.

An object can be assigned to a new owner with an ALTER command of the appropriate kind for the
object, e.g. ALTER TABLE. Superusers can always do this; ordinary roles can only do it if they are
both the current owner of the object (or a member of the owning role) and a member of the new
owning role.

To assign privileges, the GRANT command is used. For example, if joe is an existing user, and
accounts is an existing table, the privilege to update the table can be granted with:

GRANT UPDATE ON accounts TO joe;

Writing ALL in place of a specific privilege grants all privileges that are relevant for the object type.

The special “user” name PUBLIC can be used to grant a privilege to every user on the system. Also,
“group” roles can be set up to help manage privileges when there are many users of a database — for
details see Chapter 20.

To revoke a privilege, use the fittingly named REVOKE command:
REVOKE ALL ON accounts FROM PUBLIC;

The special privileges of the object owner (i.e., the right to do DROP, GRANT, REVOKE, etc.) are always
implicit in being the owner, and cannot be granted or revoked. But the object owner can choose to
revoke his own ordinary privileges, for example to make a table read-only for himself as well as
others.

Ordinarily, only the object’s owner (or a superuser) can grant or revoke privileges on an object. How-
ever, it is possible to grant a privilege “with grant option”, which gives the recipient the right to grant
it in turn to others. If the grant option is subsequently revoked then all who received the privilege
from that recipient (directly or through a chain of grants) will lose the privilege. For details see the
GRANT and REVOKE reference pages.

5.7. Row Security Policies

In addition to the SQL-standard privilege system available through GRANT, tables can have row
security policies that restrict, on a per-user basis, which rows can be returned by normal queries or

64

Chapter 5. Data Definition

inserted, updated, or deleted by data modification commands. This feature is also known as Row-
Level Security. By default, tables do not have any policies, so that if a user has access privileges to a
table according to the SQL privilege system, all rows within it are equally available for querying or
updating.

When row security is enabled on a table (with ALTER TABLE ... ENABLE ROW LEVEL SECU-
RITY), all normal access to the table for selecting rows or modifying rows must be allowed by a
row security policy. (However, the table’s owner is typically not subject to row security policies.) If
no policy exists for the table, a default-deny policy is used, meaning that no rows are visible or can
be modified. Operations that apply to the whole table, such as TRUNCATE and REFERENCES, are not
subject to row security.

Row security policies can be specific to commands, or to roles, or to both. A policy can be specified to
apply to ALL commands, or to SELECT, INSERT, UPDATE, or DELETE. Multiple roles can be assigned
to a given policy, and normal role membership and inheritance rules apply.

To specify which rows are visible or modifiable according to a policy, an expression is required that
returns a Boolean result. This expression will be evaluated for each row prior to any conditions or
functions coming from the user’s query. (The only exceptions to this rule are leakproof functions,
which are guaranteed to not leak information; the optimizer may choose to apply such functions ahead
of the row-security check.) Rows for which the expression does not return t rue will not be processed.
Separate expressions may be specified to provide independent control over the rows which are visible
and the rows which are allowed to be modified. Policy expressions are run as part of the query and
with the privileges of the user running the query, although security-definer functions can be used to
access data not available to the calling user.

Superusers and roles with the BYPASSRLS attribute always bypass the row security system when
accessing a table. Table owners normally bypass row security as well, though a table owner can
choose to be subject to row security with ALTER TABLE ... FORCE ROW LEVEL SECURITY.

Enabling and disabling row security, as well as adding policies to a table, is always the privilege of
the table owner only.

Policies are created using the CREATE POLICY command, altered using the ALTER POLICY com-
mand, and dropped using the DROP POLICY command. To enable and disable row security for a
given table, use the ALTER TABLE command.

Each policy has a name and multiple policies can be defined for a table. As policies are table-specific,
each policy for a table must have a unique name. Different tables may have policies with the same
name.

When multiple policies apply to a given query, they are combined using OR, so that a row is accessible
if any policy allows it. This is similar to the rule that a given role has the privileges of all roles that
they are a member of.

As a simple example, here is how to create a policy on the account relation to allow only members
of the managers role to access rows, and only rows of their accounts:

CREATE TABLE accounts (manager text, company text, contact_email text);
ALTER TABLE accounts ENABLE ROW LEVEL SECURITY;

CREATE POLICY account_managers ON accounts TO managers
USING (manager = current_user);

The policy above implicitly provides a WITH CHECK clause identical to its USING clause, so that the
constraint applies both to rows selected by a command (so a manager cannot SELECT, UPDATE, Or

65

Chapter 5. Data Definition

DELETE existing rows belonging to a different manager) and to rows modified by a command (so
rows belonging to a different manager cannot be created via INSERT or UPDATE).

If no role is specified, or the special user name PUBLIC is used, then the policy applies to all users on
the system. To allow all users to access only their own row in a users table, a simple policy can be
used:

CREATE POLICY user_policy ON users
USING (user_name = current_user);

This works similarly to the previous example.

To use a different policy for rows that are being added to the table compared to those rows that are
visible, multiple policies can be combined. This pair of policies would allow all users to view all rows
in the users table, but only modify their own:

CREATE POLICY user_sel_policy ON users
FOR SELECT
USING (true);

CREATE POLICY user_mod_policy ON users
USING (user_name = current_user);

In a SELECT command, these two policies are combined using OR, with the net effect being that all
rows can be selected. In other command types, only the second policy applies, so that the effects are
the same as before.

Row security can also be disabled with the ALTER TABLE command. Disabling row security does not
remove any policies that are defined on the table; they are simply ignored. Then all rows in the table
are visible and modifiable, subject to the standard SQL privileges system.

Below is a larger example of how this feature can be used in production environments. The table
passwd emulates a Unix password file:

-— Simple passwd-file based example
CREATE TABLE passwd (

user_name text UNIQUE NOT NULL,
pwhash text,
uid int PRIMARY KEY,
gid int NOT NULL,
real_name text NOT NULL,
home_phone text,
extra_info text,
home_dir text NOT NULL,
shell text NOT NULL
)i
CREATE ROLE admin; -- Administrator
CREATE ROLE bob; —-— Normal user
CREATE ROLE alice; —-- Normal user

—-— Populate the table
INSERT INTO passwd VALUES
("admin’, "xxx’,0,0,’Admin’,”111-222-3333’ ,null,’ /root’,’ /bin/dash’);
INSERT INTO passwd VALUES
("bob’,"xxx",1,1,"Bob’,"123-456-7890’ ,null,’ /home/bob’,’ /bin/zsh’);
INSERT INTO passwd VALUES
("alice’,"xxx',2,1,"Alice’,’098-765-4321’ ,null,’ /home/alice’,’ /bin/zsh’);

66

Chapter 5. Data Definition

—-— Be sure to enable row level security on the table
ALTER TABLE passwd ENABLE ROW LEVEL SECURITY;

—-— Create policies
—-— Administrator can see all rows and add any rows
CREATE POLICY admin_all ON passwd TO admin USING (true) WITH CHECK (true);
—-— Normal users can view all rows
CREATE POLICY all_view ON passwd FOR SELECT USING (true);
—-— Normal users can update their own records, but
—-— limit which shells a normal user is allowed to set
CREATE POLICY user_mod ON passwd FOR UPDATE
USING (current_user = user_name)
WITH CHECK (
current_user = user_name AND
shell IN (’/bin/bash’,’/bin/sh’,’/bin/dash’,’/bin/zsh’,’ /bin/tcsh’)
)i

—— Allow admin all normal rights
GRANT SELECT, INSERT, UPDATE, DELETE ON passwd TO admin;
—-— Users only get select access on public columns
GRANT SELECT
(user_name, uid, gid, real_name, home_phone, extra_info, home_dir, shell)
ON passwd TO public;
—-— Allow users to update certain columns
GRANT UPDATE
(pwhash, real_name, home_phone, extra_info, shell)
ON passwd TO public;

As with any security settings, it’s important to test and ensure that the system is behaving as expected.
Using the example above, this demonstrates that the permission system is working properly.

—-— admin can view all rows and fields
postgres=> set role admin;

SET

postgres=> table passwd;

user_name | pwhash | uid | gid | real_name | home_phone | extra_info | home_dir |
——————————— Bt e st it e it e e e T
admin | xxx | 0 | 0 | Admin | 111-222-3333 | | /root |
bob | xxx \ 1] 1 | Bob | 123-456-7890 | | /home/bob |
alice | xxx | 2 | 1 | Alice | 098-765-4321 | | /home/alice |
(3 rows)

—-— Test what Alice is able to do

postgres=> set role alice;

SET

postgres=> table passwd;

ERROR: permission denied for relation passwd

postgres=> select user_name,real_name,home_phone,extra_info,home_dir,shell from passwd;

user_name | real_name | home_phone | extra_info | home_dir | shell
——————————— Bt e s e
admin | Admin | 111-222-3333 | | /root | /bin/dash
bob | Bob | 123-456-7890 | | /home/bob | /bin/zsh
alice | Alice | 098-765-4321 | | /home/alice | /bin/zsh
(3 rows)
postgres=> update passwd set user_name = ' Jjoe’;
ERROR: permission denied for relation passwd

67

Chapter 5. Data Definition

—-— Alice is allowed to change her own real_name, but no others

postgres=> update passwd set real_name = ’'Alice Doe’;

UPDATE 1

postgres=> update passwd set real_name = ’'John Doe’ where user_name = ’'admin’;
UPDATE O

postgres=> update passwd set shell = ’/bin/xx’;

ERROR: new row violates WITH CHECK OPTION for "passwd"

postgres=> delete from passwd;

ERROR: permission denied for relation passwd

postgres=> insert into passwd (user_name) values (’'xxx’);

ERROR: permission denied for relation passwd

—— Alice can change her own password; RLS silently prevents updating other rows
postgres=> update passwd set pwhash = ’"abc’;

UPDATE 1

Referential integrity checks, such as unique or primary key constraints and foreign key references,
always bypass row security to ensure that data integrity is maintained. Care must be taken when
developing schemas and row level policies to avoid “covert channel” leaks of information through
such referential integrity checks.

In some contexts it is important to be sure that row security is not being applied. For example, when
taking a backup, it could be disastrous if row security silently caused some rows to be omitted from
the backup. In such a situation, you can set the row_security configuration parameter to of £. This
does not in itself bypass row security; what it does is throw an error if any query’s results would get
filtered by a policy. The reason for the error can then be investigated and fixed.

In the examples above, the policy expressions consider only the current values in the row to be ac-
cessed or updated. This is the simplest and best-performing case; when possible, it’s best to design
row security applications to work this way. If it is necessary to consult other rows or other tables
to make a policy decision, that can be accomplished using sub-SELECTs, or functions that contain
SELECTS, in the policy expressions. Be aware however that such accesses can create race conditions
that could allow information leakage if care is not taken. As an example, consider the following table
design:

—— definition of privilege groups
CREATE TABLE groups (group_id int PRIMARY KEY,
group_name text NOT NULL);

INSERT INTO groups VALUES
(1, "low’),
(2, "medium’),
(5, "high’);

GRANT ALL ON groups TO alice; -- alice is the administrator
GRANT SELECT ON groups TO public;

—— definition of users’ privilege levels
CREATE TABLE users (user_name text PRIMARY KEY,
group_id int NOT NULL REFERENCES groups) ;

INSERT INTO users VALUES
("alice’, 5),
("bob’, 2),
('mallory’, 2);

GRANT ALL ON users TO alice;
GRANT SELECT ON users TO public;

68

Chapter 5. Data Definition

—-— table holding the information to be protected
CREATE TABLE information (info text,
group_id int NOT NULL REFERENCES groups) ;

INSERT INTO information VALUES
("barely secret’, 1),
("slightly secret’, 2),
("very secret’, 5);

ALTER TABLE information ENABLE ROW LEVEL SECURITY;

-— a row should be visible to/updatable by users whose security group_id is
—-— greater than or equal to the row’s group_id
CREATE POLICY fp_s ON information FOR SELECT
USING (group_id <= (SELECT group_id FROM users WHERE user_name = current_user));
CREATE POLICY fp_u ON information FOR UPDATE
USING (group_id <= (SELECT group_id FROM users WHERE user_name = current_user));

—-— we rely only on RLS to protect the information table
GRANT ALL ON information TO public;

Now suppose that a1ice wishes to change the “slightly secret” information, but decides thatmallory
should not be trusted with the new content of that row, so she does:

BEGIN;

UPDATE users SET group_id = 1 WHERE user_name = 'mallory’;

UPDATE information SET info = ’secret from mallory’ WHERE group_id = 2;
COMMIT;

That looks safe; there is no window wherein mal1lory should be able to see the “secret from mallory”
string. However, there is a race condition here. If mallory is concurrently doing, say,

SELECT * FROM information WHERE group_id = 2 FOR UPDATE;

and her transaction is in READ COMMITTED mode, it is possible for her to see “secret from mallory”.
That happens if her transaction reaches the information row just after alice’s does. It blocks
waiting for alice’s transaction to commit, then fetches the updated row contents thanks to the FOR
UPDATE clause. However, it does not fetch an updated row for the implicit SELECT from users,
because that sub-SELECT did not have FOR UPDATE; instead the users row is read with the snapshot
taken at the start of the query. Therefore, the policy expression tests the old value of mallory’s
privilege level and allows her to see the updated row.

There are several ways around this problem. One simple answer is to use SELECT ... FOR SHARE
in sub-SELECTs in row security policies. However, that requires granting UPDATE privilege on the
referenced table (here users) to the affected users, which might be undesirable. (But another row
security policy could be applied to prevent them from actually exercising that privilege; or the sub-
SELECT could be embedded into a security definer function.) Also, heavy concurrent use of row
share locks on the referenced table could pose a performance problem, especially if updates of it are
frequent. Another solution, practical if updates of the referenced table are infrequent, is to take an
exclusive lock on the referenced table when updating it, so that no concurrent transactions could be
examining old row values. Or one could just wait for all concurrent transactions to end after com-
mitting an update of the referenced table and before making changes that rely on the new security
situation.

For additional details sese CREATE POLICY and ALTER TABLE.

69

Chapter 5. Data Definition

5.8. Schemas

A PostgreSQL database cluster contains one or more named databases. Users and groups of users are
shared across the entire cluster, but no other data is shared across databases. Any given client con-
nection to the server can access only the data in a single database, the one specified in the connection
request.

Note: Users of a cluster do not necessarily have the privilege to access every database in the
cluster. Sharing of user names means that there cannot be different users named, say, joe in
two databases in the same cluster; but the system can be configured to allow joe access to only
some of the databases.

A database contains one or more named schemas, which in turn contain tables. Schemas also contain
other kinds of named objects, including data types, functions, and operators. The same object name
can be used in different schemas without conflict; for example, both schemal and myschema can
contain tables named myt able. Unlike databases, schemas are not rigidly separated: a user can access
objects in any of the schemas in the database he is connected to, if he has privileges to do so.

There are several reasons why one might want to use schemas:

« To allow many users to use one database without interfering with each other.
 To organize database objects into logical groups to make them more manageable.

+ Third-party applications can be put into separate schemas so they do not collide with the names of
other objects.

Schemas are analogous to directories at the operating system level, except that schemas cannot be
nested.

5.8.1. Creating a Schema

To create a schema, use the CREATE SCHEMA command. Give the schema a name of your choice.
For example:

CREATE SCHEMA myschema;

To create or access objects in a schema, write a qualified name consisting of the schema name and
table name separated by a dot:

schema.table

This works anywhere a table name is expected, including the table modification commands and the
data access commands discussed in the following chapters. (For brevity we will speak of tables only,
but the same ideas apply to other kinds of named objects, such as types and functions.)

Actually, the even more general syntax

database.schema.table

can be used too, but at present this is just for pro forma compliance with the SQL standard. If you
write a database name, it must be the same as the database you are connected to.

So to create a table in the new schema, use:

70

Chapter 5. Data Definition
CREATE TABLE myschema.mytable (

)

To drop a schema if it’s empty (all objects in it have been dropped), use:
DROP SCHEMA myschema;

To drop a schema including all contained objects, use:

DROP SCHEMA myschema CASCADE;

See Section 5.13 for a description of the general mechanism behind this.

Often you will want to create a schema owned by someone else (since this is one of the ways to
restrict the activities of your users to well-defined namespaces). The syntax for that is:

CREATE SCHEMA schema_name AUTHORIZATION user_name;

You can even omit the schema name, in which case the schema name will be the same as the user
name. See Section 5.8.6 for how this can be useful.

Schema names beginning with pg__ are reserved for system purposes and cannot be created by users.

5.8.2. The Public Schema

In the previous sections we created tables without specifying any schema names. By default such
tables (and other objects) are automatically put into a schema named “public”. Every new database
contains such a schema. Thus, the following are equivalent:

CREATE TABLE products (...);
and:

CREATE TABLE public.products (...);

5.8.3. The Schema Search Path

Qualified names are tedious to write, and it’s often best not to wire a particular schema name into
applications anyway. Therefore tables are often referred to by unqualified names, which consist of
just the table name. The system determines which table is meant by following a search path, which is
a list of schemas to look in. The first matching table in the search path is taken to be the one wanted.
If there is no match in the search path, an error is reported, even if matching table names exist in other
schemas in the database.

The ability to create like-named objects in different schemas complicates writing a query that refer-
ences precisely the same objects every time. It also opens up the potential for users to change the
behavior of other users’ queries, maliciously or accidentally. Due to the prevalence of unqualified
names in queries and their use in PostgreSQL internals, adding a schema to search_path effec-
tively trusts all users having CREATE privilege on that schema. When you run an ordinary query, a

71

Chapter 5. Data Definition

malicious user able to create objects in a schema of your search path can take control and execute
arbitrary SQL functions as though you executed them.

The first schema named in the search path is called the current schema. Aside from being the first
schema searched, it is also the schema in which new tables will be created if the CREATE TABLE
command does not specify a schema name.

To show the current search path, use the following command:
SHOW search_path;
In the default setup this returns:

search_path

"Suser", public

The first element specifies that a schema with the same name as the current user is to be searched. If
no such schema exists, the entry is ignored. The second element refers to the public schema that we
have seen already.

The first schema in the search path that exists is the default location for creating new objects. That
is the reason that by default objects are created in the public schema. When objects are referenced
in any other context without schema qualification (table modification, data modification, or query
commands) the search path is traversed until a matching object is found. Therefore, in the default
configuration, any unqualified access again can only refer to the public schema.

To put our new schema in the path, we use:
SET search_path TO myschema,public;

(We omit the $user here because we have no immediate need for it.) And then we can access the
table without schema qualification:

DROP TABLE mytable;

Also, since myschema is the first element in the path, new objects would by default be created in it.

We could also have written:
SET search_path TO myschema;

Then we no longer have access to the public schema without explicit qualification. There is nothing
special about the public schema except that it exists by default. It can be dropped, too.

See also Section 9.25 for other ways to manipulate the schema search path.

The search path works in the same way for data type names, function names, and operator names as it
does for table names. Data type and function names can be qualified in exactly the same way as table
names. If you need to write a qualified operator name in an expression, there is a special provision:
you must write

OPERATOR (schema.operator)
This is needed to avoid syntactic ambiguity. An example is:
SELECT 3 OPERATOR (pg_catalog.+) 4;

In practice one usually relies on the search path for operators, so as not to have to write anything so
ugly as that.

72

Chapter 5. Data Definition

5.8.4. Schemas and Privileges

By default, users cannot access any objects in schemas they do not own. To allow that, the owner of
the schema must grant the USAGE privilege on the schema. To allow users to make use of the objects
in the schema, additional privileges might need to be granted, as appropriate for the object.

A user can also be allowed to create objects in someone else’s schema. To allow that, the CREATE
privilege on the schema needs to be granted. Note that by default, everyone has CREATE and USAGE
privileges on the schema public. This allows all users that are able to connect to a given database to
create objects in its public schema. Some usage patterns call for revoking that privilege:

REVOKE CREATE ON SCHEMA public FROM PUBLIC;

(The first “public” is the schema, the second “public” means “every user”. In the first sense it is an
identifier, in the second sense it is a key word, hence the different capitalization; recall the guidelines
from Section 4.1.1.)

5.8.5. The System Catalog Schema

In addition to public and user-created schemas, each database contains a pg_catalog schema,
which contains the system tables and all the built-in data types, functions, and operators. pg_catalog
is always effectively part of the search path. If it is not named explicitly in the path then it is implicitly
searched before searching the path’s schemas. This ensures that built-in names will always be findable.
However, you can explicitly place pg_catalog at the end of your search path if you prefer to have
user-defined names override built-in names.

Since system table names begin with pg_, it is best to avoid such names to ensure that you won’t
suffer a conflict if some future version defines a system table named the same as your table. (With the
default search path, an unqualified reference to your table name would then be resolved as the system
table instead.) System tables will continue to follow the convention of having names beginning with
pg_, so that they will not conflict with unqualified user-table names so long as users avoid the pg_
prefix.

5.8.6. Usage Patterns

Schemas can be used to organize your data in many ways. There are a few usage patterns easily
supported by the default configuration, only one of which suffices when database users mistrust other
database users:

+ Constrain ordinary users to user-private schemas. To implement this, issue REVOKE CREATE ON
SCHEMA public FROM PUBLIC, and create a schema for each user with the same name as that
user. If affected users had logged in before this, consider auditing the public schema for objects
named like objects in schema pg_catalog. Recall that the default search path starts with suser,
which resolves to the user name. Therefore, if each user has a separate schema, they access their
own schemas by default.

« Remove the public schema from each user’s default search path using ALTER ROLE user SET
search_path = "$user". Everyone retains the ability to create objects in the public schema,
but only qualified names will choose those objects. While qualified table references are fine, calls
to functions in the public schema will be unsafe or unreliable. Also, a user holding the CREATEROLE
privilege can undo this setting and issue arbitrary queries under the identity of users relying on the

73

Chapter 5. Data Definition

setting. If you create functions or extensions in the public schema or grant CREATEROLE to users
not warranting this almost-superuser ability, use the first pattern instead.

« Remove the public schema from search_path in postgresgl.conf. The ensuing user expe-
rience matches the previous pattern. In addition to that pattern’s implications for functions and
CREATEROLE, this trusts database owners like CREATEROLE. If you create functions or extensions in
the public schema or assign the CREATEROLE privilege, CREATEDB privilege or individual database
ownership to users not warranting almost-superuser access, use the first pattern instead.

« Keep the default. All users access the public schema implicitly. This simulates the situation where
schemas are not available at all, giving a smooth transition from the non-schema-aware world.
However, any user can issue arbitrary queries under the identity of any user not electing to protect
itself individually. This pattern is acceptable only when the database has a single user or a few
mutually-trusting users.

For any pattern, to install shared applications (tables to be used by everyone, additional functions pro-
vided by third parties, etc.), put them into separate schemas. Remember to grant appropriate privileges
to allow the other users to access them. Users can then refer to these additional objects by qualifying
the names with a schema name, or they can put the additional schemas into their search path, as they
choose.

5.8.7. Portability

In the SQL standard, the notion of objects in the same schema being owned by different users does
not exist. Moreover, some implementations do not allow you to create schemas that have a different
name than their owner. In fact, the concepts of schema and user are nearly equivalent in a database
system that implements only the basic schema support specified in the standard. Therefore, many
users consider qualified names to really consist of user_name.table name. This is how PostgreSQL
will effectively behave if you create a per-user schema for every user.

Also, there is no concept of a public schema in the SQL standard. For maximum conformance to
the standard, you should not use the public schema.

Of course, some SQL database systems might not implement schemas at all, or provide namespace
support by allowing (possibly limited) cross-database access. If you need to work with those systems,
then maximum portability would be achieved by not using schemas at all.

5.9. Inheritance

PostgreSQL implements table inheritance, which can be a useful tool for database designers.
(SQL:1999 and later define a type inheritance feature, which differs in many respects from the
features described here.)

Let’s start with an example: suppose we are trying to build a data model for cities. Each state has many
cities, but only one capital. We want to be able to quickly retrieve the capital city for any particular
state. This can be done by creating two tables, one for state capitals and one for cities that are not
capitals. However, what happens when we want to ask for data about a city, regardless of whether it
is a capital or not? The inheritance feature can help to resolve this problem. We define the capitals
table so that it inherits from cities:

CREATE TABLE cities (

74

Chapter 5. Data Definition

name text,
population float,
altitude int -— in feet

)

CREATE TABLE capitals (
state char (2)
) INHERITS (cities);

In this case, the capitals table inherits all the columns of its parent table, cities. State capitals
also have an extra column, state, that shows their state.

In PostgreSQL, a table can inherit from zero or more other tables, and a query can reference either all
rows of a table or all rows of a table plus all of its descendant tables. The latter behavior is the default.
For example, the following query finds the names of all cities, including state capitals, that are located
at an altitude over 500 feet:

SELECT name, altitude
FROM cities
WHERE altitude > 500;

Given the sample data from the PostgreSQL tutorial (see Section 2.1), this returns:

name | altitude
___________ b
Las Vegas | 2174
Mariposa | 1953
Madison | 845

On the other hand, the following query finds all the cities that are not state capitals and are situated at
an altitude over 500 feet:

SELECT name, altitude
FROM ONLY cities
WHERE altitude > 500;

name | altitude
___________ b
Las Vegas | 2174

Mariposa | 1953

Here the oNLY keyword indicates that the query should apply only to cities, and not any tables
below cities in the inheritance hierarchy. Many of the commands that we have already discussed
— SELECT, UPDATE and DELETE — support the ONLY keyword.

You can also write the table name with a trailing to explicitly specify that descendant tables are
included:

SELECT name, altitude
FROM citiesx
WHERE altitude > 500;

Writing = is not necessary, since this behavior is the default (unless you have changed the setting
of the sql_inheritance configuration option). However writing = might be useful to emphasize that
additional tables will be searched.

75

Chapter 5. Data Definition

In some cases you might wish to know which table a particular row originated from. There is a system
column called tableoid in each table which can tell you the originating table:

SELECT c.tableoid, c.name, c.altitude
FROM cities c
WHERE c.altitude > 500;

which returns:

tableoid | name | altitude

__________ e
139793 | Las Vegas | 2174
139793 | Mariposa | 1953
139798 | Madison | 845

(If you try to reproduce this example, you will probably get different numeric OIDs.) By doing a join
with pg_class you can see the actual table names:

SELECT p.relname, c.name, c.altitude
FROM cities ¢, pg_class p
WHERE c.altitude > 500 AND c.tableoid = p.oid;

which returns:

relname | name | altitude
,,,,,,,,,, e
cities | Las Vegas | 2174
cities | Mariposa | 1953
capitals | Madison | 845

Another way to get the same effect is to use the regclass pseudo-type, which will print the table
OID symbolically:

SELECT c.tableoid::regclass, c.name, c.altitude
FROM cities c
WHERE c.altitude > 500;

Inheritance does not automatically propagate data from INSERT or COPY commands to other tables in
the inheritance hierarchy. In our example, the following INSERT statement will fail:

INSERT INTO cities (name, population, altitude, state)
VALUES (’Albany’, NULL, NULL, ’NY’);

We might hope that the data would somehow be routed to the capitals table, but this does not
happen: INSERT always inserts into exactly the table specified. In some cases it is possible to redirect
the insertion using a rule (see Chapter 38). However that does not help for the above case because the
cities table does not contain the column state, and so the command will be rejected before the
rule can be applied.

All check constraints and not-null constraints on a parent table are automatically inherited by its
children, unless explicitly specified otherwise with NO INHERIT clauses. Other types of constraints
(unique, primary key, and foreign key constraints) are not inherited.

A table can inherit from more than one parent table, in which case it has the union of the columns
defined by the parent tables. Any columns declared in the child table’s definition are added to these.

76

Chapter 5. Data Definition

If the same column name appears in multiple parent tables, or in both a parent table and the child’s
definition, then these columns are “merged” so that there is only one such column in the child table.
To be merged, columns must have the same data types, else an error is raised. Inheritable check
constraints and not-null constraints are merged in a similar fashion. Thus, for example, a merged
column will be marked not-null if any one of the column definitions it came from is marked not-null.
Check constraints are merged if they have the same name, and the merge will fail if their conditions
are different.

Table inheritance is typically established when the child table is created, using the INHERITS clause
of the CREATE TABLE statement. Alternatively, a table which is already defined in a compatible
way can have a new parent relationship added, using the INHERIT variant of ALTER TABLE. To do
this the new child table must already include columns with the same names and types as the columns
of the parent. It must also include check constraints with the same names and check expressions as
those of the parent. Similarly an inheritance link can be removed from a child using the NO INHERIT
variant of ALTER TABLE. Dynamically adding and removing inheritance links like this can be useful
when the inheritance relationship is being used for table partitioning (see Section 5.10).

One convenient way to create a compatible table that will later be made a new child is to use the
LIKE clause in CREATE TABLE. This creates a new table with the same columns as the source table. If
there are any CHECK constraints defined on the source table, the INCLUDING CONSTRAINTS option to
LIKE should be specified, as the new child must have constraints matching the parent to be considered
compatible.

A parent table cannot be dropped while any of its children remain. Neither can columns or check
constraints of child tables be dropped or altered if they are inherited from any parent tables. If you
wish to remove a table and all of its descendants, one easy way is to drop the parent table with the
CASCADE option.

ALTER TABLE will propagate any changes in column data definitions and check constraints down the
inheritance hierarchy. Again, dropping columns that are depended on by other tables is only possible
when using the CASCADE option. ALTER TABLE follows the same rules for duplicate column merging
and rejection that apply during CREATE TABLE.

Inherited queries perform access permission checks on the parent table only. Thus, for example, grant-
ing UPDATE permission on the cities table implies permission to update rows in the capitals table
as well, when they are accessed through cities. This preserves the appearance that the data is (also)
in the parent table. But the capitals table could not be updated directly without an additional grant.
In a similar way, the parent table’s row security policies (see Section 5.7) are applied to rows coming
from child tables during an inherited query. A child table’s policies, if any, are applied only when it
is the table explicitly named in the query; and in that case, any policies attached to its parent(s) are
ignored.

Foreign tables (see Section 5.11) can also be part of inheritance hierarchies, either as parent or child
tables, just as regular tables can be. If a foreign table is part of an inheritance hierarchy then any
operations not supported by the foreign table are not supported on the whole hierarchy either.

5.9.1. Caveats

Note that not all SQL commands are able to work on inheritance hierarchies. Commands that are
used for data querying, data modification, or schema modification (e.g., SELECT, UPDATE, DELETE,
most variants of ALTER TABLE, but not INSERT or ALTER TABLE ... RENAME) typically default
to including child tables and support the ONLY notation to exclude them. Commands that do database
maintenance and tuning (e.g., REINDEX, VACUUM) typically only work on individual, physical tables
and do not support recursing over inheritance hierarchies. The respective behavior of each individual
command is documented in its reference page (Reference I, SQL Commands).

77

Chapter 5. Data Definition

A serious limitation of the inheritance feature is that indexes (including unique constraints) and for-
eign key constraints only apply to single tables, not to their inheritance children. This is true on both
the referencing and referenced sides of a foreign key constraint. Thus, in the terms of the above ex-
ample:

« If we declared cities.name to be UNIQUE or a PRIMARY KEY, this would not stop the capitals
table from having rows with names duplicating rows in cities. And those duplicate rows would
by default show up in queries from cities. In fact, by default capitals would have no unique
constraint at all, and so could contain multiple rows with the same name. You could add a unique
constraint to capitals, but this would not prevent duplication compared to cities.

- Similarly, if we were to specify that cities.name REFERENCES some other table, this constraint
would not automatically propagate to capitals. In this case you could work around it by manually
adding the same REFERENCES constraint to capitals.

+ Specifying that another table’s column REFERENCES cities (name) would allow the other table
to contain city names, but not capital names. There is no good workaround for this case.

These deficiencies will probably be fixed in some future release, but in the meantime considerable
care is needed in deciding whether inheritance is useful for your application.

5.10. Partitioning

PostgreSQL supports basic table partitioning. This section describes why and how to implement par-
titioning as part of your database design.

5.10.1. Overview

Partitioning refers to splitting what is logically one large table into smaller physical pieces. Partition-
ing can provide several benefits:

« Query performance can be improved dramatically in certain situations, particularly when most of
the heavily accessed rows of the table are in a single partition or a small number of partitions. The
partitioning substitutes for leading columns of indexes, reducing index size and making it more
likely that the heavily-used parts of the indexes fit in memory.

« When queries or updates access a large percentage of a single partition, performance can be im-
proved by taking advantage of sequential scan of that partition instead of using an index and random
access reads scattered across the whole table.

+ Bulk loads and deletes can be accomplished by adding or removing partitions, if that requirement
is planned into the partitioning design. ALTER TABLE NO INHERIT and DROP TABLE are both far
faster than a bulk operation. These commands also entirely avoid the vAcuUM overhead caused by
a bulk DELETE.

« Seldom-used data can be migrated to cheaper and slower storage media.

The benefits will normally be worthwhile only when a table would otherwise be very large. The exact
point at which a table will benefit from partitioning depends on the application, although a rule of
thumb is that the size of the table should exceed the physical memory of the database server.

Currently, PostgreSQL supports partitioning via table inheritance. Each partition must be created as a
child table of a single parent table. The parent table itself is normally empty; it exists just to represent

78

Chapter 5. Data Definition

the entire data set. You should be familiar with inheritance (see Section 5.9) before attempting to set
up partitioning.

The following forms of partitioning can be implemented in PostgreSQL.:

Range Partitioning

The table is partitioned into “ranges” defined by a key column or set of columns, with no overlap
between the ranges of values assigned to different partitions. For example one might partition by
date ranges, or by ranges of identifiers for particular business objects.

List Partitioning

The table is partitioned by explicitly listing which key values appear in each partition.

5.10.2. Implementing Partitioning

To set up a partitioned table, do the following:

1. Create the “master” table, from which all of the partitions will inherit.

This table will contain no data. Do not define any check constraints on this table, unless you
intend them to be applied equally to all partitions. There is no point in defining any indexes or
unique constraints on it, either.

2. Create several “child” tables that each inherit from the master table. Normally, these tables will
not add any columns to the set inherited from the master.

We will refer to the child tables as partitions, though they are in every way normal PostgreSQL
tables (or, possibly, foreign tables).

3. Add table constraints to the partition tables to define the allowed key values in each partition.
Typical examples would be:
CHECK (x = 1)
CHECK (county IN (’'Oxfordshire’, ’'Buckinghamshire’, ’'Warwickshire’))
CHECK (outletID >= 100 AND outletID < 200)
Ensure that the constraints guarantee that there is no overlap between the key values permitted in
different partitions. A common mistake is to set up range constraints like:

CHECK (outletID BETWEEN 100 AND 200)
CHECK (outletID BETWEEN 200 AND 300)
This is wrong since it is not clear which partition the key value 200 belongs in.

Note that there is no difference in syntax between range and list partitioning; those terms are
descriptive only.

4. For each partition, create an index on the key column(s), as well as any other indexes you might
want. (The key index is not strictly necessary, but in most scenarios it is helpful. If you intend
the key values to be unique then you should always create a unique or primary-key constraint for
each partition.)

5. Optionally, define a trigger or rule to redirect data inserted into the master table to the appropriate
partition.

6. Ensure that the constraint_exclusion configuration parameter is not disabled in
postgresqgl.conf. If it is, queries will not be optimized as desired.

79

Chapter 5. Data Definition

For example, suppose we are constructing a database for a large ice cream company. The company
measures peak temperatures every day as well as ice cream sales in each region. Conceptually, we

want a table like:

CREATE TABLE measurement (

city_id int not null,
logdate date not null,
peaktemp int,
unitsales int

)

We know that most queries will access just the last week’s, month’s or quarter’s data, since the main
use of this table will be to prepare online reports for management. To reduce the amount of old data
that needs to be stored, we decide to only keep the most recent 3 years worth of data. At the beginning

of each month we will remove the oldest month’s data.

In this situation we can use partitioning to help us meet all of our different requirements for the
measurements table. Following the steps outlined above, partitioning can be set up as follows:

1. The master table is the measurement table, declared exactly as above.

2. Next we create one partition for each active month:

CREATE TABLE measurement_y2006m02 ()
CREATE TABLE measurement_y2006m03 ()

CREATE TABLE measurement_y2007mll ()
CREATE TABLE measurement_y2007ml2 ()
CREATE TABLE measurement_y2008m01 ()

INHERITS (measurement) ;
INHERITS (measurement);

INHERITS (measurement) ;
INHERITS (measurement) ;
INHERITS (measurement) ;

Each of the partitions are complete tables in their own right, but they inherit their definitions from

the measurement table.

This solves one of our problems: deleting old data. Each month, all we will need to do is perform
a DROP TABLE on the oldest child table and create a new child table for the new month’s data.
3. We must provide non-overlapping table constraints. Rather than just creating the partition tables

as above, the table creation script should really be:

CREATE TABLE measurement_y2006m02 (

CHECK (logdate >= DATE ’'2006-02-01" AND logdate

) INHERITS (measurement);
CREATE TABLE measurement_y2006m03 (

CHECK (logdate >= DATE ’2006-03-01" AND logdate

) INHERITS (measurement);

CREATE TABLE measurement_y2007mll (

CHECK (logdate >= DATE ’'2007-11-01’" AND logdate

) INHERITS (measurement);
CREATE TABLE measurement_y2007ml2 (

CHECK (logdate >= DATE ’'2007-12-01’ AND logdate

) INHERITS (measurement);
CREATE TABLE measurement_y2008m01 (

CHECK (logdate >= DATE ’'2008-01-01’ AND logdate

) INHERITS (measurement);
4. We probably need indexes on the key columns too:

CREATE INDEX measurement_y2006m02_logdate ON
CREATE INDEX measurement_y2006m03_logdate ON

CREATE INDEX measurement_y2007mll_logdate ON

DATE

DATE

DATE

DATE

DATE

72006-03-01")

72006-04-01")

72007-12-01")

72008-01-01")

72008-02-01")

measurement_y2006m02 (logdate);
measurement_y2006m03 (logdate);

measurement_y2007mll (logdate);

80

Chapter 5. Data Definition

CREATE INDEX measurement_y2007ml2_logdate ON measurement_y2007ml2 (logdate);
CREATE INDEX measurement_y2008m0l_logdate ON measurement_y2008m0l (logdate);
We choose not to add further indexes at this time.

. We want our application to be able to say INSERT INTO measurement ... and have the data
be redirected into the appropriate partition table. We can arrange that by attaching a suitable
trigger function to the master table. If data will be added only to the latest partition, we can use a
very simple trigger function:

CREATE OR REPLACE FUNCTION measurement_insert_trigger ()

RETURNS TRIGGER AS $$

BEGIN
INSERT INTO measurement_y2008m0l1 VALUES (NEW.x);
RETURN NULL;

END;

$S

LANGUAGE plpgsgl;

After creating the function, we create a trigger which calls the trigger function:

CREATE TRIGGER insert_measurement_trigger

BEFORE INSERT ON measurement

FOR EACH ROW EXECUTE PROCEDURE measurement_insert_trigger();
We must redefine the trigger function each month so that it always points to the current partition.
The trigger definition does not need to be updated, however.

We might want to insert data and have the server automatically locate the partition into which the
row should be added. We could do this with a more complex trigger function, for example:

CREATE OR REPLACE FUNCTION measurement_insert_trigger ()
RETURNS TRIGGER AS $$
BEGIN
IF (NEW.logdate >= DATE ’'2006-02-01" AND
NEW.logdate < DATE '2006-03-01’") THEN
INSERT INTO measurement_y2006m02 VALUES (NEW.x);
ELSIF (NEW.logdate >= DATE '2006-03-01" AND
NEW.logdate < DATE ’"2006-04-01") THEN
INSERT INTO measurement_y2006m03 VALUES (NEW.x);

ELSIF (NEW.logdate >= DATE ’2008-01-01’ AND
NEW.logdate < DATE ’2008-02-01") THEN
INSERT INTO measurement_y2008m01 VALUES (NEW.x);
ELSE
RAISE EXCEPTION ’Date out of range. Fix the measurement_insert_trigger ()
END IF;
RETURN NULL;
END;
$S
LANGUAGE plpgsgl;
The trigger definition is the same as before. Note that each IF test must exactly match the CHECK
constraint for its partition.

While this function is more complex than the single-month case, it doesn’t need to be updated as
often, since branches can be added in advance of being needed.

Note: In practice it might be best to check the newest partition first, if most inserts go into
that partition. For simplicity we have shown the trigger’s tests in the same order as in other
parts of this example.

81

fur

Chapter 5. Data Definition

As we can see, a complex partitioning scheme could require a substantial amount of DDL. In the
above example we would be creating a new partition each month, so it might be wise to write a script
that generates the required DDL automatically.

5.10.3. Managing Partitions

Normally the set of partitions established when initially defining the table are not intended to remain
static. It is common to want to remove old partitions of data and periodically add new partitions
for new data. One of the most important advantages of partitioning is precisely that it allows this
otherwise painful task to be executed nearly instantaneously by manipulating the partition structure,
rather than physically moving large amounts of data around.

The simplest option for removing old data is simply to drop the partition that is no longer necessary:
DROP TABLE measurement_y2006m02;

This can very quickly delete millions of records because it doesn’t have to individually delete every
record.

Another option that is often preferable is to remove the partition from the partitioned table but retain
access to it as a table in its own right:

ALTER TABLE measurement_y2006m02 NO INHERIT measurement;

This allows further operations to be performed on the data before it is dropped. For example, this is
often a useful time to back up the data using cCopY, pg_dump, or similar tools. It might also be a useful
time to aggregate data into smaller formats, perform other data manipulations, or run reports.

Similarly we can add a new partition to handle new data. We can create an empty partition in the
partitioned table just as the original partitions were created above:

CREATE TABLE measurement_y2008m02 (
CHECK (logdate >= DATE ’2008-02-01" AND logdate < DATE ’2008-03-01'")
) INHERITS (measurement);

As an alternative, it is sometimes more convenient to create the new table outside the partition struc-
ture, and make it a proper partition later. This allows the data to be loaded, checked, and transformed
prior to it appearing in the partitioned table:

CREATE TABLE measurement_y2008m02
(LIKE measurement INCLUDING DEFAULTS INCLUDING CONSTRAINTS) ;
ALTER TABLE measurement_y2008m02 ADD CONSTRAINT y2008m02
CHECK (logdate >= DATE ’'2008-02-01’ AND logdate < DATE ’'2008-03-01");
\copy measurement_y2008m02 from ’'measurement_y2008m02’
—-— possibly some other data preparation work
ALTER TABLE measurement_y2008m02 INHERIT measurement;

82

Chapter 5. Data Definition

5.10.4. Partitioning and Constraint Exclusion

Constraint exclusion is a query optimization technique that improves performance for partitioned
tables defined in the fashion described above. As an example:

SET constraint_exclusion = on;
SELECT count () FROM measurement WHERE logdate >= DATE ’2008-01-01'";

Without constraint exclusion, the above query would scan each of the partitions of the measurement
table. With constraint exclusion enabled, the planner will examine the constraints of each partition
and try to prove that the partition need not be scanned because it could not contain any rows meeting
the query’s WHERE clause. When the planner can prove this, it excludes the partition from the query
plan.

You can use the EXPLAIN command to show the difference between a plan with
constraint_exclusion on and a plan with it off. A typical unoptimized plan for this type of table
setup is:

SET constraint_exclusion = off;
EXPLAIN SELECT count (x) FROM measurement WHERE logdate >= DATE ’2008-01-01";

QUERY PLAN
Aggregate (cost=158.66..158.68 rows=1 width=0)
-> Append (cost=0.00..151.88 rows=2715 width=0)
-> Seqg Scan on measurement (cost=0.00..30.38 rows=543 width=0)
Filter: (logdate >= ’2008-01-01’::date)

-> Seq Scan on measurement_y2006m02 measurement (cost=0.00..30.38 rows=543 wi
Filter: (logdate >= ’2008-01-01’::date)
-> Seq Scan on measurement_y2006m03 measurement (cost=0.00..30.38 rows=543 wi

Filter: (logdate >= ’2008-01-01’::date)

-> Seq Scan on measurement_y2007ml2 measurement (cost=0.00..30.38 rows=543 wi
Filter: (logdate >= ’2008-01-01’::date)
-> Seq Scan on measurement_y2008m0l measurement (cost=0.00..30.38 rows=543 wi

Filter: (logdate >= ’2008-01-01’::date)

Some or all of the partitions might use index scans instead of full-table sequential scans, but the point
here is that there is no need to scan the older partitions at all to answer this query. When we enable
constraint exclusion, we get a significantly cheaper plan that will deliver the same answer:

SET constraint_exclusion = on;
EXPLAIN SELECT count (x) FROM measurement WHERE logdate >= DATE ’2008-01-01';
QUERY PLAN
Aggregate (cost=63.47..63.48 rows=1 width=0)
-> Append (cost=0.00..60.75 rows=1086 width=0)
-> Seq Scan on measurement (cost=0.00..30.38 rows=543 width=0)
Filter: (logdate >= ’2008-01-01’::date)
-> Seqg Scan on measurement_y2008m0l measurement (cost=0.00..30.38 rows=543 wi
Filter: (logdate >= ’2008-01-01’::date)

Note that constraint exclusion is driven only by CHECK constraints, not by the presence of indexes.
Therefore it isn’t necessary to define indexes on the key columns. Whether an index needs to be
created for a given partition depends on whether you expect that queries that scan the partition will

83

Chapter 5. Data Definition

generally scan a large part of the partition or just a small part. An index will be helpful in the latter
case but not the former.

The default (and recommended) setting of constraint_exclusion is actually neither on nor of £, but an
intermediate setting called partition, which causes the technique to be applied only to queries that
are likely to be working on partitioned tables. The on setting causes the planner to examine CHECK
constraints in all queries, even simple ones that are unlikely to benefit.

5.10.5. Alternative Partitioning Methods

A different approach to redirecting inserts into the appropriate partition table is to set up rules, instead
of a trigger, on the master table. For example:

CREATE RULE measurement_insert_y2006m02 AS
ON INSERT TO measurement WHERE

(logdate >= DATE ’'2006-02-01’ AND logdate < DATE ’'2006-03-01")
DO INSTEAD

INSERT INTO measurement_y2006m02 VALUES (NEW.x);

CREATE RULE measurement_insert_y2008m01 AS
ON INSERT TO measurement WHERE

(logdate >= DATE ’'2008-01-01’ AND logdate < DATE ’'2008-02-01')
DO INSTEAD

INSERT INTO measurement_y2008m01 VALUES (NEW.x);

A rule has significantly more overhead than a trigger, but the overhead is paid once per query rather
than once per row, so this method might be advantageous for bulk-insert situations. In most cases,
however, the trigger method will offer better performance.

Be aware that copY ignores rules. If you want to use COPY to insert data, you’ll need to copy into the
correct partition table rather than into the master. COPY does fire triggers, so you can use it normally
if you use the trigger approach.

Another disadvantage of the rule approach is that there is no simple way to force an error if the set of
rules doesn’t cover the insertion date; the data will silently go into the master table instead.

Partitioning can also be arranged using a UNION ALL view, instead of table inheritance. For example,

CREATE VIEW measurement AS
SELECT x FROM measurement_y2006m02
UNION ALL SELECT % FROM measurement_y2006m03

UNION ALL SELECT % FROM measurement_y2007mll
UNION ALL SELECT % FROM measurement_y2007ml2
UNION ALL SELECT % FROM measurement_y2008m0O1;

However, the need to recreate the view adds an extra step to adding and dropping individual partitions
of the data set. In practice this method has little to recommend it compared to using inheritance.

84

Chapter 5. Data Definition

5.10.6. Caveats

The following caveats apply to partitioned tables:

» There is no automatic way to verify that all of the CHECK constraints are mutually exclusive. It is
safer to create code that generates partitions and creates and/or modifies associated objects than to
write each by hand.

+ The schemes shown here assume that the partition key column(s) of a row never change, or at
least do not change enough to require it to move to another partition. An UPDATE that attempts
to do that will fail because of the CHECK constraints. If you need to handle such cases, you can
put suitable update triggers on the partition tables, but it makes management of the structure much
more complicated.

« If you are using manual VACUUM or ANALYZE commands, don’t forget that you need to run them on
each partition individually. A command like:

ANALYZE measurement;
will only process the master table.

« INSERT statements with ON CONFLICT clauses are unlikely to work as expected, as the oN
CONFLICT action is only taken in case of unique violations on the specified target relation, not its
child relations.

The following caveats apply to constraint exclusion:

+ Constraint exclusion only works when the query’s WHERE clause contains constants (or exter-
nally supplied parameters). For example, a comparison against a non-immutable function such
as CURRENT_TIMESTAMP cannot be optimized, since the planner cannot know which partition the
function value might fall into at run time.

« Keep the partitioning constraints simple, else the planner may not be able to prove that partitions
don’t need to be visited. Use simple equality conditions for list partitioning, or simple range tests for
range partitioning, as illustrated in the preceding examples. A good rule of thumb is that partitioning
constraints should contain only comparisons of the partitioning column(s) to constants using B-
tree-indexable operators.

« All constraints on all partitions of the master table are examined during constraint exclusion, so
large numbers of partitions are likely to increase query planning time considerably. Partitioning
using these techniques will work well with up to perhaps a hundred partitions; don’t try to use
many thousands of partitions.

5.11. Foreign Data

PostgreSQL implements portions of the SQL/MED specification, allowing you to access data that
resides outside PostgreSQL using regular SQL queries. Such data is referred to as foreign data. (Note
that this usage is not to be confused with foreign keys, which are a type of constraint within the
database.)

Foreign data is accessed with help from a foreign data wrapper. A foreign data wrapper is a library
that can communicate with an external data source, hiding the details of connecting to the data source

85

Chapter 5. Data Definition

and obtaining data from it. There are some foreign data wrappers available as cont rib modules; see
Appendix F. Other kinds of foreign data wrappers might be found as third party products. If none of
the existing foreign data wrappers suit your needs, you can write your own; see Chapter 54.

To access foreign data, you need to create a foreign server object, which defines how to connect to
a particular external data source according to the set of options used by its supporting foreign data
wrapper. Then you need to create one or more foreign tables, which define the structure of the remote
data. A foreign table can be used in queries just like a normal table, but a foreign table has no storage
in the PostgreSQL server. Whenever it is used, PostgreSQL asks the foreign data wrapper to fetch
data from the external source, or transmit data to the external source in the case of update commands.

Accessing remote data may require authenticating to the external data source. This information can
be provided by a user mapping, which can provide additional data such as user names and passwords
based on the current PostgreSQL role.

For additional information, see CREATE FOREIGN DATA WRAPPER, CREATE SERVER, CRE-
ATE USER MAPPING, CREATE FOREIGN TABLE, and IMPORT FOREIGN SCHEMA.

5.12. Other Database Objects

Tables are the central objects in a relational database structure, because they hold your data. But they
are not the only objects that exist in a database. Many other kinds of objects can be created to make the
use and management of the data more efficient or convenient. They are not discussed in this chapter,
but we give you a list here so that you are aware of what is possible:

« Views

« Functions and operators

+ Data types and domains

» Triggers and rewrite rules

Detailed information on these topics appears in Part V.

5.13. Dependency Tracking

When you create complex database structures involving many tables with foreign key constraints,
views, triggers, functions, etc. you implicitly create a net of dependencies between the objects. For
instance, a table with a foreign key constraint depends on the table it references.

To ensure the integrity of the entire database structure, PostgreSQL makes sure that you cannot drop
objects that other objects still depend on. For example, attempting to drop the products table we
considered in Section 5.3.5, with the orders table depending on it, would result in an error message
like this:

DROP TABLE products;
ERROR: cannot drop table products because other objects depend on it
DETAIL: constraint orders_product_no_fkey on table orders depends on table products

HINT: Use DROP ... CASCADE to drop the dependent objects too.

The error message contains a useful hint: if you do not want to bother deleting all the dependent
objects individually, you can run:

86

Chapter 5. Data Definition

DROP TABLE products CASCADE;

and all the dependent objects will be removed. In this case, it doesn’t remove the orders table, it only
removes the foreign key constraint. (If you want to check what DrROP ... cASCADE will do, run
DROP without CASCADE and read the DETAIL output.)

All brROP commands in PostgreSQL support specifying CASCADE. Of course, the nature of the possible
dependencies varies with the type of the object. You can also write RESTRICT instead of CASCADE to
get the default behavior, which is to prevent the dropping of objects that other objects depend on.

Note: According to the SQL standard, specifying either RESTRICT or cascaDE is required in a
prop command. No database system actually enforces that rule, but whether the default behavior
iS RESTRICT OF CASCADE varies across systems.

For user-defined functions, PostgreSQL tracks dependencies associated with a function’s externally-
visible properties, such as its argument and result types, but not dependencies that could only be
known by examining the function body. As an example, consider this situation:

CREATE TYPE rainbow AS ENUM (’red’, ’'orange’, ’'yellow’,
"green’, ’'blue’, ’'purple’);

CREATE TABLE my_colors (color rainbow, note text);

CREATE FUNCTION get_color_note (rainbow) RETURNS text AS
"SELECT note FROM my_colors WHERE color = $1’
LANGUAGE SQL;

(See Section 35.4 for an explanation of SQL-language functions.) PostgreSQL will be aware that the
get_color_note function depends on the rainbow type: dropping the type would force dropping
the function, because its argument type would no longer be defined. But PostgreSQL will not consider
get_color_note todepend on the my_colors table, and so will not drop the function if the table is
dropped. While there are disadvantages to this approach, there are also benefits. The function is still
valid in some sense if the table is missing, though executing it would cause an error; creating a new
table of the same name would allow the function to work again.

87

Chapter 6. Data Manipulation

The previous chapter discussed how to create tables and other structures to hold your data. Now it is
time to fill the tables with data. This chapter covers how to insert, update, and delete table data. The
chapter after this will finally explain how to extract your long-lost data from the database.

6.1. Inserting Data

When a table is created, it contains no data. The first thing to do before a database can be of much use
is to insert data. Data is conceptually inserted one row at a time. Of course you can also insert more
than one row, but there is no way to insert less than one row. Even if you know only some column
values, a complete row must be created.

To create a new row, use the INSERT command. The command requires the table name and column
values. For example, consider the products table from Chapter 5:

CREATE TABLE products (
product_no integer,
name text,
price numeric

)i
An example command to insert a row would be:

INSERT INTO products VALUES (1, ’Cheese’, 9.99);
The data values are listed in the order in which the columns appear in the table, separated by commas.
Usually, the data values will be literals (constants), but scalar expressions are also allowed.

The above syntax has the drawback that you need to know the order of the columns in the table. To
avoid this you can also list the columns explicitly. For example, both of the following commands have
the same effect as the one above:

INSERT INTO products (product_no, name, price) VALUES (1, ’Cheese’, 9.99);
INSERT INTO products (name, price, product_no) VALUES (’'Cheese’, 9.99, 1);

Many users consider it good practice to always list the column names.

If you don’t have values for all the columns, you can omit some of them. In that case, the columns
will be filled with their default values. For example:

INSERT INTO products (product_no, name) VALUES (1, ’Cheese’);
INSERT INTO products VALUES (1, ’Cheese’);

The second form is a PostgreSQL extension. It fills the columns from the left with as many values as
are given, and the rest will be defaulted.

For clarity, you can also request default values explicitly, for individual columns or for the entire row:

INSERT INTO products (product_no, name, price) VALUES (1, ’'Cheese’, DEFAULT);
INSERT INTO products DEFAULT VALUES;

You can insert multiple rows in a single command:

INSERT INTO products (product_no, name, price) VALUES

88

Chapter 6. Data Manipulation

(1, ’"Cheese’, 9.99),
(2, '"Bread’, 1.99),
(3, 'Milk’, 2.99);

It is also possible to insert the result of a query (which might be no rows, one row, or many rows):

INSERT INTO products (product_no, name, price)
SELECT product_no, name, price FROM new_products
WHERE release_date = 'today’;

This provides the full power of the SQL query mechanism (Chapter 7) for computing the rows to be
inserted.

Tip: When inserting a lot of data at the same time, consider using the COPY command. ltis not as
flexible as the INSERT command, but is more efficient. Refer to Section 14.4 for more information
on improving bulk loading performance.

6.2. Updating Data

The modification of data that is already in the database is referred to as updating. You can update
individual rows, all the rows in a table, or a subset of all rows. Each column can be updated separately;
the other columns are not affected.

To update existing rows, use the UPDATE command. This requires three pieces of information:

1. The name of the table and column to update
2. The new value of the column
3. Which row(s) to update

Recall from Chapter 5 that SQL does not, in general, provide a unique identifier for rows. Therefore it
is not always possible to directly specify which row to update. Instead, you specify which conditions
a row must meet in order to be updated. Only if you have a primary key in the table (independent of
whether you declared it or not) can you reliably address individual rows by choosing a condition that
matches the primary key. Graphical database access tools rely on this fact to allow you to update rows
individually.

For example, this command updates all products that have a price of 5 to have a price of 10:

UPDATE products SET price = 10 WHERE price = 5;

This might cause zero, one, or many rows to be updated. It is not an error to attempt an update that
does not match any rows.

Let’s look at that command in detail. First is the key word UPDATE followed by the table name. As
usual, the table name can be schema-qualified, otherwise it is looked up in the path. Next is the key
word SET followed by the column name, an equal sign, and the new column value. The new column
value can be any scalar expression, not just a constant. For example, if you want to raise the price of
all products by 10% you could use:

UPDATE products SET price = price » 1.10;

89

Chapter 6. Data Manipulation

As you see, the expression for the new value can refer to the existing value(s) in the row. We also
left out the WHERE clause. If it is omitted, it means that all rows in the table are updated. If it is
present, only those rows that match the WHERE condition are updated. Note that the equals sign in
the SET clause is an assignment while the one in the WHERE clause is a comparison, but this does not
create any ambiguity. Of course, the WHERE condition does not have to be an equality test. Many other
operators are available (see Chapter 9). But the expression needs to evaluate to a Boolean result.

You can update more than one column in an UPDATE command by listing more than one assignment
in the SET clause. For example:

UPDATE mytable SET a = 5, b = 3, ¢ = 1 WHERE a > 0;

6.3. Deleting Data

So far we have explained how to add data to tables and how to change data. What remains is to
discuss how to remove data that is no longer needed. Just as adding data is only possible in whole
rows, you can only remove entire rows from a table. In the previous section we explained that SQL
does not provide a way to directly address individual rows. Therefore, removing rows can only be
done by specifying conditions that the rows to be removed have to match. If you have a primary key
in the table then you can specify the exact row. But you can also remove groups of rows matching a
condition, or you can remove all rows in the table at once.

You use the DELETE command to remove rows; the syntax is very similar to the UPDATE command.

For instance, to remove all rows from the products table that have a price of 10, use:

DELETE FROM products WHERE price = 10;

If you simply write:
DELETE FROM products;

then all rows in the table will be deleted! Caveat programmer.

6.4. Returning Data From Modified Rows

Sometimes it is useful to obtain data from modified rows while they are being manipulated. The
INSERT, UPDATE, and DELETE commands all have an optional RETURNING clause that supports this.
Use of RETURNING avoids performing an extra database query to collect the data, and is especially
valuable when it would otherwise be difficult to identify the modified rows reliably.

The allowed contents of a RETURNING clause are the same as a SELECT command’s output list (see
Section 7.3). It can contain column names of the command’s target table, or value expressions using
those columns. A common shorthand is RETURNING *, which selects all columns of the target table
in order.

In an INSERT, the data available to RETURNING is the row as it was inserted. This is not so useful in
trivial inserts, since it would just repeat the data provided by the client. But it can be very handy when
relying on computed default values. For example, when using a serial column to provide unique
identifiers, RETURNING can return the ID assigned to a new row:

90

Chapter 6. Data Manipulation
CREATE TABLE users (firstname text, lastname text, id serial primary key);
INSERT INTO users (firstname, lastname) VALUES (’Joe’, ’'Cool’) RETURNING id;

The RETURNING clause is also very useful with INSERT ... SELECT.

In an UPDATE, the data available to RETURNING is the new content of the modified row. For example:

UPDATE products SET price = price * 1.10
WHERE price <= 99.99
RETURNING name, price AS new_price;

In a DELETE, the data available to RETURNING is the content of the deleted row. For example:

DELETE FROM products
WHERE obsoletion_date = ’'today’
RETURNING *;

If there are triggers (Chapter 36) on the target table, the data available to RETURNING is the row as
modified by the triggers. Thus, inspecting columns computed by triggers is another common use-case
for RETURNING.

91

Chapter 7. Queries

The previous chapters explained how to create tables, how to fill them with data, and how to manipu-
late that data. Now we finally discuss how to retrieve the data from the database.

7.1. Overview

The process of retrieving or the command to retrieve data from a database is called a query. In SQL
the SELECT command is used to specify queries. The general syntax of the SELECT command is

[WITH with_queries] SELECT select_list FROM table_expression [sort_specification]
The following sections describe the details of the select list, the table expression, and the sort specifi-
cation. WITH queries are treated last since they are an advanced feature.

A simple kind of query has the form:
SELECT » FROM tablel;

Assuming that there is a table called tablel, this command would retrieve all rows and all user-
defined columns from tablel. (The method of retrieval depends on the client application. For exam-
ple, the psql program will display an ASCII-art table on the screen, while client libraries will offer
functions to extract individual values from the query result.) The select list specification » means all
columns that the table expression happens to provide. A select list can also select a subset of the avail-
able columns or make calculations using the columns. For example, if tablel has columns named a,
b, and c (and perhaps others) you can make the following query:

SELECT a, b + ¢ FROM tablel;

(assuming that b and c are of a numerical data type). See Section 7.3 for more details.

FROM tablel isasimple kind of table expression: it reads just one table. In general, table expressions
can be complex constructs of base tables, joins, and subqueries. But you can also omit the table
expression entirely and use the SELECT command as a calculator:

SELECT 3 * 4;

This is more useful if the expressions in the select list return varying results. For example, you could
call a function this way:

SELECT random() ;

7.2. Table Expressions

A table expression computes a table. The table expression contains a FROM clause that is optionally
followed by WHERE, GROUP BY, and HAVING clauses. Trivial table expressions simply refer to a table
on disk, a so-called base table, but more complex expressions can be used to modify or combine base
tables in various ways.

The optional WHERE, GROUP BY, and HAVING clauses in the table expression specify a pipeline of
successive transformations performed on the table derived in the FrROM clause. All these transforma-

92

Chapter 7. Queries

tions produce a virtual table that provides the rows that are passed to the select list to compute the
output rows of the query.

7.2.1. The rroM Clause

The FROM Clause derives a table from one or more other tables given in a comma-separated table
reference list.

FROM table_reference [, table_reference [, ...]]

A table reference can be a table name (possibly schema-qualified), or a derived table such as a sub-
query, a JOIN construct, or complex combinations of these. If more than one table reference is listed
in the FROM clause, the tables are cross-joined (that is, the Cartesian product of their rows is formed;
see below). The result of the FrROM list is an intermediate virtual table that can then be subject to
transformations by the WHERE, GROUP BY, and HAVING clauses and is finally the result of the overall
table expression.

When a table reference names a table that is the parent of a table inheritance hierarchy, the table
reference produces rows of not only that table but all of its descendant tables, unless the key word
ONLY precedes the table name. However, the reference produces only the columns that appear in the
named table — any columns added in subtables are ignored.

Instead of writing ONLY before the table name, you can write x after the table name to explicitly
specify that descendant tables are included. Writing » is not necessary since that behavior is the
default (unless you have changed the setting of the sql_inheritance configuration option). However
writing » might be useful to emphasize that additional tables will be searched.

7.2.1.1. Joined Tables

A joined table is a table derived from two other (real or derived) tables according to the rules of the
particular join type. Inner, outer, and cross-joins are available. The general syntax of a joined table is

Tl join type T2 [join condition]

Joins of all types can be chained together, or nested: either or both 71 and 72 can be joined tables.
Parentheses can be used around JOIN clauses to control the join order. In the absence of parentheses,
JOIN clauses nest left-to-right.

Join Types
Cross join
Tl CROSS JOIN T2

For every possible combination of rows from 71 and 72 (i.e., a Cartesian product), the joined
table will contain a row consisting of all columns in 71 followed by all columns in T2. If the
tables have N and M rows respectively, the joined table will have N * M rows.

FROM T1 CROSS JOIN T2 isequivalent to FROM T1 INNER JOIN T2 ON TRUE (see below).
It is also equivalent to FROM T1, T2.

Note: This latter equivalence does not hold exactly when more than two tables appear, be-
cause JoIN binds more tightly than comma. For example FrRoM 71 CROSS JOIN T2 INNER
JOIN T3 ON condition iS NOtthe same as FROM 71, T2 INNER JOIN T3 ON condition be-
cause the condition can reference 11 in the first case but not the second.

93

Chapter 7. Queries

Qualified joins

71 { [INNER] | { LEFT | RIGHT | FULL } [OUTER] } JOIN T2 ON boolean_expression
Tl { [INNER] | { LEFT | RIGHT | FULL } [OUTER] } JOIN T2 USING (join column list)
T1 NATURAL { [INNER] | { LEFT | RIGHT | FULL } [OUTER] } JOIN T2

The words INNER and OUTER are optional in all forms. INNER is the default; LEFT, RIGHT, and
FULL imply an outer join.

The join condition is specified in the ON or USING clause, or implicitly by the word NATURAL.
The join condition determines which rows from the two source tables are considered to “match”,
as explained in detail below.

The possible types of qualified join are:

INNER JOIN

For each row R1 of T1, the joined table has a row for each row in T2 that satisfies the join
condition with R1.

LEFT OUTER JOIN

First, an inner join is performed. Then, for each row in T1 that does not satisfy the join
condition with any row in T2, a joined row is added with null values in columns of T2.
Thus, the joined table always has at least one row for each row in T1.

RIGHT OUTER JOIN

First, an inner join is performed. Then, for each row in T2 that does not satisfy the join
condition with any row in T1, a joined row is added with null values in columns of T1. This
is the converse of a left join: the result table will always have a row for each row in T2.

FULL OUTER JOIN

First, an inner join is performed. Then, for each row in T1 that does not satisfy the join
condition with any row in T2, a joined row is added with null values in columns of T2.
Also, for each row of T2 that does not satisfy the join condition with any row in T1, a
joined row with null values in the columns of T1 is added.

The on clause is the most general kind of join condition: it takes a Boolean value expression
of the same kind as is used in a WHERE clause. A pair of rows from 71 and 72 match if the on
expression evaluates to true.

The USING clause is a shorthand that allows you to take advantage of the specific situation where
both sides of the join use the same name for the joining column(s). It takes a comma-separated
list of the shared column names and forms a join condition that includes an equality comparison
for each one. For example, joining T1 and T2 with USING (a, b) produces the join condition
ON Tl.a = T2.a AND Tl1.b = T2.b.

Furthermore, the output of JOIN USING suppresses redundant columns: there is no need to print
both of the matched columns, since they must have equal values. While JOIN ON produces all
columns from 71 followed by all columns from 72, JOIN USING produces one output column
for each of the listed column pairs (in the listed order), followed by any remaining columns from
71, followed by any remaining columns from T2.

Finally, NATURAL is a shorthand form of USING: it forms a USING list consisting of all column
names that appear in both input tables. As with USING, these columns appear only once in the

94

Chapter 7. Queries

output table. If there are no common column names, NATURAL JOIN behaves like JOIN
ON TRUE, producing a cross-product join.

Note: usING is reasonably safe from column changes in the joined relations since only the
listed columns are combined. NATURAL is considerably more risky since any schema changes
to either relation that cause a new matching column name to be present will cause the join
to combine that new column as well.

To put this together, assume we have tables t 1:

num | name
_____ b
11 a
2 | b
3] ¢
and t2
num | value
_____ +_______
1 | xxx
3 | yyy
5 | zzz

then we get the following results for the various joins:

=> SELECT x FROM tl CROSS JOIN t2;

num | name | num | value
————— Bt ettt
1] a | 1 | xxx
1] a \ 31 yyy
11 a | 5 | zzz
2 1 Db \ 1 | xxx
21D \ 3 1 yyy
2 | b | 5| zzz
3 1 c \ 1 | xxx
3| c \ 3 1 yyy
3 1 c \ 5 | zzz
(9 rows)

=> SELECT x FROM tl INNER JOIN t2 ON tl.num = t2.num;

num | name | num | value
————— o
1] a | 1 | xxx
31 c | 31 yyy
(2 rows)

=> SELECT x FROM tl INNER JOIN t2 USING (num);

num | name | value
_____ o
1] a | xxx
31 c | yyy
(2 rows)

95

=> SELECT x FROM tl NATURAL INNER JOIN t2;

num | name | value
_____ o
1] a | XXX
3 1 c | yyy
(2 rows)

=> SELECT x FROM tl LEFT JOIN t2 ON tl.num = t2.num;

num | name | num | value
————— o ——
11 a \ 1 | xxx
2 1 Db \ |
3| c \ 3 1 yyy
(3 rows)

=> SELECT * FROM tl LEFT JOIN t2 USING (num);

num name value
,,,,, e

1] a | xxxX

2 | b \

31 c | yyy
(3 rows)

=> SELECT x FROM tl RIGHT JOIN t2 ON tl.num = t2.num;

num | name | num | value
————— o —
1] a \ 1 | xxx
31 c | 3 1 yyy
| | 5 | zzz
(3 rows)

=> SELECT » FROM tl FULL JOIN t2 ON tl.num = t2.num;

num | name | num | value
77777 e S Rttt
1] a \ 1 | xxx
2 |1 Db \ |
3 1 ¢ \ 31 yyy
\ \ 5 | zzz
(4 rows)

Chapter 7. Queries

The join condition specified with ON can also contain conditions that do not relate directly to the join.
This can prove useful for some queries but needs to be thought out carefully. For example:

=> SELECT * FROM tl LEFT JOIN t2 ON tl.num = t2.num AND t2.value

num | name | num | value
————— o
1] a | 1 | xxx
2 1 Db \ |
3 1 c \ |
(3 rows)

= "xxx';

Notice that placing the restriction in the WHERE clause produces a different result:

=> SELECT * FROM tl LEFT JOIN t2 ON tl.num = t2.num WHERE t2.value = ’'xxx’;

num | name | num | value

96

Chapter 7. Queries

11 a 1 | xxx
(1 row)

This is because a restriction placed in the ON clause is processed before the join, while a restriction
placed in the WHERE clause is processed after the join. That does not matter with inner joins, but it
matters a lot with outer joins.

7.2.1.2. Table and Column Aliases

A temporary name can be given to tables and complex table references to be used for references to
the derived table in the rest of the query. This is called a table alias.

To create a table alias, write

FROM table_reference AS alias
or

FROM table_reference alias

The As key word is optional noise. alias can be any identifier.

A typical application of table aliases is to assign short identifiers to long table names to keep the join
clauses readable. For example:

SELECT x= FROM some_very_long_table_name s JOIN another_fairly long_name a ON s.id = a.nu

The alias becomes the new name of the table reference so far as the current query is concerned — it
is not allowed to refer to the table by the original name elsewhere in the query. Thus, this is not valid:

SELECT x FROM my_table AS m WHERE my_table.a > 5; —— wrong

Table aliases are mainly for notational convenience, but it is necessary to use them when joining a
table to itself, e.g.:

SELECT * FROM people AS mother JOIN people AS child ON mother.id = child.mother_id;

Additionally, an alias is required if the table reference is a subquery (see Section 7.2.1.3).

Parentheses are used to resolve ambiguities. In the following example, the first statement assigns the
alias b to the second instance of my_table, but the second statement assigns the alias to the result of
the join:

SELECT x FROM my_table AS a CROSS JOIN my_table AS b
SELECT % FROM (my_table AS a CROSS JOIN my_table) AS b

Another form of table aliasing gives temporary names to the columns of the table, as well as the table
itself:

FROM table_reference [AS] alias (columnl [, column2 [, ...]])

If fewer column aliases are specified than the actual table has columns, the remaining columns are not
renamed. This syntax is especially useful for self-joins or subqueries.

97

Chapter 7. Queries

When an alias is applied to the output of a JOIN clause, the alias hides the original name(s) within the
JO1IN. For example:

SELECT a.x FROM my_table AS a JOIN your_table AS b ON
is valid SQL, but:
SELECT a.* FROM (my_table AS a JOIN your_table AS b ON ...) AS c

is not valid; the table alias a is not visible outside the alias c.

7.2.1.3. Subqueries

Subqueries specifying a derived table must be enclosed in parentheses and must be assigned a table
alias name (as in Section 7.2.1.2). For example:

FROM (SELECT * FROM tablel) AS alias_name

This example is equivalent to FROM tablel AS alias_name. More interesting cases, which cannot
be reduced to a plain join, arise when the subquery involves grouping or aggregation.

A subquery can also be a VALUES list:

FROM (VALUES (’anne’, ’'smith’), (’bob’, ’Jjones’), (’joe’, ’"blow’))
AS names (first, last)

Again, a table alias is required. Assigning alias names to the columns of the VALUES list is optional,
but is good practice. For more information see Section 7.7.

7.2.1.4. Table Functions

Table functions are functions that produce a set of rows, made up of either base data types (scalar
types) or composite data types (table rows). They are used like a table, view, or subquery in the FROM
clause of a query. Columns returned by table functions can be included in SELECT, JOIN, or WHERE
clauses in the same manner as columns of a table, view, or subquery.

Table functions may also be combined using the ROWS FROM syntax, with the results returned in
parallel columns; the number of result rows in this case is that of the largest function result, with
smaller results padded with null values to match.

function_call [WITH ORDINALITY] [[AS] table alias [(column_alias [, ...])]]
ROWS FROM(function_call [, ...]) [WITH ORDINALITY] [[AS] table alias [(column_alias [,

If the WITH ORDINALITY clause is specified, an additional column of type bigint will be added to
the function result columns. This column numbers the rows of the function result set, starting from
1. (This is a generalization of the SQL-standard syntax for UNNEST ... WITH ORDINALITY.) By
default, the ordinal column is called ordinality, but a different column name can be assigned to it
using an AS clause.

The special table function UNNEST may be called with any number of array parameters, and it returns
a corresponding number of columns, as if UNNEST (Section 9.18) had been called on each parameter
separately and combined using the ROWS FROM construct.

UNNEST (array_expression [, ...]) [WITH ORDINALITY] [[AS] table alias [(column_alias [,

98

Chapter 7. Queries

If no table_alias is specified, the function name is used as the table name; in the case of a ROWS
FROM () construct, the first function’s name is used.

If column aliases are not supplied, then for a function returning a base data type, the column name is
also the same as the function name. For a function returning a composite type, the result columns get
the names of the individual attributes of the type.

Some examples:

CREATE TABLE foo (fooid int, foosubid int, fooname text);

CREATE FUNCTION getfoo (int) RETURNS SETOF foo AS $$
SELECT % FROM foo WHERE fooid = $1;
$$ LANGUAGE SQL;

SELECT = FROM getfoo(l) AS t1;

SELECT x FROM foo
WHERE foosubid IN (
SELECT foosubid
FROM getfoo (foo.fooid) z
WHERE z.fooid = foo.fooid
)i

CREATE VIEW vw_getfoo AS SELECT » FROM getfoo(l);

SELECT * FROM vw_getfoo;

In some cases it is useful to define table functions that can return different column sets depending on
how they are invoked. To support this, the table function can be declared as returning the pseudotype
record. When such a function is used in a query, the expected row structure must be specified in the
query itself, so that the system can know how to parse and plan the query. This syntax looks like:

function_call [AS] alias (column _definition [, ...])
function_call AS [alias] (column _definition [, ...])
ROWS FROM(... function_call AS (column_definition [, ... 1) [, ... 1)

When not using the ROWS FROM () syntax, the column_definition list replaces the column alias
list that could otherwise be attached to the FROM item; the names in the column definitions serve as
column aliases. When using the ROWS FROM () syntax, a column_definition listcan be attached to
each member function separately; or if there is only one member function and no WITH ORDINALITY
clause, a column_definition list can be written in place of a column alias list following ROWS
FROM () .

Consider this example:

SELECT =
FROM dblink (’ dbname=mydb’, ’'SELECT proname, prosrc FROM pg_proc’)
AS tl (proname name, prosrc text)
WHERE proname LIKE ’'bytea$%’;

The dblink function (part of the dblink module) executes a remote query. It is declared to return
record since it might be used for any kind of query. The actual column set must be specified in the
calling query so that the parser knows, for example, what « should expand to.

99

Chapter 7. Queries

7.2.1.5. LATERAL Subqueries

Subqueries appearing in FROM can be preceded by the key word LATERAL. This allows them to ref-
erence columns provided by preceding FROM items. (Without LATERAL, each subquery is evaluated
independently and so cannot cross-reference any other FROM item.)

Table functions appearing in FROM can also be preceded by the key word LATERAL, but for functions
the key word is optional; the function’s arguments can contain references to columns provided by
preceding FROM items in any case.

A LATERAL item can appear at top level in the FROM list, or within a JOIN tree. In the latter case it
can also refer to any items that are on the left-hand side of a JOIN that it is on the right-hand side of.

When a FROM item contains LATERAL cross-references, evaluation proceeds as follows: for each row
of the FrROM item providing the cross-referenced column(s), or set of rows of multiple FROM items pro-
viding the columns, the LATERAL item is evaluated using that row or row set’s values of the columns.
The resulting row(s) are joined as usual with the rows they were computed from. This is repeated for
each row or set of rows from the column source table(s).

A trivial example of LATERAL is
SELECT * FROM foo, LATERAL (SELECT x= FROM bar WHERE bar.id = foo.bar_id) ss;
This is not especially useful since it has exactly the same result as the more conventional

SELECT * FROM foo, bar WHERE bar.id = foo.bar_id;

LATERAL is primarily useful when the cross-referenced column is necessary for computing the row(s)
to be joined. A common application is providing an argument value for a set-returning function. For
example, supposing that vertices (polygon) returns the set of vertices of a polygon, we could
identify close-together vertices of polygons stored in a table with:

SELECT pl.id, p2.id, vl, v2
FROM polygons pl, polygons p2,
LATERAL vertices (pl.poly) vl1,
LATERAL vertices (p2.poly) v2
WHERE (vl <-> v2) < 10 AND pl.id != p2.id;

This query could also be written

SELECT pl.id, p2.id, v1, v2

FROM polygons pl CROSS JOIN LATERAL vertices(pl.poly) vl,
polygons p2 CROSS JOIN LATERAL vertices (p2.poly) v2

WHERE (vl <-> v2) < 10 AND pl.id != p2.id;

or in several other equivalent formulations. (As already mentioned, the LATERAL key word is unnec-
essary in this example, but we use it for clarity.)

It is often particularly handy to LEFT JOIN to a LATERAL subquery, so that source rows will
appear in the result even if the LATERAL subquery produces no rows for them. For example, if
get_product_names () returns the names of products made by a manufacturer, but some
manufacturers in our table currently produce no products, we could find out which ones those are
like this:

SELECT m.name

FROM manufacturers m LEFT JOIN LATERAL get_product_names (m.id) pname ON true
WHERE pname IS NULL;

100

Chapter 7. Queries

7.2.2. The wHERE Clause

The syntax of the WHERE Clause is
WHERE search condition

where search condition is any value expression (see Section 4.2) that returns a value of type

boolean.

After the processing of the FROM clause is done, each row of the derived virtual table is checked
against the search condition. If the result of the condition is true, the row is kept in the output table,
otherwise (i.e., if the result is false or null) it is discarded. The search condition typically references
at least one column of the table generated in the FROM clause; this is not required, but otherwise the
WHERE clause will be fairly useless.

Note: The join condition of an inner join can be written either in the wrERE clause or in the JoIn
clause. For example, these table expressions are equivalent:

FROM a, b WHERE a.id = b.id AND b.val > 5

and:

FROM a INNER JOIN b ON (a.id = b.id) WHERE b.val > 5
or perhaps even:

FROM a NATURAL JOIN b WHERE b.val > 5

Which one of these you use is mainly a matter of style. The Jo1n syntax in the Frou clause is
probably not as portable to other SQL database management systems, even though it is in the
SQL standard. For outer joins there is no choice: they must be done in the From clause. The ox
or UsING clause of an outer join is not equivalent to a wHERE condition, because it results in the
addition of rows (for unmatched input rows) as well as the removal of rows in the final result.

Here are some examples of WHERE clauses:

SELECT ... FROM fdt WHERE cl > 5

SELECT ... FROM fdt WHERE cl IN (1, 2, 3)

SELECT ... FROM fdt WHERE cl IN (SELECT cl FROM t2)

SELECT ... FROM fdt WHERE cl IN (SELECT c3 FROM t2 WHERE c2 = fdt.cl + 10)
SELECT ... FROM fdt WHERE cl BETWEEN (SELECT c3 FROM t2 WHERE c2 = fdt.cl +
SELECT ... FROM fdt WHERE EXISTS (SELECT cl FROM t2 WHERE c2 > fdt.cl)

fdt is the table derived in the FROM clause. Rows that do not meet the search condition of the WHERE
clause are eliminated from fdt. Notice the use of scalar subqueries as value expressions. Just like any
other query, the subqueries can employ complex table expressions. Notice also how fdt is referenced
in the subqueries. Qualifying c1 as £dt . c1 is only necessary if c1 is also the name of a column in the
derived input table of the subquery. But qualifying the column name adds clarity even when it is not
needed. This example shows how the column naming scope of an outer query extends into its inner
queries.

101

10)

AND 100

Chapter 7. Queries

7.2.3. The crourP BY and HAVING Clauses

After passing the WHERE filter, the derived input table might be subject to grouping, using the GROUP
BY clause, and elimination of group rows using the HAVING clause.

SELECT select_list
FROM
[WHERE ...]
GROUP BY grouping_column_reference [, grouping_column_reference] ...

The GROUP BY Clause is used to group together those rows in a table that have the same values in all
the columns listed. The order in which the columns are listed does not matter. The effect is to combine
each set of rows having common values into one group row that represents all rows in the group. This
is done to eliminate redundancy in the output and/or compute aggregates that apply to these groups.
For instance:

=> SELECT * FROM testl;
X

a
c
b
a
4

(

(3 rows)

In the second query, we could not have written SELECT » FROM testl GROUP BY x, because
there is no single value for the column y that could be associated with each group. The grouped-
by columns can be referenced in the select list since they have a single value in each group.

In general, if a table is grouped, columns that are not listed in GROUP BY cannot be referenced except
in aggregate expressions. An example with aggregate expressions is:

=> SELECT x, sum(y) FROM testl GROUP BY x;

X | sum

Here sum is an aggregate function that computes a single value over the entire group. More informa-
tion about the available aggregate functions can be found in Section 9.20.

Tip: Grouping without aggregate expressions effectively calculates the set of distinct values in a
column. This can also be achieved using the prsTINCT clause (see Section 7.3.3).

102

Chapter 7. Queries

Here is another example: it calculates the total sales for each product (rather than the total sales of all
products):

SELECT product_id, p.name, (sum(s.units) * p.price) AS sales
FROM products p LEFT JOIN sales s USING (product_id)
GROUP BY product_id, p.name, p.price;

In this example, the columns product_id, p.name, and p.price must be in the GROUP BY clause
since they are referenced in the query select list (but see below). The column s.units does not
have to be in the GROUP BY list since it is only used in an aggregate expression (sum (. . .)), which
represents the sales of a product. For each product, the query returns a summary row about all sales
of the product.

If the products table is set up so that, say, product_id is the primary key, then it would be enough to
group by product_id in the above example, since name and price would be functionally dependent
on the product ID, and so there would be no ambiguity about which name and price value to return
for each product ID group.

In strict SQL, GROUP BY can only group by columns of the source table but PostgreSQL extends this
to also allow GROUP BY to group by columns in the select list. Grouping by value expressions instead
of simple column names is also allowed.

If a table has been grouped using GROUP BY, but only certain groups are of interest, the HAVING
clause can be used, much like a WHERE clause, to eliminate groups from the result. The syntax is:

SELECT select_list FROM ... [WHERE ...] GROUP BY ... HAVING boolean_expression
Expressions in the HAVING clause can refer both to grouped expressions and to ungrouped expressions
(which necessarily involve an aggregate function).

Example:

=> SELECT x, sum(y) FROM testl GROUP BY x HAVING sum(y) > 3;
X | sum

=> SELECT x, sum(y) FROM testl GROUP BY x HAVING x < 'c’;
X | sum

Again, a more realistic example:

SELECT product_id, p.name, (sum(s.units) * (p.price - p.cost)) AS profit
FROM products p LEFT JOIN sales s USING (product_id)
WHERE s.date > CURRENT_DATE - INTERVAL ’'4 weeks’
GROUP BY product_id, p.name, p.price, p.cost
HAVING sum(p.price x s.units) > 5000;

In the example above, the WHERE clause is selecting rows by a column that is not grouped (the expres-
sion is only true for sales during the last four weeks), while the HAVING clause restricts the output to

103

Chapter 7. Queries

groups with total gross sales over 5000. Note that the aggregate expressions do not necessarily need
to be the same in all parts of the query.

If a query contains aggregate function calls, but no GROUP BY clause, grouping still occurs: the result
is a single group row (or perhaps no rows at all, if the single row is then eliminated by HAVING). The
same is true if it contains a HAVING clause, even without any aggregate function calls or GROUP BY
clause.

7.2.4. GROUPING SETS, CUBE, and ROLLUP

More complex grouping operations than those described above are possible using the concept of
grouping sets. The data selected by the FROM and WHERE clauses is grouped separately by each speci-
fied grouping set, aggregates computed for each group just as for simple GROUP BY clauses, and then
the results returned. For example:

=> SELECT * FROM items_sold;

brand | size | sales
_______ e
Foo | L | 10
Foo | M | 20
Bar | M | 15
Bar | L | 5

(4 rows)

=> SELECT brand, size, sum(sales) FROM items_sold GROUP BY GROUPING SETS ((brand),

brand | size | sum
_______ e
Foo | | 30
Bar | | 20
| L | 15
| M | 35
| | 50
(5 rows)

Each sublist of GROUPING SETS may specify zero or more columns or expressions and is interpreted
the same way as though it were directly in the GROUP BY clause. An empty grouping set means that
all rows are aggregated down to a single group (which is output even if no input rows were present),
as described above for the case of aggregate functions with no GROUP BY clause.

References to the grouping columns or expressions are replaced by null values in result rows for
grouping sets in which those columns do not appear. To distinguish which grouping a particular output
row resulted from, see Table 9-53.

A shorthand notation is provided for specifying two common types of grouping set. A clause of the
form

ROLLUP (el, €2, e3, ...)

represents the given list of expressions and all prefixes of the list including the empty list; thus it is
equivalent to

GROUPING SETS (
(el, e2, e3, ...),

(el, e2),

104

(size),

0);

Chapter 7. Queries

This is commonly used for analysis over hierarchical data; e.g. total salary by department, division,
and company-wide total.

A clause of the form

CUBE (el, €2, ...)

represents the given list and all of its possible subsets (i.e. the power set). Thus
CUBE (a, b, c)

is equivalent to

GROUPING SETS (
a, b, c),

c)y

)

(
(a, b)
(a, c),
(a)
(b, c),
(b)
(
(

The individual elements of a CUBE or ROLLUP clause may be either individual expressions, or sublists
of elements in parentheses. In the latter case, the sublists are treated as single units for the purposes
of generating the individual grouping sets. For example:

CUBE ((a, b), (c, d))
is equivalent to
GROUPING SETS (
(a, b, ¢, d)
(a, b),
(c, d)
()

and
ROLLUP (a, (b, c), d)
is equivalent to
GROUPING SETS (
(a, b, ¢, d

a, b, c

(
(a
(

105

Chapter 7. Queries

The cUBE and ROLLUP constructs can be used either directly in the GROUP BY clause, or nested inside
a GROUPING SETS clause. If one GROUPING SETS clause is nested inside another, the effect is the
same as if all the elements of the inner clause had been written directly in the outer clause.

If multiple grouping items are specified in a single GROUP BY clause, then the final list of grouping
sets is the cross product of the individual items. For example:

GROUP BY a, CUBE (b, c), GROUPING SETS ((d), (e))
is equivalent to

GROUP BY GROUPING SETS (
a, b, ¢, d), (a, b, ¢, e),

(

(a, b, d), (a, b, e),
(a, c, d), (a, ¢, e),
(a, d), (a, e)

Note: The construct (a, b) is normally recognized in expressions as a row constructor. Within
the croup BY clause, this does not apply at the top levels of expressions, and (a, b) is parsed
as a list of expressions as described above. If for some reason you need a row constructor in a
grouping expression, use ROW (a, b).

7.2.5. Window Function Processing

If the query contains any window functions (see Section 3.5, Section 9.21 and Section 4.2.8), these
functions are evaluated after any grouping, aggregation, and HAVING filtering is performed. That is,
if the query uses any aggregates, GROUP BY, or HAVING, then the rows seen by the window functions
are the group rows instead of the original table rows from FROM/WHERE.

When multiple window functions are used, all the window functions having syntactically equivalent
PARTITION BY and ORDER BY clauses in their window definitions are guaranteed to be evaluated
in a single pass over the data. Therefore they will see the same sort ordering, even if the ORDER BY
does not uniquely determine an ordering. However, no guarantees are made about the evaluation of
functions having different PARTITION BY or ORDER BY specifications. (In such cases a sort step is
typically required between the passes of window function evaluations, and the sort is not guaranteed
to preserve ordering of rows that its ORDER BY sees as equivalent.)

Currently, window functions always require presorted data, and so the query output will be ordered
according to one or another of the window functions’ PARTITION BY/ORDER BY clauses. It is not
recommended to rely on this, however. Use an explicit top-level ORDER BY clause if you want to be
sure the results are sorted in a particular way.

7.3. Select Lists

As shown in the previous section, the table expression in the SELECT command constructs an inter-
mediate virtual table by possibly combining tables, views, eliminating rows, grouping, etc. This table

106

Chapter 7. Queries

is finally passed on to processing by the select list. The select list determines which columns of the
intermediate table are actually output.

7.3.1. Select-List ltems

The simplest kind of select list is » which emits all columns that the table expression produces.
Otherwise, a select list is a comma-separated list of value expressions (as defined in Section 4.2). For
instance, it could be a list of column names:

SELECT a, b, c FROM

The columns names a, b, and c are either the actual names of the columns of tables referenced in the
FROM clause, or the aliases given to them as explained in Section 7.2.1.2. The name space available in
the select list is the same as in the WHERE clause, unless grouping is used, in which case it is the same
as in the HAVING clause.

If more than one table has a column of the same name, the table name must also be given, as in:
SELECT tbll.a, tbl2.a, tbll.b FROM

When working with multiple tables, it can also be useful to ask for all the columns of a particular
table:

SELECT tbll.x, tbl2.a FROM

See Section 8.16.5 for more about the table name. * notation.

If an arbitrary value expression is used in the select list, it conceptually adds a new virtual column to
the returned table. The value expression is evaluated once for each result row, with the row’s values
substituted for any column references. But the expressions in the select list do not have to reference
any columns in the table expression of the FROM clause; they can be constant arithmetic expressions,
for instance.

7.3.2. Column Labels

The entries in the select list can be assigned names for subsequent processing, such as for use in an
ORDER BY clause or for display by the client application. For example:

SELECT a AS value, b + ¢ AS sum FROM

If no output column name is specified using AS, the system assigns a default column name. For simple
column references, this is the name of the referenced column. For function calls, this is the name of
the function. For complex expressions, the system will generate a generic name.

The as keyword is optional, but only if the new column name does not match any PostgreSQL key-
word (see Appendix C). To avoid an accidental match to a keyword, you can double-quote the column
name. For example, VALUE is a keyword, so this does not work:

SELECT a value, b + ¢ AS sum FROM
but this does:

SELECT a "value", b + ¢ AS sum FROM

107

Chapter 7. Queries

For protection against possible future keyword additions, it is recommended that you always either
write AS or double-quote the output column name.

Note: The naming of output columns here is different from that done in the From clause (see
Section 7.2.1.2). It is possible to rename the same column twice, but the name assigned in the
select list is the one that will be passed on.

7.3.3. DISTINCT

After the select list has been processed, the result table can optionally be subject to the elimination of
duplicate rows. The DISTINCT key word is written directly after SELECT to specify this:

SELECT DISTINCT select_list
(Instead of DISTINCT the key word ALL can be used to specify the default behavior of retaining all
rows.)

Obviously, two rows are considered distinct if they differ in at least one column value. Null values are
considered equal in this comparison.

Alternatively, an arbitrary expression can determine what rows are to be considered distinct:

SELECT DISTINCT ON (expression [, expression ...]) select_list

Here expression is an arbitrary value expression that is evaluated for all rows. A set of rows for
which all the expressions are equal are considered duplicates, and only the first row of the set is kept
in the output. Note that the “first row” of a set is unpredictable unless the query is sorted on enough
columns to guarantee a unique ordering of the rows arriving at the DISTINCT filter. (DISTINCT ON
processing occurs after ORDER BY sorting.)

The DISTINCT ON clause is not part of the SQL standard and is sometimes considered bad style
because of the potentially indeterminate nature of its results. With judicious use of GROUP BY and
subqueries in FROM, this construct can be avoided, but it is often the most convenient alternative.

7.4. Combining Queries

The results of two queries can be combined using the set operations union, intersection, and differ-
ence. The syntax is

queryl UNION [ALL] query2
queryl INTERSECT [ALL] query2
queryl EXCEPT [ALL] query2

queryl and query2 are queries that can use any of the features discussed up to this point. Set
operations can also be nested and chained, for example

queryl UNION query2 UNION query3
which is executed as:

(queryl UNION query2) UNION query3

108

Chapter 7. Queries

UNION effectively appends the result of query2 to the result of query1 (although there is no guaran-
tee that this is the order in which the rows are actually returned). Furthermore, it eliminates duplicate
rows from its result, in the same way as DISTINCT, unless UNION ALL is used.

INTERSECT returns all rows that are both in the result of guery1 and in the result of query2. Dupli-
cate rows are eliminated unless INTERSECT ALL is used.

EXCEPT returns all rows that are in the result of query1 but not in the result of query2. (This is some-
times called the difference between two queries.) Again, duplicates are eliminated unless EXCEPT
ALL is used.

In order to calculate the union, intersection, or difference of two queries, the two queries must be
“union compatible”, which means that they return the same number of columns and the corresponding
columns have compatible data types, as described in Section 10.5.

7.5. Sorting Rows

After a query has produced an output table (after the select list has been processed) it can optionally
be sorted. If sorting is not chosen, the rows will be returned in an unspecified order. The actual order
in that case will depend on the scan and join plan types and the order on disk, but it must not be relied
on. A particular output ordering can only be guaranteed if the sort step is explicitly chosen.

The ORDER BY clause specifies the sort order:

SELECT select_list
FROM table expression
ORDER BY sort_expressionl [ASC | DESC] [NULLS { FIRST | LAST }]
[, sort_expression2 [ASC | DESC] [NULLS { FIRST | LAST }] ...]

The sort expression(s) can be any expression that would be valid in the query’s select list. An example
is:

SELECT a, b FROM tablel ORDER BY a + b, c;

When more than one expression is specified, the later values are used to sort rows that are equal
according to the earlier values. Each expression can be followed by an optional ASC or DESC keyword
to set the sort direction to ascending or descending. AsC order is the default. Ascending order puts
smaller values first, where “smaller” is defined in terms of the < operator. Similarly, descending order
is determined with the > operator. '

The NULLS FIRST and NULLS LAST options can be used to determine whether nulls appear before
or after non-null values in the sort ordering. By default, null values sort as if larger than any non-null
value; that is, NULLS FIRST is the default for DESC order, and NULLS LAST otherwise.

Note that the ordering options are considered independently for each sort column. For example ORDER
BY x, y DESC means ORDER BY x ASC, y DESC, which is not the same as ORDER BY x DESC,
y DESC.

A sort_expression can also be the column label or number of an output column, as in:

SELECT a + b AS sum, c FROM tablel ORDER BY sum;
SELECT a, max(b) FROM tablel GROUP BY a ORDER BY 1;

1.

Actually, PostgreSQL uses the default B-tree operator class for the expression’s data type to determine the sort ordering

for asc and DEsc. Conventionally, data types will be set up so that the < and > operators correspond to this sort ordering, but
a user-defined data type’s designer could choose to do something different.

109

Chapter 7. Queries

both of which sort by the first output column. Note that an output column name has to stand alone,
that is, it cannot be used in an expression — for example, this is not correct:

SELECT a + b AS sum, c FROM tablel ORDER BY sum + c; —— Wrong

This restriction is made to reduce ambiguity. There is still ambiguity if an ORDER BY item is a simple
name that could match either an output column name or a column from the table expression. The
output column is used in such cases. This would only cause confusion if you use As to rename an
output column to match some other table column’s name.

ORDER BY can be applied to the result of a UNION, INTERSECT, or EXCEPT combination, but in this
case it is only permitted to sort by output column names or numbers, not by expressions.

7.6. LIMIT and OFFSET

LIMIT and OFFSET allow you to retrieve just a portion of the rows that are generated by the rest of
the query:

SELECT select_list
FROM table _expression
[ORDER BY ...]
[LIMIT { number | ALL }] [OFFSET number]

If a limit count is given, no more than that many rows will be returned (but possibly less, if the query
itself yields less rows). LIMIT ALL is the same as omitting the LIMIT clause.

OFFSET says to skip that many rows before beginning to return rows. OFFSET 0 is the same as
omitting the OFFSET clause, and LIMIT NULL is the same as omitting the LIMIT clause. If both
OFFSET and LIMIT appear, then OFFSET rows are skipped before starting to count the LIMIT rows
that are returned.

When using LIMIT, it is important to use an ORDER BY clause that constrains the result rows into a
unique order. Otherwise you will get an unpredictable subset of the query’s rows. You might be asking
for the tenth through twentieth rows, but tenth through twentieth in what ordering? The ordering is
unknown, unless you specified ORDER BY.

The query optimizer takes LIMIT into account when generating query plans, so you are very likely
to get different plans (yielding different row orders) depending on what you give for LIMIT and
OFFSET. Thus, using different LIMIT/OFFSET values to select different subsets of a query result will
give inconsistent results unless you enforce a predictable result ordering with ORDER BY. This is not
a bug; it is an inherent consequence of the fact that SQL does not promise to deliver the results of a
query in any particular order unless ORDER BY is used to constrain the order.

The rows skipped by an OFFSET clause still have to be computed inside the server; therefore a large
OFFSET might be inefficient.

7.7. vALUES Lists

VALUES provides a way to generate a “‘constant table” that can be used in a query without having to
actually create and populate a table on-disk. The syntax is

VALUES (expression [, ...1) [, ...]

110

Chapter 7. Queries

Each parenthesized list of expressions generates a row in the table. The lists must all have the same
number of elements (i.e., the number of columns in the table), and corresponding entries in each
list must have compatible data types. The actual data type assigned to each column of the result is
determined using the same rules as for UNION (see Section 10.5).

As an example:
VALUES (1, 'one’), (2, 'two’), (3, ’'three’);
will return a table of two columns and three rows. It’s effectively equivalent to:

SELECT 1 AS columnl, ’one’ AS column2
UNION ALL

SELECT 2, 'two’

UNION ALL

SELECT 3, ’'three’;

By default, PostgreSQL assigns the names columnl, column2, etc. to the columns of a VALUES
table. The column names are not specified by the SQL standard and different database systems do it
differently, so it’s usually better to override the default names with a table alias list, like this:

=> SELECT = FROM (VALUES (1, 'one’), (2, "two’), (3, ’'three’)) AS t (num,letter);
num | letter

Syntactically, VALUES followed by expression lists is treated as equivalent to:

SELECT select_list FROM table expression

and can appear anywhere a SELECT can. For example, you can use it as part of a UNION, or attach a
sort_specification (ORDER BY, LIMIT, and/or OFFSET) to it. VALUES is most commonly used
as the data source in an INSERT command, and next most commonly as a subquery.

For more information see VALUES.

7.8. wiTH Queries (Common Table Expressions)

WITH provides a way to write auxiliary statements for use in a larger query. These statements, which
are often referred to as Common Table Expressions or CTEs, can be thought of as defining temporary
tables that exist just for one query. Each auxiliary statement in a WITH clause can be a SELECT,
INSERT, UPDATE, or DELETE; and the WITH clause itself is attached to a primary statement that can
also be a SELECT, INSERT, UPDATE, or DELETE.

7.8.1. SELECT in WITH

The basic value of SELECT in WITH is to break down complicated queries into simpler parts. An
example is:

WITH regional_sales AS (

111

Chapter 7. Queries

SELECT region, SUM(amount) AS total_sales
FROM orders
GROUP BY region
), top_regions AS (
SELECT region
FROM regional_sales
WHERE total_sales > (SELECT SUM(total_sales)/10 FROM regional_sales)

)

SELECT region,

product,

SUM (quantity) AS product_units,

SUM (amount) AS product_sales
FROM orders
WHERE region IN (SELECT region FROM top_regions)
GROUP BY region, product;

which displays per-product sales totals in only the top sales regions. The WITH clause defines
two auxiliary statements named regional_sales and top_regions, where the output of
regional_sales is used in top_regions and the output of top_regions is used in the primary
SELECT query. This example could have been written without WITH, but we’d have needed two
levels of nested sub-SELECTs. It’s a bit easier to follow this way.

The optional RECURSIVE modifier changes WITH from a mere syntactic convenience into a feature
that accomplishes things not otherwise possible in standard SQL. Using RECURSIVE, a WITH query
can refer to its own output. A very simple example is this query to sum the integers from 1 through
100:

WITH RECURSIVE t(n) AS (
VALUES (1)
UNION ALL
SELECT n+l FROM t WHERE n < 100

)
SELECT sum(n) FROM t;

The general form of a recursive WITH query is always a non-recursive term, then UNION (or UNION
ALL), then a recursive term, where only the recursive term can contain a reference to the query’s own
output. Such a query is executed as follows:

Recursive Query Evaluation

1. Evaluate the non-recursive term. For UNION (but not UNION ALL), discard duplicate rows. In-
clude all remaining rows in the result of the recursive query, and also place them in a temporary
working table.

2. So long as the working table is not empty, repeat these steps:
a. Evaluate the recursive term, substituting the current contents of the working table for
the recursive self-reference. For UNTON (but not UNION ALL), discard duplicate rows

and rows that duplicate any previous result row. Include all remaining rows in the result
of the recursive query, and also place them in a temporary intermediate table.

b. Replace the contents of the working table with the contents of the intermediate table,
then empty the intermediate table.

Note: Strictly speaking, this process is iteration not recursion, but RECURSIVE is the terminology
chosen by the SQL standards committee.

112

Chapter 7. Queries

In the example above, the working table has just a single row in each step, and it takes on the values
from 1 through 100 in successive steps. In the 100th step, there is no output because of the WHERE
clause, and so the query terminates.

Recursive queries are typically used to deal with hierarchical or tree-structured data. A useful example
is this query to find all the direct and indirect sub-parts of a product, given only a table that shows
immediate inclusions:

WITH RECURSIVE included_parts (sub_part, part, quantity) AS (
SELECT sub_part, part, quantity FROM parts WHERE part = ’our_product’
UNION ALL
SELECT p.sub_part, p.part, p.quantity
FROM included_parts pr, parts p
WHERE p.part = pr.sub_part
)
SELECT sub_part, SUM(quantity) as total_quantity
FROM included_parts
GROUP BY sub_part

When working with recursive queries it is important to be sure that the recursive part of the query will
eventually return no tuples, or else the query will loop indefinitely. Sometimes, using UNION instead
of UNION ALL can accomplish this by discarding rows that duplicate previous output rows. However,
often a cycle does not involve output rows that are completely duplicate: it may be necessary to check
just one or a few fields to see if the same point has been reached before. The standard method for
handling such situations is to compute an array of the already-visited values. For example, consider
the following query that searches a table graph using a 1ink field:

WITH RECURSIVE search_graph(id, link, data, depth) AS (
SELECT g.id, g.link, g.data, 1
FROM graph g
UNION ALL
SELECT g.id, g.link, g.data, sg.depth + 1
FROM graph g, search_graph sg
WHERE g.id = sg.link
)
SELECT FROM search_graph;

This query will loop if the 1ink relationships contain cycles. Because we require a “depth” output,
just changing UNION ALL to UNION would not eliminate the looping. Instead we need to recognize
whether we have reached the same row again while following a particular path of links. We add two
columns path and cycle to the loop-prone query:

WITH RECURSIVE search_graph(id, 1link, data, depth, path, cycle) AS (

SELECT g.id, g.link, g.data, 1,
ARRAY [g.id],
false

FROM graph g

UNION ALL

SELECT g.id, g.link, g.data, sg.depth + 1,
path || g.id,
g.id = ANY (path)

FROM graph g, search_graph sg

WHERE g.id = sg.link AND NOT cycle

113

Chapter 7. Queries

)
SELECT x FROM search_graph;

Aside from preventing cycles, the array value is often useful in its own right as representing the “path”
taken to reach any particular row.

In the general case where more than one field needs to be checked to recognize a cycle, use an array
of rows. For example, if we needed to compare fields £1 and £2:

WITH RECURSIVE search_graph(id, 1link, data, depth, path, cycle) AS (
SELECT g.id, g.link, g.data, 1,
ARRAY [ROW (g.f1l, g.f2)1,

false
FROM graph g
UNION ALL
SELECT g.id, g.link, g.data, sg.depth + 1,
path || ROW(g.fl, g.f2),
ROW(g.fl, g.f2) = ANY (path)

FROM graph g, search_graph sg
WHERE g.id = sg.link AND NOT cycle

)
SELECT x FROM search_graph;

Tip: Omit the row () syntax in the common case where only one field needs to be checked to
recognize a cycle. This allows a simple array rather than a composite-type array to be used,
gaining efficiency.

Tip: The recursive query evaluation algorithm produces its output in breadth-first search order.
You can display the results in depth-first search order by making the outer query orDER BY a
“path” column constructed in this way.

A helpful trick for testing queries when you are not certain if they might loop is to place a LIMIT in
the parent query. For example, this query would loop forever without the LIMIT:

WITH RECURSIVE t(n) AS (
SELECT 1
UNION ALL
SELECT n+l FROM t

)
SELECT n FROM t LIMIT 100;

This works because PostgreSQL’s implementation evaluates only as many rows of a WITH query as
are actually fetched by the parent query. Using this trick in production is not recommended, because
other systems might work differently. Also, it usually won’t work if you make the outer query sort the
recursive query’s results or join them to some other table, because in such cases the outer query will
usually try to fetch all of the WITH query’s output anyway.

A useful property of WITH queries is that they are evaluated only once per execution of the parent
query, even if they are referred to more than once by the parent query or sibling WITH queries. Thus,
expensive calculations that are needed in multiple places can be placed within a WITH query to avoid
redundant work. Another possible application is to prevent unwanted multiple evaluations of func-
tions with side-effects. However, the other side of this coin is that the optimizer is less able to push

114

Chapter 7. Queries

restrictions from the parent query down into a WITH query than an ordinary subquery. The WITH query
will generally be evaluated as written, without suppression of rows that the parent query might dis-
card afterwards. (But, as mentioned above, evaluation might stop early if the reference(s) to the query
demand only a limited number of rows.)

The examples above only show WITH being used with SELECT, but it can be attached in the same way
to INSERT, UPDATE, or DELETE. In each case it effectively provides temporary table(s) that can be
referred to in the main command.

7.8.2. Data-Modifying Statements in wITH

You can use data-modifying statements (INSERT, UPDATE, or DELETE) in WITH. This allows you to
perform several different operations in the same query. An example is:

WITH moved_rows AS (
DELETE FROM products
WHERE
"date" >= ’2010-10-01" AND
"date" < 72010-11-01’
RETURNING =

)
INSERT INTO products_log
SELECT » FROM moved_rows;

This query effectively moves rows from products to products_log. The DELETE in WITH deletes
the specified rows from products, returning their contents by means of its RETURNING clause; and
then the primary query reads that output and inserts it into products_log.

A fine point of the above example is that the WITH clause is attached to the INSERT, not the sub-
SELECT within the INSERT. This is necessary because data-modifying statements are only allowed
in WITH clauses that are attached to the top-level statement. However, normal wITH visibility rules
apply, so it is possible to refer to the WITH statement’s output from the sub-SELECT.

Data-modifying statements in WITH usually have RETURNING clauses (see Section 6.4), as shown
in the example above. It is the output of the RETURNING clause, not the target table of the data-
modifying statement, that forms the temporary table that can be referred to by the rest of the query.
If a data-modifying statement in WITH lacks a RETURNING clause, then it forms no temporary table
and cannot be referred to in the rest of the query. Such a statement will be executed nonetheless. A
not-particularly-useful example is:

WITH t AS (
DELETE FROM foo

)
DELETE FROM bar;

This example would remove all rows from tables foo and bar. The number of affected rows reported
to the client would only include rows removed from bar.

Recursive self-references in data-modifying statements are not allowed. In some cases it is possible
to work around this limitation by referring to the output of a recursive WITH, for example:

WITH RECURSIVE included_parts (sub_part, part) AS (
SELECT sub_part, part FROM parts WHERE part = ’our_product’
UNION ALL
SELECT p.sub_part, p.part
FROM included_parts pr, parts p

115

Chapter 7. Queries

WHERE p.part = pr.sub_part

)
DELETE FROM parts
WHERE part IN (SELECT part FROM included_parts);

This query would remove all direct and indirect subparts of a product.

Data-modifying statements in WITH are executed exactly once, and always to completion, indepen-
dently of whether the primary query reads all (or indeed any) of their output. Notice that this is
different from the rule for SELECT in WITH: as stated in the previous section, execution of a SELECT
is carried only as far as the primary query demands its output.

The sub-statements in WITH are executed concurrently with each other and with the main query.
Therefore, when using data-modifying statements in WITH, the order in which the specified updates
actually happen is unpredictable. All the statements are executed with the same snapshot (see Chapter
13), so they cannot “see” one another’s effects on the target tables. This alleviates the effects of the
unpredictability of the actual order of row updates, and means that RETURNING data is the only way
to communicate changes between different WITH sub-statements and the main query. An example of
this is that in

WITH t AS (
UPDATE products SET price = price x 1.05
RETURNING =*

)
SELECT x FROM products;

the outer SELECT would return the original prices before the action of the UPDATE, while in

WITH t AS (
UPDATE products SET price = price = 1.05
RETURNING =*

)
SELECT * FROM t;

the outer SELECT would return the updated data.

Trying to update the same row twice in a single statement is not supported. Only one of the modi-
fications takes place, but it is not easy (and sometimes not possible) to reliably predict which one.
This also applies to deleting a row that was already updated in the same statement: only the update
is performed. Therefore you should generally avoid trying to modify a single row twice in a single
statement. In particular avoid writing WITH sub-statements that could affect the same rows changed by
the main statement or a sibling sub-statement. The effects of such a statement will not be predictable.

At present, any table used as the target of a data-modifying statement in WITH must not have a condi-
tional rule, nor an A1LSO rule, nor an INSTEAD rule that expands to multiple statements.

116

Chapter 8. Data Types

PostgreSQL has a rich set of native data types available to users. Users can add new types to Post-
greSQL using the CREATE TYPE command.

Table 8-1 shows all the built-in general-purpose data types. Most of the alternative names listed in
the “Aliases” column are the names used internally by PostgreSQL for historical reasons. In addition,
some internally used or deprecated types are available, but are not listed here.

Table 8-1. Data Types

Name Aliases Description

bigint int8 signed eight-byte integer

bigserial serial8 autoincrementing eight-byte
integer

bit [(n)] fixed-length bit string

bit varying [(n)] varbit [(n)] variable-length bit string

boolean bool logical Boolean (true/false)

box rectangular box on a plane

bytea binary data (“byte array”)

character [(n)] char [(n)] fixed-length character string

character varying [(n) |varchar [(n)] variable-length character string

]

cidr IPv4 or IPv6 network address

circle circle on a plane

date calendar date (year, month,
day)

double precision float8 double precision floating-point
number (8 bytes)

inet IPv4 or IPv6 host address

integer int, int4 signed four-byte integer

interval [fields] [time span

(p)]

json textual JSON data

jsonb binary JSON data, decomposed

line infinite line on a plane

lseg line segment on a plane

macaddr MAC (Media Access Control)
address

money currency amount

numeric [(p, s)] decimal [(p, s)] exact numeric of selectable
precision

path geometric path on a plane

pg_lsn PostgreSQL Log Sequence
Number

point geometric point on a plane

117

Chapter 8. Data Types

Name Aliases Description

polygon closed geometric path on a
plane

real float4 single precision floating-point
number (4 bytes)

smallint int2 signed two-byte integer

smallserial serial? autoincrementing two-byte
integer

serial seriald autoincrementing four-byte
integer

text variable-length character string

time [(p) 1 [without time of day (no time zone)

time zone]

time [(p)] with time |timetz time of day, including time

zone zone

timestamp [(p) 1 I date and time (no time zone)

without time zone]

timestamp [(p)] with timestamptz date and time, including time

time zone

zone

tsquery

text search query

tsvector

text search document

txid_snapshot

user-level transaction ID

snapshot
uuid universally unique identifier
xml XML data

Compatibility: The following types (or spellings thereof) are specified by SQL: bigint, bit, bit
varying, boolean, char, character varying, character, varchar, date, double precision,
integer, interval, numeric, decimal, real, smallint, time (with or without time zone),
timestamp (with or without time zone), xm1.

Each data type has an external representation determined by its input and output functions. Many of
the built-in types have obvious external formats. However, several types are either unique to Post-
greSQL, such as geometric paths, or have several possible formats, such as the date and time types.
Some of the input and output functions are not invertible, i.e., the result of an output function might

lose accuracy when compared to the original input.

8.1. Numeric Types

Numeric types consist of two-, four-, and eight-byte integers, four- and eight-byte floating-point num-
bers, and selectable-precision decimals. Table 8-2 lists the available types.

Table 8-2. Numeric Types

Name \ Storage Size

Description

Range

118

Chapter 8. Data Types

Name Storage Size Description Range
smallint 2 bytes small-range integer -32768 to +32767
integer 4 bytes typical choice for -2147483648 to
integer +2147483647
bigint 8 bytes large-range integer -
9223372036854775808
to
+9223372036854775807
decimal variable user-specified up to 131072 digits
precision, exact before the decimal

point; up to 16383
digits after the decimal

point
numeric variable user-specified up to 131072 digits
precision, exact before the decimal

point; up to 16383
digits after the decimal

point
real 4 bytes variable-precision, 6 decimal digits
inexact precision
double precision |8 bytes variable-precision, 15 decimal digits
inexact precision
smallserial 2 bytes small autoincrementing | 1 to 32767
integer
serial 4 bytes autoincrementing 1 to 2147483647
integer
bigserial 8 bytes large autoincrementing | 1 to
integer 9223372036854775807

The syntax of constants for the numeric types is described in Section 4.1.2. The numeric types have a
full set of corresponding arithmetic operators and functions. Refer to Chapter 9 for more information.
The following sections describe the types in detail.

8.1.1. Integer Types

The types smallint, integer, and bigint store whole numbers, that is, numbers without fractional
components, of various ranges. Attempts to store values outside of the allowed range will result in an
error.

The type integer is the common choice, as it offers the best balance between range, storage size, and
performance. The smallint type is generally only used if disk space is at a premium. The bigint
type is designed to be used when the range of the integer type is insufficient.

SQL only specifies the integer types integer (or int), smallint, and bigint. The type names
int2, int4, and int8 are extensions, which are also used by some other SQL database systems.

119

Chapter 8. Data Types

8.1.2. Arbitrary Precision Numbers

The type numeric can store numbers with a very large number of digits. It is especially recom-
mended for storing monetary amounts and other quantities where exactness is required. Calculations
with numeric values yield exact results where possible, e.g. addition, subtraction, multiplication.
However, calculations on numeric values are very slow compared to the integer types, or to the
floating-point types described in the next section.

We use the following terms below: the precision of a numeric is the total count of significant digits
in the whole number, that is, the number of digits to both sides of the decimal point. The scale of a
numeric is the count of decimal digits in the fractional part, to the right of the decimal point. So the
number 23.5141 has a precision of 6 and a scale of 4. Integers can be considered to have a scale of
Zero.

Both the maximum precision and the maximum scale of a numeric column can be configured. To
declare a column of type numeric use the syntax:

NUMERIC (precision, scale)

The precision must be positive, the scale zero or positive. Alternatively:
NUMERIC (precision)

selects a scale of 0. Specifying:

NUMERIC

without any precision or scale creates a column in which numeric values of any precision and scale
can be stored, up to the implementation limit on precision. A column of this kind will not coerce
input values to any particular scale, whereas numeric columns with a declared scale will coerce input
values to that scale. (The SQL standard requires a default scale of 0, i.e., coercion to integer precision.
We find this a bit useless. If you’re concerned about portability, always specify the precision and scale
explicitly.)

Note: The maximum allowed precision when explicitly specified in the type declaration is 1000;
NUMERIC without a specified precision is subject to the limits described in Table 8-2.

If the scale of a value to be stored is greater than the declared scale of the column, the system will
round the value to the specified number of fractional digits. Then, if the number of digits to the left of
the decimal point exceeds the declared precision minus the declared scale, an error is raised.

Numeric values are physically stored without any extra leading or trailing zeroes. Thus, the declared
precision and scale of a column are maximums, not fixed allocations. (In this sense the numeric type
is more akin to varchar (n) than to char (n).) The actual storage requirement is two bytes for each
group of four decimal digits, plus three to eight bytes overhead.

In addition to ordinary numeric values, the numeric type allows the special value NaN, meaning
“not-a-number”. Any operation on NaN yields another NaN. When writing this value as a constant in
an SQL command, you must put quotes around it, for example UPDATE table SET x = ’NaN’.
On input, the string NaN is recognized in a case-insensitive manner.

Note: In most implementations of the “not-a-number” concept, Nan is not considered equal to any
other numeric value (including nan). In order to allow numeric values to be sorted and used in
tree-based indexes, PostgreSQL treats nan values as equal, and greater than all non-nan values.

120

Chapter 8. Data Types

The types decimal and numeric are equivalent. Both types are part of the SQL standard.

8.1.3. Floating-Point Types

The data types real and double precision are inexact, variable-precision numeric types. In prac-
tice, these types are usually implementations of IEEE Standard 754 for Binary Floating-Point Arith-
metic (single and double precision, respectively), to the extent that the underlying processor, operating
system, and compiler support it.

Inexact means that some values cannot be converted exactly to the internal format and are stored as ap-
proximations, so that storing and retrieving a value might show slight discrepancies. Managing these
errors and how they propagate through calculations is the subject of an entire branch of mathematics
and computer science and will not be discussed here, except for the following points:

« If you require exact storage and calculations (such as for monetary amounts), use the numeric
type instead.

« If you want to do complicated calculations with these types for anything important, especially
if you rely on certain behavior in boundary cases (infinity, underflow), you should evaluate the
implementation carefully.

« Comparing two floating-point values for equality might not always work as expected.

On most platforms, the real type has a range of at least 1E-37 to 1E+37 with a precision of at least 6
decimal digits. The double precision type typically has a range of around 1E-307 to 1E+308 with
a precision of at least 15 digits. Values that are too large or too small will cause an error. Rounding
might take place if the precision of an input number is too high. Numbers too close to zero that are
not representable as distinct from zero will cause an underflow error.

Note: The extra_float_digits setting controls the number of extra significant digits included when
a floating point value is converted to text for output. With the default value of o, the output is the
same on every platform supported by PostgreSQL. Increasing it will produce output that more
accurately represents the stored value, but may be unportable.

In addition to ordinary numeric values, the floating-point types have several special values:

Infinity
—Infinity
NaN

CEINNT3

These represent the IEEE 754 special values “infinity”, “negative infinity”, and “not-a-number”, re-
spectively. (On a machine whose floating-point arithmetic does not follow IEEE 754, these values
will probably not work as expected.) When writing these values as constants in an SQL command,
you must put quotes around them, for example UPDATE table SET x = ’Infinity’. On input,
these strings are recognized in a case-insensitive manner.

Note: IEEE754 specifies that nan should not compare equal to any other floating-point value
(including nan). In order to allow floating-point values to be sorted and used in tree-based indexes,
PostgreSQL treats nan values as equal, and greater than all non-nan values.

121

Chapter 8. Data Types

PostgreSQL also supports the SQL-standard notations float and float (p) for specifying inexact
numeric types. Here, p specifies the minimum acceptable precision in binary digits. PostgreSQL
accepts float (1) to float (24) as selecting the real type, while f1oat (25) to float (53) select
double precision. Values of p outside the allowed range draw an error. £1oat with no precision
specified is taken to mean double precision.

Note: The assumption that real and double precision have exactly 24 and 53 bits in the man-
tissa respectively is correct for IEEE-standard floating point implementations. On non-IEEE plat-
forms it might be off a little, but for simplicity the same ranges of p are used on all platforms.

8.1.4. Serial Types

The data types smallserial, serial and bigserial are not true types, but merely a notational
convenience for creating unique identifier columns (similar to the AUTO_INCREMENT property sup-
ported by some other databases). In the current implementation, specifying:

CREATE TABLE tablename (
colname SERIAL

)i
is equivalent to specifying:

CREATE SEQUENCE tablename_colname_seq;
CREATE TABLE tablename (
colname integer NOT NULL DEFAULT nextval (' tablename_colname_seq’)
)i
ALTER SEQUENCE tablename_colname_seq OWNED BY tablename.colname;

Thus, we have created an integer column and arranged for its default values to be assigned from a se-
quence generator. A NOT NULL constraint is applied to ensure that a null value cannot be inserted. (In
most cases you would also want to attach a UNIQUE or PRIMARY KEY constraint to prevent duplicate
values from being inserted by accident, but this is not automatic.) Lastly, the sequence is marked as
“owned by” the column, so that it will be dropped if the column or table is dropped.

Note: Because smallserial, serial and bigserial are implemented using sequences, there
may be "holes" or gaps in the sequence of values which appears in the column, even if no rows
are ever deleted. A value allocated from the sequence is still "used up" even if a row containing
that value is never successfully inserted into the table column. This may happen, for example, if
the inserting transaction rolls back. See nextval () in Section 9.16 for details.

To insert the next value of the sequence into the serial column, specify that the serial column
should be assigned its default value. This can be done either by excluding the column from the list of
columns in the INSERT statement, or through the use of the DEFAULT key word.

The type names serial and serial4 are equivalent: both create integer columns. The type names
bigserial and serial8 work the same way, except that they create abigint column. bigserial
should be used if you anticipate the use of more than 2*' identifiers over the lifetime of the table. The
type names smallserial and serial2 also work the same way, except that they create a smallint
column.

122

Chapter 8. Data Types

The sequence created for a serial column is automatically dropped when the owning column is
dropped. You can drop the sequence without dropping the column, but this will force removal of the

column default expression.

8.2. Monetary Types

The money type stores a currency amount with a fixed fractional precision; see Table 8-3. The frac-

tional precision is determined by the database’s lc_monetary setting. The range shown in the table

assumes there are two fractional digits. Input is accepted in a variety of formats, including integer
and floating-point literals, as well as typical currency formatting, such as ’ $1, 000.00’. Output is
generally in the latter form but depends on the locale.

Table 8-3. Monetary Types

Name Storage Size Description Range

money 8 bytes currency amount -
92233720368547758.08
to
+92233720368547758.0)

Since the output of this data type is locale-sensitive, it might not work to load money data into a
database that has a different setting of 1c_monetary. To avoid problems, before restoring a dump

into a new database make sure 1c_monetary has the same or equivalent value as in the database that

was dumped.

Values of the numeric, int, and bigint data types can be cast to money. Conversion from the real
and double precision data types can be done by casting to numeric first, for example:

SELECT ’'12.34"::float8::numeric: ::money;

However, this is not recommended. Floating point numbers should not be used to handle money due

to the potential for rounding errors.

A money value can be cast to numeric without loss of precision. Conversion to other types could
potentially lose precision, and must also be done in two stages:

SELECT "52093.89' ::money::numeric::float8;

Division of a money value by an integer value is performed with truncation of the fractional part
towards zero. To get a rounded result, divide by a floating-point value, or cast the money value
to numeric before dividing and back to money afterwards. (The latter is preferable to avoid risk-
ing precision loss.) When a money value is divided by another money value, the result is double

precision (i.e., a pure number, not money); the currency units cancel each other out in the division.

123

Chapter 8. Data Types

8.3. Character Types

Table 8-4. Character Types

Name Description

character varying(n), varchar (n) variable-length with limit
character (n), char (n) fixed-length, blank padded
text variable unlimited length

Table 8-4 shows the general-purpose character types available in PostgreSQL.

SQL defines two primary character types: character varying(n) and character (n), where n
is a positive integer. Both of these types can store strings up to n characters (not bytes) in length.
An attempt to store a longer string into a column of these types will result in an error, unless the
excess characters are all spaces, in which case the string will be truncated to the maximum length.
(This somewhat bizarre exception is required by the SQL standard.) If the string to be stored is shorter
than the declared length, values of type character will be space-padded; values of type character
varying will simply store the shorter string.

If one explicitly casts a value to character varying(n) or character (n), then an over-length
value will be truncated to n characters without raising an error. (This too is required by the SQL
standard.)

The notations varchar(n) and char(n) are aliases for character varying(n) and
character (n), respectively. character without length specifier is equivalent to character (1).
If character varying is used without length specifier, the type accepts strings of any size. The
latter is a PostgreSQL extension.

In addition, PostgreSQL provides the text type, which stores strings of any length. Although the
type text is not in the SQL standard, several other SQL database management systems have it as
well.

Values of type character are physically padded with spaces to the specified width n, and are stored
and displayed that way. However, trailing spaces are treated as semantically insignificant and disre-
garded when comparing two values of type character. In collations where whitespace is significant,
this behavior can produce unexpected results; for example SELECT ’a ’::CHAR(2) collate "C"
< E’a\n’::CHAR(2) returns true, even though C locale would consider a space to be greater than a
newline. Trailing spaces are removed when converting a character value to one of the other string
types. Note that trailing spaces are semantically significant in character varying and text val-
ues, and when using pattern matching, that is LIKE and regular expressions.

The storage requirement for a short string (up to 126 bytes) is 1 byte plus the actual string, which
includes the space padding in the case of character. Longer strings have 4 bytes of overhead instead
of 1. Long strings are compressed by the system automatically, so the physical requirement on disk
might be less. Very long values are also stored in background tables so that they do not interfere with
rapid access to shorter column values. In any case, the longest possible character string that can be
stored is about 1 GB. (The maximum value that will be allowed for n in the data type declaration
is less than that. It wouldn’t be useful to change this because with multibyte character encodings
the number of characters and bytes can be quite different. If you desire to store long strings with no
specific upper limit, use text or character varying without a length specifier, rather than making
up an arbitrary length limit.)

Tip: There is no performance difference among these three types, apart from increased storage
space when using the blank-padded type, and a few extra CPU cycles to check the length when

124

Chapter 8. Data Types

storing into a length-constrained column. While character (n) has performance advantages in
some other database systems, there is no such advantage in PostgreSQL; in fact character (n)
is usually the slowest of the three because of its additional storage costs and slower sorting. In
most situations text or character varying should be used instead.

Refer to Section 4.1.2.1 for information about the syntax of string literals, and to Chapter 9 for infor-
mation about available operators and functions. The database character set determines the character
set used to store textual values; for more information on character set support, refer to Section 22.3.

Example 8-1. Using the Character Types

CREATE TABLE testl (a character(4));
INSERT INTO testl VALUES (’'ok’);

SELECT a, char_length(a) FROM testl; -- ©
a | char_length

,,,,,, e

ok | 2

CREATE TABLE test2 (b wvarchar(5));

INSERT INTO test2 VALUES ('ok’);

INSERT INTO test2 VALUES (’good ")

INSERT INTO test2 VALUES (’too long’);

ERROR: value too long for type character varying(5)

INSERT INTO test2 VALUES (’too long’::varchar(5)); -- explicit truncation
SELECT b, char_length(b) FROM test2;
b | char_length
,,,,,,, o
ok | 2
good | 5
too 1 | 5

©® The char_length function is discussed in Section 9.4.

There are two other fixed-length character types in PostgreSQL, shown in Table 8-5. The name type
exists only for the storage of identifiers in the internal system catalogs and is not intended for use by
the general user. Its length is currently defined as 64 bytes (63 usable characters plus terminator) but
should be referenced using the constant NAMEDATALEN in C source code. The length is set at compile
time (and is therefore adjustable for special uses); the default maximum length might change in a
future release. The type "char" (note the quotes) is different from char (1) in that it only uses one
byte of storage. It is internally used in the system catalogs as a simplistic enumeration type.

Table 8-5. Special Character Types

Name Storage Size Description
"char" 1 byte single-byte internal type
name 64 bytes internal type for object names

8.4. Binary Data Types

The bytea data type allows storage of binary strings; see Table 8-6.

125

Chapter 8. Data Types

Table 8-6. Binary Data Types

Name Storage Size Description

bytea 1 or 4 bytes plus the actual variable-length binary string
binary string

A binary string is a sequence of octets (or bytes). Binary strings are distinguished from character
strings in two ways. First, binary strings specifically allow storing octets of value zero and other
“non-printable” octets (usually, octets outside the decimal range 32 to 126). Character strings disallow
zero octets, and also disallow any other octet values and sequences of octet values that are invalid
according to the database’s selected character set encoding. Second, operations on binary strings
process the actual bytes, whereas the processing of character strings depends on locale settings. In
short, binary strings are appropriate for storing data that the programmer thinks of as “raw bytes”,
whereas character strings are appropriate for storing text.

The bytea type supports two formats for input and output: “hex” format and PostgreSQL’s historical
“escape” format. Both of these are always accepted on input. The output format depends on the
configuration parameter bytea_output; the default is hex. (Note that the hex format was introduced in
PostgreSQL 9.0; earlier versions and some tools don’t understand it.)

The SQL standard defines a different binary string type, called BLOB or BINARY LARGE OBJECT.
The input format is different from bytea, but the provided functions and operators are mostly the
same.

8.4.1. bytea Hex Format

The “hex” format encodes binary data as 2 hexadecimal digits per byte, most significant nibble first.
The entire string is preceded by the sequence \x (to distinguish it from the escape format). In some
contexts, the initial backslash may need to be escaped by doubling it (see Section 4.1.2.1). For input,
the hexadecimal digits can be either upper or lower case, and whitespace is permitted between digit
pairs (but not within a digit pair nor in the starting \ x sequence). The hex format is compatible with a
wide range of external applications and protocols, and it tends to be faster to convert than the escape
format, so its use is preferred.

Example:

SELECT ’\xDEADBEEF’;

8.4.2. bytea Escape Format

The “escape” format is the traditional PostgreSQL format for the bytea type. It takes the approach
of representing a binary string as a sequence of ASCII characters, while converting those bytes that
cannot be represented as an ASCII character into special escape sequences. If, from the point of
view of the application, representing bytes as characters makes sense, then this representation can be
convenient. But in practice it is usually confusing because it fuzzes up the distinction between binary
strings and character strings, and also the particular escape mechanism that was chosen is somewhat
unwieldy. Therefore, this format should probably be avoided for most new applications.

When entering bytea values in escape format, octets of certain values must be escaped, while all
octet values can be escaped. In general, to escape an octet, convert it into its three-digit octal value and
precede it by a backslash. Backslash itself (octet decimal value 92) can alternatively be represented

126

Chapter 8. Data Types

by double backslashes. Table 8-7 shows the characters that must be escaped, and gives the alternative
escape sequences where applicable.

Table 8-7. bytea Literal Escaped Octets

Decimal Octet | Description Escaped Input | Example Hex
Value Representation Representation
0 zero octet "\000" SELECT \x00
"\000’ : :bytea;
39 single quote 7 or ' \047" SELECT \x27
" tbytea;
92 backslash "\\’" or “\134’ |SELECT \x5¢
"\\’ ::bytea;
0to 31 and 127 to | “non-printable” "\xxx’ (octal SELECT \x01
255 octets value) ’\001’ : :bytea;

The requirement to escape non-printable octets varies depending on locale settings. In some instances
you can get away with leaving them unescaped.

The reason that single quotes must be doubled, as shown in Table 8-7, is that this is true for any string
literal in a SQL command. The generic string-literal parser consumes the outermost single quotes and
reduces any pair of single quotes to one data character. What the bytea input function sees is just
one single quote, which it treats as a plain data character. However, the bytea input function treats
backslashes as special, and the other behaviors shown in Table 8-7 are implemented by that function.

In some contexts, backslashes must be doubled compared to what is shown above, because the generic
string-literal parser will also reduce pairs of backslashes to one data character; see Section 4.1.2.1.

Bytea octets are output in hex format by default. If you change bytea_output to escape, “non-
printable” octets are converted to their equivalent three-digit octal value and preceded by one back-
slash. Most “printable” octets are output by their standard representation in the client character set,

e.g.

SET bytea_output = ’'escape’;

SELECT "abc \153\154\155 \052\251\124’ ::bytea;
bytea

abc klm *\251T

The octet with decimal value 92 (backslash) is doubled in the output. Details are in Table 8-8.

Table 8-8. bytea Output Escaped Octets

Decimal Octet | Description Escaped Example Output Result
Value Output
Representation
92 backslash \\ SELECT AR
"\134' ::bytea;

127

Chapter 8. Data Types

255

octets

"\001’ ::bytea;

Decimal Octet | Description Escaped Example Output Result
Value Output

Representation
0to 31 and 127 to | “non-printable” \xxx (octal value) | SELECT \001

32to 126

“printable” octets

client character

SELECT

set representation |’\176’ : :bytea;

Depending on the front end to PostgreSQL you use, you might have additional work to do in terms of
escaping and unescaping bytea strings. For example, you might also have to escape line feeds and
carriage returns if your interface automatically translates these.

8.5. Date/Time Types

PostgreSQL supports the full set of SQL date and time types, shown in Table 8-9. The operations avail-
able on these data types are described in Section 9.9. Dates are counted according to the Gregorian
calendar, even in years before that calendar was introduced (see Section B.5 for more information).

Table 8-9. Date/Time Types

Name Storage Size | Description |Low Value High Value |Resolution
timestamp [|8 bytes both date and | 4713 BC 294276 AD 1 microsecond
(G=) NI time (no time / 14 digits
without zone)
time zone]
timestamp [|8 bytes both date and | 4713 BC 294276 AD 1 microsecond
(p) 1 with time, with time / 14 digits
time zone zone
date 4 bytes date (no time |4713 BC 5874897 AD |1 day

of day)
time [(p) |8 bytes time of day (no | 00:00:00 24:00:00 1 microsecond
1 [without date) / 14 digits
time zone]
time [(p) |12 bytes times of day 00:00:00+1459 | 24:00:00-1459 | 1 microsecond
] with time only, with time / 14 digits
zone zone
interval [|16 bytes time interval | -178000000 178000000 1 microsecond
fields] | years years / 14 digits
(p)]

Note: The SQL standard requires that writing just timestamp be equivalent to timestamp
without time zone, and PostgreSQL honors that behavior. timestamptz is accepted as an

128

Chapter 8. Data Types

abbreviation for t imestamp with time zone;this is a PostgreSQL extension.

time, timestamp, and interval accept an optional precision value p which specifies the number
of fractional digits retained in the seconds field. By default, there is no explicit bound on precision.
The allowed range of p is from 0 to 6 for the t imestamp and interval types.

Note: When timestamp values are stored as eight-byte integers (currently the default), microsec-
ond precision is available over the full range of values. When timestamp values are stored as
double precision floating-point numbers instead (a deprecated compile-time option), the effective
limit of precision might be less than 6. timestamp values are stored as seconds before or after
midnight 2000-01-01. When timestamp values are implemented using floating-point numbers,
microsecond precision is achieved for dates within a few years of 2000-01-01, but the precision
degrades for dates further away. Note that using floating-point datetimes allows a larger range of
timestamp values to be represented than shown above: from 4713 BC up to 5874897 AD.

The same compile-time option also determines whether time and interval values are stored
as floating-point numbers or eight-byte integers. In the floating-point case, large interval values
degrade in precision as the size of the interval increases.

For the t ime types, the allowed range of p is from 0 to 6 when eight-byte integer storage is used, or
from O to 10 when floating-point storage is used.

The interval type has an additional option, which is to restrict the set of stored fields by writing
one of these phrases:

YEAR

MONTH

DAY

HOUR

MINUTE

SECOND

YEAR TO MONTH
DAY TO HOUR
DAY TO MINUTE
DAY TO SECOND
HOUR TO MINUTE
HOUR TO SECOND
MINUTE TO SECOND

Note that if both fields and p are specified, the fields must include SECOND, since the precision
applies only to the seconds.

The type time with time zone is defined by the SQL standard, but the definition exhibits
properties which lead to questionable usefulness. In most cases, a combination of date, time,
timestamp without time zone, and timestamp with time zone should provide a
complete range of date/time functionality required by any application.

The types abstime and reltime are lower precision types which are used internally. You are dis-
couraged from using these types in applications; these internal types might disappear in a future
release.

129

Chapter 8. Data Types

8.5.1. Date/Time Input

Date and time input is accepted in almost any reasonable format, including ISO 8601,
SQL-compatible, traditional POSTGRES, and others. For some formats, ordering of day, month, and
year in date input is ambiguous and there is support for specifying the expected ordering of these
fields. Set the DateStyle parameter to MDY to select month-day-year interpretation, DMY to select
day-month-year interpretation, or YMD to select year-month-day interpretation.

PostgreSQL is more flexible in handling date/time input than the SQL standard requires. See Ap-
pendix B for the exact parsing rules of date/time input and for the recognized text fields including
months, days of the week, and time zones.

Remember that any date or time literal input needs to be enclosed in single quotes, like text strings.
Refer to Section 4.1.2.7 for more information. SQL requires the following syntax

type [(p) 1 'value’

where p is an optional precision specification giving the number of fractional digits in the seconds
field. Precision can be specified for t ime, t imestamp, and interval types. The allowed values are
mentioned above. If no precision is specified in a constant specification, it defaults to the precision of
the literal value.

8.5.1.1. Dates

Table 8-10 shows some possible inputs for the date type.

Table 8-10. Date Input

Example Description

1999-01-08 ISO 8601; January 8 in any mode
(recommended format)

January 8, 1999 unambiguous in any datestyle input mode

1/8/1999 January 8 in MDY mode; August 1 in DMY mode

1/18/1999 January 18 in MDY mode; rejected in other modes

01/02/03 January 2, 2003 in MDY mode; February 1, 2003
in DMY mode; February 3, 2001 in YMD mode

1999-Jan-08 January 8 in any mode

Jan-08-1999 January 8 in any mode

08-Jan-1999 January 8 in any mode

99-Jan-08 January 8 in YMD mode, else error

08-Jan-99 January 8, except error in YMD mode

Jan-08-99 January 8, except error in YMD mode

19990108 ISO 8601; January 8, 1999 in any mode

990108 ISO 8601; January 8, 1999 in any mode

1999.008 year and day of year

J2451187 Julian date

January 8, 99 BC year 99 BC

130

Chapter 8. Data Types

8.5.1.2. Times

The time-of-day types are time [(p)] without time zoneandtime [(p)] with time
zone. time alone is equivalent to time without time zone.

Valid input for these types consists of a time of day followed by an optional time zone. (See Table 8-11
and Table 8-12.) If a time zone is specified in the input for time without time zone, itis silently
ignored. You can also specify a date but it will be ignored, except when you use a time zone name
that involves a daylight-savings rule, such as America/New_York. In this case specifying the date
is required in order to determine whether standard or daylight-savings time applies. The appropriate
time zone offset is recorded in the time with time zone value.

Table 8-11. Time Input

Example Description

04:05:06.789 ISO 8601

04:05:06 ISO 8601

04:05 ISO 8601

040506 ISO 8601

04:05 AM same as 04:05; AM does not affect value
04:05 PM same as 16:05; input hour must be <= 12
04:05:06.789-8 ISO 8601

04:05:06-08:00 ISO 8601

04:05-08:00 ISO 8601

040506-08 ISO 8601

04:05:06 PST time zone specified by abbreviation
2003-04-12 04:05:06 America/New_York |time zone specified by full name

Table 8-12. Time Zone Input

Example Description

PST Abbreviation (for Pacific Standard Time)
America/New_York Full time zone name

PST8PDT POSIX-style time zone specification
-8:00 ISO-8601 offset for PST

-800 ISO-8601 offset for PST

-8 ISO-8601 offset for PST

zulu Military abbreviation for UTC

z Short form of zulu

Refer to Section 8.5.3 for more information on how to specify time zones.

8.5.1.3. Time Stamps

Valid input for the time stamp types consists of the concatenation of a date and a time, followed by
an optional time zone, followed by an optional AD or BC. (Alternatively, AD/BC can appear before the

131

Chapter 8. Data Types

time zone, but this is not the preferred ordering.) Thus:
1999-01-08 04:05:06
and:

1999-01-08 04:05:06 —-8:00

are valid values, which follow the ISO 8601 standard. In addition, the common format:

January 8 04:05:06 1999 PST

is supported.

The SQL standard differentiates t imestamp without time zone and timestamp with time
zone literals by the presence of a “+” or “-” symbol and time zone offset after the time. Hence,
according to the standard,

TIMESTAMP ’'2004-10-19 10:23:54"
isatimestamp without time =zone, while
TIMESTAMP ’'2004-10-19 10:23:54+02"

isatimestamp with time zone.PostgreSQL never examines the content of a literal string before
determining its type, and therefore will treat both of the above as t imestamp without time zone.
To ensure that a literal is treated as timestamp with time zone, give it the correct explicit type:

TIMESTAMP WITH TIME ZONE ’2004-10-19 10:23:54+02'

In a literal that has been determined to be timestamp without time zone, PostgreSQL will
silently ignore any time zone indication. That is, the resulting value is derived from the date/time
fields in the input value, and is not adjusted for time zone.

For timestamp with time zone, the internally stored value is always in UTC (Universal Coordi-
nated Time, traditionally known as Greenwich Mean Time, GMT). An input value that has an explicit
time zone specified is converted to UTC using the appropriate offset for that time zone. If no time
zone is stated in the input string, then it is assumed to be in the time zone indicated by the system’s
TimeZone parameter, and is converted to UTC using the offset for the t imezone zone.

When a timestamp with time zone value is output, it is always converted from UTC to the
current timezone zone, and displayed as local time in that zone. To see the time in another time
zone, either change t imezone or use the AT TIME ZONE construct (see Section 9.9.3).

Conversions between timestamp without time zone and timestamp with time zone
normally assume that the timestamp without time zone value should be taken or given as
timezone local time. A different time zone can be specified for the conversion using AT TIME
ZONE.

8.5.1.4. Special Values

PostgreSQL supports several special date/time input values for convenience, as shown in Table 8-13.
The values infinity and -infinity are specially represented inside the system and will be dis-
played unchanged; but the others are simply notational shorthands that will be converted to ordinary
date/time values when read. (In particular, now and related strings are converted to a specific time
value as soon as they are read.) All of these values need to be enclosed in single quotes when used as
constants in SQL commands.

132

Chapter 8. Data Types

Table 8-13. Special Date/Time Inputs

Input String Valid Types Description

epoch date, timestamp 1970-01-01 00:00:00+00 (Unix
system time zero)

infinity date, timestamp later than all other time stamps

—-infinity date, timestamp earlier than all other time
stamps

now date, time, timestamp current transaction’s start time

today date, timestamp midnight today

tomorrow date, timestamp midnight tomorrow

yesterday date, timestamp midnight yesterday

allballs time 00:00:00.00 UTC

The following SQL-compatible functions can also be used to obtain the current time value for the
corresponding data type: CURRENT_DATE, CURRENT_TIME, CURRENT_TIMESTAMP, LOCALTIME,
LOCALTIMESTAMP. The latter four accept an optional subsecond precision specification. (See
Section 9.9.4.) Note that these are SQL functions and are not recognized in data input strings.

8.5.2. Date/Time Output

The output format of the date/time types can be set to one of the four styles ISO 8601, SQL (Ingres),
traditional POSTGRES (Unix date format), or German. The default is the ISO format. (The SQL
standard requires the use of the ISO 8601 format. The name of the “SQL” output format is a historical
accident.) Table 8-14 shows examples of each output style. The output of the date and t ime types is
generally only the date or time part in accordance with the given examples. However, the POSTGRES
style outputs date-only values in ISO format.

Table 8-14. Date/Time Output Styles

Style Specification Description Example

IS0 ISO 8601, SQL standard 1997-12-17 07:37:16-08

SQL traditional style 12/17/1997 07:37:16.00
PST

Postgres original style Wed Dec 17 07:37:16
1997 PST

German regional style 17.12.1997 07:37:16.00
PST

Note: ISO 8601 specifies the use of uppercase letter T to separate the date and time. PostgreSQL
accepts that format on input, but on output it uses a space rather than T, as shown above. This is
for readability and for consistency with RFC 3339 as well as some other database systems.

In the SQL and POSTGRES styles, day appears before month if DMY field ordering has been spec-
ified, otherwise month appears before day. (See Section 8.5.1 for how this setting also affects inter-
pretation of input values.) Table 8-15 shows examples.

133

Chapter 8. Data Types

Table 8-15. Date Order Conventions

datestyle Setting Input Ordering Example Output

SQL, DMY day/monthlyear 17/12/1997 15:37:16.00
CET

SQL, MDY monthl/daylyear 12/17/1997 07:37:16.00
PST

Postgres, DMY day/monthlyear Wed 17 Dec 07:37:16
1997 PST

The date/time style can be selected by the user using the SET datestyle command, the DateStyle
parameter in the postgresqgl.conf configuration file, or the PGDATESTYLE environment variable
on the server or client.

The formatting function to_char (see Section 9.8) is also available as a more flexible way to format
date/time output.

8.5.3. Time Zones

Time zones, and time-zone conventions, are influenced by political decisions, not just earth geometry.
Time zones around the world became somewhat standardized during the 1900s, but continue to be
prone to arbitrary changes, particularly with respect to daylight-savings rules. PostgreSQL uses the
widely-used TANA (Olson) time zone database for information about historical time zone rules. For
times in the future, the assumption is that the latest known rules for a given time zone will continue
to be observed indefinitely far into the future.

PostgreSQL endeavors to be compatible with the SQL standard definitions for typical usage. However,
the SQL standard has an odd mix of date and time types and capabilities. Two obvious problems are:

« Although the date type cannot have an associated time zone, the t ime type can. Time zones in the
real world have little meaning unless associated with a date as well as a time, since the offset can
vary through the year with daylight-saving time boundaries.

+ The default time zone is specified as a constant numeric offset from UTC. It is therefore impossible
to adapt to daylight-saving time when doing date/time arithmetic across DST boundaries.

To address these difficulties, we recommend using date/time types that contain both date and time
when using time zones. We do not recommend using the type time with time zone (though it
is supported by PostgreSQL for legacy applications and for compliance with the SQL standard).
PostgreSQL assumes your local time zone for any type containing only date or time.

All timezone-aware dates and times are stored internally in UTC. They are converted to local time in
the zone specified by the TimeZone configuration parameter before being displayed to the client.

PostgreSQL allows you to specify time zones in three different forms:

« A full time zone name, for example America/New_York. The recognized time zone names are
listed in the pg_timezone_names view (see Section 49.78). PostgreSQL uses the widely-used
TANA time zone data for this purpose, so the same time zone names are also recognized by other
software.

« A time zone abbreviation, for example PST. Such a specification merely defines a particular offset
from UTC, in contrast to full time zone names which can imply a set of daylight savings transition-

134

Chapter 8. Data Types

date rules as well. The recognized abbreviations are listed in the pg_timezone_abbrevs view
(see Section 49.77). You cannot set the configuration parameters TimeZone or log_timezone to a
time zone abbreviation, but you can use abbreviations in date/time input values and with the AT
TIME ZONE operator.

+ In addition to the timezone names and abbreviations, PostgreSQL will accept POSIX-style time
zone specifications of the form STDoffset or STDof fsetDST, where STD is a zone abbreviation,
offset is a numeric offset in hours west from UTC, and DST is an optional daylight-savings zone
abbreviation, assumed to stand for one hour ahead of the given offset. For example, if ESTSEDT
were not already a recognized zone name, it would be accepted and would be functionally equiva-
lent to United States East Coast time. In this syntax, a zone abbreviation can be a string of letters,
or an arbitrary string surrounded by angle brackets (<>). When a daylight-savings zone abbrevi-
ation is present, it is assumed to be used according to the same daylight-savings transition rules
used in the IANA time zone database’s posixrules entry. In a standard PostgreSQL installation,
posixrules is the same as US/Eastern, so that POSIX-style time zone specifications follow
USA daylight-savings rules. If needed, you can adjust this behavior by replacing the posixrules
file.

In short, this is the difference between abbreviations and full names: abbreviations represent a specific
offset from UTC, whereas many of the full names imply a local daylight-savings time rule, and so have
two possible UTC offsets. As an example, 2014-06-04 12:00 America/New_York represents
noon local time in New York, which for this particular date was Eastern Daylight Time (UTC-4). So
2014-06-04 12:00 EDT specifies that same time instant. But 2014-06-04 12:00 EST specifies
noon Eastern Standard Time (UTC-5), regardless of whether daylight savings was nominally in effect
on that date.

To complicate matters, some jurisdictions have used the same timezone abbreviation to mean different
UTC offsets at different times; for example, in Moscow MSK has meant UTC+3 in some years and
UTC+4 in others. PostgreSQL interprets such abbreviations according to whatever they meant (or had
most recently meant) on the specified date; but, as with the EST example above, this is not necessarily
the same as local civil time on that date.

One should be wary that the POSIX-style time zone feature can lead to silently accepting bogus input,
since there is no check on the reasonableness of the zone abbreviations. For example, SET TIMEZONE
TO FOOBARO will work, leaving the system effectively using a rather peculiar abbreviation for UTC.
Another issue to keep in mind is that in POSIX time zone names, positive offsets are used for locations
west of Greenwich. Everywhere else, PostgreSQL follows the ISO-8601 convention that positive
timezone offsets are east of Greenwich.

In all cases, timezone names and abbreviations are recognized case-insensitively. (This is a change
from PostgreSQL versions prior to 8.2, which were case-sensitive in some contexts but not others.)

Neither timezone names nor abbreviations are hard-wired into the server; they are obtained from
configuration files stored under . ../share/timezone/ and .../share/timezonesets/ of the
installation directory (see Section B.4).

The TimeZone configuration parameter can be set in the file postgresql.conf, or in any of the
other standard ways described in Chapter 18. There are also some special ways to set it:

« The SQL command SET TIME ZONE sets the time zone for the session. This is an alternative
spelling of SET TIMEZONE TO with a more SQL-spec-compatible syntax.

« The PGTz environment variable is used by libpq clients to send a SET TIME zONE command to
the server upon connection.

135

Chapter 8. Data Types

8.5.4. Interval Input

interval values can be written using the following verbose syntax:
[@Q] quantity unit [quantity unit...] [direction]

where quantity is a number (possibly signed); unit is microsecond, millisecond, second,
minute, hour, day, week, month, year, decade, century, millennium, or abbreviations or plu-
rals of these units; direction can be ago or empty. The at sign (@) is optional noise. The amounts
of the different units are implicitly added with appropriate sign accounting. ago negates all the fields.
This syntax is also used for interval output, if IntervalStyle is set to postgres_verbose.

Quantities of days, hours, minutes, and seconds can be specified without explicit unit markings. For
example, 1 12:59:10" is read the same as 1 day 12 hours 59 min 10 sec’. Also, a com-
bination of years and months can be specified with a dash; for example ' 200-10" is read the same
as 200 years 10 months’. (These shorter forms are in fact the only ones allowed by the SQL
standard, and are used for output when IntervalStyle is setto sql_standard.)

Interval values can also be written as ISO 8601 time intervals, using either the “format with designa-
tors” of the standard’s section 4.4.3.2 or the “alternative format” of section 4.4.3.3. The format with
designators looks like this:

P quantity unit [quantity unit ...] [T [quantity unit ...]]

The string must start with a P, and may include a T that introduces the time-of-day units. The available
unit abbreviations are given in Table 8-16. Units may be omitted, and may be specified in any order,
but units smaller than a day must appear after T. In particular, the meaning of M depends on whether
it is before or after T.

Table 8-16. ISO 8601 Interval Unit Abbreviations

Abbreviation Meaning

Years

Months (in the date part)

Weeks

Days

Hours

Minutes (in the time part)

©»iZ|mo|= ||

Seconds

In the alternative format:
P [years—months—days] [T hours:minutes:seconds]

the string must begin with P, and a T separates the date and time parts of the interval. The values are
given as numbers similar to ISO 8601 dates.

When writing an interval constant with a £ields specification, or when assigning a string to an in-
terval column that was defined with a £ields specification, the interpretation of unmarked quantities
depends on the fields. For example INTERVAL /1’ YEAR is read as 1 year, whereas INTERVAL
717 means 1 second. Also, field values “to the right” of the least significant field allowed by the
fields specification are silently discarded. For example, writing INTERVAL ’1 day 2:03:04'
HOUR TO MINUTE results in dropping the seconds field, but not the day field.

According to the SQL standard all fields of an interval value must have the same sign, so a leading

136

Chapter 8. Data Types

negative sign applies to all fields; for example the negative sign in the interval literal * -1 2:03:04"
applies to both the days and hour/minute/second parts. PostgreSQL allows the fields to have differ-
ent signs, and traditionally treats each field in the textual representation as independently signed, so
that the hour/minute/second part is considered positive in this example. If IntervalStyle is set
to sql_standard then a leading sign is considered to apply to all fields (but only if no additional
signs appear). Otherwise the traditional PostgreSQL interpretation is used. To avoid ambiguity, it’s
recommended to attach an explicit sign to each field if any field is negative.

In the verbose input format, and in some fields of the more compact input formats, field values can
have fractional parts; for example 1.5 week’ or 01:02:03.45”. Such input is converted to the
appropriate number of months, days, and seconds for storage. When this would result in a fractional
number of months or days, the fraction is added to the lower-order fields using the conversion factors
1 month = 30 days and 1 day = 24 hours. For example, ' 1.5 month’ becomes 1 month and 15 days.
Only seconds will ever be shown as fractional on output.

Table 8-17 shows some examples of valid interval input.

Table 8-17. Interval Input

Example Description

1-2 SQL standard format: 1 year 2 months

3 4:05:06 SQL standard format: 3 days 4 hours 5 minutes
6 seconds

1 year 2 months 3 days 4 hours 5 minutes 6 Traditional Postgres format: 1 year 2 months 3

seconds days 4 hours 5 minutes 6 seconds

P1Y2M3DT4H5M6S ISO 8601 “format with designators”: same
meaning as above

P0001-02-03T04:05:06 ISO 8601 “alternative format”: same meaning as
above

Internally interval values are stored as months, days, and seconds. This is done because the number
of days in a month varies, and a day can have 23 or 25 hours if a daylight savings time adjustment is
involved. The months and days fields are integers while the seconds field can store fractions. Because
intervals are usually created from constant strings or timestamp subtraction, this storage method
works well in most cases, but can cause unexpected results:

SELECT EXTRACT (hours from ’80 minutes’::interval);
date_part

SELECT EXTRACT (days from ’80 hours’::interval);
date_part

Functions justify_days and justify_hours are available for adjusting days and hours that over-
flow their normal ranges.

8.5.5. Interval Output

The output format of the interval type can be set to one of the four styles sql_standard, postgres,

137

Chapter 8. Data Types

postgres_verbose, Or iso_8601, using the command SET intervalstyle. The default is the
postgres format. Table 8-18 shows examples of each output style.

The sql_standard style produces output that conforms to the SQL standard’s specification for
interval literal strings, if the interval value meets the standard’s restrictions (either year-month only or
day-time only, with no mixing of positive and negative components). Otherwise the output looks like
a standard year-month literal string followed by a day-time literal string, with explicit signs added to
disambiguate mixed-sign intervals.

The output of the postgres style matches the output of PostgreSQL releases prior to 8.4 when the
DateStyle parameter was set to ISO.

The output of the postgres_verbose style matches the output of PostgreSQL releases prior to 8.4
when the DateStyle parameter was set to non-IS0O output.

The output of the iso_8601 style matches the “format with designators” described in section 4.4.3.2
of the ISO 8601 standard.

Table 8-18. Interval Output Style Examples

Style Specification

Year-Month Interval

Day-Time Interval

Mixed Interval

sgl_standard

1-2

3 4:05:06

-1-2 +3 -4:05:06

postgres

1 year 2 mons

3 days 04:05:06

-1 year -2 mons +3
days -04:05:06

postgres_verbose

@ 1 year 2 mons

@ 3 days 4 hours 5

@ 1 year 2 mons -3

mins 6 secs days 4 hours 5 mins 6
secs ago
iso_8601 P1Y2M P3DT4H5M6S P-1Y-2M3DT-4H-5M-

6S

8.6. Boolean Type

PostgreSQL provides the standard SQL type boolean; see Table 8-19. The boolean type can have
several states: “true”, “false”, and a third state, “unknown”, which is represented by the SQL null
value.

Table 8-19. Boolean Data Type

Name Storage Size

1 byte

Description

boolean state of true or false

Valid literal values for the “true” state are:

TRUE
Itl
"true’
Iyl
Iyesl

’on’

138

Chapter 8. Data Types
4 1 4
For the “false” state, the following values can be used:

FALSE
!f!
"false’
!n!
!nol
roff’
IOI

Leading or trailing whitespace is ignored, and case does not matter. The key words TRUE and FALSE
are the preferred (SQL-compliant) usage.

Example 8-2 shows that boolean values are output using the letters t and £.

Example 8-2. Using the boolean Type

CREATE TABLE testl (a boolean, b text);
INSERT INTO testl VALUES (TRUE, ’sic est’);
INSERT INTO testl VALUES (FALSE, ’'non est’);
SELECT x FROM testl;

a | b

8.7. Enumerated Types

Enumerated (enum) types are data types that comprise a static, ordered set of values. They are equiv-
alent to the enum types supported in a number of programming languages. An example of an enum
type might be the days of the week, or a set of status values for a piece of data.

8.7.1. Declaration of Enumerated Types
Enum types are created using the CREATE TYPE command, for example:

CREATE TYPE mood AS ENUM (’sad’, ’'ok’, "happy’):;

Once created, the enum type can be used in table and function definitions much like any other type:

CREATE TYPE mood AS ENUM (’sad’, ’'ok’, ’"happy’);
CREATE TABLE person (
name text,
current_mood mood
)i
INSERT INTO person VALUES (’Moe’, "happy’);
SELECT x FROM person WHERE current_mood = ’"happy’;

139

Chapter 8. Data Types

name | current_mood
,,,,,, S,
Moe | happy

(1 row)

8.7.2. Ordering

The ordering of the values in an enum type is the order in which the values were listed when the
type was created. All standard comparison operators and related aggregate functions are supported
for enums. For example:

INSERT INTO person VALUES (’Larry’, ’'sad’);
INSERT INTO person VALUES (’Curly’, ’ok’);
SELECT % FROM person WHERE current_mood > ’'sad’;

name | current_mood
_______ o
Moe | happy

Curly | ok

(2 rows)

SELECT % FROM person WHERE current_mood > ’sad’ ORDER BY current_mood;
current_mood

|
_______ T,
Curly | ok
Moe | happy
(2 rows)

SELECT name

FROM person

WHERE current_mood = (SELECT MIN (current_mood) FROM person);
name

8.7.3. Type Safety

Each enumerated data type is separate and cannot be compared with other enumerated types. See this
example:

CREATE TYPE happiness AS ENUM ('happy’, ’'very happy’, ’ecstatic’);
CREATE TABLE holidays (

num_weeks integer,

happiness happiness
)i
INSERT INTO holidays (num_weeks, happiness) VALUES (4, "happy’);
INSERT INTO holidays (num_weeks, happiness) VALUES (6, ’very happy’);
INSERT INTO holidays (num_weeks, happiness) VALUES (8, ’‘ecstatic’);
INSERT INTO holidays (num_weeks,happiness) VALUES (2, ’'sad’);
ERROR: invalid input value for enum happiness: "sad"

140

Chapter 8. Data Types

SELECT person.name, holidays.num_weeks FROM person, holidays
WHERE person.current_mood = holidays.happiness;
ERROR: operator does not exist: mood = happiness

If you really need to do something like that, you can either write a custom operator or add explicit
casts to your query:

SELECT person.name, holidays.num_weeks FROM person, holidays
WHERE person.current_mood::text = holidays.happiness::text;
name | num_weeks

8.7.4. Implementation Details

Enum labels are case sensitive, so ' happy’ is not the same as ' HAPPY’ . White space in the labels is
significant too.

Although enum types are primarily intended for static sets of values, there is support for adding new
values to an existing enum type, and for renaming values (see ALTER TYPE). Existing values cannot
be removed from an enum type, nor can the sort ordering of such values be changed, short of dropping
and re-creating the enum type.

An enum value occupies four bytes on disk. The length of an enum value’s textual label is limited by
the NAMEDATALEN setting compiled into PostgreSQL; in standard builds this means at most 63 bytes.

The translations from internal enum values to textual labels are kept in the system catalog pg_enum.
Querying this catalog directly can be useful.

8.8. Geometric Types

Geometric data types represent two-dimensional spatial objects. Table 8-20 shows the geometric types
available in PostgreSQL.

Table 8-20. Geometric Types

Name Storage Size Description Representation

point 16 bytes Point on a plane (x,y)

line 32 bytes Infinite line {A,B,C}

lseg 32 bytes Finite line segment ((x1,y1),(x2,y2))

box 32 bytes Rectangular box ((x1,y1),(x2,y2))

path 16+16n bytes Closed path (similar to | ((x1,yl),...)
polygon)

path 16+16n bytes Open path [(xL,yD),...]

polygon 40+16n bytes Polygon (similar to (x1,yD),...)
closed path)

141

Chapter 8. Data Types

Name Storage Size Description Representation

circle 24 bytes Circle <(x,y),r> (center point
and radius)

A rich set of functions and operators is available to perform various geometric operations such as
scaling, translation, rotation, and determining intersections. They are explained in Section 9.11.

8.8.1. Points

Points are the fundamental two-dimensional building block for geometric types. Values of type point
are specified using either of the following syntaxes:

(x, vy)
X 5 Y

where x and y are the respective coordinates, as floating-point numbers.

Points are output using the first syntax.

8.8.2. Lines

Lines are represented by the linear equation Ax + By + ¢ = 0, where A and B are not both zero. Values
of type 1ine are input and output in the following form:

{ 4 B, C}
Alternatively, any of the following forms can be used for input:
[(xI, yI) , (x2, y2)]
((x1, y1) , (x2, y2))
(xI ; vyl) ’ (x2 y y2)

x1 , yl , x2 , y2

where (x1,y1) and (x2, y2) are two different points on the line.

8.8.3. Line Segments

Line segments are represented by pairs of points that are the endpoints of the segment. Values of type
1seg are specified using any of the following syntaxes:

[(x1, y1) , (x2, y2) |
((x1, y1) , (x2, y2))
(x1 , y1) , (x2, y2)
x1 , vyl , x2 , y2

where (x1, y1) and (x2, y2) are the end points of the line segment.

Line segments are output using the first syntax.

142

Chapter 8. Data Types

8.8.4. Boxes

Boxes are represented by pairs of points that are opposite corners of the box. Values of type box are
specified using any of the following syntaxes:

((x1, y1) , (x2, y2))
(xI ; vyl) ’ (x2 y y2)
x1 , vyl , x2 , y2
where (x1,y1) and (x2, y2) are any two opposite corners of the box.

Boxes are output using the second syntax.

Any two opposite corners can be supplied on input, but the values will be reordered as needed to store
the upper right and lower left corners, in that order.

8.8.5. Paths

Paths are represented by lists of connected points. Paths can be open, where the first and last points
in the list are considered not connected, or closed, where the first and last points are considered
connected.

Values of type path are specified using any of the following syntaxes:

[(x1 , y1) , «.. , (xn , yn)]
((xt , yI), ..., (xn, yn))
(x1 , y1) , .. , (xn , yn)
(x1 , yl PR xn , yn)
x1 , yl ;e g xn , yn

where the points are the end points of the line segments comprising the path. Square brackets ([1)
indicate an open path, while parentheses (()) indicate a closed path. When the outermost parentheses
are omitted, as in the third through fifth syntaxes, a closed path is assumed.

Paths are output using the first or second syntax, as appropriate.

8.8.6. Polygons

Polygons are represented by lists of points (the vertexes of the polygon). Polygons are very similar to
closed paths, but are stored differently and have their own set of support routines.

Values of type polygon are specified using any of the following syntaxes:

((x1, vi) , «o. , (xn , yn))
(x1 , y1) , .. , (xn , yn)
(x1 , yl P xn , yn)
x1 , vyl PR xn , yn

where the points are the end points of the line segments comprising the boundary of the polygon.

Polygons are output using the first syntax.

143

Chapter 8. Data Types

8.8.7. Circles

Circles are represented by a center point and radius. Values of type circle are specified using any of
the following syntaxes:

< (x , vy r >
((x, vyv), r)
(x v r
X v r

4

’

where (x, y) is the center point and r is the radius of the circle.

Circles are output using the first syntax.

8.9. Network Address Types

PostgreSQL offers data types to store IPv4, IPv6, and MAC addresses, as shown in Table 8-21. It is
better to use these types instead of plain text types to store network addresses, because these types
offer input error checking and specialized operators and functions (see Section 9.12).

Table 8-21. Network Address Types

Name Storage Size Description

cidr 7 or 19 bytes IPv4 and IPv6 networks

inet 7 or 19 bytes IPv4 and IPv6 hosts and
networks

macaddr 6 bytes MAC addresses

When sorting inet or cidr data types, IPv4 addresses will always sort before IPv6 addresses, in-
cluding IPv4 addresses encapsulated or mapped to IPv6 addresses, such as ::10.2.3.4 or ::ffff:10.4.3.2.

8.9.1. inet

The inet type holds an IPv4 or IPv6 host address, and optionally its subnet, all in one field. The sub-
net is represented by the number of network address bits present in the host address (the “netmask”).
If the netmask is 32 and the address is IPv4, then the value does not indicate a subnet, only a single
host. In IPv6, the address length is 128 bits, so 128 bits specify a unique host address. Note that if you
want to accept only networks, you should use the cidr type rather than inet.

The input format for this type is address/y where address is an IPv4 or IPv6 address and y is the
number of bits in the netmask. If the /y portion is missing, the netmask is 32 for IPv4 and 128 for
IPv6, so the value represents just a single host. On display, the /y portion is suppressed if the netmask
specifies a single host.

8.9.2. cidr

The cidr type holds an IPv4 or IPv6 network specification. Input and output formats follow Class-
less Internet Domain Routing conventions. The format for specifying networks is address,/y where
address is the network represented as an IPv4 or IPv6 address, and y is the number of bits in the
netmask. If y is omitted, it is calculated using assumptions from the older classful network numbering

144

Chapter 8. Data Types

system, except it will be at least large enough to include all of the octets written in the input. It is an
error to specify a network address that has bits set to the right of the specified netmask.

Table 8-22 shows some examples.

Table 8-22. cidr Type Input Examples

cidr Input cidr Output abbrev (cidr)
192.168.100.128/25 192.168.100.128/25 192.168.100.128/25
192.168/24 192.168.0.0/24 192.168.0/24
192.168/25 192.168.0.0/25 192.168.0.0/25
192.168.1 192.168.1.0/24 192.168.1/24
192.168 192.168.0.0/24 192.168.0/24

128.1 128.1.0.0/16 128.1/16

128 128.0.0.0/16 128.0/16

128.1.2 128.1.2.0/24 128.1.2/24

10.1.2 10.1.2.0/24 10.1.2/24

10.1 10.1.0.0/16 10.1/16

10 10.0.0.0/8 10/8

10.1.2.3/32 10.1.2.3/32 10.1.2.3/32
2001:4£8:3:ba::/64 2001:4f8:3:ba::/64 2001:4f8:3:ba::/64
2001:4£8:3:ba:2e0:811f:fe22:d 1{1 2B :4{8:3:ba:2e0:8 11f:fe22:d 1£]1 MBI :4{8:3:ba:2e0:81ff:fe22:d1f
::ffff:1.2.3.0/120 =ffff:1.2.3.0/120 offff:1.2.3/120
ffff:1.2.3.0/128 ffff:1.2.3.0/128 ffff:1.2.3.0/128

8.9.3. inet VS. cidr

The essential difference between inet and cidr data types is that inet accepts values with nonzero
bits to the right of the netmask, whereas cidr does not.

Tip: If you do not like the output format for inet or cidr values, try the functions host, text, and

abbrev.

8.9.4. macaddr

The macaddr type stores MAC addresses, known for example from Ethernet card hardware addresses
(although MAC addresses are used for other purposes as well). Input is accepted in the following
formats:

08:00:2b:01:02:03"
"08-00-2b-01-02-03"
08002b:010203"
08002b-010203"
0800.2b01.0203"

145

Chapter 8. Data Types

0800-2b01-0203"
708002b010203"

These examples would all specify the same address. Upper and lower case is accepted for the digits a
through £. Output is always in the first of the forms shown.

IEEE Std 802-2001 specifies the second shown form (with hyphens) as the canonical form for MAC
addresses, and specifies the first form (with colons) as the bit-reversed notation, so that 08-00-2b-01-
02-03 = 01:00:4D:08:04:0C. This convention is widely ignored nowadays, and it is relevant only for
obsolete network protocols (such as Token Ring). PostgreSQL makes no provisions for bit reversal,
and all accepted formats use the canonical LSB order.

The remaining five input formats are not part of any standard.

8.10. Bit String Types

Bit strings are strings of 1’s and 0’s. They can be used to store or visualize bit masks. There are two
SQL bit types: bit (n) and bit varying (n), where n is a positive integer.

bit type data must match the length n exactly; it is an error to attempt to store shorter or longer bit
strings. bit varying data is of variable length up to the maximum length n; longer strings will be
rejected. Writing bit without a length is equivalenttobit (1), whilebit varying without alength
specification means unlimited length.

Note: If one explicitly casts a bit-string value to bit (n), it will be truncated or zero-padded on the
right to be exactly n bits, without raising an error. Similarly, if one explicitly casts a bit-string value
tobit varying (n), it will be truncated on the right if it is more than n bits.

Refer to Section 4.1.2.5 for information about the syntax of bit string constants. Bit-logical operators
and string manipulation functions are available; see Section 9.6.

Example 8-3. Using the Bit String Types

CREATE TABLE test (a BIT(3), b BIT VARYING(5));
INSERT INTO test VALUES (B’101’, B’007);

INSERT INTO test VALUES (B’10’, B’"1017);

ERROR: Dbit string length 2 does not match type bit (3)
INSERT INTO test VALUES (B’10’::bit(3), B’101’");
SELECT x FROM test;

a | b
,,,,, P
101 | 00
100 | 101

A bit string value requires 1 byte for each group of 8 bits, plus 5 or 8 bytes overhead depending on the
length of the string (but long values may be compressed or moved out-of-line, as explained in Section
8.3 for character strings).

146

Chapter 8. Data Types

8.11. Text Search Types

PostgreSQL provides two data types that are designed to support full text search, which is the activity
of searching through a collection of natural-language documents to locate those that best match a
query. The tsvector type represents a document in a form optimized for text search; the t squery
type similarly represents a text query. Chapter 12 provides a detailed explanation of this facility, and
Section 9.13 summarizes the related functions and operators.

8.11.1. tsvector

A tsvector value is a sorted list of distinct lexemes, which are words that have been normalized
to merge different variants of the same word (see Chapter 12 for details). Sorting and duplicate-
elimination are done automatically during input, as shown in this example:

SELECT "a fat cat sat on a mat and ate a fat rat’::tsvector;

tsvector

To represent lexemes containing whitespace or punctuation, surround them with quotes:

SELECT Sthe lexeme ' ’ contains spaces$$::tsvector;
tsvector
! " ’contains’ ’lexeme’ ’spaces’ ’'the’

(We use dollar-quoted string literals in this example and the next one to avoid the confusion of having
to double quote marks within the literals.) Embedded quotes and backslashes must be doubled:

SELECT $$the lexeme ’Joe”s’ contains a quote$$::tsvector;
tsvector

s’ ’"a’ ’'contains’ ’lexeme’ ’'quote’ ’‘the’

Optionally, integer positions can be attached to lexemes:

SELECT "a:1 fat:2 cat:3 sat:4 on:5 a:6 mat:7 and:8 ate:9 a:10 fat:11 rat:12’::tsvector;
tsvector

"a’:1,6,10 "and’ :8 "ate’:9 'cat’:3 ’'fat’:2,11 "mat’:7 ’'on’:5 ’'rat’:12 ’'sat’:4

A position normally indicates the source word’s location in the document. Positional information can
be used for proximity ranking. Position values can range from 1 to 16383; larger numbers are silently
set to 16383. Duplicate positions for the same lexeme are discarded.

Lexemes that have positions can further be labeled with a weight, which can be A, B, C, or D. D is the
default and hence is not shown on output:

SELECT "a:1A fat:2B,4C cat:5D’::tsvector;
tsvector

"a’ :1A ’'cat’:5 ’"fat’ :2B,4C

Weights are typically used to reflect document structure, for example by marking title words differ-
ently from body words. Text search ranking functions can assign different priorities to the different
weight markers.

147

Chapter 8. Data Types

It is important to understand that the tsvector type itself does not perform any normalization; it
assumes the words it is given are normalized appropriately for the application. For example,

select ’'The Fat Rats’ ::tsvector;
tsvector

"Fat’” ’'Rats’ ’'The’

For most English-text-searching applications the above words would be considered non-normalized,
but t svector doesn’t care. Raw document text should usually be passed through to_tsvector to
normalize the words appropriately for searching:

SELECT to_tsvector(’english’, ’'The Fat Rats’);
to_tsvector

"fat’:2 ’'rat’:3

Again, see Chapter 12 for more detail.

8.11.2. tsquery

A tsquery value stores lexemes that are to be searched for, and combines them honoring the Boolean
operators & (AND), | (OR), and ! (NOT). Parentheses can be used to enforce grouping of the opera-
tors:

SELECT ’fat & rat’::tsquery;
tsquery

SELECT ’fat & (rat | cat)’::tsquery;
tsquery

SELECT ’"fat & rat & ! cat’::tsquery;
tsquery

"fat’” & 'rat’ & !’'cat’

In the absence of parentheses, ! (NOT) binds most tightly, and & (AND) binds more tightly than |
(OR).

Optionally, lexemes in a tsquery can be labeled with one or more weight letters, which restricts
them to match only t svector lexemes with matching weights:

SELECT ’fat:ab & cat’::tsquery;
tsquery

"fat’ :AB & 'cat’

Also, lexemes in a t squery can be labeled with « to specify prefix matching:

SELECT 'super:x’::tsquery;
tsquery

148

Chapter 8. Data Types

This query will match any word in a tsvector that begins with “super”. Note that prefixes are first
processed by text search configurations, which means this comparison returns true:

SELECT to_tsvector(’"postgraduate’) @@ to_tsquery(’'postgres:x’);
?column?

because postgres gets stemmed to postgr:

SELECT to_tsquery (’'postgres:*’);
to_tsquery

"postgr’ :x
(1 row)

which then matches postgraduate.

Quoting rules for lexemes are the same as described previously for lexemes in t svector; and, as with
tsvector, any required normalization of words must be done before converting to the t squery type.
The to_tsquery function is convenient for performing such normalization:

SELECT to_tsquery('Fat:ab & Cats’);
to_tsquery

"fat’ :AB & 'cat’

8.12. UUID Type

The data type uuid stores Universally Unique Identifiers (UUID) as defined by RFC 4122, ISO/IEC
9834-8:2005, and related standards. (Some systems refer to this data type as a globally unique identi-
fier, or GUID, instead.) This identifier is a 128-bit quantity that is generated by an algorithm chosen
to make it very unlikely that the same identifier will be generated by anyone else in the known uni-
verse using the same algorithm. Therefore, for distributed systems, these identifiers provide a better
uniqueness guarantee than sequence generators, which are only unique within a single database.

A UUID is written as a sequence of lower-case hexadecimal digits, in several groups separated by
hyphens, specifically a group of 8 digits followed by three groups of 4 digits followed by a group of
12 digits, for a total of 32 digits representing the 128 bits. An example of a UUID in this standard
form is:

aleebc99-9c0b-4ef8-bb6d-6bb9%d380all

PostgreSQL also accepts the following alternative forms for input: use of upper-case digits, the stan-
dard format surrounded by braces, omitting some or all hyphens, adding a hyphen after any group of
four digits. Examples are:

AOEEBC99-9C0B-4EF8-BB6D-6BBI9BD380A11
{a0eebc99-9c0b-4ef8-bb6d-6bb9bd380all}

149

Chapter 8. Data Types

aleebc999c0b4ef8bb6dobb90d380all
alee-bc99-9c0b-4ef8-bb6d-6bb9-bd38-0all
{aleebc99-9c0bdef8-bbodobb9-bd380all}

Output is always in the standard form.

PostgreSQL provides storage and comparison functions for UUIDs, but the core database does not
include any function for generating UUIDs, because no single algorithm is well suited for every
application. The uuid-ossp module provides functions that implement several standard algorithms.
The pgcrypto module also provides a generation function for random UUIDs. Alternatively, UUIDs
could be generated by client applications or other libraries invoked through a server-side function.

8.13. XML Type

The xm1 data type can be used to store XML data. Its advantage over storing XML data in a text
field is that it checks the input values for well-formedness, and there are support functions to perform
type-safe operations on it; see Section 9.14. Use of this data type requires the installation to have been
built with configure --with-libxml.

The xm1 type can store well-formed “documents”, as defined by the XML standard, as well as “con-
tent” fragments, which are defined by the production xMLDecl? content in the XML standard.
Roughly, this means that content fragments can have more than one top-level element or character
node. The expression xmlvalue IS DOCUMENT can be used to evaluate whether a particular xml
value is a full document or only a content fragment.

8.13.1. Creating XML Values

To produce a value of type xm1 from character data, use the function xmlparse:

XMLPARSE ({ DOCUMENT | CONTENT } value)

Examples:

XMLPARSE (DOCUMENT ’<?xml version="1.0"?><book><title>Manual</title><chapter>...</chapte
XMLPARSE (CONTENT ’abc<foo>bar</foo><bar>foo</bar>")

While this is the only way to convert character strings into XML values according to the SQL standard,
the PostgreSQL-specific syntaxes:

xml ’<foo>bar</foo>’
'<foo>bar</foo>’ ::xml

can also be used.

The xm1 type does not validate input values against a document type declaration (DTD), even when
the input value specifies a DTD. There is also currently no built-in support for validating against other
XML schema languages such as XML Schema.

The inverse operation, producing a character string value from xm1, uses the function xmlserialize:

XMLSERIALIZE ({ DOCUMENT | CONTENT } value AS type)

type can be character, character varying, or text (or an alias for one of those). Again,
according to the SQL standard, this is the only way to convert between type xm1 and character types,
but PostgreSQL also allows you to simply cast the value.

150

Chapter 8. Data Types

When a character string value is cast to or from type xml without going through XMLPARSE or
XMLSERIALIZE, respectively, the choice of DOCUMENT versus CONTENT is determined by the “XML
option” session configuration parameter, which can be set using the standard command:

SET XML OPTION { DOCUMENT | CONTENT };

or the more PostgreSQL-like syntax
SET xmloption TO { DOCUMENT | CONTENT };

The default is CONTENT, so all forms of XML data are allowed.

Note: With the default XML option setting, you cannot directly cast character strings to type xm1 if
they contain a document type declaration, because the definition of XML content fragment does
not accept them. If you need to do that, either use xvLpPARSE or change the XML option.

8.13.2. Encoding Handling

Care must be taken when dealing with multiple character encodings on the client, server, and in
the XML data passed through them. When using the text mode to pass queries to the server and
query results to the client (which is the normal mode), PostgreSQL converts all character data passed
between the client and the server and vice versa to the character encoding of the respective end; see
Section 22.3. This includes string representations of XML values, such as in the above examples.
This would ordinarily mean that encoding declarations contained in XML data can become invalid as
the character data is converted to other encodings while traveling between client and server, because
the embedded encoding declaration is not changed. To cope with this behavior, encoding declarations
contained in character strings presented for input to the xm1 type are ignored, and content is assumed
to be in the current server encoding. Consequently, for correct processing, character strings of XML
data must be sent from the client in the current client encoding. It is the responsibility of the client
to either convert documents to the current client encoding before sending them to the server, or to
adjust the client encoding appropriately. On output, values of type xm1 will not have an encoding
declaration, and clients should assume all data is in the current client encoding.

When using binary mode to pass query parameters to the server and query results back to the client, no
character set conversion is performed, so the situation is different. In this case, an encoding declaration
in the XML data will be observed, and if it is absent, the data will be assumed to be in UTF-8 (as
required by the XML standard; note that PostgreSQL does not support UTF-16). On output, data will
have an encoding declaration specifying the client encoding, unless the client encoding is UTF-8, in
which case it will be omitted.

Needless to say, processing XML data with PostgreSQL will be less error-prone and more efficient
if the XML data encoding, client encoding, and server encoding are the same. Since XML data is
internally processed in UTF-8, computations will be most efficient if the server encoding is also
UTF-8.

Caution

Some XML-related functions may not work at all on non-ASCII data when the
server encoding is not UTF-8. This is known to be an issue for xpath () in
particular.

151

Chapter 8. Data Types

8.13.3. Accessing XML Values

The xm1 data type is unusual in that it does not provide any comparison operators. This is because
there is no well-defined and universally useful comparison algorithm for XML data. One consequence
of this is that you cannot retrieve rows by comparing an xml column against a search value. XML
values should therefore typically be accompanied by a separate key field such as an ID. An alternative
solution for comparing XML values is to convert them to character strings first, but note that character
string comparison has little to do with a useful XML comparison method.

Since there are no comparison operators for the xm1 data type, it is not possible to create an index
directly on a column of this type. If speedy searches in XML data are desired, possible workarounds
include casting the expression to a character string type and indexing that, or indexing an XPath
expression. Of course, the actual query would have to be adjusted to search by the indexed expression.

The text-search functionality in PostgreSQL can also be used to speed up full-document searches
of XML data. The necessary preprocessing support is, however, not yet available in the PostgreSQL
distribution.

8.14. JSON Types

JSON data types are for storing JSON (JavaScript Object Notation) data, as specified in RFC 7159".
Such data can also be stored as text, but the JSON data types have the advantage of enforcing
that each stored value is valid according to the JSON rules. There are also assorted JSON-specific
functions and operators available for data stored in these data types; see Section 9.15.

There are two JSON data types: json and jsonb. They accept almost identical sets of values as input.
The major practical difference is one of efficiency. The json data type stores an exact copy of the
input text, which processing functions must reparse on each execution; while jsonb data is stored in
a decomposed binary format that makes it slightly slower to input due to added conversion overhead,
but significantly faster to process, since no reparsing is needed. jsonb also supports indexing, which
can be a significant advantage.

Because the json type stores an exact copy of the input text, it will preserve semantically-insignificant
white space between tokens, as well as the order of keys within JSON objects. Also, if a JSON object
within the value contains the same key more than once, all the key/value pairs are kept. (The pro-
cessing functions consider the last value as the operative one.) By contrast, jsonb does not preserve
white space, does not preserve the order of object keys, and does not keep duplicate object keys. If
duplicate keys are specified in the input, only the last value is kept.

In general, most applications should prefer to store JSON data as jsonb, unless there are quite spe-
cialized needs, such as legacy assumptions about ordering of object keys.

PostgreSQL allows only one character set encoding per database. It is therefore not possible for the
JSON types to conform rigidly to the JSON specification unless the database encoding is UTF8. At-
tempts to directly include characters that cannot be represented in the database encoding will fail;
conversely, characters that can be represented in the database encoding but not in UTF8 will be al-
lowed.

RFC 7159 permits JSON strings to contain Unicode escape sequences denoted by \uxxxx. In the input
function for the json type, Unicode escapes are allowed regardless of the database encoding, and are
checked only for syntactic correctness (that is, that four hex digits follow \u). However, the input
function for jsonb is stricter: it disallows Unicode escapes for non-ASCII characters (those above
U+007F) unless the database encoding is UTFS. The jsonb type also rejects \u0000 (because that

1. https://tools.ietf.org/html/rfc7159

152

Chapter 8. Data Types

cannot be represented in PostgreSQL’s text type), and it insists that any use of Unicode surrogate
pairs to designate characters outside the Unicode Basic Multilingual Plane be correct. Valid Unicode
escapes are converted to the equivalent ASCII or UTFS8 character for storage; this includes folding
surrogate pairs into a single character.

Note: Many of the JSON processing functions described in Section 9.15 will convert Unicode
escapes to regular characters, and will therefore throw the same types of errors just described
even if their input is of type json not jsonb. The fact that the json input function does not make
these checks may be considered a historical artifact, although it does allow for simple storage
(without processing) of JSON Unicode escapes in a non-UTF8 database encoding. In general, it
is best to avoid mixing Unicode escapes in JSON with a non-UTF8 database encoding, if possible.

When converting textual JSON input into jsonb, the primitive types described by RFC 7159 are
effectively mapped onto native PostgreSQL types, as shown in Table 8-23. Therefore, there are some
minor additional constraints on what constitutes valid jsonb data that do not apply to the json type,
nor to JSON in the abstract, corresponding to limits on what can be represented by the underlying
data type. Notably, jsonb will reject numbers that are outside the range of the PostgreSQL numeric
data type, while json will not. Such implementation-defined restrictions are permitted by RFC 7159.
However, in practice such problems are far more likely to occur in other implementations, as it is
common to represent JSON’s number primitive type as IEEE 754 double precision floating point
(which RFC 7159 explicitly anticipates and allows for). When using JSON as an interchange format
with such systems, the danger of losing numeric precision compared to data originally stored by
PostgreSQL should be considered.

Conversely, as noted in the table there are some minor restrictions on the input format of JSON
primitive types that do not apply to the corresponding PostgreSQL types.

Table 8-23. JSON primitive types and corresponding PostgreSQL types

JSON primitive type PostgreSQL type Notes

string text \u0000 is disallowed, as are
non-ASCII Unicode escapes if
database encoding is not UTF8

number numeric NaN and infinity values are
disallowed
boolean boolean Only lowercase t rue and

false spellings are accepted

null (none) SQL nNULL is a different
concept

8.14.1. JSON Input and Output Syntax

The input/output syntax for the JSON data types is as specified in RFC 7159.

The following are all valid §son (or jsonb) expressions:
—-— Simple scalar/primitive value
—-— Primitive values can be numbers, quoted strings, true, false, or null

SELECT ’5’::json;

—-— Array of zero or more elements (elements need not be of same type)

153

Chapter 8. Data Types
SELECT " [1, 2, "foo", null]’::json;

—-— Object containing pairs of keys and values
—— Note that object keys must always be quoted strings
SELECT ' {"bar": "baz", "balance": 7.77, "active": false}’::json;

—-— Arrays and objects can be nested arbitrarily
SELECT " {"foo": [true, "bar"], "tags": {"a": 1, "b": null}}’::json;

As previously stated, when a JSON value is input and then printed without any additional processing,
json outputs the same text that was input, while jsonb does not preserve semantically-insignificant
details such as whitespace. For example, note the differences here:

SELECT ' {"bar": "baz", "balance": 7.77, "active":false}’::json;
json
{"bar": "baz", "balance": 7.77, "active":false}
(1 row)
SELECT ' {"bar": "baz", "balance": 7.77, "active":false}’::jsonb;
jsonb
{"bar": "baz", "active": false, "balance": 7.77}
(1 row)

One semantically-insignificant detail worth noting is that in jsonb, numbers will be printed according
to the behavior of the underlying numeric type. In practice this means that numbers entered with E
notation will be printed without it, for example:

SELECT ' {"reading": 1.230e-5}’::json, ’'{"reading": 1.230e-5}’::Jsonb;
json | jsonb
_______________________ o
{"reading": 1.230e-5} | {"reading": 0.00001230}
(1 row)

However, jsonb will preserve trailing fractional zeroes, as seen in this example, even though those
are semantically insignificant for purposes such as equality checks.

8.14.2. Designing JSON documents effectively

Representing data as JSON can be considerably more flexible than the traditional relational data
model, which is compelling in environments where requirements are fluid. It is quite possible for both
approaches to co-exist and complement each other within the same application. However, even for
applications where maximal flexibility is desired, it is still recommended that JSON documents have
a somewhat fixed structure. The structure is typically unenforced (though enforcing some business
rules declaratively is possible), but having a predictable structure makes it easier to write queries that
usefully summarize a set of “documents” (datums) in a table.

JSON data is subject to the same concurrency-control considerations as any other data type when
stored in a table. Although storing large documents is practicable, keep in mind that any update
acquires a row-level lock on the whole row. Consider limiting JSON documents to a manageable size
in order to decrease lock contention among updating transactions. Ideally, JSON documents should

154

Chapter 8. Data Types

each represent an atomic datum that business rules dictate cannot reasonably be further subdivided
into smaller datums that could be modified independently.

8.14.3. jsonb Containment and Existence

Testing containment is an important capability of jsonb. There is no parallel set of facilities for
the json type. Containment tests whether one jsonb document has contained within it another one.
These examples return true except as noted:

—-— Simple scalar/primitive values contain only the identical value:
SELECT ’'"foo"’::jsonb @> ’""foo"’::jsonb;

—— The array on the right side is contained within the one on the left:
SELECT " [1, 2, 3]'::jsonb @> ’[1, 3]'::]jsonb;

—— Order of array elements is not significant, so this is also true:
SELECT ' [1, 2, 3]’::jsonb @> ’'[3, 1]’::jsonb;

—— Duplicate array elements don’t matter either:
SELECT ' [1, 2, 3]’::jsonb @> ’'[1, 2, 2]'::jsonb;

—— The object with a single pair on the right side is contained
—-— within the object on the left side:
SELECT ' {"product": "PostgreSQL", "version": 9.4, "jsonb": true}’::jsonb @> ’'{"version":

—— The array on the right side is not considered contained within the
—-— array on the left, even though a similar array is nested within it:
SELECT " [1, 2, [1, 3]1]1’::jsonb @> ’[1, 3]1'::jsonb; -— yields false

—-— But with a layer of nesting, it is contained:
SELECT ' [1, 2, [1, 3]1"::jsonb @> " [[1, 3]]’::]Jsonb;

—-— Similarly, containment is not reported here:
SELECT ' {"foo": {"bar": "baz"}}’::Jjsonb @> ’{"bar": "baz"}’::jsonb; -— yields false

-— A top-level key and an empty object is contained:
SELECT " {"foo": {"bar": "baz"}}’::jsonb @> ’"{"foo": {}}’::jsonb;

The general principle is that the contained object must match the containing object as to structure and
data contents, possibly after discarding some non-matching array elements or object key/value pairs
from the containing object. But remember that the order of array elements is not significant when
doing a containment match, and duplicate array elements are effectively considered only once.

As a special exception to the general principle that the structures must match, an array may contain a
primitive value:

—-— This array contains the primitive string value:
SELECT ' ["foo", "bar"]’::jsonb @> ’"bar"’::jsonb;

—— This exception is not reciprocal —-- non-containment is reported here:
SELECT ’"bar"’::Jjsonb @> ' ["bar"]’::jsonb; -- yields false

jsonb also has an existence operator, which is a variation on the theme of containment: it tests
whether a string (given as a text value) appears as an object key or array element at the top level of
the jsonb value. These examples return true except as noted:

155

Chapter 8. Data Types

-— String exists as array element:
SELECT ' ["foo", "bar", "baz"]’::jsonb ? ’'bar’;

—-— String exists as object key:
SELECT ' {"foo": "bar"}’::jsonb ? "foo’;

—-— Object values are not considered:
SELECT " {"foo": "bar"}’::jsonb ? ’'bar’; -- yields false

—-— As with containment, existence must match at the top level:
SELECT " {"foo": {"bar": "baz"}}’::jsonb ? ’'bar’; -- yields false

—-— A string is considered to exist if it matches a primitive JSON string:
SELECT ’'"foo"’::jsonb ? "foo’;

JSON objects are better suited than arrays for testing containment or existence when there are many
keys or elements involved, because unlike arrays they are internally optimized for searching, and do
not need to be searched linearly.

Tip: Because JSON containment is nested, an appropriate query can skip explicit selection of
sub-objects. As an example, suppose that we have a doc column containing objects at the top
level, with most objects containing tags fields that contain arrays of sub-objects. This query finds
entries in which sub-objects containing both "term": "paris" and "term": "food" appear, while
ignoring any such keys outside the tags array:

SELECT doc—>'site_name’ FROM websites
WHERE doc @> ' {"tags":[{"term":"paris"}, {"term":"food"}]}’;

One could accomplish the same thing with, say,

SELECT doc—->'site_name’ FROM websites
WHERE doc->’tags’ @> ' [{"term":"paris"}, {"term":"food"}]’;

but that approach is less flexible, and often less efficient as well.

On the other hand, the JSON existence operator is not nested: it will only look for the specified
key or array element at top level of the JSON value.

The various containment and existence operators, along with all other JSON operators and functions
are documented in Section 9.15.

8.14.4. jsonb Indexing

GIN indexes can be used to efficiently search for keys or key/value pairs occurring within a large
number of jsonb documents (datums). Two GIN “operator classes” are provided, offering different
performance and flexibility trade-offs.

The default GIN operator class for jsonb supports queries with top-level key-exists operators ?, ?&
and ? | operators and path/value-exists operator @>. (For details of the semantics that these operators
implement, see Table 9-41.) An example of creating an index with this operator class is:

CREATE INDEX idxgin ON api USING GIN (jdoc);

The non-default GIN operator class jsonb_path_ops supports indexing the @> operator only. An
example of creating an index with this operator class is:

156

Chapter 8. Data Types

CREATE INDEX idxginp ON api USING GIN (jdoc jsonb_path_ops);

Consider the example of a table that stores JSON documents retrieved from a third-party web service,
with a documented schema definition. A typical document is:

"guid": "9c36adcl-7fb5-4d5b-83b4-90356a46061a",

"name": "Angela Barton",

"is_active": true,

"company": "Magnafone",

"address": "178 Howard Place, Gulf, Washington, 702",
"registered": "2009-11-07T08:53:22 +08:00",

"latitude": 19.793713,
"longitude": 86.513373,
"tags": [

"enim",

"aliquip",

n qui n

We store these documents in a table named api, in a jsonb column named jdoc. If a GIN index is
created on this column, queries like the following can make use of the index:

—— Find documents in which the key "company" has value "Magnafone"
SELECT jdoc->'guid’, jdoc—->’name’ FROM api WHERE jdoc @> '’ {"company": "Magnafone"}’;

However, the index could not be used for queries like the following, because though the operator 2 is
indexable, it is not applied directly to the indexed column jdoc:

—-— Find documents in which the key "tags" contains key or array element "qui"
SELECT jdoc->’guid’, jdoc—>’name’ FROM api WHERE jdoc -> ’tags’ ? 'qui’;

Still, with appropriate use of expression indexes, the above query can use an index. If querying for
particular items within the "tags" key is common, defining an index like this may be worthwhile:

CREATE INDEX idxgintags ON api USING GIN ((jdoc -> ’tags’));

Now, the WHERE clause jdoc -> ’tags’ ? ’"qui’ will be recognized as an application of the
indexable operator ? to the indexed expression jdoc -> ’tags’.(More information on expression
indexes can be found in Section 11.7.)

Another approach to querying is to exploit containment, for example:

—-— Find documents in which the key "tags" contains array element "qui"
SELECT jdoc—->'guid’, jdoc—>’name’ FROM api WHERE jdoc @> ’'{"tags": ["qui"]}’;

A simple GIN index on the jdoc column can support this query. But note that such an index will
store copies of every key and value in the jdoc column, whereas the expression index of the previous
example stores only data found under the tags key. While the simple-index approach is far more
flexible (since it supports queries about any key), targeted expression indexes are likely to be smaller
and faster to search than a simple index.

Although the jsonb_path_ops operator class supports only queries with the @> operator, it has
notable performance advantages over the default operator class jsonb_ops. A jsonb_path_ops
index is usually much smaller than a jsonb_ops index over the same data, and the specificity of

157

Chapter 8. Data Types

searches is better, particularly when queries contain keys that appear frequently in the data. Therefore
search operations typically perform better than with the default operator class.

The technical difference between a jsonb_ops and a jsonb_path_ops GIN index is that the former
creates independent index items for each key and value in the data, while the latter creates index items
only for each value in the data. 2 Basically, each jsonb_path_ops index item is a hash of the value
and the key(s) leading to it; for example to index {"foo": {"bar": "baz"}}, a single index item
would be created incorporating all three of foo, bar, and baz into the hash value. Thus a containment
query looking for this structure would result in an extremely specific index search; but there is no way
at all to find out whether foo appears as a key. On the other hand, a §sonb_ops index would create
three index items representing foo, bar, and baz separately; then to do the containment query, it
would look for rows containing all three of these items. While GIN indexes can perform such an AND
search fairly efficiently, it will still be less specific and slower than the equivalent jsonb_path_ops
search, especially if there are a very large number of rows containing any single one of the three index
items.

A disadvantage of the jsonb_path_ops approach is that it produces no index entries for JSON
structures not containing any values, such as {"a": {}}. If a search for documents containing such
a structure is requested, it will require a full-index scan, which is quite slow. jsonb_path_ops is
therefore ill-suited for applications that often perform such searches.

jsonb also supports btree and hash indexes. These are usually useful only if it’s important to
check equality of complete JSON documents. The bt ree ordering for jsonb datums is seldom of
great interest, but for completeness it is:

Object > Array > Boolean > Number > String > Null
Object with n pairs > object with n - 1 pairs

Array with n elements > array with n - 1 elements
Objects with equal numbers of pairs are compared in the order:
key-1, value-1, key-2

Note that object keys are compared in their storage order; in particular, since shorter keys are stored
before longer keys, this can lead to results that might be unintuitive, such as:

{ "aa": 1, "C": 1} > {llb": 1’ "d": 1}
Similarly, arrays with equal numbers of elements are compared in the order:
element-1, element-2

Primitive JSON values are compared using the same comparison rules as for the underlying Post-
greSQL data type. Strings are compared using the default database collation.

8.15. Arrays

PostgreSQL allows columns of a table to be defined as variable-length multidimensional arrays. Ar-
rays of any built-in or user-defined base type, enum type, or composite type can be created. Arrays of
domains are not yet supported.

2. For this purpose, the term “value” includes array elements, though JSON terminology sometimes considers array elements
distinct from values within objects.

158

Chapter 8. Data Types

8.15.1. Declaration of Array Types

To illustrate the use of array types, we create this table:

CREATE TABLE sal_emp (
name text,
pay_by_qgquarter integer|[],
schedule text[][]
)i

As shown, an array data type is named by appending square brackets ([1) to the data type name of
the array elements. The above command will create a table named sal_emp with a column of type
text (name), a one-dimensional array of type integer (pay_by_quarter), which represents the
employee’s salary by quarter, and a two-dimensional array of text (schedule), which represents
the employee’s weekly schedule.

The syntax for CREATE TABLE allows the exact size of arrays to be specified, for example:

CREATE TABLE tictactoe (
squares integer[3][3]
)i

However, the current implementation ignores any supplied array size limits, i.e., the behavior is the
same as for arrays of unspecified length.

The current implementation does not enforce the declared number of dimensions either. Arrays of
a particular element type are all considered to be of the same type, regardless of size or number
of dimensions. So, declaring the array size or number of dimensions in CREATE TABLE is simply
documentation; it does not affect run-time behavior.

An alternative syntax, which conforms to the SQL standard by using the keyword ARRAY, can be used
for one-dimensional arrays. pay_by_quarter could have been defined as:

pay_by_quarter integer ARRAY[4],
Or, if no array size is to be specified:
pay_by_qgquarter integer ARRAY,

As before, however, PostgreSQL does not enforce the size restriction in any case.

8.15.2. Array Value Input

To write an array value as a literal constant, enclose the element values within curly braces and
separate them by commas. (If you know C, this is not unlike the C syntax for initializing structures.)
You can put double quotes around any element value, and must do so if it contains commas or curly
braces. (More details appear below.) Thus, the general format of an array constant is the following:

"{ vall delim val2 delim ... }’

where delim is the delimiter character for the type, as recorded in its pg_type entry. Among the
standard data types provided in the PostgreSQL distribution, all use a comma (,), except for type box
which uses a semicolon (;). Each va1 is either a constant of the array element type, or a subarray. An
example of an array constant is:

"{{1,2,3},{4,5,6},{7,8,9}}’

159

Chapter 8. Data Types

This constant is a two-dimensional, 3-by-3 array consisting of three subarrays of integers.

To set an element of an array constant to NULL, write NULL for the element value. (Any upper- or
lower-case variant of NULL will do.) If you want an actual string value “NULL”, you must put double
quotes around it.

(These kinds of array constants are actually only a special case of the generic type constants discussed
in Section 4.1.2.7. The constant is initially treated as a string and passed to the array input conversion
routine. An explicit type specification might be necessary.)

Now we can show some INSERT statements:

INSERT INTO sal_emp
VALUES (’Bill’,
{10000, 10000, 10000, 10000}",
"{{"meeting", "lunch"}, {"training", "presentation"}}’);

INSERT INTO sal_emp
VALUES (’Carol’,
{20000, 25000, 25000, 25000}",
"{{"breakfast", "consulting"}, {"meeting", "lunch"}}’);

The result of the previous two inserts looks like this:

SELECT * FROM sal_emp;

name | pay_by_qguarter | schedule

_______ T
Bill | {10000,10000,10000,10000} | {{meeting,lunch}, {training,presentation}}
Carol | {20000,25000,25000,25000} | {{breakfast,consulting}, {meeting, lunch}}
(2 rows)

Multidimensional arrays must have matching extents for each dimension. A mismatch causes an error,
for example:

INSERT INTO sal_emp
VALUES (’Bill’,
/{10000, 10000, 10000, 10000}7",
"{{"meeting", "lunch"}, {"meeting"}}’');
ERROR: multidimensional arrays must have array expressions with matching dimensions

The ARRAY constructor syntax can also be used:

INSERT INTO sal_emp
VALUES (’'Bill’,
ARRAY[10000, 10000, 10000, 100007,
ARRAY [['meeting’, "lunch’], [’'training’, ’'presentation’]]);

INSERT INTO sal_emp
VALUES ('Carol’,
ARRAY [20000, 25000, 25000, 250007,
ARRAY [["breakfast’, ’consulting’], [’'meeting’, ’lunch’]1]);

160

Chapter 8. Data Types

Notice that the array elements are ordinary SQL constants or expressions; for instance, string literals
are single quoted, instead of double quoted as they would be in an array literal. The ARRAY constructor
syntax is discussed in more detail in Section 4.2.12.

8.15.3. Accessing Arrays

Now, we can run some queries on the table. First, we show how to access a single element of an array.
This query retrieves the names of the employees whose pay changed in the second quarter:

SELECT name FROM sal_emp WHERE pay_by_quarter[l] <> pay_by_qguarter[2];

The array subscript numbers are written within square brackets. By default PostgreSQL uses a one-
based numbering convention for arrays, that is, an array of n elements starts with array[1] and ends
with array [n].

This query retrieves the third quarter pay of all employees:
SELECT pay_by_quarter[3] FROM sal_emp;

pay_by_quarter

10000
25000
(2 rows)

We can also access arbitrary rectangular slices of an array, or subarrays. An array slice is denoted
by writing Iower-bound: upper-bound for one or more array dimensions. For example, this query
retrieves the first item on Bill’s schedule for the first two days of the week:

SELECT schedule[1:2][1:1] FROM sal_emp WHERE name = ’'Bill’;

schedule

{{meeting}, {training}}
(1 row)

If any dimension is written as a slice, i.e., contains a colon, then all dimensions are treated as slices.
Any dimension that has only a single number (no colon) is treated as being from 1 to the number
specified. For example, [2] is treated as [1:2], as in this example:

SELECT schedule[1:2][2] FROM sal_emp WHERE name = ’'Bill’;

schedule

{{meeting, lunch}, {training, presentation}}
(1 row)

To avoid confusion with the non-slice case, it’s best to use slice syntax for all dimensions, e.g.,
[1:2][1:1],n0t [2][1:1].

161

Chapter 8. Data Types

An array subscript expression will return null if either the array itself or any of the subscript expres-
sions are null. Also, null is returned if a subscript is outside the array bounds (this case does not raise
an error). For example, if schedule currently has the dimensions [1:3][1:2] then referencing
schedule[3] [3] yields NULL. Similarly, an array reference with the wrong number of subscripts
yields a null rather than an error.

An array slice expression likewise yields null if the array itself or any of the subscript expressions are
null. However, in other cases such as selecting an array slice that is completely outside the current
array bounds, a slice expression yields an empty (zero-dimensional) array instead of null. (This does
not match non-slice behavior and is done for historical reasons.) If the requested slice partially over-
laps the array bounds, then it is silently reduced to just the overlapping region instead of returning
null.

The current dimensions of any array value can be retrieved with the array_dims function:

SELECT array_dims (schedule) FROM sal_emp WHERE name = ’'Carol’;
array_dims

[1:2][1:2]
(1 row)

array_dims produces a text result, which is convenient for people to read but perhaps inconvenient
for programs. Dimensions can also be retrieved with array_upper and array_lower, which return
the upper and lower bound of a specified array dimension, respectively:

SELECT array_upper (schedule, 1) FROM sal_emp WHERE name = ’'Carol’;

array_upper

(1 row)
array_length will return the length of a specified array dimension:
SELECT array_length(schedule, 1) FROM sal_emp WHERE name = ’'Carol’;

array_length

(1 row)

cardinality returns the total number of elements in an array across all dimensions. It is effectively
the number of rows a call to unnest would yield:

SELECT cardinality (schedule) FROM sal_emp WHERE name = ’'Carol’;

cardinality

162

Chapter 8. Data Types

8.15.4. Modifying Arrays

An array value can be replaced completely:

UPDATE sal_emp SET pay_by_quarter = ’{25000,25000,27000,27000}"
WHERE name = ’'Carol’;

or using the ARRAY expression syntax:

UPDATE sal_emp SET pay_by_quarter = ARRAY[25000,25000,27000,27000]
WHERE name = ’'Carol’;

An array can also be updated at a single element:

UPDATE sal_emp SET pay_by_quarter[4] = 15000
WHERE name = ’'Bill’;

or updated in a slice:

UPDATE sal_emp SET pay_by_quarter([l:2] = 7 {27000,27000}"
WHERE name = ’'Carol’;

A stored array value can be enlarged by assigning to elements not already present. Any positions be-
tween those previously present and the newly assigned elements will be filled with nulls. For example,
if array myarray currently has 4 elements, it will have six elements after an update that assigns to
myarray[6]; myarray[5] will contain null. Currently, enlargement in this fashion is only allowed
for one-dimensional arrays, not multidimensional arrays.

Subscripted assignment allows creation of arrays that do not use one-based subscripts. For example
one might assign to myarray[-2:7] to create an array with subscript values from -2 to 7.

New array values can also be constructed using the concatenation operator, | | :

SELECT ARRAY[1,2] || ARRAY[3,4];
?column?

{1,2,3,4}
(1 row)

SELECT ARRAY[5,6] || ARRAY([[1,2],[3,411;

?column?

{{5,6},{1,2},{3,4}}
(1 row)

The concatenation operator allows a single element to be pushed onto the beginning or end of a
one-dimensional array. It also accepts two N-dimensional arrays, or an N-dimensional and an N+1-
dimensional array.

When a single element is pushed onto either the beginning or end of a one-dimensional array, the
result is an array with the same lower bound subscript as the array operand. For example:

SELECT array_dims (1 || "[0:1]={2,3}" ::int[]);
array_dims

163

Chapter 8. Data Types
(1 row)

SELECT array_dims (ARRAY[1,2] || 3);
array_dims

[1:3]
(1 row)

When two arrays with an equal number of dimensions are concatenated, the result retains the lower
bound subscript of the left-hand operand’s outer dimension. The result is an array comprising every
element of the left-hand operand followed by every element of the right-hand operand. For example:

SELECT array_dims (ARRAY[1,2] || ARRAY[3,4,5]);
array_dims

[1:5]
(1 row)

SELECT array_dims (ARRAY[[1,2],[3,41]1 || ARRAY[[5,6],17,8]1,109,011);
array_dims

[1:5][1:2]
(1 row)

When an n-dimensional array is pushed onto the beginning or end of an N+1-dimensional array, the
result is analogous to the element-array case above. Each N-dimensional sub-array is essentially an
element of the nN+1-dimensional array’s outer dimension. For example:

SELECT array_dims (ARRAY[1,2] || ARRAY[[3,4]1,[5,611);
array_dims

[1:3][1:2]
(1 row)

An array can also be constructed by using the functions array_prepend, array_append,
or array_cat. The first two only support one-dimensional arrays, but array_cat supports
multidimensional arrays. Some examples:

SELECT array_prepend(l, ARRAY[2,3]);
array_prepend

{1,2,3}
(1 row)

SELECT array_append (ARRAY[1,2], 3);
array_append

{1,2,3}
(1 row)

SELECT array_cat (ARRAY[1,2], ARRAY[3,4]);
array_cat

164

Chapter 8. Data Types

{1,2,3,4}
(1 row)

SELECT array_cat (ARRAY[[1,2],1[3,41]1, ARRAY[5,6]);
array_cat

{{1,2},{3,4},{5,6}}
(1 row)

SELECT array_cat (ARRAY[5,6], ARRAY[[1,2],1[3,411);
array_cat

{{5,6},{1,2},{3,4}}

In simple cases, the concatenation operator discussed above is preferred over direct use of these
functions. However, because the concatenation operator is overloaded to serve all three cases, there
are situations where use of one of the functions is helpful to avoid ambiguity. For example consider:

SELECT ARRAY[1, 2] || "{3, 4}’; —- the untyped literal is taken as an array
?column?
{1,2,3,4}

SELECT ARRAY[1, 21 || "7"; —— so 1s this one

ERROR: malformed array literal: "7"

SELECT ARRAY[1, 2] || NULL; —— so 1s an undecorated NULL
?column?
{1,2}

(1 row)

SELECT array_append (ARRAY[1, 2], NULL); —— this might have been meant

array_append

{1,2,NULL}

In the examples above, the parser sees an integer array on one side of the concatenation operator,
and a constant of undetermined type on the other. The heuristic it uses to resolve the constant’s type
is to assume it’s of the same type as the operator’s other input — in this case, integer array. So the
concatenation operator is presumed to represent array_cat, not array_append. When that’s the
wrong choice, it could be fixed by casting the constant to the array’s element type; but explicit use of
array_append might be a preferable solution.

8.15.5. Searching in Arrays

To search for a value in an array, each value must be checked. This can be done manually, if you know
the size of the array. For example:

SELECT x= FROM sal_emp WHERE pay_by_quarter[1l] = 10000 OR
pay_by_qgquarter[2] = 10000 OR
pay_by_quarter[3] = 10000 OR
pay_by_qgquarter[4] = 10000;

165

Chapter 8. Data Types

However, this quickly becomes tedious for large arrays, and is not helpful if the size of the array is
unknown. An alternative method is described in Section 9.23. The above query could be replaced by:

SELECT * FROM sal_emp WHERE 10000 = ANY (pay_by_quarter);
In addition, you can find rows where the array has all values equal to 10000 with:

SELECT x= FROM sal_emp WHERE 10000 = ALL (pay_by_quarter);

Alternatively, the generate_subscripts function can be used. For example:

SELECT x FROM
(SELECT pay_by_dqguarter,
generate_subscripts (pay_by_quarter, 1) AS s
FROM sal_emp) AS foo
WHERE pay_by_dquarter([s] = 10000;

This function is described in Table 9-56.

You can also search an array using the &s& operator, which checks whether the left operand overlaps
with the right operand. For instance:

SELECT x FROM sal_emp WHERE pay_by_quarter && ARRAY[10000];

This and other array operators are further described in Section 9.18. It can be accelerated by an
appropriate index, as described in Section 11.2.

You can also search for specific values in an array using the array_position and
array_positions functions. The former returns the subscript of the first occurrence of a value in
an array; the latter returns an array with the subscripts of all occurrences of the value in the array. For
example:

SELECT array_position (ARRAY[’sun’,’mon’,’tue’,’wed’,’ thu’,’ fri’, sat’], ’'mon’);
array_positions

SELECT array_positions (ARRAY[1, 4, 3, 1, 3, 4, 2, 11, 1);
array_positions

Tip: Arrays are not sets; searching for specific array elements can be a sign of database misde-
sign. Consider using a separate table with a row for each item that would be an array element.
This will be easier to search, and is likely to scale better for a large number of elements.

8.15.6. Array Input and Output Syntax

The external text representation of an array value consists of items that are interpreted according to the
I/O conversion rules for the array’s element type, plus decoration that indicates the array structure.
The decoration consists of curly braces ({ and }) around the array value plus delimiter characters

166

Chapter 8. Data Types

between adjacent items. The delimiter character is usually a comma (,) but can be something else:
it is determined by the typdelim setting for the array’s element type. Among the standard data
types provided in the PostgreSQL distribution, all use a comma, except for type box, which uses a
semicolon (;). In a multidimensional array, each dimension (row, plane, cube, etc.) gets its own level
of curly braces, and delimiters must be written between adjacent curly-braced entities of the same
level.

The array output routine will put double quotes around element values if they are empty strings,
contain curly braces, delimiter characters, double quotes, backslashes, or white space, or match the
word NULL. Double quotes and backslashes embedded in element values will be backslash-escaped.
For numeric data types it is safe to assume that double quotes will never appear, but for textual data
types one should be prepared to cope with either the presence or absence of quotes.

By default, the lower bound index value of an array’s dimensions is set to one. To represent arrays
with other lower bounds, the array subscript ranges can be specified explicitly before writing the array
contents. This decoration consists of square brackets ([1) around each array dimension’s lower and
upper bounds, with a colon (:) delimiter character in between. The array dimension decoration is
followed by an equal sign (=). For example:

SELECT f1[1]([-2]1[3] AS el, f1[1]1[-1]1[5] AS e2
FROM (SELECT ' [1:1]1[-2:-1]1[3:51={{{1,2,3},{4,5,6}}}"::int[] AS fl) AS ss;

The array output routine will include explicit dimensions in its result only when there are one or more
lower bounds different from one.

If the value written for an element is NULL (in any case variant), the element is taken to be NULL.
The presence of any quotes or backslashes disables this and allows the literal string value “NULL”
to be entered. Also, for backward compatibility with pre-8.2 versions of PostgreSQL, the array_nulls
configuration parameter can be turned of £ to suppress recognition of NULL as a NULL.

As shown previously, when writing an array value you can use double quotes around any individ-
ual array element. You must do so if the element value would otherwise confuse the array-value
parser. For example, elements containing curly braces, commas (or the data type’s delimiter char-
acter), double quotes, backslashes, or leading or trailing whitespace must be double-quoted. Empty
strings and strings matching the word NULL must be quoted, too. To put a double quote or backslash
in a quoted array element value, precede it with a backslash. Alternatively, you can avoid quotes and
use backslash-escaping to protect all data characters that would otherwise be taken as array syntax.

You can add whitespace before a left brace or after a right brace. You can also add whitespace before
or after any individual item string. In all of these cases the whitespace will be ignored. However,
whitespace within double-quoted elements, or surrounded on both sides by non-whitespace characters
of an element, is not ignored.

Tip: The arRrAY constructor syntax (see Section 4.2.12) is often easier to work with than the array-
literal syntax when writing array values in SQL commands. In arraY, individual element values
are written the same way they would be written when not members of an array.

167

Chapter 8. Data Types

8.16. Composite Types

A composite type represents the structure of a row or record; it is essentially just a list of field names
and their data types. PostgreSQL allows composite types to be used in many of the same ways that
simple types can be used. For example, a column of a table can be declared to be of a composite type.

8.16.1. Declaration of Composite Types

Here are two simple examples of defining composite types:

CREATE TYPE complex AS (
r double precision,
i double precision
)i

CREATE TYPE inventory_item AS (

name text,
supplier_id integer,
price numeric

)

The syntax is comparable to CREATE TABLE, except that only field names and types can be specified;
no constraints (such as NOT NULL) can presently be included. Note that the As keyword is essential;
without it, the system will think a different kind of CREATE TYPE command is meant, and you will
get odd syntax errors.

Having defined the types, we can use them to create tables:

CREATE TABLE on_hand (
item inventory_item,
count integer

)
INSERT INTO on_hand VALUES (ROW(’fuzzy dice’, 42, 1.99), 1000);
or functions:

CREATE FUNCTION price_extension (inventory_item, integer) RETURNS numeric
AS "SELECT $l.price % $2’ LANGUAGE SQL;

SELECT price_extension(item, 10) FROM on_hand;

Whenever you create a table, a composite type is also automatically created, with the same name as
the table, to represent the table’s row type. For example, had we said:

CREATE TABLE inventory_item (

name text,
supplier_id integer REFERENCES suppliers,
price numeric CHECK (price > 0)

)i

then the same inventory_item composite type shown above would come into being as a byproduct,
and could be used just as above. Note however an important restriction of the current implementation:
since no constraints are associated with a composite type, the constraints shown in the table definition

168

Chapter 8. Data Types

do not apply to values of the composite type outside the table. (A partial workaround is to use domain
types as members of composite types.)

8.16.2. Constructing Composite Values

To write a composite value as a literal constant, enclose the field values within parentheses and sepa-
rate them by commas. You can put double quotes around any field value, and must do so if it contains
commas or parentheses. (More details appear below.) Thus, the general format of a composite con-
stant is the following:

"(vall , valz , ...)’
An example is:
" ("fuzzy dice",42,1.99)"

which would be a valid value of the inventory_item type defined above. To make a field be NULL,
write no characters at all in its position in the list. For example, this constant specifies a NULL third
field:

" ("fuzzy dice",42,)’
If you want an empty string rather than NULL, write double quotes:
4 (nmn , 4 2 ,) 4

Here the first field is a non-NULL empty string, the third is NULL.

(These constants are actually only a special case of the generic type constants discussed in Section
4.1.2.7. The constant is initially treated as a string and passed to the composite-type input conversion
routine. An explicit type specification might be necessary to tell which type to convert the constant
to.)

The ROW expression syntax can also be used to construct composite values. In most cases this is
considerably simpler to use than the string-literal syntax since you don’t have to worry about multiple
layers of quoting. We already used this method above:

ROW (' fuzzy dice’, 42, 1.99)
ROW (”, 42, NULL)

The ROW keyword is actually optional as long as you have more than one field in the expression, so
these can be simplified to:

(" fuzzy dice’, 42, 1.99)
(", 42, NULL)

The rROW expression syntax is discussed in more detail in Section 4.2.13.

8.16.3. Accessing Composite Types

To access a field of a composite column, one writes a dot and the field name, much like selecting a
field from a table name. In fact, it’s so much like selecting from a table name that you often have to use

169

Chapter 8. Data Types

parentheses to keep from confusing the parser. For example, you might try to select some subfields
from our on_hand example table with something like:

SELECT item.name FROM on_hand WHERE item.price > 9.99;

This will not work since the name item is taken to be a table name, not a column name of on_hand,
per SQL syntax rules. You must write it like this:

SELECT (item) .name FROM on_hand WHERE (item).price > 9.99;
or if you need to use the table name as well (for instance in a multitable query), like this:
SELECT (on_hand.item) .name FROM on_hand WHERE (on_hand.item) .price > 9.99;

Now the parenthesized object is correctly interpreted as a reference to the item column, and then the
subfield can be selected from it.

Similar syntactic issues apply whenever you select a field from a composite value. For instance, to
select just one field from the result of a function that returns a composite value, you’d need to write
something like:

SELECT (my_func(...)).field FROM

Without the extra parentheses, this will generate a syntax error.

The special field name + means “all fields”, as further explained in Section 8.16.5.

8.16.4. Modifying Composite Types

Here are some examples of the proper syntax for inserting and updating composite columns. First,
inserting or updating a whole column:

INSERT INTO mytab (complex_col) VALUES((1.1,2.2));
UPDATE mytab SET complex_col = ROW(1.1,2.2) WHERE ...;

The first example omits ROW, the second uses it; we could have done it either way.

We can update an individual subfield of a composite column:
UPDATE mytab SET complex_col.r = (complex_col).r + 1 WHERE ...;

Notice here that we don’t need to (and indeed cannot) put parentheses around the column name
appearing just after SET, but we do need parentheses when referencing the same column in the ex-
pression to the right of the equal sign.

And we can specity subfields as targets for INSERT, too:
INSERT INTO mytab (complex_col.r, complex_col.i) VALUES(l.1, 2.2);

Had we not supplied values for all the subfields of the column, the remaining subfields would have
been filled with null values.

170

Chapter 8. Data Types

8.16.5. Using Composite Types in Queries

There are various special syntax rules and behaviors associated with composite types in queries. These
rules provide useful shortcuts, but can be confusing if you don’t know the logic behind them.

In PostgreSQL, a reference to a table name (or alias) in a query is effectively a reference to the
composite value of the table’s current row. For example, if we had a table inventory_item as
shown above, we could write:

SELECT c¢ FROM inventory_item c;

This query produces a single composite-valued column, so we might get output like:

("fuzzy dice",42,1.99)
(1 row)

Note however that simple names are matched to column names before table names, so this example
works only because there is no column named c in the query’s tables.

The ordinary qualified-column-name syntax table_name.column_name can be understood as ap-
plying field selection to the composite value of the table’s current row. (For efficiency reasons, it’s not
actually implemented that way.)

When we write
SELECT c.x FROM inventory_item c;

then, according to the SQL standard, we should get the contents of the table expanded into separate
columns:

name | supplier_id | price
____________ 4
fuzzy dice | 42 | 1.99
(1 row)

as if the query were
SELECT c.name, c.supplier_id, c.price FROM inventory_item c;

PostgreSQL will apply this expansion behavior to any composite-valued expression, although as
shown above, you need to write parentheses around the value that .« is applied to whenever it’s
not a simple table name. For example, if myfunc () is a function returning a composite type with
columns a, b, and c, then these two queries have the same result:

SELECT (myfunc(x)) . FROM some_table;
SELECT (myfunc(x)).a, (myfunc(x)).b, (myfunc(x)).c FROM some_table;

Tip: PostgreSQL handles column expansion by actually transforming the first form into the sec-
ond. So, in this example, myfunc () would get invoked three times per row with either syntax. If
it's an expensive function you may wish to avoid that, which you can do with a query like:

SELECT (m).* FROM (SELECT myfunc(x) AS m FROM some_table OFFSET 0) ss;

The orrseT 0 clause keeps the optimizer from “flattening” the sub-select to arrive at the form with
multiple calls of myfunc ().

171

Chapter 8. Data Types

The composite_value.x syntax results in column expansion of this kind when it appears at the
top level of a SELECT output list, a RETURNING list in INSERT/UPDATE/DELETE, a VALUES clause,
or a row constructor. In all other contexts (including when nested inside one of those constructs),
attaching . » to a composite value does not change the value, since it means “all columns” and so the
same composite value is produced again. For example, if somefunc () accepts a composite-valued
argument, these queries are the same:

SELECT somefunc(c.*) FROM inventory_item c;
SELECT somefunc(c) FROM inventory_item c;

In both cases, the current row of inventory_item is passed to the function as a single composite-
valued argument. Even though . x does nothing in such cases, using it is good style, since it makes
clear that a composite value is intended. In particular, the parser will consider c in c. » to refer to a
table name or alias, not to a column name, so that there is no ambiguity; whereas without . «, it is not
clear whether ¢ means a table name or a column name, and in fact the column-name interpretation
will be preferred if there is a column named c.

Another example demonstrating these concepts is that all these queries mean the same thing:

SELECT %= FROM inventory_item c ORDER BY c;
SELECT * FROM inventory_item ¢ ORDER BY c.x;
SELECT = FROM inventory_item c ORDER BY ROW(c.x);

All of these ORDER BY clauses specify the row’s composite value, resulting in sorting the rows ac-
cording to the rules described in Section 9.23.6. However, if inventory_item contained a column
named c, the first case would be different from the others, as it would mean to sort by that column
only. Given the column names previously shown, these queries are also equivalent to those above:

SELECT % FROM inventory_item c ORDER BY ROW(c.name, c.supplier_id, c.price);
SELECT = FROM inventory_item c ORDER BY (c.name, c.supplier_id, c.price);

(The last case uses a row constructor with the key word ROw omitted.)

Another special syntactical behavior associated with composite values is that we can use functional
notation for extracting a field of a composite value. The simple way to explain this is that the notations
field(table) and table. field are interchangeable. For example, these queries are equivalent:

SELECT c.name FROM inventory_item c WHERE c.price > 1000;
SELECT name (c) FROM inventory_item c WHERE price(c) > 1000;

Moreover, if we have a function that accepts a single argument of a composite type, we can call it
with either notation. These queries are all equivalent:

SELECT somefunc(c) FROM inventory_item c;
SELECT somefunc(c.x) FROM inventory_item c;
SELECT c.somefunc FROM inventory_item c;

This equivalence between functional notation and field notation makes it possible to use functions on
composite types to implement “computed fields”. An application using the last query above wouldn’t
need to be directly aware that somefunc isn’t a real column of the table.

Tip: Because of this behavior, it's unwise to give a function that takes a single composite-type
argument the same name as any of the fields of that composite type. If there is ambiguity, the

172

Chapter 8. Data Types

field-name interpretation will be preferred, so that such a function could not be called without
tricks. One way to force the function interpretation is to schema-qualify the function name, that is,

write schema. func (compositevalue).

8.16.6. Composite Type Input and Output Syntax

The external text representation of a composite value consists of items that are interpreted according
to the I/O conversion rules for the individual field types, plus decoration that indicates the composite
structure. The decoration consists of parentheses ((and)) around the whole value, plus commas (,)
between adjacent items. Whitespace outside the parentheses is ignored, but within the parentheses it
is considered part of the field value, and might or might not be significant depending on the input
conversion rules for the field data type. For example, in:

r 42y’

the whitespace will be ignored if the field type is integer, but not if it is text.

As shown previously, when writing a composite value you can write double quotes around any in-
dividual field value. You must do so if the field value would otherwise confuse the composite-value
parser. In particular, fields containing parentheses, commas, double quotes, or backslashes must be
double-quoted. To put a double quote or backslash in a quoted composite field value, precede it with
a backslash. (Also, a pair of double quotes within a double-quoted field value is taken to represent a
double quote character, analogously to the rules for single quotes in SQL literal strings.) Alternatively,
you can avoid quoting and use backslash-escaping to protect all data characters that would otherwise
be taken as composite syntax.

A completely empty field value (no characters at all between the commas or parentheses) represents
a NULL. To write a value that is an empty string rather than NULL, write "".

The composite output routine will put double quotes around field values if they are empty strings or
contain parentheses, commas, double quotes, backslashes, or white space. (Doing so for white space
is not essential, but aids legibility.) Double quotes and backslashes embedded in field values will be
doubled.

Note: Remember that what you write in an SQL command will first be interpreted as a string
literal, and then as a composite. This doubles the number of backslashes you need (assuming
escape string syntax is used). For example, to insert a text field containing a double quote and
a backslash in a composite value, you'd need to write:

INSERT ... VALUES (’/ ("\"\\")");

The string-literal processor removes one level of backslashes, so that what arrives at the
composite-value parser looks like ("\"\\"). In turn, the string fed to the text data type’s input
routine becomes "\. (If we were working with a data type whose input routine also treated
backslashes specially, bytea for example, we might need as many as eight backslashes in the
command to get one backslash into the stored composite field.) Dollar quoting (see Section
4.1.2.4) can be used to avoid the need to double backslashes.

Tip: The row constructor syntax is usually easier to work with than the composite-literal syntax
when writing composite values in SQL commands. In row, individual field values are written the
same way they would be written when not members of a composite.

173

Chapter 8. Data Types

8.17. Range Types

Range types are data types representing a range of values of some element type (called the range’s
subtype). For instance, ranges of timestamp might be used to represent the ranges of time that a
meeting room is reserved. In this case the data type is tsrange (short for “timestamp range”), and
timestamp is the subtype. The subtype must have a total order so that it is well-defined whether
element values are within, before, or after a range of values.

Range types are useful because they represent many element values in a single range value, and
because concepts such as overlapping ranges can be expressed clearly. The use of time and date
ranges for scheduling purposes is the clearest example; but price ranges, measurement ranges from
an instrument, and so forth can also be useful.

8.17.1. Built-in Range Types

PostgreSQL comes with the following built-in range types:

+ int4range — Range of integer

+ int8range — Range of bigint

» numrange — Range of numeric

+ tsrange — Range of timestamp without time zone
+ tstzrange — Range of timestamp with time zone
+ daterange — Range of date

In addition, you can define your own range types; see CREATE TYPE for more information.

8.17.2. Examples

CREATE TABLE reservation (room int, during tsrange);
INSERT INTO reservation VALUES
(1108, "[2010-01-01 14:30, 2010-01-01 15:30)");

—-— Containment
SELECT int4range (10, 20) @> 3;

—-— Overlaps
SELECT numrange (11.1, 22.2) && numrange (20.0, 30.0);

—-— Extract the upper bound
SELECT upper (int8range (15, 25));

—— Compute the intersection
SELECT int4range (10, 20) = int4range (15, 25);

—— Is the range empty?

174

Chapter 8. Data Types

SELECT isempty (numrange (1, 5));

See Table 9-47 and Table 9-48 for complete lists of operators and functions on range types.

8.17.3. Inclusive and Exclusive Bounds

Every non-empty range has two bounds, the lower bound and the upper bound. All points between
these values are included in the range. An inclusive bound means that the boundary point itself is
included in the range as well, while an exclusive bound means that the boundary point is not included
in the range.

[T3%1]
[

while an exclusive lower
, while an

In the text form of a range, an inclusive lower bound is represented by
bound is represented by
exclusive upper bound is represented by)

[T3EL] q
(]

. Likewise, an inclusive upper bound is represented by
. (See Section 8.17.5 for more details.)

Lt}

The functions lower_inc and upper_inc test the inclusivity of the lower and upper bounds of a
range value, respectively.

8.17.4. Infinite (Unbounded) Ranges

The lower bound of a range can be omitted, meaning that all points less than the upper bound are
included in the range. Likewise, if the upper bound of the range is omitted, then all points greater than
the lower bound are included in the range. If both lower and upper bounds are omitted, all values of
the element type are considered to be in the range.

This is equivalent to considering that the lower bound is “minus infinity”, or the upper bound is “plus
infinity”, respectively. But note that these infinite values are never values of the range’s element type,
and can never be part of the range. (So there is no such thing as an inclusive infinite bound — if you
try to write one, it will automatically be converted to an exclusive bound.)

Also, some element types have a notion of “infinity”, but that is just another value so far as the range
type mechanisms are concerned. For example, in timestamp ranges, [today,] means the same thing
as [today,). But [today,infinity] means something different from [today, infinity) —
the latter excludes the special t imestamp value infinity.

The functions lower_inf and upper_inf test for infinite lower and upper bounds of a range, re-
spectively.

8.17.5. Range Input/Output

The input for a range value must follow one of the following patterns:

(Iower-bound, upper—bound)
(Iower-bound, upper-bound]
[Iower-bound, upper—bound)
[Iower-bound, upper—-bound]

empty

The parentheses or brackets indicate whether the lower and upper bounds are exclusive or inclusive,
as described previously. Notice that the final pattern is empty, which represents an empty range (a
range that contains no points).

175

Chapter 8. Data Types

The 1ower-bound may be either a string that is valid input for the subtype, or empty to indicate no
lower bound. Likewise, upper—-bound may be either a string that is valid input for the subtype, or
empty to indicate no upper bound.

Each bound value can be quoted using " (double quote) characters. This is necessary if the bound
value contains parentheses, brackets, commas, double quotes, or backslashes, since these characters
would otherwise be taken as part of the range syntax. To put a double quote or backslash in a quoted
bound value, precede it with a backslash. (Also, a pair of double quotes within a double-quoted bound
value is taken to represent a double quote character, analogously to the rules for single quotes in SQL
literal strings.) Alternatively, you can avoid quoting and use backslash-escaping to protect all data
characters that would otherwise be taken as range syntax. Also, to write a bound value that is an
empty string, write "", since writing nothing means an infinite bound.

Whitespace is allowed before and after the range value, but any whitespace between the parentheses
or brackets is taken as part of the lower or upper bound value. (Depending on the element type, it
might or might not be significant.)

Note: These rules are very similar to those for writing field values in composite-type literals. See
Section 8.16.6 for additional commentary.

Examples:

—-— includes 3, does not include 7, and does include all points in between
SELECT ' [3,7)' ::int4range;

—— does not include either 3 or 7, but includes all points in between
SELECT '’ (3,7)’ ::int4range;

—— includes only the single point 4
SELECT ' [4,4]’ ::int4range;

—— includes no points (and will be normalized to ’'empty’)
SELECT ' [4,4)' ::int4range;

8.17.6. Constructing Ranges

Each range type has a constructor function with the same name as the range type. Using the construc-
tor function is frequently more convenient than writing a range literal constant, since it avoids the
need for extra quoting of the bound values. The constructor function accepts two or three arguments.
The two-argument form constructs a range in standard form (lower bound inclusive, upper bound
exclusive), while the three-argument form constructs a range with bounds of the form specified by
the third argument. The third argument must be one of the strings “()”, “ (17, “[)”, or “[1”. For
example:

—— The full form is: lower bound, upper bound, and text argument indicating
—-— inclusivity/exclusivity of bounds.

SELECT numrange (1.0, 14.0, " (1");

—— If the third argument is omitted, ’'[)’ is assumed.
SELECT numrange (1.0, 14.0);

176

Chapter 8. Data Types

—— Although ' (]’ is specified here, on display the value will be converted to
—— canonical form, since int8range is a discrete range type (see below).
SELECT int8range (1, 14, ' (1');

—— Using NULL for either bound causes the range to be unbounded on that side.
SELECT numrange (NULL, 2.2);

8.17.7. Discrete Range Types

A discrete range is one whose element type has a well-defined “step”, such as integer or date. In
these types two elements can be said to be adjacent, when there are no valid values between them.
This contrasts with continuous ranges, where it’s always (or almost always) possible to identify other
element values between two given values. For example, a range over the numeric type is continuous,
as is a range over t imestamp. (Even though t imestamp has limited precision, and so could theoret-
ically be treated as discrete, it’s better to consider it continuous since the step size is normally not of
interest.)

Another way to think about a discrete range type is that there is a clear idea of a “next” or “previous”
value for each element value. Knowing that, it is possible to convert between inclusive and exclusive
representations of a range’s bounds, by choosing the next or previous element value instead of the
one originally given. For example, in an integer range type [4, 8] and (3, 9) denote the same set of
values; but this would not be so for a range over numeric.

A discrete range type should have a canonicalization function that is aware of the desired step size for
the element type. The canonicalization function is charged with converting equivalent values of the
range type to have identical representations, in particular consistently inclusive or exclusive bounds.
If a canonicalization function is not specified, then ranges with different formatting will always be
treated as unequal, even though they might represent the same set of values in reality.

The built-in range types int4range, int8range, and daterange all use a canonical form that
includes the lower bound and excludes the upper bound; that is, [). User-defined range types can use
other conventions, however.

8.17.8. Defining New Range Types

Users can define their own range types. The most common reason to do this is to use ranges over
subtypes not provided among the built-in range types. For example, to define a new range type of
subtype float8:

CREATE TYPE floatrange AS RANGE (
subtype = floats,
subtype_diff = float8mi

)
SELECT " [1.234, 5.678]’::floatrange;

Because float8 has no meaningful “step”, we do not define a canonicalization function in this ex-
ample.

Defining your own range type also allows you to specify a different subtype B-tree operator class or
collation to use, so as to change the sort ordering that determines which values fall into a given range.

177

Chapter 8. Data Types

If the subtype is considered to have discrete rather than continuous values, the CREATE TYPE com-
mand should specify a canonical function. The canonicalization function takes an input range value,
and must return an equivalent range value that may have different bounds and formatting. The canoni-
cal output for two ranges that represent the same set of values, for example the integer ranges [1, 7]
and [1, 8), mustbe identical. It doesn’t matter which representation you choose to be the canonical
one, so long as two equivalent values with different formattings are always mapped to the same value
with the same formatting. In addition to adjusting the inclusive/exclusive bounds format, a canonical-
ization function might round off boundary values, in case the desired step size is larger than what the
subtype is capable of storing. For instance, a range type over t imestamp could be defined to have a
step size of an hour, in which case the canonicalization function would need to round off bounds that
weren’t a multiple of an hour, or perhaps throw an error instead.

In addition, any range type that is meant to be used with GiST or SP-GiST indexes should define a
subtype difference, or subtype_diff, function. (The index will still work without subtype_diff,
but it is likely to be considerably less efficient than if a difference function is provided.) The subtype
difference function takes two input values of the subtype, and returns their difference (i.e., X minus
Y) represented as a £1oat8 value. In our example above, the function £loat8mi that underlies the
regular f1oat8 minus operator can be used; but for any other subtype, some type conversion would
be necessary. Some creative thought about how to represent differences as numbers might be needed,
too. To the greatest extent possible, the subtype_diff function should agree with the sort ordering
implied by the selected operator class and collation; that is, its result should be positive whenever its
first argument is greater than its second according to the sort ordering.

A less-oversimplified example of a subtype_diff function is:

CREATE FUNCTION time_subtype_diff(x time, y time) RETURNS float8 AS
" SELECT EXTRACT (EPOCH FROM (x - y))’ LANGUAGE sgl STRICT IMMUTABLE;

CREATE TYPE timerange AS RANGE (
subtype = time,
subtype_diff = time_subtype_diff
)i

SELECT ' [11:10, 23:00]’::timerange;

See CREATE TYPE for more information about creating range types.

8.17.9. Indexing

GiST and SP-GiST indexes can be created for table columns of range types. For instance, to create a
GiST index:

CREATE INDEX reservation_idx ON reservation USING GIST (during);

A GiST or SP-GiST index can accelerate queries involving these range operators: =, &&, <@, @>, <<,
>>, - |-, &<, and &> (see Table 9-47 for more information).

In addition, B-tree and hash indexes can be created for table columns of range types. For these index
types, basically the only useful range operation is equality. There is a B-tree sort ordering defined
for range values, with corresponding < and > operators, but the ordering is rather arbitrary and not
usually useful in the real world. Range types’ B-tree and hash support is primarily meant to allow
sorting and hashing internally in queries, rather than creation of actual indexes.

178

Chapter 8. Data Types

8.17.10. Constraints on Ranges

While UNIQUE is a natural constraint for scalar values, it is usually unsuitable for range types. In-
stead, an exclusion constraint is often more appropriate (see CREATE TABLE ... CONSTRAINT ...
EXCLUDE). Exclusion constraints allow the specification of constraints such as “non-overlapping”
on a range type. For example:

CREATE TABLE reservation (

during tsrange,

EXCLUDE USING GIST (during WITH &&)
)i

That constraint will prevent any overlapping values from existing in the table at the same time:
INSERT INTO reservation VALUES

(" [2010-01-01 11:30, 2010-01-01 15:00)");
INSERT 0 1

INSERT INTO reservation VALUES
(" [2010-01-01 14:45, 2010-01-01 15:45)");

ERROR: conflicting key value violates exclusion constraint "reservation_during_excl"
DETAIL: Key (during)=(["2010-01-01 14:45:00","2010-01-01 15:45:00")) conflicts
with existing key (during)=(["2010-01-01 11:30:00","2010-01-01 15:00:00")).

You can use the btree_gist extension to define exclusion constraints on plain scalar data types,
which can then be combined with range exclusions for maximum flexibility. For example, after
btree_gist is installed, the following constraint will reject overlapping ranges only if the meet-
ing room numbers are equal:

CREATE EXTENSION btree_gist;
CREATE TABLE room_reservation (

room text,

during tsrange,

EXCLUDE USING GIST (room WITH =, during WITH &&)
)i

INSERT INTO room_reservation VALUES
("123A", ’[2010-01-01 14:00, 2010-01-01 15:00)");
INSERT 0 1

INSERT INTO room_reservation VALUES

("123A’, ’'[2010-01-01 14:30, 2010-01-01 15:30)");
ERROR: conflicting key value violates exclusion constraint "room_reservation_room_durin
DETAIL: Key (room, during)=(123A, ["2010-01-01 14:30:00","2010-01-01 15:30:00")) confli
with existing key (room, during)=(123A, ["2010-01-01 14:00:00","2010-01-01 15:00:00")).

INSERT INTO room_reservation VALUES

("123B", ’'[2010-01-01 14:30, 2010-01-01 15:30)");
INSERT 0 1

179

Chapter 8. Data Types

8.18. Object Identifier Types

Object identifiers (OIDs) are used internally by PostgreSQL as primary keys for various system tables.
OIDs are not added to user-created tables, unless WITH 01IDS is specified when the table is created,
or the default_with_oids configuration variable is enabled. Type oid represents an object identifier.
There are also several alias types for oid: regproc, regprocedure, regoper, regoperator,
regclass, regtype, regrole, regnamespace, regconfig, and regdictionary. Table 8-24
shows an overview.

The oid type is currently implemented as an unsigned four-byte integer. Therefore, it is not large
enough to provide database-wide uniqueness in large databases, or even in large individual tables. So,
using a user-created table’s OID column as a primary key is discouraged. OIDs are best used only for
references to system tables.

The oid type itself has few operations beyond comparison. It can be cast to integer, however, and
then manipulated using the standard integer operators. (Beware of possible signed-versus-unsigned
confusion if you do this.)

The OID alias types have no operations of their own except for specialized input and output routines.
These routines are able to accept and display symbolic names for system objects, rather than the raw
numeric value that type oid would use. The alias types allow simplified lookup of OID values for
objects. For example, to examine the pg_attribute rows related to a table mytable, one could
write:

SELECT * FROM pg_attribute WHERE attrelid = 'mytable’::regclass;
rather than:

SELECT x FROM pg_attribute
WHERE attrelid = (SELECT oid FROM pg_class WHERE relname = 'mytable’);

While that doesn’t look all that bad by itself, it’s still oversimplified. A far more complicated sub-
select would be needed to select the right OID if there are multiple tables named mytable in differ-
ent schemas. The regclass input converter handles the table lookup according to the schema path
setting, and so it does the “right thing” automatically. Similarly, casting a table’s OID to regclass
is handy for symbolic display of a numeric OID.

Table 8-24. Object Identifier Types

Name References Description Value Example
oid any numeric object 564182
identifier
regproc pPg_proc function name sum
regprocedure pPg_proc function with argument | sum (int4)
types
regoper pg_operator operator name +
regoperator pg_operator operator with argument | « (integer, integer)
types or - (NONE, integer)
regclass pg_class relation name pPg_type
regtype pg_type data type name integer
regrole pg_authid role name smithee
regnamespace Pg_nhamespace namespace name pg_catalog

180

Chapter 8. Data Types

Name References Description Value Example

regconfig pg_ts_config text search english
configuration

regdictionary pg_ts_dict text search dictionary |simple

All of the OID alias types for objects grouped by namespace accept schema-qualified names, and will
display schema-qualified names on output if the object would not be found in the current search path
without being qualified. The regproc and regoper alias types will only accept input names that are
unique (not overloaded), so they are of limited use; for most uses regprocedure or regoperator
are more appropriate. For regoperator, unary operators are identified by writing NONE for the un-
used operand.

An additional property of most of the OID alias types is the creation of dependencies. If a constant
of one of these types appears in a stored expression (such as a column default expression or view),
it creates a dependency on the referenced object. For example, if a column has a default expression
nextval (my_seq’ : :regclass), PostgreSQL understands that the default expression depends on
the sequence my_seq; the system will not let the sequence be dropped without first removing the
default expression. regrole is the only exception for the property. Constants of this type are not
allowed in such expressions.

Note: The OID alias types do not completely follow transaction isolation rules. The planner also
treats them as simple constants, which may result in sub-optimal planning.

Another identifier type used by the system is xid, or transaction (abbreviated xact) identifier. This is
the data type of the system columns xmin and xmax. Transaction identifiers are 32-bit quantities.

A third identifier type used by the system is cid, or command identifier. This is the data type of the
system columns cmin and cmax. Command identifiers are also 32-bit quantities.

A final identifier type used by the system is tid, or tuple identifier (row identifier). This is the data
type of the system column ctid. A tuple ID is a pair (block number, tuple index within block) that
identifies the physical location of the row within its table.

(The system columns are further explained in Section 5.4.)

8.19. pg_lIsn Type

The pg_1sn data type can be used to store LSN (Log Sequence Number) data which is a pointer to
a location in the XLOG. This type is a representation of XLogRecPtr and an internal system type of
PostgreSQL.

Internally, an LSN is a 64-bit integer, representing a byte position in the write-ahead log stream. It
is printed as two hexadecimal numbers of up to 8 digits each, separated by a slash; for example,
16/B374D848. The pg_1lsn type supports the standard comparison operators, like = and >. Two
LSNs can be subtracted using the — operator; the result is the number of bytes separating those write-
ahead log positions.

181

Chapter 8. Data Types

8.20. Pseudo-Types

The PostgreSQL type system contains a number of special-purpose entries that are collectively called
pseudo-types. A pseudo-type cannot be used as a column data type, but it can be used to declare a
function’s argument or result type. Each of the available pseudo-types is useful in situations where a
function’s behavior does not correspond to simply taking or returning a value of a specific SQL data

type. Table 8-25 lists the existing pseudo-types.

Table 8-25. Pseudo-Types

Name Description

any Indicates that a function accepts any input data
type.

anyelement Indicates that a function accepts any data type
(see Section 35.2.5).

anyarray Indicates that a function accepts any array data
type (see Section 35.2.5).

anynonarray Indicates that a function accepts any non-array
data type (see Section 35.2.5).

anyenum Indicates that a function accepts any enum data
type (see Section 35.2.5 and Section 8.7).

anyrange Indicates that a function accepts any range data
type (see Section 35.2.5 and Section 8.17).

cstring Indicates that a function accepts or returns a
null-terminated C string.

internal Indicates that a function accepts or returns a

server-internal data type.

language_handler

A procedural language call handler is declared to
return language_handler

fdw_handler

A foreign-data wrapper handler is declared to
return fdw_handler.

tsm_handler

A tablesample method handler is declared to
return tsm_handler

record Identifies a function taking or returning an
unspecified row type.
trigger A trigger function is declared to return

trigger.

event_trigger

An event trigger function is declared to return

event_trigger.

pg_ddl_command

Identifies a representation of DDL commands
that is available to event triggers.

void

Indicates that a function returns no value.

opaque

An obsolete type name that formerly served all
the above purposes.

Functions coded in C (whether built-in or dynamically loaded) can be declared to accept or return any
of these pseudo data types. It is up to the function author to ensure that the function will behave safely

when a pseudo-type is used as an argument type.

182

Chapter 8. Data Types

Functions coded in procedural languages can use pseudo-types only as allowed by their implemen-
tation languages. At present most procedural languages forbid use of a pseudo-type as an argument
type, and allow only void and record as a result type (plus trigger or event_trigger when
the function is used as a trigger or event trigger). Some also support polymorphic functions using the

types anyelement, anyarray, anynonarray, anyenum, and anyrange.

The internal pseudo-type is used to declare functions that are meant only to be called internally
by the database system, and not by direct invocation in an SQL query. If a function has at least one
internal-type argument then it cannot be called from SQL. To preserve the type safety of this
restriction it is important to follow this coding rule: do not create any function that is declared to
return internal unless it has at least one internal argument.

183

Chapter 9. Functions and Operators

PostgreSQL provides a large number of functions and operators for the built-in data types. Users can
also define their own functions and operators, as described in Part V. The psql commands \df and
\do can be used to list all available functions and operators, respectively.

If you are concerned about portability then note that most of the functions and operators described
in this chapter, with the exception of the most trivial arithmetic and comparison operators and some
explicitly marked functions, are not specified by the SQL standard. Some of this extended function-
ality is present in other SQL database management systems, and in many cases this functionality is
compatible and consistent between the various implementations. This chapter is also not exhaustive;
additional functions appear in relevant sections of the manual.

9.1. Logical Operators

The usual logical operators are available:

AND
OR
NOT

SQL uses a three-valued logic system with true, false, and nul1, which represents “unknown”. Ob-
serve the following truth tables:

a b a AND b aORb
TRUE TRUE TRUE TRUE
TRUE FALSE FALSE TRUE
TRUE NULL NULL TRUE
FALSE FALSE FALSE FALSE
FALSE NULL FALSE NULL
NULL NULL NULL NULL
a NOT a

TRUE FALSE

FALSE TRUE

NULL NULL

The operators AND and OR are commutative, that is, you can switch the left and right operand without
affecting the result. But see Section 4.2.14 for more information about the order of evaluation of
subexpressions.

9.2. Comparison Operators

The usual comparison operators are available, shown in Table 9-1.

184

Chapter 9. Functions and Operators

Table 9-1. Comparison Operators

Operator Description

< less than

> greater than

<= less than or equal to
>= greater than or equal to
= equal

<>or!l= not equal

Note: The != operator is converted to <> in the parser stage. It is not possible to implement =
and <> operators that do different things.

Comparison operators are available for all relevant data types. All comparison operators are binary
operators that return values of type boolean; expressions like 1 < 2 < 3 are not valid (because
there is no < operator to compare a Boolean value with 3).

In addition to the comparison operators, the special BETWEEN construct is available:

a BETWEEN x AND y

is equivalent to
a >= x AND a <=y

Notice that BETWEEN treats the endpoint values as included in the range. NOT BETWEEN does the
opposite comparison:

a NOT BETWEEN x AND y
is equivalent to
a< x OR a >y

BETWEEN SYMMETRIC is the same as BETWEEN except there is no requirement that the argument to
the left of AND be less than or equal to the argument on the right. If it is not, those two arguments are
automatically swapped, so that a nonempty range is always implied.

Ordinary comparison operators yield null (signifying “unknown”), not true or false, when either input
is null. For example, 7 = NULL yields null, as does 7 <> NULL. When this behavior is not suitable,
use the IS [NOT] DISTINCT FROM constructs:

a IS DISTINCT FROM b
a IS NOT DISTINCT FROM b

For non-null inputs, IS DISTINCT FROM is the same as the <> operator. However, if both inputs are
null it returns false, and if only one input is null it returns true. Similarly, IS NOT DISTINCT FROM
is identical to = for non-null inputs, but it returns true when both inputs are null, and false when only
one input is null. Thus, these constructs effectively act as though null were a normal data value, rather
than “unknown”.

To check whether a value is or is not null, use the constructs:

expression 1S NULL

185

Chapter 9. Functions and Operators

expression IS NOT NULL

or the equivalent, but nonstandard, constructs:

expression ISNULL
expression NOTNULL

Do not write expression = NULL because NULL is not “equal to” NULL. (The null value represents
an unknown value, and it is not known whether two unknown values are equal.)

Tip: Some applications might expect that expression = NULL returns true if expression evalu-
ates to the null value. It is highly recommended that these applications be modified to comply
with the SQL standard. However, if that cannot be done the transform_null_equals configuration
variable is available. If it is enabled, PostgreSQL will convert x = NULL clauses to x IS NULL.

If the expressionisrow-valued, then IS NULL is true when the row expression itself is null or when
all the row’s fields are null, while IS NOT NULL is true when the row expression itself is non-null and
all the row’s fields are non-null. Because of this behavior, IS NULL and IS NOT NULL do not always
return inverse results for row-valued expressions; in particular, a row-valued expression that contains
both null and non-null fields will return false for both tests. In some cases, it may be preferable to
write row IS DISTINCT FROM NULL or row IS NOT DISTINCT FROM NULL, which will simply
check whether the overall row value is null without any additional tests on the row fields.

Boolean values can also be tested using the constructs

expression 1S TRUE
expression 1S NOT TRUE
expression 1S FALSE
expression IS NOT FALSE
expression IS UNKNOWN
expression IS NOT UNKNOWN

These will always return true or false, never a null value, even when the operand is null. A null
input is treated as the logical value “unknown”. Notice that IS UNKNOWN and IS NOT UNKNOWN are
effectively the same as IS NULL and IS NOT NULL, respectively, except that the input expression
must be of Boolean type.

9.3. Mathematical Functions and Operators

Mathematical operators are provided for many PostgreSQL types. For types without standard mathe-
matical conventions (e.g., date/time types) we describe the actual behavior in subsequent sections.

Table 9-2 shows the available mathematical operators.

Table 9-2. Mathematical Operators

Operator Description Example Result
+ addition 2 + 3 5
- subtraction 2 -3 -1
* multiplication 2 % 3 6

186

Chapter 9. Functions and Operators

Operator Description Example Result
/ division (integer 4 / 2 2
division truncates the
result)
% modulo (remainder) 5% 4 1
~ exponentiation 2.0 ~ 3.0 8
(associates left to right)
I/ square root |/ 25.0 5
1/ cube root [1/ 27.0 3
! factorial 5 | 120
! factorial (prefix 15 120
operator)
@ absolute value @ -5.0 5
& bitwise AND 91 & 15 11
| bitwise OR 32 | 3 35
bitwise XOR 17 # 5 20
~ bitwise NOT ~1 -2
<< bitwise shift left 1 << 4 16
>> bitwise shift right 8 >> 2 2

The bitwise operators work only on integral data types, whereas the others are available for all numeric
data types. The bitwise operators are also available for the bit string types bit and bit varying, as

shown in Table 9-11.

Table 9-3 shows the available mathematical functions. In the table, dp indicates double precision.
Many of these functions are provided in multiple forms with different argument types. Except where
noted, any given form of a function returns the same data type as its argument. The functions work-
ing with double precision data are mostly implemented on top of the host system’s C library;
accuracy and behavior in boundary cases can therefore vary depending on the host system.

Table 9-3. Mathematical Functions

Function Return Type Description Example Result
abs (x) (same as input) absolute value abs (-17.4) 17.4
cbrt (dp) dp cube root cbrt (27.0) 3
ceil (dp or (same as input) nearest integer ceil (-42.8) -42

numeric) greater than or

equal to argument
ceiling(dp or |(same as input) nearest integer ceiling(-95.3)|-95

numeric)

greater than or
equal to argument
(same as ceil)

degrees (dp)

dp

radians to degrees

degrees (0.5)

28.64788975654

|2

div (y numeric,

X numeric)

numeric

integer quotient of

y/x

div (9, 4)

187

Chapter 9. Functions and Operators

Function Return Type Description Example Result

exp (dp or (same as input) exponential exp(1.0) 2.71828182845905
numeric)

floor (dp or (same as input) nearest integer floor (-42.8) -43
numeric) less than or equal

to argument

1n(dp or (same as input) natural logarithm | 1n(2.0) 0.693147180559945
numeric)

log(dp or (same as input) base 10 logarithm | 1og (100.0) 2
numeric)
log (b numeric, x |numeric logarithm to base |log (2.0, 6.0000000000
numeric) b 64.0)

mod (y, x) (same as argument | remainder of y/x |mod (9, 4) 1

types)

pi() dp “m” constant pi() 3.14159265358979

power (a dp, b dp a raised to the power (9.0, 729
dp) power of b 3.0)
power (a numeric, |numeric a raised to the power (9.0, 729
b numeric) power of b 3.0)

radians (dp) dp degrees to radians | radians(45.0) |0.785398163397448

round (dp or (same as input) round to nearest round (42.4) 42
numeric) integer
round (v numeric, |[numeric round to s round (42.4382,|42.44
s int) decimal places 2)

sign(dp or (same as input) sign of the sign(-8.4) -1
numeric) argument (-1, 0,

+1)
sqrt (dp or (same as input) square root sqrt (2.0) 1.414213562373

numeric)

|

trunc (dp or (same as input) truncate toward trunc (42.8) 42
numeric) Ze1r0
trunc (v numeric, |numeric truncate to s trunc(42.4382,(42.43
s int) decimal places 2)
int return the bucket |width_bucket (5}35,
width_bucket (opefand number to which | 0.024, 10.06,
dp, bl dp, b2 operand would 5)

dp, count int)

be assigned in a
histogram having
count
equal-width
buckets spanning
the range b1 to
b2; returns 0 or
count+1 for an
input outside the
range

188

Chapter 9. Functions and Operators

Function Return Type

Description

Example

Result

width_bucket (operdmt
numeric, bl
numeric, b2
count

numeric,

int)

return the bucket
number to which
operand would
be assigned in a
histogram having
count
equal-width
buckets spanning
the range b1 to
b2; returns 0 or
count+1 for an
input outside the
range

width_bucket (5
0.024, 10.06,
5)

35,

width_bucket (opepdmt
anyelement,
thresholds

anyarray)

return the bucket
number to which
operand would
be assigned given
an array listing the
lower bounds of
the buckets;
returns 0 for an
input less than the
first lower bound;
the thresholds
array must be
sorted, smallest
first, or
unexpected results
will be obtained

width_bucket (n
array[’yesterd
"today’,

"tomorrow’]::t

D& (),
ay’,

imestamptz[])

Table 9-4 shows functions for generating random numbers.

Table 9-4. Random Functions

Function

Return Type

Description

random () dp

<=x<1.0

random value in the range 0.0

setseed (dp)

void

set seed for subsequent
random () calls (value between
-1.0 and 1.0,

inclusive)

The characteristics of the values returned by random () depend on the system implementation. It is
not suitable for cryptographic applications; see pgcrypto module for an alternative.

Finally, Table 9-5 shows the available trigonometric functions. All trigonometric functions take ar-
guments and return values of type double precision. Trigonometric functions arguments are ex-
pressed in radians. Inverse functions return values are expressed in radians. See unit transformation
functions radians () and degrees () above.

Table 9-5. Trigonometric Functions

189

Chapter 9. Functions and Operators

Function Description
acos (x) inverse cosine
asin (x) inverse sine
atan (x) inverse tangent

atan2 (y, x)

inverse tangent of y/x

cos (x) cosine
cot (x) cotangent
sin (x) sine

tan (x) tangent

9.4. String Functions and Operators

This section describes functions and operators for examining and manipulating string values. Strings
in this context include values of the types character, character varying, and text. Unless
otherwise noted, all of the functions listed below work on all of these types, but be wary of poten-
tial effects of automatic space-padding when using the character type. Some functions also exist
natively for the bit-string types.

SQL defines some string functions that use key words, rather than commas, to separate arguments.
Details are in Table 9-6. PostgreSQL also provides versions of these functions that use the regular
function invocation syntax (see Table 9-7).

Note: Before PostgreSQL 8.3, these functions would silently accept values of several non-string
data types as well, due to the presence of implicit coercions from those data types to text. Those
coercions have been removed because they frequently caused surprising behaviors. However,
the string concatenation operator (| |) still accepts non-string input, so long as at least one input
is of a string type, as shown in Table 9-6. For other cases, insert an explicit coercion to text if
you need to duplicate the previous behavior.

Table 9-6. SQL String Functions and Operators

Function Return Type Description Example Result
string || text String "Post’ || PostgreSQL
string concatenation " greSQL’
string || text String 'Value: ' || Value: 42
non-string Or concatenation 42
non-string || with one
string non-string input

int Number of bits in |bit_length(’ josad2)
bit_length (string) string

int Number of char_length (’ jode’)
char_length (string) characters in
or string
character_length|(string)

190

Chapter 9. Functions and Operators

Function Return Type Description Example Result
lower (string) text Convert string to | lower (’ TOM’) tom
lower case
int Number of bytes |octet_length (’ [jése’)
octet_length (string) in String
overlay (string |text Replace substring | overlay (' TxxxxaEhomas
placing string placing ’hom’
from int [for from 2 for 4)
int])
int Location of position(‘om’ |3
position (substrirg specified substring | in ' Thomas”’)
in string)
text Extract substring | substring (' Thomhseth
substring (string from 2 for 3)
[from int] [for
int])
substring (string | text Extract substring | substring (' Thommas
from pattern) matching POSIX |from "...s$")
regular
expression. See
Section 9.7 for
more information
on pattern
matching.
substring (string | text Extract substring | substring (’ Thomem&
from pattern for matching SQL from
escape) regular "S#"o_a#"_’
expression. See for "#7)
Section 9.7 for
more information
on pattern
matching.
trim([leading |text Remove the trim(both Tom
| trailing | longest string "xyz' from
both] containing only " yxTomxx')
[characters] characters from
from string) characters (a
space by default)
from the start,
end, or both ends
(both is the
default) of
string
trim([leading |text Non-standard trim(both Tom
| trailing | syntax for from
both] [from] trim() "yxTomxx',
string [, "xyz’)
characters])

191

Chapter 9. Functions and Operators

Function

Return Type

Description

Example

Result

upper (string)

text

Convert string to
upper case

upper ("tom’)

TOM

Additional string manipulation functions are available and are listed in Table 9-7. Some of them are
used internally to implement the SQL-standard string functions listed in Table 9-6.

Table 9-7. Other String Functions

Function

Return Type

Description

Example

Result

ascii (string)

int

ASCII code of
the first character
of the argument.
For UTFS returns
the Unicode code
point of the
character. For
other multibyte
encodings, the
argument must be
an ASCII
character.

ascii("x")

120

btrim(string
text [,
characters

text])

text

Remove the
longest string
consisting only of
characters in
characters (a
space by default)
from the start and
end of string

btrim(’/xyxtrimj

IXYZI)

yExin

chr (int)

text

Character with
the given code.
For UTFS the
argument is
treated as a
Unicode code
point. For other
multibyte
encodings the
argument must
designate an
ASCII character.
The NULL (0)
character is not
allowed because
text data types
cannot store such
bytes.

chr (65)

192

Chapter 9. Functions and Operators

Function

Return Type

Description

Example

Result

concat (str
"any" [, str
"any" [, ...]

1)

text

Concatenate the
text
representations of
all the arguments.
NULL arguments
are ignored.

concat (" abcde’
2, NULL, 22)

abcde222

concat_ws (sep

text, str "any"

text

Concatenate all
but the first
argument with
separators. The
first argument is
used as the
separator string.
NULL arguments
are ignored.

concat_ws(’,’,
"abcde’, 2,
NULL, 22)

abcde, 2,22

convert (string
bytea,
src_encoding
name,
dest_encoding

name)

bytea

Convert string to
dest_encoding.
The original
encoding is
specified by
src_encoding.
The string must
be valid in this
encoding.
Conversions can
be defined by
CREATE
CONVERSTION.
Also there are
some predefined
conversions. See
Table 9-8 for
available
conversions.

convert (' text_
"UTF8’,
"LATIN1")

ihextf&8h,utf8
represented in
Latin-1 encoding
(ISO 8859-1)

convert_from(str
bytea,
src_encoding

name)

text

fng

Convert string to
the database
encoding. The
original encoding
is specified by
src_encoding.
The string must
be valid in this
encoding.

convert_from(’téergktinnutf&s,

"UTF8")

represented in the
current database
encoding

convert_to(string
text,
dest_encoding

name)

bytea

Convert string to

dest_encoding.

convert_to (’soj
text’,
"UTF8')

nsome text
represented in the
UTF8 encoding

193

Chapter 9. Functions and Operators

Function

Return Type

Description

Example

Result

decode (string
text, format

text)

bytea

Decode binary
data from textual
representation in
string. Options
for format are
same as in

encode.

decode (" MTIzAA}L
"base6d’)

£x%3132330001

encode (data
bytea, format

text)

text

Encode binary
data into a textual
representation.
Supported formats
are: base64, hex
escape. escape
converts zero
bytes and
high-bit-set bytes
to octal sequences
(\nnn) and
doubles
backslashes.

encode (7 123\00
"base64d’)

NUOZARE=

format (formatstry
text [,
formatarg

L, ...1 1

"any"

text

Format
arguments
according to a
format string. This
function is similar
to the C function
sprintf. See
Section 9.4.1.

format ("Hello
%$s, %1$s’,
"World’)

Hello World,

World

initcap (string)

text

Convert the first
letter of each word
to upper case and
the rest to lower
case. Words are
sequences of
alphanumeric
characters
separated by
non-alphanumeric
characters.

initcap (’hi
THOMAS')

Hi Thomas

left (str text,

n int)

text

Return first n
characters in the
string. When n is
negative, return all
but last Inl
characters.

left (" abcde’,
2)

ab

length (string)

int

Number of
characters in

string

length (’ jose’)

194

Chapter 9. Functions and Operators

Function

Return Type

Description

Example

Result

length (string
bytea, encoding

name)

int

Number of
characters in
stringin the
given encoding.
The string must
be valid in this
encoding.

length (’ jose’,
"UTF8')

4

lpad (string
text, length int

[, fill text])

text

Fill up the
string to length
length by
prepending the
characters fill (a
space by default).
If the stringis
already longer
than length then
it is truncated (on
the right).

lpad(’hi’,
Ixyl)

5,

xyxhi

ltrim(string
text [,
characters

text])

text

Remove the
longest string
containing only
characters from
characters (a
space by default)
from the start of

string

ltrim(’zzzytesttest

!Xyzl)

md5 (string)

text

Calculates the
MD)5 hash of
string, returning
the result in
hexadecimal

md5 (" abc’)

900150983cd24f
de963£7d28el7f

D0
V2

pg_client_encodi]

name

ng ()

Current client
encoding name

pg_client_enco

$0% (ASCII

195

Chapter 9. Functions and Operators

Function

Return Type

Description

Example

Result

quote_ident (stri

text)

text
g

Return the given
string suitably
quoted to be used
as an identifier in
an SQL statement
string. Quotes are
added only if
necessary (i.e., if
the string contains
non-identifier
characters or
would be
case-folded).
Embedded quotes
are properly
doubled. See also
Example 40-1.

quote_ident (' Fo¥Foo bar"

bar’)

quote_literal (st

text)

text

ring

Return the given
string suitably
quoted to be used
as a string literal
in an SQL
statement string.
Embedded
single-quotes and
backslashes are
properly doubled.
Note that
quote_literal
returns null on
null input; if the
argument might
be null,
quote_nullable
is often more
suitable. See also
Example 40-1.

quote_literal (&

07 OXRBE11YY’)

quote_literal (va

anyelement)

Ltext

Coerce the given
value to text and
then quote it as a
literal. Embedded
single-quotes and
backslashes are
properly doubled.

quote_literal (

1243)5"

196

Chapter 9. Functions and Operators

Function

Return Type

Description

Example

Result

quote_nullable (s

text)

text

tring

Return the given
string suitably
quoted to be used
as a string literal
in an SQL
statement string;
or, if the argument
is null, return
NULL. Embedded
single-quotes and
backslashes are
properly doubled.
See also Example
40-1.

quote_nullable

(NULL)

quote_nullable (v

anyelement)

pLtext

Coerce the given
value to text and
then quote it as a
literal; or, if the
argument is null,
return NULL.
Embedded
single-quotes and
backslashes are
properly doubled.

quote_nullable

(4225p'

regexp_matches (s
text, pattern
text [, flags

text])

setof text[]

tring

Return all
captured
substrings
resulting from
matching a
POSIX regular
expression against
the string. See
Section 9.7.3 for
more information.

regexp_matches

" (bar) (beque)’

({Peohbehagiebatz

4

regexp_replace (s
text, pattern
text,

replacement text

[, flags text])

text

tring

Replace
substring(s)
matching a
POSIX regular
expression. See
Section 9.7.3 for
more information.

regexp_replace
" . [mN]a.’,
!M!)

(TEMomas’,

197

~

Chapter 9. Functions and Operators

Function Return Type Description Example Result
text[] Split string regexp_split_to{hetayp (wbeldd
regexp_split_to_larray (string using a POSIX world’,
text, pattern regular expression |’ \s+’)
text [, flags as the delimiter.
text 1) See Section 9.7.3
for more
information.
setof text Split string regexp_split_tohedbdwdrhdl(®
regexp_split_to_ltable (string using a POSIX world’, TOws)
text, pattern regular expression "\s+’)
text [, flags as the delimiter.
text]) See Section 9.7.3
for more
information.
repeat (string text Repeat string repeat (' Pg’, PgPgPgPg
text, number the specified 4)
int) number of times
replace (string |text Replace all replace (' abcdefab&defapXXef
text, from text, occurrences in rcd’, TXX')
to text) string of
substring from
with substring to
reverse (str) text Return reversed reverse (' abcdel ¢dcba
string.
right (str text, |text Return last n right (’ abcde’, | de
n int) characters in the | 2)
string. When n is
negative, return all
but first Inl
characters.
rpad (string text Fill up the rpad(‘hi’, 5, |hixyx
text, length int stringtolength |’xy’)
[, fill text]) length by
appending the
characters fil1 (a
space by default).
If the stringis
already longer
than 1length then
it is truncated.
rtrim(string text Remove the rtrim(’testxxzxtest
text [, longest string "xyz')
characters containing only
text]) characters from
characters (a
space by default)
from the end of
string

198

Chapter 9. Functions and Operators

Function Return Type Description Example Result
text Split stringon |split_part (' ab¢gd@fdef~Q@~ghi’,
split_part (string delimiter and T~@~T, 2)
text, delimiter return the given
text, field int) field (counting
from one)
strpos (string, |int Location of strpos (’high’, |2
substring) specified substring | 7 ig”)
(same as

position (substrling
in string), but
note the reversed
argument order)

substr (string, |text Extract substring | substr (’ alphabeph,
from [, count]) (same as 3, 2)
substring (string

from from for

count))
to_ascii (string | text Convert string |to_ascii(’KarelKarel
text [, encoding to ASCII from
text]) another encoding

(only supports
conversion from
LATINI, LATIN2,
LATINO, and
WIN1250
encodings)

to_hex (number text Convert number to_hex (214748363Fffffff
int or bigint) to its equivalent
hexadecimal
representation

text Any character in | translate (' 1234525
translate (string string that 11437, "ax')
text, from text, matches a

to text) character in the
from set is
replaced by the
corresponding
character in the to
set. If from is
longer than to,
occurrences of the
extra characters in
from are
removed.

The concat, concat_ws and format functions are variadic, so it is possible to pass the values to
be concatenated or formatted as an array marked with the VARTIADIC keyword (see Section 35.4.5).
The array’s elements are treated as if they were separate ordinary arguments to the function. If the
variadic array argument is NULL, concat and concat_ws return NULL, but format treats a NULL

199

as a zero-element array.

See also the aggregate function string_agg in Section 9.20.

Table 9-8. Built-in Conversions

Chapter 9. Functions and Operators

Conversion Name a Source Encoding Destination Encoding
ascii_to_mic SQL_ASCII MULE_INTERNAL
ascii_to_utfs8 SQL_ASCII UTFE8
bigb_to_euc_tw BIGS EUC_TW
big5_to_mic BIGS MULE_INTERNAL
big5_to_utfs8 BIGS5 UTF8
euc_cn_to_mic EUC_CN MULE_INTERNAL
euc_cn_to_utf8 EUC_CN UTF8
euc_Jjp_to_mic EUC_JP MULE_INTERNAL
euc_Jjp_to_sijis EUC_JpP SJIS
euc_Jjp_to_utfs8 EUC_JP UTF8
euc_kr_to_mic EUC_KR MULE_INTERNAL
euc_kr_to_utf8 EUC_KR UTF'8
euc_tw_to_bigh EUC_TW BIGSH
euc_tw_to_mic EUC_TW MULE_INTERNAL
euc_tw_to_utf8 EUC_TW UTFE8
gb18030_to_utf8 GB18030 UTF8
gbk_to_utf8 GBK UTF8

iso_8859 10 _to_utf8 LATING UTF8
iso_8859_13_to_utf8 LATIN7 UTF8
iso_8859_14 to_utf8 LATINS UTF8
iso_8859_15 to_utf8 LATINY UTFE8
iso_8859_16_to_utf8 LATIN1O UTF8
1is0_8859_1_to_mic LATIN1 MULE_INTERNAL
iso_8859 1 to_utfs8 LATINI UTF8
is0_8859_2_to_mic LATIN2 MULE_INTERNAL
is0_8859_2_to_utfs8 LATIN2 UTF8
is0_8859_2 to_windows_1250ATIN2 WIN1250
i50_8859_3_to_mic LATIN3 MULE_INTERNAL
iso_8859_3_to_utfs8 LATIN3 UTF8
is0_8859_4_to_mic LATIN4 MULE_INTERNAL
iso_8859_4_to_utfs8 LATIN4 UTF8
iso_8859_5 to_koi8_ r IS0_8859_5 KOI8R
iso0_8859_5_to_mic I150_8859_5 MULE_INTERNAL
is0_8859_5_to_utf8 IS0O_8859_5 UTF8
iso_8859_5_to_windows_1251I50_8859_5 WIN1251

200

Chapter 9. Functions and Operators

Conversion Name -

Source Encoding

Destination Encoding

iso_8859_5_to_windows_866IS0_8859_5 WIN866
is0_8859_6_to_utfs8 ISO_8859_6 UTF8
is0_8859_7_to_utfs8 IS0_8859_7 UTF8
is0_8859_8_to_utf8 ISO_8859_8 UTF38
iso_8859_9_to_utfs8 LATINS UTF8
johab_to_utf8 JOHAB UTF8
koi8_r_to_iso_8859_5 KOI8R IS0_8859_5
koi8_r_to_mic KOI8R MULE_INTERNAL
koi8_r_to_utf8 KOI8R UTF8
koi8_r_to_windows_1251 KOI8R WIN1251
koi8_ r_ to_windows_866 KOI8R WIN866
koi8_u_to_utf8 KOI8U UTF8
mic_to_ascii MULE_INTERNAL SQL_ASCII
mic_to_bigs MULE_INTERNAL BIGS
mic_to_euc_cn MULE_INTERNAL EUC_CN
mic_to_euc_ijp MULE_INTERNAL EUC_JP
mic_to_euc_kr MULE_INTERNAL EUC_KR
mic_to_euc_tw MULE_INTERNAL EUC_TW
mic_to_iso_8859_1 MULE_INTERNAL LATIN1
mic_to_iso_8859_2 MULE_INTERNAL LATIN2
mic_to_1iso_8859_3 MULE_INTERNAL LATIN3
mic_to_iso_8859_4 MULE_INTERNAL LATINA
mic_to_iso_8859_5 MULE_INTERNAL IS0_8859_5
mic_to_koi8_r MULE_INTERNAL KOI8R
mic_to_sjis MULE_INTERNAL SJIS
mic_to_windows_1250 MULE_INTERNAL WIN1250
mic_to_windows_1251 MULE_INTERNAL WIN1251
mic_to_windows_866 MULE_INTERNAL WINB66
sjis_to_euc_ijp SJIS EUC_JP
sjis_to_mic SJIS MULE_INTERNAL
sjis_to_utfs8 SJIS UTF8
tcvn_to_utf8 WIN1258 UTFE8
uhc_to_utf8 UHC UTFES8
utf8_to_ascii UTFE8 SQL_ASCII
utf8_to_bigh UTF8 BIG5
utf8_to_euc_cn UTF'8 EUC_CN
utf8_to_euc_jp UTF8 EUC_JP
utf8_to_euc_kr UTF8 EUC_KR
utf8_to_euc_tw UTF8 EUC_TW
utf8_to_gbl8030 UTF8 GB18030
ut£8_to_gbk UTF8 GBK

201

Chapter 9. Functions and Operators

Conversion Name a Source Encoding Destination Encoding
utf8_to_iso_8859_1 UTF8 LATINL
utf8_to_iso_8859_ 10 UTFES8 LATING
utf8_to_iso_8859_13 UTFE8 LATIN7
utf8_to_iso_8859_14 UTF8 LATINS
utf8_to_iso_8859_15 UTF8 LATINO
utf8_to_iso_8859_16 UTF8 LATIN1O
utf8_to_iso_8859_2 UTF8 LATIN2
utf8_to_iso_8859_3 UTF8 LATIN3
utf8_to_iso_8859_ 4 UTFE8 LATIN4
utf8_to_iso_8859_5 UTF8 ISO_8859_5
utf8_to_iso_8859_6 UTF8 IS0O_8859_6
utf8_to_iso_8859_7 UTF8 IS0O_8859_7
utf8_to_iso_8859_8 UTF8 ISO_8859_8
utf8_to_iso_8859_9 UTF8 LATINS
ut£8_to_johab UTFES8 JOHAB
utf8_to_koi8_r UTF8 KOI8R
utf8_to_koi8_u UTF8 KOI8U
utf8_to_sjis UTF8 SJIS
utf8_to_tcvn UTF8 WIN1258
utf8_to_uhc UTF8 UHC
utf8_to_windows_1250 UTFES8 WIN1250
utf8_to_windows_1251 UTF8 WIN1251
utf8_to_windows_1252 UTF8 WIN1252
utf8_to_windows_1253 UTF8 WIN1253
utf8_to_windows_1254 UTFE8 WIN1254
utf8_to_windows_1255 UTF8 WIN1255
utf8_to_windows_1256 UTFES8 WIN1256
utf8_to_windows_1257 UTFE8 WIN1257
utf8_to_windows_866 UTF8 WIN866
utf8_to_windows_874 UTF8 WIN874
windows_1250_to_iso_8859|WIN1250 LATINZ2
windows_1250_to_mic WIN1250 MULE_INTERNAL
windows_1250_to_utf8 WIN1250 UTF8
windows_1251_to_iso_8859]WIN1251 ISO_8859_5
windows_1251_to_koi8_r WIN1251 KOI8R
windows_1251_to_mic WIN1251 MULE_INTERNAL
windows_1251_to_utf8 WIN1251 UTF8
windows_1251_to_windows_8WEN1251 WINBG6
windows_1252_to_utf8 WIN1252 UTF8

202

Chapter 9. Functions and Operators

Conversion Name a Source Encoding Destination Encoding
windows_1256_to_utf8 WIN1256 UTF8
windows_866_to_iso_8859_ bWIN866 IS0_8859_5
windows_866_to_koi8_r WIN866 KOI8R
windows_866_to_mic WINB866 MULE_INTERNAL
windows_866_to_utf8 WIN866 UTF8
windows_866_to_windows_1R2WIN8G66 WIN
windows_874_to_utf8 WIN874 UTF8
euc_jis_2004_to_utfs EUC_JIS_2004 UTF8
utf8_to_euc_jis_2004 UTFE8 EUC_JIS_2004
shift_jis_2004_to_utf8 SHIFT_JIS_2004 UTF8
utf8_to_shift_jis_2004 UTF8 SHIFT_JIS_2004
euc_7jis_2004_to_shift_jisE@QQO4IS_2004 SHIFT_JIS_2004
shift_Jjis_2004_to_euc_JjisSROPE_JIS_2004 EUC_JIS_2004
Notes:

a. The conversion names follow a standard naming scheme: The official name of the source
encoding with all non-alphanumeric characters replaced by underscores, followed by _to_,
followed by the similarly processed destination encoding name. Therefore, the names might
deviate from the customary encoding names.

9.4.1. format

The function format produces output formatted according to a format string, in a style similar to the
C function sprintf.

format (formatstr text [, formatarg "any" [, ...] 1)

formatstr is a format string that specifies how the result should be formatted. Text in the format
string is copied directly to the result, except where format specifiers are used. Format specifiers act
as placeholders in the string, defining how subsequent function arguments should be formatted and
inserted into the result. Each formatarg argument is converted to text according to the usual output
rules for its data type, and then formatted and inserted into the result string according to the format
specifier(s).

Format specifiers are introduced by a % character and have the form
% [position] [flags] [width] type

where the component fields are:

position (optional)

A string of the form n$ where n is the index of the argument to print. Index 1 means the first
argument after formatstr. If the position is omitted, the default is to use the next argument
in sequence.

203

Chapter 9. Functions and Operators

flags (optional)

Additional options controlling how the format specifier’s output is formatted. Currently the only
supported flag is a minus sign (-) which will cause the format specifier’s output to be left-
justified. This has no effect unless the width field is also specified.

width (optional)

Specifies the minimum number of characters to use to display the format specifier’s output. The
output is padded on the left or right (depending on the — flag) with spaces as needed to fill the
width. A too-small width does not cause truncation of the output, but is simply ignored. The
width may be specified using any of the following: a positive integer; an asterisk (x) to use the
next function argument as the width; or a string of the form »n$ to use the nth function argument
as the width.

If the width comes from a function argument, that argument is consumed before the argument
that is used for the format specifier’s value. If the width argument is negative, the result is left
aligned (as if the — flag had been specified) within a field of length abs(width).

type (required)

The type of format conversion to use to produce the format specifier’s output. The following
types are supported:

« s formats the argument value as a simple string. A null value is treated as an empty string.

« I treats the argument value as an SQL identifier, double-quoting it if necessary. It is an error
for the value to be null (equivalent to quote_ident).

+ L quotes the argument value as an SQL literal. A null value is displayed as the string NULL,
without quotes (equivalent to quote_nullable).

In addition to the format specifiers described above, the special sequence %% may be used to output a
literal % character.

Here are some examples of the basic format conversions:

SELECT format (’Hello %s’, ’'World’);
Result: Hello World

SELECT format (' Testing %s, %s, %s, %%’, ’'one’, ’"two’, ’'three’);
Result: Testing one, two, three, %

SELECT format (' INSERT INTO %I VALUES(%L)’, ’'Foo bar’, E’O\’Reilly’);
Result: INSERT INTO "Foo bar" VALUES (’0”Reilly’)

SELECT format (' INSERT INTO %I VALUES (%L)’, ’locations’, 'C:\Program Files’);
Result: INSERT INTO locations VALUES (‘C:\Program Files’

Here are examples using width fields and the - flag:

SELECT format ('’ |%$10s]|’, "foo’);
Result: | foo |

SELECT format (’|%-10s|’, ’'foo’);
Result: |foo |

204

Chapter 9. Functions and Operators

SELECT format (' |%$*s|’, 10, ’"foo’);
Result: | foo|

SELECT format ('’ |%*s|’, -10, ’'foo’);
Result: |foo |

SELECT format ('’ |%—-*s|’, 10, ’'foo’);
Result: |foo |

SELECT format ('’ |%-*s|’, -10, ’"foo’);
Result: |foo |

These examples show use of position fields:

SELECT format (' Testing %3$s, %2S$s, %1$s’, 'one’, ’'two’, ’'three’);

Result: Testing three, two, one

SELECT format ('’ |%$*2$s|’, ’'foo’, 10, ’"bar’);
Result: | bar

SELECT format (' |%1$x2S$s|’, ’'foo’, 10, ’'bar’);
Result: | foo

Unlike the standard C function sprintf, PostgreSQL’s format function allows format specifiers
with and without position fields to be mixed in the same format string. A format specifier without
a position field always uses the next argument after the last argument consumed. In addition, the
format function does not require all function arguments to be used in the format string. For example:

SELECT format (' Testing %3$s, %2S$s, %s’, ’'one’, ’'two’, ’'three’);
Result: Testing three, two, three

The %1 and %L format specifiers are particularly useful for safely constructing dynamic SQL state-
ments. See Example 40-1.

9.5. Binary String Functions and Operators

This section describes functions and operators for examining and manipulating values of type bytea.

SQL defines some string functions that use key words, rather than commas, to separate arguments.
Details are in Table 9-9. PostgreSQL also provides versions of these functions that use the regular
function invocation syntax (see Table 9-10).

Note: The sample results shown on this page assume that the server parameter bytea_output
is set to escape (the traditional PostgreSQL format).

Table 9-9. SQL Binary String Functions and Operators

205

Chapter 9. Functions and Operators

]

Function Return Type Description Example Result
string || bytea String "\\Post’ : :bytea\\Post’gres\00
string concatenation |
"\047gres\000’ | :bytea

int Number of bytes |octet_length(’ j6\000se’ : :byte
octet_length (string) in binary string
overlay (string |bytea Replace substring | overlay (! Th\000@&n&802\hg08mas
placing string placing
from int [for "\002\003" : :bytea
int]) from 2 for 3)

int Location of position ("\000¢R’ : :bytea
position (substrirg specified substring | in
in string) "Th\000omas’ : :Ibytea)

bytea Extract substring | substring (' Th\QBR6MEs’ : :bytea
substring (string from 2 for 3)
[from int] [for
int])
trim([both] bytea Remove the trim(/\000\001{ Tolhytea
bytes from longest string from
string) containing only "\000Tom\ 001’ : tbytea)

bytes appearing in
bytes from the
start and end of

string

Additional binary string manipulation functions are available and are listed in Table 9-10. Some of

them are used internally to implement the SQL-standard string functions listed in Table 9-9.

Table 9-10. Other Binary String Functions

Function Return Type Description Example Result
btrim(string bytea Remove the btrim(’\000trimk@0h’ : :bytea,
bytea, bytes longest string "\000\001’ : :bytea)
bytea) containing only
bytes appearing in
bytes from the
start and end of
string
decode (string |bytea Decode binary decode (7123\000238Xp00456

text, format

text)

data from textual
representation in
string. Options
for format are
same as in

encode.

"escape’)

206

Chapter 9. Functions and Operators

set_byte (string,

offset,

newvalue)

4, 64)

Function Return Type Description Example Result
encode (data text Encode binary encode (Y 123\000238X00B¢E6a,
bytea, format data into a textual |’ escape’)
text) representation.
Supported formats
are: base64, hex,
escape. escape
converts zero
bytes and
high-bit-set bytes
to octal sequences
(\nnn) and
doubles
backslashes.
get_bit (string, |int Extract bit from |get_bit (' Th\000dmas’ : :bytea,
offset) string 45)
int Extract byte from | get_byte (' Th\0Q068as’ : :bytea,
get_byte (string, sning 4)
offset)
length(string) |int Length of binary |length (' jo\000s&’ : :bytea)
string
md5 (string) text Calculates the md5 (Th\00Oomas8akbBsBeap89aafls
MDS5 hash of b4958c334c82d8b1
string, returning
the result in
hexadecimal
set_bit (string, |bytea Set bit in string set_bit (Th\00DTh&600cnAkEea,
offset, 45, 0)
newvalue)
bytea Set byte in string | set_byte (Th\0)ThxaB0o@bgtea,

get_byte and set_byte number the first byte of a binary string as byte 0. get_bit and set_bit
number bits from the right within each byte; for example bit O is the least significant bit of the first

byte, and bit 15 is the most significant bit of the second byte.

See also the aggregate function st ring_agg in Section 9.20 and the large object functions in Section

32.4.

9.6. Bit String Functions and Operators

This section describes functions and operators for examining and manipulating bit strings, that is
values of the types bit and bit varying. Aside from the usual comparison operators, the operators
shown in Table 9-11 can be used. Bit string operands of &, |, and # must be of equal length. When bit
shifting, the original length of the string is preserved, as shown in the examples.

207

Chapter 9. Functions and Operators

Table 9-11. Bit String Operators

Operator Description Example Result

| concatenation B’/10001" || 10001011
B’/ 011’

& bitwise AND B’ 10001’ & 00001
B’ 01101’

bitwise OR B/10001" | 11101

B’01101’

bitwise XOR B’10001" # 11100
B’01101"

~ bitwise NOT ~ B’10001’ 01110

<< bitwise shift left B’10001’ << 3 01000

>> bitwise shift right B’10001" >> 2 00100

The following SQL-standard functions work on bit strings as well as character strings: length,
bit_length, octet_length, position, substring, overlay.

The following functions work on bit strings as well as binary strings: get_bit, set_bit. When work-
ing with a bit string, these functions number the first (Ieftmost) bit of the string as bit 0.

In addition, it is possible to cast integral values to and from type bit. Some examples:

44::pbit (10) 0000101100
44::bit (3) 100

cast (44 as bit(12)) 111111010100
711107 : :bit (4) : :integer 14

Note that casting to just “bit” means casting to bit (1), and so will deliver only the least significant
bit of the integer.

Note: Casting an integer to bit (n) copies the rightmost n bits. Casting an integer to a bit string
width wider than the integer itself will sign-extend on the left.

9.7. Pattern Matching

There are three separate approaches to pattern matching provided by PostgreSQL: the traditional
SQL LIKE operator, the more recent SIMILAR TO operator (added in SQL:1999), and POSIX-style
regular expressions. Aside from the basic “does this string match this pattern?” operators, functions
are available to extract or replace matching substrings and to split a string at matching locations.

Tip: If you have pattern matching needs that go beyond this, consider writing a user-defined
function in Perl or Tcl.

208

Chapter 9. Functions and Operators

Caution

While most regular-expression searches can be executed very quickly, regular
expressions can be contrived that take arbitrary amounts of time and memory to
process. Be wary of accepting regular-expression search patterns from hostile
sources. If you must do so, it is advisable to impose a statement timeout.

Searches using sTMILAR TO patterns have the same security hazards, since
SIMILAR TO provides many of the same capabilities as POSIX-style regular
expressions.

LIKE searches, being much simpler than the other two options, are safer to use
with possibly-hostile pattern sources.

9.7.1. LIKE

string LIKE pattern [ESCAPE escape-character]
string NOT LIKE pattern [ESCAPE escape-character]

The LIKE expression returns true if the string matches the supplied pattern. (As expected, the
NOT LIKE expression returns false if LIKE returns true, and vice versa. An equivalent expression is
NOT (string LIKE pattern))

If pattern does not contain percent signs or underscores, then the pattern only represents the string
itself; in that case LIKE acts like the equals operator. An underscore (_) in pattern stands for
(matches) any single character; a percent sign (%) matches any sequence of zero or more characters.

Some examples:

"abc’ LIKE ’"abc’ true
"abc’ LIKE "a%’ true
"abc’ LIKE '_b_’ true
"abc’ LIKE ’c’ false

LIKE pattern matching always covers the entire string. Therefore, if it’s desired to match a sequence
anywhere within a string, the pattern must start and end with a percent sign.

To match a literal underscore or percent sign without matching other characters, the respective char-
acter in pattern must be preceded by the escape character. The default escape character is the back-
slash but a different one can be selected by using the ESCAPE clause. To match the escape character
itself, write two escape characters.

Note: If you have standard_conforming_strings turned off, any backslashes you write in literal
string constants will need to be doubled. See Section 4.1.2.1 for more information.

It’s also possible to select no escape character by writing ESCAPE ”. This effectively disables the
escape mechanism, which makes it impossible to turn off the special meaning of underscore and
percent signs in the pattern.

The key word ILIKE can be used instead of LIKE to make the match case-insensitive according to
the active locale. This is not in the SQL standard but is a PostgreSQL extension.

209

Chapter 9. Functions and Operators

The operator ~~ is equivalent to LIKE, and ~~* corresponds to ILIKE. There are also !~~ and
! ~~% operators that represent NOT LIKE and NOT ILIKE, respectively. All of these operators are
PostgreSQL-specific.

9.7.2. stMILAR TO Regular Expressions

string SIMILAR TO pattern [ESCAPE escape-character]
string NOT SIMILAR TO pattern [ESCAPE escape-character]

The SIMILAR TO operator returns true or false depending on whether its pattern matches the given
string. It is similar to LIKE, except that it interprets the pattern using the SQL standard’s definition of a
regular expression. SQL regular expressions are a curious cross between LIKE notation and common
regular expression notation.

Like LIKE, the SIMILAR TO operator succeeds only if its pattern matches the entire string; this is
unlike common regular expression behavior where the pattern can match any part of the string. Also
like LIKE, SIMILAR TO uses _ and % as wildcard characters denoting any single character and any
string, respectively (these are comparable to . and . » in POSIX regular expressions).

In addition to these facilities borrowed from LIKE, SIMILAR TO supports these pattern-matching
metacharacters borrowed from POSIX regular expressions:

« | denotes alternation (either of two alternatives).

« x denotes repetition of the previous item zero or more times.

« + denotes repetition of the previous item one or more times.

« 2 denotes repetition of the previous item zero or one time.

« {m} denotes repetition of the previous item exactly m times.

« {m, } denotes repetition of the previous item m or more times.

« {m, n} denotes repetition of the previous item at least m and not more than n times.

« Parentheses () can be used to group items into a single logical item.

» A bracket expression [.. .] specifies a character class, just as in POSIX regular expressions.
Notice that the period (.) is not a metacharacter for SIMILAR TO.

As with LIKE, a backslash disables the special meaning of any of these metacharacters; or a different
escape character can be specified with ESCAPE.

Some examples:

"abc’ SIMILAR TO ’"abc’ true
"abc’ SIMILAR TO ’'a’ false
"abc’ SIMILAR TO ’'%

(%! true
"abc’ SIMILAR TO '’ (b !

false

The substring function with three parameters, substring(string from pattern for
escape-character), provides extraction of a substring that matches an SQL regular expression
pattern. As with SIMILAR TO, the specified pattern must match the entire data string, or else the
function fails and returns null. To indicate the part of the pattern that should be returned on success,
the pattern must contain two occurrences of the escape character followed by a double quote ("). The
text matching the portion of the pattern between these markers is returned.

210

Chapter 9. Functions and Operators

Some examples, with #" delimiting the return string:

substring (' foobar’ from ’$#"o_b#"%’ for ’'#’) oob
substring (' foobar’ from '#"o_b#"%’ for "#') NULL

9.7.3. POSIX Regular Expressions

Table 9-12 lists the available operators for pattern matching using POSIX regular expressions.

Table 9-12. Regular Expression Match Operators

Operator Description Example
~ Matches regular expression, "thomas’ ~ ’.xthomas.x’
case sensitive
~x Matches regular expression, "thomas’ ~*
case insensitive ! .xThomas. '
I~ Does not match regular "thomas’ !~
expression, case sensitive ’ .«Thomas.*’
D~k Does not match regular ’thomas’ !~=
expression, case insensitive ’ . «vadim. *’

POSIX regular expressions provide a more powerful means for pattern matching than the LIKE and
SIMILAR TO operators. Many Unix tools such as egrep, sed, or awk use a pattern matching language
that is similar to the one described here.

A regular expression is a character sequence that is an abbreviated definition of a set of strings (a
regular set). A string is said to match a regular expression if it is a member of the regular set described
by the regular expression. As with LIKE, pattern characters match string characters exactly unless
they are special characters in the regular expression language — but regular expressions use different
special characters than LIKE does. Unlike LIKE patterns, a regular expression is allowed to match
anywhere within a string, unless the regular expression is explicitly anchored to the beginning or end
of the string.

Some examples:

"abc’ ~ ’"abc’ true
rabc’ ~ ’'"a’ true
rabc’ ~ " (b|d)’ true
"abc’ ~ "~ (b|c)’ false

The POSIX pattern language is described in much greater detail below.

The substring function with two parameters, substring (string from pattern), provides ex-
traction of a substring that matches a POSIX regular expression pattern. It returns null if there is no
match, otherwise the portion of the text that matched the pattern. But if the pattern contains any paren-
theses, the portion of the text that matched the first parenthesized subexpression (the one whose left
parenthesis comes first) is returned. You can put parentheses around the whole expression if you want
to use parentheses within it without triggering this exception. If you need parentheses in the pattern
before the subexpression you want to extract, see the non-capturing parentheses described below.

Some examples:

211

Chapter 9. Functions and Operators

substring (’ foobar’ from ’'o0.b’) oob
substring (' foobar’ from ‘o(.)b’) o

The regexp_replace function provides substitution of new text for substrings that match POSIX
regular expression patterns. It has the syntax regexp_replace(source, pattern, replacement
[, f1ags]). The source string is returned unchanged if there is no match to the pattern. If there
is a match, the source string is returned with the replacement string substituted for the matching
substring. The replacement string can contain \ n, where n is 1 through 9, to indicate that the source
substring matching the n’th parenthesized subexpression of the pattern should be inserted, and it can
contain \& to indicate that the substring matching the entire pattern should be inserted. Write \\ if
you need to put a literal backslash in the replacement text. The f1ags parameter is an optional text
string containing zero or more single-letter flags that change the function’s behavior. Flag i specifies
case-insensitive matching, while flag g specifies replacement of each matching substring rather than
only the first one. Supported flags (though not g) are described in Table 9-20.

Some examples:

regexp_replace (’ foobarbaz’, 'b..’, 'X")

fooXbaz
regexp_replace (' foobarbaz’, 'b..’, X', 'g’)

fooXX
regexp_replace (' foobarbaz’, 'b(..)’, "X\1Y’', ’'g’)

fooXarYXazY

The regexp_matches function returns a text array of all of the captured substrings resulting from
matching a POSIX regular expression pattern. It has the syntax regexp_matches(string, pattern
[, f1ags]). The function can return no rows, one row, or multiple rows (see the g flag below). If the
pattern does not match, the function returns no rows. If the pattern contains no parenthesized subex-
pressions, then each row returned is a single-element text array containing the substring matching the
whole pattern. If the pattern contains parenthesized subexpressions, the function returns a text array
whose n’th element is the substring matching the n’th parenthesized subexpression of the pattern (not
counting “non-capturing” parentheses; see below for details). The £1ags parameter is an optional text
string containing zero or more single-letter flags that change the function’s behavior. Flag g causes
the function to find each match in the string, not only the first one, and return a row for each such
match. Supported flags (though not g) are described in Table 9-20.

Some examples:

SELECT regexp_matches (' foobarbequebaz’, ’ (bar) (beque)’);
regexp_matches

{bar, beque}

(1 row)

SELECT regexp_matches (' foobarbequebazilbarfbonk’, ' (b["b]l+) (b["b]+)", "g’);
regexp_matches

{bar, beque}
{bazil,barf}
(2 rows)

SELECT regexp_matches (' foobarbequebaz’, ’'barbeque’);
regexp_matches

212

Chapter 9. Functions and Operators

{barbeque}
(1 row)

It is possible to force regexp_matches () to always return one row by using a sub-select; this is
particularly useful in a SELECT target list when you want all rows returned, even non-matching ones:

SELECT coll, (SELECT regexp_matches(col2, ' (bar) (beque)’)) FROM tab;

The regexp_split_to_table function splits a string using a POSIX regular expression pattern as
a delimiter. It has the syntax regexp_split_to_table(string, pattern [, flags]). If there is
no match to the pattern, the function returns the string. If there is at least one match, for each
match it returns the text from the end of the last match (or the beginning of the string) to the beginning
of the match. When there are no more matches, it returns the text from the end of the last match to the
end of the string. The £1ags parameter is an optional text string containing zero or more single-letter
flags that change the function’s behavior. regexp_split_to_table supports the flags described in
Table 9-20.

The regexp_split_to_array function behaves the same as regexp_split_to_table,
except that regexp_split_to_array returns its result as an array of text. It has the syntax
regexp_split_to_array(string, pattern [, flags]). The parameters are the same as for
regexp_split_to_table.

Some examples:

SELECT foo FROM regexp_split_to_table(’the quick brown fox jumps over the lazy dog’, ’\s
foo

lazy
dog
(9 rows)

SELECT regexp_split_to_array(’'the quick brown fox jumps over the lazy dog’, ’'\s+’);
regexp_split_to_array
{the, quick, brown, fox, jumps, over, the, lazy, dog}
(1 row)

SELECT foo FROM regexp_split_to_table(’the quick brown fox’, ’\sx’) AS foo;
foo

213

Chapter 9. Functions and Operators

= X O B3 = 0 R O W Q

6 rows)

As the last example demonstrates, the regexp split functions ignore zero-length matches that occur
at the start or end of the string or immediately after a previous match. This is contrary to the strict
definition of regexp matching that is implemented by regexp_matches, but is usually the most
convenient behavior in practice. Other software systems such as Perl use similar definitions.

9.7.3.1. Regular Expression Details

PostgreSQL’s regular expressions are implemented using a software package written by Henry
Spencer. Much of the description of regular expressions below is copied verbatim from his manual.

Regular expressions (REs), as defined in POSIX 1003.2, come in two forms: extended REs or EREs
(roughly those of egrep), and basic REs or BREs (roughly those of ed). PostgreSQL supports both
forms, and also implements some extensions that are not in the POSIX standard, but have become
widely used due to their availability in programming languages such as Perl and Tcl. REs using these
non-POSIX extensions are called advanced REs or AREs in this documentation. AREs are almost an
exact superset of EREs, but BREs have several notational incompatibilities (as well as being much
more limited). We first describe the ARE and ERE forms, noting features that apply only to AREs,
and then describe how BREs differ.

Note: PostgreSQL always initially presumes that a regular expression follows the ARE rules. How-
ever, the more limited ERE or BRE rules can be chosen by prepending an embedded option to the
RE pattern, as described in Section 9.7.3.4. This can be useful for compatibility with applications
that expect exactly the POSIX 1003.2 rules.

A regular expression is defined as one or more branches, separated by |. It matches anything that
matches one of the branches.

A branch is zero or more quantified atoms or constraints, concatenated. It matches a match for the
first, followed by a match for the second, etc; an empty branch matches the empty string.

A quantified atom is an atom possibly followed by a single quantifier. Without a quantifier, it matches
a match for the atom. With a quantifier, it can match some number of matches of the atom. An atom
can be any of the possibilities shown in Table 9-13. The possible quantifiers and their meanings are
shown in Table 9-14.

A constraint matches an empty string, but matches only when specific conditions are met. A constraint
can be used where an atom could be used, except it cannot be followed by a quantifier. The simple
constraints are shown in Table 9-15; some more constraints are described later.

Table 9-13. Regular Expression Atoms

214

Chapter 9. Functions and Operators

Atom

Description

(re)

(where re is any regular expression) matches a
match for re, with the match noted for possible
reporting

(?:re)

as above, but the match is not noted for

reporting (a “non-capturing” set of parentheses)
(AREs only)

matches any single character

[chars]

a bracket expression, matching any one of the
chars (see Section 9.7.3.2 for more detail)

\k

(where k is a non-alphanumeric character)
matches that character taken as an ordinary
character, e.g., \\ matches a backslash character

where c is alphanumeric (possibly followed by
other characters) is an escape, see Section
9.7.3.3 (AREs only; in EREs and BREzs, this
matches c)

when followed by a character other than a digit,
matches the left-brace character {; when
followed by a digit, it is the beginning of a
bound (see below)

where x is a single character with no other

significance, matches that character

An RE cannot end with a backslash (\).

Note: If you have standard_conforming_strings turned off, any backslashes you write in literal
string constants will need to be doubled. See Section 4.1.2.1 for more information.

Table 9-14. Regular Expression Quantifiers

Quantifier Matches

* a sequence of 0 or more matches of the atom
+ a sequence of 1 or more matches of the atom
? a sequence of 0 or 1 matches of the atom

{m} a sequence of exactly m matches of the atom
{m,} a sequence of m or more matches of the atom
{m, n} a sequence of m through n (inclusive) matches

of the atom; m cannot exceed n

*? non-greedy version of x

+7? non-greedy version of +

27 non-greedy version of ?

{m}? non-greedy version of {m}

{m, }? non-greedy version of {m, }

{m, n}? non-greedy version of {m, n}

215

Chapter 9. Functions and Operators

The forms using { ...} are known as bounds. The numbers m and n within a bound are unsigned
decimal integers with permissible values from 0 to 255 inclusive.

Non-greedy quantifiers (available in AREs only) match the same possibilities as their correspond-
ing normal (greedy) counterparts, but prefer the smallest number rather than the largest number of
matches. See Section 9.7.3.5 for more detail.

Note: A quantifier cannot immediately follow another quantifier, e.g., =+ is invalid. A quantifier
cannot begin an expression or subexpression or follow ~ or |.

Table 9-15. Regular Expression Constraints

Constraint Description
8 matches at the beginning of the string
$ matches at the end of the string
(?=re) positive lookahead matches at any point where

a substring matching re begins (AREs only)

(?!re) negative lookahead matches at any point where
no substring matching re begins (AREs only)

Lookahead constraints cannot contain back references (see Section 9.7.3.3), and all parentheses within
them are considered non-capturing.

9.7.3.2. Bracket Expressions

A bracket expression is a list of characters enclosed in []. It normally matches any single character
from the list (but see below). If the list begins with ~, it matches any single character not from the
rest of the list. If two characters in the list are separated by —, this is shorthand for the full range
of characters between those two (inclusive) in the collating sequence, e.g., [0-9] in ASCII matches
any decimal digit. It is illegal for two ranges to share an endpoint, e.g., a-c-e. Ranges are very
collating-sequence-dependent, so portable programs should avoid relying on them.

To include a literal] in the list, make it the first character (after ~, if that is used). To include a
literal —, make it the first or last character, or the second endpoint of a range. To use a literal — as
the first endpoint of a range, enclose it in [. and .] to make it a collating element (see below).
With the exception of these characters, some combinations using [(see next paragraphs), and escapes
(AREs only), all other special characters lose their special significance within a bracket expression.
In particular, \ is not special when following ERE or BRE rules, though it is special (as introducing
an escape) in AREs.

Within a bracket expression, a collating element (a character, a multiple-character sequence that col-
lates as if it were a single character, or a collating-sequence name for either) enclosed in [. and .]
stands for the sequence of characters of that collating element. The sequence is treated as a single ele-
ment of the bracket expression’s list. This allows a bracket expression containing a multiple-character
collating element to match more than one character, e.g., if the collating sequence includes a ch
collating element, then the RE [[.ch. 1] c matches the first five characters of chchcc.

Note: PostgreSQL currently does not support multi-character collating elements. This information
describes possible future behavior.

216

Chapter 9. Functions and Operators

Within a bracket expression, a collating element enclosed in [= and =] is an equivalence class, stand-
ing for the sequences of characters of all collating elements equivalent to that one, including itself. (If
there are no other equivalent collating elements, the treatment is as if the enclosing delimiters were [.
and .1.) For example, if o and ~ are the members of an equivalence class, then [[=o=11, [[="=11,
and [o”] are all synonymous. An equivalence class cannot be an endpoint of a range.

Within a bracket expression, the name of a character class enclosed in [: and :] stands for the list
of all characters belonging to that class. Standard character class names are: alnum, alpha, blank,
cntrl, digit, graph, lower, print, punct, space, upper, xdigit. These stand for the character
classes defined in ctype. A locale can provide others. A character class cannot be used as an endpoint
of a range.

There are two special cases of bracket expressions: the bracket expressions [[:<:]] and [[:>:]]
are constraints, matching empty strings at the beginning and end of a word respectively. A word is
defined as a sequence of word characters that is neither preceded nor followed by word characters.
A word character is an alnum character (as defined by ctype) or an underscore. This is an extension,
compatible with but not specified by POSIX 1003.2, and should be used with caution in software in-
tended to be portable to other systems. The constraint escapes described below are usually preferable;
they are no more standard, but are easier to type.

9.7.3.3. Regular Expression Escapes

Escapes are special sequences beginning with \ followed by an alphanumeric character. Escapes
come in several varieties: character entry, class shorthands, constraint escapes, and back references.
A\ followed by an alphanumeric character but not constituting a valid escape is illegal in AREs. In
EREs, there are no escapes: outside a bracket expression, a \ followed by an alphanumeric character
merely stands for that character as an ordinary character, and inside a bracket expression, \ is an
ordinary character. (The latter is the one actual incompatibility between EREs and AREs.)

Character-entry escapes exist to make it easier to specify non-printing and other inconvenient char-
acters in REs. They are shown in Table 9-16.

Class-shorthand escapes provide shorthands for certain commonly-used character classes. They are
shown in Table 9-17.

A constraint escape is a constraint, matching the empty string if specific conditions are met, written
as an escape. They are shown in Table 9-18.

A back reference (\ n) matches the same string matched by the previous parenthesized subexpression
specified by the number n (see Table 9-19). For example, ([bc])\1 matches bb or cc but not bc
or cb. The subexpression must entirely precede the back reference in the RE. Subexpressions are
numbered in the order of their leading parentheses. Non-capturing parentheses do not define subex-
pressions.

Table 9-16. Regular Expression Character-entry Escapes

Escape Description

\a alert (bell) character, as in C

\b backspace, as in C

\B synonym for backslash (\) to help reduce the

need for backslash doubling

\cX (where X is any character) the character whose
low-order 5 bits are the same as those of x, and
whose other bits are all zero

217

Chapter 9. Functions and Operators

Escape Description

\e the character whose collating-sequence name is
ESC, or failing that, the character with octal
value 033

\f form feed, as in C

\n newline, as in C

\r carriage return, as in C

\t horizontal tab, as in C

\uwxyz (where wxyz is exactly four hexadecimal digits)
the character whose hexadecimal value is
0xwxyz

\Ustuvwxyz (where stuvwxyz is exactly eight hexadecimal
digits) the character whose hexadecimal value is
Oxstuvwxyz

\v vertical tab, as in C

\xhhh (where hhh is any sequence of hexadecimal
digits) the character whose hexadecimal value is
Oxhhh (a single character no matter how many
hexadecimal digits are used)

¢ the character whose value is 0 (the null byte)

\xy (where xy is exactly two octal digits, and is not
a back reference) the character whose octal value
is Oxy

\xyz (where xyz is exactly three octal digits, and is
not a back reference) the character whose octal
value is Oxyz

Hexadecimal digits are 0-9, a-f, and A-F. Octal digits are 0-7.

Numeric character-entry escapes specifying values outside the ASCII range (0-127) have meanings
dependent on the database encoding. When the encoding is UTF-8, escape values are equivalent to
Unicode code points, for example \ul234 means the character U+1234. For other multibyte encod-
ings, character-entry escapes usually just specify the concatenation of the byte values for the character.
If the escape value does not correspond to any legal character in the database encoding, no error will

be raised, but it will never match any data.

The character-entry escapes are always taken as ordinary characters. For example, \135 is] in ASCII,

but \135 does not terminate a bracket expression.

Table 9-17. Regular Expression Class-shorthand Escapes

Escape Description

A [[:digit:]]

\'s [[:space:]]

\w [[:alnum:]_] (note underscore is included)
AD [~ [:digit:]]

\S [*[:space:]]

\W [~[:alnum:]_] (note underscore is included)

218

Chapter 9. Functions and Operators
Within bracket expressions, \d, \'s, and \w lose their outer brackets, and \D, \s, and \w are illegal.
(So, for example, [a—c\d] is equivalent to [a-c[:digit:]]. Also, [a—c\D], which is equivalent

to [a—c”[:digit:]11],isillegal.)

Table 9-18. Regular Expression Constraint Escapes

Escape Description

\A matches only at the beginning of the string (see
Section 9.7.3.5 for how this differs from)

\m matches only at the beginning of a word

\M matches only at the end of a word

\y matches only at the beginning or end of a word

\Y matches only at a point that is not the beginning

or end of a word

\Z matches only at the end of the string (see
Section 9.7.3.5 for how this differs from $)

A word is defined as in the specification of [[:<:]] and [[:>:]] above. Constraint escapes are
illegal within bracket expressions.

Table 9-19. Regular Expression Back References

Escape Description

\m (where m is a nonzero digit) a back reference to
the m’th subexpression

\mnn (where m is a nonzero digit, and nn is some
more digits, and the decimal value mnn is not
greater than the number of closing capturing
parentheses seen so far) a back reference to the
mnn’th subexpression

Note: There is an inherent ambiguity between octal character-entry escapes and back references,
which is resolved by the following heuristics, as hinted at above. A leading zero always indicates
an octal escape. A single non-zero digit, not followed by another digit, is always taken as a back
reference. A multi-digit sequence not starting with a zero is taken as a back reference if it comes
after a suitable subexpression (i.e., the number is in the legal range for a back reference), and
otherwise is taken as octal.

9.7.3.4. Regular Expression Metasyntax

In addition to the main syntax described above, there are some special forms and miscellaneous syn-
tactic facilities available.

An RE can begin with one of two special director prefixes. If an RE begins with xx :, the rest of
the RE is taken as an ARE. (This normally has no effect in PostgreSQL, since REs are assumed to be
AREs; but it does have an effect if ERE or BRE mode had been specified by the £1ags parameter to
aregex function.) If an RE begins with ««+=, the rest of the RE is taken to be a literal string, with all
characters considered ordinary characters.

219

Chapter 9. Functions and Operators

An ARE can begin with embedded options: a sequence (?xyz) (where xyz is one or more alphabetic
characters) specifies options affecting the rest of the RE. These options override any previously de-
termined options — in particular, they can override the case-sensitivity behavior implied by a regex
operator, or the f1ags parameter to a regex function. The available option letters are shown in Table
9-20. Note that these same option letters are used in the f1ags parameters of regex functions.

Table 9-20. ARE Embedded-option Letters

Option Description
b rest of RE is a BRE
c case-sensitive matching (overrides operator
type)
e rest of RE is an ERE
i case-insensitive matching (see Section 9.7.3.5)

(overrides operator type)

m historical synonym for n

n newline-sensitive matching (see Section 9.7.3.5)

p partial newline-sensitive matching (see Section
9.7.3.5)

q rest of RE is a literal (“quoted”) string, all
ordinary characters

s non-newline-sensitive matching (default)

t tight syntax (default; see below)

W inverse partial newline-sensitive (“weird”)

matching (see Section 9.7.3.5)

P expanded syntax (see below)

Embedded options take effect at the) terminating the sequence. They can appear only at the start of
an ARE (after the ««« : director if any).

In addition to the usual (tight) RE syntax, in which all characters are significant, there is an expanded
syntax, available by specifying the embedded x option. In the expanded syntax, white-space characters
in the RE are ignored, as are all characters between a # and the following newline (or the end of the
RE). This permits paragraphing and commenting a complex RE. There are three exceptions to that
basic rule:

+ a white-space character or # preceded by \ is retained
- white space or # within a bracket expression is retained
+ white space and comments cannot appear within multi-character symbols, such as (?:

For this purpose, white-space characters are blank, tab, newline, and any character that belongs to the
space character class.

Finally, in an ARE, outside bracket expressions, the sequence (?#ttt) (where ttt is any text not
containing a)) is a comment, completely ignored. Again, this is not allowed between the characters of
multi-character symbols, like (?:. Such comments are more a historical artifact than a useful facility,
and their use is deprecated; use the expanded syntax instead.

None of these metasyntax extensions is available if an initial « x »= director has specified that the user’s
input be treated as a literal string rather than as an RE.

220

Chapter 9. Functions and Operators

9.7.3.5. Regular Expression Matching Rules

In the event that an RE could match more than one substring of a given string, the RE matches the
one starting earliest in the string. If the RE could match more than one substring starting at that point,
either the longest possible match or the shortest possible match will be taken, depending on whether
the RE is greedy or non-greedy.

Whether an RE is greedy or not is determined by the following rules:

« Most atoms, and all constraints, have no greediness attribute (because they cannot match variable
amounts of text anyway).

+ Adding parentheses around an RE does not change its greediness.

» A quantified atom with a fixed-repetition quantifier ({m} or {m} ?) has the same greediness (possi-
bly none) as the atom itself.

+ A quantified atom with other normal quantifiers (including {m, n} with m equal to n) is greedy
(prefers longest match).

+ A quantified atom with a non-greedy quantifier (including {m, n} ? with m equal to n) is non-greedy
(prefers shortest match).

« A branch — that is, an RE that has no top-level | operator — has the same greediness as the first
quantified atom in it that has a greediness attribute.

« An RE consisting of two or more branches connected by the | operator is always greedy.

The above rules associate greediness attributes not only with individual quantified atoms, but with
branches and entire REs that contain quantified atoms. What that means is that the matching is done
in such a way that the branch, or whole RE, matches the longest or shortest possible substring as
a whole. Once the length of the entire match is determined, the part of it that matches any particu-
lar subexpression is determined on the basis of the greediness attribute of that subexpression, with
subexpressions starting earlier in the RE taking priority over ones starting later.

An example of what this means:

SELECT SUBSTRING (’XY12347’, 'Yx([0-91{1,3})");
Result: 123

SELECT SUBSTRING (’XY12347’, 'Yx2([0-9]1{1,3})");
Result: 1

In the first case, the RE as a whole is greedy because v~ is greedy. It can match beginning at the v,
and it matches the longest possible string starting there, i.e., Y123. The output is the parenthesized
part of that, or 123. In the second case, the RE as a whole is non-greedy because v« 2 is non-greedy.
It can match beginning at the v, and it matches the shortest possible string starting there, i.e., Y1. The
subexpression [0-9] {1, 3} is greedy but it cannot change the decision as to the overall match length;
so it is forced to match just 1.

In short, when an RE contains both greedy and non-greedy subexpressions, the total match length is
either as long as possible or as short as possible, according to the attribute assigned to the whole RE.
The attributes assigned to the subexpressions only affect how much of that match they are allowed to
“eat” relative to each other.

The quantifiers {1,1} and {1, 1}? can be used to force greediness or non-greediness, respectively,
on a subexpression or a whole RE. This is useful when you need the whole RE to have a greediness
attribute different from what’s deduced from its elements. As an example, suppose that we are trying

221

Chapter 9. Functions and Operators

to separate a string containing some digits into the digits and the parts before and after them. We
might try to do that like this:

SELECT regexp_matches ("abc01234xyz’, ' (.*) (\d+) (.*)");
Result: {abc0123,4,xyz}

That didn’t work: the first . « is greedy so it “eats” as much as it can, leaving the \d+ to match at the
last possible place, the last digit. We might try to fix that by making it non-greedy:

SELECT regexp_matches (/abc01234xyz’, ' (.*?) (\d+) (.*)");
Result: {abc,0,""}

That didn’t work either, because now the RE as a whole is non-greedy and so it ends the overall match
as soon as possible. We can get what we want by forcing the RE as a whole to be greedy:

SELECT regexp_matches ("abc01234xyz’, " (2: (.x?) (\d+) (.x)){1,1}");
Result: {abc,01234,xyz}

Controlling the RE’s overall greediness separately from its components’ greediness allows great flex-
ibility in handling variable-length patterns.

When deciding what is a longer or shorter match, match lengths are measured in characters, not col-
lating elements. An empty string is considered longer than no match at all. For example: bb» matches
the three middle characters of abbbc; (week|wee) (night |knights) matches all ten characters
of weeknights; when (.x) . is matched against abc the parenthesized subexpression matches all
three characters; and when (ax) » is matched against bc both the whole RE and the parenthesized
subexpression match an empty string.

If case-independent matching is specified, the effect is much as if all case distinctions had vanished
from the alphabet. When an alphabetic that exists in multiple cases appears as an ordinary character
outside a bracket expression, it is effectively transformed into a bracket expression containing both
cases, e.g., x becomes [xx]. When it appears inside a bracket expression, all case counterparts of it
are added to the bracket expression, e.g., [x] becomes [xx] and [~x] becomes [*xX].

If newline-sensitive matching is specified, . and bracket expressions using ~ will never match the
newline character (so that matches will never cross newlines unless the RE explicitly arranges it) and
~ and s will match the empty string after and before a newline respectively, in addition to matching at
beginning and end of string respectively. But the ARE escapes \a and \ z continue to match beginning
or end of string only.

If partial newline-sensitive matching is specified, this affects . and bracket expressions as with
newline-sensitive matching, but not ~ and $.

If inverse partial newline-sensitive matching is specified, this affects ~ and $ as with newline-sensitive
matching, but not . and bracket expressions. This isn’t very useful but is provided for symmetry.

9.7.3.6. Limits and Compatibility

No particular limit is imposed on the length of REs in this implementation. However, programs in-
tended to be highly portable should not employ REs longer than 256 bytes, as a POSIX-compliant
implementation can refuse to accept such REs.

The only feature of AREs that is actually incompatible with POSIX EREs is that \ does not lose its
special significance inside bracket expressions. All other ARE features use syntax which is illegal or
has undefined or unspecified effects in POSIX EREs; the «x+ syntax of directors likewise is outside
the POSIX syntax for both BREs and EREs.

222

Chapter 9. Functions and Operators

Many of the ARE extensions are borrowed from Perl, but some have been changed to clean them
up, and a few Perl extensions are not present. Incompatibilities of note include \b, \B, the lack of
special treatment for a trailing newline, the addition of complemented bracket expressions to the
things affected by newline-sensitive matching, the restrictions on parentheses and back references in
lookahead constraints, and the longest/shortest-match (rather than first-match) matching semantics.

Two significant incompatibilities exist between AREs and the ERE syntax recognized by pre-7.4
releases of PostgreSQL:

« In AREs, \ followed by an alphanumeric character is either an escape or an error, while in previous
releases, it was just another way of writing the alphanumeric. This should not be much of a problem
because there was no reason to write such a sequence in earlier releases.

« In AREs, \ remains a special character within [, so a literal \ within a bracket expression must
be written \\.

9.7.3.7. Basic Regular Expressions

BREs differ from EREs in several respects. In BREs, |, +, and ? are ordinary characters and there
is no equivalent for their functionality. The delimiters for bounds are \ { and \}, with { and } by
themselves ordinary characters. The parentheses for nested subexpressions are \ (and \), with (and
) by themselves ordinary characters. ~ is an ordinary character except at the beginning of the RE or
the beginning of a parenthesized subexpression, $ is an ordinary character except at the end of the
RE or the end of a parenthesized subexpression, and « is an ordinary character if it appears at the
beginning of the RE or the beginning of a parenthesized subexpression (after a possible leading *).
Finally, single-digit back references are available, and \< and \> are synonyms for [[:<:]] and
[[:>:]] respectively; no other escapes are available in BREs.

9.8. Data Type Formatting Functions

The PostgreSQL formatting functions provide a powerful set of tools for converting various data types
(date/time, integer, floating point, numeric) to formatted strings and for converting from formatted
strings to specific data types. Table 9-21 lists them. These functions all follow a common calling
convention: the first argument is the value to be formatted and the second argument is a template that
defines the output or input format.

A single-argument to_t imestamp function is also available; it accepts a double precision argu-
ment and converts from Unix epoch (seconds since 1970-01-01 00:00:00+00) to t imestamp with
time zone. (Integer Unix epochs are implicitly cast to double precision.)

Table 9-21. Formatting Functions

Function Return Type Description Example
to_char (timestamp, text convert time stamp to to_char (current_timestamp,
text) string "HH12:MI:SS’)

223

Chapter 9. Functions and Operators

Function Return Type Description Example
to_char (interval, text convert interval to to_char (interval
text) string ’15h 2m 12s’,
"HH24:MI:SS’)
to_char (int, text) text convert integer to string | to_char (125,
79997)
to_char (double text convert real/double to_char(125.8::real,
precision, text) precision to string 1999D9")
to_char (numeric, text convert numeric to to_char (-125.8,
text) string " 999D995")
to_date (text, text) |date convert string to date to_date (05 Dec 20007,
DD Mon YYYY')
to_number (text, numeric convert string to to_number (' 12,454.8-",
text) numeric " 99G999D9S”)
to_timestamp (text, |timestamp with convert string to time to_timestamp (/05 Dec 20007,
text) time zone stamp "DD Mon YYYY')
to_timestamp (double |timestamp with convert Unix epochto |to_timestamp (1284352323)
precision) time zone time stamp

In a to_char output template string, there are certain patterns that are recognized and replaced with

appropriately-formatted data based on the given value. Any text that is not a template pattern is simply

copied verbatim. Similarly, in an input template string (for the other functions), template patterns
identify the values to be supplied by the input data string.

Table 9-22 shows the template patterns available for formatting date and time values.

Table 9-22. Template Patterns for Date/Time Formatting

Pattern Description

HH hour of day (01-12)

HH12 hour of day (01-12)

HH24 hour of day (00-23)

MI minute (00-59)

SS second (00-59)

MS millisecond (000-999)

Us microsecond (000000-999999)
SSss seconds past midnight (0-86399)

AM, am, PM Or pm

meridiem indicator (without periods)

A.M.,a.m.,P.M. Orp.m.

meridiem indicator (with periods)

Y, YYyYy year (4 or more digits) with comma

YYYY year (4 or more digits)

YYY last 3 digits of year

Yy last 2 digits of year

Y last digit of year

IYYY ISO 8601 week-numbering year (4 or more
digits)

IYY last 3 digits of ISO 8601 week-numbering year

224

Chapter 9. Functions and Operators

Pattern Description
1Y last 2 digits of ISO 8601 week-numbering year
I last digit of ISO 8601 week-numbering year

BC, bc, AD or ad

era indicator (without periods)

B.C.,b.c.,A.D.Ora.d.

era indicator (with periods)

MONTH full upper case month name (blank-padded to 9
chars)

Month full capitalized month name (blank-padded to 9
chars)

month full lower case month name (blank-padded to 9
chars)

MON abbreviated upper case month name (3 chars in
English, localized lengths vary)

Mon abbreviated capitalized month name (3 chars in
English, localized lengths vary)

mon abbreviated lower case month name (3 chars in
English, localized lengths vary)

MM month number (01-12)

DAY full upper case day name (blank-padded to 9
chars)

Day full capitalized day name (blank-padded to 9
chars)

day full lower case day name (blank-padded to 9
chars)

DY abbreviated upper case day name (3 chars in
English, localized lengths vary)

Dy abbreviated capitalized day name (3 chars in
English, localized lengths vary)

dy abbreviated lower case day name (3 chars in
English, localized lengths vary)

DDD day of year (001-366)

IDDD day of ISO 8601 week-numbering year
(001-371; day 1 of the year is Monday of the
first ISO week)

DD day of month (01-31)

D day of the week, Sunday (1) to Saturday (7)

1D ISO 8601 day of the week, Monday (1) to
Sunday (7)

W week of month (1-5) (the first week starts on the
first day of the month)

WW week number of year (1-53) (the first week starts
on the first day of the year)

W week number of ISO 8601 week-numbering year

(01-53; the first Thursday of the year is in week
D)

225

Chapter 9. Functions and Operators

Pattern Description

cc century (2 digits) (the twenty-first century starts
on 2001-01-01)

J Julian Day (integer days since November 24,
4714 BC at midnight UTC)

0 quarter (ignored by to_date and
to_timestamp)

RM month in upper case Roman numerals (I-X1I;
I=January)

rm month in lower case Roman numerals (i-xii;
i=January)

TZ upper case time-zone abbreviation (only

supported in to_char)

tz lower case time-zone abbreviation (only
supported in to_char)

OF time-zone offset from UTC (only supported in

to_char)

Modifiers can be applied to any template pattern to alter its behavior. For example, FMMonth is the
Month pattern with the FM modifier. Table 9-23 shows the modifier patterns for date/time formatting.

Table 9-23. Template Pattern Modifiers for Date/Time Formatting

Modifier Description Example

FM prefix fill mode (suppress leading FMMonth
zeroes and padding blanks)

TH suffix upper case ordinal number DDTH, e.g., 12TH
suffix

th suffix lower case ordinal number DDth, e.g., 12th
suffix

FX prefix fixed format global option (see |FX Month DD Day
usage notes)

TM prefix translation mode (print TMMonth
localized day and month names
based on Ic_time)

Sp suffix spell mode (not implemented) |DDSP

Usage notes for date/time formatting:

« FM suppresses leading zeroes and trailing blanks that would otherwise be added to make the output
of a pattern be fixed-width. In PostgreSQL, M modifies only the next specification, while in Oracle
FM affects all subsequent specifications, and repeated #M modifiers toggle fill mode on and off.

« TM does not include trailing blanks. to_timestamp and to_date ignore the TM modifier.

+ to_timestamp and to_date skip multiple blank spaces in the input string unless the Fx

option is used. For example, to_timestamp (/2000
to_timestamp (72000

JUN',

JUN’, ’YYYY MON’) works, but
/'FXYYYY MON’) returns an error because to_timestamp

expects one space only. FX must be specified as the first item in the template.

226

Chapter 9. Functions and Operators

to_timestamp and to_date exist to handle input formats that cannot be converted by simple
casting. These functions interpret input liberally, with minimal error checking. While they produce
valid output, the conversion can yield unexpected results. For example, input to these functions is
not restricted by normal ranges, thus to_date (1 20096040’ ,’ YYYYMMDD’) returns 2014-01-17
rather than causing an error. Casting does not have this behavior.

Ordinary text is allowed in to_char templates and will be output literally. You can put a substring
in double quotes to force it to be interpreted as literal text even if it contains pattern key words. For
example, in ' "Hello Year "YYYY’, the YYvY will be replaced by the year data, but the single
Y in Year will not be. In to_date, to_number, and to_timestamp, double-quoted strings skip
the number of input characters contained in the string, e.g. "xx" skips two input characters.

If you want to have a double quote in the output you must precede it with a backslash, for example
"\"YYYY Month\"’.

If the year format specification is less than four digits, e.g. YYY, and the supplied year is less than
four digits, the year will be adjusted to be nearest to the year 2020, e.g. 95 becomes 1995.

The YYYY conversion from string to timestamp or date has a restriction when processing
years with more than 4 digits. You must use some non-digit character or template after Yyvy,
otherwise the year is always interpreted as 4 digits. For example (with the year 20000):
to_date (’200001131’, ’yyyymmpDd’) will be interpreted as a 4-digit year; instead use
a non-digit separator after the year, like to_date(’20000-1131’, ’YYYY-MMDD’) or
to_date (' 20000Nov31l’, ’"YYYYMonDD’).

In conversions from string to timestamp or date, the CC (century) field is ignored if there is a
YYY, YYYY or Y, YYY field. If cc is used with vy or v then the year is computed as the year in
the specified century. If the century is specified but the year is not, the first year of the century is
assumed.

An ISO 8601 week-numbering date (as distinct from a Gregorian date) can be specified to
to_timestamp and to_date in one of two ways:

« Year, week number, and weekday: for example to_date (' 2006-42-4’, ’"IYYY-IW-ID')
returns the date 2006-10-19. If you omit the weekday it is assumed to be 1 (Monday).

« Year and day of year: for example to_date('2006-291’, ’IYYY-IDDD’) also returns
2006-10-109.

Attempting to enter a date using a mixture of ISO 8601 week-numbering fields and Gregorian date
fields is nonsensical, and will cause an error. In the context of an ISO 8601 week-numbering year,
the concept of a “month” or “day of month” has no meaning. In the context of a Gregorian year,
the ISO week has no meaning.

Caution

While to_date will reject a mixture of Gregorian and ISO
week-numbering date fields, to_char will not, since output format
specifications like yvyvy-mMv-pp (1vYY-IDDD) ca