PostgreSQL 11.15 Documentation

The PostgreSQL Global Development Group

PostgreSQL 11.15 Documentation
The PostgreSQL Global Development Group
Copyright © 1996-2022 The PostgreSQL Global Devel opment Group

Legal Notice
PostgreSQL is Copyright © 1996-2022 by the PostgreSQL Global Development Group.
Postgresos is Copyright © 1994-5 by the Regents of the University of California.

Permission to use, copy, modify, and distribute this software and its documentation for any purpose, without fee,
and without a written agreement is hereby granted, provided that the above copyright notice and this paragraph
and the following two paragraphs appear in all copies.

IN NO EVENT SHALL THE UNIVERSITY OF CALIFORNIA BE LIABLE TO ANY PARTY FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING LOST PROFITS,
ARISING OUT OF THE USE OF THIS SOFTWARE AND ITS DOCUMENTATION, EVEN IF THE
UNIVERSITY OF CALIFORNIA HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

THE UNIVERSITY OF CALIFORNIA SPECIFICALLY DISCLAIMS ANY WARRANTIES, INCLUDING,
BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE. THE SOFTWARE PROVIDED HEREUNDER IS ON AN “AS-|S” BASIS, AND
THEUNIVERSITY OF CALIFORNIA HASNO OBLIGATIONSTO PROVIDE MAINTENANCE, SUPPORT,
UPDATES, ENHANCEMENTS, OR MODIFICATIONS.

Table of Contents

PrEFBCE . e et XXX
1. What 1S POSIGrE@SQL? ...ttt ettt e XXX
2. A Brief History of POSIGreSQLuuiiiiiiiieieiii et XXX

2.1. The Berkeley POSTGRES Projectcccvuieiiiiiiieiiiiiieecci e XXXIi
2.2, POSIOrESOS ... XXXIi
2.3, POSIOrESQL ..ottt XXXil
3. CONVENTIONS ...ttt ettt et e et et e et et e e e e et e e e ere s XXXil
4. Further InfOrmationcoouuuiiiiiii e XXXil
5. Bug Reporting GUIEIINESuuniiiiiiie e XXXl
5.1 1dentifying BUGSccevvneiiiiiiee ettt XXXl
5.2. WHEt t0 REDPOIT ...ttt e XXXIV
5.3. Where t0 REPOIT BUGScevveiiiiiiii et XXXV
O N0 1o = TSP UP PP PPPPPTR PPN 1
L GEtING SEAEAveneeeei et 3
I 10 =] = (o EO ST SOP PP UPPPTTRUPPPIN 3
1.2. Architectural FUNDamMENtalSccouvuiiiiiiiee e 3
1.3. Creating @ Dal@haseoceevuiiiiii e 3
1.4, ACCESSING 8 DaADESEccvvneiiiii e 5
2. The SQL LBNGUBGEeevueeeeiiiieeeee ettt et e e e e 7
2.1 INEFOQUCTION ..ttt et e et e e 7
2.2, CONCEPLS ..eveeiet ettt ettt ettt 7
2.3. Creating aNew Talleoovunii e 7
2.4. Populating @ Table With ROWSccoiiiiiiiiiiieii e 8
25, QUEYING A TaADIE ...eiii e e 9
2.6. J0iNS BEWEEN TabIES ..ooviiiiiii e 11
2.7. AQOregate FUNCLIONScuuuneiiiii ettt e e e e 13
2.8 UPELES ...t 15
2.9, DEBLIONSeeiieieeeeie e 15
3. AGVANCED FEAIUMNESc.vei ettt ettt et e e s 16
130 B [L oo (8 1o o EO PP TOP PP 16
B2, VIBINS ettt 16
3.3 FOrEIgN KEBYS ..ot 16
B4 THANSACHIONS ...eeiti et ettt ettt ettt e e e e e e et e eene 17
3.5, WINAOW FUNCHIONSuiiiiii et 19
3.6, INNEITEANCE ...t e 22
7. CONCIUSION ..ttt et e e et eeena e 23
[1. The SQL LBNQUAJE ... eeeitieeeeite ettt ettt et e et e et e e e e et eeenaa s 24
4. SQL SYNEBX +evteeeetiee ettt e ettt e et e et et et e et e et e e e e e e e e aean 32
A1, LeXiCal SHUCKUMEcevveeieii ettt eaeas 32
4.2, ValUE EXPIrESSIONS ... eeieiieeeeiti e ettt ettt e et e e e 41
4.3. CaliNg FUNCLIONS ...ttt 55
5. Data DEFINITION ...ceeviiiiii e et et e 58
5.1 TADIE BASICS vt 58
5.2. DEFAUIT VAIUBS ...t 59
5.3, CONSITAINTS ..ttt ettt et e e e e e e 60
5.4, SysStemM COIUMNS ...ttt 68
5.5. MOdifying TableScoiiiiieii e 69
5.6, PrIVIIEOES ... e 72
5.7. ROW SeCUrity POIICIES ...ccevuniiiiii e 73
5.8, SCREMAS ... 79
5.9, INNEITTANCE ... e e e 84
5.10. Table Partitioningccuuuiiiiiiieiiii e 87
511, FOrEIgN DaA ... oeeeeiiieeeeii et 101
5.12. Other Datahase ODJECEScvivviieiiiii e 101
5.13. DependenCy TraCKingoeeeeueieiiiii et 101

PostgreSQL 11.15 Documentation

6. Data ManipUlationcccouuieiiiieii e e e e e e e e e 104
Lo 1 == g To [- - PN 104
(S 1o = 1] oo J T - L 105
(SRR D= 1= (] ool D - LN 106
6.4. Returning Data From Modified ROWSc.ccooiiiiiiiiiiicii e 106

2O N = 1= P 108
48 T @ = 4T 1 PP 108
7.2. Tahle EXPrESSIONSciviieiii e et e e e e e e e e e eaa s 108
7.3, SEIECE LISIS 1iiiiiiieiiiii ettt 123
7.4. CombiNiNG QUETESc.uuiiiiiieiiie e e e e e e e e e e e e aaaas 125
7.5. SOMING ROWS ...t e e e e e e e e e e ees 126
T76. LIM T and OFFSET ..oovniiiiiiiiieeiiie e e e et e eeeai e 127
T.7. VALUES LISES ittt e et e e s 128
7.8. W TH Queries (Common Table EXPreSSioNS)cc.uvevvnieiiiieeiiieeiiieeeieeeinns 128

S T DT = T Y/ o1 PP 135
8.1 NUMEIIC TYPES . tttiitiiee i ettt et et e e e e e e e e e e e e et e e et e e ean e eaes 136
8.2, MONEAY Ty DS ittt ittt 141
LI @ o= = Tot (= G Y/ o= PPN 142
8.4. BiNary Dafa TYPES c.uuuiiiieiii e et et e e e e e e e e e e e e e eeaens 144
8.5, DaAE/TIME TYPES civtuiiiieiii et et et e e e e e e e e et e et e et eeaanas 146
S = T To = g N Y/ o 155
8.7. ENUMEIAEd TYPES oovuiiiiieiii et ettt e e e e e e e e e e e e aans 156
8.8. GEOMELNIC TYPES ... civtneiiieiiii e et e et e e e e e e e e e e e e e e e et e et e e aaeeaens 158
8.9. NEtWOrK AdAreSS TYPES ..ovuueiiieiii i eeiiee et e e e e e e e e e e e e e e e aneees 161
8.10. Bit SIHNG TYPES .nniiveieii ettt et e e e e e e e e e eees 163
8.11. TeXt SEACH TYPES . oeen ittt e e 164
B.12. UUID TYPE - ieiitiieeeiit ettt ettt ettt e e et e e e et e e e eaanaeeees 167
ST Q1 R 1Y/ o= PP 167
ST N S @ N Y/ o=~ ST 169
S I N = Y P 176
8.16. COMPOSITE TYPES vvuteiitneeiieeei e eie e e e e et e e et e e et e e et e et e e et e e e aaeeeaneeeen 186
8.17. RANGE TYPES ..ttt 192
8.18. DOMAIN TYPES ..vuiitiieiii e et e e e e e et e e e e e e e et e et e e st e e e e e eaneeees 198
8.19. Object 1dentifier TYPES ..vuiiiii e e e e 198
8.20. PO SN TYP oottt 200
ST T e =0 (o 0l N o1 PN 200

9. FUNCLIONS @N0 OPEIAIOIS ... cvvueiiiieieiee e ee e e e e e e e e e e e e et e et e et e e e eeens 202
1< I oo [or= B @ o= = (] £ 202
9.2. Comparison FUNctions and OPEratorsvevvuneeiineeiiiieeiieeeie e e e eeens 202
9.3. Mathematical Functions and OPEratorscccuveevieeiiieeiieeeiiee e eeaeeeens 205
9.4. String FUNCtions and OPEratorsSccuueeriieiiieeiiiee e e e e e eeaneeeees 209
9.5. Binary String Functions and OPEratorscccuvevieeiiieeiieeeiieeeeieeeaneeeens 223
9.6. Bit String Functions and OPEratorseveeuuieeriieeiiieeeiieeeieeeeeeaneeaens 225
A = 1 (= ¢ TN\ (o 11 o P 226
9.8. Data Type Formatting FUNCLIONSccoviiiiiiiiin e 241
9.9. Date/Time Functions and OPEratorsc..oveveueeeiieiiiieeiie e e e eeaeeeees 248
9.10. Enum SUpPOrt FUNCLIONSccuuiiiiieeiiecee e e e e e e 262
9.11. Geometric FUNCtions and OPEratorsSceevvuieeiiieeiieeiii e e e e e eaanaes 262
9.12. Network Address Functions and OPEratorseeevuvevuiieeiiieeiiiieeiieeeaneens 267
9.13. Text Search Functions and OPEratorscoovvvveiiieeiiiieeiieeeeieeeei e eieeeen 269
9.14. XML FUNCLIONSeiiiii ettt e et e e e e e e 275
9.15. JSON Functions and OPEratorscuueeeuuieiiiieeiieeeiieeeiee e e eee e e e eannas 289
9.16. Sequence Manipulation FUNCLIONScoovviiiiiiiieiiiieceee e 297
9.17. Conditional EXPreSSIONSuueviviiiiieiiieeeieee e ee e e e e s e e e e 300
9.18. Array FUNCtions and OPEratorsScc.ueeuueeiinierieeriiieeiee e eaieeeaneeeens 303
9.19. Range FUNctions and OPEratorscc.uveivieeiieeiii e e e e e e e eaen 306
9.20. AQQregate FUNCLIONSccuuiiii i e e e e 308
9.21. WINAOW FUNCLIONSuuieeiiiii e e e e 315

PostgreSQL 11.15 Documentation

9.22. SUDQUENY EXPrESSIONS ...vuuciiineeeieiii e e et e e et ee e e e e s et e e et e e st e e eeaneenen 317

9.23. Row and Array COMPAIiSONSevuuieiiieeiiieeeieesteesieeestneeatneeeteesanaaees 320

9.24. Set RetUrNing FUNCLIONSuiiii i e e e 323

9.25. System Information FUNCLIONScccovuiiiiiiiiiii e 326

9.26. System Administration FUNCLIONScouuiiiiiieiieeii e 342

9.27. Trigger FUNCHIONS .. .ouuiii et e e e e e e e et eeaaeees 359

9.28. Event Trigger FUNCLIONScouuiiiii e e e e 359

O Y oL o017/ = o] o PN 363
FO. 1. OVEIVIBIW Luueiiiii ettt e e et s e e et s e e e et a e e e et aeeeeatnaeaeees 363

J0.2. OPEIAIONS ittt ittt 364

10.3. FUNCLIONS ...ttt e et e e e et e e e e et e e e eetaaeeeee 368

O R 1 oI (o] - o = 372

10.5. UNI ON, CASE, and Related CONSIIUCESuuveviiiiieiiiiieeceiie e 373

10.6. SELECT OULPUL COIUMNSvvueeiiiieeeeeii e et e ettt e et e e 374

T o (== USSP 376
00 O 1 oo 0 1o ISP 376

2 1 o L= G Y/ o === 377

11.3. MUItiCOIUMN INAEXES .. .ceveiiieeiei e 379

11.4. Indexes and ORDER BYcicvuiiiiiiiiiiieiiiii ettt e s 380

11.5. Combining MUltiple INAEXESoiivnieiie e 381

12.6. UNIQUE INAEXES ...vneeeeeei et e e e e e e e e e e e e 381

11.7. INAEXES ON EXPrESSIONS ...vuieiieeiiiieiii e e e e ete e e e e e e e e e e e e e eaneeeanees 382

11.8. Partial INAEXES .. .ceevviieeiiii e eaens 382
11.9. Index-Only Scans and Covering INdeXEScoevvvieiiiiieiiieeiie e eeais 385
11.10. Operator Classes and Operator FamilieSccceevviiiiiiiciiin e, 388
11.11. Indexes and CollationSoovvuuiiiiiiiiiiee e 389
11.12. Examining INdeX USAQgEuviuniiiiieiii e e e e e e e e 390

N T L = A= o 391
2 O 1 1 oo (0 1o SO SUPPTTRSPP 391

12.2. TablesS @and INAEXEScocvvuiiiiiiie e 395

12.3. Controlling TexXt SEarchccuviiiiiiiii e 397

12.4. Additional FEAIUMESuuiiiiiiii e 404

D25, PaISErS .. ettt ettt ettt ettt 409

12.6. DICHONAITES ...ueieiiii et e ettt e e e e e et e e et e eeera s 411

12.7. Configuration EXamMPIEcouiiiiiiiiii e 421

12.8. Testing and Debugging Text SEarchcooovviveiiiiiiii e, 422

12.9. GIN and GiST INAEX TYPES .evvuneiiiiiiietiiiie et et et e et eenenes 427
2250 O T 1= o ST o) oo o 427
2 T R 1] = o) PP 430

13. ConCUrrenCy CONLIOlccee e e r e e e e e aaas 432
G35 I 1 11 oo [0 1o PP 432

13.2. Transaction ISOIAONccvuvnieiiiii e e 432

13.3. EXPlICIt LOCKING «.cvvueiiieeii e e e e e e e e e e eeen 438

13.4. Data Consistency Checks at the Application Levelcccccocoviviiiiinnn. 443

135, CAVEALSceeeeeeite et 445

13.6. Locking and INAEXESvvvniei e 445

14, P OIMANCE TIPS coivniiiieii ettt e e e e e e e e e e e e e et e e et e et e e aa e eens a47
14.1. USING EXPLAIL N Looi e 447

14.2. Statistics Used by the Planner ... 458

14.3. Controlling the Planner with Explicit JO N ClauseScc.oeevvvieviinieennnnnns 462

14.4. Populating @ Databasecc.ueiinieiiiieeie e e e e e e 464

14.5. NON-DUrable SEttiNGScvvvniiiieeii e e e e e e 467

15, Parallel QUETY ...ouniiiiii e e 468
15.1. How Parallel QUEry WOrKScovviiiiii e 468

15.2. When Can Parallel Query Be USed?ocuvviiiiiiiiiiiiiiiec e 469

15.3. Parallel PIanscocovuniiiiiiie et 470

15.4. Parallel SEfEtYooveeeiiieiiis e 472

RIS o V7= g AN 41T o T (= (o o SO 474

PostgreSQL 11.15 Documentation

16. Installation from SOUrCE COUEuuiiiiiiii e e e 480
T S o g Y= £ o] o PP 480
16.2. REQUITEIMENES ..uuiii e e e e e e e e e e e e e e e et e e aaeeeanas 480
16.3. GELtNG ThE SOUICEciiiciii e e e e e 482
16.4. InStallation ProCeAUMEivieeiiiee e 482
16.5. Post-INstallation SEIUPc.ueiveicii e 497
16.6. Supported Platformsoiiiiiiiii e 498
16.7. Platform-specific NOESccvuiiii e e 499
17. Installation from Source Code 0N WINAOWSoveiiiiiiieiiiiiie e 507
17.1. Building with Visual C++ or the Microsoft Windows SDK 507
18. Server Setup and OPEratioNocvuueiiiierii e e e e e 513
18.1. The PostgreSQL USEr ACCOUNLcvuuiiieiiieeeieeeiee e e e et e e e e eaaeeaens 513
18.2. Creating a Datahase CIUSLEYovvviiiiiieciie e 513
18.3. Starting the Database SErVErccouviiiiii e 515
18.4. Managing Kernel RESOUICEScovviiii i e e e e e e 518
18.5. Shutting DOWN the SEIVErcovuiiiiiic e 527
18.6. Upgrading a POStgreSQL CIUSLErcccvueiiieiiiieeii e ee e e e 528
18.7. Preventing Server SPOOfiNguuevereeiiieeiii e e e 531
18.8. ENCryptioN OPtiONSccvuiiiiiieii e e e e e e e e eaas 531
18.9. Secure TCP/IP Connections with SSLccoviiiiiiiiiiieceeee e, 532
18.10. Secure TCP/IP Connections with SSH Tunnelsccovvvveviiiiiiiinneeenn, 536
18.11. Registering Event Log on WINOWSoveiiieiiiieiiii e eeeeaiees 537
19. Server ConfigUIAtioniiiiieii e e e e e 538
19.1. SEtting ParamMeterSivvi e e 538
19.2. Fil@ LOCAIIONS ...uueeeieie et ettt e et e et e e et a e e eeaaneeeees 542
19.3. Connections and AUtNENtICALTIONviiiiiiieiie e 543
19.4. Resource CoNSUMPLIONcovuiiiii e eeei e e e e e e e e e e e et e e e eanas 548
19.5. WrIt€ ANEAH LOQ ..vviviiiii e 555
RS S = o) 1 o o 561
19.7. QUENY Planningccouniiiii i 566
19.8. Error Reporting and LOGGiNGcvuuvernieeiieeiieeiieeeiieeeieeeaeesinneeenneeennnas 572
19.9. RUN-TIME SEALISHICS ..oevevvieeeeii e e s 582
19.10. AULtOMALIC VACUUMINGivveeiieeiiiieeie e e e e e e e e e et e s e e et e eeaneees 584
19.11. Client Connection DEfALISocvevuiieiiiiiii e 585
19.12. LOCK MaNagemeNtoviinieiiieeiieeieee e e e e e et e e e e e e e e st e e et eeaneens 594
19.13. Version and Platform Compatibilitycccoeeiiiiiiiiiiiiiiicin e, 595
e e o T P | o 597
19.15. Presat OPtiONS ...ccuuuiiiiieiiiieeiie e e e e e e et e e e e e e e e e et e e et e e et e e e eeanns 598
19.16. CUStOMIZEA OPLIONSivviieieei e e e eaa s 599
19.17. DEVEIOPEr OPLIONSvuuiiiieiiiieiiii e e e e e e e e e e e e e e e eaeans 599
19.18. SN0t OPLIONS . .cvvueei e e e e e e e e e e e e e e e e e e e aaaaes 603
20. Client AUtNENLICALIONuueieiiis e e e e e 604
20.1. The pg_hba. conf Filecccooiiiiii e 604
20.2. USEr NAIME MBS ..ottt et 611
20.3. Authentication MethOSviiiiiiiiiii e 612
20.4. Trust AULNENEICAEIONvvuiiieii e 613
20.5. Password AUtNentiCationcouuuiieiiiiiie e 613
20.6. GSSAPI AUtNENLICALION ...cevvviieiiiii e 614
20.7. SSPI AUNENtICALION ...eevviieeeiii e 616
20.8. Ident AULhENTICAIONccevveeeeeii et e e e e eei e eaens 617
20.9. Peer AULNENLICALIONcvieviiieiieii e 617
20.10. LDAP AULhENtiCALIONeiiveiieieiise ettt e e 618
20.11. RADIUS AUtNENtICALION ...ivvveieiiiie e 620
20.12. Certificate AUENICALIONuiiiiiiie e 621
20.13. PAM AUtNENLICAION ...ceiiviieeieis e 622
20.14. BSD AULNENLICAIONeeeeviiieeiiii et e et e e e e e et e e eenenaeeees 622
20.15. Authentication Problemsviiiiiiiiiiiiii e 623
21, DAtahase ROIESciveiiiee e 624

Vi

PostgreSQL 11.15 Documentation

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

21.1. Datahase ROIESuuvviiieeiiiiicee et 624
21.2. ROIE ALIDULES ... et eaees 625
21.3. ROIE MEMDBErSNIP . ive i 626
21.4. Dropping ROIESieiiee e 628
21.5. DEFAUIT ROIES ..uvuiiiiceiieeeee et e e e e e e e e aanee 628
21.6. FUNCLION SECUMLY .uuuiiiiieii e e e e e e e e e e e e e et e e aa e eens 629
Managing Databasesccvueiiii i 631
22,1, OVEIVIBIW vttt e e et e e e e e e e e et s e e e e e e e e saaa e e aaeeaeeannnes 631
22.2. Creating @ Databasecccvuieiii i 631
22.3. Template Databasesvevvnieiiiccie e 632
22.4. Database COonfigurationcc..eeiiiiieiieeii e e e e e e et e e e aes 633
22.5. Destroying a DatabhaSecccvuiiiiiiiiiie e 634
A T I o = o o = S 634
(oo 112 1o PP 637
PG T I o oz L= IS o] oo o AP 637
23.2. Coll@tion SUPPOIT «....cieieeiiee e et e e e e e e et e et e e aaeeeens 639
23.3. CharaCter Set SUPPOITciii e e e e e e eees 645
Routine Database MaintenanCe TasKSveeeeurieriiiiiieeeiinee e et e e eein e e eeineeeeens 652
24.1. ROULINE VACUUMING ..uuiiitieii e ee e et s e e e e et e e et s e e eeeaaaeeat e eeaneaennas 652
24.2. ROULINE REINAEXING ©..cvvueiiiieiii e e e e e e e e e e e e e eeaens 660
24.3. Log File MaNteNanCeuuevieeiiii e e e e e e e e e e eeen 660
Backup and RESIOIE ... cuuu i e 662
25. 1. SOL DUIMIP .otttiiiieeeie ettt s s e e e ettt e e e e e e e e et e s e e e e e e e aaaaan s e eeeeaeaenes 662
25.2. File System Level Backupoevuiiiiiiiiiiicie e 665
25.3. Continuous Archiving and Point-in-Time Recovery (PITR)cccvveenn.. 666
High Availability, Load Balancing, and Replicationcccoeevviiiiiiieiiinecinens 678
26.1. Comparison of Different SOIUtiONScccuiviiiiieiiii e 678
26.2. Log-Shipping Standby SErVErScccuiiiiiieiii e 681
26.3. FallOVEL ..oiiiiiiiii e e aaaaaaae 690
26.4. Alternative Method for Log Shippingcccvveviiiieiiiicii e, 691
26.5. HOt StANADY ..vvvviieeiiiiiiiee e e e e e e e e e e e e e e aaaae 693
RECOVErY CONfIQUIAIONciveciii e e e e e e e e e e e e 700
27.1. Archive RECOVENY SELINGS ...uovvvniiiie e 700
27.2. Recovery Target SEtNGSu.evvrneeiiieiiii e e e e e e e e e e e e e eeans 701
27.3. Standby Server SELNGS ...vuvev e 702
Monitoring Database ACHIVITYcouvneiiicii e 704
28.1. Standard UnNiX TOOIS ..euuuuieeiiiieeiiii ettt 704
28.2. The StatisticsS COHECONuiiiiii e 705
28.3. VIEeWING LOCKScouiiiiiiii e e 737
28.4. Progress REPOMINGuvvvuieiii e e e e e e e e e e e e e e e e aaeees 737
28.5. DYNAMIC TIaCiNG ...vuueiiieiiiieiiiie e e e e e e et e e e e e e e e e e e e e e aaeeanns 739
MONItOriNG DisSK USBOEcivviiiiii e e e e e e e e e et e eeanaees 750
29.1. Determining DiSK USAQEuiivniiiiieiiieeie e ee e e e e e et e e 750
29.2. Disk FUIl FaIlUIccceeiieiiie e eeeaaaaes 751
Reliability and the Write-AhEad LOgccvuiiiiiiiiiii e 752
O = = T] 1 YRR 752
30.2. Write-Ahead Logging (WAL) ...oouiiiiii e 754
30.3. ASynchronous COMMITveiinieiiiieei e e e e e e e e e e e e e 754
30.4. WAL Configurationccuueeiuuieiiieeiiie e ie e e e e e e e e e et e e et e e eanaeeens 755
30.5. WAL INEEIMEIS ..vuiiiiii ettt e e et e et e e et e eeees 758
oo Torz I == o) Lo 1 Lo o RN 760
T . o o= 1o o PP 760
G IS U 1= v] o)1 Lo o P 761
3 G I 0o 1T £ PP 762
G I (== Ao o LS P 762
315, ATChITECIUIE ...t 763
13 ST 1 o g (o oo [764
S o) Y SSPPPRRN 764

vii

PostgreSQL 11.15 Documentation

31.8. Configuration SEINGSocvuniiiiieiiie e e e e e 764

31.9. QUICK SELUP ..ueieeiii et 765

32. Just-in-Time Compilation (JIT) ...cuueeeeniiiii e e e e e e 766
32.1. What is JIT COMPIHEHONToeiniiiiiciie e e e e e 766

32.2. WHEN 10 JIT 2 oottt e e e et eeaees 766

IC2C T @0 011 To 1= 1 (o] o U 768

324, EXEENSIDIITY ooeeveieeeii e 768

T B L= | (= o T 1= = 770
33.1. RUNNING the TESES ...iviiciii e e e e e e 770

33.2. TSt EVAIUBLION ..vuieeiiiieeee et 773

33.3. Variant Comparison FilESccouiiiiiiiiiiici e 776

T A e = £ S 77

33.5. Test Coverage EXaminalioncc.uvveiuiieiiieiiii e e e e e e e eanaeeeen 777

IV, Clent INEEIACES ...vu i e 778
34, 1HDPG = C LIBrary ..ooveii i 783
34.1. Database Connection Control FUNCLIONScccvviiiiiiiiiieiiie e, 783

34.2. Connection StatuS FUNCLIONSuuiiiiiiiieeeiii e e e 796

34.3. Command EXeCUtion FUNCLIONSooeviiiiieieiiiieeeeiiie e 802

34.4. Asynchronous Command ProCESSINGcuuevrrieiiieriiieeeiieeeiieesiieeaieeannens 818

34.5. Retrieving Query Results ROW-BY-ROWccccoieviiiiiiiici e, 822

34.6. Canceling QUENES IN ProgresSuuevuuneiiiiieeiieeeieeee e e eie e e e e e e eeens 823

34.7. The Fast-Path Interfacecoouviiiiiiiii e 824

34.8. Asynchronous NOEIfICatioNcccuviiiiiiiii e, 825

34.9. Functions Associated with the COPY Commandccccvvveveiiieeeiiinnnennns 826
34.10. CONLIOl FUNCHIONS ...vuieeiiiiieee et e e et e e e e e e eea e e eenes 830
34.11. Miscellaneous FUNCLIONSc.uuiiiiiiiiee e e e e e 832
34.12. NOLICE PrOCESSING ©..cvvtuiiineeiieeeie e e e e e e et e e et e e st e e et e e et e s e eaneenens 835
34.13. EVENE SYSLOIM ..uuiiiiiiii et e e e e e aee 836
34.14. Environment VariableSviiiiiiiiiiii e 842
34.15. The Password FIlecoovuuiiiii e 844
34.16. The Connection Service Fileoviiiiiiiii e 844
34.17. LDAP Lookup of Connection Parameterscceceuvveviiieeiiieeiiieeeiieeeineens 845
3418, SSL SUPPOIT ..ttt 846
34.19. Behavior in Threaded Programscoceuieiiiieeiiiiiiii e e e 850
34.20. Building [ibpg Programscouiiiiiiiiii e 850
34.21. EXAMPIE PrOQramSuueiiiieiiiieeii e e e e e e e e e e e e et e e e e eans 852

LS T IR (0 (=l @) o[ox P 863
11300 I g1 o (8o ' o PP 863
35.2. Implementation FEAIUIESccvvviiiii e 863

35.3. ClENt INtEIfACES . .cevvviieeeii e eees 863

35.4. Server-Side FUNCLIONSuuiiiiiiii e e et e e e e eees 867

35.5. EXAMPIE Programc.uuiiiiieiii e e e e e 869

36. ECPG - Embedded SQL iNC ..ouvuiiiiiiii e 875
G T N I =T o o= o | 875

36.2. Managing Database CONNECLIONSccvuuiiiiiieiiiieiii e e e e e e e 875

36.3. Running SQL CoMMANGSccouuieiiiieiiiie e e e e e eeens 878

36.4. Using HOSt VariableScovuiiiiiiii e 881

36.5. DYNAMIC SQL .oeviiiiiiiiiie e 895

36.6. POLYPES LIbraryoeeeeiiii i 897

36.7. USING DESCIIPLOr ATEBScivvieiiieiiiiee e ee e e e e e e e e e e e e e e eeaes 911

36.8. Error Handlingccoueiiniiiii e e e e e e e 924

36.9. PreproCessor DITECHIVESu.iii i e e e e e e e 931
36.10. Processing Embedded SQL Programscc.uvevuieiiiieiiieeeiiieeiieeeeieeennn 933
36.11. Library FUNCLIONSuiiiiicii e e e 934
36.12. Large ObJECEScvueiiieeii e et e e e e e e e e 935
36.13. CH+ APPHCALIONS .. cevveiii e e 936
36.14. Embedded SQL ComMMandScouuieiiiieiiiieeiieeci e e e e e 940
36.15. Informix Compatibility MOdecoeeviiiiiiiii e, 964

viii

PostgreSQL 11.15 Documentation

TS S 101 1= 11 7= SRR 979
37. The INformation SChEMAuiiiiii e 982
37.1. The SChEMA ... e 982
7.2, DAA TYPES .en ettt ettt ettt 982
37.3.informati on_schema _catal og nameccoocceveiiiiinieiee e, 983
374.adm nistrable role authorizationsccooeeiiiiiiiiiincnnnnn, 983
37.5.applicabl @ rol €S .o 983
7.6, At LT T DUL ES oo 984
37.7. Char @Ct BF _SEL S it 987
37.8.check_constraint_routine_usageccooccoeveviiieiiincciiniecieeeinnn 988
37.9. CheCK_CONSErai NES .o 988
37.10. COI T @t T ONS coviiieiiiii e 989
37.11.col lation_character_set _applicabilitycccooriiiniinninnnnn. 989
37.12. cOl UM_dOMBI N_USAQE ..eeevniiiiiieiiie e e e e et e e 989
37.13. COl UNM_OPL i ONS oiiiiii e 990
37.14. Ol UMM_Pri Vil €0ES i 990
37.15. COl UNM_UAL _USAQE .uiiiiiieiiii e e e e e e et e e e e 991
37.16. COl UNMMIS Lottt e e 992
37.17.constrai Nt _COl UNTM_USAQE ...uuiiivniiiiiieiiie e e e e e e e eaaee s 996
37.18.constrai nt_tabl e _USagecocceviiiiiiiiiii e 997
37.09.data_type priVvil €0es .o 997
37.20. dOMBI N_CONSE T A NE'S touiiiii i e e e 998
37.21. dOMBI N_UAL _USAQE .iiiiiieiii e e e e e 998
I 2 s [o] 11 U o E- SO 999
37.23. €l BIMBNE L Y PES it 1002
37.24. €nabl €d 0l €S ..o 1004
37.25.foreign_data wrapper_Optionsccccooveiiiiiiiiiiiin e, 1004
37.26. forei gn_dat @ W apPer'S .oiiiiiiiiii e 1005
37.27.f0orei gn_Server_Opti ONS ..ooiiiiiii i 1005
37.28. f OF BI g _SBI VI S 1oiiiiii i et ee it e e e e e e e e e aaaees 1006
37.29.foreign_table Optionsccooiiiiiiiiiiii 1006
37.30. forei gn_tabl €S .o 1006
37.3L. KEY_COl UM _USAQE ..iiivieiiiieiiii e e e e e e e e e et e e e eaaes 1007
37,32, PAI AR B S ittt 1008
37.33. referential _constrainNtscccooeiiiiiiiiin i 1010
37.34. 10l €_Col UM _grant's ..ooooiiiiiiiiii e 1011
37.35. 10l € _routine_grants ...cooeiiiiiiiiii i 1011
37.36.r0l e tabl e grantsoccooiiiiiiiii 1012
37.37. 10l €_UAL _grant'S ..oooiiiiiiiiii e 1013
37.38. 10l €_USAQE _grant S ..oiiiiiiiiiiie e e 1013
37.30. 10Ut i NE_PriVil BOES i 1014
A o U o 1= PP 1015
3741, SCREMAL @ ooievei i 1020
Y T =To [DT =] [o =3 R PP 1020
37.43. Sl _F AL UIMNES iriiii i 1021
3744.sql _inmplenmentation info ..o, 1022
37.45. SOl | @NQUAGES .euiiviiiiiii e 1022
37.46. SOl _PACKAGES ovviiiiiiii e 1023
B7A47. SOl PAIt S oo 1023
37.48. SOl ST ZI N i 1024
37.49.5ql _Si Zing Profiles i 1024
37.50.tabl e CoNStrai NtS ..o 1025
3751 tabl @ Pri Vil @0ES . 1025
752, 1AD] €S v 1026
3753 tFANST OF ITB oo e 1027
3754.triggered _update Col UMS ..ooccoiiiiiiiiiiec e 1028
A ST A g e [0 =] =T 1028
37.56. Udt _Pri Vil €0ES oo 1030

PostgreSQL 11.15 Documentation

37.57. USAQE_Pri Vil BOES i 1030
37.58. user _defined _tYPeS .o 1031
37.59. user _mappi NG_OPLi ONS ...iiiiii e 1032
37.60. USEI IMBPPI NUS tuueiitiiiiieeii et e et e e e e e e e e e e e e st eeaneeaanaees 1033
37.61. Vi W _COl UMMN_USAQE .ivvniiiiiiiiiie e e e e e e e e 1033
37.62. Vi EBW T OUL i NE_USAQE ..vuiiiiiiiii e e e e e e e e e e 1034
37.63. view tabl @ USAQge ..occoiiii i 1035
704, Vi BWS ooiiiieiiii ettt e 1035

AV = L= . 0o = 0 1 411 oo P 1037
38. EXIENAING SQL ...evviiiiiiii ettt 1042
38.1. How Extensibility WOrksSc.cooiiiiiiiiiiici e 1042

38.2. The PostgreSQL TYPe SYSEM ...ouuiiiiiiii e 1042

38.3. User-defined FUNCLIONSuuiieiiiiiiciiiis e 1044

38.4. User-defined ProCEAUIESuiiiiiiiiieiiiii e 1044

38.5. Query Language (SQL) FUNCLIONSccvvuieiiiieii e ee e e, 1045

38.6. Function Overloadingcooveviiiiiiieiie e 1060

38.7. Function Volatility CategOori€suieiiuieiiiiieiiieeeiieeeie e e e e e 1061

38.8. Procedural Language FUNCLIONSuveiiiieiiiieeii e ee e e e 1063

38.9. INternal FUNCLIONSuuiiiiiiiiiiii et 1063
38.10. C-Language FUNCLIONSccuuieiiii e e e e e e eanes 1063
38.11. User-defined AQQregatescvuniiiii e e e e aas 1085
38.12. USer-defiNed TYPES ..u.iven it e e e e e e 1092
38.13. User-defined OPEratorsSccvuuieiiiieeeiieeiiiie e e e e e e e e e e e eanes 1096
38.14. Operator Optimization INfOrmMationcceceviieiiiieiii e, 1097
38.15. Interfacing EXtensSions TO INAEXEScvvvnieiiiiiii e 1101
38.16. Packaging Related Objects into an EXteNSioncccovevvveviiiieiineennnn. 1114
38.17. Extension Building INfrastruCturecocooveeiiiiiiiiecie e, 1122

11 T I o (o = N 1126
39.1. Overview of Trigger BEhaviorccoceviiiiiiiiiinci e 1126

39.2. Visibility of Data ChangeSvvvuniiiiieiiieee e 1129

39.3. Writing Trigger FUNCLIONS IN Covviiiiiiii e 1129

39.4. A Complete Trigger EXampleccoeuneiiiiiiiii e 1132

O V= o | T (o (= N 1136
40.1. Overview of Event Trigger BENaVIorccoiviiiiiiiiieie e 1136

40.2. Event Trigger Firing MatriXooovvuiiiiiiiiiiii e 1137

40.3. Writing Event Trigger FUNCEIONS IN Covviiiiiieccieece e, 1142

40.4. A Complete Event Trigger EXampleooviiiiiiiiiiiiiiece e 1143

40.5. A Table Rewrite Event Trigger EXamplecccoovviiiiiiiiieeiiieceeeeeeen, 1144

A1, The RUIE SYSLEIM ...ttt e e et e e e et e e e eaa e eeeees 1146
A1.1. ThE QUENY TIEE .uuiiiiiieii et e e e e e e e e e e e et e e e e aaeees 1146

41.2. Views and the RUIE SYSIEMoovniiiiiii e 1147

41.3. MAEriaiZed VIBWSoieeiiiieeii et e e 1154

41.4. Rules on | NSERT, UPDATE, and DELETEcccviiiiiiiiinieiiiieeeceii, 1157
41.5. RUIES aNd PrIVIIEES .. .ccvneii e 1168
41.6. Rules and Command SEALUSc.uuveriiiiieeieiiii e e e 1170

41.7. RUIES VErSUS TIIQOENS covueiinieeiiieeeieeee e e e e e eae e et e e e et e e ete e et aesaaeeaanaees 1170

42. Procedural LanQUABOESu.evvunieeieeiiieeie e et eeeeteeeae e st s e et e e st e estnaesanesannaens 1173
42.1. Installing Procedural LangUagEeSccuovvviieiieeiiieciineee e e e 1173

43. PL/pgSQL - SQL Procedural LangUagecccuuvviinieiiieeiiiieciieeeeeei e e e 1176
T I @Y= VPSPPSR 1176
43.2. Structure of PL/PGSQLvvviieiieeie e 1177
A3.3. DECIArAHONS .. e 1179
B d o (== 0] 1 1184
43.5. BASIC SEALEIMENESuieiieiiiiee it e et e et et e e e e e e e eaeens 1185

43.6. CONLTOl SITUCLUMNES ... iieeii ettt e e e eanans 1193
A O 1 o = T PP PTP TP 1207
43.8. TransaCtion Managementceeiuieeiiieeiiiiee e e e e e e e eanes 1213

43.9. Errors ant MESSAgESuuuevvneiiieeiiiee e et e e e e e e e e e et e e et e e e e aanaes 1214

PostgreSQL 11.15 Documentation

43.10. Trigger FUNCLIONSccuuiiii e e et e e e e e e e e eaaeeees 1216
43.11. PL/pgSQL Under the HOOdccoviiiiiiiiiicicc e, 1225
43.12. Tips for Developing in PL/PGSQLuovvvniiiiiciieee e, 1228
43.13. Porting from Oracle PL/SQLccovuiiiiiieiieeeee e 1231

44, PL/Tcl - Tcl Procedural LanQUagEcceuueiiieeiiieeiii e e e e e e e e eaae e 1241
Y I @Y= VPSPPSR 1241
44.2. PL/Tcl Functions and ArgumeNtSccuuveviiieiineeiiiieeiiee e eeei e eaeeeens 1241

44.3. Data Values in PLITCl ..o 1243
44.4. Globa Datain PLITCl ..ouuiiiiii e 1243

44.5. Database AcCeSS From PL/TCliviiiiiiiiii e 1244

44.6. Trigger FUNCLiONS iN PLITCl c.vnciinc e 1246

44.7. Event Trigger FUNCtions in PL/TCl ...vvivviiii e, 1248

44.8. Error Handling in PL/TCl ...oovniiiii e e 1248

44.9. Explicit Subtransactions in PL/TClccovviiiiiiiii e 1249
44.10. Transaction ManagemeNtooiviiieiiiieii e e 1250
44.11. PL/Tcl CONfigUIationoveueieiiiieeieeeei e e e e e e e e e e e e eeeen 1251
44.12. Tcl Procedure NEMESviiiiiieeiiii et e e e e e e e e 1251

45, PL/Perl - Perl Procedural Languageevvueeiinieiiiieeiieeeieee e e e e e e eeens 1252
45.1. PL/Perl Functions and ArgumMENESccuuieiuiieiiiieeeiieeeiieeeiieeaineenieens 1252

45.2. Data Values in PLIPErl ..o 1256

45.3. BUIlt-iN FUNCHIONS ...coeviiccc e 1256
45.4. Globa Values in PLIPENooiiiiiiiciei e 1261

45.5. Trusted and Untrusted PL/Per|oiviiiiiiiiiiiiiiie e 1262

N T o I = 4 B I T o L= 1263
45.7. PL/Perl EVENt TIIQOEIS . cvvueiiii e e e et e e et e s e e e e e e eens 1265
45.8. PL/Perl Under the HOOooviiiiiiiiiii e 1265

46. PL/Python - Python Procedural Languagec.oveviieiiieiiiiecieeeeeeeeeeaie e 1268
46.1. Python 2 vS. PYthOn 3ooii e 1268

46.2. PL/Python FUNCHIONSuuiiiiici e 1269
46.3. DAA VAIUBS ...t e 1270

46.4. ShaNG Dalal .. .ccvuiiiiieiiii e e 1276

46.5. Anonymous Code BIOCKSovvuuiiiiiiiii e e 1276

46.6. Trigger FUNCHIONSivviiii e e e e aaa s 1276

46.7. DAADASE ACCESSvvuieieiiiie et e et e e e e e e et e et eaaas 1277

46.8. EXplicit SUDLraNSaCioNSoovvunieiiieeii e e 1281

46.9. Transaction Managementoveiiiieeiiieeiiie e ee e e e e eanes 1282
46.10. Utility FUNCLIONSciiviiiii e e e e e 1283
46.11. Environment VariableScooviuiiiiiiiiii 1284

47. Server Programming INtErfaceooovviiiiiii e e 1286
47.1. Interface FUNCLIONS ... coieiii et eeeae e eees 1286

47.2. Interface SUPPOrt FUNCLIONScivieiii e e e 1320

47.3. Memory Managementc.vvuviuiiiiiieei e 1329

47.4. TransaCtion Managementveiuiieeeiieeiiie e e e e e e eanes 1339

47.5. Visibility of Data Changesccuuviiiiiiiiiiiii e 1342

A7.6. EXAMPIES ...iieiciiii e 1342

48. Background WOTKEr PrOCESSESc.uuiiiiieiiiiieiii e e e e e e e e e e e e et e e e e aanas 1346
L R T o= I D= wo o [o [P 1350
49.1. Logical Decoding EXampleScc.uiiiiiiiiiiicii e 1350

49.2. Logical Decoding CONCEPLSuueivuneeiiieiiiiieiiieeeii e e e e e e e e e eaaeens 1352

49.3. Streaming Replication Protocol Interfacecccoeevviiiiiiiiiiiiiiieeeieeenn, 1354

49.4. Logical Decoding SQL INtErfacecc.uveviiiiiiiiieiiiecie e 1354
49.5. System Catalogs Related to Logical Decodingcooeevvevvnieiiiieiinneennnn. 1354

49.6. Logical Decoding OUtpUt PIUGINScovviiiiieiiieciii e eei e 1354

49.7. Logical Decoding OUtPULt WIHLEISuevviiiiii e 1359

49.8. Synchronous Replication Support for Logical Decodingccoccvvneennnn. 1359

50. Replication Progress TraCKingciueieiiii i e e e e e e e e e eanee e 1360
VL REFEIBNCE ... ettt ettt et e e e e e e e 1361
S @ I o 410170 1366

Xi

PostgreSQL 11.15 Documentation

ABORT 1370
ALTER AGGREGATEoiiiiii e 1371
ALTER COLLATION ...ttt 1373
ALTER CONVERSIONciiiiiiiiiiiiiiic e 1375
ALTER DATABASE ... 1377
ALTER DEFAULT PRIVILEGES ..., 1380
ALTER DOMAIN .o 1383
ALTER EVENT TRIGGER ..ot 1387
ALTER EXTENSION ...oiiiiiiiiii e 1388
ALTER FOREIGN DATA WRAPPER ... 1392
ALTER FOREIGN TABLE ...t 1394
ALTER FUNCTIONooiiiiiiiiiii et 1399
ALTER GROUPoiiiiiiiii e 1403
ALTER INDEX ..ot 1405
ALTER LANGUAGE ...t 1408
ALTER LARGE OBJECT ..ottt 1409
ALTER MATERIALIZED VIEWoiiiiiiiiii e 1410
ALTER OPERATORoiiiiiiii e 1412
ALTER OPERATOR CLASS ... 1414
ALTER OPERATOR FAMILY ..o 1415
ALTER POLICY oo 1419
ALTER PROCEDUREocoiiiiiiiiii e 1421
ALTER PUBLICATION ..ottt 1424
ALTER ROLE .. .o 1426
ALTER ROUTINE ..ot 1430
ALTER RULE ... 1432
ALTER SCHEMA ..o 1433
ALTER SEQUENCE ..o 1434
ALTER SERVERcooii 1437
ALTER STATISTICS ... 1439
ALTER SUBSCRIPTIONcoiiiiiiiiiiiiii e 1440
ALTER SYSTEM ..o 1442
ALTER TABLE ..o 1444
ALTER TABLESPACE ... 1460
ALTER TEXT SEARCH CONFIGURATIONc.oiiviiiiiiiiiiiinciineci e, 1462
ALTER TEXT SEARCH DICTIONARY ..o 1464
ALTER TEXT SEARCH PARSERcociiiiiiii e, 1466
ALTER TEXT SEARCH TEMPLATE ...t 1467
ALTER TRIGGERciiiiiii e 1468
ALTER TYPE .o 1470
ALTER USER ..o 1474
ALTER USER MAPPINGooiiiiiiiiii e 1475
ALTER VIEW .o 1476
ANALYZE ... o 1478
BEGIN ..o 1481
CALL 1483
CHECKPOINT .ot 1484
LS .o 1485
CLUSTER ..o 1486
COMMENT Lo 1488
COMMIT e 1493
COMMIT PREPAREDcooviiiiiiiii e 1494
GO Y 1495
CREATE ACCESS METHODccuiiiiiiiiiiiici e 1505
CREATE AGGREGATE ...t 1506
CREATE CAST o 1514
CREATE COLLATION L..uiiiiiiiiiiiii e 1518
CREATE CONVERSIONouiiiiiiiiiiii e 1520

Xii

PostgreSQL 11.15 Documentation

CREATE DATABASE ..o 1522
CREATE DOMAIN ..ot 1525
CREATE EVENT TRIGGERooiiiiiiiiii e 1528
CREATE EXTENSIONooiiiiiiii e 1530
CREATE FOREIGN DATA WRAPPERccooiiii 1533
CREATE FOREIGN TABLE ... 1535
CREATE FUNCTION L..ooiiiiiiiiii e 1539
CREATE GROUP ..ottt 1547
CREATE INDEX ...t 1548
CREATE LANGUAGE ... 1556
CREATE MATERIALIZED VIEW ... 1559
CREATE OPERATOR ...t 1561
CREATE OPERATOR CLASS ...t 1564
CREATE OPERATOR FAMILY .o 1567
CREATE POLICY .o 1568
CREATE PROCEDURE ..ot 1574
CREATE PUBLICATION ...ttt 1577
CREATE ROLE ...ooiiii e 1579
CREATE RULE ..o 1584
CREATE SCHEMA ..o 1587
CREATE SEQUENCEcoiiiiiiiiiiic e 1590
CREATE SERVER ... 1594
CREATE STATISTICS ... 1596
CREATE SUBSCRIPTIONouiiiiiiiii e 1598
CREATE TABLE ... 1601
CREATE TABLE AS L. o 1622
CREATE TABLESPACEoiiiiii e 1625
CREATE TEXT SEARCH CONFIGURATIONcooviiiiiiiiiinciie e, 1627
CREATE TEXT SEARCH DICTIONARYooiiiiiiiiiiiiii e 1628
CREATE TEXT SEARCH PARSER ...t 1630
CREATE TEXT SEARCH TEMPLATE ..., 1632
CREATE TRANSFORM ..ottt 1633
CREATE TRIGGER ...t 1635
CREATE TYPE ..o 1642
CREATE USER ...coiiiiii 1651
CREATE USER MAPPINGoiiiiiiiiiii e 1652
CREATE VIEW Lo 1654
DEALLOCATE ..o 1659
DECLARE ..o 1660
DELETE . o 1664
DISCARD ...t 1667
DO 1668
DROP ACCESS METHODcoviiiiiiiiiiiiicii e 1670
DROP AGGREGATE ...t 1671
DROP CAST oo 1673
DROP COLLATION .ottt 1674
DROP CONVERSIONcouiiiiiiiiiiiii et 1675
DROP DATABASE ..o 1676
DROP DOMAIN .ot 1677
DROP EVENT TRIGGERcciiiiiiiiiiii e 1678
DROP EXTENSION ...coiiiiiiiiiic e 1679
DROP FOREIGN DATA WRAPPERccocoiiiiiii e, 1680
DROP FOREIGN TABLEooiiiii e 1681
DROP FUNCTION ..ottt 1682
DROP GROUPciiiiiiii e 1684
DROP INDEX ..ottt 1685
DROP LANGUAGE ... oot 1687
DROP MATERIALIZED VIEW ... 1688

Xiii

PostgreSQL 11.15 Documentation

DROP OPERATOR ...ttt 1689
DROP OPERATOR CLASS ..o 1691
DROP OPERATOR FAMILY oiiiiiiiii e 1693
DROP OWNEDcoiiiiiiiiiiiii e 1695
DROP POLICY ottt 1696
DROP PROCEDUREiiiiiiiiici e 1697
DROP PUBLICATION ..ottt 1699
DROP ROLE ..ot 1700
DROP ROUTINE ...coiiiiiiiii et 1701
DROP RULE ...t 1702
DROP SCHEMA ... 1703
DROP SEQUENCEcoiiiiiiiiii 1704
DROP SERVER ...t 1705
DROP STATISTICS ... 1706
DROP SUBSCRIPTION ..ottt 1707
DROP TABLE ... 1709
DROP TABLESPACE ... 1710
DROP TEXT SEARCH CONFIGURATIONooiviiiiiiiiiiiiii e 1711
DROP TEXT SEARCH DICTIONARY ..o, 1712
DROP TEXT SEARCH PARSER ..o 1713
DROP TEXT SEARCH TEMPLATE ..o, 1714
DROP TRANSFORM ...ttt 1715
DROP TRIGGERouiiiiiiiiiiii e 1716
DROP TYPE ..o 1717
DROP USER ... oot 1718
DROP USER MAPPINGouiiiiiiiiin e 1719
DROP VIEW ..ot 1720
END oo 1721
EXECUTE . 1722
EXPLAIN Lo 1723
FET CH 1728
GRAIN T 1732
IMPORT FOREIGN SCHEMA ...t 1739
INSERT .o 1741
LISTEN Lo 1748
LOAD o 1750
LOCK i 1751
MOVE .o 1754
NOTIFY e 1756
PREPARE ... 1759
PREPARE TRANSACTIONciviiiiiiiiii e 1762
REASSIGN OWNEDcocviiiiiii e 1764
REFRESH MATERIALIZED VIEW ..o 1765
REINDEX ... 1767
RELEASE SAVEPOINT ..ot 1770
RESE T e 1772
REVOKE ..o 1773
ROLLBACK o 1777
ROLLBACK PREPAREDoiiiiiiiiiiiic e 1778
ROLLBACK TO SAVEPOINT ..ot 1779
SAVEPOINT ..o 1781
SECURITY LABEL ..ooi e 1783
SE L ECT e 1786
SELECT INTO .oiiiiiiii e 1807
SE T e 1809
SET CONSTRAINTS ..o 1812
SET ROLE ..o 1813
SET SESSION AUTHORIZATION ..ot 1815

Xiv

PostgreSQL 11.15 Documentation

SET TRANSACTION ..ttt e e e e et e eeenaaeeees 1817
SHOW e 1820
START TRANSACTION ...ouiiiiiiiiieeeei e e s 1822
TRUNCATE ..ottt et e e e e e e e e e aaa s 1823
UNLISTEN L.t e e e et e e e e aa s 1825
L N I PP 1827
VACUUM L. e et e et e e e et e e e eatnaeeens 1832
VALUES ..ot e et aaae 1835
I1. PostgreSQL Client APPlICAIONSuuieiiiieeii e e e e 1838
CIUSLEIAD ..o e 1839
(o= 1= | o ISP 1842
(0= (S T PP 1845
01 0] 0o | o S 1849
(01 0] 11 P 1852
1< 0: oo PP PRPRPR 1855
PG _DESEDACKUD ... 1858
0701070 o TSN 1865
o700) o P 1881
o700 L0 o TP 1884
PO AUMPAIL ..o 1896
[T TS (== |V N 1902
[T T = o= AV L=V 1904
[oTo T (= o1/ oo o 1908
10 (== (0] (PP PPRPPPIPRN 1912
0 o | 1921
=T 070 1= | o TP 1960
(2= e U1 1o o PP 1963
[11. PostgreSQL Server APPliCaliONSccvvuiiiiiieeiie e e e e e e e e e e 1967
TNTEAD e 1968
PY_arChiVECIEaNUDiiii e 1972
[oTo T w0011 0] [=1 - PN 1974
oo N o | P 1975
Lo T =5 = A1 | 1981
o To T (=111 o 1985
L0 T (=S)Y 1 1988
[oTo T === A (142 Vo P 1989
o100 oo =" [TP 1993
PY_VENify ChECKSUMS ... iviciii e 2001
o To T1V2= o L1 3o o 2002
105 0 === PPN 2004
POSIMIBSEE ...ttt 2011
RV I 1 1= 0= £ PP 2012
51. Overview of PoStgreSQL INtENElScovuiiiiiiiiecic e 2018
51.1. The Path Of @ QUETNYuuiiiniiiii e 2018
51.2. How Connections are Establishedccoooviiiiiiiiiniiiiiieeeeci, 2018
51.3. ThE Parser StAgE ...uuivvnieiie et e e e e eens 2019
51.4. The PostgreSQL RUIE SYStEMccvvuiiiiiiiiieeiiii e 2020
51.5. Planner/OptiMizZEerccuuiiiii e e eaaaes 2020
Y I = o U (o P 2022
YISV (= 1 (I OF - [0 o 2023
521, OVEIVIBIW ...ttt e et e ettt e ettt e e e et e e e et s e e e et n e e e et aeeeesenaeaeees 2023
52.2. PO_B0GI €A & ..ttt 2024
Y2 T o Lo - 1o ¢ [P 2027
Y2 N o Lo T = 11 £ 0] o H TP 2027
2.5, PU NPT OC ittt 2028
52.6. PO _at trdef o 2029
B2.7.pg_attribut @ .o 2029
52.8. PO _AUL NI 0 oeieiii 2033

XV

PostgreSQL 11.15 Documentation

52.9. pg_aut h_mMBNDErsS ..o 2034
52,00, PO LS ittt 2034
5211 PO _Cl @SS it 2035
52.12. PG _COl L At i ON coveiiii e 2040
LSy K T o To T X o] 1 11 A G- Y I o | PN 2041
Sy S o To T o1 o] 0 VA=Y G =Y o] o PN 2043
52.15. pg_dat @DaSE ..ccvuiiiiiiii 2044
52.16. pg_db rol e Setting .coociiiiiiiiii e 2045
52.17. pg_defaul t _acl ..o 2046
LSy S I o To o =Y 01T o [o [P 2047
Y228 K N o To o (Y=Y of g I o) A o o [2048
Y20 A o To T =1 0 16 1 o PP 2049
Sy B o T T =AVA =1 0 | G A o Lo [2049
52.22. PY_EXE ENST ON civiiiiiiiciii e et e e e 2050
52.23. pg_foreign_data W apper ...cccccooiiiiiiiiiii e 2051
52.24. PG _fOr €I N _SEI VeI ittt 2052
52.25. pg foreign tabl @ .o 2052
A T o T T o 13 N 2052
52.27. PO I NNEI T 1S it e e 2055
Sy T o 1o T o VI S] YA TP 2056
e I o T T B Y 1o [V = Vo = PN 2057
52.30. pg_l argeobj Ct ... 2058
52.31. pg_l argeobject_netadataccooeeiviiiiniiiiii e 2058
52,32, PO _NAIMBSPACE ottt 2059
52.33. PO _OPCl @SS .uuiiiiiiiiii i 2059
52.34. PO 0PI AL OF ouiiiiiiiie e 2060
52.35. PG _OPf ami [Y oo 2061
52.36. pg_partitioned tabl eccooiiiiiiiiii 2061
52.37. pg_Pltenpl at @ .o 2062
52.38. PO PO i CY crrriiiii e 2063
52,30, PO Pl OC ittt 2064
52.40. pg_PUbl i Cati ON oo 2068
52.41. pg_publicati on_rel . 2069
D242, PO T AN ittt 2069
5243.pg_replicati on_Ori giN .o 2070
YAV o To T =X I A = TN 2070
52.45. pg_secl abel ... 2071
52.46. PO _SEUUEBNCE .uituiiiiie e e e 2071
52.47. pg_ShAepend ..o 2072
52.48. pg_ShAeSCri PtiON oo 2073
52.49. pg_shsecl abel ... 2074
52.50. PO ST AT ST C civrieiiiiiiii e 2074
5251 PG St ati STi C_ X it 2076
52.52. PG _SUDSCIi PLI ON coviiiii e e 2077
52.53. pg_SUDbSCription_rel . 2078
52.54. pg tabl ESPACE ..civviiiii e 2078
B52.55. PG _transSt OFr M. 2079
Y T o To TR O I [1= N 2079
B52.57. PG 1S _CONT I § cirriiiiiiiiii e 2081
52.58. pg tS _CONFi g IMBP ooiiiiiii e 2082
52.59. PO 1S i Cl orriiiiiiii e 2082
52,60, PO L S PaI ST ittt 2083
52.61L. PG tS tEMPl At @ covvriii i 2083
Y2 2 o To T VA o 1 PP 2084
52.63. PG _USEI _IMAPPI NQ torniiiiieiiiieiie e e e e e e e e e e e e e e e e aanees 2090
52.64. SYSIEM VIBWS .. ittt e et e e et eeeera e eees 2091
52.65. pg_avai l abl €_ext enNSi ONS ...cocciiiiiiiiiiie e 2092
52.66. pg_avai | abl e_ext ensi on_Versi onsc.ccccceeeeviiieiiineeinneennn, 2092

XVi

PostgreSQL 11.15 Documentation

Y Y A o To T o1 o 1 1 1 N« TP 2093
2GS A oo T o1 U1 oY o] g TP 2093
52.69. PG fil € SEttiNGS ciiiiiiiii i 2094
L2 (O A o To T o | e 1 U1 o R PP 2094
52.71. pg_hba file rul @S . 2095
A o o T T 4 Lo 123 €= N 2095
B52.73. PO | OCKS it 2096
A o o To T .- VA = 1PN 2099
B52.75. PG _POI I Cl 8BS iiiriiiii i 2099
52.76. pg_prepared_Stat EMBNES ...cooiiiiiiiiiii i 2100
52.77. pg_prepar €d_XaCl S ..ociiiiiiiiiiiiii e e 2101
52.78. pg_publication_tabl scccoooiiiiiiiiiii 2101
52.79.pg_replication_origin_statuscccooeeiiiiiiiniiin i, 2102
52.80. pg_replicati on_SIotsS .oooiiiiiiiiii i 2102
YR o To T o1 =TT 2104
YR v o T T GV 1 =TSN 2105
52.83. pg_SeCl @bel S oo 2105
52.84. PO _SEUUEBNCES ouiiiiiiiie ittt 2106
ST o T =X =) O A [PN 2107
52.86. P _SAUOWiiiiiii e 2109
2,87, PO ST AL S ittt 2110
52.88. PO 1 Abl €S iriiiiii i 2112
52.89. pg_timezone _abbrevs ..., 2113
52.90. PG _ti MBZONE _NAIMES ..iiuiiiiieiiii e e e e e e e e e e e e e eaaes 2113
Y2 R o To T U =1 = PP 2113
Sy e 2 oTo RV EST=1 N 1Y o] o L o 1T 2114
e I o T T VA I =1 SN 2115
53. Frontend/Backend ProtOCOIoveiiiiiiiiiiiiieeiii e 2116
53,1, OVEIVIBIW ..ttt ettt e et e et e e e e et n e e e et s e e e et aeeeesenaeeeees 2116
53.2. MESSAPE FIOW ...vveiiiiiii e 2118
53.3. SASL AULNENTICAIONiiieviieieei e 2130
53.4. Streaming Replication ProtoColcccouiieiiiieiiiieiiiieeie e e 2131
53.5. Logical Streaming Replication Protocolccoooeviiiiiiiiiniiece, 2138
53.6. MESSAgE Dala TYPES ..vuiviiiiiieie et 2139
53.7. MESSA0E FOIMMELS . .vuiveii e 2140
53.8. Error and Notice Message FieldSooevviiiiiiiiiiin e 2156
53.9. Logical Replication Message FOrMAELScevueeiiieiiiieeiiieeiiiieeieeeaneens 2158
53.10. Summary of Changes since Protocol 2.0cccoveviiiiiiiiiiiiiiecieeeiees 2162
54. PostgreSQL Coding CONVENLIONScc.uuiiiiiieiiieiiieeie e e e e e et e e e e e eeanees 2164
oY o 4 0= 1] o 2164
54.2. Reporting Errors Within the Servercccovvviiiiiiii e 2164
54.3. Error Message Style GUIAEcc.vviviiiiiii e 2167
54.4. Miscellaneous Coding CONVENLIONScceuuieiieeiiiieeie e e eanes 2171
55. Native Language SUPPOITuuuiiii e e e e e e e e e e e e e e et e e eaeesaneee 2174
55.1. FOr the TranSatoruieiieiiieieiiis e 2174
55.2. FOr the Programimerociuniiiii e e s 2176
56. Writing A Procedural Language Handlercooovviiiiiiiiiiiin e, 2180
57. Writing A Foreign Data WIapPESrcoouiiiiieii e e e e e e 2183
57.1. Foreign Data Wrapper FUNCHIONSccovviiiiiiiiiec e 2183
57.2. Foreign Data Wrapper Callback ROULINESoevvviiiiiiiciiie e, 2183
57.3. Foreign Data Wrapper Helper FUNCLioNScccoveviiiiiiin e 2197
57.4. Foreign Data Wrapper Query Planningcccocevieiiiiiiinecin e 2198
57.5. Row Locking in Foreign Data WIrapperSoevvveviiiieiiieeiieeeieeeaaeeeaenns 2200
58. Writing A Table Sampling Methodccoooiiiiiiiii e 2202
58.1. Sampling Method Support FUNCLIONSccvvieiieeiiiiecece e, 2202
59. Writing A Custom SCan ProVideroovuiiiiiiiiiii e 2205
59.1. Creating Custom Scan Pathsccccoviiiiiiiiiii e 2205
59.2. Creating Custom SCan PlanSoeiiiiiiiiiiciie e e e 2206

XVii

PostgreSQL 11.15 Documentation

59.3. EXECUiNG CUSLOM SCANSuvvvieiiiiieiieeii i e e e e e e e e e e e e e e eeees 2207
60. GENELIC QUETY OPLIMIZEN ..ovniiiii e e e e e e e e e e eaaeees 2210
60.1. Query Handling as a Complex Optimization Problemcceeeennn. 2210
60.2. GENELIC AlQOMItNMS ...t 2210
60.3. Genetic Query Optimization (GEQO) in PostgreSQLcccvvvvvvvievinnnnnn. 2211
60.4. Further REAINGoovvuiiii e e e 2212
61. Index Access Method Interface Definitioncooeiiiiiiiiiiiiiii e, 2214
61.1. Basic APl Structure for INAeXesccuvveiiiiiiiieiiieee e 2214
61.2. Index Access Method FUNCLIONSoovvvviiiiiiiicc e 2216
B1.3. INAEX SCANNING +..evvneieinieeie et et e e e e e e e e e e e e e e et e e e eeaen 2222
61.4. Index Locking Considerationsoeevuieiiieeiiiiecii e eeie e e 2223
61.5. Index Uniqueness ChECKSocvuuiiiiiiiiiii i 2224
61.6. Index Cost EStimation FUNCHIONSuuieiiiiiieiiiiiie e 2225
62. GENENIC WAL RECOMS ... ieeviieeieii ettt e et e eeere e e e 2229
B3, B-TrE INUEXES ...ui it e et e e et e e e eat e aees 2231
L2C 700 1 1 oo (8o 1o o SRR 2231
63.2. Behavior of B-Tree Operator ClasseScvvvieviiiiiiii e, 2231
63.3. B-Tree SUppOort FUNCLIONSviiiiieiiieci e e e e eeaes 2232
63.4. IMPIEMENTBEIONevuiiii e e e e e e e e e eaaeens 2233
B4. GIST INAEXES ... et et e et e e e aaan s 2234
o7 0 1 oo (8o [o o ST 2234
64.2. BUilt-in Operator ClasseSccvuuieiiii e 2234
64.3. EXENSIDIILY ooeeeeniieei e 2235
64.4. IMPIEMENTBEION .. .evuiiii e e e e e e e e e e e et e eaaeees 2244
B4.5. EXAMPIES ...t 2244
B5. SP-GIST INUEXES ... ettt e e e e e eeeae s 2246
L0 g1 oo (8o 1o o SRR 2246
65.2. BUilt-in Operator ClasseSccuuieiiiieeiii e e e 2246
65.3. EXENSIDIILY oeeeveiieii e 2246
65.4. IMPIEMENTBEIONuuiiiii e e e e e e e e eaaeens 2255
B5.5. EXBMPIES ..t 2256
B6. GIN TNAEXES ... e e e e e e et e e s 2257
ST g1 oo (8o [o o SRR 2257
66.2. BUilt-in Operator ClasseSccuuiiiiii i 2257
66.3. EXENSIDIILY ooveevneeie e 2257
66.4. IMPIEMENTBEIONvuiii e e e e e e e eeaaeees 2260
66.5. GIN TipS and THICKS ..uuuiiii i e e e e e e e e eeas 2261
L o I I T 1] = 1 o) PR 2262
B6.7. EXBMPIES ..ttt 2262
B7. BRIN INAEXES ..ottt e e e e et 2263
% 1 oo (8o 1o o TP 2263
67.2. BUilt-iN Operator ClasseSciuuieiiiieeii e 2264
67.3. EXENSIDIILY ooeeeeiieei e 2265
B8. HESN INUEXES ...t e e et e e e 2268
B8.1. OVEIVIEIW ...eiviiieeeiii ettt e ettt e e et s e e e et e e e e et s e e e et r e e e et s e eeestnaaeaees 2268
68.2. IMPIEMENTBEION .. .evuiiit e e e e e e e eaaeees 2269
69. Database PhySICal SIOrageovvvniiiii e e e 2270
69.1. Database FIle LayOutocvuuieiiiiieii e e 2270
B9.2. TOAST ettt ettt ettt e e et e et ea et a e aae 2272
69.3. FIree SPaCe Mapovuiiiiiie e 2275
69.4. VISIDIIIY MaD ..o 2275
69.5. The INitidization FOrKcooeiiiiiiiiiiii e 2275
69.6. Datahase Page LayOuLlcocuuiiiiiieiiiieei e e 2276
70. System Catalog Declarations and Initial Contentsc.cccevevevieiiiiieiieeeinenn, 2279
70.1. System Catalog Declaration RUIEScccvviiiiiiiiiiecii e, 2279
70.2. System Catalog INnitial Data.........ccvunieiiiiiiiieiiieeii e 2280
70.3. BKI Fil@ FOMMELcvvniieiiii e e eees 2284
70.4. BKI COMMENGScevviiieeiiiiieee e e e e e e e e s 2284

XViii

PostgreSQL 11.15 Documentation

70.5. Structure of the Bootstrap BKI Fileccooiiiiiiiiiiii e, 2285

70.6. BKI EXAMPIE c.ovviiiiiii et 2286

71. How the Planner USES SEAtIStICS ...vvvvvneiieiiieiiiin e 2287
71.1. Row EStimation EXamMPIESccuuiiiiiiiiiici e 2287

71.2. Multivariate Statistics EXamplesc.ooeviiiiiiiiiiii e 2292

71.3. Planner Statistics and SECUNLYcovvniviiieiiiiieci e 2294

RV LY o) = o [=S 2296
A. POSIOreSQL Error COUESuuiiiiieiii i ei et e e e e e e e e e e e e e et e e eaaeaees 2303
B. Dat€/Time SUPPOITiitiieii et e e e e e e e e e e e e e et e e e e e st e e et e eaanaees 2311
B.1. Date/Time Input INterpretationeevviiieiiieii e 2311

B.2. Handling of Invalid or Ambiguous TimeStampsccocevveviieviineeennennn, 2312

B.3. Date/Time K&y WOrAScovviiiiiiiiic e 2313

B.4. Date/Time Configuration Fil€Scoovuiiiiiiiii e, 2314

B.5. POSIX Time Zone SpeCifiCationScc.veviiiiiiiiieiii e e ean 2315

B.6. HIiStory Of UNItSociiiiiiiiiiii i e e 2317

B.7. JUAN DAESuiiiiiiii et 2318

C. SOL KEBY WOIAS ... cevtieiiiieiie e e e e e r e e e e e e e e e et e e e e eaaees 2319
D. SQL CONfOIMMANCEieeeiiiei e e e e e e e e e e et e eaaeenas 2341
D.1. SUPPOIEd FEAUIEScovuiii e e e e e e e 2342

D.2. UNSUPPOrtEd FEAIUIESuuiiiiieeei e ee e e e e e e e eaaas 2358

D.3. XML Limits and Conformance to SQL/XMLcooeviiiiiiiiiiiiieiiiieeiiees 2370

E. REIEASE NOES ...oovviieiiii et e e e e et e e et e e e eera e eeees 2374
E.L REESE 1115 ..ot 2374

E.2. REEASE 1114 ..o 2377

E.3. REEBSE 1113 ...t 2383

B4 REIE8SE 1112 ..ot 2387

E.5. REIEASE 1111 ..o 2391

E.B. REIEASE 1110 . .iiiiiiiiiiii et 2396

E.7. REESE 11.9 ... 2400

E.8. REIEASE 11.8 ... 2404

E.O. REIEASE 11.7 ..o 2408
E.10. REIEASE 11.6 ...oeeviieiiiii ettt 2412

E. 1L REEASE 115 it 2418
E.12. REEASE 114 ..ottt 2421

E. 13 REEASE 11.3 ..ottt 2424

E. 14 REEASE 11.2 ..ottt 2429
E.15. REEASE 111 ..ottt 2434
E.16. REIEASE L1 ..ooiiiiiiiiiii ettt e e et e et e e e e e 2436
E.L7. Prior REEASES ...ttt e e e e e e 2455

F. Additional Supplied MOAUIESccuuiiiiiiiii e 2456
F.L adminpackcovneiiicii e 2457

F.2. @MCNECK ..t 2457

F.3. @UEN_AEIAY ..o 2461

O 0| (o T = o] =1 o N 2461

FLB. BIOOM L. 2463

FLB. DB GiN oo e 2467

A o 1 (==Y o [N 2467

RS o) (=4 APPSR 2469

FiO. CUDE Lo 2471
FLL0. dBIINK Lo 2476
Nt I o [T | PP 2507

L 2o [T D 6/ PN 2508
F.13. €arthdiStanCevvneeiii e 2509
N (T = o PP 2511

F.A5. fUZZYSIIMAECH «.cevece e 2513

S 01 o = PP 2516
T 17 o o R 2523
S T 1 - 1 - Y 2524

XiX

PostgreSQL 11.15 Documentation

Nt T 1 o TP 2526
Fo20. 10 ettt e 2530
L T | == PSP 2531
F.22. PAgEINSDECE . ovvuiii e 2538
F.23. passWOrdChECKciuiiiii e 2545
F.24. pg bUFfEIrCaCe .. cove e 2546
FL25, POCTYPLO ettt 2547
F.26. PY_freeSpaCceMaD . .cuu e 2558
e R oo [o (= V= 1 [P PRPRN 2560
F.28. POrOWIOCKSiitciii e e e e e e e e e 2561
F.20. pO_Stal StalemMENTSuiie e 2562
F.30. POStAIUPIE ... et e e 2567
[I oo [1 (0 [0 2571
F.32. PO _VISIDIHILY oo 2577
F.33. POSIOrES FOW ..ovvnciiii e 2578
T o PP 2584

[ST oo o | 2587
T o ISP 2595
Fo37. SSIINTO it 2597
F.38. taDIEFUNC ..o 2599

1S T (o S PSPP 2608

[TO I (== o [=:oo o] oo [P 2610

F.AL tSM_SYSIEIM TOWS L.ttt e e e e e e e 2610

F.A2. tSM_SYSIEM TIME .oovniiiii e e e e e ee 2611

FLA3. UNBCCENT ... e et e e e e ees 2611
Y R TH T o0 1SS o ISP 2613
Fud5. XIMI2 Lot 2615

G. Additional SUpPlied Programscccuuiiiiiiieiii e 2620
G.1. Client APPlICALIONScvvuciii e eaaes 2620

G.2. Server ApPlICALIONScvvicii e 2626

L T (= g = I (0= o £ 2631
H.L CHeNt INtErfaCESoiiiei e 2631

H.2. AdMINIStration TOOISuuuieiiiiiiieiiiii et 2631

H.3. Procedural LanQUAagEScuueeiuniiiiieiii e e e e e e e e e 2631

H.A, EXEENSIONS .ttuiiiiiie et e ettt e et e e et e e et e e et e e e e eaa s 2632

I. The Source Code REPOSITOIYccuuiiiiiieiii et e e e e e e e e e e e e e aae e 2633
[.1. Getting The SOUrCe VIa Gitcovvuiiiiiiiii e e e e ea s 2633

W B o o100 01 = 1o PP 2634
J. L DOCBOOK ...ttt 2634

B o] B <SP 2634

J.3. Building The Documentationccoeeviiieiiiieiiie e 2636

J.4. Documentation AULNOIINGoovuiieiiiie e 2638

J5. SEYIE GUITE ...evvieiiii e 2638

NN 001/ 0 PP 2640
L. Obsolete or Renamed FEAtUIEScceeuviiieiiii et e e e e eenes 2646
L.1. pg_ x| ogdunp renamed to pg_wal dunpcccoeeviiiiiiiiiii e, 2646

L.2. pg_resetxl ogrenamedtopg_resetwalccoovvviiiiiiiiiiiiniinennn, 2646

L.3. pg_receivexl og renamedtopg recei vewalccoooeviiiiinnnnnn.n. 2646

(23] o] oo r="o] /0P 2647
g0 1= PP 2649

XX

List of Figures

60.1. Structured Diagram of a Genetic Algorithm

XXi

List of Tables

4.1. BaCkslash ESCAPE SEOUENCESciieriieeieiieeeeeti e ettt e ettt e et et e ettt e e e b e e enea s 35
4.2. Operator Precedence (highest tO TOWESE)couuuuiiiiiiiiiiii e 40
I DT r= R Y o= T PSPPI 135
8.2, INUMENIC TYPIES ..ttt ettt ettt et e e et e et e et et e e e e aba s 136
8.3, MONELAIY TIPS ..ottt ettt ettt et e e e 141
8.4, CAIACLES TYPES ..ottt ettt ettt ettt e e et et e e e 142
8.5. SpeCial CharaCler TYPESuuu ittt ettt ettt e e et e r e e e e ennans 144
8.6. BINAIY Daa TYPESvueeiiiti ettt ettt ettt e et et e e e e eaaas 144
8.7. byt ea Literal ESCAPEd OCLELSuuiiiiiiiieeiiii ettt e e e e 145
8.8. byt ea Output ESCAPEd OCLELSciieeiieiiiii ettt enees 145
8.9. DAE/TIME TYPES ..ttt e ettt et e e et ettt e e e et e e e eaa s 146
8.10. DB INPUL ..ottt ettt et e e e 147
8. L1, THME INPUL .ttt ettt e ettt e et e e et e e et e e e e et e e e e eaa s 148
8.12. TiME ZONE INPUL ...ttt ettt ettt ettt ettt et e e et e e e b e e era s 149
8.13. Special Date/TIME INPUEScoeviieieiiieee et e s 150
8.14. Date/TIime OULPUL SEYIESot 151
8.15. Date Order CONVENTIONSu.eieerteeeiii et eeti et e e et e e et e e e e e e eana e eeneas 151
8.16. 1SO 8601 Interval Unit ADDreviationSc..uuiiiiiiiiiiiii e 153
8.L7. INEIVEl INPUL ...t ettt e et e e 154
8.18. Interval Output Style EXaMPIEScouuiiiiiiieeee e 155
8.19. BOOIEAN DaLA TYPE ... eeeeei ettt ettt ettt ettt ettt e e e e 155
8.20. GEOMELNIC TS .. ettt e ettt ettt ettt e e ettt e ettt e ettt e e et et e e e eeaaaeeees 158
8.21. NEtWOrK AQArESS TYPES ... eeeeiiieeeetie ettt ettt e e et e e e e e e 161
8.22. ci dr Type INPut EXAMPIEScciiiiiiiii e 161
8.23. JSON primitive types and corresponding POstgreSQL tYPESccvvuveviriinieiiiiiieeeeiinee, 170
8.24. ODJeCt IdeNtifier TYPES ...t 199
8.25. PSEUTO-TYPES ...ttt ettt et 200
9.1. COMPATSON OPEIAIOIS ...e.vueeeiti ettt e et ettt e et et et e et r e e e et e e e e et e e e eaea s 202
9.2. COMPATISON PraEdiCALESuuueiiiie ettt et e e e e e e e 203
9.3. COomMPAriSON FUNCLIONS ...ttt et e 205
9.4. MathematiCal OPEIALOrSceeueieieeii ettt ettt e e e e e b 205
9.5. MathematiCal FUNCHIONSccuuiiiiiii et e e e 206
9.6. RANAOM FUNCLIONSceeitieieiie ettt ettt et e et e e 208
9.7. TrigONOMELNIC FUNCLIONSeeeiit ettt ettt et e e e neens 208
9.8. SQL String FUNCLiONS 8Nd OPEIELOISu.eiiiiiieeeeiii ettt e et e et e e e e e e e e eens 209
9.9. Other StNG FUNCLIONScouuiiiiiii et et e e e eanans 210
9.10. BUIt-IN CONVEISIONScevtieiiiii ettt ettt ettt et e et e e enai e e ennens 218
9.11. SQL Binary String FUNCtions and OPEratorscccuuueeeirinieeieiieeeeeiie e e eeeies 223
9.12. Other Binary String FUNCLIONSuuuiiiiiiiieiii et 224
9.13. Bit SING OPEIEIOISvvueeeetie ettt ettt ettt e et e ettt e e et e e e eaa s 225
9.14. Regular EXpression MatCh OPEraOrScuuuueieeuieiiiii it e e e e e eeeees 228
9.15. Regular EXPression ATOIMSuu ittt e et e e et e e e eab e e eeeta e eeenns 233
9.16. Regular EXpression QUENTITIENSuuuiieiii et 233
9.17. Regular EXpression CONSIIAINTSeiiirieeiiii et e et 234
9.18. Regular Expression Character-entry ESCapESccvvvunieiiiiiieeiiiie e 236
9.19. Regular Expression Class-shorthand ESCaPESc.uuviiiiiiiieiiiiieeeci e 236
9.20. Regular Expression Constraint ESCAPESuuiiiiiiiieiiiii e 237
9.21. Regular Expression Back REFEIENCESccuuuiiiiiiiicie e 237
9.22. ARE Embedded-0ption LEErSuiiiiiiieiei e 238
9.23. FOrMatting FUNCLIONSccuuuiiiiiii ettt et e et e e e e e ena e eeees 241
9.24. Template Patterns for Date/Time FOrmattingcc.uuveeiiiiiiiiiiiiiieeecie e 242
9.25. Template Pattern Modifiers for Date/Time FOrmattingcccuvvveviiiinneieiiinneeenennnn. 244
9.26. Template Patterns for NUMeric FOrmattingc..uoveiiiiiiiiiiiiiiieeeii e 246
9.27. Template Pattern Modifiers for Numeric FOrmattingccoeuvviveiiiinieiiiiiieeeeiineees 247
9.28. 1 0_Char EXAMPIESuuiiiiiiii e 247

XXii

PostgreSQL 11.15 Documentation

A R DT (= A N1 1O o= = (0] £ T 248
9.30. Date/TIME FUNCHIONS ...cevviiiei ittt e e et e e et e e et e e e e aaa s 249
9.3L AT TIME ZONE VATAMES ..euueiiiiiieeiiiiiee et e et e et e e et e e e et e e e et eeeeaen s 259
9.32. ENUM SUPPOIt FUNCHIONSiieiiiiicii e e e e e e e e e e et e e e e aaa s 262
0.33. GEOMELIIC OPEIALONS . .evuueiiieeiti e et e et et e e e et e e et e e e e et e e et e e et e e st e eaa e eanneaaens 263
9.34. GEOMELNIC FUNCHIONS ...ttt ettt e et e e e e e et e e et eeeeaa e 264
9.35. Geometric Type Conversion FUNCLIONSoovvuiriiiiii e e e 265
9.36. Ci dr and i NEt OPEIEIOISvveiiiiiieeie e e ee e e e et e e e e e e e e et e e et e e e e e aanaaees 267
9.37.Cidr and i Net FUNCHIONSuiiiiiiii i e s 268
9.38. MBCAAAr FUNCHIONS ..evvieiiiii et e e e e e 269
9.39. MBCAAAr 8 FUNCHIONS . ..uiiiiii ettt e et et e e e et e e e e ae e 269
9.40. Text SEArCh OPEralOrSuuiiieeii e et e et e e e e e e e e et e e et e e et e e et e e s e eanaees 269
9.41. TexXt SEACH FUNCHIONSueiieii ettt e et e e et e e et e e e e aanaeas 270
9.42. Text Search Debugging FUNCLIONSiiiiiiiiic e 274
9.43.) S0N aNd | SOND OPEIAIOISccvuiiiii it e ee e et e e e e e e e e e e e e e aaaes 289
9.44. Additional | SOND OPEIAOrSuuiiiiiieiiie et e e e e e e e e e e aa e 290
9.45. JSON Creation FUNCLIONScoiuviieiiii e e et e e et e e e et e e e eet e e e eaan e eeenes 291
9.46. JSON Processing FUNCLIONSciuuuiiiiieiiii e eiiee e e e e e e e e e e e e e et e e e e eanaeeeen 293
9.47. SEQUENCE FUNCLIONSuuiiiieii et e e e et e e e e e e e e et e e et e e et e e aaeeaenas 297
.48, ATTAY OPEIEIONS ..ttt ettt e e et et e e et e e 303
9.49. ArTay FUNCHIONSuuiiiiicii et e e e e e e et e e e et e e e e ean s 304
O0.50. RANGE OPBIALOIS . ..euiiiitiee ettt e s e e e e e e anas 306
9.51. RANGE FUNCLIONSiiiiiii e e e e e e e e e e et e e e eanaas 307
9.52. General-Purpose Aggregate FUNCHIONScouuieiiiieiii e e e e e 308
9.53. Aggregate FUNCLIONS TOF SEAtiStICScvvuiviiieii i e 311
9.54. Ordered-Set AgQregate FUNCLIONSiiiiiieii e e e e e e e e e e eaas 312
9.55. Hypothetical-Set Aggregate FUNCLIONSccovuiiiiiieiiiii e e e 314
9.56. GroupiNg OPEIatiONSuuiiieueiiieiiee et e e e e e e e et e et e e et e e st e e et eeat e eatneeeaaaetnaes 314
9.57. General-Purpose Window FUNCLIONSocouuiiiiiiii e e 315
9.58. Series Generating FUNCHIONSccuuiiiii e e e e e e e e e e e e e e ees 323
9.59. Subscript Generating FUNCLIONSccuuiiiiiiiiii e e e e e e e eees 324
9.60. Session INformation FUNCHIONSiiiiiiiiei e 326
9.61. Access Privilege INquiry FUNCLIONSoiiiiiiii e e 329
9.62. Schema Visibility INQUINY FUNCLIONScovuiiiiiic e e 332
9.63. System Catalog Information FUNCLIONScccuiiiiiiiiiiiciie e e e e e 333
9.64. IndexX ColUMN PrOPEITIESu.iiii e e e et e e e e e e e e e e e aanas 336
9.65. INAEX PrOPEITIESiiti it e e e e e e e e e e e e e e e e ee 336
9.66. Index Access Method PropeErtiesviiiieii e 336
9.67. Object Information and Addressing FUNCHIONSccooviiiiiiieiiiiccin e e 337
9.68. Comment INformation FUNCLIONScovvuiieiiiiieeei e 338
9.69. Transaction IDS and SNaPShOLScvvvniiiiiei e 339
9.70. SNaPSNOt COMPONENES .. .evuueieieeeieeei e et e et e et e e et e e st e e et e et e eeta e e et e e etn e eanneeennnas 339
9.71. Committed transaction iNfOrMALIONcovviiiiiiiii e e 340
9.72. CONtrol Data FUNCHIONSueiieiie ettt e e e et e e e e e e eaa e e eeaenns 340
9.73. pg_control _checkpoi nt ColuMNSccoeiiiiiiiiiiiiii e, 341
9.74. pg_control _SYySt @MCOIUMNSiiiiiiiiiieii e e e e 341
9.75. pg_control _iNit COolUMNSccouiiiiii e e 341
9.76. pg_control _recovery COlUMNSccooviiiiiiiieii e 342
9.77. Configuration Settings FUNCLIONSciiiiiiiiii e e 342
9.78. Server SIgnaling FUNCLIONSovuiiiiiee e e e e e e aaaes 343
9.79. Backup Control FUNCLIONSuiiiiieii e e e e e e e e e e eaens 344
9.80. Recovery Information FUNCHIONScocvuiiiiiiii e e e e e e e e eaa e 346
9.81. Recovery Control FUNCHIONScciuuiiiiecie e e e e e e e e e e eaae e 347
9.82. Snapshot Synchronization FUNCHIONSc.uuiiiiiciiie e ee e e e e 348
9.83. Replication SQL FUNCHIONSc.uuiiiiieiii e e e e e e e e e e e e e e eees 348
9.84. Database Object Size FUNCLIONSiiiiiiii e 352
9.85. Database Object Location FUNCLIONScouuiiiiieii e e e e e e 354
9.86. Collation Management FUNCLIONScoouiiiiiieii e e e e e 354

XXiii

PostgreSQL 11.15 Documentation

9.87. Index MaintenancCe FUNCHIONSooiiiiiieiiiii et eees 355
9.88. GeneriC File ACCESS FUNCLIONSccuviiiiiiiie et e e e e e e s 355
9.89. AdVISOry LOCK FUNCHIONSuuiiieiii e e e e e e e e e e e e e st e e e e e e e eeen 357
9.90. Table ReWNIte INFOMMELIONccvevt i e e e et e eeeetenaeeees 361
12.1. Default Parser's TOKEN TYPES c.uuuiuueiiiieiie e e e e e e e e e e e e e e e e et e e aa e aanns 410
13.1. Transaction ISOlation LEVEISc.uuuiiiiiiiieeiii et et e e e e e e e 433
13.2. Conflicting LOCK MOESuuiiiiiiiii e e e e e e e 440
13.3. Conflicting ROW-IEVEl LOCKSciviiiiiii e 441
18.1. System V IPC PalramEtarsSvuiieiieiiie ettt eas 519
18.2. SSL Server File USAgEuu i e e e e e e e 534
19.1. synchronous COMMIt MOGESccuuiiiiieiii e e e e e eees 557
19.2. Message SEVErity LEVEIS ...ouii i 576
19.3. ShOrt OptioN KEY ...oviniiiii i e e e e e e e e 603
201, DEFAUIT ROIES ...ttt e et e et a e e e et e e e eataaeeaees 628
23.1. PoStgreSQL Charalter SELScuuuiiiiieiii e e e e e e e e e e e et e e e e eeees 645
23.2. Client/Server Character Set CONVEISIONSuuuieiiiiieeeiiiieeeeeiineeeeiie e eeiineeeeninns 648
26.1. High Availability, Load Balancing, and Replication Feature Matrixccooeevvnnennnnn. 680
28.1. DYNAMIC StAISHCS VIBWS . oovniiiceii et e e e et e e e e e s e e e e eeees 706
28.2. Collected SEAISHCS VIBWSveeeeieieiiii ettt e et e et e et e e e ena s 707
283.pg_Stat _aCti Vity VIBW oo e e e 708
28.4. Wait_eVENE DESCIHPLION . .uuiii i e e e e e e e e e e e e e ees 712
285.pg_stat _replicati ON VIBW ..o e 723
28.6. pg_stat_Wal reCei VEI VIiBW ...iiiiiiciiii i 726
28.7.pg_stat _SUDSCription VIieW ...cocoeiiiiiiiciie e 727
28.8. PO St At _SSI ViBW coouiiiiiii e 728
28.9. pg_stat _arChi VEI VIBW ..o e e 728
28.10. pg_Stat _bgWrit €5 VIieW .oouiiiiiiii e e e e 729
28.11. pg_stat_dat abase VIieWc.ooiiiiiiiiii e 729
28.12. pg_stat _database_confliCts VIEWcccoeeiiiiiiiiiiiiii e, 731
28.13. pg_stat_all _tabl @S VIeW ..o 731
28.14. pg_stat _all i NdeXES VIBW ..o e 732
28.15.pg_statio_all _tabl €S VIEW ..o 733
28.16. pg_statio_all 1 NAdeXES VIBW ..cccuiiiiiiiiiie e 734
28.17.pg_stati o _all _SeqUENCES VIBW ...ccccuuiiiiii i 734
28.18. pg_stat _user _fUuNCti ONS VIBWcccooviiiiiiiii e 734
28.19. Additional StatistiCS FUNCHIONSvuuiiiiiiieiiei et e e 735
28.20. Per-Backend Statistics FUNCHONSuuiiiiiiiicici e 736
28.21. pg_stat _progress VAaCUUMVIBWc.iiiiieiiiiieiii e ee e ee e e e e e eaens 737
28.22. VACUUM PRhESES ... eieiiiiieeii ettt et e et e e e e e et e e e et e e e eaanns 738
28.23. BUIlt-iN DTTaCe PrODES .. .cceviieeeii et 740
28.24. Defined Types Used in Probe Parametersc..ccuveiviiiiii e 746
34.1. SSL MOOE DESCIIPLIONSivvieiiie e e e e e e e e e e e e e e et e e e e et e e et e e eaneees 848
34.2. Libpg/Client SSL FIlE@ USAQE ... cvvuiiiiieiiie et e e e e e aae e 849
35.1. SQL-oriented Large ObjeCt FUNCLIONSccvviiiiiiieii e e e e e e e e e e e 867
36.1. Mapping Between PostgreSQL Data Typesand C Variable Typesccocevvevivevinnnnnn. 883
36.2. Valid Input Formats for PGTYPESdat € from asccoccceeeviiiiiiiiiiin e, 901
36.3. Vadid Input Formats for PGTYPESdat € fnt_asCcccooeviveiiiiiiiiiici e, 903
36.4. Valid Input Formats for rdef mtdat €ccociviiiii i 904
36.5. Valid Input Formats for PGTYPESt i mest anp_from ascccoevevvieeviineiinneennnnn, 905
37.1.informati on_schema_catal og name Columns............coooeviieiiiieiin e, 983
37.2.adm ni strabl e _rol e_authori zations Columns.............ccoeevviiiiiiieiinnennnnn. 983
37.3. applicabl e rol €5 ColumMNSooiiiiiiii e 983
37.4. At tri DUt €S COIUMNS ..euuiiiiiii e eeaees 984
37.5.charact er _Sets COlUMNSuiiiiiiiiiii e e e e e an s 987
37.6. check _constraint_routine_usage Columns.........cccceeviiiiiieiiiieeiineeiieenennn, 988
37.7.check_constrai NtS ColUMNScociuuiiiiiieiii e e aans 988
37.8. COl 1 @t i ONS COIUMNSuuiiiiiiii e a e e eeees 989
37.9.col lation_character_set _applicability Coumns.............c..coeieiinnn. 989

XXiV

PostgreSQL 11.15 Documentation

37.10. col utm_domai N_usage COlUMNSociuiieiii e e e e e
37.11. col uMm_opt i ONS COlUMNScvuuiiii e e e e e e e e e e e eaen
37.12. col um_privil eges ColUMNSc..couiiiiiiiiiiie e e
37.13. col umMm_udt _uSage COlUMNSc.uiiiieiie e e e eaens
37.14. COl UMMS COIUMNSeiiiiieieii et e et e e et e e e et e e e aaaneeeeeens
37.15. constrai nt _col unm_usage ColuMNSccoeveiiiiiiiieiiiiecin e e e
37.16.constraint _tabl e _usage ColumNSccoeeiiiiiiiiiieiii i
37.17.data_type privileges ColumMNS.......cccooeiiiiiiiiiiiiii e
37.18. domai n_constrai Nts ColUMNScoovviiiiiiii e
37.19. domai Nn_udt _uSaQge COIUMNScouuiiii e e e e e aens
37.20. dOMBI NS COIUMNSeeitiieiiii ettt e et e et e e e et s e e e aaa e eeeeens

37.21. el ement _tyPeS COIUMNScoviiiiiiieei e e e e e e e e aeas
37.22. enabl €d_r 0l €S COlUMNSc.uiiiiiiii e e
37.23.forei gn_data wrapper_opti ons ColumNScccoveiiiiiiiiieeiiiieeiiieeineeeenn
37.24.foreign_data wappers ColUmMNScooeiuiiiiiiiiiiii e
37.25. foreign_server_opti ons ColUMNScocouuieiiiiiiiiiieiii e e
37.26. forei gn_servers COlUMNSoiiiiiiiiiii e
37.27.foreign_tabl e options ColUMNSccocoviiiiiiiiii e
37.28.foreign_tabl €5 ColUMNScocuuiiiiiiiii e
37.29. key_col umm_usage COlUMNSueiiiiiiiii e e e e e aen
37.30. par anBt €S COIUMNScvuiiiiii e e e e e e et e e e e eaen
373Lreferential _constraints ColUmMNS.........ccooooiiiiiiiiiiiieiii e
37.32.role_colum_grants ColUMNScoeiiiiiiiiiiiii e
37.33.role_routine _grants ColUMNScccouuiiiiiiiiiiiieiii e e e
37.34.role_table grants ColUMNScooviiiiiiiiiiiii e
37.35.r0l e_udt _grants ColUMNSiiiiiiiiii e e e
37.36.rol e_usage _grants ColUMNSc.oiiiiiiiiiiiiiii e e e
37.37.routine_privileges ColUMNScooevuiiiiiiiiiiii e
37.38. T OUL T NES COIUMNS ...oeiiiieiiii e e et e e et e e e et n e e e eaenaeaeee
37.39. SChemBt @ COIUMNSouuiiiiii e e e e e et e e et e eeeatn e aeee
37.40. SEqUENCES COIUMNSuuiiiiiiiii e e e e e e e e et e ean e eees
3741 sql _features COlUMNSco.iiiiiiiii e e
3742.sql _inplementation_info Columns.........ccoooviiiiiiiiii e
37.43. sql _| anguages COlUMNSoiiuiiiiiiiee e e e e e e e eens
37.44. sql _packages COlUMNScc.iiiiiiiiiii e e
37.45. 51 _Parts COlUMNSccouiiiiii i e e e e e e eaes
37.46. 51 _Si Zi NG COIUMNSiiiiieiii e e e e e e e e e aes
3747.sql _sizing _profiles ColUmMNScc.couuiiiiiiiiiiiicii e
3748. tabl e _constrai Nts COolUMNScccuiiiiiiiiiiiic e
3749.tabl e privileges ColUMNScccocouiiiiiiiiii e e
37.50. t @bl €S COIUMNSiiiiii e e e et e eeeaa e eeee
3751 t ransSf Or B COIUMNSuiiiiii et e e e e e eera e eees
37.52.triggered _update_col ums ColumNScccocouiiiiiiiiiiiiiii e,
37.53. 111 gQEI'S COlUMNS .. .cetiiiiii e e e e e e e e e e e et e et e e aa e eeas
37.54. udt _privil eges COolUMNSccccuiiiiiiiiii e e eaas
37.55. usage_priVvil eges ColUMNScoeiiiiiiiiiiii e e
37.56. user _defined _types ColUMNSccoeviiiiiiiiiiii e
37.57. user _mappi Ng_0opti ONS COlUMNScovviiiiiieiii e e e
37.58. user _mBappPi NQS COIUMNSuiiiiiee e e e e e e e aeas
37.59. vi ew_col um_usage ColUMNSccuiiiiiiiiiiiici e e e e
37.60. vi ew routine_usage COlUMNSoeeiiiiiiiiiiiii e
37.61L. view tabl e_usage ColumNScooiiiiiiiiiii e
37.62. Vi €WS COIUMNS ..ttt ettt s e et r e e e st e e e eaaaaeeeneen
38.1. Equivalent C Types for Built-in SQL TYPEScvvvniiiiiiiiiiieee e e e
I I S (= TS 1 - (= o [P
G R T o s T 1 1o [==
38.4. GIST Two-Dimensional “R-treg” StrategieSoevvuieiiiiieiiieeiiiieeie e e e e
38.5. SP-GiST POINt SIAEgIES ..vueiviieiiiiee e e e e e e e e e e e e e e et e e s e e eaneens

XXV

PostgreSQL 11.15 Documentation

38.6. GIN AITAY SITAEgIES ...vuuiieiieiii et e e et e e e e e e e e e e e et e et e e st e e et e e eaneaanaees 1103
38.7. BRIN MiNMaX SIralEOIES .. cevuiiineiiiieiiiieeie e e e e e e e e e e e e e e e e e et eeaa e e eanas 1103
38.8. B-tree SUPPOIt FUNCHIONSouuiiiicii e e e e e e e e e e e e e aanas 1104
38.9. Hash SUPPOrt FUNCHIONScuuiiiiieii e e e e e e e e e eaaas 1104
38.10. GiST SUPPOIt FUNCLIONSiivieiii e e e e e e e e e e e e e e e e eaa e eees 1104
38.11. SP-GiST SUPPOIt FUNCHIONScvuiiiiieii e e e e e e e e e e e e aaaas 1105
38.12. GIN SUPPOIt FUNCLIONSiieeiiii e e e e et e et e e e e eens 1105
38.13. BRIN SUPPOIt FUNCLIONSuuiiiiiiiii e e ee e e e e e e e s e e et e e e e e e eeaens 1106
40.1. Event Trigger Support by Command Tagoeeveeiinieiiiieeiiieeeiieee e eean e e e 1137
43.1. Available DIiagnoSstiCS ItEMSiiuiiiiie e e e e e e e 1191
43.2. Error DIiagnoStiCS [TEIMS . ..uuiiii i e e e e e e eaas 1206
241. Policies Applied by Command TYPE ...c.uueviuiiiii e 1571
242, AULOMALIC VariahlES ... i 1872
243. pgbench Operators by inCreasing PreCEAENCEuivvviiiii e ee e e 1874
Ve | o 1= o To T U o 1 o P 1875
52.1. SYSEEM CalAlOOS ... vvvneeiteiii e ee e et e e e e e e e e e e e e e et e e et e e et e e e e e e anaaes 2023
52.2. pg_aggregat @ COlUMNScouuiiiiiieiiii e e e e e e e e e e e e et eeaaeens 2025
LSy T o o T -1 41] 1070 T 2027
YA o o[-V 0] o I Oo [49 1 2028
52.5. Pg_anPr OC COlUMNScuuuiiiiieiiii e e e e e e e e e e e e e e e e st e e et e ean e eaes 2029
52.6. pg_attrdef COolUMNScc.iiiiiiii e e 2029
52.7.pg_attribut @ ColUMNSccouiiiiii i 2030
52.8. pg_aut hi d COlUMNScciiiiiiii e e e e e e e e aen 2033
52.9. pg_aut h_menbers ColUMNScc.iiiiiiiiiii e e e e 2034
52.10. PG_CASt COIUMNSuiiiiciii e e e e et e e et e e e e e e eaens 2035
52.11. PG _Cl @SS COlUMNS .. .ceuuiiiiiiii e e e e e e e et e et e e eeas 2036
52.12. pg_col 1 ati on COlUMNScouuiiiiiiii e 2040
52.13. pg_constrai Nt COUMNSuiiiiiiiii e e e e eeas 2041
52.14. pg_CONVETr Si ON COIUMNSoutiiiiiieei e e e e e e e e e e e e e e e aens 2043
52.15. pg_dat abase COlUMNSco.uiiiiiiiiii e e e e 2044
52.16. pg_db _role_setting ColUmMNSccoovuiiiiiiiiiiii e 2046
52.17. pg_defaul t _acl ColUMNSccoiiiiiiiiii e 2046
52.18. pg_depend COlUMNSccuiiiiiiieiiie e e e e e e e e eees 2047
52.19. pg_descCription COlUMNSccouuuiiiiiiii e e e e e e eaas 2048
52.20. PG_ENUMECOIUMINSuiiiieii e e e e e e e e e e e e et e e st e et e e aaeeeens 2049
52.21. pg_event _trigger ColUMNSccociiiiiiiiiieii e e e e 2050
52.22. pg_ext ensi 0N COIUMNScouuiiiiiiii e e e e aaas 2050
52.23. pg_foreign_data wapper ColUmMNScccoovuiiiiiiiiiiiiierii e e 2051
52.24. pg_forei gn_server COolUMNSccooiiiiiiiiiiie e e e 2052
52.25. pg _foreign_tabl @ ColumMNSccocouuiiiiiiiiiii e 2052
52.26. PG i NAEX COIUMNS .. .couuiiiieiiii e e e e e e e e e e e et e et e e aan e eeas 2053
52.27. pg_ I NNEritS COlUMNScouiiiiiiiii e e e e e e e e een 2055
52.28. pg i Nit _Pri Vs COUMNScoviiiiieei e e e e e eens 2056
52.29. pg_l anguage COlUMNScouuuiiiieeii e e e e e e e e e e e e e e aneeeen 2057
52.30. pg_| ar geobj €Ct COlUMNScocuiiiiiiiii e e 2058
52.31. pg_l argeobj ect _netadat a ColumNScooovuiiiiiiiiiiiieiie e 2059
52.32. pg_NamESPACE COIUMNScoviiiii e e e e e e 2059
52.33. PG_0PCI @SS COIUMNSiiiiiiiii e e e e e e e e aes 2059
52.34. pg_oper at Or COlUMNSciuiiiiie e e e e e e e e e e e e et e e e e aneeeen 2060
52.35. pg_opfam |y COlUMNScciuiiiiiieeii e e e e e e e e e een 2061
52.36. pg_partitioned tabl @ ColUMNScoooviiiiiiii i 2061
52.37. pg_pltenpl at @ ColUMNSociiiiiiii e 2063
52.38. Pg_POI i CY COIUMNSouiiiiiii e e e eaes 2063
52.39. PG _PrOC COIUMNSuiiiieiie e e e e e e e e e st e e e e e e e eaens 2064
52.40. pg_publicati on COolUMNScccuiiiiiiiii e e eeas 2068
52.41. pg_publication_rel Columns.......cccociiiiiiii i 2069
52.42. PG _range COlUMNSuuiiiiiiiiie e e et e e e e e e e e e e e et e st e et e e saneeeeas 2069
5243.pg_replication_originColumnscccocouiiiiiiiiiiiiiiii e 2070

XXVi

PostgreSQL 11.15 Documentation

52.44. PG reWr it € COIUMNSiiiiiiii e e e e e e e e e e eees 2070
52.45. pg_secl abel ColUMNScouuiiiiiiiiii e e 2071
52.46. pg_SEQUENCE COUMNScuuiiiiieiii e et e e e e e e e e e e e e e et e e et e e e eaneeeen 2072
52.47. pg_shdepend ColUMNSco.uiiiiiiiiiiii e e e e e een 2072
52.48. pg_shdescri pti on ColUMNSccouuiiiiiiiiii e e 2074
52.49. pg_shsecl abel Columnsccoiiiiiiiiii e 2074
52.50. pg_stati StiC COUMNSccoviiiiii i e 2075
52.51. pg_statistic_ext ColUMNSccoeiuuiiiiiiiiii e e e 2076
52.52. pg_subscri ption ColUMNSoiiiiiiiii e e 2077
52.53. pg_subscription_rel ColumNSc.cccoiiiiiiiiiiiicii e 2078
52.54. pg_tabl espace COlUMNScciuiiiiiiieii e e e aens 2079
52.55. pg_transf or MCOIUMNScoouiiiiiii e 2079
52.56. PG _tri gger COIUMNScouuiiiii e e e e e e e e e e eaen 2080
52.57.pg ts _config ColUMNSccouuiiiiiiiii e e 2081
52.58. pg_ts _confi g mBp ColUMNSooiiiiiiiii e e 2082
52.59. PG t'S_di Ct COIUMNSuiiiiiiiii e e e e e e e e aes 2082
52.60. pg_ts_parser COIUMNSco.iiiiiiiiii e e e e e 2083
52.61. pg ts tenpl at @ ColUMNScccuuiiiiiiiiii e e 2083
52.62. PG _tYPE COIUMNS ...uuiiiiiiii e e e e et e e e e e eaens 2084
Y S IR] o Tox- A= To [o] YA ©r0 o == RN 2090
52.64. pg_user _mappi NG COIUMNSoiiiiii e e e 2090
52.65. SYSEIM VIBWS ...ttt e e et e e et r e e e ettt e e e eatneeeeatnneaeees 2091
52.66. pg_avai | abl e_ext ensi ons ColUMNSccocoviiiiiiiiiiiiieci e 2092
52.67. pg_avai | abl e_extensi on_versi ons ColumNSccooeevveeiiieviineeennennn. 2092
52.68. pg_CONFi g COIUMNSouiiiiiiii e e e eaes 2093
52.69. PG _CUISOI'S COIUMNS ..uuiiiiiiiii e e e e e e e e e e e e e e eaen 2093
52.70. pg _fil e _settings ColUMNScccocouiiiiiiiiiii e e e 2094
LSy 4 o To e [o 10 o @] 11 1 410 TP 2095
52.72. pg_hba file rul es ColumNS.........ccoooiiiiiiiiiii e 2095
52.73. PG_1 NAEXES COIUMNSiiiiiiiiiie e e e e e e e ean e eaes 2096
52.74. PG | OCKS COlUMNS .. .couuiiiiciii e e e e e e e e e e et e e et e e aa e aeas 2096
52.75. pg_MBAt Vi WS COIUMNSovtiiiiiieieee e e e e e e e e e e e e e e e e aneeeeen 2099
52.76. Pg_POI i Ci €S COlUMNScuuiiiiiieii e e e e e e e e e e eeen 2100
52.77. pg_prepared_stat ement's ColUMNScccouieiiiiiiiiiiiiii e 2100
52.78. pg_prepared _Xact s COlUMNSc.oiiiiiiiiiiiieiii e e e 2101
52.79. pg_publication_tabl es Columns.........c.cccoieiiiiiiiiiii e 2102
52.80.pg_replication_origin_status ColUmnS.........cccoeeviiiiiiiieeiiiieciineeieeeeenn, 2102
52.81.pg replication_slots ColUMNScccooviiiiiiiiiieiie e e 2102
52.82. PG I 0l €S COlUMNS .. .couuiiiieiiii e e e e e e e e e e e e et e eaa e eaas 2104
52.83. PG T Ul €S COIUMNS .. .ouvniiieiii e e e e e e e e e e e e et e et e e aan e eeas 2105
52.84. pg_secl abel s COlUMNSc.oiiiiiiiii e 2105
52.85. pg_SequUENCES COIUMNScouiiiiiieiii e e e e e aeas 2106
52.86. Pg_SettiNGS COIUMNScuuiiiiiiiii e e e e e e e e e e e e eeen 2107
52.87. pg_Shadow COlUMNSccoiiiiiiiii e e e 2109
52.88. PG ST At'S COIUMNS .. .cuvuiiiiiiii e e e e e e et e e e e ea e aeas 2110
52.89. pg_tabl €5 COlUMNScouuiiiiiiii e 2112
52.90. pg_ti mezone_abbrevs ColUMNSc.cc.oviiiiiiiiiiicie e e 2113
52.91. pg_timezone_Nanmes COlUMNSccciiiiiiiiiiie e e e 2113
52.92. PG _USEI COIUMNSuiiiiieiii e e e e e e e e e e e st e e e e e e eeaens 2114
52.93. pg_user _nmappi NGS COlUMNSoiiii e e e e 2114
52.94. PG Vi €WS COUMNS .. .covuiiieiii e e e e e e e e e e e e e e et e e et e et e eran e eeas 2115
64.1. BUilt-iN GIST OPErator ClaSSESuuiiiuueeiiieiiiiieiiieeee e e e e e e e et e e e eaaeeaanaaes 2234
65.1. BUilt-in SP-GIST OpEerator ClaSSESuicvutiiiieeiiieeiiieeeiieeerie e et eseeeeeesnaeannaes 2246
66.1. BUilt-iN GIN OpErator ClaSSESuuiiiiiieiiiieiiii e e e e e e e e e e e e e et e e st eraneens 2257
67.1. BUilt-in BRIN Operator ClaSSEScvvuuiiiiiieiiiieiiii et e e e ee e s e e e e e e et e e eanaeens 2264
67.2. Function and Support Numbers for Minmax Operator ClasseScoeevvveviiiieiineennnnn. 2266
67.3. Function and Support Numbers for Inclusion Operator Classescccvvevvvviiineeninnnns 2266
69.1. CONENES Of PCDATA L.ttt ittt e e et e e et e e e et n e e e et neeeenens 2270

XXVii

PostgreSQL 11.15 Documentation

B9.2. PAgE LAYOULuiiiiiiiiie et 2276
69.3. PageHeaderData LayOULcc.uiiiiiiiiiicii e e e e e e e e e et e e e eanes 2276
69.4. HeapTupleHeaderData LayOuLceeeuniiiiieiiie e e e e e e e e e e e aans 2277
A.L POSIOreSQL Error COUESuuiiiiieiiii e et ee et e e e e e e e e e e e e e e e e e eaes 2303
230 Vo0 11 I = 0 1= <SP SPPN 2313
B.2. Day Of the Week NAMEScoiiiiii e 2313
B.3. Date/Time Field MOGIfIErS ...ccouuiiiiiiii e 2313
C.L. SOL KEBY WOIASieiiiii et e e et e e e e e e e et e e et e e et e e et e e et e eeanaes 2319
F.1 adm NPacK FUNCHIONS ..o e e e e e e e e e een 2457
F.2. Cube External REPreSeNtationsSccuuiiiiniiiiii e e e e e e e e e e eaens 2471
[R 0 oL @ o= - o] ¢ TP 2472
Fod. CUDE FUNCLIONS ... ittt e e et e e e et e e e e et s e e e eatnneaeees 2473
F.5. Cube-based Earthdistance FUNCLIONSccuuuiiiiiiiiieii e 2510
F.6. Point-based EarthdiStance OPEraforsc.uuiviinieiie e e e e e e e e e e e e eaens 2511
O 1 TSY o T @ o= = o) £ P 2517
F.8. NSt Or @ FUNCHONS ..oiiiiicic e e 2518
FO. intarray FUNCHONS ..o e e e e e e e ees 2524
[(ORI oL = L = | VA @ o= = o) £ 2525
L Y I I 7 = W Y/ o= PP 2527
[A Y o I ¥ o o L PR 2528
[T I B YT @ o= (o) £ 2533
[o I O T W o PP 2534
F.15. pg_buffercache Columnsccoooiiiiiiiiii i 2546
F.16. Supported Algorithms fOr Crypt () oeeeeeeiierii e 2548
F.17. Iteration Counts fOr CrYPL () covnieriiiiiiie e e e e 2549
F.18. Hash AlQOrithm SPEEASiveiii e e e 2549
F.19. Summary of Functionality with and without OpenSSLcccoovvviieiiii i, 2557
F.20. pgr oW 0cks OULPUL COIUMNSccvuiiiiii e e e e e aens 2561
F.21. pg stat_statenments COlUMNSccooiiiiiiiii e 2563
F.22. pgstatt upl @ OUtpUt COIUMNSc.uuiiiiieiii e e e e e e eees 2568
F.23. pgst at t upl e_appr ox Output ColUMNSccuuiiiiiiiiiii e e e 2571
F.24. pg t FgMEUNCHONS .. couuiiii e e e e e e e e e e e e eanees 2572
F.25. PO_t I OMOPEIEIOISeuiiiie et eas 2573
F.26. seg External REPreSentationsSccuueiiuiieiiii e e e e e e e e 2585
F.27. Examples of Valid SEQ INPULo.uuiiiiiiii e e 2585
F.28. SEO GiST OPErAlONS . .cvueiiiieiitieeiie ettt et ie e e e e e e et e e et e e et e e st s e et e e aa e eateeraneaenns 2586
[IS = oo = | I Vo) 2594
F.30. t abl €f UNC FUNCHONScuiiiiiiiii e 2599
F.31L. CONNECt DY Palrameterscouuiiiiiiii e e e e e 2606
F.32. FUNCtioNS fOr UUID GENEION ... ccvvvviieieiiiieeeiii e et s e e et e e et eeeeai e e eeriaeeees 2613
F.33. Functions Returning UUID CONStANESccuueiiiieiiiiieiiieeciieeeie e e e e e eanaeeaen 2614
7 A 0 1 PP 2615
F.35. xpat h_t abl @ Parameterscccuiiiiiiiiiii e e 2616
H.1. Externally Maintained Client INterfacescc.oviiiiiiiiiiiiii e 2631
H.2. Externally Maintained Procedural LangUagescocvuieiiiieiiiiieiiieec e e 2632

XXVili

List of Examples

8.1. USING the CharaCter TYPES ... eiieiii ittt ettt e et e e et e e e et eeeees 143
8.2. USING the DOOI €8N TYPE ... 156
8.3. USING the Bit SIHNG TYPES ... eeeiiieieii ettt et et e e e eaeens 163
9.1. XSLT Stylesheet for Converting SQL/XML Output to HTMLoveiiiiiiiiiiiieeeceiin, 288
10.1. Factorial Operator TYPe RESOIULIONc.uuiiiiiiiieeiiii et 365
10.2. String Concatenation Operator Type RESOIULIONveeeiiiiiiiiiiieeiiii e 366
10.3. Absolute-Vaue and Negation Operator Type ReSOIULIONcccuvuveiiiiinieiiiiieeeeiinn, 366
10.4. Array Inclusion Operator Type RESOIULIONveiiiiiieiiiiieeiiii e 367
10.5. Custom Operator 0N @ DOmMaiN TYPEueiiiiiieiiiiii e 367
10.6. Rounding Function Argument Type ReSOIULIONcoeiviviiiiiiiiiiieeciie e 370
10.7. Variadic FUNCtioN RESOIULIONcviiieieiiiii e e 370
10.8. Substring FUNCtion Type RESOIULIONiiiiiiiiiiiiie e 371
10.9. char act er Storage TYPE CONVEISIONcceeuuneiiiiieeieiieeeeeti e eeetis e e eeti e e eeriaeeees 372
10.10. Type Resolution with Underspecified Typesin @ Unionoeeeevviveieiiiieeiiiinnenes 373
10.11. Type Resolution in @ SImMple UNionooooiiiiiiii e 373
10.12. Type Resolution in @ Transposed UNIONcoouuuuiiiiiiiieiiiii e e 374
10.13. Type Resolution in @ Nested UNiONcc.uuuieiiiiiieiiiiiieeeeei e 374
11.1. Setting up a Partial Index to Exclude Common ValUEScc.ovviiiiiiiiiiiiiiieeiiiieees 383
11.2. Setting up a Partial Index to Exclude Uninteresting Valuescocoeviviiiiiineeiinnnnnn. 383
11.3. Setting up a Partial Unique INAEXcoouuiiiiiiiieiii e 384
11.4. Do Not Use Partial Indexes as a Substitute for Partitioningccccveveeviiinneeiennnnn. 385
20.1. Example pg_hba. coNnf ENtriES ... 609
20.2. An Example pg_i dent . conf Fileoooiiiiiii 612
34.1. libpg EXample Program Luuoeiiiieieei et 852
34.2. 1ibpg EXample Program 2oiiiiiieeei e 855
34.3. libpg EXample Program 3c.oue e 858
35.1. Large Objects with libpg Example Programooceeuviiiiiiiiineeeieeei e 869
36.1. Example SQLDA PrOQraMcieeieieeeiiie et ettt e e et e e et eeaaa s 921
36.2. ECPG Program Accessing Large ODJECESuuuiviiiiiieiiiiiiee e 935
42.1. Manua Installation of PLIPEITcoiiiiiiiiii e 1174
43.1. Quoting Vaues IN DYNamiC QUETTESccuuuuiiiiiiieeiiii et e et e eeeni e 1189
43.2. Exceptions With UPDATE/I NSERToiiiiiiiieiiii e ettt 1205
43.3. A PL/PgSQL Trigger FUNCHIONuniiiiiieecie et 1218
43.4. A PL/pgSQL Trigger Function FOor AUditingccuuuieieiinieiiiieeeei e 1219
43.5. A PL/pgSQL View Trigger Function For Auditingoveieriineiiiiinieeeiiieeeeeiien 1220
43.6. A PL/pgSQL Trigger Function For Maintaining A Summary Tableccccoeeeeee 1221
43.7. Auditing with Transition Tablesccoeuiiiii e 1223
43.8. A PL/pgSQL Event Trigger FUNCLIONooiiiiiieiiiii et 1225
43.9. Porting a Simple Function from PL/SQL t0 PL/PGSQLuuiiiiiiiieiiiiiieeciieeeeeiiee 1232
43.10. Porting a Function that Creates Another Function from PL/SQL to PL/pgSQL 1233
43.11. Porting a Procedure With String Manipulation and OUT Parameters from PL/SQL to

[I 0TSO U UUT PP 1234
43.12. Porting a Procedure from PL/SQL to PL/PGSQLuvviiiiiiiiiiiiie e 1236
F.1. Create a Foreign Table for POSIgreSQL CSV LOGS ... civvvvneiiiiiieeeeiiieeeeiieeeeeiineees 2512

XXiX

Preface

This book is the official documentation of PostgreSQL. It has been written by the PostgreSQL
developersand other volunteersin parallel to the devel opment of the PostgreSQL software. It describes
all the functionality that the current version of PostgreSQL officially supports.

To makethelarge amount of information about PostgreSQL manageabl e, thisbook has been organized
in several parts. Each part istargeted at adifferent class of users, or at usersin different stages of their
PostgreSQL experience:

e Part | isaninformal introduction for new users.

 Part 1l documentsthe SQL query language environment, including datatypes and functions, aswell
as user-level performance tuning. Every PostgreSQL user should read this.

 Part 111 describestheinstallation and administration of the server. Everyone who runs a PostgreSQL
server, beit for private use or for others, should read this part.

 Part IV describes the programming interfaces for PostgreSQL client programs.

» Part V contains information for advanced users about the extensibility capabilities of the server.
Topics include user-defined data types and functions.

» Part VI contains reference information about SQL commands, client and server programs. This part
supports the other parts with structured information sorted by command or program.

» Part VII contains assorted information that might be of use to PostgreSQL developers.

1. What is PostgreSQL?

PostgreSQL is an object-relational database management system (ORDBMS) based on POSTGRES,
Version 4.2, developed at the University of California at Berkeley Computer Science Department.
POSTGRES pioneered many concepts that only became available in some commercial database
systems much later.

PostgreSQL is an open-source descendant of this original Berkeley code. It supports a large part of
the SQL standard and offers many modern features:

» complex queries

« foreign keys

* triggers

 updatable views

* transactional integrity

» multiversion concurrency control

Also, PostgreSQL can be extended by the user in many ways, for example by adding new

o datatypes

* functions

* operators
 aggregate functions
* index methods
 procedural languages

And because of the liberal license, PostgreSQL can be used, modified, and distributed by anyone free
of charge for any purpose, beit private, commercial, or academic.

2. A Brief History of PostgreSQL

L hitps://dsf .berkel ey.edu/postgres.htm

XXX

https://dsf.berkeley.edu/postgres.html
https://dsf.berkeley.edu/postgres.html
https://dsf.berkeley.edu/postgres.html

Preface

The object-relational database management system now known as PostgreSQL is derived from the
POSTGRES package written at the University of California at Berkeley. With over two decades
of development behind it, PostgreSQL is now the most advanced open-source database available
anywhere.

2.1. The Berkeley POSTGRES Project

The POSTGRES project, led by Professor Michael Stonebraker, was sponsored by the Defense
Advanced Research Projects Agency (DARPA), the Army Research Office (ARO), the National
Science Foundation (NSF), and ESL, Inc. The implementation of POSTGRES began in 1986. The
initial concepts for the system were presented in [ston86], and the definition of the initial data model
appeared in [rowe87]. The design of the rule system at that time was described in [ston87a]. The
rational e and architecture of the storage manager were detailed in [ston87b].

POSTGRES has undergone several major releases since then. The first “demoware” system became
operational in 1987 and was shown at the 1988 ACM-SIGMOD Conference. Version 1, described in
[ston90a], was released to afew external usersin June 1989. In response to a critique of thefirst rule
system ([ston89]), the rule system was redesigned ([ston90b]), and Version 2 was released in June
1990 with the new rule system. Version 3 appeared in 1991 and added support for multiple storage
managers, an improved query executor, and a rewritten rule system. For the most part, subsegquent
releases until Postgres95 (see bel ow) focused on portability and reliability.

POST GRES has been used to implement many different research and production applications. These
include: afinancial data analysis system, a jet engine performance monitoring package, an asteroid
tracking database, a medical information database, and severa geographic information systems.
POSTGRES has also been used as an educational tool at severa universities. Finally, Illustra
Information Technologies (later merged into Informix?, which is now owned by IBM3) picked up
the code and commercialized it. In late 1992, POSTGRES became the primary data manager for the
Sequoia 2000 scientific computing project®,

The size of the external user community nearly doubled during 1993. It became increasingly obvious
that maintenance of the prototype code and support was taking up large amounts of time that should
have been devoted to database research. In an effort to reduce this support burden, the Berkeley
POSTGRES project officially ended with Version 4.2.

2.2. Postgres95

In 1994, Andrew Y u and Jolly Chen added an SQL language interpreter to POSTGRES. Under anew
name, Postgres95 was subsequently released to the web to find its own way in the world as an open-
source descendant of the original POSTGRES Berkeley code.

Postgres95 code was completely ANSI C and trimmed in size by 25%. Many internal changes
improved performance and maintainability. Postgres95 release 1.0.x ran about 30-50% faster on the
Wisconsin Benchmark compared to POSTGRES, Version 4.2. Apart from bug fixes, the following
were the major enhancements:

* The query language PostQUEL was replaced with SQL (implemented in the server). (Interface
library libpg was named after PostQUEL .) Subqueries were not supported until PostgreSQL (see
below), but they could be imitated in Postgres95 with user-defined SQL functions. Aggregate
functions were re-implemented. Support for the GROUP BY query clause was a so added.

* A new program (psqgl) was provided for interactive SQL queries, which used GNU Readline. This
largely superseded the old monitor program.

* A new front-end library, | i bpgt cl , supported Tcl-based clients. A sample shell, pgt cl sh,
provided new Tcl commands to interface Tcl programs with the Postgres95 server.

2 https://www.ibm.com/anal ytics/informix
3 https://www.ibm.com/
4 http://meteora.ucsd.edu/s2k/s2k_home.html

XXXIi

https://www.ibm.com/analytics/informix
https://www.ibm.com/
http://meteora.ucsd.edu/s2k/s2k_home.html
https://www.ibm.com/analytics/informix
https://www.ibm.com/
http://meteora.ucsd.edu/s2k/s2k_home.html

Preface

» The large-object interface was overhauled. The inversion large objects were the only mechanism
for storing large objects. (The inversion file system was removed.)

» Theinstance-level rule system was removed. Rules were still available as rewrite rules.

» A short tutorial introducing regular SQL features as well as those of Postgres95 was distributed
with the source code

* GNU make (instead of BSD make) was used for the build. Also, Postgres95 could be compiled with
an unpatched GCC (data alignment of doubles was fixed).

2.3. PostgreSQL

By 1996, it became clear that the name “ Postgres95” would not stand the test of time. We chose anew
name, PostgreSQL, to reflect the relationship between the original POSTGRES and the more recent
versions with SQL capability. At the same time, we set the version numbering to start at 6.0, putting
the numbers back into the sequence originally begun by the Berkeley POSTGRES project.

Many people continue to refer to PostgreSQL as “Postgres’ (now rarely in all capital letters) because
of tradition or because it is easier to pronounce. This usage is widely accepted as a nickname or alias.

The emphasis during development of Postgresd5 was on identifying and understanding existing
problems in the server code. With PostgreSQL, the emphasis has shifted to augmenting features and
capabilities, although work continuesin all areas.

Details about what has happened in PostgreSQL since then can be found in Appendix E.

3. Conventions

Thefollowing conventionsare used in the synopsis of acommand: brackets([and]) indicate optional
parts. Braces({ and}) and vertical lines(|) indicate that you must choose one dternative. Dots(. . .)
mean that the preceding element can be repeated. All other symbols, including parentheses, should
be taken literally.

Where it enhances the clarity, SQL commands are preceded by the prompt =>, and shell commands
are preceded by the prompt $. Normally, prompts are not shown, though.

An administrator is generally a person who is in charge of installing and running the server. A user
could be anyone who is using, or wants to use, any part of the PostgreSQL system. These terms
should not be interpreted too narrowly; this book does not have fixed presumptions about system
administration procedures.

4. Further Information

Besides the documentation, that is, this book, there are other resources about PostgreSQL :
Wiki

The PostgreSQL wiki® contains the project's FAQ® (Frequently Asked Questions) list, TODO’
list, and detailed information about many more topics.

Web Site

The PostgreSQL web site® carries details on the | atest release and other information to make your
work or play with PostgreSQL more productive.

5 https://wiki.postgresql.org

5 https://wiki.postgresql.org/wiki/Frequently Asked Questions
7 https://wiki.postgresgl.org/wiki/Todo

8 https://www.postgresgl.org

XXXii

https://wiki.postgresql.org
https://wiki.postgresql.org/wiki/Frequently_Asked_Questions
https://wiki.postgresql.org/wiki/Todo
https://www.postgresql.org
https://wiki.postgresql.org
https://wiki.postgresql.org/wiki/Frequently_Asked_Questions
https://wiki.postgresql.org/wiki/Todo
https://www.postgresql.org

Preface

Mailing Lists

The mailing lists are a good place to have your questions answered, to share experiences with
other users, and to contact the developers. Consult the PostgreSQL web site for details.

Y ourself!

PostgreSQL is an open-source project. As such, it depends on the user community for ongoing
support. As you begin to use PostgreSQL, you will rely on others for help, either through the
documentation or through the mailing lists. Consider contributing your knowledge back. Read
the mailing lists and answer questions. If you learn something which is not in the documentation,
write it up and contribute it. If you add features to the code, contribute them.

5. Bug Reporting Guidelines

When you find abug in PostgreSQL we want to hear about it. Y our bug reports play an important part
in making PostgreSQL more reliable because even the utmost care cannot guarantee that every part
of PostgreSQL will work on every platform under every circumstance.

The following suggestions are intended to assist you in forming bug reports that can be handled in an
effective fashion. No oneis required to follow them but doing so tends to be to everyone's advantage.

We cannot promiseto fix every bug right away. If the bug is obvious, critical, or affectsalot of users,
chances are good that someone will 1ook into it. It could also happen that we tell you to update to
a newer version to see if the bug happens there. Or we might decide that the bug cannot be fixed
before some major rewrite we might be planning isdone. Or perhapsit issimply too hard and there are
more important things on the agenda. If you need help immediately, consider obtaining a commercial
support contract.

5.1. Identifying Bugs

Before you report a bug, please read and re-read the documentation to verify that you can realy do
whatever it isyou are trying. If it is not clear from the documentation whether you can do something
or not, please report that too; it is a bug in the documentation. If it turns out that a program does
something different from what the documentation says, that is a bug. That might include, but is not
limited to, the following circumstances:

» A program terminates with afatal signal or an operating system error message that would point to
a problem in the program. (A counterexample might be a “disk full” message, since you have to
fix that yourself.)

» A program produces the wrong output for any given input.
» A program refuses to accept valid input (as defined in the documentation).

A program acceptsinvalid input without a notice or error message. But keep in mind that your idea
of invalid input might be our idea of an extension or compatibility with traditional practice.

» PostgreSQL failsto compile, build, or install according to the instructions on supported platforms.
Here “program” refers to any executable, not only the backend process.

Being slow or resource-hogging is not necessarily a bug. Read the documentation or ask on one of
the mailing lists for help in tuning your applications. Failing to comply to the SQL standard is not
necessarily a bug either, unless compliance for the specific feature is explicitly claimed.

Before you continue, check on the TODO list and in the FAQ to see if your bug is aready known.
If you cannot decode the information on the TODO list, report your problem. The least we cando is
make the TODO list clearer.

XXXl

Preface

5.2. What to Report

The most important thing to remember about bug reporting is to state all the facts and only facts. Do
not speculate what you think went wrong, what “it seemed to do”, or which part of the program has a
fault. If you are not familiar with the implementation you would probably guess wrong and not help
us a bit. And even if you are, educated explanations are a great supplement to but no substitute for
facts. If we are going to fix the bug we still have to see it happen for ourselves first. Reporting the
bare facts is relatively straightforward (you can probably copy and paste them from the screen) but
all too often important details are left out because someone thought it does not matter or the report
would be understood anyway.

The following items should be contained in every bug report:

» Theexact sequence of stepsfrom program start-up necessary to reproduce the problem. This should
be self-contained; it is not enough to send in a bare SELECT statement without the preceding
CREATE TABLE and | NSERT statements, if the output should depend on the data in the tables.
We do not have the time to reverse-engineer your database schema, and if we are supposed to make
up our own data we would probably miss the problem.

The best format for atest case for SQL-related problems is afile that can be run through the psgl
frontend that shows the problem. (Be sure to not have anything inyour ~/ . psql r ¢ start-up file))
An easy way to createthisfileisto use pg_dump to dump out the table declarations and data needed
to set the scene, then add the problem query. You are encouraged to minimize the size of your
example, but thisis not absolutely necessary. If the bug is reproducible, we will find it either way.

If your application uses some other client interface, such as PHP, then please try to isolate the
offending queries. We will probably not set up aweb server to reproduce your problem. In any case
remember to provide the exact input files; do not guess that the problem happens for “large files’
or “midsize databases’, etc. since thisinformation istoo inexact to be of use.

» Theoutput you got. Please do not say that it “didn't work” or “crashed”. If thereisan error message,
show it, even if you do not understand it. If the program terminates with an operating system error,
say which. If nothing at all happens, say so. Even if the result of your test case is a program crash
or otherwise obvious it might not happen on our platform. The easiest thing is to copy the output
from the terminal, if possible.

Note

If you are reporting an error message, please obtain the most verbose form of the message.
Inpsql, say \ set VERBOSI TY ver bose beforehand. If you are extracting the message
from the server log, set the run-time parameter log_error_verbosity to ver bose so that all
details are logged.

Note

In case of fatal errors, the error message reported by the client might not contain al the
information available. Please also look at the log output of the database server. If you do
not keep your server'slog output, this would be a good time to start doing so.

» The output you expected is very important to state. If you just write “This command gives me that
output.” or “Thisis not what | expected.”, we might run it ourselves, scan the output, and think it
looks OK and is exactly what we expected. We should not have to spend the time to decode the
exact semantics behind your commands. Especialy refrain from merely saying that “This is not
what SQL says/Oracle does.” Digging out the correct behavior from SQL is not a fun undertaking,

XXXIV

Preface

nor do we al know how all the other relational databases out there behave. (If your problem is a
program crash, you can obviously omit thisitem.)

» Any command line options and other start-up options, including any relevant environment variables
or configuration files that you changed from the default. Again, please provide exact information.
If you are using a prepackaged distribution that starts the database server at boot time, you should
try to find out how that is done.

» Anything you did at al differently from the installation instructions.

» ThePostgreSQL version. Y ou canrunthecommand SELECT ver si on() ; tofindouttheversion
of the server you are connected to. Most executable programs also support a- - ver si on option;
at least postgres --version and psql --version should work. If the function or the
options do not exist then your version is more than old enough to warrant an upgrade. If you run a
prepackaged version, such as RPMs, say so, including any subversion the package might have. If
you are talking about a Git snapshot, mention that, including the commit hash.

If your version is older than 11.15 we will almost certainly tell you to upgrade. There are many bug
fixes and improvementsin each new release, so it is quite possible that a bug you have encountered
in an older release of PostgreSQL has already been fixed. We can only provide limited support
for sites using older releases of PostgreSQL ; if you require more than we can provide, consider
acquiring a commercial support contract.

 Platform information. This includes the kernel name and version, C library, processor, memory
information, and so on. In most cases it is sufficient to report the vendor and version, but do not
assume everyone knows what exactly “Debian” contains or that everyone runs on x86_64. If you
have installation problems then information about the toolchain on your machine (compiler, make,
and so on) is also necessary.

Do not be afraid if your bug report becomes rather lengthy. That is afact of life. It is better to report
everything the first time than us having to squeeze the facts out of you. On the other hand, if your
input files are huge, it isfair to ask first whether somebody isinterested in looking into it. Hereis an
article” that outlines some more ti ps on reporting bugs.

Do not spend all your time to figure out which changes in the input make the problem go away. This
will probably not help solving it. If it turns out that the bug cannot be fixed right away, you will still
have timeto find and share your work-around. Also, once again, do not waste your time guessing why
the bug exists. We will find that out soon enough.

When writing a bug report, please avoid confusing terminology. The software package in total is
called “PostgreSQL ", sometimes“ Postgres” for short. If you are specifically talking about the backend
process, mention that, do not just say “PostgreSQL crashes’. A crash of a single backend process
is quite different from crash of the parent “postgres’ process; please don't say “the server crashed”
when you mean asingle backend process went down, nor vice versa. Also, client programs such asthe
interactive frontend “psgl” are completely separate from the backend. Please try to be specific about
whether the problem is on the client or server side.

5.3. Where to Report Bugs

In general, send bug reports to the bug report mailing list at
<pgsql - bugs@i st s. post gresqgl . or g>. You are requested to use a descriptive subject for
your email message, perhaps parts of the error message.

Another method is to fill in the bug report web-form available at the project's web site™®. Entering
a bug report this way causes it to be mailed to the <pgsql - bugs@i st s. post gresql . or g>
mailing list.

9 https://www.chiark.greenend.org.uk/~sgtatham/bugs.html
10 https:/iwww. postgresal.org/

XXXV

https://www.chiark.greenend.org.uk/~sgtatham/bugs.html
https://www.postgresql.org/
https://www.chiark.greenend.org.uk/~sgtatham/bugs.html
https://www.postgresql.org/

Preface

If your bug report has security implications and you'd prefer that it not become immediately visible
in public archives, don't send it to pgsql - bugs. Security issues can be reported privately to
<security@ostgresql.org>.

Do not send bug reports to any of the wuser maling lists, such as
<pgsql -sqgl @i sts. postgresql.org> or
<pgsql -general @i sts. postgresqgl . org>. These mailing lists are for answering user
questions, and their subscribers normally do not wish to receive bug reports. More importantly, they
are unlikely to fix them.

Also, pleasse do not send reports to the developers mailing list
<pgsql - hackers@i sts. post gresql . or g>. Thislist is for discussing the development of
PostgreSQL , and it would be nice if we could keep the bug reports separate. We might choose to take
up adiscussion about your bug report on pgsql - hacker s, if the problem needs more review.

If you have a problem with the documentation, the best place to report it is the documentation
mailing list <pgsql - docs@ i st s. post gresqgl . or g>. Please be specific about what part of
the documentation you are unhappy with.

If your bug is a portability problem on a non-supported platform, send mail to
<pgsql - hackers@i sts. postgresqgl .org>, so we (and you) can work on porting
PostgreSQL to your platform.

Note

Due to the unfortunate amount of spam going around, all of the above lists will be moderated
unless you are subscribed. That means there will be some delay before the email is delivered.
If you wish to subscribe to the lists, please visit https:/lists.postgresql.org/ for instructions.

XXXVi

https://lists.postgresql.org/

Part I. Tutorial

Welcome to the PostgreSQL Tutorial. The following few chapters are intended to give a simple introduction to
PostgreSQL, relational database concepts, and the SQL |anguage to those who are new to any one of these aspects.
We only assume some general knowledge about how to use computers. No particular Unix or programming
experienceisrequired. Thispart is mainly intended to give you some hands-on experience with important aspects
of the PostgreSQL system. It makes no attempt to be a complete or thorough treatment of the topicsit covers.

After you have worked through this tutorial you might want to move on to reading Part Il to gain a more formal
knowledge of the SQL language, or Part 1V for information about devel oping applications for PostgreSQL . Those
who set up and manage their own server should also read Part 1.

Table of Contents

L. GEIING SEAMEAeeieeie ettt ettt 3
0 T 1 = = = 1o o [P 3
1.2. Architectural FUNDamENtalSc.oiviiniii i 3
1.3. Creating @ Datahasecccuuuiiiiii e 3
1.4, ACCESSING 8 DAIANESE ..ottt 5
2. The SQL LBNGUBGE ...ccevn ittt e et et e et e e e eae s 7
b2 I 1 11 (0o (U (o 1 o I PP 7
A O 04 /= o = PP PT PP 7
2.3. Creating @aNew Table ...o.uuiiii e 7
2.4. Populating @ Table With ROWScoouuiiiiiii e 8
25, QUENYING A TADIE ... 9
2.6. J0INS BEIWEEN TaADIES ...uiviiiie i 11
2.7. AQOregate FUNCLIONSccuuuieiiiii ettt ettt e e et eeeaaa s 13
2.8 UPUELES ...ttt 15
2.9, DEIBHIONSviieiee et e aaaaas 15
I Y0 (V7= o= s (1 = 16
G I 111 (oo (U o 1 o [PPSR 16
I VAT = YRS USPRPRP 16
3.3 FOrEIgN KBYS ..ttt 16
I I =01 o o 1 17
3.5, WINAOW FUNCLIONScviiviiiiii e ans 19
I ST 101015 g1 7= ot PSP 22
G I o o Tox 11 Lo o T 23

Chapter 1. Getting Started
1.1. Installation

Before you can use PostgreSQL you need to install it, of course. It is possible that PostgreSQL is
already installed at your site, either because it was included in your operating system distribution
or because the system administrator aready installed it. If that is the case, you should obtain
information from the operating system documentation or your system administrator about how to
access PostgreSQL.

If you are not sure whether PostgreSQL is already available or whether you can use it for your
experimentation then you can install it yourself. Doing so is not hard and it can be a good exercise.
PostgreSQL can be installed by any unprivileged user; no superuser (root) accessis required.

If you are installing PostgreSQL yourself, then refer to Chapter 16 for instructions on installation,
and return to this guide when the installation is complete. Be sure to follow closely the section about
setting up the appropriate environment variabl es.

If your site administrator has not set things up in the default way, you might have some more work to
do. For example, if the database server machine is aremote machine, you will need to set the PGHOST
environment variable to the name of the database server machine. The environment variable PGPORT
might also have to be set. The bottom line is this: if you try to start an application program and it
complains that it cannot connect to the database, you should consult your site administrator or, if
that is you, the documentation to make sure that your environment is properly set up. If you did not
understand the preceding paragraph then read the next section.

1.2. Architectural Fundamentals

Before we proceed, you should understand the basic PostgreSQL system architecture. Understanding
how the parts of PostgreSQL interact will make this chapter somewhat clearer.

In database jargon, PostgreSQL uses a client/server model. A PostgreSQL session consists of the
following cooperating processes (programs):

A server process, which manages the database files, accepts connections to the database from client
applications, and performs database actions on behalf of the clients. The database server program
iscaled post gres.

e The user's client (frontend) application that wants to perform database operations. Client
applications can be very diverse in nature: a client could be a text-oriented tool, a graphical
application, aweb server that accesses the database to display web pages, or a specialized database
maintenance tool. Some client applications are supplied with the PostgreSQL distribution; most are
developed by users.

Asistypical of client/server applications, the client and the server can be on different hosts. In that
case they communicate over a TCP/IP network connection. Y ou should keep this in mind, because
the filesthat can be accessed on a client machine might not be accessible (or might only be accessible
using adifferent file name) on the database server machine.

The PostgreSQL server can handle multiple concurrent connections from clients. To achieve this
it starts (“forks”) a new process for each connection. From that point on, the client and the new
server process communicate without intervention by theoriginal post gr es process. Thus, the master
server process is always running, waiting for client connections, whereas client and associated server
processes come and go. (All of thisis of course invisible to the user. We only mention it here for
completeness.)

1.3. Creating a Database

Getting Started

Thefirst test to see whether you can access the database server isto try to create adatabase. A running
PostgreSQL server can manage many databases. Typically, a separate database is used for each project
or for each user.

Possibly, your site administrator has already created a database for your use. In that case you can omit
this step and skip ahead to the next section.

To create a new database, in this example named mydb, you use the following command:

$ createdb nydb

If this produces no response then this step was successful and you can skip over the remainder of
this section.

If you see a message similar to:

creat edb: command not found

then PostgreSQL was not installed properly. Either it was not installed at all or your shell's search path
was not set to includeit. Try calling the command with an absol ute path instead:

$ /usr/local/pgsqgl/bin/createdb nmydb

The path at your site might be different. Contact your site administrator or check the installation
instructions to correct the situation.

Another response could be this:

createdb: could not connect to database postgres: could not connect
to server: No such file or directory

Is the server running locally and accepting

connections on Uni x donain socket "/tnp/.s.PGSQL. 5432"?

This means that the server was not started, or it was not started where cr eat edb expected it. Again,
check the installation instructions or consult the administrator.

Another response could be this:

createdb: could not connect to database postgres: FATAL: role
"joe" does not exi st

where your own login name is mentioned. This will happen if the administrator has not created a
PostgreSQL user account for you. (PostgreSQL user accounts are distinct from operating system user
accounts.) If you are the administrator, see Chapter 21 for help creating accounts. Y ou will need to
become the operating system user under which PostgreSQL was installed (usualy post gr es) to
create the first user account. It could also be that you were assighed a PostgreSQL user name that is
different from your operating system user name; in that case you need to use the - U switch or set the
PGUSER environment variable to specify your PostgreSQL user name.

If you have a user account but it does not have the privileges required to create a database, you will
see the following:

creat edb: database creation failed: ERROR pernission denied to
create dat abase

Getting Started

Not every user has authorization to create new databases. If PostgreSQL refuses to create databases
for you then the site administrator needs to grant you permission to create databases. Consult your
site administrator if this occurs. If you installed PostgreSQL yourself then you should log in for the
purposes of thistutorial under the user account that you started the server as. !

You can aso create databases with other names. PostgreSQL allows you to create any number of
databases at a given site. Database names must have an alphabetic first character and are limited to
63 bytes in length. A convenient choice is to create a database with the same name as your current
user name. Many tools assume that database name as the default, so it can save you some typing. To
create that database, smply type:

$ createdb

If you do not want to use your database anymore you can removeit. For example, if you arethe owner
(creator) of the database ny db, you can destroy it using the following command:

$ dropdb nydb

(For this command, the database name does not default to the user account name. Y ou always need to
specify it.) Thisaction physically removesall files associated with the database and cannot be undone,
so this should only be done with a great deal of forethought.

More about cr eat edb and dr opdb can be found in createdb and dropdb respectively.

1.4. Accessing a Database

Once you have created a database, you can accessit by:

* Running the PostgreSQL interactive terminal program, called psgl, which alows you to
interactively enter, edit, and execute SQL commands.

» Using an existing graphical frontend tool like pgAdmin or an office suite with ODBC or JDBC
support to create and manipulate a database. These possibilities are not covered in this tutorial.

» Writing a custom application, using one of the several available language bindings. These
possibilities are discussed further in Part V.

You probably want to start up psql to try the examples in this tutorial. It can be activated for the
nmy db database by typing the command:

$ psqgl nydb

If you do not supply the database name then it will default to your user account name. Y ou already
discovered this scheme in the previous section using cr eat edb.

Inpsql , you will be greeted with the following message:
psql (11.15)

Type "hel p" for help.

mydb=>

Thelast line could also be:

1 As an explanation for why this works: PostgreSQL user names are separate from operating system user accounts. When you connect to a
database, you can choose what PostgreSQL user name to connect as; if you don't, it will default to the same name as your current operating
system account. Asit happens, there will always be a PostgreSQL user account that has the same name as the operating system user that started
the server, and it also happens that that user always has permission to create databases. Instead of logging in as that user you can also specify
the - U option everywhere to select a PostgreSQL user name to connect as.

Getting Started

nydb=#

That would mean you are a database superuser, which is most likely the case if you instaled the
PostgreSQL instance yourself. Being a superuser means that you are not subject to access controls.
For the purposes of thistutorial that is not important.

If you encounter problems starting psql then go back to the previous section. The diagnostics of
creat edb and psql aresimilar, and if the former worked the latter should work as well.

Thelast line printed out by psql isthe prompt, and it indicatesthat psql islistening to you and that
you can type SQL queries into awork space maintained by psql . Try out these commands:

nydb=> SELECT version();
ver si on

PostgreSQ. 11.15 on x86_64-pc-1linux-gnu, conpiled by gcc (Debian
4.9.2-10) 4.9.2, 64-bit
(1 row

nmydb=> SELECT current _date;
dat e

2016- 01- 07
(1 row

nmydb=> SELECT 2 + 2;
?col um?

(1 row

Thepsql program hasanumber of internal commands that are not SQL commands. They begin with
the backslash character, “\ . For example, you can get help on the syntax of various PostgreSQL SQL
commands by typing:

nydb=> \ h

To get out of psql , type:

nmydb=> \q

and psql will quit and return you to your command shell. (For more internal commands, type\ ? at
the psqgl prompt.) The full capabilities of psql are documented in psgl. In this tutorial we will not
use these features explicitly, but you can use them yourself when it is helpful.

Chapter 2. The SQL Language

2.1. Introduction

This chapter provides an overview of how to use SQL to perform simple operations. This tutorial is
only intended to give you an introduction and is in no way a complete tutorial on SQL. Numerous
books have been written on SQL, including [melt93] and [date97]. Y ou should be aware that some
PostgreSQL language features are extensions to the standard.

In the examples that follow, we assume that you have created a database named mydb, as described
in the previous chapter, and have been able to start psql.

Examples in this manual can also be found in the PostgreSQL source distribution in the directory
src/tutorial/.(Binary distributions of PostgreSQL might not provide thosefiles.) To use those
files, first change to that directory and run make:

$ cd .../src/tutorial
$ make

This creates the scripts and compiles the C files containing user-defined functions and types. Then,
to start the tutorial, do the following:

$ psqgl -s nydb

nydb=> \i basi cs. sql

The\ i command readsin commandsfrom the specified file. psql 's- s option putsyouin single step
mode which pauses before sending each statement to the server. The commands used in this section
areinthefilebasi cs. sql .

2.2. Concepts

PostgreSQL isarelational database management system (RDBMS). That meansit is a system for
managing data stored in relations. Relation is essentially a mathematical term for table. The notion
of storing data in tables is so commonplace today that it might seem inherently obvious, but there
are a number of other ways of organizing databases. Files and directories on Unix-like operating
systems form an example of a hierarchical database. A more modern development is the object-
oriented database.

Each table is a named collection of rows. Each row of a given table has the same set of named
columns, and each column is of a specific datatype. Whereas columns have afixed order in each row,
it isimportant to remember that SQL does not guarantee the order of the rows within the table in any
way (although they can be explicitly sorted for display).

Tables are grouped into databases, and a collection of databases managed by a single PostgreSQL
server instance constitutes a database cluster.

2.3. Creating a New Table

Y ou can create a new table by specifying the table name, along with all column names and their types:

The SQL Language

CREATE TABLE weat her (

city var char (80),

temp_lo int, -- low tenperature
t enmp_hi int, -- high tenperature
prcp real, -- precipitation
dat e dat e

)

You can enter this into psql with the line breaks. psql will recognize that the command is not
terminated until the semicolon.

White space (i.e., spaces, tabs, and newlines) can be used freely in SQL commands. That means
you can type the command aligned differently than above, or even all on one line. Two dashes (“- -
") introduce comments. Whatever follows them is ignored up to the end of the line. SQL is case
insensitive about key words and identifiers, except when identifiers are double-quoted to preserve the
case (not done above).

var char (80) specifies a data type that can store arbitrary character strings up to 80 characters
inlength. i nt isthe normal integer type. r eal isatype for storing single precision floating-point
numbers. dat e should be self-explanatory. (Y es, the column of typedat e isalso named dat e. This
might be convenient or confusing — you choose.)

PostgreSQL supports the standard SQL typesi nt, snal I i nt, real, doubl e precision,
char (N),varchar(N),date, tine,tinestanp, andi nt erval, aswell as other types of
genera utility and arich set of geometric types. PostgreSQL can be customized with an arbitrary
number of user-defined data types. Consequently, type names are not key words in the syntax, except
where required to support special casesin the SQL standard.

The second example will store cities and their associated geographical location:

CREATE TABLE cities (
nane var char (80),
| ocation poi nt

)
Thepoi nt typeisan example of aPostgreSQL -specific data type.
Finally, it should be mentioned that if you don't need atable any longer or want to recreateit differently

you can remove it using the following command:

DROP TABLE t abl enane;

2.4. Populating a Table With Rows

The | NSERT statement is used to popul ate a table with rows:
| NSERT | NTO weat her VALUES (' San Francisco', 46, 50, 0.25,
'1994-11-27");

Notethat all datatypes use rather obviousinput formats. Constantsthat are not simple numeric values
usually must be surrounded by single quotes ('), asin the example. The dat e typeisactualy quite
flexiblein what it accepts, but for thistutorial we will stick to the unambiguous format shown here.

Thepoi nt type requires a coordinate pair asinput, as shown here:

The SQL Language

I NSERT I NTO cities VALUES (' San Francisco', '(-194.0, 53.0)");

The syntax used so far requiresyou to remember the order of the columns. An alternative syntax allows
you to list the columns explicitly:

| NSERT | NTO weat her (city, tenp_lo, tenp_hi, prcp, date)
VALUES (' San Franci sco', 43, 57, 0.0, '1994-11-29');
You can list the columns in a different order if you wish or even omit some columns, e.g., if the
precipitation is unknown;
| NSERT | NTO weat her (date, city, tenp_hi, tenp_l o)
VALUES (' 1994-11-29', 'Hayward', 54, 37);

Many developers consider explicitly listing the columns better style than relying on the order
implicitly.

Please enter all the commands shown above so you have some data to work with in the following
sections.

You could also have used COPY to load large amounts of data from flat-text files. This is usualy
faster because the COPY command is optimized for this application while allowing lessflexibility than
| NSERT. An example would be:

COPY weat her FROM '/ hone/ user/weat her. txt";
where the file name for the source file must be available on the machine running the backend process,

not the client, since the backend process reads the file directly. Y ou can read more about the COPY
command in COPY.

2.5. Querying a Table

To retrieve datafrom atable, thetableis queried. An SQL SELECT statement is used to do this. The
statement is divided into a select list (the part that lists the columns to be returned), a table list (the
part that lists the tables from which to retrieve the data), and an optional qualification (the part that
specifies any restrictions). For example, to retrieve al the rows of tableweat her , type:

SELECT * FROM weat her;

Here* isashorthand for “al columns’. * So the same result would be had with:

SELECT city, tenp_lo, tenmp_hi, prcp, date FROM weat her;

The output should be:

city | tenp_lo | tenmp_hi | prcp | dat e
--------------- T T T gy
San Franci sco | 46 | 50 | 0.25 | 1994-11-27
San Franci sco | 43 | 57 | 0 | 1994-11-29
Haywar d | 37 | 54 | | 1994-11-29

L \While SELECT * isuseful for off-the-cuff queries, it is widely considered bad style in production code, since adding a column to the table
would change the results.

The SQL Language

(3 rows)

Y ou can write expressions, not just simple column references, in the select list. For example, you can
do:

SELECT city, (tenp_hi+tenp_lo)/2 AS tenp_avg, date FROM weat her;

This should give:

city | tenmp_avg | dat e
_______________ e
San Franci sco | 48 | 1994-11-27
San Franci sco | 50 | 1994-11-29
Haywar d | 45 | 1994-11-29
(3 rows)

Notice how the AS clause is used to relabel the output column. (The AS clauseis optional.)

A query can be “qualified” by adding a WHERE clause that specifies which rows are wanted. The
WHERE clause contains a Boolean (truth value) expression, and only rows for which the Boolean
expression is true are returned. The usual Boolean operators (AND, OR, and NOT) are allowed in the
qualification. For example, the following retrieves the weather of San Francisco on rainy days:

SELECT * FROM weat her
WHERE city = ' San Franci sco' AND prcp > 0.0;

Result:

city | temp_lo | tenp_hi | prcp | dat e
--------------- T T
San Franci sco | 46 | 50 | 0.25 | 1994-11-27
(1 row

Y ou can request that the results of a query be returned in sorted order:

SELECT * FROM weat her
ORDER BY city;

city | temp_lo | tenp_hi | prcp | dat e
--------------- T T L g
Haywar d | 37 | 54 | | 1994-11-29
San Franci sco | 43 | 57 | 0 | 1994-11-29
San Franci sco | 46 | 50 | 0.25 | 1994-11-27

In this example, the sort order isn't fully specified, and so you might get the San Francisco rows in
either order. But you'd always get the results shown above if you do:

SELECT * FROM weat her
ORDER BY city, tenp_lo;

Y ou can request that duplicate rows be removed from the result of a query:

SELECT DI STINCT city

10

The SQL Language

FROM weat her ;

Haywar d
San Franci sco
(2 rows)

Here again, theresult row ordering might vary. Y ou can ensure consistent results by using DI STI NCT
and ORDER BY together: 2

SELECT DI STINCT city
FROM weat her
ORDER BY city;

2.6. Joins Between Tables

Thus far, our queries have only accessed one table at a time. Queries can access multiple tables at
once, or access the same table in such away that multiple rows of the table are being processed at the
sametime. A query that accesses multiple rows of the same or different tables at onetimeiscalled a
join query. As an example, say you wish to list al the weather records together with the location of
the associated city. To do that, we need to compare the ci t y column of each row of the weat her
table with the nare column of al rowsintheci t i es table, and select the pairs of rows where these
values match.

Note

Thisisonly aconceptual model. Thejoinisusually performed in amore efficient manner than
actually comparing each possible pair of rows, but thisisinvisible to the user.

This would be accomplished by the following query:

SELECT *
FROM weat her, cities
WHERE city = nane;

city | temp_lo | tenp_hi | prcp | date | name
| location
--------------- T LT I T gy
R S
San Franci sco | 46 | 50 | 0.25 | 1994-11-27 | San
Francisco | (-194,53)
San Franci sco | 43 | 57 | 0 | 1994-11-29 | San
Francisco | (-194,53)
(2 rows)

Observe two things about the result set:

e Thereis no result row for the city of Hayward. This is because there is no matching entry in the
ci ti es table for Hayward, so the join ignores the unmatched rows in the weat her table. We
will see shortly how this can be fixed.

2 |n some database systems, including older versions of PostgreSQL, the implementation of DI STI NCT automatically orders the rows and
so ORDER BY is unnecessary. But this is not required by the SQL standard, and current PostgreSQL does not guarantee that DI STI NCT
causes the rows to be ordered.

11

The SQL Language

» There are two columns containing the city name. Thisis correct because the lists of columns from
theweat her andci ti es tablesare concatenated. In practice thisis undesirable, though, so you
will probably want to list the output columns explicitly rather than using * :

SELECT city, tenp_lo, tenp_hi, prcp, date, location
FROM weat her, cities
WHERE city = nane;

Exercise: Attempt to determine the semantics of this query when the WHERE clause is omitted.

Since the columns all had different names, the parser automatically found which table they belong
to. If there were duplicate column names in the two tables you'd need to qualify the column names
to show which one you meant, asin:

SELECT weather.city, weather.tenp_ | o, weather.tenp_hi,
weat her. prcp, weather.date, cities.location
FROM weat her, cities
WHERE cities. name = weather.city;

It iswidely considered good style to qualify all column namesin ajoin query, so that the query won't
fail if aduplicate column nameis later added to one of the tables.

Join queries of the kind seen thus far can also be written in this alternative form:

SELECT *
FROM weat her I NNER JO N cities ON (weather.city = cities.nane);

This syntax is not as commonly used as the one above, but we show it here to help you understand
the following topics.

Now we will figure out how we can get the Hayward records back in. What we want the query to do
isto scan theweat her table and for each row to find the matching ci t i es row(s). If no matching
row is found we want some “empty values’ to be substituted for the ci t i es table's columns. This
kind of query is called an outer join. (The joins we have seen so far are inner joins.) The command
looks like this:

SELECT *
FROM weat her LEFT QUTER JO N cities ON (weather.city
cities.nane);

city | temp_lo | tenp_hi | prcp | dat e | nane
| location
--------------- T S LT Jpeppp
Fom e e e e o oo Fom e e e e o -
Haywar d | 37 | 54 | | 1994-11-29 |
I
San Franci sco | 46 | 50 | 0.25 | 1994-11-27 | San
Francisco | (-194, 53)
San Franci sco | 43 | 57 | 0 | 1994-11-29 | San
Francisco | (-194, 53)
(3 rows)

This query is called aleft outer join because the table mentioned on the left of the join operator will
have each of its rows in the output at |east once, whereas the table on the right will only have those
rows output that match some row of the left table. When outputting aleft-table row for which thereis
no right-table match, empty (null) values are substituted for the right-table columns.

12

The SQL Language

Exercises Thereare aso right outer joins and full outer joins. Try to find out what those do.

We can aso join atable against itself. Thisis caled a self join. As an example, suppose we wish
to find all the weather records that are in the temperature range of other weather records. So we
need to comparethet enp_| o andt enp_hi columns of each weat her rowtothet enp_| o and
t emp_hi columns of all other weat her rows. We can do this with the following query:

SELECT WL.city, WiL.tenp_lo AS | ow, WL.tenp_hi AS hi gh,
W.city, W2.tenp_lo AS low, W.tenp_hi AS high
FROM weat her WL, weat her W2
WHERE Wi.tenp_ o < W2.tenp_l o
AND WL. tenmp_hi > W2.tenp_hi;

city | lTow | high | city | low | high
--------------- T T T e I
San Francisco | 43 | 57 | San Francisco | 46 | 50
Haywar d | 37 | 54 | San Francisco | 46 | 50
(2 rows)

Here we have relabeled the weather table as WL and W2 to be able to distinguish the left and right side
of thejoin. You can aso use these kinds of aliasesin other queriesto save some typing, e.g.:

SELECT *
FROM weat her w, cities ¢
WHERE w. city = c.nane;

Y ou will encounter this style of abbreviating quite frequently.

2.7. Aggregate Functions

Like most other relational database products, PostgreSQL supports aggregate functions. An aggregate
function computes a single result from multiple input rows. For example, there are aggregates to
compute the count , sum avg (average), max (maximum) and ni n (minimum) over a set of rows.

As an example, we can find the highest |low-temperature reading anywhere with:

SELECT nmax(tenp_l o) FROM weat her;

If we wanted to know what city (or cities) that reading occurred in, we might try:

SELECT city FROM weat her WHERE tenp_| o = max(tenp_l 0); VRONG

but this will not work since the aggregate max cannot be used in the WHERE clause. (This restriction
exists because the WHERE clause determineswhich rowswill beincluded in the aggregate cal cul ation;
so obviously it hasto be eval uated before aggregate functions are computed.) However, asis often the
case the query can be restated to accomplish the desired result, here by using a subquery:

SELECT city FROM weat her

13

The SQL Language

WHERE tenp_| o = (SELECT max(tenp_l o) FROM weat her);

San Franci sco

(1 row

This is OK because the subquery is an independent computation that computes its own aggregate
separately from what is happening in the outer query.

Aggregates are also very useful in combination with GROUP BY clauses. For example, we can get
the maximum low temperature observed in each city with:

SELECT city, max(tenp_| o)
FROM weat her
GROUP BY city;

city | max
_______________ [S,
Haywar d | 37
San Francisco | 46
(2 rows)

which givesusone output row per city. Each aggregate result iscomputed over thetablerows matching
that city. We can filter these grouped rows using HAVI NG

SELECT city, max(tenp_| 0)
FROM weat her
GROUP BY city
HAVI NG max(tenp_l o) < 40;

city | max
_________ [I,
Hayward | 37
(1 row)

which gives us the same results for only the cities that have all t enp_| o values below 40. Finally,
if we only care about cities whose names begin with “S”, we might do:

SELECT city, max(tenp_l o)
FROM weat her
WHERE city LIKE ' S% --
GROUP BY city
HAVI NG max(tenp_l o) < 40;

The LI KE operator does pattern matching and is explained in Section 9.7.

It is important to understand the interaction between aggregates and SQL's WHERE and HAVI NG
clauses. The fundamental difference between WHERE and HAVI NG is this: WHERE selects input
rows before groups and aggregates are computed (thus, it controls which rows go into the aggregate
computation), whereas HAVI NG sel ects group rows after groups and aggregates are computed. Thus,
the WHERE clause must not contain aggregate functions; it makes no sense to try to use an aggregate
to determine which rows will be inputs to the aggregates. On the other hand, the HAVI NG clause
always contains aggregate functions. (Strictly speaking, you are allowed to write a HAVI NG clause

14

The SQL Language

that doesn't use aggregates, but it's seldom useful. The same condition could be used more efficiently

at the WHERE stage.)

In the previous example, we can apply the city name restriction in WHERE, sinceit needs no aggregate.
This is more efficient than adding the restriction to HAVI NG, because we avoid doing the grouping

and aggregate calculations for al rows that fail the WHERE check.

2.8. Updates

You can update existing rows using the UPDATE command. Suppose you discover the temperature
readings are all off by 2 degrees after November 28. Y ou can correct the data as follows:

UPDATE weat her

SET tenp_hi = temp_hi - 2, tenp_lo =temp_lo - 2

WHERE date > '1994-11-28";
Look at the new state of the data:
SELECT * FROM weat her;

city | temp_lo | tenp_hi | prcp | dat e
--------------- T T L e
San Franci sco | 46 | 50 | 0.25 | 1994-11-27
San Franci sco | 41 | 55 | 0 | 1994-11-29
Haywar d | 35 | 52 | | 1994-11-29
(3 rows)

2.9. Deletions

Rows can be removed from atable using the DEL ETE command.
in the weather of Hayward. Then you can do the following to delete those rows from the table:

DELETE FROM weat her WHERE city = 'Hayward';

All weather records belonging to Hayward are removed.

SELECT * FROM weat her;

city | temp_lo | tenp_hi | prcp |
--------------- T e T T Ty S
San Franci sco | 46 | 50 | 0.25 |
San Franci sco | 41 | 55 | 0 |

(2 rows)

One should be wary of statements of the form

DELETE FROM t abl enane;

Without a qualification, DELETE will remove all rows from the given table, leaving it empty. The

system will not request confirmation before doing this!

Supposeyou are no longer interested

1994-11- 27
1994-11-29

15

Chapter 3. Advanced Features

3.1. Introduction

In the previous chapter we have covered the basics of using SQL to store and access your data in
PostgreSQL . We will now discuss some more advanced features of SQL that simplify management
and prevent loss or corruption of your data. Finally, we will look at some PostgreSQL extensions.

This chapter will on occasion refer to examples found in Chapter 2 to change or improve them, so
it will be useful to have read that chapter. Some examples from this chapter can also be found in
advanced. sql inthetutoria directory. Thisfile also contains some sample datato load, which is
not repeated here. (Refer to Section 2.1 for how to use thefile.)

3.2. Views

Refer back to the queriesin Section 2.6. Suppose the combined listing of weather records and city
location is of particular interest to your application, but you do not want to type the query each time
you need it. Y ou can create a view over the query, which gives aname to the query that you can refer
to like an ordinary table:

CREATE VI EW nyvi ew AS
SELECT nane, tenp_lo, tenp_hi, prcp, date, |ocation
FROM weat her, cities
WHERE city = nane;

SELECT * FROM nyvi ew,

Making liberal use of views is a key aspect of good SQL database design. Views allow you to
encapsul ate the details of the structure of your tables, which might change asyour application evolves,
behind consistent interfaces.

Views can be used in almost any place areal table can be used. Building views upon other views is
not uncommon.

3.3. Foreign Keys

Recall theweat her andci ti es tablesfrom Chapter 2. Consider the following problem: Y ou want
to make sure that no one can insert rows in the weat her table that do not have a matching entry
intheci ti es table. Thisis called maintaining the referential integrity of your data. In simplistic
database systems this would be implemented (if at al) by first looking at theci t i es table to check
if amatching record exists, and then inserting or rejecting the new weat her records. This approach
has a number of problems and is very inconvenient, so PostgreSQL can do this for you.

The new declaration of the tables would look like this:

CREATE TABLE cities (
nane varchar (80) primary key,
| ocation point

)

CREATE TABLE weat her (
city varchar (80) references cities(nane),
tenmp_lo int,

16

Advanced Features

t enmp_hi int,
prcp real,
dat e date

)

Now try inserting an invalid record:
| NSERT | NTO weat her VALUES (' Berkeley', 45, 53, 0.0, '1994-11-28");

ERROR: insert or update on table "weather" violates foreign key
constraint "weather_city_fkey"
DETAIL: Key (city)=(Berkeley) is not present in table "cities".

Thebehavior of foreign keys can befinely tuned to your application. Wewill not go beyond thissimple
example in thistutorial, but just refer you to Chapter 5 for more information. Making correct use of
foreign keys will definitely improve the quality of your database applications, so you are strongly
encouraged to learn about them.

3.4. Transactions

Transactions are afundamental concept of all database systems. The essential point of atransactionis
that it bundles multiple steps into a single, all-or-nothing operation. The intermediate states between
the steps are not visible to other concurrent transactions, and if some failure occurs that prevents the
transaction from completing, then none of the steps affect the database at al.

For example, consider abank database that contains balancesfor various customer accounts, aswell as
total deposit balancesfor branches. Suppose that we want to record a payment of $100.00 from Alice's
account to Bab's account. Simplifying outrageously, the SQL commands for this might ook like:

UPDATE accounts SET bal ance = bal ance - 100. 00

VWHERE nanme = 'Alice';
UPDATE branches SET bal ance = bal ance - 100. 00

WHERE nane = (SELECT branch_name FROM accounts WHERE nane
"Alice');
UPDATE accounts SET bal ance = bal ance + 100. 00

VWHERE nanme = ' Bob';
UPDATE branches SET bal ance = bal ance + 100. 00

WHERE nane = (SELECT branch_name FROM accounts WHERE nane
' Bob') ;

The details of these commands are not important here; the important point is that there are several
separate updates involved to accomplish this rather simple operation. Our bank's officers will want to
be assured that either al these updates happen, or none of them happen. It would certainly not do for
asystem failure to result in Bob receiving $100.00 that was not debited from Alice. Nor would Alice
long remain a happy customer if she was debited without Bob being credited. We need a guarantee
that if something goes wrong partway through the operation, none of the steps executed so far will
take effect. Grouping the updates into atransaction gives usthis guarantee. A transactionissaid to be
atomic: from the point of view of other transactions, it either happens completely or not at all.

We also want a guarantee that once a transaction is completed and acknowledged by the database
system, it has indeed been permanently recorded and won't be lost even if a crash ensues shortly
thereafter. For example, if we are recording a cash withdrawal by Bob, we do not want any chance that
the debit to his account will disappear in acrash just after he walks out the bank door. A transactional
database guarantees that all the updates made by a transaction are logged in permanent storage (i.e.,
on disk) before the transaction is reported compl ete.

17

Advanced Features

Another important property of transactional databases is closely related to the notion of atomic
updates: when multiple transactions are running concurrently, each one should not be able to see the
incomplete changes made by others. For example, if one transaction is busy totalling all the branch
balances, it would not do for it to include the debit from Alice's branch but not the credit to Bob's
branch, nor vice versa. So transactions must be all-or-nothing not only in terms of their permanent
effect on the database, but also in terms of their visibility asthey happen. The updates made so far by
an open transaction are invisible to other transactions until the transaction completes, whereupon all
the updates become visible simultaneously.

In PostgreSQL, a transaction is set up by surrounding the SQL commands of the transaction with
BEGQ Nand COVMM T commands. So our banking transaction would actually look like:

BEG N;

UPDATE accounts SET bal ance = bal ance - 100. 00
VWHERE nanme = 'Alice';

-- etc etc

COW T;

If, partway through the transaction, we decide we do not want to commit (perhaps we just noticed that
Alice's balance went negative), we can issue the command ROLLBACK instead of COVM T, and all
our updates so far will be canceled.

PostgreSQL actually treats every SQL statement as being executed within atransaction. If you do not
issue a BEG N command, then each individual statement has an implicit BEG N and (if successful)
COWM T wrapped around it. A group of statements surrounded by BEG Nand COVM T is sometimes
called atransaction block.

Note

Some client libraries issue BEG N and COMM T commands automatically, so that you might
get the effect of transaction blocks without asking. Check the documentation for the interface
you are using.

It's possible to control the statements in a transaction in a more granular fashion through the use of
savepoints. Savepoints allow you to selectively discard parts of the transaction, while committing the
rest. After defining a savepoint with SAVEPQO NT, you can if needed roll back to the savepoint with
ROLLBACK TO. All the transaction's database changes between defining the savepoint and rolling
back to it are discarded, but changes earlier than the savepoint are kept.

After rolling back to a savepoint, it continues to be defined, so you can roll back to it several times.
Conversely, if you are sure you won't need to roll back to a particular savepoint again, it can be
released, so the system can free some resources. Keep in mind that either releasing or rolling back to
asavepoint will automatically release all savepoints that were defined after it.

All this is happening within the transaction block, so none of it is visible to other database sessions.
When and if you commit the transaction block, the committed actions become visible asaunit to other
sessions, while the rolled-back actions never become visible at all.

Remembering the bank database, suppose we debit $100.00 from Alice's account, and credit Bob's
account, only to find later that we should have credited Wally's account. We could do it using
savepoints like this:

BEG N,

UPDATE accounts SET bal ance = bal ance - 100. 00
VWHERE nane = 'Alice';

SAVEPQO NT ny_savepoi nt;

18

Advanced Features

UPDATE accounts SET bal ance = bal ance + 100. 00
VWHERE nanme = ' Bob';

-- oops ... forget that and use Wally's account

ROLLBACK TO ny_savepoi nt;

UPDATE accounts SET bal ance = bal ance + 100. 00
WHERE nane = 'Vally';

COW T;

Thisexampleis, of course, oversimplified, but there's alot of control possible in a transaction block
through the use of savepoints. Moreover, ROLLBACK TO s the only way to regain control of a
transaction block that was put in aborted state by the system due to an error, short of rolling it back
completely and starting again.

3.5. Window Functions

A window function performs a calculation across a set of table rows that are somehow related to the
current row. Thisis comparable to the type of calculation that can be done with an aggregate function.
However, window functions do not cause rows to become grouped into a single output row like non-
window aggregate calls would. Instead, the rows retain their separate identities. Behind the scenes,
the window function is able to access more than just the current row of the query result.

Here is an example that shows how to compare each employee's salary with the average salary in his
or her department:

SELECT depnane, enpno, salary, avg(salary) OVER (PARTI TI ON BY
depnane) FROM enpsal ary;

depnane | enmpno | salary | avg
----------- T
devel op | 11 | 5200 | 5020. 0000000000000000
devel op | 7| 4200 | 5020.0000000000000000
devel op | 9 | 4500 | 5020. 0000000000000000
devel op | 8 | 6000 | 5020. 0000000000000000
devel op | 10 | 5200 | 5020. 0000000000000000
personnel | 5| 3500 | 3700. 0000000000000000
personnel | 2| 3900 | 3700. 0000000000000000
sal es | 3| 4800 | 4866.6666666666666667
sal es | 1] 5000 | 4866.6666666666666667
sal es | 4 | 4800 | 4866.6666666666666667
(10 rows)

Thefirst three output columns come directly from the tableenpsal ar y, and there is one output row
for each row in the table. The fourth column represents an average taken across all the table rows
that have the same depnane value as the current row. (This actually is the same function as the
non-window avg aggregate, but the OVER clause causes it to be treated as a window function and
computed across the window frame.)

A window function call aways contains an OVER clause directly following the window function's
name and argument(s). This is what syntactically distinguishes it from a normal function or non-
window aggregate. The OVER clause determines exactly how the rows of the query are split up for
processing by the window function. The PARTI Tl ON BY clause within OVER divides the rows into
groups, or partitions, that share the same values of the PARTI TI ON BY expression(s). For each row,
the window function is computed across the rows that fall into the same partition as the current row.

You can aso control the order in which rows are processed by window functions using ORDER BY
within OVER. (The window ORDER BY does not even have to match the order in which the rows are
output.) Hereis an example:

19

Advanced Features

SELECT depnane, enpno, salary,
rank() OVER (PARTI TI ON BY depnane ORDER BY sal ary DESC)
FROM enpsal ary;

depnanme | enmpno | salary | rank
----------- T e Y
devel op | 8 | 6000 | 1
devel op | 10 | 5200 | 2
devel op | 11 | 5200 | 2
devel op | 9 | 4500 | 4
devel op | 7 | 4200 | 5
per sonnel | 2 | 3900 | 1
personnel | 5] 3500 | 2
sal es | 1| 5000 | 1
sal es | 4 | 4800 | 2
sal es | 3| 4800 | 2
(10 rows)

As shown here, the r ank function produces a numerical rank for each distinct ORDER BY valuein
the current row's partition, using the order defined by the ORDER BY clause. r ank needs no explicit
parameter, because its behavior is entirely determined by the OVER clause.

The rows considered by a window function are those of the “virtual table” produced by the query's
FROMclause asfiltered by its WHERE, GROUP BY, and HAVI NG clausesif any. For example, arow
removed because it does not meet the WHERE condition is not seen by any window function. A query
can contain multiple window functions that slice up the data in different ways using different OVER
clauses, but they all act on the same collection of rows defined by this virtual table.

We aready saw that ORDER BY can be omitted if the ordering of rows is not important. It is also
possible to omit PARTI TI ON BY, in which case there is asingle partition containing al rows.

There is another important concept associated with window functions: for each row, there is a set of
rows within its partition called its window frame. Some window functions act only on the rows of the
window frame, rather than of the whole partition. By default, if ORDER BY is supplied then the frame
consists of all rows from the start of the partition up through the current row, plus any following rows
that are equal to the current row according to the ORDER BY clause. When ORDER BY is omitted the
default frame consists of all rows in the partition. 'Hereisan exampleusing sum

SELECT sal ary, sun{salary) OVER () FROM enpsal ary;

salary | sum

________ .
5200 | 47100
5000 | 47100
3500 | 47100
4800 | 47100
3900 | 47100
4200 | 47100
4500 | 47100
4800 | 47100
6000 | 47100
5200 | 47100

(10 rows)

! There are options to define the window frame in other ways, but this tutorial does not cover them. See Section 4.2.8 for details.

20

Advanced Features

Above, sincethereisno ORDER BY inthe OVER clause, the window frameisthe same asthe partition,
which for lack of PARTI TI ON BY is the whole table; in other words each sum is taken over the
whole table and so we get the same result for each output row. But if we add an ORDER BY clause,
we get very different results:

SELECT sal ary, sun{salary) OVER (ORDER BY sal ary) FROM enpsal ary;

salary | sum

________ Fom e oo -
3500 | 3500
3900 | 7400
4200 | 11600
4500 | 16100
4800 | 25700
4800 | 25700
5000 | 30700
5200 | 41100
5200 | 41100
6000 | 47100

(10 rows)

Herethe sumistaken from thefirst (lowest) salary up through the current one, including any duplicates
of the current one (notice the results for the duplicated salaries).

Window functions are permitted only in the SELECT list and the ORDER BY clause of the query.
They are forbidden el sewhere, such asin GROUP BY, HAVI NG and WHERE clauses. Thisis because
they logically execute after the processing of those clauses. Also, window functions execute after
non-window aggregate functions. This means it is valid to include an aggregate function call in the
arguments of awindow function, but not vice versa.

If there is a need to filter or group rows after the window calculations are performed, you can use a
sub-select. For example:

SELECT depnane, enpno, salary, enroll _date
FROM

(SELECT depnane, enpno, salary, enroll _date,

rank() OVER (PARTI TI ON BY depnane ORDER BY sal ary DESC,
enpno) AS pos
FROM enpsal ary

) AS ss

WHERE pos < 3;

The above query only shows the rows from the inner query having r ank less than 3.

When a query involves multiple window functions, it is possible to write out each one with a separate
OVER clause, but this is duplicative and error-prone if the same windowing behavior is wanted for
several functions. Instead, each windowing behavior can be named in a W NDOWclause and then
referenced in OVER. For example:

SELECT sun{sal ary) OVER w, avg(salary) OVER w
FROM enpsal ary
W NDOW w AS (PARTI TI ON BY depnanme ORDER BY sal ary DESC);

More details about window functions can be found in Section 4.2.8, Section 9.21, Section 7.2.5, and
the SELECT reference page.

21

Advanced Features

3.6. Inheritance

Inheritance is a concept from object-oriented databases. It opens up interesting new possibilities of
database design.

Let's create two tables. A tableci ti es and atable capi t al s. Naturaly, capitals are aso cities,

S0 you want some way to show the capitals implicitly when you list all cities. If you're really clever
you might invent some scheme like this:

CREATE TABLE capitals (

name t ext,

popul ati on real,

el evation int, -- (in ft)
state char (2)

)

CREATE TABLE non_capitals (

name t ext,
popul ati on real,
el evation int -- (in ft)

)

CREATE VIEWcities AS
SELECT nane, popul ation, elevation FROM capitals
UNI ON
SELECT nane, popul ation, elevation FROM non_capitals;

Thisworks OK as far as querying goes, but it gets ugly when you need to update severa rows, for
onething.

A better solution isthis;

CREATE TABLE cities (

nane t ext,
popul ati on real,
el evation int -- (in ft)

);

CREATE TABLE capitals (
state char (2) UNI QUE NOT NULL
) INHERITS (cities);

Inthiscase, arow of capi t al s inheritsall columns(nane, popul ati on,andel evat i on)from
its parent, ci ti es. The type of the column nane ist ext, a native PostgreSQL type for variable
length character strings. The capi t al s table has an additional column, st at e, which shows its
state abbreviation. In PostgreSQL, atable can inherit from zero or more other tables.

For example, the following query finds the names of al cities, including state capitals, that are located

at an elevation over 500 feet:

SELECT nane, el evation
FROM citi es
VWHERE el evati on > 500;

which returns;

22

Advanced Features

nane | elevation
___________ .
Las Vegas | 2174
Mari posa | 1953
Madi son | 845
(3 rows)

On the other hand, the following query finds all the cities that are not state capitals and are situated

at an elevation over 500 feet:

SELECT nane, el evation
FROM ONLY cities
VWHERE el evati on > 500;

nane | elevation
___________ .
Las Vegas | 2174
Mari posa | 1953
(2 rows)

Herethe ONLY beforeci t i es indicatesthat the query should berun over only theci t i es table, and
not tablesbelow ci t i es in the inheritance hierarchy. Many of the commands that we have aready
discussed — SELECT, UPDATE, and DELETE — support this ONLY notation.

Note

Although inheritance is frequently useful, it has not been integrated with unique constraints or
foreign keys, which limits its usefulness. See Section 5.9 for more detail.

3.7. Conclusion

PostgreSQL has many features not touched upon in thistutorial introduction, which has been oriented
toward newer users of SQL. These features are discussed in more detail in the remainder of this book.

If you feel you need more introductory material, please visit the PostgreSQL web site? for links to

more resources.

2 https://www.postgresgl.org

23

https://www.postgresql.org
https://www.postgresql.org

Part Il. The SQL Language

This part describes the use of the SQL language in PostgreSQL . We start with describing the general syntax of
SQL, then explain how to create the structures to hold data, how to popul ate the database, and how to query it. The
middle part lists the available data types and functions for use in SQL commands. The rest treats several aspects
that are important for tuning a database for optimal performance.

Theinformation in this part is arranged so that a novice user can follow it start to end to gain afull understanding
of the topics without having to refer forward too many times. The chapters are intended to be self-contained, so
that advanced users can read the chapters individually asthey choose. The information in this part is presented in
a narrative fashion in topical units. Readers looking for a complete description of a particular command should
see Part V1.

Readers of this part should know how to connect to a PostgreSQL database and issue SQL commands. Readers
that are unfamiliar with these issues are encouraged to read Part | first. SQL commands aretypically entered using
the PostgreSQL interactive terminal psgl, but other programs that have similar functionality can be used as well.

Table of Contents

A, SQL SYNEBX +.tueeeeeti ettt ettt e e et e e ettt ettt et e e e et e et e e e e e e e e eabn e eene 32
A1, LeXiCal SIUCTUME ...ttt ettt e e 32
4.1.1. Identifiers and Ky WOIASuieiiiiiieiiiiiieceei et 32
.02, CONSLANESeeree ettt ettt 34
40,3, OPEIELOISeieeeeei ettt ettt et 38
4.1.4. SPECial CharaCler'S ... oceeeei ettt et 39
.05, COMMENES ...eetiieiti ettt ettt e e et e e e e e e e eaa s 39
4.1.6. OPErator PrECEOBNCEcceiti ettt ettt e e e eeees 40

4.2, VAlUE EXPIESSIONSceiitieetiiti ettt e ettt e ettt e et e ettt e e et e et eab e e eennaaaaees 41
4.2.1. ColUMN REFEIEINCEScovviieiiii e 42
4.2.2. POSItiONal PalraMELErSuiiiiiiiieieii et 42
4.2.3. SUDSCIIPES ettt ettt e 42
424, Field SEIECHON ...t 43
4.2.5. OPErator INVOCAHONScevuueiiitiieieiii ettt e e e eenees 43
4.2.6. FUNCHON CallS .. .ceiiiiiiiiii e 44
4.2.7. AQOregate EXPIESSIONScccuuuieiiitiieeiiti e ee ettt e et e ettt eeeeti e e eeaiaeeees 44
4.2.8. Window FUNCLION CallSuiiiiiiiieiiiie e 46
4.2.9. TYPR CaASLS ..cvtiiiieeet et 49
4.2.10. Collation EXPreESSIONSocieueeeieiiieee ettt 50
4.2.11. SCAlAr SUDQUENTESeeeeieieei ettt 51
4.2.12. Array CONSIIUCLOISccvuiieieieie ettt et e e e e 51
4.2.13. ROW CONSITUCTONS ...eeuiieieiei et ettt e e e 52
4.2.14. Expression Evaluation RUIEScoouviiiiiiiii e 54

4.3, CalliNg FUNCLIONS ...ttt e e e 55
4.3.1. Using Positional NOEHIONccceuuuieiiiiiieeiii et 56
4.3.2. Using Named NOLAIONuuiiiiiiiiiieiiii e e e 56
4.3.3. USINg MiXed NOLALIONuuiiiiiiiieiiiii e 57

5. Dat@ DEFINITION ..ottt et e aaas 58
5.1 TADIE BASICS ..ttt ettt 58
5.2, DEFAUIT VAIUBS ...t 59
5.3, CONSITAINTS ..ttt ettt e et e et e e e e e 60
5.3.1. Check CONSIIAINTScevuueiiiiiiee ettt e e e e et e e eeri e e e 60
5.3.2. NO-NUIT CONSIFAINES ...ceveieieiie et 62
5.3.3. UNIQUE CONSITAINESeevtieieiiie ettt 63
534, PrIMAIY KEYS ...ttt 64
5.3.5. FOrEIgN KEBYS ...t 65
5.3.6. EXCIUSION CONSITAINTScevvieiiiiiieeiei ettt et e e e 68

5.4, SYySteM COIUMNS ...ttt e et e e e et e e eat e eees 68
5.5. MOAIfyiNg TabIES ...t 69
55.1. AddiNg @ COIUMNoouuiiiiiii e 70
5.5.2. ReMOVING @ COIUMN ...coouiiiiiiii ettt 70
5.5.3. AddiNg @ CONSIFAINTccevvuiiiiiiiee e 70
5.5.4. RemMOVING @ CONSIIAINTccevuiieiiiiieee ittt 71
5.5.5. Changing a Column's Default Valueccovvviiieiiiiiiieiiii e 71
5.5.6. Changing a Column'S Data TYPEc.uuuieiiiiiiieiiiii e 71
55.7. Renaming @ COIUMINcoouiiiiiiiii e 72
55.8. RENaMINg @ TaDI€ceeviiiiiii e 72

5.6, PrIVIIEOES ...t 72
5.7. ROW SeCUrity POIICIESuuiiiiii e 73
5.8, SCREMAS ... 79
5.8.1. Creating @ SCNEMAccouuiieiiiii e 80
5.8.2. The PUBIIC SChemMacoooviiii e 80
5.8.3. The Schema Search Pathooooiiiiiiiii e 81
5.8.4. Schemas and PrivilEgESooiiiiiiiiiii e 82
5.8.5. The System Catalog SChEMa.cccvvuiiiiiiiieeie e 82

25

The SQL Language

5.8.6. USAQE PalerNSviiiiii et 83
5.8.7. POrabIlITYuieiiiiiiee i 83

L [10T g1 = (ot TSRS 84
N O = P 87

5.10. Table Partitioningoceuuiiiiieiiiie e e e e e e e e e e aaas 87
B5.10. 1. OVEIVIEIW .ottt ettt e e ettt e e e et e e e e et neeeeebe s e eaeatnneeaees 87
5.10.2. Declarative Partitioningccocuuiiiiiiiiiiicii e e 88
5.10.3. Partitioning Using INNEritanCeccoeeiiiiiiiiieiie e, 93
5.10.4. Partition Pruningoouuuieiiiieiii e e e e e e e e e e e e e aanas 97
5.10.5. Partitioning and Constraint EXCIUSIONcc.cooevviiiiiiiiiiiecc e, 99
5.10.6. Best Practices for Declarative Partitioningc.ccoovevvvieeiiiciiineiinneen, 100

LI o (= o | I - P 101
5.12. Other Database OBDJECISivvniiii e e 101
5.13. DePpendency TraCKingc..eeuuiiiieeii e e e ee e e e e e e e e st e e e e et e e st e e eaneeees 101
6. Data ManipUIAioNoiiiiiiiii e e e e e e e e e e e e e e e e e e ee 104
L 1S g To [D - - Y 104
S UL o = (] o I T - L 105
SRR D= I (] oo - - P 106
6.4. Returning Data From Modified ROWSc.ooiiiiiiiiiiici e 106
2O 0 = 1= N 108
T L OVEIVIBIW L.ttt et e e ettt et e i r e e e et e e e e et n e e e et e e eaaanns 108
7.2. TahIE EXPIrESSIONSivviiiiie e e e e e e e e e e e e e e e e et e e e e e e aens 108
7.2.1. TRE FROMCIBLISE .. .eevvieeeeii ettt 109
7.2.2. TREVWHERE ClalSE ...ccvviieiiiiiieeeeeie ettt 117
7.2.3. The GROUP BY and HAVI NG ClaUSESoevvvvieeeiiiiieeeeiiiieeeeiia e e e 118
7.2.4. GROUPI NG SETS, CUBE, and ROLLUPcoiiiiiiiiiiiii e 120
7.2.5. Window FUNCEION ProCESSINGccvuiiiieiiiiecii e e e e e e 123

SRS = < ox B I £ PR 123
7.3. 1. SEECE-LiSt ItOMS coevviieiieii e 123
7.3.2. COlUMN LADEIS ..oeviieiiii et 124
7.3.3. DESTINCT it e e e et eeeaanns 124

7.4. CombBINING QUEES .. .cuuieiii i e et e e e e e e e e e e e et e et e e aaa e eeas 125
7.5, SOMING ROWS ...t e e e e e e e e e eaens 126
T76. LIM T N OFFSET ..oviiiiiiiiieeei et et e e e e e et e e eees 127
TV A/ O S R I £ PSP 128
7.8. W TH Queries (Common Table EXPreSSions)cvevuueeeuiieeiiieiiieeeiiesiineesneenenns 128
7.8.1L SELECT INW TH .ot 129
7.8.2. Data-Modifying Statements in W THocoiiiiii i, 132

S T D= = T Y/ 0 P 135
300 O N[0 0= o Y = 136
e I R 1 011 o = Y/ o1 PPN 137
8.1.2. Arbitrary Precision NUMDBErSc.oooiiiiiiiiii e 137
8.1.3. Floating-POINt TYPES ..ovvniiii e e e e 139

8. LA SEIA TYPES ittt 140

e I o g1 = 1Y o< T PPN 141
G I O == ot (= G Y/ o= P 142
8.4. BINAry Dala TYPES ..uuciiiieii ettt et e e e e e e e e e e et e eaen 144
8.4.1. byt €a HEX FOIMauiiiiiiiii i e 144
8.4.2. byt ea ESCape FOrMALccvvuiiiiiieii e 144

LR = (=l T2 1T Y/ o= P 146
8.5.1. Date/TimeE INPULevvneiiii e e e e e e e e e eaneees 147
8.5.2. DAE/TIME OULPULueieiiieeeeiiie et et e e et e e et e e e eat e e e eaan e eeeenns 151
8.5.3. TIME ZONES ... ittt e e e e e e aaens 152
8.5.4. Interval INPULcovtiiii e e 153
8.5.5. INTEIVAl OULPULuvieiiiii e e e 155

S = T To = Y/ o= P 155
A 1000 = =0 I Y/ o= 156
8.7.1. Declaration of Enumerated TYPESccuuiviiiiiii e 156

26

The SQL Language

A @ (o[41 o PN 157
B.7.3. TYPE SAFELY eeeveieeieii ettt 157
8.7.4. Implementation DELalSc..veiiiiiiii e 158
R CTc o0 0= (o Y o1 158
B.8.L. POINES ...uiiiiii ettt 159
882, LINES ittt 159
8.8.3. LiNE SEgMENLS ... cevuiiiii i e 159
8.8, BOXES ...ttt ettt ettt 159
B.8.5. PalNS ...t 160
8.8.6. POIYQONS .. .oviiii e 160
B.8.7. CICIES ittt 160
8.9. NEtWOIK AdOreSS TYPES .evuiiiiieiiiiee et e e e e e e e e e e e e e e e e eaaas 161
S I R T 1= PP 161
S o3 i | PP 161
e e A I 1= VA o3 o | PP 162
8.9.4, MBCAUAN iitiiiiiii et 162
8.9.5. MACAUAN 8 .ouiiiiiiii e 162
8.10. Bit SIHNG TYPES . iittiiiie et e e e e e e e e e e e e e e e an s 163
8.11. TeXt SEArCh TYPES evn it e 164
00 0 O A= VT o3 A o TP 164
S I 2 A=Y o [1= P 165
ST 2 U1 1 T Y/ o U PTRSPN 167
ST Q1 I 1Y/ o= PP 167
8.13.1. Creating XML ValUESoiiiiiieiiiiii e 167
8.13.2. Encoding Handlingcovuniiiiiiiiiii e 168
8.13.3. AcCeSSING XML ValUEScvvniiiii e 169
ST N S O N Y/ o=~ P 169
8.14.1. JSON Input and OULPUE SYNEAXeevneiiiieiiiieeiie e e e e e 171
8.14.2. Designing JSON documents effectivelyooevvveiiiiiiiiiiiii e, 172
8.14.3.] sonb Containment and EXIStENCEccvvviiiiiiiiiii e 172
8.14.4. | SOND INUEXING ..uvviiiiiee e e e 174
8.14.5. TraNSfOMIS .. ettt e 176
8L, AT A S ettt ittt 176
8.15.1. Declaration Of Array TYPES ...cuvuiiiiieiiieeeie e e e e e e e e e eanees 176
8.15.2. Array ValUB INPULcovviiii e 177
8.15.3. ACCESSING ATTAYS .vueeuteeiieeeiiie et e ettt e et e e e e e st e e e ae e e e e st e e st e eanaeenes 178
8.15.4. MOAITYING ATTAYS ...uieiieii et e e e e e e e e e aaeees 181
8.15.5. SEarChiNG IN ATTAYS «.ouu it e e e e eeas 184
8.15.6. Array Input and OULPUL SYNEAXceevneeeinieiiiieeiieeineee e e e e e eeens 185
8.16. COMPOSITE TYPES ..vvueiiteiiiietitie et e et e e et e et e et e e et e e et e e et e eanaeeateesaneeetnaes 186
8.16.1. Declaration of COmMPOSItE TYPES ...cvvvniiiieiii e eeei e e e e e e 186
8.16.2. Constructing Composite ValUEScceuviiiiiiiiiiieiiii e e 187
8.16.3. AccesSiNg COMPOSIEE TYPES ...vvvuiiiiieiiieiiie e e e e e e e et e e e e e e aanas 188
8.16.4. Modifying COmMPOSItE TYPEScvvvieiiieiiii e e e e e e e e aens 188
8.16.5. Using Composite TYPes iN QUENEScouuuieiineeiiiieiiii e e e e e e eaen 189
8.16.6. Composite Type Input and Output SYNtaxcceeevveeeiieeiieeiiieeiineennn. 191
8.7, RANGE TYPES .ottt e 192
8.17.1. BUIIt-IN RANGE TYPES ..uiitiiii et e e e e e e aens 192
8.17.2. EXAMPIES ...t 193
8.17.3. Inclusive and EXCIUSIVE BOUNGSvieiiiiiieiiiiiieecie e 193
8.17.4. Infinite (Unbounded) RaNGESocvvviiiiiiiii e 193
8.17.5. Range INPUL/OULPULcovuiiieeii e e e e e e e e e e 193
8.17.6. CoNSIrUCtiNg RANGESuviiiiieeie e e e e e e e e 194
8.17.7. DISCrete RANGE TYPES .. vvvieiii it et e et e e e e e e e e e et e e e eanns 195
8.17.8. Defining New RaNGE TYPEScvvviiiii e e e e 195
8.17.9. INAEXING ...vniii i e 196
8.17.10. ConstraintS 0N RANGESu.ivvnieiiieiie e e e e e e e e et e eaeeees 197
TR0 T I T4 F= T Y/ 0 1= 198

27

The SQL Language

8.19. ObjeCt 1AENtifIEr TYPES c.vuiiii e e e eaaas 198
ST 0 oo [£ o 1 1Y L= 2P 200
ST T s =0 (o 0l I o1 200
LI 0 g Tex [0 g 5= 0 1o @ o= = o TP 202
1o I oo Tor= I @ o= = (o) £ S 202
9.2. Comparison FUNCtions and OPEratOrSeeeuueeiinieiiieeeiiee e e e e e eiee e e eaneenes 202
9.3. Mathematical Functions and OPEratorSuevvuiieiiieeeiii e e e ea e 205
9.4. String FUNCLioNS and OPEIAtOrSu.cvuuieiiiieeiiieeii e e e e e e e e e e et e eaneens 209
1S T o o 11 PRSP PTR PPN 221

9.5. Binary String FUNctions and OPEratorsSccuuveeruieiiineeiiieeeiiee e eeiieraineesnnens 223
9.6. Bit String FUNCtions and OPEratorsuuveiuiieiiiieeiiieeee e e e e e e e e e 225
A = (= 1 T\ (11 o P 226
S O I PP 226
9.7.2. SIM LAR TORegular EXPreSSIONScvvvuieiiieeeiiieeiiieeeiieesineesineesaneens 227
9.7.3. POSIX ReguIar EXPreSSIONSuuiiiueiiiieiiiieeiieeeinesieeeiaeeaineesaneesens 228

9.8. Data Type Formatting FUNCLIONSccovuiiiii i e e e 241
9.9. Date/Time FUNCtions and OPEratorSc.uveiuuieeiiieiiiiee e e ee e e e e e e eees 248
9.9.1. EXTRACT, dat € _Part ..ciiiiiiiiiiiiiii e e e e 253
0.9.2. At @ LT UNC .iiiiiii e e 258
9.9.3. AT TIME ZONE ..ottt ittt e e e s 259
9.9.4, CUITENt DA/ TIME ...cvvnieiiiii et e et e e e 259
9.9.5. Delaying EXECULIONciiviieiiie e e e e e e e e e e e e e e e eees 261

9.10. ENUM SUPPOIt FUNCLIONSivticiiiecii e e e e e e e e e e eens 262
9.11. Geometric FUNCtions and OPEratOrScvvuueiiiieiieeeiieee e e e e e e e e eaaeeeens 262
9.12. Network Address Functions and OPEratorscc.uveevuieiiiieeiieeeiieeeneeeieeaenns 267
9.13. Text Search FUNCioNS and OPEratOrSoevvuieiiiieiiiieeiie e e e e e e eeaneees 269
.14, XML FUNCLIONS ... eiieiiieee ettt e e et e e et e e e e et e e e e et e 275
9.14.1. Producing XML CONENEccouuiiiiieiieeii e e e e e e e e e e eeen 275
9.14.2. XML PrediCatesuuueeiiiiieeeii ettt e et e e e e 280
9.14.3. ProcessiNg XML ...uuuiiiiiiiiiiii et 281
9.14.4. Mapping TableSto XMLccoviiiiiiiii e 285

9.15. JSON FUNCLIONS aNd OPEraIOrScvvvieiiieeiieeeieeeie e e e e et e e e et e e et e e eeens 289
9.16. Sequence Manipulation FUNCLIONSooviiiiiiiiiii e 297
9.17. Conditional EXPreSSIONSuuiiiiuiiiiiieiii e e e e e e e e e e e e e e e aens 300
O.17. 1. CASE ...t 300

N A O I S P 301
0 2 U I PP 302
9.17.4. GREATEST and LEAST ..ottt 302

9.18. Array FUNCtioNS and OPEIralOrScccuuieiiuieiiiieeiiie e e e e e e e e et e e e eeenes 303
9.19. Range FUNCLioNSs and OPEratorScvuueiiiieeiiieeeeeeeiee et e e sat e e e e et e e et eeaneens 306
9.20. AQQregate FUNCLIONSccue i e e e e e e e e eaes 308
9.21. WINAOW FUNCHIONS ...ttt et e et e e e et e e e eatn e eeees 315
9.22. SUDQUENY EXPrESSIONS ...vuueiiiiiiiiieeiiees e et e e e e e e e et e e e e e et e e et e e st e eanaeeanaas 317
.22 1. EXI STS ittt ettt 317
0.22.2. I N ettt 318
9.22.3. NOT | N Lo e e e e e e 318
9.22.4. ANY/ISOMEuiiiiiiiiieeeee ettt et e e et s e et e e e e e eaaen 319
0.22.5. ALL ottt 319
9.22.6. SINGIE-TOW COMPANISON ...uvuieteeiieeeieeeieeee e e e eata e e et e st e e eeaneenes 320

9.23. Row and Array COMPAISONSuivuuieiiieriieeeeiieeeieeetie e st re st e eaneeetreeaneeennes 320
0,23, L. I N ettt 320
9.23.2. NOT | N Lot e e e e e 320
SRS A NN 7AST0 1Y Sl - - 1Y) PP 321
9.23.4. ALL (BITAY) +eevtnieeiiiiiee et e e ettt e e ettt e e et e e et e e ettt a e e e et e e e eai e aae 321
9.23.5. Row Constructor COMPariSONceeeuueerinieriiieriiieeeiee e esieeeaneeannnns 321
9.23.6. Composite Type COMPAiSONcevuneeiiieeieeeiiee e e e e e e e eaenns 322

9.24. Set RetUrNiNg FUNCHIONSuuiiii e e e e e aens 323
9.25. System Information FUNCLIONScccuuiiiiiieiii e e 326

28

The SQL Language

9.26. System Administration FUNCHIONSccuuiiiiiieiiiie e e e 342
9.26.1. Configuration SettingS FUNCLIONSccviviiiieiiiecie e 342
9.26.2. Server SIgnaling FUNCLIONSoovviiciiicce e 343
9.26.3. Backup Control FUNCLIONSieiiiieiiicci e 343
9.26.4. Recovery Control FUNCLIONSocovveiiiiiiiii e 346
9.26.5. Snapshot Synchronization FUNCLIONSc.oveviieiiiieiieee e, 347
9.26.6. RePlication FUNCLIONScvuuieiiiiei e ee e e e e e e e e e eees 348
9.26.7. Database Object Management FUNCLIONScc.ooevvieiiinieiii e, 352
9.26.8. Index Maintenance FUNCLIONSoveviuiiieieiin e e e eeeenns 354
9.26.9. Generic File ACCESS FUNCHIONSiiiiiiiciiiii e 355
9.26.10. Advisory LOCK FUNCLIONSccuuiiiieeii e e 357

S I o o = Gl U o (o) P 359

9.28. Event Trigger FUNCLIONSooviiiiiie e e e e e e eae e 359
9.28.1. Capturing Changes at Command Endccoccoiviiiiiiiiiiiiinecieeeees 359
9.28.2. Processing Objects Dropped by a DDL Commandccocevvvviiinnennnnnns 360
9.28.3. Handling a Table ReWrite EVENtccoviiiieiiii e, 361

O Y/ oL @0 517/ = T o P 363

FO. L. OVEIVIBIW ©uueieiiiie ettt e e ettt e e e et e e e e et e e e e ett e e e eett e e e aetaaeeeees 363

B0.2, O AIONS ittt ettt ettt e 364

L0 R g o] 0 LSRR 368

O R U TR (o] - o =S 372

10.5. UNI ON, CASE, and Related CONSITUCESuuieviviiieiiiiie e 373

10.6. SELECT OUPUL COIUMNS ...uvueeiiiie ettt e et e et e e et e e e eeaaaaeeees 374

T o (== S UPPP 376

0 O oo (0 1o PSSP 376

2 1 o L= G Y/ o === P 377

11.3. MUItICOIUMN INAEXESeeevviee et e e e e eaeen 379

11.4. Indexes and ORDER BY ...cicuuiiiiiiiiiiiiiiiin e e et e et e e 380

11.5. Combining MUItiple INAEXESciiiieeii e 381

12.6. UNIQUE INAEXESuieiieii et e e e e e e e e e e e e e e e eaens 381

11.7. INAEXES ON EXPrESSIONSuiviiieiii e e e e e e e e e e e e e e e et e et e e e e eens 382

11.8. Partial INOEXES .. eeevviieieeii et e et e e e e e e aaens 382

11.9. Index-Only Scans and Covering INAEXEScc.uvvviiieiiiieiii e 385

11.10. Operator Classes and Operator FamilieSccooevvieiiiiiiiiii e, 388

11.11. Indexes and COl@tioNSviiieiiiee e 389

11.12. EXamining INAeX USAQEuucvvunieiiiiiii e e e e e e e e e e e e e 390

12, FUIL TEXE SEAICH .o 391

2 O 1 oo (0 1o USSP 391
12.1.1. What 1S @ DOCUMENE? ...euueiiiii et e e 392
12.1.2. Basic Text MatChingooeviiiiiiii e 392
12.1.3. CONfiQUIBLIONS .. .euuiiiieeii e e e e e e e e e e e e e e et e e e eaens 394

12.2. TAhleS @A INOEXES .. .cevviieieii et e et 395
12.2.1. Searching @ Table .. couvnii e 395
12.2.2. Creating INAEXES ... covueiiiciie et e e e e e e e 396

12.3. Controlling TeXt SEarChccovviiii e 397
12.3.1. ParSiNg DOCUMENESuiiiiiiiii e ee e e e e e e e e e e et e e e e eens 397
12.3.2. ParSiNG QUETTES .. .cvuiiiii it e e e e e e e e e e e e 398
12.3.3. Ranking Search RESUILSiiiiiiiii e 401
12.3.4. Highlighting RESUILSccvviiiiiicei e 403

12,4, AdAItioNal FEAIUMESvuiieeeii et e e 404
12.4.1. Manipulating DOCUMENESuiiiiiieiieeii e e e e e e e e e e 404
12.4.2. Manipulating QUENIESccuuiiiiiiei e e e e 405
12.4.3. Triggers for Automatic Updatesceevvieiiiieiiiieiiiieeie e eeie e 407
12.4.4. Gathering DocUmMENt StatiStiCS ...vvuvvvneiiieii e e 409

T o T TP 409

T B T Lo g = =P 411
12.6.1. SOP WOIAS .. ccvnieiiieii e ee et e e e e e e e et e e e e e aanaees 412
12.6.2. SIMPIE DICHIONAIY .vuuiiiiieii e e e e e e e eaees 413

29

The SQL Language

12.6.3. SYNONYM DICHIONANYvuieiiieeiiieiie e ee e e e e e e e e e e e eaa s 414
12.6.4. TheSaUrus DiCtONANYcccuuiiiiiiiiiieei e e e e e e 416
12.6.5. ISPEI DICHONAIY ...ovviiiiiicie e e e e e e 418
12.6.6. SNOWDaEll DICHIONAIYcvvveiiiieei e e e aens 420

12.7. Configuration EXaMPIEcouuniii e 421
12.8. Testing and Debugging Text Searchccocoviiiiiiiiii e, 422
12.8.1. Configuration TESLNGcvvueiiiieiiii e e e e e e e e e e eanas 422
R s g = 1] o PP 425
12.8.3. DICioNary TESHMNGvueevneiiiieiiie e e et e e e e e e e e e e e e e e e e e e aens 426

12.9. GIN and GIST INAEX TYPES ..vvuniiiiiieeiiiiie et et e et e et e et a e 427
2250 O T 1= o [T o) oo o 427
2 T T 1] = o) PP 430
13. ConCUIrENCY CONLIOI ...uuiit it e e e e e e e e e et e et e e e e e et e e e e eaaeeees 432
30 O 1 oo (0 1o USRS 432
13.2. TransaCtion I1SOIAHONccuvuieiiii e e e 432
13.2.1. Read Committed ISOlation LEVE!uveiiiiiiiiiiiiee e 433
13.2.2. Repeatable Read 1S0lation LEVElccovviiiiiiiiiiicieceeeeee e, 435
13.2.3. Serializable [S0lation LEVE!oovvviiiiiiiiii e 436

I CTC I (o[T I o Vo PN 438
13.3.1. TaDIETEVE LOCKS ... cveiiiieiieii et 438
13.3.2. ROW-IEVE LOCKSciieeiieiiis ettt 440
13.3.3. Pagelevel LOCKSccvuiiiii e 441
13.3.4. DEBAIOCKS ...t 442
13.3.5. AQVISONY LOCKS ..uuiiiiiiii e e e e e e e e eeens 442

13.4. Data Consistency Checks at the Application Levelccocooviviiiiiiiiiiiieecee, 443
13.4.1. Enforcing Consistency With Serializable Transactionsc.cc.uueeeen. 444
13.4.2. Enforcing Consistency With Explicit Blocking LOckscccoeevvnnnannn. 444

L35, CAVEALS ...ttt 445
13.6. LOCKiNg and INAEXESu.eveniiii e e e e e e e e 445
I (o0 7= o= T T =P a47
14.1. USING EXPLAL N Loooii et e e ae e 447
I o I AV T o= PP 447
14.1.2. EXPLAI N ANALYZE ...ttt 453
I e R O = PP 457

14.2. Statistics Used by the Plannercooiiiiiiii e 458
14.2.1. SINgle-Column SEAiSHiCS . .ovvueiiiiiii e e 458
14.2.2. EXtended SEAiSHCS ...ovvvveieiiiiiie et e e 460

14.3. Controlling the Planner with Explicit JO N ClaUSEScccvveiviiiiiiieeiiiccieeeiees 462
14.4. Populating @ Databaseoevuniiiiieiie e 464
14.4.1. Disable AULOCOMIMILvuuiiiiiii e e e e e e eaenns 464
T4.4.2. USE COPY oiitiiiiiiii ettt ettt e et e et a e e et e e et e e e e et e e e eetenaeeaees 464
14.4.3. REMOVE INAEXES ...cevvvnieeeiii ettt 465
14.4.4. Remove Foreign Key CONSITaiNtScccuuveiiieiiiieiiiieeiineeineeeieeeaneeeens 465
14.4.5. Increase mai Nt enance_WOr K _IMBM.......cciveiiiieiiiiieieee e, 465
14.4.6. Increase MBaX_Wal _Si Z€ ..iiiiiiiiiii 465
14.4.7. Disable WAL Archival and Streaming Replicationccc.ccovveinnn. 465
14.4.8. RuN ANALYZE AFLEIWardsSccuuieiiiiiiieeiiiiiieeeiie et e e 466
14.4.9. Some Notes AbBOUL PG AUMP ...evvniiiicii e 466

14.5. NON-DUrable SEtlNGSvuieeiiiiieiiie e e e e e e e e e e 467
15, Parall€]l QUETY ..oovuniieiii ettt aaaan 468
15.1. How Parallel QUENY WOTKSuiiiiiiiii i 468
15.2. When Can Parallel Query Be Used?coviiiiiiiiiiiii e 469
15.3. Parallel PLanScoovueiieii e 470
15.3.1. Parallel SCaNS ...ccvvuiiiiiii it 470
15.3.2. Parallel JOINSuuuiiiiiiiie it 470
15.3.3. Parallel AQQregationocvuuiiiiiiiiie e 471
15.3.4. Parallel APPENGcovniiiii e 471
15.3.5. Parallel Plan TIPS ..uccuuiiiiiiiii e e e e e 471

30

The SQL Language

15.4. Parallel SafElYciieeeeieeiiie e
15.4.1. Parallel Labeling for Functions and Aggregatesoocvvvvevveeviiiieeinennnnn.

31

Chapter 4. SQL Syntax

This chapter describes the syntax of SQL. It forms the foundation for understanding the following
chapters which will go into detail about how SQL commands are applied to define and modify data.

We aso advise users who are already familiar with SQL to read this chapter carefully because it
contains several rules and concepts that are implemented inconsistently among SQL databases or that
are specific to PostgreSQL.

4.1. Lexical Structure

4.1.1.

SQL input consists of a sequence of commands. A command is composed of a sequence of tokens,
terminated by asemicolon (“;”). Theend of theinput stream al so terminates acommand. Which tokens
are valid depends on the syntax of the particular command.

A token can beakey word, anidentifier, aquoted identifier, aliteral (or constant), or aspecial character
symbol. Tokens are normally separated by whitespace (space, tab, newline), but need not be if there
isno ambiguity (which is generally only the case if aspecia character is adjacent to some other token

type).

For example, the following is (syntactically) valid SQL input:

SELECT * FROM MY_TABLE;
UPDATE MY_TABLE SET A = 5;
| NSERT | NTO MY_TABLE VALUES (3, 'hi there');

This is a sequence of three commands, one per line (although this is not required; more than one
command can be on aline, and commands can usefully be split across lines).

Additionally, comments can occur in SQL input. They are not tokens, they are effectively equivalent
to whitespace.

The SQL syntax is not very consistent regarding what tokens identify commands and which are
operands or parameters. Thefirst few tokensare generally the command name, so in the above example
wewould usually speak of a“ SELECT”, an“UPDATE”, andan“INSERT” command. But for instance
the UPDATE command always requires a SET token to appear in a certain position, and this particul ar
variation of | NSERT also requires a VALUES in order to be complete. The precise syntax rules for
each command are described in Part V1.

Identifiers and Key Words

Tokens such as SELECT, UPDATE, or VALUES in the example above are examples of key words,
that is, words that have a fixed meaning in the SQL language. The tokens MY_TABLE and A are
examples of identifiers. They identify names of tables, columns, or other database objects, depending
on the command they are used in. Therefore they are sometimes simply called “names’. Key words
and identifiers have the same lexical structure, meaning that one cannot know whether a token is an
identifier or a key word without knowing the language. A complete list of key words can be found
in Appendix C.

SQL identifiers and key words must begin with a letter (a-z, but also letters with diacritical marks
and non-L atin letters) or an underscore (_). Subsequent charactersin an identifier or key word can be
letters, underscores, digits(0-9), or dollar signs($). Notethat dollar signsarenot allowed inidentifiers
according to the letter of the SQL standard, so their use might render applications less portable. The
SQL standard will not define a key word that contains digits or starts or ends with an underscore, so
identifiers of this form are safe against possible conflict with future extensions of the standard.

32

SQL Syntax

The system uses no more than NAMEDATAL EN-1 bytes of an identifier; longer names can be written
in commands, but they will be truncated. By default, NAMEDATALEN is 64 so the maximum identifier
lengthis63 bytes. If thislimitisproblematic, it can beraised by changing the NAMEDATAL EN constant
insrc/include/ pg _config_nmanual . h.

Key words and unquoted identifiers are case insensitive. Therefore:

UPDATE MY_TABLE SET A = 5;
can equivalently be written as:
uPDaTE ny_TabLE SeT a = 5;

A convention often used is to write key wordsin upper case and names in lower case, e.g.:

UPDATE ny_table SET a = 5;

There is a second kind of identifier: the delimited identifier or quoted identifier. It is formed by
enclosing an arbitrary sequence of characters in double-quotes ("). A delimited identifier is aways
an identifier, never a key word. So " sel ect " could be used to refer to a column or table named
“select”, whereas an unquoted sel ect would be taken as a key word and would therefore provoke
aparse error when used where atable or column name is expected. The example can be written with
guoted identifierslike this:

UPDATE "ny_table" SET "a" = 5;

Quoted identifiers can contain any character, except the character with code zero. (To include adouble
guote, write two double quotes.) This allows constructing table or column names that would otherwise
not be possible, such as ones containing spaces or ampersands. The length limitation still applies.

A variant of quoted identifiers allows including escaped Unicode characters identified by their code
points. Thisvariant startswith U& (upper or lower case U followed by ampersand) immediately before
the opening double quote, without any spaces in between, for example U&" f 00" . (Note that this
creates an ambiguity with the operator &. Use spaces around the operator to avoid thisproblem.) Inside
the quotes, Unicode characters can be specified in escaped form by writing a backsash followed by
the four-digit hexadecimal code point number or alternatively a backslash followed by a plus sign
followed by a six-digit hexadecimal code point number. For example, the identifier " dat a" could
be written as

U&" d\ 0061t \ +000061"

Thefollowing lesstrivial example writes the Russian word “slon” (elephant) in Cyrillic |etters:

U&"\ 0441\ 043B\ 043E\ 043D"

If adifferent escape character than backslash is desired, it can be specified using the UESCAPE clause
after the string, for example:

U&"d! 0061t ! +000061" UESCAPE ' !

The escape character can be any single character other than ahexadecimal digit, the plussign, asingle
guote, a double quote, or a whitespace character. Note that the escape character is written in single
guotes, not double quotes.

33

SQL Syntax

To include the escape character in the identifier literally, write it twice.

The Unicode escape syntax works only when the server encoding is UTF8. When other server
encodings are used, only code pointsin the ASCII range (up to\ 007F) can be specified. Both the 4-
digit and the 6-digit form can be used to specify UTF-16 surrogate pairs to compose characters with
code points larger than U+FFFF, although the availability of the 6-digit form technically makes this
unnecessary. (Surrogate pairs are not stored directly, but combined into asingle code point that isthen
encoded in UTF-8.)

Quoting an identifier al so makesit case-sensitive, whereas ungquoted names are alwaysfolded to lower
case. For example, theidentifiers FOO, f 0o, and " f 00" are considered the same by PostgreSQL, but
"Foo" and" FOO' are different from these three and each other. (The folding of unquoted namesto
lower case in PostgreSQL is incompatible with the SQL standard, which says that unquoted names
should be folded to upper case. Thus, f 00 should be equivalent to " FOO' not " f 00" according to
the standard. If you want to write portable applications you are advised to always quote a particular
name or never quoteit.)

4.1.2. Constants

There are three kinds of implicitly-typed constants in PostgreSQL.: strings, bit strings, and numbers.
Constants can also be specified with explicit types, which can enable more accurate representation and
more efficient handling by the system. These alternatives are discussed in the following subsections.

4.1.2.1. String Constants

A string constant in SQL is an arbitrary sequence of characters bounded by single quotes ('), for
example' This is a string' . Toinclude asingle-quote character within a string constant,
write two adjacent single quotes, e.g.,' Di anne' ' s hor se' . Note that this is not the same as a
double-quote character (*).

Two string constants that are only separated by whitespace with at |east one newline are concatenated
and effectively treated as if the string had been written as one constant. For example:

SELECT ' f o0

"bar';

is equivaent to:

SELECT ' f oobar' ;

but:

SELECT ' f o0’ "bar';

is not valid syntax. (This slightly bizarre behavior is specified by SQL; PostgreSQL is following the
standard.)

4.1.2.2. String Constants with C-style Escapes

PostgreSQL also accepts “escape” string constants, which are an extension to the SQL standard.
An escape string constant is specified by writing the letter E (upper or lower case) just before the
opening single quote, e.g., E' f 0o’ . (When continuing an escape string constant across lines, write
E only before the first opening quote.) Within an escape string, a backslash character (\) begins a
C-like backslash escape sequence, in which the combination of backslash and following character(s)
represent a special byte value, as shown in Table 4.1.

34

SQL Syntax

Table 4.1. Backslash Escape Sequences

Backslash Escape Sequence I nter pretation

\b backspace

\ f form feed

\n newline

\r carriage return

\ 't tab

\o,\00,\000(0=0-7) octal byte value

\xh,\xhh (h=0-9,A-F) hexadecimal byte value

\ uxxxx, \ UXXxxxxxx (X =0-9,A -F) 16 or 32-bit hexadecimal Unicode character value

Any other character following a backslash is taken literally. Thus, to include a backslash character,
write two backslashes (\ \). Also, a single quote can be included in an escape string by writing\ ',
in addition to the normal way of ' ' .

It is your responsibility that the byte sequences you create, especially when using the octal or
hexadecimal escapes, compose valid characters in the server character set encoding. When the server
encoding is UTF-8, then the Unicode escapes or the aternative Unicode escape syntax, explained in
Section 4.1.2.3, should be used instead. (The alternative would be doing the UTF-8 encoding by hand
and writing out the bytes, which would be very cumbersome.)

The Unicode escape syntax works fully only when the server encoding is UTF8. When other server
encodings are used, only code points in the ASCII range (up to \ u007F) can be specified. Both the
4-digit and the 8-digit form can be used to specify UTF-16 surrogate pairs to compose characters
with code points larger than U+FFFF, although the availability of the 8-digit form technically makes
this unnecessary. (When surrogate pairs are used when the server encoding is UTF8, they are first
combined into a single code point that is then encoded in UTF-8.)

Caution

If the configuration parameter standard conforming_strings is of f, then PostgreSQL
recoghizes backslash escapes in both regular and escape string constants. However, as of
PostgreSQL 9.1, the default is on, meaning that backslash escapes are recognized only
in escape string constants. This behavior is more standards-compliant, but might break
applications which rely on the historical behavior, where backslash escapes were always
recognized. As a workaround, you can set this parameter to of f, but it is better to migrate
away from using backslash escapes. If you need to use abackslash escapeto represent aspecial
character, write the string constant with an E.

In addition to standard_conform ng_strings, the configuration parameters
escape_string_ warning and backslash_quote govern treatment of backslashes in string
constants.

The character with the code zero cannot be in a string constant.

4.1.2.3. String Constants with Unicode Escapes

PostgreSQL also supports another type of escape syntax for strings that allows specifying arbitrary
Unicode characters by code point. A Unicode escape string constant starts with U& (upper or lower
case letter U followed by ampersand) immediately before the opening quote, without any spaces in
between, for example U&' f 00" . (Note that this creates an ambiguity with the operator & Use spaces
around the operator to avoid this problem.) Inside the quotes, Unicode characters can be specified
in escaped form by writing a backslash followed by the four-digit hexadecimal code point number

35

SQL Syntax

or alternatively a backslash followed by a plus sign followed by a six-digit hexadecimal code point
number. For example, the string' dat a' could be written as

U&' d\ 0061t \ +000061'

Thefollowing less trivial example writes the Russian word “slon” (elephant) in Cyrillic letters:

U&' \ 0441\ 043B\ 043E\ 043D

If adifferent escape character than backslash isdesired, it can be specified using the UESCAPE clause
after the string, for example:

U& d! 0061t! +000061'" UESCAPE '!'

The escape character can be any single character other than a hexadecimal digit, the plussign, asingle
guote, a double quote, or a whitespace character.

The Unicode escape syntax works only when the server encoding is UTF8. When other server
encodings are used, only code points in the ASCII range (up to \ 007F) can be specified. Both the
4-digit and the 6-digit form can be used to specify UTF-16 surrogate pairs to compose characters
with code points larger than U+FFFF, although the availability of the 6-digit form technically makes
this unnecessary. (When surrogate pairs are used when the server encoding is UTF8, they are first
combined into a single code point that is then encoded in UTF-8.)

Also, the Unicode escape syntax for string constants only works when the configuration parameter
standard_conforming_stringsisturned on. Thisisbecause otherwise this syntax could confuse clients
that parse the SQL statements to the point that it could lead to SQL injections and similar security
issues. If the parameter is set to off, this syntax will be rejected with an error message.

To include the escape character in the string literally, writeit twice.

4.1.2.4. Dollar-quoted String Constants

While the standard syntax for specifying string constants is usually convenient, it can be difficult to
understand when the desired string contains many single quotes or backslashes, since each of those
must be doubled. To allow more readable queries in such situations, PostgreSQL provides another
way, called “dollar quoting”, to write string constants. A dollar-quoted string constant consists of a
dollar sign ($), an optional “tag” of zero or more characters, another dollar sign, an arbitrary sequence
of characters that makes up the string content, adollar sign, the same tag that began this dollar quote,
and adollar sign. For example, here are two different waysto specify the string “ Dianne's horse” using
dollar quoting:

$$Di anne' s hor se$$
$SoneTag$hi anne' s hor se$SoneTag$

Notice that inside the dollar-quoted string, single quotes can be used without needing to be escaped.
Indeed, no charactersinside adollar-quoted string are ever escaped: the string content isalwayswritten
literally. Backslashes are not special, and neither are dollar signs, unless they are part of a sequence
matching the opening tag.

It is possible to nest dollar-quoted string constants by choosing different tags at each nesting level.

Thisis most commonly used in writing function definitions. For example:

$f uncti on$
BEG N

36

SQL Syntax

RETURN ($1 ~ g[\t\r\n\v\i\] $g9);
END;
$f uncti on$

Here, the sequence q[\ t\ r\ n\ vi \] g represents a dollar-quoted literal string [\ t\r\n\v
\'\], which will be recognized when the function body is executed by PostgreSQL. But since the
sequence does not match the outer dollar quoting delimiter $f unct i on$, it is just some more
characters within the constant so far as the outer string is concerned.

Thetag, if any, of adollar-quoted string follows the same rules as an unquoted identifier, except that it
cannot contain adollar sign. Tagsare case sensitive, so $t ag$St ri ng cont ent $t ag$ iscorrect,
but STAGSSt ri ng cont ent $t ag$ isnot.

A dollar-quoted string that follows a keyword or identifier must be separated from it by whitespace;
otherwise the dollar quoting delimiter would be taken as part of the preceding identifier.

Dollar quoting is not part of the SQL standard, but it is often a more convenient way to write
complicated string literals than the standard-compliant single quote syntax. It is particularly useful
when representing string constants inside other constants, as is often needed in procedural function
definitions. With single-quote syntax, each backslash in the above example would have to be written
asfour backslashes, which would be reduced to two backslashesin parsing the original string constant,
and then to one when the inner string constant is re-parsed during function execution.

4.1.2.5. Bit-string Constants

Bit-string constants look like regular string constants with a B (upper or lower case) immediately
before the opening quote (no intervening whitespace), e.g., B' 1001' . The only characters allowed
within bit-string constantsare 0 and 1.

Alternatively, hit-string constants can be specified in hexadecimal notation, using a leading X (upper
or lower case), e.qg., X' 1FF' . Thisnotationisequivalent to abit-string constant with four binary digits
for each hexadecimal digit.

Both forms of bit-string constant can be continued across lines in the same way as regular string
constants. Dollar quoting cannot be used in a bit-string constant.

4.1.2.6. Numeric Constants

Numeric constants are accepted in these general forms:

digits
digits.[digits][e[+-]digits]
[digits].digits[e[+-]digits]
digitse[+-]digits

wheredi gi t s isoneor moredecimal digits(0through 9). Atleast onedigit must bebeforeor after the
decimal point, if oneisused. At least one digit must follow the exponent marker (e), if oneis present.
There cannot be any spaces or other characters embedded in the constant. Note that any leading plus
or minus sign is not actually considered part of the constant; it is an operator applied to the constant.

These are some examples of valid numeric constants;

42
35
4.
.001
5e2

37

SQL Syntax

1.925e-3

A numeric constant that contains neither a decimal point nor an exponent isinitially presumed to be
typei nt eger if itsvaluefitsintypei nt eger (32hits); otherwiseit ispresumed to betypebi gi nt
if its value fitsin type bi gi nt (64 bits); otherwise it is taken to be type nuner i c. Constants that
contain decimal points and/or exponents are alwaysinitialy presumed to betypenuneri c.

The initially assigned data type of a numeric constant is just a starting point for the type resolution
algorithms. In most cases the constant will be automatically coerced to the most appropriate type
depending on context. When necessary, you can force a numeric value to be interpreted as a specific
data type by casting it. For example, you can force a numeric value to be treated as type r eal
(f I oat 4) by writing:

REAL '1.23" -- string style
1.23:: REAL -- PostgreSQL (historical) style

These are actually just special cases of the general casting notations discussed next.

4.1.2.7. Constants of Other Types

4.1.3.

A constant of an arbitrary type can be entered using any one of the following notations:

type 'string'

"string' ::type

CAST ('string' AS type)

The string constant'stext is passed to the input conversion routine for thetypecalledt ype. Theresult
isaconstant of the indicated type. The explicit type cast can be omitted if there is no ambiguity asto
the type the constant must be (for example, when it is assigned directly to atable column), in which
caseit isautomatically coerced.

The string constant can be written using either regular SQL notation or dollar-quoting.

It is also possible to specify atype coercion using a function-like syntax:

typenane ('string')
but not all type names can be used in this way; see Section 4.2.9 for details.

The: :, CAST() , and function-call syntaxes can also be used to specify run-time type conversions
of arbitrary expressions, as discussed in Section 4.2.9. To avoid syntactic ambiguity, the t ype
"string' syntax canonly beusedto specify thetype of asimpleliteral constant. Another restriction
onthet ype ' string' syntaxisthatitdoesnotwork for array types, use: : or CAST() to specify
the type of an array constant.

The CAST() syntax conformsto SQL. Thetype 'string' syntax is a generalization of the

standard: SQL specifies this syntax only for afew data types, but PostgreSQL allowsiit for all types.
The syntax with : : ishistorical PostgreSQL usage, asis the function-call syntax.

Operators

An operator name is a sequence of up to NAMEDATALEN-1 (63 by default) characters from the
following list:

FoR <>~ 1 @EWNE |2

38

SQL Syntax

4.1.4.

4.1.5.

There are afew restrictions on operator names, however:

e -- and/* cannot appear anywhere in an operator name, since they will be taken as the start of
acomment.

* A multiple-character operator name cannot end in + or -, unless the name also contains at least
one of these characters:

~1@#% & | ?

For example, @ isan alowed operator name, but * - is not. This restriction allows PostgreSQL to
parse SQL-compliant queries without requiring spaces between tokens.

When working with non-SQL-standard operator names, you will usualy need to separate adjacent
operatorswith spacesto avoid ambiguity. For example, if you have defined aleft unary operator named
@ you cannot write X* @; you must write X* @Y to ensure that PostgreSQL reads it as two operator
names not one.

Special Characters

Some characters that are not alphanumeric have a special meaning that is different from being an
operator. Details on the usage can be found at the location where the respective syntax element
is described. This section only exists to advise the existence and summarize the purposes of these
characters.

A dollar sign ($) followed by digits is used to represent a positional parameter in the body of
a function definition or a prepared statement. In other contexts the dollar sign can be part of an
identifier or a dollar-quoted string constant.

» Parentheses (()) have their usual meaning to group expressions and enforce precedence. In some
cases parentheses are required as part of the fixed syntax of a particular SQL command.

» Brackets ([]) are used to select the elements of an array. See Section 8.15 for more information
on arrays.

» Commas (,) are used in some syntactical constructs to separate the elements of alist.

e The semicolon (;) terminates an SQL command. It cannot appear anywhere within a command,
except within a string constant or quoted identifier.

» The colon (:) isused to select “dlices” from arrays. (See Section 8.15.) In certain SQL dialects
(such as Embedded SQL), the colon is used to prefix variable names.

* Theasterisk (*) isused in some contexts to denote all the fields of atable row or composite value.
It also has a special meaning when used as the argument of an aggregate function, namely that the
aggregate does not require any explicit parameter.

» Theperiod (.) isused in numeric constants, and to separate schema, table, and column names.

Comments

A comment is a sequence of characters beginning with double dashes and extending to the end of
theline, eg.:

-- This is a standard SQ. conment

Alternatively, C-style block comments can be used:

39

SQL Syntax

4.1.6.

/* multiline coment

* with nesting: /* nested block coment */

*/
where the comment begins with / * and extends to the matching occurrence of */ . These block
comments nest, as specified in the SQL standard but unlike C, so that one can comment out larger
blocks of code that might contain existing block comments.

A comment isremoved from theinput stream before further syntax analysisand is effectively replaced
by whitespace.

Operator Precedence

Table 4.2 shows the precedence and associativity of the operators in PostgreSQL. Most operators
have the same precedence and are left-associative. The precedence and associativity of the operators
is hard-wired into the parser.

Y ou will sometimes need to add parentheses when using combinations of binary and unary operators.
For instance:

SELECT 5! - 6;

will be parsed as:

SELECT 5! (- 6);

because the parser has no idea— until it istoo late — that ! is defined as a postfix operator, not an
infix one. To get the desired behavior in this case, you must write:

SELECT (5 !) - 6;

Thisisthe price one pays for extensibility.

Table4.2. Operator Precedence (highest to lowest)

Oper ator/Element Associativity Description
left table/column name separator
| eft PostgreSQL -style typecast
[] left array element selection
+ - right unary plus, unary minus
n left exponentiation
* | % | eft multiplication, division, modulo
+ - left addition, subtraction
(any other operator) left al other native and user-defined
operators
BETWEEN I N LI KE ILIKE range containment, set
SIM LAR membership, string matching
<>=<=>=<> comparison operators
I ST SNULL NOTNULL IS TRUE IS FALSE, IS
NULL, IS DI STI NCT FROM
etc

40

SQL Syntax

Operator/Element Associativity Description

NOT right logical negation
AND left logical conjunction
oR left logical digunction

Note that the operator precedence rules al so apply to user-defined operators that have the same names
asthe built-in operators mentioned above. For example, if you definea® +” operator for some custom
datatypeit will have the same precedence as the built-in “+” operator, no matter what yours does.

When a schema-qualified operator name is used in the OPERATOR syntax, as for examplein:

SELECT 3 OPERATOR(pg_catal og. +) 4;

the OPERATOR construct is taken to have the default precedence shown in Table 4.2 for “any other
operator”. Thisis true no matter which specific operator appears inside OPERATOR() .

Note

PostgreSQL versionsbefore 9.5 used dlightly different operator precedencerules. In particular,
<= >= and <> used to be treated as generic operators; | S tests used to have higher
priority; and NOT BETWEEN and related constructs acted inconsistently, being taken in some
cases as having the precedence of NOT rather than BETWEEN. These rules were changed
for better compliance with the SQL standard and to reduce confusion from inconsistent
treatment of logically equivalent constructs. In most cases, these changes will result in no
behavioral change, or perhapsin “no such operator” failures which can be resolved by adding
parentheses. However there are corner cases in which a query might change behavior without
any parsing error being reported. If you are concerned about whether these changes have
silently broken something, you can test your application with the configuration parameter
operator_precedence_warning turned on to see if any warnings are logged.

4.2. Value Expressions

Value expressions are used in avariety of contexts, such asin thetarget list of the SELECT command,
asnew column valuesin | NSERT or UPDATE, or in search conditionsin anumber of commands. The
result of a value expression is sometimes called a scalar, to distinguish it from the result of a table
expression (which is atable). Value expressions are therefore also called scalar expressions (or even
simply expressions). The expression syntax allowsthe cal culation of values from primitive partsusing
arithmetic, logical, set, and other operations.

A value expression is one of the following:
» A constant or literal value

» A column reference

A positional parameter reference, in the body of afunction definition or prepared statement

A subscripted expression
» A field selection expression
» An operator invocation

A function call

41

SQL Syntax

4.2.1.

4.2.2.

4.2.3.

» An aggregate expression

* A window function call

» A typecast

* A collation expression

A scalar subquery

* An array constructor

* A row constructor

» Another value expression in parentheses (used to group subexpressions and override precedence)

In addition to this list, there are a number of constructs that can be classified as an expression but do
not follow any general syntax rules. These generally have the semantics of afunction or operator and
are explained in the appropriate location in Chapter 9. An exampleisthel S NULL clause.

We have already discussed constants in Section 4.1.2. The following sections discuss the remaining
options.

Column References

A column can be referenced in the form:

correl ati on. col utmnane

correl at i on isthe name of atable (possibly qualified with a schemaname), or an aliasfor atable
defined by means of a FROMclause. The correlation name and separating dot can be omitted if the
column name is unique across all the tables being used in the current query. (See also Chapter 7.)

Positional Parameters

A positional parameter reference is used to indicate a value that is supplied externally to an SQL
statement. Parameters are used in SQL function definitions and in prepared queries. Some client
libraries also support specifying data values separately from the SQL command string, in which case
parameters are used to refer to the out-of-line data values. The form of a parameter referenceis:
$nunber

For example, consider the definition of afunction, dept , as:

CREATE FUNCTI ON dept (text) RETURNS dept

AS $$ SELECT * FROM dept WHERE narme = $1 $$
LANGUAGE SQL;

Herethe $1 references the value of the first function argument whenever the function is invoked.

Subscripts

If an expression yields a value of an array type, then a specific element of the array value can be
extracted by writing

expressi on[subscri pt]

42

SQL Syntax

4.2.4.

4.2.5.

or multiple adjacent elements (an “array dice”) can be extracted by writing

expressi on[| ower _subscri pt: upper_subscri pt]

(Here, thebrackets[] aremeant to appear literally.) Eachsubscri pt isitself an expression, which
will be rounded to the nearest integer value.

In general the array expr essi on must be parenthesized, but the parentheses can be omitted when
the expression to be subscripted is just a column reference or positional parameter. Also, multiple
subscripts can be concatenated when the original array is multidimensional. For example:

nyt abl e. arraycol um| 4]

nyt abl e. two_d_col umm[17] [34]
$1[10: 42]

(arrayfunction(a, b))[42]

The parentheses in the last example are required. See Section 8.15 for more about arrays.

Field Selection

If an expression yields a value of a composite type (row type), then a specific field of the row can
be extracted by writing

expression. fiel dname

In general therow expr essi on must be parenthesized, but the parentheses can be omitted when the
expression to be selected from is just atable reference or positional parameter. For example:

nyt abl e. mycol um
$1. sonecol um
(rowfunction(a,b)).col 3

(Thus, a qualified column reference is actually just a specia case of the field selection syntax.) An
important special caseis extracting afield from atable column that is of a composite type:
(conposi tecol). sonefield

(myt abl e. conposi tecol). sonefield

The parentheses are required here to show that conposi t ecol isacolumn name not atable name,
or that myt abl e isatable name not a schemaname in the second case.

Y ou can ask for all fields of a composite value by writing . *:

(conpositecol).*

This notation behaves differently depending on context; see Section 8.16.5 for details.

Operator Invocations

There are three possible syntaxes for an operator invocation:

expr essi on oper at or expr essi on (binary infix operator)
oper at or expr essi on (unary prefix operator)

43

SQL Syntax

4.2.6.

4.2.7.

expr essi on oper at or (unary postfix operator)

wheretheoper at or token followsthe syntax rules of Section 4.1.3, or isone of the key words AND,
OR, and NOT, or isaqualified operator name in the form:

OPERATOR(schenma. oper at or nane)

Which particular operators exist and whether they are unary or binary depends on what operators have
been defined by the system or the user. Chapter 9 describes the built-in operators.

Function Calls

The syntax for a function call is the name of a function (possibly qualified with a schema name),
followed by its argument list enclosed in parentheses:

function_nane ([expression [, expression ...]])

For example, the following computes the square root of 2:

sqrt(2)
Thelist of built-in functionsisin Chapter 9. Other functions can be added by the user.

When issuing queriesin adatabase where some users mistrust other users, observe security precautions
from Section 10.3 when writing function calls.

The arguments can optionally have names attached. See Section 4.3 for details.

Note

A function that takes a single argument of composite type can optionally be called using
field-selection syntax, and conversely field selection can be written in functional style. That
is, the notations col (t abl) andt abl e. col are interchangeable. This behavior is not
SQL-standard but is provided in PostgreSQL because it allows use of functions to emulate
“computed fields’. For more information see Section 8.16.5.

Aggregate Expressions

An aggregate expression represents the application of an aggregate function across the rows selected
by aquery. An aggregate function reduces multiple inputsto a single output value, such asthe sum or
average of theinputs. The syntax of an aggregate expression is one of the following:

aggregate _nane (expression [, ...] [order_by clause]) [FILTER
(WHERE filter _clause)]

aggregate _nane (ALL expression [, ...] [order_by clause])

[FILTER (WHERE filter_clause)]

aggregate_nane (DI STINCT expression [, ...] [order_by clause])

[FILTER (WHERE filter_clause)]
aggregate nane (*) [FILTER (WHERE filter _clause)]
aggregate nane ([expression [, ... 1]) WTH N GROUP
(order_by clause) [FILTER (WHERE filter_clause)]

whereaggr egat e_nane isapreviously defined aggregate (possibly qualified with aschemaname)
and expr essi on is any value expression that does not itself contain an aggregate expression or

44

SQL Syntax

a window function call. The optional order _by cl ause andfilter_cl ause are described
below.

The first form of aggregate expression invokes the aggregate once for each input row. The second
form is the same as the first, since ALL is the default. The third form invokes the aggregate once for
each distinct value of the expression (or distinct set of values, for multiple expressions) found in the
input rows. The fourth form invokes the aggregate once for each input row; since no particular input
valueis specified, it is generally only useful for the count (*) aggregate function. The last formis
used with ordered-set aggregate functions, which are described below.

Most aggregate functions ignore null inputs, so that rows in which one or more of the expression(s)
yield null are discarded. This can be assumed to be true, unless otherwise specified, for al built-in

aggregates.

For example, count (*) yields the total number of input rows; count (f 1) yields the number of
input rowsinwhichf 1 isnon-null, sincecount ignoresnulls; andcount (di sti nct f1) yields
the number of distinct non-null valuesof f 1.

Ordinarily, the input rows are fed to the aggregate function in an unspecified order. In many cases
this does not matter; for example, m n produces the same result no matter what order it receives the
inputs in. However, some aggregate functions (such as array_agg and st ri ng_agg) produce
results that depend on the ordering of the input rows. When using such an aggregate, the optional
order by cl ause can be used to specify the desired ordering. The or der _by cl ause has
the same syntax as for a query-level ORDER BY clause, as described in Section 7.5, except that its
expressionsare alwaysjust expressions and cannot be output-column names or numbers. For example:

SELECT array_agg(a ORDER BY b DESC) FROM t abl e;

When dealing with multiple-argument aggregate functions, note that the ORDER BY clause goes after
all the aggregate arguments. For example, write this:

SELECT string agg(a, ',' ORDER BY a) FROMtabl e;
not this:
SELECT string agg(a ORDER BY a, ',') FROMtable; -- incorrect

The latter is syntactically valid, but it represents a call of a single-argument aggregate function with
two ORDER BY keys (the second one being rather useless since it's a constant).

If DI STI NCT isspecifiedinadditiontoanor der _by cl ause, thenall the ORDER BY expressions
must match regular arguments of the aggregate; that is, you cannot sort on an expression that is not
included in the DI STI NCT list.

Note

The ability to specify both DI STI NCT and ORDER BY in an aggregate function is a
PostgreSQL extension.

Placing ORDER BY within the aggregate's regular argument list, as described so far, is used
when ordering the input rows for general-purpose and statistical aggregates, for which ordering is
optional. There is a subclass of aggregate functions called ordered-set aggregates for which an
order by cl ause isrequired, usually because the aggregate's computation is only sensible in
terms of a specific ordering of itsinput rows. Typica examples of ordered-set aggregatesinclude rank
and percentile calculations. For an ordered-set aggregate, the or der _by _cl ause iswritten inside

45

SQL Syntax

4.2.8.

WTH N GROUP (...), asshown in thefina syntax aternative above. The expressions in the
order by _cl ause are evaluated once per input row just like regular aggregate arguments, sorted
aspertheor der by cl ause'srequirements, and fed to the aggregate function asinput arguments.
(Thisis unlike the case for anon-W THI N GROUP or der _by_cl ause, which is not treated as
argument(s) to the aggregate function.) The argument expressions preceding W THI N GROUP, if
any, are caled direct arguments to distinguish them from the aggregated arguments listed in the
order by cl ause. Unlikeregular aggregate arguments, direct arguments are evaluated only once
per aggregate call, not once per input row. This means that they can contain variables only if those
variables are grouped by GROUP BY; thisrestriction is the same as if the direct arguments were not
inside an aggregate expression at all. Direct arguments are typically used for things like percentile
fractions, which only make sense as a single value per aggregation calculation. The direct argument
list can be empty; in this case, writejust () not (*) . (PostgreSQL will actually accept either spelling,
but only the first way conforms to the SQL standard.)

An example of an ordered-set aggregate call is:

SELECT percentile_cont(0.5) WTH N GROUP (ORDER BY incone) FROM
househol ds;
percentil e_cont

which obtains the 50th percentile, or median, value of thei nconme columnfromtablehousehol ds.
Here, 0. 5 isadirect argument; it would make no sensefor the percentile fraction to beavauevarying
across rows.

If FI LTER s specified, then only the input rows for which thef i | t er _cl ause evaluates to true
are fed to the aggregate function; other rows are discarded. For example:

SELECT

count (*) AS unfiltered,

count (*) FILTER (WHERE i < 5) AS filtered
FROM generate_series(1,10) AS s(i);
unfiltered | filtered

(1 row

The predefined aggregate functions are described in Section 9.20. Other aggregate functions can be
added by the user.

An aggregate expression can only appear in the result list or HAVI NGclause of a SELECT command.
It isforbidden in other clauses, such as WHERE, because those clauses are logically evaluated before
the results of aggregates are formed.

When an aggregate expression appears in a subquery (see Section 4.2.11 and Section 9.22),
the aggregate is normally evaluated over the rows of the subquery. But an exception occurs if
the aggregate's arguments (and fi | t er _cl ause if any) contain only outer-level variables: the
aggregate then belongs to the nearest such outer level, and is evaluated over the rows of that query.
The aggregate expression as awhole is then an outer reference for the subquery it appearsin, and acts
as a constant over any one evaluation of that subquery. The restriction about appearing only in the
result list or HAVI NG clause applies with respect to the query level that the aggregate belongs to.

Window Function Calls

A window function call represents the application of an aggregate-like function over some portion of
the rows selected by a query. Unlike non-window aggregate calls, thisis not tied to grouping of the

46

SQL Syntax

selected rows into a single output row — each row remains separate in the query output. However the
window function has access to all the rows that would be part of the current row's group according
to the grouping specification (PARTI TI ON BY list) of the window function call. The syntax of a
window function call is one of the following:

function_name ([expression [, expression ...]]) [FILTER
(WHERE filter_clause)] OVER wi ndow_name
function_name ([expression [, expression ...]]) [FILTER

(WHERE filter_clause)] OVER (w ndow definition)
function_name (*) [FILTER (WHERE filter_clause)]
OVER wi ndow_nane
function_name (*) [FILTER (WHERE filter_clause)] OVER
(wi ndow definition)

wherewi ndow_def i ni t i on hasthe syntax

[existing_w ndow _nane]

[PARTITION BY expression [, ...]]

[ORDER BY expression [ASC | DESC | USING operator] [NULLS
{ FIRST | LAST}] [, ...]11

[frane_cl ause]

The optional f r amre_cl ause can be one of

{ RANGE | RON5 | GROUPS } frane_start [frame_exclusion]
{ RANGE | ROAS | GROUPS } BETVEEN frane_start AND frane_end
[frane_exclusion]

wherefranme_start andfranme_end can be one of

UNBOUNDED PRECEDI NG
of f set PRECEDI NG
CURRENT ROW

of fset FOLLOW NG
UNBOUNDED FOLLOW NG

and f r ame_excl usi on can be one of

EXCLUDE CURRENT ROW
EXCLUDE GROUP
EXCLUDE TI ES
EXCLUDE NO OTHERS

Here, expr essi on represents any value expression that does not itself contain window function
cals.

wi ndow_narne isareferenceto anamed window specification defined in the query's W NDOWtl ause.
Alternatively, afull Wi ndow_def i ni ti on can be given within parentheses, using the same syntax
asfor defining anamed window in the W NDOWCclause; seethe SEL ECT reference pagefor details. It's
worth pointing out that OVER wnare is not exactly equivalent to OVER (wnane . . .);thelatter
implies copying and modifying the window definition, and will be rejected if the referenced window
specification includes a frame clause.

The PARTI TI ON BY clause groups the rows of the query into partitions, which are processed
separately by the window function. PARTI TI ON BY works similarly to a query-level GROUP BY

47

SQL Syntax

clause, except that its expressions are always just expressions and cannot be output-column names or
numbers. Without PARTI TI ON BY, all rows produced by the query are treated as a single partition.
The ORDER BY clause determines the order in which the rows of a partition are processed by the
window function. It works similarly to a query-level ORDER BY clause, but likewise cannot use
output-column names or numbers. Without ORDER BY, rows are processed in an unspecified order.

The f r ame_cl ause specifies the set of rows constituting the window frame, which is a subset of
the current partition, for those window functions that act on the frame instead of the whole partition.
The set of rows in the frame can vary depending on which row is the current row. The frame can be
specified in RANGE, ROAS5 or GROUPS mode; in each case, it runs from the f r ane_st art to the
frame_end. If f rame_end isomitted, the end defaults to CURRENT ROW

A frame_start of UNBOUNDED PRECEDI NG means that the frame starts with the first row of
the partition, and similarly af r ame_end of UNBOUNDED FOLLOW NG means that the frame ends
with the last row of the partition.

In RANGE or GROUPS mode, af rane_st art of CURRENT ROWmeans the frame starts with the
current row's first peer row (arow that the window's ORDER BY clause sorts as equivalent to the
current row), while af r ame_end of CURRENT ROWmMmeans the frame ends with the current row's
last peer row. In ROAS mode, CURRENT ROWsimply means the current row.

In the of f set PRECEDI NG and of f set FOLLOW NG frame options, the of f set must be an
expression not containing any variables, aggregate functions, or window functions. The meaning of
the of f set depends on the frame mode:

* In ROAS mode, the of f set must yield anon-null, non-negative integer, and the option means that
the frame starts or ends the specified number of rows before or after the current row.

* In GROUPS mode, the of f set again must yield a non-null, non-negative integer, and the option
means that the frame starts or ends the specified number of peer groups before or after the current
row's peer group, where a peer group isaset of rowsthat are equivalent inthe ORDER BY ordering.
(There must be an ORDER BY clause in the window definition to use GROUPS mode.)

* In RANGE mode, these options require that the ORDER BY clause specify exactly one column. The
of f set specifiesthe maximum difference between the value of that columnin the current row and
itsvaluein preceding or following rows of theframe. The datatypeof theof f set expressionvaries
depending on the data type of the ordering column. For numeric ordering columns it is typicaly
of the same type as the ordering column, but for datetime ordering columnsit isani nt er val .
For example, if the ordering column is of type dat e or ti mest anp, one could write RANGE
BETVEEN '1 day' PRECEDI NG AND '10 days' FOLLOW NG Theof fset istill
required to be non-null and non-negative, though the meaning of “non-negative” depends on its
data type.

In any case, the distance to the end of the frame is limited by the distance to the end of the partition,
so that for rows near the partition ends the frame might contain fewer rows than elsewhere.

Notice that in both ROAE and GROUPS mode, 0 PRECEDI NGand 0 FOLLOW NGare equivaent to
CURRENT ROW This normally holds in RANGE mode as well, for an appropriate data-type-specific
meaning of “zero”.

Thef r anme_excl usi on option allows rows around the current row to be excluded from the frame,
even if they would be included according to the frame start and frame end options. EXCLUDE
CURRENT ROWexcludes the current row from the frame. EXCLUDE GROUP excludes the current
row and its ordering peers from the frame. EXCLUDE TI ES excludes any peers of the current row
from the frame, but not the current row itself. EXCLUDE NO OTHERS simply specifies explicitly the
default behavior of not excluding the current row or its peers.

The default framing option is RANGE UNBOUNDED PRECEDI NG, which is the same as RANGE
BETVEEN UNBOUNDED PRECEDI NG AND CURRENT ROWWith ORDER BY, thissetsthe frame
to be all rows from the partition start up through the current row's last ORDER BY peer. Without

48

SQL Syntax

4.2.9.

ORDER BY, this means all rows of the partition are included in the window frame, since al rows
become peers of the current row.

Restrictions are that f r ame_st art cannot be UNBOUNDED FOLLOW NG, frane_end cannot
be UNBOUNDED PRECEDI NG, and the f r ane_end choice cannot appear earlier in the above list
of frame_start andframe_end options than the f r ame_st art choice does — for example
RANGE BETWEEN CURRENT ROW AND of f set PRECEDI NGisnot allowed. But, for example,
ROAS BETWEEN 7 PRECEDI NG AND 8 PRECEDI NGis allowed, even though it would never
select any rows.

If FI LTER s specified, then only the input rows for whichthefi | t er _cl ause evauatesto true
are fed to the window function; other rows are discarded. Only window functions that are aggregates
accept aFl LTER clause.

The built-in window functions are described in Table 9.57. Other window functions can be added by
the user. Also, any built-in or user-defined general-purpose or statistical aggregate can be used as a
window function. (Ordered-set and hypothetical-set aggregates cannot presently be used as window
functions.)

Thesyntaxesusing * are used for calling parameter-1ess aggregate functions as window functions, for
examplecount (*) OVER (PARTI TI ON BY x ORDER BY y) . Theasterisk (*) iscustomarily
not used for window-specific functions. Window-specific functions do not allow DI STI NCT or
ORDER BY to be used within the function argument list.

Window function calls are permitted only in the SELECT list and the ORDER BY clause of the query.

Moreinformation about window functions can befound in Section 3.5, Section 9.21, and Section 7.2.5.

Type Casts

A type cast specifies a conversion from one data type to another. PostgreSQL accepts two equivalent
syntaxes for type casts:

CAST (expression AS type)
expression: :type

The CAST syntax conforms to SQL ; the syntax with: : ishistorical PostgreSQL usage.

When acast is applied to avalue expression of aknown type, it represents arun-time type conversion.
The cast will succeed only if a suitable type conversion operation has been defined. Notice that this
is subtly different from the use of casts with constants, as shown in Section 4.1.2.7. A cast applied
to an unadorned string literal represents the initial assignment of a type to a literal constant value,
and so it will succeed for any type (if the contents of the string literal are acceptable input syntax for
the data type).

An explicit type cast can usually be omitted if there is no ambiguity as to the type that a value
expression must produce (for example, when it is assigned to a table column); the system will
automatically apply atype cast in such cases. However, automatic casting is only done for casts that
aremarked “ OK to apply implicitly” in the system catalogs. Other casts must be invoked with explicit
casting syntax. This restriction is intended to prevent surprising conversions from being applied
silently.

It isalso possible to specify atype cast using afunction-like syntax:

typenane (expression)

However, this only works for types whose names are also valid as function names. For example,
doubl e precision cannot be used this way, but the equivalent f| oat 8 can. Also, the

49

SQL Syntax

namesi nterval, time, andti nest anp can only be used in this fashion if they are double-
guoted, because of syntactic conflicts. Therefore, the use of the function-like cast syntax leads to
inconsistencies and should probably be avoided.

Note

The function-like syntax is in fact just a function call. When one of the two standard cast
syntaxes is used to do a run-time conversion, it will internally invoke a registered function
to perform the conversion. By convention, these conversion functions have the same name as
their output type, and thusthe“function-like syntax” isnothing morethan adirect invocation of
theunderlying conversion function. Obviously, thisisnot something that aportable application
should rely on. For further details see CREATE CAST.

4.2.10. Collation Expressions

The COLLATE clause overrides the collation of an expression. It is appended to the expression it
appliesto:
expr COLLATE collation

wherecol | at i on isapossibly schema-qualified identifier. The COLLATE clause bindstighter than
operators; parentheses can be used when necessary.

If no collation is explicitly specified, the database system either derives a collation from the columns
involved inthe expression, or it defaultsto the default collation of the databaseif no columnisinvolved
in the expression.

The two common uses of the COLLATE clause are overriding the sort order in an ORDER BY clause,
for example:

SELECT a, b, ¢ FROMtbl WHERE ... ORDER BY a COLLATE "C';

and overriding the collation of afunction or operator call that haslocal e-sensitive results, for example:

SELECT * FROM tbl WHERE a > 'foo' COLLATE "C';

Note that in the latter case the COLLATE clause is attached to an input argument of the operator we
wishto affect. It doesn't matter which argument of the operator or function call the COLLATE clauseis
attached to, because the collation that is applied by the operator or function is derived by considering
all arguments, and an explicit COLLATE clause will override the collations of all other arguments.
(Attaching non-matching COLLATE clauses to more than one argument, however, is an error. For
more details see Section 23.2.) Thus, this gives the same result as the previous example:

SELECT * FROM tbl WHERE a COLLATE "C' > 'foo';

But thisisan error:

SELECT * FROM tbl WHERE (a > 'foo') COLLATE "C';

because it attempts to apply a collation to the result of the > operator, which is of the non-collatable
datatypebool ean.

50

SQL Syntax

4.2.11. Scalar Subqueries

A scalar subquery isan ordinary SELECT query in parentheses that returns exactly one row with one
column. (See Chapter 7 for information about writing queries.) The SELECT query is executed and
the single returned value is used in the surrounding value expression. It is an error to use a query that
returns more than one row or more than one column as a scalar subquery. (But if, during a particular
execution, the subguery returns no rows, there is no error; the scalar result is taken to be null.) The
subquery can refer to variables from the surrounding query, which will act as constants during any
one evaluation of the subquery. See also Section 9.22 for other expressions involving subqueries.

For example, the following finds the largest city population in each state:

SELECT nane, (SELECT max(pop) FROM cities WHERE cities.state =
st at es. nane)
FROM st at es;

4.2.12. Array Constructors

Anarray constructor isan expression that buildsan array value using valuesfor itsmember el ements. A
simple array constructor consists of the key word ARRAY, aleft square bracket [, alist of expressions
(separated by commas) for the array element values, and finally aright square bracket | . For example:

SELECT ARRAY[1, 2, 3+4] ;
array

By default, the array element type is the common type of the member expressions, determined using
thesamerulesasfor UNI ON or CASE constructs (see Section 10.5). Y ou can override thisby explicitly
casting the array constructor to the desired type, for example:

SELECT ARRAY[1,2,22.7]::integer[];
array

This has the same effect as casting each expression to the array element type individually. For more
on casting, see Section 4.2.9.

Multidimensional array values can be built by nesting array constructors. In theinner constructors, the
key word ARRAY can be omitted. For example, these produce the same resullt:

SELECT ARRAY[ARRAY[1, 2], ARRAY[3,4]];
array

{{1,2},{3, 4}}
(1 row

SELECT ARRAY[[1,2],[3,4]];
array

{{1,2},{3, 4}}
(1 row

51

SQL Syntax

Since multidimensional arrays must be rectangular, inner constructors at the same level must produce
sub-arrays of identical dimensions. Any cast applied to the outer ARRAY constructor propagates
automatically to all the inner constructors.

Multidimensional array constructor elements can be anything yielding an array of the proper kind, not
only asub-ARRAY construct. For example:

CREATE TABLE arr(f1 int[], f2 int[]);
I NSERT | NTO arr VALUES (ARRAY[[1,2],[3,4]], ARRAY[[5,6],[7,8]1);

SELECT ARRAY[f1, f2, '{{9,10},{11,12}} ::int[]] FROMarr
array

{{{1,2},{3,4}},{{5,6},{7, 8}, {{9,10},{11,12}}}
(1 row

Y ou can construct an empty array, but since it's impossible to have an array with no type, you must
explicitly cast your empty array to the desired type. For example:

SELECT ARRAY[]::integer[];
array

{}
(1 row

Itisalso possibleto construct an array from the results of asubquery. Inthisform, thearray constructor
is written with the key word ARRAY followed by a parenthesized (not bracketed) subquery. For
example:

SELECT ARRAY(SELECT oi d FROM pg_proc WHERE pronane LIKE 'bytea%);
array

{2011, 1954, 1948, 1952, 1951, 1244, 1950, 2005, 1949, 1953, 2006, 31, 2412, 2413}
(1 row

SELECT ARRAY(SELECT ARRAY[i, i*2] FROM generate_series(1,5) AS
a(i));

{{1,2},{2,4},{3,6},{4,8},{5,10}}
(1 row)

The subquery must return a single column. If the subquery's output column is of a non-array type,
the resulting one-dimensional array will have an element for each row in the subquery result, with an
element type matching that of the subquery's output column. If the subquery's output column is of an
array type, the result will be an array of the same type but one higher dimension; in this case all the
subquery rows must yield arrays of identical dimensionality, else the result would not be rectangular.

The subscripts of an array value built with ARRAY aways begin with one. For more information about
arrays, see Section 8.15.

4.2.13. Row Constructors

A row constructor isan expression that builds arow value (also called acomposite value) using values
for its member fields. A row constructor consists of the key word ROW a left parenthesis, zero or

52

SQL Syntax

more expressions (separated by commas) for the row field values, and finally aright parenthesis. For
example:

SELECT RON1,2.5,'this is a test');

The key word ROWis optional when there is more than one expression in the list.

A row constructor can include the syntax r owval ue. *, which will be expanded to a list of the
elements of the row value, just as occurswhen the . * syntax isused at the top level of a SELECT list
(see Section 8.16.5). For example, if tablet hascolumnsf 1 and f 2, these are the same:

SELECT ROW(t.*, 42) FROMt;
SELECT ROWt.f1, t.f2, 42) FROMt;

Note

Before PostgreSQL 8.2, the . * syntax was not expanded in row constructors, so that writing
ROWNt.*, 42) created atwo-field row whose first field was another row value. The new
behavior is usualy more useful. If you need the old behavior of nested row values, write the
inner row value without . *, for instance RO t, 42).

By default, the value created by a ROWNexpression is of an anonymous record type. If necessary, it can
be cast to a named composite type — either the row type of atable, or acomposite type created with
CREATE TYPE AS. An explicit cast might be needed to avoid ambiguity. For example:

CREATE TABLE nytable(fl int, f2 float, f3 text);

CREATE FUNCTI ON getf 1(nytabl e) RETURNS int AS ' SELECT $1.f1'
LANGUAGE SQL;

-- No cast needed since only one getfl() exists
SELECT getf1(RON1,2.5,'this is a test'));
getfl

CREATE TYPE nyrowtype AS (fl1 int, f2 text, f3 nuneric);

CREATE FUNCTI ON get f 1(myr owt ype) RETURNS int AS ' SELECT $1.f1'
LANGUAGE SQL;

-- Now we need a cast to indicate which function to call:
SELECT getf1(RON1,2.5,'this is a test'));
ERROR: function getfl(record) is not unique

SELECT getf1(ROWN1,2.5,'this is a test')::nmytable);
getfl

SELECT getf1(CAST(ROW 11,'this is a test',2.5) AS nmyrowtype));
getfl

53

SQL Syntax

11
(1 row

Row constructors can be used to build composite valuesto be stored in acomposite-type table column,
or to be passed to a function that accepts a composite parameter. Also, it is possible to compare two
row valuesor test arow with | S NULL or I S NOT NULL, for example:

SELECT RON1,2.5,'this is a test') = RON1, 3, 'not the sane');
SELECT RONtable.*) IS NULL FROMtable; -- detect all-null rows

For more detail see Section 9.23. Row constructors can aso be used in connection with subqueries,
as discussed in Section 9.22.

4.2.14. Expression Evaluation Rules

The order of evaluation of subexpressions is not defined. In particular, the inputs of an operator or
function are not necessarily evaluated left-to-right or in any other fixed order.

Furthermore, if the result of an expression can be determined by evaluating only some parts of it, then
other subexpressions might not be evaluated at all. For instance, if one wrote:

SELECT true OR sonefunc();

then sonef unc() would (probably) not be called at all. The same would be the case if one wrote;

SELECT sonefunc() OR true;

Note that thisis not the same as the left-to-right “ short-circuiting” of Boolean operators that is found
in some programming languages.

As aconsequence, it is unwise to use functions with side effects as part of complex expressions. It is
particularly dangerousto rely on side effects or eval uation order in WHERE and HAVI NGclauses, since
those clauses are extensively reprocessed as part of devel oping an execution plan. Boolean expressions
(ANDYOR/NOT combinations) in those clauses can be reorganized in any manner alowed by the laws
of Boolean algebra.

When it is essential to force evaluation order, a CASE construct (see Section 9.17) can be used. For
example, thisis an untrustworthy way of trying to avoid division by zero in a WHERE clause:

SELECT ... WHERE x > 0 AND y/x > 1.5;
But thisis safe:
SELECT ... WHERE CASE WHEN x > 0 THEN y/x > 1.5 ELSE fal se END;

A CASE construct used in this fashion will defeat optimization attempts, so it should only be done
when necessary. (In this particular example, it would be better to sidestep the problem by writing y
> 1.5*x instead.)

CASE is not a cure-all for such issues, however. One limitation of the technique illustrated above is
that it does not prevent early evaluation of constant subexpressions. As described in Section 38.7,
functions and operators marked | MMUTABLE can be evaluated when the query is planned rather than
when it is executed. Thus for example

SQL Syntax

SELECT CASE WHEN x > 0 THEN x ELSE 1/0 END FROM t ab;

is likely to result in a division-by-zero failure due to the planner trying to simplify the constant
subexpression, even if every row inthetablehasx > 0 sothat the ELSE arm would never be entered
at runtime.

While that particular example might seem silly, related cases that don't obviously involve constants
can occur in queries executed within functions, since the values of function arguments and local
variables can beinserted into queries as constants for planning purposes. Within PL/pgSQL functions,
for example, using an | F-THEN-EL SE statement to protect a risky computation is much safer than
just nesting it in a CASE expression.

Another limitation of the same kind is that a CASE cannot prevent evaluation of an aggregate
expression contained within it, because aggregate expressions are computed before other expressions
in a SELECT list or HAVI NG clause are considered. For example, the following query can cause a
division-by-zero error despite seemingly having protected against it:

SELECT CASE WHEN mi n(enpl oyees) > 0
THEN avg(expenses / enpl oyees)
END
FROM depart ment s;

Them n() andavg() aggregates are computed concurrently over all the input rows, so if any row
has enpl oyees equal to zero, the division-by-zero error will occur before there is any opportunity
to test the result of mi n() . Instead, use a WHERE or FI LTER clause to prevent problematic input
rows from reaching an aggregate function in the first place.

4.3. Calling Functions

PostgreSQL allowsfunctionsthat have named parametersto be called using either positional or named
notation. Named notation is especially useful for functions that have a large number of parameters,
since it makes the associations between parameters and actual arguments more explicit and reliable.
In positional notation, a function call is written with its argument values in the same order as they
are defined in the function declaration. In named notation, the arguments are matched to the function
parameters by name and can be written in any order. For each notation, also consider the effect of
function argument types, documented in Section 10.3.

In either notation, parameters that have default values given in the function declaration need not be
written in the call at all. But thisis particularly useful in named notation, since any combination of
parameters can be omitted; while in positional notation parameters can only be omitted from right
to left.

PostgreSQL al so supports mixed notation, which combines positional and named notation. Inthiscase,
positional parameters are written first and named parameters appear after them.

The following examples will illustrate the usage of all three notations, using the following function
definition:

CREATE FUNCTI ON concat | ower _or _upper(a text, b text, uppercase
bool ean DEFAULT fal se)
RETURNS t ext
AS
$$
SELECT CASE
VWHEN $3 THEN UPPER($1 || ' ' || $2)
ELSE LONER(S$1 || " " || $2)

55

SQL Syntax

4.3.1.

4.3.2.

END;
$$
LANGUAGE SQL | MMUTABLE STRI CT;

Function concat _| ower _or _upper hastwo mandatory parameters, a and b. Additionally there
is one optional parameter upper case which defaults to f al se. The a and b inputs will be
concatenated, and forced to either upper or lower case depending on the upper case parameter.
The remaining details of this function definition are not important here (see Chapter 38 for more
information).

Using Positional Notation

Positional notation is the traditional mechanism for passing arguments to functions in PostgreSQL.
Anexampleis:

SELECT concat _| ower _or_upper('Hello', '"Wrld , true);
concat _| ower _or _upper

HELLO WORLD
(1 row

All argumentsare specified in order. Theresult isupper casesinceupper case isspecifiedast r ue.
Another exampleis:

SELECT concat _| ower _or_upper(' Hello', "Wrld);
concat _| ower _or _upper

hell o world

(1 row

Here, the upper case parameter is omitted, so it receives its default value of f al se, resulting in
lower case output. In positional notation, arguments can be omitted from right to left so long as they
have defaults.

Using Named Notation

In named notation, each argument's name is specified using => to separate it from the argument
expression. For example:

SELECT concat _| ower _or_upper(a => "Hello', b => "Wrld);
concat _| ower _or _upper

hell o worl d

(1 row

Again, the argument upper case was omitted so it is set to f al se implicitly. One advantage of
using named notation is that the arguments may be specified in any order, for example:

SELECT concat | ower _or_upper(a => "Hello', b => "Wrld', uppercase
=> true);
concat _| ower _or _upper

HELLO WORLD
(1 row

56

SQL Syntax

4.3.3.

SELECT concat _| ower _or _upper(a => 'Hell o', uppercase => true, b =>
"World');
concat _| ower _or _upper

HELLO WORLD
(1 row

An older syntax based on ":=" is supported for backward compatibility:

SELECT concat _| ower _or_upper(a := "Hello', uppercase :=true, b :=
"World');
concat _| ower _or _upper
HELLO WORLD

(1 row)

Using Mixed Notation

The mixed notation combines positional and named notation. However, as already mentioned, named
arguments cannot precede positional arguments. For example:

SELECT concat | ower _or_upper('Hello', 'Wrld', uppercase => true);
concat _| ower _or _upper

HELLO WORLD
(1 row

In the above query, the arguments a and b are specified positionally, while upper case is specified
by name. In thisexample, that addsittle except documentation. With amore complex function having
numerous parametersthat have default val ues, named or mixed notation can save agreat deal of writing
and reduce chances for error.

Note

Named and mixed call notations currently cannot be used when calling an aggregate function
(but they do work when an aggregate function is used as a window function).

57

Chapter 5. Data Definition

This chapter covers how one creates the database structures that will hold one's data. In a relational
database, the raw datais stored in tables, so the majority of this chapter is devoted to explaining how
tables are created and modified and what features are available to control what data is stored in the
tables. Subsequently, we discuss how tables can be organized into schemas, and how privileges can
be assigned to tables. Finally, we will briefly look at other features that affect the data storage, such
as inheritance, table partitioning, views, functions, and triggers.

5.1. Table Basics

A tablein arelational database is much like a table on paper: It consists of rows and columns. The
number and order of the columnsisfixed, and each column hasaname. The number of rowsisvariable
— it reflects how much data is stored at a given moment. SQL does not make any guarantees about
the order of the rowsin atable. When a table is read, the rows will appear in an unspecified order,
unless sorting is explicitly requested. Thisis covered in Chapter 7. Furthermore, SQL does not assign
unique identifiersto rows, so it is possible to have several completely identical rows in atable. This
is a consequence of the mathematical model that underlies SQL but is usually not desirable. Later in
this chapter we will see how to deal with thisissue.

Each column has adatatype. The datatype constrainsthe set of possible valuesthat can be assigned to
acolumn and assigns semanticsto the data stored in the column so that it can be used for computations.
For instance, a column declared to be of a numerical type will not accept arbitrary text strings, and
the data stored in such a column can be used for mathematical computations. By contrast, a column
declared to be of a character string type will accept almost any kind of data but it does not lend itself
to mathematical calculations, although other operations such as string concatenation are available.

PostgreSQL includes a sizable set of built-in data types that fit many applications. Users can also
define their own data types. Most built-in data types have obvious names and semantics, so we defer
adetailed explanation to Chapter 8. Some of the frequently used datatypes arei nt eger for whole
numbers, nuner i ¢ for possibly fractional numbers, t ext for character strings, dat e for dates,
t i me for time-of-day values, and t i mest anp for values containing both date and time.

To create atable, you use the aptly named CREATE TABLE command. In this command you specify
at least a name for the new table, the names of the columns and the data type of each column. For
example:

CREATE TABLE ny _first_table (
first_colum text,
second_col um i nt eger

)

This creates a table named nmy_fi r st _t abl e with two columns. The first column is named
first_col um and has adatatype of t ext ; the second column has the name second_col um
and the type i nt eger. The table and column names follow the identifier syntax explained in
Section 4.1.1. The type names are usually also identifiers, but there are some exceptions. Note that the
column list is comma-separated and surrounded by parentheses.

Of course, the previous example was heavily contrived. Normally, you would give names to your
tables and columns that convey what kind of datathey store. So let'slook at amore realistic example:

CREATE TABLE products (
product _no i nteger,
name text,

58

Data Definition

price nunmeric

)

(Thenurer i c type can store fractional components, as would be typical of monetary amounts.)

Tip

When you create many interrelated tables it is wise to choose a consistent naming pattern for
the tables and columns. For instance, there is a choice of using singular or plural nouns for
table names, both of which are favored by some theorist or other.

There is a limit on how many columns a table can contain. Depending on the column types, it is
between 250 and 1600. However, defining a table with anywhere near this many columns is highly
unusual and often a questionable design.

If you no longer need atable, you can remove it using the DROP TABLE command. For example:

DROP TABLE ny first _table;
DROP TABLE products;

Attempting to drop atable that does not exist isan error. Nevertheless, itiscommonin SQL script files
to unconditionally try to drop each table before creating it, ignoring any error messages, so that the
script works whether or not the table exists. (If you like, you can usethe DROP TABLE | F EXI STS
variant to avoid the error messages, but thisis not standard SQL .)

If you need to modify atable that already exists, see Section 5.5 later in this chapter.

With the tools discussed so far you can create fully functional tables. The remainder of this chapter is
concerned with adding featuresto the tabl e definition to ensure dataintegrity, security, or convenience.
If you are eager to fill your tables with data now you can skip ahead to Chapter 6 and read the rest
of this chapter later.

5.2. Default Values

A column can be assigned a default value. When a new row is created and no values are specified
for some of the columns, those columns will be filled with their respective default values. A data
manipulation command can also request explicitly that a column be set to its default value, without
having to know what that value is. (Details about data manipulation commands are in Chapter 6.)

If no default value is declared explicitly, the default valueis the null value. This usually makes sense
because a null value can be considered to represent unknown data.

In atable definition, default values are listed after the column data type. For example:

CREATE TABLE products (
product _no i nteger,
name text,
price numeric DEFAULT 9. 99

)

The default value can be an expression, which will be evaluated whenever the default valueisinserted
(not when thetableis created). A common exampleisfor at i nest anp column to have adefault of
CURRENT _TI MESTAMP, so that it gets set to the time of row insertion. Another common exampleis
generating a“serial number” for each row. In PostgreSQL thisistypically done by something like:

59

Data Definition

CREATE TABLE products (
product _no i nteger DEFAULT nextval (' products_product_no_seq'),

)
wherethenext val () function suppliessuccessive valuesfrom asequence object (see Section 9.16).

This arrangement is sufficiently common that there's a specia shorthand for it:

CREATE TABLE products (
product _no SERI AL,

)
The SERI AL shorthand is discussed further in Section 8.1.4.

5.3. Constraints

5.3.1.

Data types are a way to limit the kind of data that can be stored in a table. For many applications,
however, the constraint they provide istoo coarse. For example, a column containing a product price
should probably only accept positive values. But there is no standard data type that accepts only
positive numbers. Another issue isthat you might want to constrain column data with respect to other
columns or rows. For example, in a table containing product information, there should be only one
row for each product number.

To that end, SQL allows you to define constraints on columns and tables. Constraints give you as
much control over the data in your tables as you wish. If a user attempts to store data in a column
that would violate a constraint, an error is raised. This applies even if the value came from the default
value definition.

Check Constraints

A check congtraint is the most generic constraint type. It allows you to specify that the value in
a certain column must satisfy a Boolean (truth-value) expression. For instance, to require positive
product prices, you could use:

CREATE TABLE products (
product _no i nteger,
name text,
price nuneric CHECK (price > 0)

)

As you see, the constraint definition comes after the data type, just like default value definitions.
Default values and constraints can be listed in any order. A check constraint consists of the key word
CHECK followed by an expression in parentheses. The check constraint expression should involve the
column thus constrained, otherwise the constraint would not make too much sense.

Y ou can also give the constraint a separate name. This clarifies error messages and allowsyou to refer
to the constraint when you need to change it. The syntax is:

CREATE TABLE products (
product _no i nteger,
name text,
price numeri c CONSTRAI NT positive price CHECK (price > 0)

60

Data Definition

)

So, to specify anamed constraint, use the key word CONSTRAI NT followed by an identifier followed
by the constraint definition. (If you don't specify a constraint name in this way, the system chooses
anamefor you.)

A check constraint can also refer to several columns. Say you store a regular price and a discounted
price, and you want to ensure that the discounted price is lower than the regular price:

CREATE TABLE products (
product _no i nteger,
name text,
price numeric CHECK (price > 0),
di scounted_price nunmeric CHECK (discounted price > 0),
CHECK (price > discounted price)

)

The first two constraints should look familiar. The third one uses a new syntax. It is not attached to a
particular column, instead it appears as a separate item in the commarseparated column list. Column
definitions and these constraint definitions can be listed in mixed order.

We say that thefirst two constraints are column constraints, whereas the third one isatable constraint
becauseit iswritten separately from any one column definition. Column constraints can a so bewritten
astable constraints, whilethereverseisnot necessarily possible, since acolumn constraint is supposed
to refer to only the column it is attached to. (PostgreSQL doesn't enforce that rule, but you should
follow it if you want your table definitions to work with other database systems.) The above example
could also be written as:

CREATE TABLE products (
product _no i nteger,
name text,
price nuneric,
CHECK (price > 0),
di scounted _price numeric,
CHECK (di scounted _price > 0),
CHECK (price > discounted price)

or even:

CREATE TABLE products (
product _no i nteger,
name text,
price nuneric CHECK (price > 0),
di scounted_price nuneric,
CHECK (di scounted_price > 0 AND price > discounted_price)

)
It's a matter of taste.

Names can be assigned to table constraints in the same way as column constraints:

CREATE TABLE products (
product _no i nteger,
name text,
price nuneric,

61

Data Definition

)

CHECK (price > 0),

di scounted_price nuneric,

CHECK (di scounted_price > 0),

CONSTRAI NT val i d_di scount CHECK (price > discounted_price)

It should be noted that a check constraint is satisfied if the check expression evaluates to true or the
null value. Since most expressions will evaluate to the null value if any operand is null, they will not
prevent null values in the constrained columns. To ensure that a column does not contain null values,
the not-null constraint described in the next section can be used.

Note

PostgreSQL does not support CHECK constraints that reference table data other than the new
or updated row being checked. While a CHECK constraint that violates this rule may appear
to work in simple tests, it cannot guarantee that the database will not reach a state in which
the constraint condition isfalse (due to subsequent changes of the other row(s) involved). This
would cause a database dump and reload to fail. The reload could fail even when the compl ete
database state is consistent with the constraint, due to rows not being loaded in an order that
will satisfy the constraint. If possible, use UNI QUE, EXCLUDE, or FOREI GN KEY constraints
to express cross-row and cross-table restrictions.

If what you desire is a one-time check against other rows at row insertion, rather than a
continuously-maintained consistency guarantee, a custom trigger can be used to implement
that. (This approach avoids the dump/reload problem because pg_dump does not reinstall
triggersuntil after rel oading data, so that the check will not be enforced during adump/reload.)

Note

PostgreSQL assumes that CHECK constraints' conditions are immutable, that is, they will
alwaysgivethe sameresult for the sameinput row. Thisassumptioniswhat justifies examining
CHECK constraints only when rows are inserted or updated, and not at other times. (The
warning above about not referencing other table dataisreally aspecial case of thisrestriction.)

An example of acommon way to break this assumption isto reference a user-defined function
in a CHECK expression, and then change the behavior of that function. PostgreSQL does not
disallow that, but it will not notice if there are rows in the table that now violate the CHECK
constraint. That would cause a subsequent database dump and rel oad to fail. The recommended
way to handle such a change is to drop the constraint (using ALTER TABLE), adjust the
function definition, and re-add the constraint, thereby rechecking it against al table rows.

5.3.2. Not-Null Constraints

A not-null constraint simply specifiesthat acolumn must not assumethe null value. A syntax example:

CREATE TABLE products (

)

product _no i nteger NOT NULL,
name text NOT NULL,
price nuneric

A not-null constraint is always written as a column constraint. A not-null constraint is functionally
equivalent to creating a check constraint CHECK (col um_name 1S NOT NULL), but in

62

Data Definition

5.3.3.

PostgreSQL creating an explicit not-null constraint is more efficient. The drawback is that you cannot
give explicit names to not-null constraints created this way.

Of course, acolumn can have more than one constraint. Just write the constraints one after another:

CREATE TABLE products (
product _no i nteger NOT NULL,
name text NOT NULL,
price numeric NOT NULL CHECK (price > 0)

)
The order doesn't matter. It does not necessarily determine in which order the constraints are checked.

The NOT NULL constraint has an inverse: the NULL constraint. This does not mean that the column
must be null, which would surely be useless. Instead, this simply selects the default behavior that the
column might be null. The NULL constraint is not present in the SQL standard and should not be used
in portable applications. (It was only added to PostgreSQL to be compeatible with some other database
systems.) Some users, however, like it because it makesit easy to toggle the constraint in a script file.
For example, you could start with:

CREATE TABLE products (
product _no integer NULL,
name text NULL,
price nuneric NULL

)

and then insert the NOT key word where desired.

Tip

In most database designs the majority of columns should be marked not null.

Unique Constraints

Unique constraints ensure that the data contained in acolumn, or agroup of columns, is unique among
all therowsin the table. The syntax is:

CREATE TABLE products (
product _no i nteger UN QUE,
name text,
price nuneric

)

when written as a column constraint, and:

CREATE TABLE products (
product _no i nteger,
name text,
price nuneric,

UNI QUE (product _no)

)

when written as a table constraint.

63

Data Definition

5.3.4.

To define a unique constraint for a group of columns, write it as a table constraint with the column
names separated by commeas:

CREATE TABLE exanpl e (

a i nteger,
b integer,
c integer,

UNI QUE (a, c¢)
)

This specifiesthat the combination of valuesin theindicated columnsis unique acrossthe wholetable,
though any one of the columns need not be (and ordinarily isn't) unique.

Y ou can assign your own name for a unique constraint, in the usual way:

CREATE TABLE products (
product _no i nteger CONSTRAINT nust be different UN QUE
name text,
price numeric

)

Adding a unique constraint will automatically create a unique B-tree index on the column or group of
columns listed in the constraint. A uniqueness restriction covering only some rows cannot be written
asaunique constraint, but it is possible to enforce such arestriction by creating a unique partial index.

In general, aunique constraint isviolated if thereis more than one row in the table where the values of
all of the columnsincluded in the constraint are equal. However, two null values are never considered
equal in this comparison. That means even in the presence of a unique constraint it is possible to
store duplicate rowsthat contain anull valuein at least one of the constrained columns. This behavior
conformsto the SQL standard, but we have heard that other SQL databases might not follow thisrule.
So be careful when devel oping applications that are intended to be portable.

Primary Keys

A primary key constraint indicates that a column, or group of columns, can be used as a unique
identifier for rows in the table. This requires that the values be both unique and not null. So, the
following two table definitions accept the same data:

CREATE TABLE products (
product _no i nteger UN QUE NOT NULL,
name text,
price numeric

)

CREATE TABLE products (
product_no integer PRI MARY KEY,
name text,
price numeric

)

Primary keys can span more than one column; the syntax is similar to unique constraints:

CREATE TABLE exanpl e (

Data Definition

5.3.5.

a integer,
b integer,
c integer,

PRI MARY KEY (a, c)
)

Adding a primary key will automatically create a unique B-tree index on the column or group of
columns listed in the primary key, and will force the column(s) to be marked NOT NULL.

A tablecan have at most one primary key. (There can beany number of unique and not-null constraints,
which are functionally almost the same thing, but only one can be identified as the primary key.)
Relational database theory dictatesthat every table must have aprimary key. Thisruleis not enforced
by PostgreSQL, but it is usually best to follow it.

Primary keys are useful both for documentation purposes and for client applications. For example, a
GUI application that allows modifying row values probably needs to know the primary key of atable
to be able to identify rows uniquely. There are also various ways in which the database system makes
use of aprimary key if one has been declared; for example, the primary key defines the default target
column(s) for foreign keysreferencing its table.

Foreign Keys

A foreign key constraint specifies that the valuesin a column (or agroup of columns) must match the
values appearing in somerow of another table. We say this maintainsthe referential integrity between
two related tables.

Say you have the product table that we have used several times already:

CREATE TABLE products (
product _no integer PRI MARY KEY,
name text,
price nuneric

)

L et's also assume you have atable storing orders of those products. We want to ensure that the orders
table only contains orders of products that actually exist. So we define aforeign key constraint in the
orders table that references the products table:

CREATE TABLE orders (
order _id integer PRI MARY KEY,
product _no i nteger REFERENCES products (product_no),
guantity integer

)

Now it is impossible to create orders with non-NULL pr oduct _no entries that do not appear in
the products table.

We say that in this situation the orders table is the referencing table and the products table is the
referenced table. Similarly, there are referencing and referenced columns.

Y ou can a'so shorten the above command to:

CREATE TABLE orders (
order _id integer PRI MARY KEY,
product _no i nteger REFERENCES products,
qguantity integer

65

Data Definition

)

because in absence of a column list the primary key of the referenced table is used as the referenced
column(s).

Y ou can assign your own name for aforeign key constraint, in the usual way.

A foreign key can al so constrain and reference agroup of columns. Asusual, it then needsto bewritten
in table constraint form. Here is a contrived syntax example:

CREATE TABLE t1 (

a integer PRI MARY KEY,

b integer,

c integer,

FOREI GN KEY (b, c) REFERENCES other_table (cl, c2)
)

Of course, the number and type of the constrained columns need to match the number and type of
the referenced columns.

Sometimes it is useful for the “other table” of aforeign key constraint to be the same table; thisis
called a self-referential foreign key. For example, if you want rows of a table to represent nodes of
atree structure, you could write

CREATE TABLE tree (
node_i d i nteger PRI MARY KEY,
parent _id integer REFERENCES tree,
name text,

)

A top-level node would have NULL par ent _i d, but non-NULL par ent i d entries would be
constrained to reference valid rows of the table.

A table can have more than one foreign key constraint. This is used to implement many-to-many
relationships between tables. Say you have tables about products and orders, but now you want to
allow one order to contain possibly many products (which the structure above did not allow). You
could use this table structure:

CREATE TABLE products (
product no integer PRI MARY KEY,
name text,
price nunmeric

)

CREATE TABLE orders (
order _id integer PRI MARY KEY,
shi ppi ng_addr ess text,

)

CREATE TABLE order _itens (
product _no i nteger REFERENCES products,
order id integer REFERENCES orders,
qguantity integer,
PRI MARY KEY (product_no, order _id)

66

Data Definition

)
Notice that the primary key overlaps with the foreign keysin the last table.

Weknow that the foreign keys disallow creation of ordersthat do not relate to any products. But what
if aproduct is removed after an order is created that referencesit? SQL allows you to handle that as
well. Intuitively, we have afew options:

» Disallow deleting a referenced product
* Delete the orders aswell
» Something else?

To illustrate this, let's implement the following policy on the many-to-many relationship example
above: when someone wants to remove a product that is still referenced by an order (via
order _itens), wedisalow it. If someone removes an order, the order items are removed as well:

CREATE TABLE products (
product _no integer PRI MARY KEY,
name text,
price nuneric

)

CREATE TABLE orders (
order _id integer PRI MARY KEY,
shi ppi ng_addr ess text,

)

CREATE TABLE order _itens (
product _no i nteger REFERENCES products ON DELETE RESTRI CT,
order id integer REFERENCES orders ON DELETE CASCADE,
qguantity integer,
PRI MARY KEY (product_no, order _id)

)

Restricting and cascading del etes are the two most common options. RESTRI CT prevents del etion of
areferenced row. NO ACTI ON means that if any referencing rows still exist when the constraint is
checked, an error is raised; thisis the default behavior if you do not specify anything. (The essential
difference between these two choicesisthat NO ACTI ON allows the check to be deferred until later
in the transaction, whereas RESTRI CT does not.) CASCADE specifies that when a referenced row is
deleted, row(s) referencing it should be automatically deleted as well. There are two other options:
SET NULL and SET DEFAULT. These cause the referencing column(s) in the referencing row(s) to
be set to nulls or their default values, respectively, when the referenced row is deleted. Note that these
do not excuse you from observing any constraints. For example, if an action specifiesSET DEFAULT
but the default value would not satisfy the foreign key constraint, the operation will fail.

Analogousto ON DELETE thereisalso ON UPDATE which isinvoked when areferenced columnis
changed (updated). The possible actions are the same. In this case, CASCADE means that the updated
values of the referenced column(s) should be copied into the referencing row(s).

Normally, a referencing row need not satisfy the foreign key constraint if any of its referencing
columnsarenull. If MATCH FULL isadded to the foreign key declaration, areferencing row escapes
satisfying the constraint only if al its referencing columns are null (so a mix of null and non-null
valuesis guaranteed to fail aMATCH FULL constraint). If you don't want referencing rows to be able
to avoid satisfying the foreign key constraint, declare the referencing column(s) as NOT NULL.

A foreign key must reference columns that either are a primary key or form a unique constraint. This
meansthat the referenced columns always have anindex (the one underlying the primary key or unique

67

Data Definition

5.3.6.

constraint); so checks on whether a referencing row has a match will be efficient. Since a DELETE
of arow from the referenced table or an UPDATE of a referenced column will require a scan of the
referencing table for rows matching the old value, it is often a good idea to index the referencing
columns too. Because this is not always needed, and there are many choices available on how to
index, declaration of aforeign key constraint does not automatically create an index on thereferencing
columns.

More information about updating and deleting dataisin Chapter 6. Also see the description of foreign
key constraint syntax in the reference documentation for CREATE TABLE.

Exclusion Constraints

Exclusion constraintsensurethat if any two rowsare compared on the specified columnsor expressions
using the specified operators, at least one of these operator comparisons will return false or null. The
syntax is:

CREATE TABLE circles (
c circle,
EXCLUDE USI NG gist (c WTH &&)

)
See also CREATE TABLE ... CONSTRAINT ... EXCLUDE for details.

Adding an exclusion constraint will automatically create anindex of thetype specifiedin the constraint
declaration.

5.4. System Columns

Every table has severa system columns that are implicitly defined by the system. Therefore, these
names cannot be used as names of user-defined columns. (Note that these restrictions are separate from
whether the nameisakey word or not; quoting anamewill not allow you to escape these restrictions.)
Y ou do not really need to be concerned about these columns; just know they exist.

oid

The object identifier (object 1D) of arow. This column is only present if the table was created
using W TH Q DS, or if the default_with_oids configuration variable was set at the time. This
column is of type oi d (same name as the column); see Section 8.19 for more information about
the type.

t abl eoi d

The OID of thetable containing thisrow. Thiscolumnis particularly handy for queriesthat select
frominheritance hierarchies (see Section 5.9), sincewithout it, it'sdifficult totell which individual
table a row came from. The t abl eoi d can be joined against the oi d column of pg_cl ass
to obtain the table name.

Xxm n

Theidentity (transaction ID) of theinserting transaction for thisrow version. (A row versionisan
individual state of arow; each update of arow createsanew row version for the samelogical row.)

cmin
The command identifier (starting at zero) within the inserting transaction.

Xmax

68

Data Definition

Theidentity (transaction ID) of the deleting transaction, or zero for an undeleted row version. It
is possible for this column to be nonzero in avisible row version. That usually indicates that the
deleting transaction hasn't committed yet, or that an attempted del etion was rolled back.

cmax
The command identifier within the deleting transaction, or zero.
ctid

The physical location of the row version within its table. Note that although the ct i d can be
used to locate the row version very quickly, arow'sct i d will changeif it is updated or moved
by VACUUM FULL. Thereforect i d is useless as along-term row identifier. The OID, or even
better a user-defined serial number, should be used to identify logical rows.

OlDsare 32-hit quantities and are assigned from asingle cluster-wide counter. In alarge or long-lived
database, it is possible for the counter to wrap around. Hence, it is bad practice to assume that OIDs
are unique, unless you take steps to ensure that this is the case. If you need to identify the rows in
atable, using a sequence generator is strongly recommended. However, OIDs can be used as well,
provided that afew additional precautions are taken:

A unique constraint should be created on the OID column of each table for which the OID will be
used to identify rows. When such aunique constraint (or unique index) exists, the system takes care
not to generate an OID matching an aready-existing row. (Of course, this is only possible if the
table contains fewer than 2% (4 billion) rows, and in practice the table size had better be much less
than that, or performance might suffer.)

» OIDs should never be assumed to be unique across tables; use the combination of t abl eoi d and
row OID if you need a database-wide identifier.

» Of course, the tables in question must be created W TH O DS. As of PostgreSQL 8.1, W THOUT
QO DS isthe default.

Transaction identifiers are also 32-bit quantities. In along-lived database it is possible for transaction
IDs to wrap around. This is not a fatal problem given appropriate maintenance procedures; see
Chapter 24 for details. It is unwise, however, to depend on the uniqueness of transaction IDs over the
long term (more than one billion transactions).

Command identifiers are also 32-bit quantities. This creates a hard limit of 2% (4 hillion) SQL
commandswithin asingletransaction. In practice thislimit is not a problem — notethat thelimitison
the number of SQL commands, not the number of rows processed. Also, only commandsthat actually
modify the database contents will consume a command identifier.

5.5. Modifying Tables

When you create atable and you realize that you made amistake, or the requirements of the application
change, you can drop the table and create it again. But thisis not a convenient option if the table is
already filled with data, or if thetableisreferenced by other database objects (for instance aforeign key
constraint). Therefore PostgreSQL provides afamily of commands to make modifications to existing
tables. Note that thisis conceptually distinct from altering the data contained in the table: here we are
interested in altering the definition, or structure, of the table.

You can:

* Add columns

* Remove columns

» Add constraints

* Remove constraints

e Change default values

» Change column data types

69

Data Definition

5.5.1.

5.5.2.

5.5.3.

* Rename columns
* Rename tables

All these actions are performed using the ALTER TABLE command, whose reference page contains
details beyond those given here.

Adding a Column

To add a column, use acommand like:

ALTER TABLE products ADD COLUWN descri ption text;

The new column isinitially filled with whatever default value is given (null if you don't specify a
DEFAULT clause).

Tip

From PostgreSQL 11, adding a column with a constant default value no longer means that
each row of the table needs to be updated when the ALTER TABLE statement is executed.
Instead, the default value will be returned the next time the row is accessed, and applied when
the tableis rewritten, making the ALTER TABLE very fast even on large tables.

However, if the default value is volatile (e.g., cl ock_ti mest anp()) each row will need
to be updated with the value calculated at the time ALTER TABLE is executed. To avoid a
potentially lengthy update operation, particularly if you intend to fill the column with mostly
nondefault values anyway, it may be preferable to add the column with no default, insert the
correct values using UPDATE, and then add any desired default as described below.

Y ou can a'so define constraints on the column at the same time, using the usual syntax:

ALTER TABLE products ADD COLUMWN description text CHECK (description
< '');

Infact all the optionsthat can be applied to acolumn descriptionin CREATE TABLE can be used here.
Keep in mind however that the default value must satisfy the given constraints, or the ADD will fail.
Alternatively, you can add constraints | ater (see below) after you'vefilled inthe new column correctly.

Removing a Column

To remove a column, use acommand like:

ALTER TABLE products DROP COLUWN descri ption;

Whatever datawasin the column disappears. Table constraintsinvolving the column are dropped, too.
However, if the column is referenced by a foreign key constraint of another table, PostgreSQL will
not silently drop that constraint. Y ou can authorize dropping everything that depends on the column
by adding CASCADE:

ALTER TABLE products DROP COLUWN descri ption CASCADE;

See Section 5.13 for a description of the general mechanism behind this,

Adding a Constraint

70

Data Definition

5.5.4.

5.5.5.

5.5.6.

To add a constraint, the table constraint syntax is used. For example:

ALTER TABLE products ADD CHECK (nane <> '');

ALTER TABLE products ADD CONSTRAI NT sone_name UN QUE (product_no);

ALTER TABLE products ADD FOREI GN KEY (product _group_i d) REFERENCES
product _groups;

To add a not-null constraint, which cannot be written as a table constraint, use this syntax:

ALTER TABLE products ALTER COLUWN product _no SET NOT NULL;

The constraint will be checked immediately, so the table data must satisfy the constraint before it can
be added.

Removing a Constraint

To removeaconstraint you need to know itsname. If you gaveit anamethen that's easy. Otherwisethe
system assigned a generated name, which you need to find out. The psgl command\ d t abl enane
can be helpful here; other interfaces might also provide a way to inspect table details. Then the
command is:

ALTER TABLE products DROP CONSTRAI NT sone_nane;

(If you are dealing with a generated constraint name like $2, don't forget that you'll need to double-
quoteit to makeit avalid identifier.)

Aswith dropping acolumn, you need to add CASCADE if you want to drop a constraint that something
else depends on. An example is that a foreign key constraint depends on a unique or primary key
constraint on the referenced column(s).

This works the same for all constraint types except not-null constraints. To drop anot null constraint
use:

ALTER TABLE products ALTER COLUWN product no DROP NOT NULL;

(Recdll that not-null constraints do not have names.)

Changing a Column's Default Value

To set anew default for a column, use acommand like:

ALTER TABLE products ALTER COLUW price SET DEFAULT 7. 77,

Notethat thisdoesn't affect any existing rowsinthetable, it just changesthe default for futurel NSERT
commands.

To remove any default value, use:

ALTER TABLE products ALTER COLUWN price DROP DEFAULT;

This is effectively the same as setting the default to null. As a consequence, it is not an error to drop
a default where one hadn't been defined, because the default isimplicitly the null value.

Changing a Column's Data Type

71

Data Definition

5.5.7.

5.5.8.

To convert acolumn to a different data type, use acommand like:

ALTER TABLE products ALTER COLUWN price TYPE nuneric(10, 2);

This will succeed only if each existing entry in the column can be converted to the new type by an
implicit cast. If amore complex conversion is heeded, you can add a USI NG clause that specifies how
to compute the new values from the old.

PostgreSQL will attempt to convert the column's default value (if any) to the new type, as well as
any constraintsthat involve the column. But these conversions might fail, or might produce surprising
results. It's often best to drop any constraints on the column before altering its type, and then add back
suitably modified constraints afterwards.

Renaming a Column

To rename a column:

ALTER TABLE products RENAME COLUWN product _no TO product _numnber;

Renaming a Table

To rename atable:

ALTER TABLE products RENAMVE TO iternmns;

5.6. Privileges

When an object is created, it is assigned an owner. The owner is normally the role that executed the
creation statement. For most kinds of objects, the initial state is that only the owner (or a superuser)
can do anything with the object. To alow other rolesto useiit, privileges must be granted.

There are different kinds of privileges. SELECT, | NSERT, UPDATE, DELETE, TRUNCATE,
REFERENCES, TRI GGER, CREATE, CONNECT, TEMPORARY, EXECUTE, and USAGE. The
privileges applicable to a particular object vary depending on the object’s type (table, function, etc).
For complete information on the different types of privileges supported by PostgreSQL, refer to the
GRANT reference page. The following sections and chapters will aso show you how those privileges
are used.

Theright to modify or destroy an object is always the privilege of the owner only.

An object can be assigned to a new owner with an ALTER command of the appropriate kind for the
object, e.g., ALTER TABLE. Superusers can always do this; ordinary roles can only do it if they
are both the current owner of the object (or a member of the owning role) and a member of the new
owning role.

To assign privileges, the GRANT command is used. For example, if | oe is an existing role, and
account s isan existing table, the privilege to update the table can be granted with:

GRANT UPDATE ON accounts TO j oe;

Writing ALL in place of a specific privilege grants all privileges that are relevant for the object type.

The specia “role’ name PUBLI C can be used to grant a privilege to every role on the system. Also,
“group” roles can be set up to help manage privileges when there are many users of a database —
for details see Chapter 21.

72

Data Definition

To revoke aprivilege, use the fittingly named REVOKE command:

REVOKE ALL ON accounts FROM PUBLI C;

The special privileges of the object owner (i.e., the right to do DROP, GRANT, REVCKE, etc.) are
alwaysimplicit in being the owner, and cannot be granted or revoked. But the object owner can choose
to revoke their own ordinary privileges, for example to make a table read-only for themselves as well
as others.

Ordinarily, only the object's owner (or a superuser) can grant or revoke privileges on an object.
However, it is possible to grant a privilege “with grant option”, which gives the recipient the right to
grantitinturnto others. If the grant option is subsequently revoked then all who received the privilege
from that recipient (directly or through a chain of grants) will lose the privilege. For details see the
GRANT and REV OKE reference pages.

5.7. Row Security Policies

In addition to the SQL-standard privilege system available through GRANT, tables can have row
security policies that restrict, on a per-user basis, which rows can be returned by normal queries or
inserted, updated, or deleted by data modification commands. Thisfeatureisalso known as Row-Level
Security. By default, tables do not have any policies, so that if a user has access privileges to atable
according to the SQL privilege system, all rowswithinit areequally availablefor querying or updating.

When row security is enabled on a table (with ALTER TABLE ... ENABLE ROW LEVEL
SECURITY), all normal accessto the table for selecting rows or modifying rows must be allowed by
arow security policy. (However, the table's owner istypically not subject to row security policies.) If
no policy exists for the table, a default-deny policy is used, meaning that no rows are visible or can
be modified. Operations that apply to the whole table, such as TRUNCATE and REFERENCES, are
not subject to row security.

Row security policies can be specific to commands, or to roles, or to both. A policy can be specified
to apply to ALL commands, or to SELECT, | NSERT, UPDATE, or DELETE. Multiple roles can be
assigned to agiven policy, and normal role membership and inheritance rules apply.

To specify which rows are visible or modifiable according to a policy, an expression is required that
returns a Boolean result. This expression will be evaluated for each row prior to any conditions or
functions coming from the user's query. (The only exceptionsto thisruleare | eakpr oof functions,
which are guaranteed to not leak information; the optimizer may choose to apply such functions ahead
of the row-security check.) Rowsfor which the expression doesnot returnt r ue will not be processed.
Separate expressions may be specified to provide independent control over the rowswhich are visible
and the rows which are allowed to be modified. Policy expressions are run as part of the query and
with the privileges of the user running the query, although security-definer functions can be used to
access data not available to the calling user.

Superusers and roles with the BYPASSRLS attribute always bypass the row security system when
accessing atable. Table ownersnormally bypass row security aswell, though atable owner can choose
to be subject to row security with ALTER TABLE ... FORCE ROW LEVEL SECURITY.

Enabling and disabling row security, as well as adding policies to atable, is aways the privilege of
the table owner only.

Policies are created using the CREATE POLICY command, atered using the ALTER POLICY
command, and dropped using the DROP POLICY command. To enable and disable row security for
agiven table, usethe ALTER TABLE command.

Each policy has aname and multiple policies can be defined for atable. As policies are table-specific,
each policy for atable must have a unique name. Different tables may have policies with the same
name.

73

Data Definition

When multiple policies apply to a given query, they are combined using either OR (for permissive
policies, which are the default) or using AND (for restrictive policies). Thisissimilar to therulethat a
given role has the privileges of al roles that they are amember of. Permissive vs. restrictive policies
are discussed further below.

Asasimple example, hereishow to create apolicy ontheaccount relation to allow only members
of the manager s role to access rows, and only rows of their accounts:

CREATE TABLE accounts (nanager text, conpany text, contact_emil
text);

ALTER TABLE accounts ENABLE ROW LEVEL SECURITY,

CREATE POLI CY account _nanagers ON accounts TO managers
USI NG (manager = current _user);

The policy above implicitly providesaW TH CHECK clause identical to its USI NG clause, so that
the constraint applies both to rows selected by a command (so a manager cannot SELECT, UPDATE,
or DELETE existing rows belonging to a different manager) and to rows modified by a command (so
rows belonging to a different manager cannot be created vial NSERT or UPDATE).

If no role is specified, or the special user name PUBLI Cis used, then the policy appliesto all users
on the system. To allow all users to access only their own row in a user s table, a simple policy
can be used:

CREATE POLI CY user _policy ON users
USI NG (user_name = current_user);

Thisworks similarly to the previous example.

To use a different policy for rows that are being added to the table compared to those rows that are
visible, multiple policies can be combined. This pair of policieswould allow all usersto view all rows
intheuser s table, but only modify their own:

CREATE PCLI CY user _sel _policy ON users
FOR SELECT
USI NG (true);

CREATE PCLI CY user _nmod_policy ON users
USI NG (user_name = current_user);

In a SELECT command, these two policies are combined using OR, with the net effect being that all
rows can be selected. In other command types, only the second policy applies, so that the effects are
the same as before.

Row security can also be disabled with the ALTER TABLE command. Disabling row security does
not remove any policies that are defined on the table; they are simply ignored. Then all rows in the
table are visible and modifiable, subject to the standard SQL privileges system.

Below is a larger example of how this feature can be used in production environments. The table
passwd emulates a Unix password file:

-- Sinple passwd-file based exanpl e
CREATE TABLE passwd (

user _nane text UNI QUE NOT NULL,
pwhash t ext,
ui d int PRI MARY KEY,

74

Data Definition

gid int NOT NULL,
real nane text NOT NULL,
hone_phone t ext,
extra_info t ext,
home_dir text NOT NULL,
shel | t ext NOT NULL
)
CREATE ROLE adnmin; -- Admnistrator
CREATE ROLE bob; -- Normal user
CREATE ROLE alice; -- Normal user

-- Popul ate the table
| NSERT | NTO passwd VALUES
(*admn','xxx',0,0," Adm n',"'111-222-3333"' ,null,"'/root',"'/bin/
dash');
| NSERT | NTO passwd VALUES
("bob','xxx"',1,1,"Bob',"' 123-456-7890', null,"'/honme/bob',"/bin/
zsh');
| NSERT | NTO passwd VALUES
("alice',"xxx"',2,1,"Alice','098-765-4321" ,null,'/hone/alice' "'/
bi n/ zsh');

-- Be sure to enable row | evel security on the table
ALTER TABLE passwd ENABLE ROW LEVEL SECURI TY;

-- Create policies
-- Adm nistrator can see all rows and add any rows
CREATE PCLI CY admin_all ON passwd TO admin USING (true) WTH CHECK
(true);
-- Nornmal users can view all rows
CREATE POLI CY al | _view ON passwd FOR SELECT USI NG (true);
-- Normal users can update their own records, but
-- limt which shells a normal user is allowed to set
CREATE PCLI CY user _nmod ON passwd FOR UPDATE
USI NG (current _user = user_nane)
W TH CHECK (
current _user = user_nanme AND
shell IN ('/bin/bash','/bin/sh','/bin/dash','/bin/zsh',"'/bin/
tcsh')

)

-- Allow admin all normal rights
GRANT SELECT, | NSERT, UPDATE, DELETE ON passwd TO admi n;
-- Users only get select access on public col ums
GRANT SELECT
(user_name, uid, gid, real_name, honme_phone, extra_info,
hone_dir, shell)
ON passwd TO public;
-- Allow users to update certain col ums
GRANT UPDATE
(pwhash, real name, home_phone, extra_info, shell)
ON passwd TO public;

Aswith any security settings, it'simportant to test and ensure that the system is behaving as expected.
Using the example above, this demonstrates that the permission system is working properly.

75

Data Definition

-- admin can view all rows and fields
post gres=> set role adm n;

SET
post gres=> t abl e passwd;
user_nane | pwhash | uid | gid | real _name | home_phone
extra_info | home_dir | shel
----------- T T T I ppup R
o m e o - - o m e e e oo - T ——
adm n | xxx | 0 | 0| Admn | 111-222-3333
| /root | /bin/dash
bob | xxx | 1] 1| Bob | 123-456-7890
| /hone/ bob | /bin/zsh
alice | xxx | 2| 1| Aice | 098-765-4321
| /hone/alice | /bin/zsh
(3 rows)

-- Test what Alice is able to do
postgres=> set role alice;
SET
post gres=> t abl e passwd;
ERROR: permi ssion denied for relation passwd
post gres=> sel ect
user _nane, real _name, home_phone, extra_i nfo, hone_dir, shel |l from

passwd;

user_nane | real _name | honme_phone | extra_info | hone_dir |

shel |
----------- Ty
.

adm n | Admin | 111-222-3333 | | /root

| /bin/dash

bob | Bob | 123-456-7890 | | /hone/ bob

| /bin/zsh

alice | Alice | 098-765-4321 | | /hone/alice
| /bin/zsh
(3 rows)
post gr es=> update passwd set user_nane = 'joe'

ERROR: permi ssion denied for relation passwd
-- Alice is allowed to change her own real nanme, but no others

post gr es=> update passwd set real _nane = 'Alice Doe';

UPDATE 1

post gres=> update passwd set real _nane = 'John Doe' where user_nane
= "admin';

UPDATE 0

post gr es=> update passwd set shell = '/bin/xx";

ERROR: new row vi ol ates WTH CHECK OPTION for "passwd”

post gres=> del ete from passwd;

ERROR: permi ssion denied for relation passwd

postgres=> insert into passwd (user_nane) values ('xxx');

ERROR: permi ssion denied for relation passwd

-- Alice can change her own password; RLS silently prevents
updati ng ot her rows

post gr es=> updat e passwd set pwhash = 'abc’
UPDATE 1

All of the policies constructed thus far have been permissive policies, meaning that when multiple
policies are applied they are combined using the “OR” Boolean operator. While permissive policies
can be constructed to only allow access to rows in the intended cases, it can be simpler to combine

76

Data Definition

permissive policies with restrictive policies (which the records must pass and which are combined
using the “AND” Boolean operator). Building on the example above, we add a restrictive policy to
requirethe administrator to be connected over alocal Unix socket to accesstherecords of thepasswd
table:

CREATE PCLI CY admin_local _only ON passwd AS RESTRI CTI VE TO admi n
USI NG (pg_catal og.inet_client_addr() IS NULL);

We can then see that an administrator connecting over a network will not see any records, due to the
restrictive policy:

=> SELECT current _user;
current _user

=> sel ect inet_client_addr();
i net _client_addr

127.0.0.1
(1 row)

=> SELECT current _user;
current _user

=> TABLE passwd;
user_nane | pwhash | uid | gid | real _nane | hone_phone |
extra_info | hone_dir | shell

=> UPDATE passwd set pwhash = NULL;
UPDATE 0

Referential integrity checks, such as unique or primary key constraints and foreign key references,
always bypass row security to ensure that data integrity is maintained. Care must be taken when
developing schemas and row level policies to avoid “covert channel” leaks of information through
such referential integrity checks.

In some contexts it isimportant to be sure that row security is not being applied. For example, when
taking a backup, it could be disastrous if row security silently caused some rows to be omitted from
the backup. In such a situation, you can set the row_security configuration parameter to of f . This
does not in itself bypass row security; what it does is throw an error if any query's results would get
filtered by a policy. The reason for the error can then be investigated and fixed.

Inthe examplesabove, the policy expressionsconsider only the current valuesin therow to be accessed
or updated. This is the simplest and best-performing case; when possible, it's best to design row
security applications to work thisway. If it is necessary to consult other rows or other tables to make
apolicy decision, that can be accomplished using sub-SELECTS, or functions that contain SELECTS,
in the policy expressions. Be aware however that such accesses can create race conditions that could
alow information leakage if care is not taken. As an example, consider the following table design:

77

Data Definition

-- definition of privilege groups
CREATE TABLE groups (group_id int PRI MARY KEY,
group_name text NOT NULL);

I NSERT | NTO gr oups VALUES

(1, "low),
(2, 'medium),
(5, "high");
GRANT ALL ON groups TO alice; -- alice is the administrator

GRANT SELECT ON groups TO public;

-- definition of users' privilege |levels
CREATE TABLE users (user_nane text PRI MARY KEY,
group_id int NOT NULL REFERENCES groups);

| NSERT | NTO users VALUES
("alice', 5),
(" bob', 2),
("mallory', 2);

GRANT ALL ON users TO alice;
GRANT SELECT ON users TO public;

-- table holding the information to be protected
CREATE TABLE information (info text
group_id int NOT NULL REFERENCES groups);

I NSERT | NTO i nf or mati on VALUES
('barely secret', 1),
("slightly secret', 2),
('very secret', 5);

ALTER TABLE i nf ormati on ENABLE ROW LEVEL SECURI TY;

-- a row shoul d be visible to/updatable by users whose security
group_id is
-- greater than or equal to the row s group_id
CREATE PCLICY fp_s ONinformation FOR SELECT

USI NG (group_id <= (SELECT group_id FROM users WHERE user _nane
current _user));
CREATE POLICY fp_u ON information FOR UPDATE

USI NG (group_id <= (SELECT group_id FROM users WHERE user _nane
current _user));

-- we rely only on RLS to protect the information table
GRANT ALL ON i nformation TO public;

Now suppose that al i ce wishes to change the “dlightly secret” information, but decides that
mal | ory should not be trusted with the new content of that row, so she does:

BEG N;

UPDATE users SET group_id =
UPDATE i nformati on SET info
:2;

COW T;

1 WHERE user_nane = 'mallory’
= "secret frommallory' WHERE group_id

78

Data Definition

That looks safe; thereisno window whereinmal | or y should be ableto seethe secret from mallory”
string. However, there isarace condition here. If mal | or y is concurrently doing, say,

SELECT * FROM i nformati on WHERE group_id = 2 FOR UPDATE;

and her transactionisin READ COVM TTED mode, it is possiblefor her to see “ secret from mallory”.
That happens if her transaction reaches the i nf or mat i on row just after al i ce's does. It blocks
waiting for al i ce's transaction to commit, then fetches the updated row contents thanks to the
FOR UPDATE clause. However, it does not fetch an updated row for the implicit SELECT from
user s, because that sub-SELECT did not have FOR UPDATE; instead the user s row isread with
the snapshot taken at the start of the query. Therefore, the policy expression tests the old vaue of
mal | or y'sprivilege level and allows her to see the updated row.

Thereare severa ways around this problem. Onesimpleanswer istouse SELECT ... FOR SHARE
in sub-SELECTs in row security policies. However, that requires granting UPDATE privilege on the
referenced table (here user s) to the affected users, which might be undesirable. (But another row
security policy could be applied to prevent them from actually exercising that privilege; or the sub-
SELECT could be embedded into asecurity definer function.) Also, heavy concurrent use of row share
lockson thereferenced table could pose aperformance problem, especialy if updatesof it arefrequent.
Another solution, practical if updates of the referenced table are infrequent, is to take an ACCESS
EXCLUSI VE lock on thereferenced table when updating it, so that no concurrent transactions could be
examining old row values. Or one could just wait for all concurrent transactionsto end after committing
an update of the referenced table and before making changes that rely on the new security situation.

For additional details see CREATE POLICY and ALTER TABLE.

5.8. Schemas

A PostgreSQL database cluster contains one or more named databases. Roles and a few other object
types are shared across the entire cluster. A client connection to the server can only access datain a
single database, the one specified in the connection request.

Note

Users of acluster do not necessarily have the privilege to access every databasein the cluster.
Sharing of role names means that there cannot be different roles named, say, j oe in two
databases in the same cluster; but the system can be configured to allow j oe access to only
some of the databases.

A database contains one or more named schemas, which in turn contain tables. Schemas also contain
other kinds of named objects, including data types, functions, and operators. The same object name
can be used in different schemas without conflict; for example, both schemal and myschena can
containtablesnamed myt abl e. Unlike databases, schemasarenot rigidly separated: auser can access
objectsin any of the schemas in the database they are connected to, if they have privileges to do so.

There are several reasons why one might want to use schemas:
» Toalow many usersto use one database without interfering with each other.
» To organize database objectsinto logical groupsto make them more manageable.

» Third-party applications can be put into separate schemas so they do not collide with the names
of other objects.

Schemas are analogous to directories at the operating system level, except that schemas cannot be
nested.

79

Data Definition

5.8.1. Creating a Schema

To create a schema, use the CREATE SCHEMA command. Give the schema a name of your choice.
For example:

CREATE SCHEMA nyschenm;

To create or access objects in a schema, write a qualified name consisting of the schema name and
table name separated by a dot:

schenma. t abl e

This works anywhere a table name is expected, including the table modification commands and the
data access commands discussed in the following chapters. (For brevity we will speak of tables only,

but the same ideas apply to other kinds of named objects, such as types and functions.)

Actualy, the even more general syntax

dat abase. schenn. t abl e

can be used too, but at present thisis just for pro forma compliance with the SQL standard. If you
write a database name, it must be the same as the database you are connected to.

So to create atable in the new schema, use:

CREATE TABLE myschema. nyt abl e (

)

To drop aschemaif it'sempty (all objectsin it have been dropped), use:

DROP SCHENMA nyschens;

To drop a schemaincluding all contained objects, use:

DROP SCHEMA nyschena CASCADE;

See Section 5.13 for a description of the general mechanism behind this.

Often you will want to create a schema owned by someone el se (since thisis one of the waysto restrict
the activities of your users to well-defined namespaces). The syntax for that is:

CREATE SCHEMA schena_name AUTHORI ZATI ON user _nane;

Y ou can even omit the schema name, in which case the schema name will be the same as the user
name. See Section 5.8.6 for how this can be useful.

Schema names beginning with pg_ are reserved for system purposes and cannot be created by users.

5.8.2. The Public Schema

80

Data Definition

5.8.3.

In the previous sections we created tables without specifying any schema names. By default such
tables (and other objects) are automatically put into a schema named “public’. Every new database
contains such aschema. Thus, the following are equivalent:

CREATE TABLE products (...);
and:
CREATE TABLE public.products (...);

The Schema Search Path

Qualified names are tedious to write, and it's often best not to wire a particular schema name into
applications anyway. Therefore tables are often referred to by unqualified names, which consist of
just the table name. The system determines which table is meant by following a search path, whichis
alist of schemasto look in. The first matching table in the search path is taken to be the one wanted.
If thereis no match in the search path, an error is reported, even if matching table names exist in other
schemas in the database.

The ability to create like-named objects in different schemas complicates writing a query that
references precisely the same objects every time. It also opens up the potential for users to change
the behavior of other users' queries, maliciously or accidentally. Due to the prevalence of unqualified
names in queries and their use in PostgreSQL internals, adding a schema to sear ch_path
effectively trusts all users having CREATE privilege on that schema. When you run an ordinary query,
amalicious user able to create objects in a schema of your search path can take control and execute
arbitrary SQL functions as though you executed them.

The first schema named in the search path is called the current schema. Aside from being the first
schema searched, it is aso the schema in which new tables will be created if the CREATE TABLE
command does not specify a schema name.

To show the current search path, use the following command:

SHOW sear ch_pat h;

In the default setup this returns:

search_pat h

"$user", public

The first element specifies that a schema with the same name as the current user is to be searched.
If no such schema exists, the entry is ignored. The second element refers to the public schema that
we have seen already.

The first schema in the search path that exists is the default location for creating new objects. That
is the reason that by default objects are created in the public schema. When objects are referenced
in any other context without schema qualification (table modification, data modification, or query
commands) the search path is traversed until a matching object is found. Therefore, in the default
configuration, any unqualified access again can only refer to the public schema.

To put our new schemain the path, we use:

81

Data Definition

5.8.4.

5.8.5.

SET search_path TO nyschenm, publi c;

(We omit the $user here because we have no immediate need for it.) And then we can access the
table without schema qualification:

DROP TABLE nyt abl €;
Also, since nyschena isthefirst element in the path, new objects would by default be created in it.

We could also have written:

SET search_path TO nyschens;

Then we no longer have access to the public schema without explicit qualification. There is nothing
special about the public schema except that it exists by default. It can be dropped, too.

See also Section 9.25 for other ways to manipulate the schema search path.

The search path works in the same way for data type names, function names, and operator names as it
does for table names. Data type and function names can be qualified in exactly the same way astable
names. If you need to write a qualified operator name in an expression, there is a special provision:
you must write

OPERATOR(schenma. oper at or)

Thisis needed to avoid syntactic ambiguity. An exampleis:

SELECT 3 OPERATOR(pg_catal og. +) 4;

In practice one usually relies on the search path for operators, so as not to have to write anything so
ugly asthat.

Schemas and Privileges

By default, users cannot access any objects in schemas they do not own. To alow that, the owner of
the schema must grant the USAGE privilege on the schema. To allow users to make use of the objects
in the schema, additional privileges might need to be granted, as appropriate for the object.

A user can also be alowed to create objects in someone else's schema. To alow that, the CREATE
privilege on the schema needs to be granted. Note that by default, everyone has CREATE and USAGE
privileges on the schemapubl i c. Thisallows all usersthat are able to connect to a given database
to create objectsin itspubl i ¢ schema. Some usage patterns call for revoking that privilege:

REVOKE CREATE ON SCHEMA public FROM PUBLI C
(Thefirst “public” is the schema, the second “public” means “every user”. In the first sense it isan

identifier, in the second sense it is akey word, hence the different capitalization; recall the guidelines
from Section 4.1.1.)

The System Catalog Schema

In addition to public and user-created schemas, each database contains a pg_cat al og
schema, which contains the system tables and all the built-in data types, functions, and operators.
pg_cat al og is always effectively part of the search path. If it is not named explicitly in the path

82

Data Definition

5.8.6.

5.8.7.

thenitisimplicitly searched before searching the path's schemas. This ensuresthat built-in nameswill
always be findable. However, you can explicitly place pg_cat al og at the end of your search path
if you prefer to have user-defined names override built-in names.

Since system table names begin with pg_, it isbest to avoid such namesto ensure that you won't suffer
aconflict if somefuture version defines a system table named the same asyour table. (With the default
search path, an unqualified reference to your table name would then be resolved as the system table
instead.) System tables will continue to follow the convention of having names beginning with pg_,
so that they will not conflict with unqualified user-table names so long as users avoid the pg__ prefix.

Usage Patterns

Schemas can be used to organize your data in many ways. A secure schema usage pattern prevents
untrusted users from changing the behavior of other users queries. When a database does not use
a secure schema usage pattern, users wishing to securely query that database would take protective
action at the beginning of each session. Specificaly, they would begin each session by setting
sear ch_pat h to the empty string or otherwise removing non-superuser-writable schemas from
sear ch_pat h. There are afew usage patterns easily supported by the default configuration:

 Constrain ordinary usersto user-private schemas. To implement this, issue REVOKE CREATE ON
SCHEMA public FROM PUBLI C, and create a schema for each user with the same name as
that user. Recall that the default search path starts with $user , which resolves to the user name.
Therefore, if each user has a separate schema, they access their own schemas by default. After
adopting this pattern in a database where untrusted users had aready logged in, consider auditing
the public schemafor objects named like objectsin schemapg_cat al og. This pattern isasecure
schema usage pattern unless an untrusted user is the database owner or holds the CREATEROLE
privilege, in which case no secure schema usage pattern exists.

* Remove the public schema from the default search path, by modifying post gr esql . conf or
by issuing ALTER ROLE ALL SET search_path = "S$user". Everyone retains the
ability to create objects in the public schema, but only qualified names will choose those objects.
While qualified table references are fine, calls to functions in the public schema will be unsafe or
unreliable. If you create functions or extensions in the public schema, use the first pattern instead.
Otherwise, like the first pattern, this is secure unless an untrusted user is the database owner or
holds the CREATEROLE privilege.

» Keep the default. All users access the public schemaimplicitly. This simulates the situation where
schemas are not available at al, giving a smooth transition from the non-schema-aware world.
However, this is never a secure pattern. It is acceptable only when the database has a single user
or afew mutually-trusting users.

For any pattern, to install shared applications (tables to be used by everyone, additional functions
provided by third parties, etc.), put them into separate schemas. Remember to grant appropriate
privileges to alow the other users to access them. Users can then refer to these additional objects by
qualifying the names with a schema name, or they can put the additional schemas into their search
path, as they choose.

Portability

In the SQL standard, the notion of objects in the same schema being owned by different users does
not exist. Moreover, some implementations do not allow you to create schemas that have a different
name than their owner. In fact, the concepts of schema and user are nearly equivalent in a database
system that implements only the basi c schema support specified in the standard. Therefore, many users
consider qualified namesto really consist of user _name. t abl e_nane. Thisis how PostgreSQL
will effectively behave if you create a per-user schemafor every user.

Also, there is no concept of apubl i ¢ schemain the SQL standard. For maximum conformance to
the standard, you should not use the publ i ¢ schema.

83

Data Definition

Of course, some SQL database systems might not implement schemas at all, or provide namespace
support by alowing (possibly limited) cross-database access. If you need to work with those systems,
then maximum portability would be achieved by not using schemas at all.

5.9. Inheritance

PostgreSQL implements table inheritance, which can be a useful tool for database designers.
(SQL:1999 and later define atypeinheritance feature, which differsin many respectsfrom thefeatures
described here.)

Let's start with an example: suppose we aretrying to build adatamodel for cities. Each state has many
cities, but only one capital. We want to be able to quickly retrieve the capital city for any particular
state. This can be done by creating two tables, one for state capitals and one for cities that are not
capitals. However, what happens when we want to ask for data about acity, regardless of whether it is
acapital or not? The inheritance feature can help to resolve this problem. We definethecapi t al s
table so that it inheritsfromci ti es:

CREATE TABLE cities (

namne t ext,
popul ati on fl oat,
el evation i nt -- in feet

)

CREATE TABLE capitals (
state char (2)
) INHERI TS (cities);

Inthis case, the capi t al s tableinheritsall the columns of its parent table, ci t i es. State capitals
also have an extra column, st at e, that shows their state.

In PostgreSQL , a table can inherit from zero or more other tables, and a query can reference either
all rows of atable or all rows of atable plus al of its descendant tables. The latter behavior is the
default. For example, the following query finds the names of al cities, including state capitals, that
arelocated at an elevation over 500 feet:

SELECT nane, el evation
FROM ci ti es
VWHERE el evati on > 500;

Given the sample data from the PostgreSQL tutorial (see Section 2.1), this returns:

nanme | elevation
___________ i,
Las Vegas | 2174
Mari posa | 1953
Madi son | 845

On the other hand, the following query finds all the cities that are not state capitals and are situated
at an elevation over 500 feet:

SELECT nane, el evation
FROM ONLY cities
VWHERE el evati on > 500;

name | elevation

Data Definition

Las Vegas | 2174
Mari posa | 1953

Here the ONLY keyword indicates that the query should apply only to ci t i es, and not any tables
below ci ti es in the inheritance hierarchy. Many of the commands that we have already discussed
— SELECT, UPDATE and DELETE — support the ONLY keyword.

You can also write the table name with a trailing * to explicitly specify that descendant tables are
included:

SELECT nane, el evation
FROM ci ti es*
VWHERE el evati on > 500;

Writing * is not necessary, since this behavior is always the default. However, this syntax is till
supported for compatibility with older releases where the default could be changed.

In some cases you might wish to know which table aparticular row originated from. Thereisasystem
column called t abl eoi d in each table which can tell you the originating table:

SELECT c.tabl eoid, c.name, c.elevation
FROM cities c
VWHERE c. el evati on > 500;

which returns:

tabl eoid | name | elevation
__________ e
139793 | Las Vegas | 2174
139793 | Mariposa | 1953
139798 | Madi son | 845

(If you try to reproduce this example, you will probably get different numeric OIDs.) By doing ajoin
with pg_cl ass you can see the actual table names:

SELECT p.rel name, c.nane, c.elevation
FROM cities ¢, pg_class p
WHERE c. el evati on > 500 AND c.tabl eoid = p.oid;

which returns;

rel nane | nane | elevation
__________ e,
cities | Las Vegas | 2174
cities | Mariposa | 1953
capitals | Madison | 845

Another way to get the same effect isto usether egcl ass diastype, which will print the table OID
symbolically:

SELECT c. tabl eoi d: :regcl ass, c.nane, c.elevation
FROM cities ¢
WHERE c. el evati on > 500;

85

Data Definition

Inheritance does not automatically propagate data from | NSERT or COPY commands to other tables
in the inheritance hierarchy. In our example, the following | NSERT statement will fail:

I NSERT I NTO cities (nanme, popul ation, elevation, state)
VALUES (' Al bany', NULL, NULL, 'NY');

We might hope that the data would somehow be routed to the capi t al s table, but this does not
happen: | NSERT alwaysinsertsinto exactly the table specified. In some casesit is possibleto redirect
the insertion using a rule (see Chapter 41). However that does not help for the above case because
theci ti es table does not contain the column st at e, and so the command will be rejected before
the rule can be applied.

All check constraints and not-null constraints on a parent table are automatically inherited by its
children, unless explicitly specified otherwise with NO | NHERI T clauses. Other types of constraints
(unique, primary key, and foreign key constraints) are not inherited.

A table can inherit from more than one parent table, in which case it has the union of the columns
defined by the parent tables. Any columns declared in the child table's definition are added to these.
If the same column name appears in multiple parent tables, or in both a parent table and the child's
definition, then these columns are“ merged” so that thereisonly one such columninthechildtable. To
be merged, columns must have the same datatypes, elsean error israi sed. I nheritable check constraints
and not-null constraints are merged in asimilar fashion. Thus, for example, amerged column will be
marked not-null if any one of the column definitionsit camefromismarked not-null. Check constraints
are merged if they have the same name, and the merge will fail if their conditions are different.

Table inheritance istypically established when the child table is created, using the | NHERI TS clause
of the CREATE TABLE statement. Alternatively, a table which is already defined in a compatible
way can have anew parent relationship added, using the | NHERI T variant of ALTER TABLE. Todo
this the new child table must already include columns with the same names and types as the columns
of the parent. It must also include check constraints with the same names and check expressions as
those of the parent. Similarly aninheritancelink can be removed from achild usingthe NO | NHERI T
variant of ALTER TABLE. Dynamically adding and removing inheritance links like this can be useful
when the inheritance relationship is being used for table partitioning (see Section 5.10).

One convenient way to create a compatible table that will later be made a new child is to use the
LI KE clausein CREATE TABLE. Thiscreatesanew table with the same columns as the source table.
If there are any CHECK constraints defined on the source table, the | NCLUDI NG CONSTRAI NTS
option to LI KE should be specified, as the new child must have constraints matching the parent to
be considered compatible.

A parent table cannot be dropped while any of its children remain. Neither can columns or check
constraints of child tables be dropped or altered if they are inherited from any parent tables. If you
wish to remove a table and all of its descendants, one easy way is to drop the parent table with the
CASCADE option (see Section 5.13).

ALTER TABLE will propagate any changesin column datadefinitions and check constraintsdown the
inheritance hierarchy. Again, dropping columns that are depended on by other tablesis only possible
when using the CASCADE option. ALTER TABLE follows the same rules for duplicate column
merging and rejection that apply during CREATE TABLE.

Inherited queries perform access permission checks on the parent table only. Thus, for example,
granting UPDATE permission on the citi es table implies permission to update rows in the
capi t al s tableaswell, whenthey areaccessedthroughci t i es. Thispreservesthe appearancethat
the datais (also) in the parent table. But thecapi t al s table could not be updated directly without an
additional grant. Two exceptions to this rule are TRUNCATE and LOCK TABLE, where permissions
on the child tables are aways checked, whether they are processed directly or recursively via those
commands performed on the parent table.

In asimilar way, the parent table's row security policies (see Section 5.7) are applied to rows coming
from child tables during an inherited query. A child table's policies, if any, are applied only when it

86

Data Definition

5.9.1.

5.10

is the table explicitly named in the query; and in that case, any policies attached to its parent(s) are
ignored.

Foreign tables (see Section 5.11) can also be part of inheritance hierarchies, either as parent or child
tables, just as regular tables can be. If aforeign table is part of an inheritance hierarchy then any
operations not supported by the foreign table are not supported on the whole hierarchy either.

Caveats

Note that not all SQL commands are able to work on inheritance hierarchies. Commands that are used
for dataquerying, datamodification, or schemamaodification (e.g., SELECT, UPDATE, DELETE, most
variants of ALTER TABLE, but not | NSERT or ALTER TABLE ... RENAME) typically default
to including child tables and support the ONLY notation to exclude them. Commands that do database
maintenance and tuning (e.g., REI NDEX, VACUUM) typically only work onindividual, physical tables
and do not support recursing over inheritance hierarchies. The respective behavior of each individual
command is documented in its reference page (SQL Commands).

A seriouslimitation of theinheritance featureisthat indexes (including unique constraints) and foreign
key constraints only apply to single tables, not to their inheritance children. Thisis true on both the
referencing and referenced sides of aforeign key constraint. Thus, in the terms of the above example:

» If we declared ci ti es.nanme to be UNI QUE or a PRI MARY KEY, this would not stop the
capi t al s table from having rows with names duplicating rowsinci t i es. And those duplicate
rowswould by default show upinqueriesfromci t i es.Infact, by default capi t al s would have
no unique constraint at all, and so could contain multiple rows with the same name. Y ou could add
aunigue constraint to capi t al s, but thiswould not prevent duplication comparedtoci ti es.

e Similarly, if wewereto specify that ci t i es.name REFERENCES some other table, thisconstraint
would not automatically propagatetocapi t al s. Inthiscaseyou couldwork around it by manually
adding the same REFERENCES constraint to capi t al s.

 Specifying that another table's column REFERENCES ci ti es(nane) would alow the other
table to contain city names, but not capital names. There is no good workaround for this case.

Some functionality not implemented for inheritance hierarchies is implemented for declarative
partitioning. Considerable care is needed in deciding whether partitioning with legacy inheritance is
useful for your application.

Table Partitioning

PostgreSQL supports basic table partitioning. This section describes why and how to implement
partitioning as part of your database design.

5.10.1. Overview

Partitioning refersto splitting what islogically onelargetableinto smaller physical pieces. Partitioning
can provide several benefits:

* Query performance can be improved dramatically in certain situations, particularly when most of
the heavily accessed rows of the table are in a single partition or a small number of partitions.
Partitioning effectively substitutes for the upper tree levels of indexes, making it more likely that
the heavily-used parts of the indexes fit in memory.

* When queries or updates access a large percentage of a single partition, performance can be
improved by using asequential scan of that partition instead of using an index, which would require
random-access reads scattered across the whole table.

 Bulk loads and deletes can be accomplished by adding or removing partitions, if the usage patternis
accounted for in the partitioning design. Dropping an individual partition using DROP TABLE, or

87

Data Definition

doing ALTER TABLE DETACH PARTI TI QN, isfar faster than abulk operation. These commands
also entirely avoid the VACUUMoverhead caused by abulk DELETE.

» Seldom-used data can be migrated to cheaper and slower storage media.

These benefits will normally be worthwhile only when a table would otherwise be very large. The
exact point at which atable will benefit from partitioning depends on the application, although arule
of thumb is that the size of the table should exceed the physical memory of the database server.

PostgreSQL offers built-in support for the following forms of partitioning:
Range Partitioning

Thetableis partitioned into “ranges’ defined by akey column or set of columns, with no overlap
between the ranges of values assigned to different partitions. For example, one might partition by
date ranges, or by ranges of identifiers for particular business objects. Each range's bounds are
understood as being inclusive at the lower end and exclusive at the upper end. For example, if
one partition's range is from 1 to 10, and the next one's range is from 10 to 20, then value 10
belongs to the second partition not the first.

List Partitioning
Thetableis partitioned by explicitly listing which key value(s) appear in each partition.
Hash Partitioning

Thetableis partitioned by specifying amodulus and aremainder for each partition. Each partition
will hold the rows for which the hash value of the partition key divided by the specified modulus
will produce the specified remainder.

If your application needs to use other forms of partitioning not listed above, alternative methods such
asinheritance and UNI ON ALL views can be used instead. Such methods offer flexibility but do not
have some of the performance benefits of built-in declarative partitioning.

5.10.2. Declarative Partitioning

PostgreSQL allows you to declare that a table is divided into partitions. The table that is divided is
referred to as apartitioned table. The declaration includes the partitioning method as described above,
plusalist of columns or expressions to be used as the partition key.

Thepartitioned tableitself isa“virtual” table having no storage of itsown. Instead, the storage belongs
to partitions, which are otherwise-ordinary tables associated with the partitioned table. Each partition
stores asubset of the data as defined by its partition bounds. All rowsinserted into a partitioned table
will berouted to the appropriate one of the partitions based on the values of the partition key column(s).
Updating the partition key of arow will cause it to be moved into a different partition if it no longer
satisfies the partition bounds of its original partition.

Partitions may themselves be defined as partitioned tables, resulting in sub-partitioning. Although
all partitions must have the same columns as their partitioned parent, partitions may have their own
indexes, constraints and default values, distinct from those of other partitions. See CREATE TABLE
for more details on creating partitioned tables and partitions.

Itisnot possibleto turn aregular tableinto a partitioned table or vice versa. However, it is possible to
add an existing regular or partitioned table as a partition of a partitioned table, or remove a partition
from a partitioned table turning it into a standalone table; this can simplify and speed up many
maintenance processes. See ALTER TABLE to learn more about the ATTACH PARTI TI ON and
DETACH PARTI TI ON sub-commands.

Partitions can also be foreign tables, although considerable care is needed because it isthen the user's
responsibility that the contents of the foreign table satisfy the partitioning rule. There are some other
restrictions as well. See CREATE FOREIGN TABLE for more information.

88

Data Definition

5.10.2.1. Example

Suppose we are constructing a database for alarge ice cream company. The company measures peak
temperatures every day aswell asice cream salesin each region. Conceptually, we want atable like:

CREATE TABLE neasurenent (

city id int not null,
| ogdat e date not null,
peakt enp i nt,

uni tsal es i nt

)

We know that most queries will access just the last week's, month's or quarter's data, since the main
use of this table will be to prepare online reports for management. To reduce the amount of old data
that needs to be stored, we decide to keep only the most recent 3 years worth of data. At the beginning
of each month we will remove the oldest month's data. In this situation we can use partitioning to help
us meet al of our different requirements for the measurementstable.

To use declarative partitioning in this case, use the following steps:
1. Createthemeasur enent table as a partitioned table by specifying the PARTI TI ON BY clause,

which includes the partitioning method (RANGE in this case) and the list of column(s) to use as
the partition key.

CREATE TABLE neasur enent (

city id int not null,
| ogdat e date not null,
peakt enp int,

uni t sal es i nt

) PARTI TI ON BY RANCE (| ogdate);

2. Create partitions. Each partition's definition must specify boundsthat correspond to the partitioning
method and partition key of the parent. Note that specifying bounds such that the new partition's
values would overlap with those in one or more existing partitions will cause an error.

Partitions thus created are in every way normal PostgreSQL tables (or, possibly, foreign tables). It
is possible to specify atablespace and storage parameters for each partition separately.

For our example, each partition should hold one month's worth of data, to match the requirement
of deleting one month's data at a time. So the commands might look like:

CREATE TABLE neasurenment _y2006nD2 PARTI TI ON OF neasur ement
FOR VALUES FROM (' 2006-02-01") TO (' 2006-03-01");

CREATE TABLE neasurenent _y2006nD3 PARTI TI ON OF neasur ement
FOR VALUES FROM (' 2006-03-01") TO (' 2006-04-01");

CREATE TABLE neasurenent _y2007mi1l PARTI TI ON OF neasur enment
FOR VALUES FROM (' 2007-11-01") TO ('2007-12-01");

CREATE TABLE neasurenent _y2007mL2 PARTI TI ON OF neasur ement
FOR VALUES FROM (' 2007-12-01') TO ('2008-01-01")
TABLESPACE f astt abl espace;

CREATE TABLE neasurenent _y2008nD1 PARTI TI ON OF neasur ement
FOR VALUES FROM (' 2008-01-01') TO ('2008-02-01")

89

Data Definition

WTH (paral l el _workers = 4)
TABLESPACE f astt abl espace;

(Recall that adjacent partitions can share a bound value, since range upper bounds are treated as
exclusive bounds.)

If you wish to implement sub-partitioning, again specify the PARTI TI ON BY clause in the
commands used to create individual partitions, for example:

CREATE TABLE neasurenent _y2006nD2 PARTI TI ON OF neasur enent
FOR VALUES FROM (' 2006-02-01') TO ('2006-03-01")
PARTI TI ON BY RANGE (peaktenp);

After creating partitions of measur ement _y2006n02, any datainserted into neasur enment

that is mapped to neasurenment y2006n02 (or data that is directly inserted into
nmeasur enent _y2006m02, which is allowed provided its partition constraint is satisfied) will
be further redirected to one of its partitions based on the peakt enp column. The partition key
specified may overlap with the parent's partition key, although care shoul d be taken when specifying
the bounds of a sub-partition such that the set of data it accepts constitutes a subset of what the
partition's own bounds allow; the system does not try to check whether that's really the case.

Inserting data into the parent table that does not map to one of the existing partitions will cause an
error; an appropriate partition must be added manually.

It isnot necessary to manually create table constraints describing the partition boundary conditions
for partitions. Such constraints will be created automatically.

3. Create an index on the key column(s), as well as any other indexes you might want, on the
partitioned table. (The key index is not strictly necessary, but in most scenariosit is helpful.) This
automatically creates a matching index on each partition, and any partitions you create or attach
later will also have such an index. An index or unique constraint declared on a partitioned table
is“virtua” in the same way that the partitioned table is: the actual dataisin child indexes on the
individual partition tables.

CREATE | NDEX ON neasurenent (| ogdate);
4. Ensure that the enable partition pruning configuration parameter is not disabled in
post gresql . conf . If itis, querieswill not be optimized as desired.

In the above example we would be creating a new partition each month, so it might be wise to write
a script that generates the required DDL automatically.

5.10.2.2. Partition Maintenance

Normally the set of partitions established when initially defining the table is not intended to remain
static. It iscommon to want to remove partitions holding old data and periodically add new partitions
for new data. One of the most important advantages of partitioning is precisely that it allows this
otherwise painful task to be executed nearly instantaneously by manipulating the partition structure,
rather than physically moving large amounts of data around.

The simplest option for removing old datais to drop the partition that is no longer necessary:

DROP TABLE neasurenent _y2006n02;

This can very quickly delete millions of records because it doesn't have to individually delete every
record. Note however that the above command requires taking an ACCESS EXCLUSI VE lock on
the parent table.

Another option that is often preferable is to remove the partition from the partitioned table but retain
accesstoit asatableinitsown right:

90

Data Definition

ALTER TABLE measur enment DETACH PARTI TI ON measur enment _y2006nD2;

This alows further operations to be performed on the data before it is dropped. For example, thisis
often auseful timeto back up the datausing COPY, pg_dump, or similar tools. It might also be auseful
time to aggregate data into smaller formats, perform other data manipulations, or run reports.

Similarly we can add a new partition to handle new data. We can create an empty partition in the
partitioned table just as the original partitions were created above:

CREATE TABLE neasur enent _y2008n0D2 PARTI TI ON OF neasur enment
FOR VALUES FROM (' 2008-02-01') TO ('2008-03-01")
TABLESPACE f astt abl espace;

As an dternative, it is sometimes more convenient to create the new table outside the partition
structure, and make it a proper partition later. This allows new data to be loaded, checked, and
transformed prior to it appearing in the partitioned table. The CREATE TABLE ... LI KE option
is helpful to avoid tediously repeating the parent tabl€e's definition:

CREATE TABLE neasur enent _y2008n0D2
(LI KE rmeasur enent | NCLUDI NG DEFAULTS | NCLUDI NG CONSTRAI NTS)
TABLESPACE f astt abl espace;

ALTER TABLE neasur enent _y2008nD2 ADD CONSTRAI NT y2008nD2
CHECK (| ogdate >= DATE '2008-02-01' AND | ogdate < DATE
' 2008- 03-01");

\ copy neasurenent _y2008n02 from ' measurenent y2008nD2'
-- possibly sonme other data preparation work

ALTER TABLE neasurenent ATTACH PARTI TI ON nmeasur enent _y2008nm02
FOR VALUES FROM (' 2008-02-01") TO ('2008-03-01");

Beforerunningthe ATTACH PARTI TI ONcommand, it isrecommended to create a CHECK constraint
on the table to be attached that matches the expected partition constraint, as illustrated above. That
way, the system will be ableto skip the scan which is otherwise needed to validate theimplicit partition
constraint. Without the CHECK constraint, the table will be scanned to validate the partition constraint
while holding an ACCESS EXCLUSI VE lock onthe parent table. It is recommended to drop the now-
redundant CHECK constraint after ATTACH PARTI Tl ONis finished.

As explained above, it is possible to create indexes on partitioned tables so that they are applied
automatically to the entire hierarchy. Thisis very convenient, as not only will the existing partitions
become indexed, but aso any partitions that are created in the future will. One limitation is that it's
not possible to use the CONCURRENTLY qualifier when creating such a partitioned index. To avoid
long lock times, it is possible to use CREATE | NDEX ON ONLY the partitioned table; such an
index is marked invalid, and the partitions do not get the index applied automatically. The indexes
on partitions can be created individually using CONCURRENTLY, and then attached to the index on
the parent using ALTER | NDEX .. ATTACH PARTI TI ON. Once indexes for al partitions are
attached to the parent index, the parent index is marked valid automatically. Example:

CREATE | NDEX neasur enent _usls_idx ON ONLY neasurenent (unitsales);

CREATE | NDEX neasur enent _usls_ 200602 _i dx
ON neasur enment _y2006n02 (unitsal es);
ALTER | NDEX neasur enent _usl s_i dx
ATTACH PARTI TI ON neasur enent _usl s_200602_i dx;

91

Data Definition

Thistechnique can be used with UNI QUE and PRI MARY KEY constraintstoo; theindexes are created
implicitly when the constraint is created. Example:

ALTER TABLE ONLY rmeasurenent ADD UNI QUE (city_id, |ogdate);

ALTER TABLE neasur enent _y2006n02 ADD UNIQUE (city_id, |ogdate);
ALTER | NDEX measurenent _city_id_| ogdate_key
ATTACH PARTI TI ON nmeasur enent _y2006n02_city_id_| ogdat e_key;

5.10.2.3. Limitations

The following limitations apply to partitioned tables:

 Unique constraints (and hence primary keys) on partitioned tables must include all the partition key
columns. This limitation exists because the individual indexes making up the constraint can only
directly enforce uniqueness within their own partitions; therefore, the partition structure itself must
guarantee that there are not duplicatesin different partitions.

» Thereis no way to create an exclusion constraint spanning the whole partitioned table. It is only
possible to put such a constraint on each leaf partition individually. Again, this limitation stems
from not being able to enforce cross-partition restrictions.

» While primary keys are supported on partitioned tables, foreign keys referencing partitioned
tables are not supported. (Foreign key references from a partitioned table to some other table are
supported.)

* BEFORE ROWtriggers, if necessary, must be defined on individua partitions, not the partitioned
table.

» Mixing temporary and permanent relations in the same partition tree is not allowed. Hence, if
the partitioned table is permanent, so must be its partitions and likewise if the partitioned table is
temporary. When using temporary relations, all members of the partition tree have to be from the
same session.

Individual partitionsarelinked to their partitioned tabl e using inheritance behind-the-scenes. However,
it is not possible to use all of the generic features of inheritance with declaratively partitioned tables
or their partitions, as discussed below. Notably, a partition cannot have any parents other than the
partitioned table it is a partition of, nor can atable inherit from both a partitioned table and a regular
table. That means partitioned tables and their partitions never share an inheritance hierarchy with
regular tables.

Since a partition hierarchy consisting of the partitioned table and its partitions is still an inheritance
hierarchy, t abl eoi d and al the normal rules of inheritance apply as described in Section 5.9, with
afew exceptions:

* Partitions cannot have columnsthat are not present in the parent. It isnot possibleto specify columns
when creating partitionswith CREATE TABLE, nor isit possible to add columnsto partitions after-
the-fact using ALTER TABLE. Tables may be added as a partition with ALTER TABLE . ..
ATTACH PARTI Tl ONonly if their columns exactly match the parent, including any oi d column.

» Both CHECK and NOT NULL constraints of a partitioned table are always inherited by al its
partitions. CHECK constraints that are marked NO | NHERI T are not allowed to be created on
partitioned tables. You cannot drop a NOT NULL constraint on a partition's column if the same
constraint is present in the parent table.

e Using ONLY to add or drop a constraint on only the partitioned table is supported as long as there
are no partitions. Once partitions exist, using ONLY will result in an error. Instead, constraints on
the partitions themselves can be added and (if they are not present in the parent table) dropped.

92

Data Definition

e As a partitioned table does not have any data itself, attempts to use TRUNCATE ONLY on a
partitioned table will always return an error.

5.10.3. Partitioning Using Inheritance

While the built-in declarative partitioning is suitable for most common use cases, there are some
circumstances where a more flexible approach may be useful. Partitioning can be implemented using
tableinheritance, which allowsfor several features not supported by declarative partitioning, such as:

* For declarative partitioning, partitions must have exactly the same set of columns as the partitioned
table, whereas with table inheritance, child tables may have extra columns not present in the parent.

» Tableinheritance allows for multiple inheritance.

» Declarative partitioning only supports range, list and hash partitioning, whereas table inheritance
alows data to be divided in a manner of the user's choosing. (Note, however, that if constraint
exclusion is unable to prune child tables effectively, query performance might be poor.)

» Some operations require a stronger lock when using declarative partitioning than when using
table inheritance. For example, adding or removing a partition to or from a partitioned table
requires taking an ACCESS EXCLUSI VE lock on the parent table, whereas a SHARE UPDATE
EXCLUSI VE lock is enough in the case of regular inheritance.

5.10.3.1. Example

This example builds a partitioning structure equivalent to the declarative partitioning example above.
Use the following steps:

1. Create the “master” table, from which all of the “child” tables will inherit. This table will contain
no data. Do not define any check constraints on this table, unless you intend them to be applied
equally to all child tables. There is no point in defining any indexes or unique constraints on it,
either. For our example, the master table isthe neasur enment table as originally defined:

CREATE TABLE measur enent (

city_ id int not null,
| ogdat e date not null,
peakt enp int,

uni t sal es i nt

);

2. Create severa “child” tablesthat each inherit from the master table. Normally, these tableswill not
add any columns to the set inherited from the master. Just as with declarative partitioning, these
tables arein every way normal PostgreSQL tables (or foreign tables).

CREATE TABLE measur enent _y2006n02 () |INHERI TS (rneasurenent);
CREATE TABLE measur enent _y2006n03 () | NHERI TS (rneasurenent);

CREATE TABLE measur enent _y2007nill () |INHERI TS (rneasurenent);
CREATE TABLE measur enent _y2007nil2 () |INHERI TS (rnmeasurenent);
CREATE TABLE measur enent _y2008n01 () |INHERI TS (rneasurenent);

3. Add non-overlapping table constraints to the child tables to define the allowed key values in each.

Typical examples would be:

CHECK (x = 1)

CHECK (county IN ('Oxfordshire', 'Buckinghanshire',
"Warwi ckshire'))

CHECK (outletID >= 100 AND outletlD < 200)

93

Data Definition

Ensure that the constraints guarantee that there is no overlap between the key values permitted in
different child tables. A common mistake is to set up range constraints like:

CHECK (outlet! D BETWEEN 100 AND 200)
CHECK (outlet! D BETWEEN 200 AND 300)

Thisiswrong since it is not clear which child table the key value 200 belongs in. Instead, ranges
should be defined in this style:

CREATE TABLE neasur enent _y2006n02 (

CHECK (| ogdate >= DATE ' 2006-02-01' AND | ogdate < DATE
' 2006- 03-01')
) INHERI TS (neasurenent);

CREATE TABLE neasur enent _y2006n03 (

CHECK (| ogdate >= DATE ' 2006-03-01' AND | ogdate < DATE
' 2006- 04-01')
) INHERI TS (neasurenent);

CREATE TABLE neasur enent _y2007nill (
CHECK (| ogdate >= DATE '2007-11-01' AND | ogdate < DATE
'2007-12-01')
) INHERI TS (neasurenent);

CREATE TABLE neasur enent _y2007nil2 (
CHECK (| ogdate >= DATE '2007-12-01' AND | ogdate
'2008-01-01')
) INHERI TS (neasurenent);

N

DATE

CREATE TABLE neasur enent _y2008n01 (
CHECK (| ogdate >= DATE '2008-01-01' AND | ogdate < DATE
'2008-02-01')
) INHERI TS (neasurenent);
. For each child table, create an index on the key column(s), as well as any other indexes you might
want.

CREATE | NDEX mneasur enent _y2006n02_| ogdat e ON nmeasur enment _y2006n02
(1 ogdate);

CREATE | NDEX neasur enent _y2006n03_| ogdat e ON nmeasur enment _y2006n03
(1 ogdate);

CREATE | NDEX mneasur enent _y2007nl1_| ogdat e ON measur enent _y2007ni1l
(1 ogdate);

CREATE | NDEX mneasur enent _y2007nl2_| ogdat e ON measur enment _y2007n12
(1 ogdate);

CREATE | NDEX mneasur enent _y2008n01_| ogdat e ON measur enent _y2008n01
(1 ogdate);

. Wewant our applicationto beabletosay | NSERT | NTO neasur enrent ... and havethedata

be redirected into the appropriate child table. We can arrange that by attaching a suitable trigger

function to the master table. If datawill be added only to the latest child, we can use avery simple

trigger function:

CREATE OR REPLACE FUNCTI ON neasurenent i nsert _trigger()
RETURNS TRI GGER AS $%

94

Data Definition

BEG N
| NSERT | NTO nmeasur enent _y2008nmD1 VALUES (NEW *);
RETURN NULL;

END;

$$

LANGUAGE pl pgsdl ;

After creating the function, we create a trigger which calls the trigger function:

CREATE TRI GCGER i nsert _neasurenent _tri gger
BEFORE | NSERT ON measur enment
FOR EACH ROW EXECUTE FUNCTI ON nmeasurement _i nsert _trigger();

We must redefine the trigger function each month so that it always inserts into the current child
table. The trigger definition does not need to be updated, however.

We might want to insert data and have the server automatically locate the child table into which
the row should be added. We could do this with amore complex trigger function, for example:

CREATE OR REPLACE FUNCTI ON nmeasurement _i nsert _trigger()
RETURNS TRI GGER AS $$
BEG N
IF (NEWI ogdate >= DATE ' 2006- 02- 01" AND
NEW | ogdat e < DATE ' 2006-03-01') THEN
| NSERT | NTO nmeasur enent _y2006nm02 VALUES (NEW *);
ELSIF (NEW | ogdat e >= DATE ' 2006- 03-01' AND
NEW | ogdat e < DATE ' 2006-04-01') THEN
| NSERT | NTO nmeasur enent _y2006nm03 VALUES (NEW *);

ELSIF (NEW | ogdat e >= DATE ' 2008-01-01' AND
NEW | ogdat e < DATE ' 2008-02-01') THEN
| NSERT | NTO nmeasur enent _y2008nmD1 VALUES (NEW *);
ELSE
RAI SE EXCEPTION 'Date out of range. Fix the
measurenent _insert_trigger() function!';
END | F;
RETURN NULL;
END;
$$

95

Data Definition

LANGUACE pl pgsql ;

Thetrigger definition is the same as before. Note that each | F test must exactly match the CHECK
constraint for its child table.

While this function is more complex than the single-month case, it doesn't need to be updated as
often, since branches can be added in advance of being needed.

Note

In practice, it might be best to check the newest child first, if most inserts go into that child.
For simplicity, we have shown the trigger's tests in the same order as in other parts of this
example.

A different approach to redirecting inserts into the appropriate child table is to set up rules, instead
of atrigger, on the master table. For example:

CREATE RULE neasurenent _insert_y2006nD2 AS
ON I NSERT TO neasur enent WHERE
(| ogdate >= DATE ' 2006-02-01'" AND | ogdate < DATE
' 2006- 03-01")
DO | NSTEAD
I NSERT | NTO neasur enent _y2006n02 VALUES (NEW *);

CREATE RULE neasurenent _insert_y2008nmD1 AS
ON I NSERT TO neasur enent WHERE
(logdate >= DATE ' 2008-01-01'" AND | ogdate < DATE
'2008-02-01")
DO | NSTEAD
I NSERT | NTO neasur enent _y2008n01 VALUES (NEW *);

A rulehas significantly more overhead than atrigger, but the overhead is paid once per query rather
than once per row, so this method might be advantageous for bulk-insert situations. In most cases,
however, the trigger method will offer better performance.

Be aware that COPY ignoresrules. If you want to use COPY to insert data, you'll need to copy into
the correct child table rather than directly into the master. COPY does fire triggers, so you can use
it normally if you use the trigger approach.

Another disadvantage of the rule approach is that thereis no simple way to force an error if the set
of rules doesn't cover the insertion date; the data will silently go into the master table instead.

6. Ensure that the constraint_exclusion configuration parameter is not disabled in
post gr esql . conf ; otherwise child tables may be accessed unnecessarily.

As we can see, a complex table hierarchy could require a substantial amount of DDL. In the above
example we would be creating a new child table each month, so it might be wise to write a script that
generates the required DDL automatically.

5.10.3.2. Maintenance for Inheritance Partitioning

To remove old data quickly, simply drop the child table that is no longer necessary:

DROP TABLE neasurenent _y2006n02;

To remove the child table from the inheritance hierarchy table but retain accessto it asatablein its
own right:

96

Data Definition

ALTER TABLE measur enment _y2006nmD2 NO | NHERI T neasur enent ;

To add a new child table to handle new data, create an empty child table just as the original children
were created above:

CREATE TABLE neasur enent _y2008n02 (

CHECK (| ogdate >= DATE ' 2008-02-01' AND | ogdate < DATE
'2008-03-01')
) I NHERI TS (nmeasurenent);

Alternatively, one may want to create and populate the new child table before adding it to the table
hierarchy. This could allow data to be loaded, checked, and transformed before being made visible
to queries on the parent table.

CREATE TABLE neasur enent _y2008n0D2
(LI KE nmeasuremnment | NCLUDI NG DEFAULTS | NCLUDI NG CONSTRAI NTS) ;
ALTER TABLE neasur enent _y2008nD2 ADD CONSTRAI NT y2008n0D2
CHECK (| ogdate >= DATE ' 2008-02-01' AND | ogdate < DATE
'2008-03-01');
\ copy neasurenent _y2008n0D2 from ' measurenent y2008nD2'
-- possibly sonme other data preparation work
ALTER TABLE neasur enment _y2008n0D2 | NHERI T nmeasur enent ;

5.10.3.3. Caveats

The following caveats apply to partitioning implemented using inheritance:

» Thereis no automatic way to verify that al of the CHECK constraints are mutually exclusive. It is
safer to create code that generates child tables and creates and/or modifies associated objects than
to write each by hand.

» Theschemesshown here assumethat the values of arow'skey column(s) never change, or at least do
not change enough to requireit to moveto another partition. An UPDATE that attemptsto do that will
fail because of the CHECK constraints. If you need to handle such cases, you can put suitable update
triggers on the child tables, but it makes management of the structure much more complicated.

* If you are using manual VACUUMor ANAL YZE commands, don't forget that you need to run them
on each child table individually. A command like:

ANALYZE neasurenent;
will only process the master table.

* | NSERT statements with ON CONFLI CT clauses are unlikely to work as expected, as the ON
CONFLI CT action is only taken in case of unique violations on the specified target relation, not
its child relations.

» Triggers or rules will be needed to route rows to the desired child table, unless the application is
explicitly aware of the partitioning scheme. Triggers may be complicated to write, and will be much
slower than the tuple routing performed internally by declarative partitioning.

5.10.4. Partition Pruning

Partition pruning is a query optimization technique that improves performance for declaratively
partitioned tables. As an example:

97

Data Definition

SET enabl e_partition_pruning = on; -- the default
SELECT count (*) FROM nmeasur enent WHERE | ogdat e >= DATE
' 2008-01-01';

Without partition pruning, the above query would scan each of the partitions of the measur enent

table. With partition pruning enabled, the planner will examine the definition of each partition and
prove that the partition need not be scanned because it could not contain any rows meeting the query's
WHERE clause. When the planner can provethis, it excludes (prunes) the partition from the query plan.

By using the EXPLAIN command and the enable partition_pruning configuration parameter, it's
possible to show the difference between a plan for which partitions have been pruned and one for
which they have not. A typical unoptimized plan for thistype of table setup is:

SET enabl e_partition_pruning = off;
EXPLAI N SELECT count (*) FROM nmeasur enent WHERE | ogdat e >= DATE
' 2008- 01-01';
QUERY PLAN
Aggregate (cost=188.76..188.77 rows=1 w dt h=8)
-> Append (cost=0.00..181.05 rows=3085 wi dt h=0)
-> Seq Scan on neasurenent _y2006n02 (cost=0.00..33.12
rows=617 w dt h=0)
Filter: (logdate >= '2008-01-01"::date)
-> Seq Scan on neasurenent _y2006n03 (cost=0.00..33.12
rows=617 w dt h=0)
Filter: (logdate >= '2008-01-01"::date)

-> Seq Scan on neasurenent _y2007nmll (cost=0.00..33.12
rows=617 w dt h=0)
Filter: (logdate >= '2008-01-01"::date)
-> Seq Scan on neasurenent _y2007nml2 (cost=0.00..33.12
rows=617 w dt h=0)
Filter: (logdate >= '2008-01-01"::date)
-> Seq Scan on neasurenent _y2008nD1 (cost=0.00..33.12
rows=617 w dt h=0)
Filter: (logdate >= '2008-01-01"::date)

Some or all of the partitions might use index scansinstead of full-table sequential scans, but the point
here is that there is no need to scan the older partitions at all to answer this query. When we enable
partition pruning, we get a significantly cheaper plan that will deliver the same answer:

SET enabl e_partition_pruning = on;
EXPLAI N SELECT count (*) FROM neasur enent WHERE | ogdat e >= DATE

' 2008-01-01';

QUERY PLAN
Aggregate (cost=37.75..37.76 rows=1 wi dt h=8)
-> Append (cost=0.00..36.21 rows=617 w dt h=0)
-> Seq Scan on neasurenent_ y2008nD1 (cost=0.00..33.12
rows=617 wi dt h=0)
Filter: (logdate >= '2008-01-01'::date)

Note that partition pruning is driven only by the constraints defined implicitly by the partition keys,
not by the presence of indexes. Therefore it isn't necessary to define indexes on the key columns.
Whether an index needsto be created for agiven partition depends on whether you expect that queries
that scan the partition will generally scan a large part of the partition or just a small part. An index
will be helpful in the latter case but not the former.

98

Data Definition

Partition pruning can be performed not only during the planning of a given query, but also during its
execution. Thisisuseful asit can allow more partitionsto be pruned when clauses contain expressions
whose values are not known at query planning time; for example, parameters defined in a PREPARE
statement, using a value obtained from a subquery or using a parameterized value on the inner side of
anested loop join. Partition pruning during execution can be performed at any of the following times:

» During initialization of the query plan. Partition pruning can be performed here for parameter
values which are known during the initialization phase of execution. Partitions which are pruned
during this stage will not show up in the query's EXPLAI Nor EXPLAI N ANALYZE. It ispossible
to determine the number of partitions which were removed during this phase by observing the
“Subplans Removed” property in the EXPLAI N output.

 During actual execution of the query plan. Partition pruning may also be performed here to remove
partitions using values which are only known during actual query execution. This includes values
from subqgueries and values from execution-time parameters such as those from parameterized
nested loop joins. Since the value of these parameters may change many times during the execution
of the query, partition pruning is performed whenever one of the execution parametersbeing used by
partition pruning changes. Determining if partitions were pruned during this phase requires careful
inspection of the| oops property in the EXPLAI N ANAL YZE output. Subplans corresponding to
different partitions may have different values for it depending on how many times each of them
was pruned during execution. Some may be shown as (never execut ed) if they were pruned
every time.

Partition pruning can be disabled using the enable _partition_pruning setting.

Note

Execution-time partition pruning currently only occurs for the Append node type, not for
Mer geAppend or Modi f yTabl e nodes. That islikely to be changed in a future release of

PostgreSQL .

5.10.5. Partitioning and Constraint Exclusion

Constraint exclusion is a query optimization technique similar to partition pruning. While it is
primarily used for partitioning implemented using the legacy inheritance method, it can be used for
other purposes, including with declarative partitioning.

Constraint exclusion worksin avery similar way to partition pruning, except that it uses each table's
CHECK constraints — which gives it its name — whereas partition pruning uses the table's partition
bounds, which exist only in the case of declarative partitioning. Another difference is that constraint
exclusionisonly applied at plan time; thereis no attempt to remove partitions at execution time.

Thefact that constraint exclusion uses CHECK constraints, which makesit slow compared to partition
pruning, can sometimes be used as an advantage: because constraints can be defined even on
declaratively-partitioned tables, in addition to their internal partition bounds, constraint exclusion may
be able to elide additional partitions from the query plan.

The default (and recommended) setting of constraint_exclusion is neither on nor of f, but an
intermediate setting called par ti ti on, which causes the technique to be applied only to queries
that are likely to be working on inheritance partitioned tables. The on setting causes the planner to
examine CHECK constraintsin all queries, even simple ones that are unlikely to benefit.

The following caveats apply to constraint exclusion:

 Congtraint exclusionisonly applied during query planning, unlike partition pruning, which can also
be applied during query execution.

99

Data Definition

 Constraint exclusion only works when the query's WHERE clause contains constants (or externally
supplied parameters). For example, a comparison against a non-immutable function such as
CURRENT _TI MESTAMP cannat be optimized, since the planner cannot know which child table the
function's value might fall into at run time.

» Keep the partitioning constraints simple, else the planner may not be able to prove that child
tables might not need to be visited. Use simple equality conditions for list partitioning, or ssimple
range tests for range partitioning, as illustrated in the preceding examples. A good rule of thumb
is that partitioning constraints should contain only comparisons of the partitioning column(s) to
constants using B-tree-indexable operators, because only B-tree-indexable column(s) are allowed
in the partition key.

» All congtraints on all children of the parent table are examined during constraint exclusion, so
large numbers of children are likely to increase query planning time considerably. So the legacy
inheritance based partitioning will work well with up to perhaps a hundred child tables; don't try
to use many thousands of children.

5.10.6. Best Practices for Declarative Partitioning

The choice of how to partition atable should be made carefully, as the performance of query planning
and execution can be negatively affected by poor design.

One of the most critical design decisions will be the column or columns by which you partition your
data. Often the best choice will beto partition by the column or set of columns which most commonly
appear in WHERE clauses of queries being executed on the partitioned table. WHERE clauses that are
compatible with the partition bound constraints can be used to prune unneeded partitions. However,
you may be forced into making other decisions by requirementsfor the PRI MARY KEY or a UNI QUE
constraint. Removal of unwanted data is also a factor to consider when planning your partitioning
strategy. An entire partition can be detached fairly quickly, so it may be beneficial to design the
partition strategy in such away that all datato be removed at onceislocated in asingle partition.

Choosing the target number of partitions that the table should be divided into isalso acritical decision
to make. Not having enough partitions may mean that indexes remain too large and that data locality
remains poor which could result in low cache hit ratios. However, dividing the table into too many
partitions can al so causeissues. Too many partitions can mean longer query planning times and higher
memory consumption during both query planning and execution, as further described below. When
choosing how to partition your table, it's a'so important to consider what changes may occur in the
future. For example, if you choose to have one partition per customer and you currently have a small
number of large customers, consider the implicationsif in several yearsyou instead find yourself with
alarge number of small customers. In this case, it may be better to choose to partition by HASH and
choose a reasonable number of partitions rather than trying to partition by L1 ST and hoping that the
number of customers does not increase beyond what it is practical to partition the data by.

Sub-partitioning can be useful to further divide partitionsthat are expected to become larger than other
partitions. Another option isto use range partitioning with multiple columnsin the partition key. Either
of these can easily lead to excessive numbers of partitions, so restraint is advisable.

It is important to consider the overhead of partitioning during query planning and execution. The
guery planner is generally able to handle partition hierarchies with up to a few hundred partitions
fairly well, provided that typical queries alow the query planner to prune al but a small number of
partitions. Planning times become longer and memory consumption becomes higher as more partitions
are added. Thisis particularly true for the UPDATE and DELETE commands. Another reason to be
concerned about having a large number of partitions is that the server's memory consumption may
grow significantly over time, especialy if many sessions touch large numbers of partitions. That's
because each partition requires its metadata to be loaded into the local memory of each session that
touchesiit.

With data warehouse type workloads, it can make sense to use alarger number of partitions than with
an OLTP type workload. Generally, in data warehouses, query planning time is less of a concern as

100

Data Definition

5.11.

5.12

5.13.

the magjority of processing time is spent during query execution. With either of these two types of
workload, it is important to make the right decisions early, as re-partitioning large quantities of data
can be painfully slow. Simulations of the intended workload are often beneficia for optimizing the
partitioning strategy. Never just assume that more partitions are better than fewer partitions, nor vice-
versa,

Foreign Data

PostgreSQL implements portions of the SQL/MED specification, allowing you to access data that
resides outside PostgreSQL using regular SQL queries. Such datais referred to asforeign data. (Note
that this usage is not to be confused with foreign keys, which are a type of constraint within the
database.)

Foreign data is accessed with help from a foreign data wrapper. A foreign data wrapper is alibrary
that can communicate with an external data source, hiding the details of connecting to the data source
and obtaining datafrom it. There are some foreign datawrappersavailableascont r i b modules; see
Appendix F. Other kinds of foreign data wrappers might be found as third party products. If none of
the existing foreign data wrappers suit your needs, you can write your own; see Chapter 57.

To access foreign data, you need to create a foreign server object, which defines how to connect to
a particular external data source according to the set of options used by its supporting foreign data
wrapper. Then you need to create one or more foreign tables, which define the structure of the remote
data. A foreign table can be used in queries just like anormal table, but aforeign table has no storage
inthe PostgreSQL server. Whenever it is used, PostgreSQL asksthe foreign datawrapper to fetch data
from the external source, or transmit data to the external source in the case of update commands.

Accessing remote data may require authenticating to the external data source. This information can
be provided by a user mapping, which can provide additional data such as user names and passwords
based on the current PostgreSQL role.

For additional information, see CREATE FOREIGN DATA WRAPPER, CREATE SERVER,
CREATE USER MAPPING, CREATE FOREIGN TABLE, and IMPORT FOREIGN SCHEMA.

Other Database Objects

Tables are the central objectsin arelationa database structure, because they hold your data. But they
are not the only objectsthat exist in adatabase. Many other kinds of objects can be created to makethe
use and management of the data more efficient or convenient. They are not discussed in this chapter,
but we give you alist here so that you are aware of what is possible:

* Views

 Functions, procedures, and operators
» Datatypesand domains

 Triggers and rewrite rules

Detailed information on these topics appearsin Part V.

Dependency Tracking

When you create complex database structures involving many tables with foreign key constraints,
views, triggers, functions, etc. you implicitly create a net of dependencies between the objects. For
instance, atable with aforeign key constraint depends on the table it references.

To ensure the integrity of the entire database structure, PostgreSQL makes sure that you cannot drop
objects that other objects still depend on. For example, attempting to drop the products table we

101

Data Definition

considered in Section 5.3.5, with the orders table depending on it, would result in an error message
likethis:

DROP TABLE products;

ERROR: cannot drop table products because ot her objects depend on
it

DETAIL: constraint orders_product_no_fkey on table orders depends
on table products

H NT: Use DROP ... CASCADE to drop the dependent objects too.

Theerror message containsauseful hint: if you do not want to bother deleting all the dependent objects
individually, you can run:

DROP TABLE products CASCADE;

and all the dependent objects will be removed, as will any objects that depend on them, recursively.
In this case, it doesn't remove the orders table, it only removes the foreign key constraint. It stops
there because nothing depends on the foreign key constraint. (If you want to check what DROP . . .
CASCADE will do, run DROP without CASCADE and read the DETAI L output.)

Almost all DROP commands in PostgreSQL support specifying CASCADE. Of course, the nature of
the possible dependencies varies with the type of the object. Y ou can also write RESTRI CT instead
of CASCADE to get the default behavior, which is to prevent dropping objects that any other objects
depend on.

Note

According to the SQL standard, specifying either RESTRI CT or CASCADE is required in
a DROP command. No database system actually enforces that rule, but whether the default
behavior is RESTRI CT or CASCADE varies across systems.

If a DROP command lists multiple objects, CASCADE is only required when there are dependencies
outside the specified group. For example, when saying DROP TABLE t abl, tab2 theexistence
of aforeign key referencingt ab1 fromt ab2 would not mean that CASCADE is needed to succeed.

For user-defined functions, PostgreSQL tracks dependencies associated with afunction's externally-
visible properties, such asitsargument and result types, but not dependenciesthat could only be known
by examining the function body. As an example, consider this situation:

CREATE TYPE rai nbow AS ENUM ('red', 'orange', 'vyellow,
"green', 'blue', 'purple');

CREATE TABLE ny_col ors (col or rai nbow, note text);

CREATE FUNCTI ON get _col or_note (rai nbow) RETURNS text AS
' SELECT note FROM ny_col ors WHERE col or = $1'
LANGUACE SQ.;

(See Section 38.5 for an explanation of SQL-language functions.) PostgreSQL will be aware that the
get _col or _not e functiondependsonther ai nbowtype: dropping thetypewould force dropping
the function, because its argument type would no longer be defined. But PostgreSQL will not consider
get _col or _not e todependontheny_col or s table, and sowill not drop thefunctionif thetable
isdropped. While there are disadvantages to this approach, there are also benefits. The functionis still

102

Data Definition

valid in some sense if the table is missing, though executing it would cause an error; creating a new
table of the same name would allow the function to work again.

103

Chapter 6. Data Manipulation

The previous chapter discussed how to create tables and other structures to hold your data. Now it is
time to fill the tables with data. This chapter covers how to insert, update, and delete table data. The
chapter after thiswill finally explain how to extract your long-lost data from the database.

6.1. Inserting Data

When atableis created, it contains no data. The first thing to do before a database can be of much use
isto insert data. Data is conceptually inserted one row at atime. Of course you can aso insert more
than one row, but there is no way to insert less than one row. Even if you know only some column
values, a complete row must be created.

To create anew row, use the INSERT command. The command requires the table name and column
values. For example, consider the products table from Chapter 5:

CREATE TABLE products (
product _no i nteger,
name text,
price nuneric

)

An example command to insert arow would be:

I NSERT | NTO products VALUES (1, 'Cheese', 9.99);

The datavalues are listed in the order in which the columns appear in the table, separated by commas.
Usually, the data values will be literals (constants), but scalar expressions are also allowed.

The above syntax has the drawback that you need to know the order of the columnsin the table. To
avoid thisyou can asolist the columns explicitly. For example, both of the following commands have
the same effect as the one above:

I NSERT | NTO products (product_no, nane, price) VALUES (1, 'Cheese',

9.99);
I NSERT | NTO products (name, price, product_no) VALUES (' Cheese',
9.99, 1);

Many users consider it good practice to always list the column names.

If you don't have valuesfor all the columns, you can omit some of them. In that case, the columns will
be filled with their default values. For example;

| NSERT | NTO products (product_no, name) VALUES (1, 'Cheese');

I NSERT | NTO products VALUES (1, 'Cheese');

The second form is a PostgreSQL extension. It fills the columns from the left with as many values as
are given, and the rest will be defaulted.

For clarity, you can also request default values explicitly, for individual columnsor for the entire row:

I NSERT | NTO products (product_no, nanme, price) VALUES (1, 'Cheese',
DEFAULT) ;

104

Data Manipulation

I NSERT | NTO products DEFAULT VALUES,;

Y ou can insert multiple rowsin a single command:

I NSERT | NTO products (product_no, nane, price) VALUES
(1, 'Cheese', 9.99),
(2, 'Bread', 1.99),
(3, "MIk', 2.99);

It isalso possible to insert the result of a query (which might be no rows, one row, or many rows):

I NSERT | NTO products (product_no, name, price)
SELECT product_no, name, price FROM new_products
WHERE r el ease_date = 'today';

This provides the full power of the SQL query mechanism (Chapter 7) for computing the rows to be
inserted.

Tip

When inserting a lot of data at the same time, consider using the COPY command. It is not
as flexible as the INSERT command, but is more efficient. Refer to Section 14.4 for more
information on improving bulk loading performance.

6.2. Updating Data

The modification of data that is already in the database is referred to as updating. Y ou can update
individual rows, al therowsin atable, or asubset of all rows. Each column can be updated separately;
the other columns are not affected.

To update existing rows, use the UPDATE command. This requires three pieces of information:

1. The name of the table and column to update
2. The new value of the column
3. Which row(s) to update

Recall from Chapter 5 that SQL does nat, in general, provide aunique identifier for rows. Thereforeit
is not always possible to directly specify which row to update. Instead, you specify which conditions
arow must meet in order to be updated. Only if you have a primary key in the table (independent
of whether you declared it or not) can you reliably address individual rows by choosing a condition
that matches the primary key. Graphical database access toolsrely on thisfact to allow you to update
rows individually.

For example, this command updates all products that have a price of 5 to have a price of 10:

UPDATE products SET price = 10 WHERE price = 5;

This might cause zero, one, or many rows to be updated. It is not an error to attempt an update that
does not match any rows.

Let'slook at that command in detail. First is the key word UPDATE followed by the table name. As
usual, the table name can be schema-qualified, otherwise it is looked up in the path. Next is the key
word SET followed by the column name, an equal sign, and the new column value. The new column
value can be any scalar expression, not just a constant. For example, if you want to raise the price of
all products by 10% you could use:

105

Data Manipulation

UPDATE products SET price = price * 1.10;

Asyou see, the expression for the new value can refer to the existing value(s) in the row. We also left
out the WHERE clause. If it is omitted, it means that all rows in the table are updated. If it is present,
only those rows that match the WHERE condition are updated. Note that the equals sign in the SET
clauseisan assignment while the onein the WHERE clause isacomparison, but thisdoes not create any
ambiguity. Of course, the WHERE condition does not have to be an equality test. Many other operators
are available (see Chapter 9). But the expression needs to evaluate to a Boolean result.

Y ou can update more than one column in an UPDATE command by listing more than one assignment
in the SET clause. For example:

UPDATE nytable SET a =5, b =3, ¢ =1 WHERE a > 0;

6.3. Deleting Data

So far we have explained how to add datato tables and how to change data. What remainsisto discuss
how to remove data that is no longer needed. Just as adding datais only possible in whole rows, you
can only remove entire rows from atable. In the previous section we explained that SQL does not
provide a way to directly address individual rows. Therefore, removing rows can only be done by
specifying conditionsthat the rowsto be removed haveto match. If you haveaprimary key inthetable
then you can specify the exact row. But you can also remove groups of rows matching a condition,
or you can remove all rows in the table at once.

Y ou use the DEL ETE command to remove rows; the syntax isvery similar to the UPDATE command.
For instance, to remove all rows from the products table that have a price of 10, use:

DELETE FROM products WHERE price = 10;

If you simply write:

DELETE FROM product s;

then all rows in the table will be deleted! Caveat programmer.

6.4. Returning Data From Modified Rows

Sometimes it is useful to obtain data from modified rows while they are being manipulated. The
| NSERT, UPDATE, and DELETE commands all have an optional RETURNI NG clause that supports
this. Use of RETURNI NG avoids performing an extra database query to collect the data, and is
especialy valuable when it would otherwise be difficult to identify the modified rows reliably.

The allowed contents of a RETURNI NG clause are the same as a SELECT command's output list (see
Section 7.3). It can contain column names of the command's target table, or value expressions using
those columns. A common shorthand is RETURNI NG * , which selects all columns of the target table
in order.

Inan | NSERT, the dataavailable to RETURNI NGistherow asit wasinserted. Thisisnot so useful in
trivial inserts, sinceit would just repeat the data provided by the client. But it can be very handy when
relying on computed default values. For example, when using aser i al column to provide unique
identifiers, RETURNI NG can return the ID assigned to a new row:

CREATE TABLE users (firstnane text, |lastnanme text, id serial
primary key);

106

Data Manipulation

I NSERT | NTO users (firstnane, |astnanme) VALUES ('Joe', 'Cool")
RETURNI NG i d;

The RETURNI NGclauseis also very useful with | NSERT ... SELECT.

Inan UPDATE, thedataavailableto RETURNI NGisthe new content of the modified row. For example:

UPDATE products SET price = price * 1.10
WHERE price <= 99.99
RETURNI NG nane, price AS new price;

In a DELETE, the data available to RETURNI NGis the content of the deleted row. For example:

DELETE FROM product s
WHERE obsol eti on_date = 'today'
RETURNI NG *;

If there are triggers (Chapter 39) on the target table, the data available to RETURNI NGis the row as
modified by the triggers. Thus, inspecting columns computed by triggersis another common use-case
for RETURNI NG,

107

Chapter 7. Queries

The previous chapters explained how to createtables, how tofill themwith data, and how to manipulate
that data. Now we finally discuss how to retrieve the data from the database.

7.1. Overview

The process of retrieving or the command to retrieve data from a database is called a query. In SQL
the SELECT command is used to specify queries. The general syntax of the SELECT command is

[WTH wi th_queries] SELECT select |ist FROMtabl e_expression
[sort_specification]

The following sections describe the details of the select list, the table expression, and the sort
specification. W TH queries are treated last since they are an advanced feature.

A simple kind of query has the form:

SELECT * FROM t abl el;

Assuming that there is atable called t abl el, this command would retrieve al rows and all user-
defined columns from t abl el. (The method of retrieval depends on the client application. For
example, the psgl program will display an ASCII-art table on the screen, while client libraries will
offer functionsto extract individual valuesfrom the query result.) The select list specification* means
all columns that the table expression happens to provide. A select list can also select a subset of the
available columns or make calculations using the columns. For example, if t abl el has columns
named a, b, and ¢ (and perhaps others) you can make the following query:

SELECT a, b + ¢ FROM t abl el;
(assuming that b and ¢ are of anumerical datatype). See Section 7.3 for more details.

FROM tabl el is a simple kind of table expression: it reads just one table. In general, table
expressions can be complex constructs of base tables, joins, and subqueries. But you can also omit the
table expression entirely and use the SELECT command as a calculator:

SELECT 3 * 4;
Thisis more useful if the expressions in the select list return varying results. For example, you could

call afunction thisway:

SELECT random();

7.2. Table Expressions

A table expression computes a table. The table expression contains a FROMclause that is optionally
followed by WHERE, GROUP BY, and HAVI NG clauses. Trivia table expressions simply refer to a
table on disk, a so-called base table, but more complex expressions can be used to modify or combine
base tables in various ways.

The optional WHERE, GROUP BY, and HAVI NG clauses in the table expression specify a pipeline
of successive transformations performed on the table derived in the FROM clause. All these

108

Queries

transformations produce a virtual table that provides the rows that are passed to the select list to
compute the output rows of the query.

7.2.1. The FROMClause

The FROM Clause derives a table from one or more other tables given in a comma-separated table
reference list.

FROM tabl e_reference [, table_reference [, ...]]

A table reference can be a table name (possibly schema-qualified), or a derived table such as a
subguery, a JA N construct, or complex combinations of these. If more than one table reference is
listed in the FROM clause, the tables are cross-joined (that is, the Cartesian product of their rows is
formed; see below). Theresult of the FROMIist isan intermediate virtual table that can then be subject
to transformations by the WHERE, GROUP BY, and HAVI NG clauses and is finally the result of the
overall table expression.

When a table reference names a table that is the parent of a table inheritance hierarchy, the table
reference produces rows of not only that table but al of its descendant tables, unless the key word
ONLY precedes the table name. However, the reference produces only the columns that appear in the
named table — any columns added in subtables are ignored.

Instead of writing ONLY before the table name, you can write * after the table name to explicitly
specify that descendant tables are included. There is no real reason to use this syntax any more,
because searching descendant tablesis now always the default behavior. However, it is supported for
compatibility with older releases.

7.2.1.1. Joined Tables

A joined table is a table derived from two other (real or derived) tables according to the rules of the
particular join type. Inner, outer, and cross-joins are available. The general syntax of ajoined tableis

Tl join_type T2 [join_condition]

Joins of al types can be chained together, or nested: either or both T1 and T2 can be joined tables.
Parentheses can be used around JO N clauses to control thejoin order. In the absence of parentheses,
JO Nclauses nest | eft-to-right.

Join Types

Crossjoin

Tl CROSS JAO N T2

For every possible combination of rows from T1 and T2 (i.e., a Cartesian product), the joined
table will contain a row consisting of all columnsin T1 followed by al columnsin T2. If the
tables have N and M rows respectively, the joined table will have N * M rows.

FROM T1 CROSS JO N T2 isequivalentto FROM T1 | NNER JO N T2 ON TRUE (see
below). Itisalso equivalent to FROM T1, T2.

Note

This latter equivalence does not hold exactly when more than two tables appear, because
JA N binds more tightly than comma. For example FROM T1 CROSS JO N T2
I NNER JO N T3 ON condi ti onisnotthesameasFROM T1, T2 | NNER JO N

109

Queries

T3 ON condi ti on because the condi ti on can reference T1 in the first case but
not the second.

Qualified joins

TL { [INNER] | { LEFT | RIGHT | FULL } [QUTER] } JON T2

ON bool ean_expressi on

TL { [INNER] | { LEFT | RIGHT | FULL } [QUTER] } JO N T2 USI NG
(join colum list)

T1 NATURAL { [INNER] | { LEFT | RIGHT | FULL } [QUTER] } JON T2

The words | NNER and OQUTER are optional in all forms. | NNER is the default; LEFT, Rl GHT,
and FULL imply an outer join.

Thejoin condition is specified in the ON or USI NG clause, or implicitly by the word NATURAL.
Thejoin condition determines which rows from the two source tables are considered to “match”,
as explained in detail below.

The possible types of qualified join are:
I NNER JO N

For each row R1 of T1, the joined table has arow for each row in T2 that satisfies the join
condition with R1.

LEFT OQUTER JO N

First, an inner join is performed. Then, for each row in T1 that does not satisfy the join
condition with any row in T2, ajoined row is added with null valuesin columns of T2. Thus,
the joined table always has at least one row for each row in T1.

Rl GHT QUTER JAO N

First, an inner join is performed. Then, for each row in T2 that does not satisfy the join
condition with any row in T1, ajoined row is added with null valuesin columns of T1. This
isthe converse of aleft join: the result table will always have arow for each row in T2.

FULL OQUTER JAO N

First, an inner join is performed. Then, for each row in T1 that does not satisfy the join
condition with any row in T2, ajoined row is added with null valuesin columns of T2. Also,
for each row of T2 that does not satisfy the join condition with any row in T1, ajoined row
with null valuesin the columns of T1 is added.

The ON clause is the most general kind of join condition: it takes a Boolean value expression of
the same kind as is used in a WHERE clause. A pair of rows from T1 and T2 match if the ON
expression evaluates to true.

The USI NGclauseisashorthand that allows you to take advantage of the specific situation where
both sides of the join use the same name for the joining column(s). It takes a comma-separated
list of the shared column names and forms ajoin condition that includes an equality comparison
for each one. For example, joining T1 and T2 with USI NG (a, b) producesthejoin condition
ON Tl.a = T2.a AND Tl.b = T2.b.

Furthermore, the output of JO N USI NG suppresses redundant columns: thereis no need to print
both of the matched columns, since they must have equal values. While JO N ON produces all
columns from T1 followed by al columnsfrom T2, JO N USI NG produces one output column
for each of the listed column pairs (in the listed order), followed by any remaining columns from
T1, followed by any remaining columns from T2.

110

Queries

Finally, NATURAL isashorthand form of USI NG it formsaUSI NGlist consisting of all column
names that appear in both input tables. As with USI NG, these columns appear only once in the
output table. If there are no common column names, NATURAL JO N behaveslikeJO N . . .
ON TRUE, producing a cross-product join.

Note

USI NGisreasonably safefrom column changesin thejoined relationssince only thelisted
columns are combined. NATURAL is considerably more risky since any schema changes
to either relation that cause a new matching column name to be present will cause thejoin
to combine that new column as well.

To put this together, assume we have tablest 1:

num | nane

then we get

the following results for the various joins:

=> SELECT * FROMt1l CRCSS JO N t2;
num | nane | num| val ue

T WWWNNNRP, R PP

7
~ 0 00T TUTO9 9O

(9

GQWkFRFUOOWERE OWwPRk

+
|
|
| zzz
|
|
|
|
|
|

=> SELECT * FROMt1l INNER JON t2 ONt1l.num= t2. num
num | nane | num| val ue

=> SELECT * FROMt1 INNER JO N t2 USING (num;

num | n

ame | val ue

111

Queries

3| ¢ | yyy
(2 rows)

=> SELECT * FROM t1 NATURAL | NNER JO N t 2;
num | nane | val ue

_____ Fmm e e e e e - - -
1| a | xxx
31 ¢ | yyy

(2 rows)

=> SELECT * FROMt1 LEFT JON t2 ON t1. num = t2. num
num| name | num| val ue

yyy

=> SELECT * FROMt1 LEFT JO N t2 USING (nun;

=> SELECT * FROMt1l RIGHT JON t2 ON t1. num = t2. num
num| name | num| val ue

----- B e L
1| a | 1| xxx
31 ¢ | 31 yyy

| | 5| zzz
(3 rows)

=> SELECT * FROMt1 FULL JON t2 ON t1. num = t2. num
num| name | num| val ue

----- B e L
1| a | 1| xxx
2] b | |
31 ¢ | 31 yyy

| | 51| zzz
(4 rows)

The join condition specified with ON can al so contain conditions that do not relate directly to thejoin.
This can prove useful for some queries but needs to be thought out carefully. For example:

=> SELECT * FROMt1 LEFT JONt2 ONtl.num= t2.num AND t 2. val ue =

XXX ;
num| name | num| val ue
----- Ty U
1| a | 1| xxx
2| b | |
3] c | |
(3 rows)

Notice that placing the restriction in the WHERE clause produces a different result:

112

Queries

=> SELECT * FROMt1 LEFT JON t2 ON t1.num = t2. num WHERE t 2. val ue

= " Xxx";

num| name | num| val ue

----- Ty
1| a | 1| xxx

(1 row

This is because a restriction placed in the ON clause is processed before the join, while a restriction
placed in the WHERE clause is processed after the join. That does not matter with inner joins, but it
meatters alot with outer joins.

7.2.1.2. Table and Column Aliases

A temporary name can be given to tables and complex table references to be used for references to
the derived table in the rest of the query. Thisiscalled atable alias.

To create atable alias, write

FROM t abl e_reference AS ali as

or

FROM t abl e_reference alias
The AS key word is optional noise. al i as can be any identifier.
A typical application of table aliasesis to assign short identifiers to long table names to keep the join

clauses readable. For example:

SELECT * FROM sone_very long table name s JON
another fairly long nane a ON s.id = a.num

The alias becomes the new name of the table reference so far as the current query is concerned — it
isnot allowed to refer to the table by the original name elsewhere in the query. Thus, thisis not valid:

SELECT * FROM ny_table AS m WHERE ny_table.a > 5; -- wong

Table aliases are mainly for notational convenience, but it is necessary to use them when joining a

tableto itself, e.g.:

SELECT * FROM people AS nmother JO N people AS child ON nother.id =
chi l d. mot her _i d;

Additionally, an aliasisrequired if the table reference is a subquery (see Section 7.2.1.3).

Parentheses are used to resolve ambiguities. In the following example, the first statement assigns the

alias b to the second instance of my_t abl e, but the second statement assigns the alias to the result
of thejoin:

SELECT * FROM ny_table AS a CROSS JON ny table AS b ...
SELECT * FROM (my_table AS a CROSS JON ny_table) AS b ...

Another form of table aliasing gives temporary hames to the columns of the table, aswell asthetable
itself:

113

Queries

FROM t abl e_reference [AS] alias (columl [, colum2 [, ...]])

If fewer column aliases are specified than the actual table has columns, the remaining columns are not
renamed. This syntax is especially useful for self-joins or subqueries.

When an dias is applied to the output of a JO N clause, the alias hides the original name(s) within
the JA N. For example:

SELECT a.* FROM ny_table AS a JO N your_table AS b ON ...

isvalid SQL, but:

SELECT a.* FROM (ny_table AS a JO N your_table AS b ON...) AS c

isnot valid; thetable alias a is not visible outside the dlias c.

7.2.1.3. Subqueries

Subqueries specifying a derived table must be enclosed in parentheses and must be assigned a table
alias name (asin Section 7.2.1.2). For example:

FROM (SELECT * FROM tabl el) AS alias_nane

This example is equivalent to FROM t abl el AS al i as_nane. More interesting cases, which
cannot be reduced to a plain join, arise when the subquery involves grouping or aggregation.

A subquery can also be a VALUES list:

FROM (VALUES (' anne', 'smith'), ('bob', 'jones'), ('joe', "blow))
AS nanes(first, |ast)

Again, atable aiasisrequired. Assigning alias names to the columns of the VALUES list is optional,
but is good practice. For more information see Section 7.7.

7.2.1.4. Table Functions

Table functions are functions that produce a set of rows, made up of either base data types (scalar
types) or composite data types (table rows). They are used like atable, view, or subquery in the FROM
clause of aquery. Columns returned by table functions can beincluded in SELECT, JA N, or WHERE
clauses in the same manner as columns of atable, view, or subquery.

Table functions may also be combined using the ROANS FROM syntax, with the results returned in
parallel columns; the number of result rows in this case is that of the largest function result, with
smaller results padded with null values to match.

function_call [WTH ORDI NALITY] [[AS] table_alias [(columm_alias
[. .- DII

ROAS FROM function_call [, ...]) [WTH ORD NALI TY]

[[AS] table_ alias [(colum_alias [, ...])]11]

If theW TH ORDI NALI TY clauseis specified, an additional column of typebi gi nt will be added
to the function result columns. This column numbers the rows of the function result set, starting from
1. (Thisis ageneraization of the SQL-standard syntax for UNNEST ... W TH ORDI NALI TY.)
By default, the ordinal columniscalled or di nal i t y, but adifferent column name can be assigned
toit using an AS clause.

114

Queries

The special table function UNNEST may be called with any number of array parameters, and it returns
a corresponding number of columns, asif UNNEST (Section 9.18) had been called on each parameter
separately and combined using the ROAS FROMconstruct.

UNNEST(array_expression [, ...]) [WTH ORDI NALI TY]
[[AS] table alias [(colum_alias [, ...])]1]

If not abl e_al i as isspecified, the function nameis used as the table name; in the case of a ROAS
FROM) construct, the first function's name is used.

If column aliases are not supplied, then for afunction returning a base data type, the column nameis
also the same as the function name. For a function returning a composite type, the result columns get
the names of the individual attributes of the type.

Some examples:

CREATE TABLE foo (fooid int, foosubid int, foonanme text);

CREATE FUNCTI ON getfoo(int) RETURNS SETOF foo AS $$
SELECT * FROM foo WHERE fooid = $1;
$$ LANGUAGE SQL;

SELECT * FROM getfoo(1) AS t1;

SELECT * FROM f oo
WHERE f oosubid I'N (
SELECT f oosubi d
FROM get f oo(foo.fooid) z
WHERE z.fooid = foo.fooid

)
CREATE VI EW vw_getfoo AS SELECT * FROM getfoo(1);

SELECT * FROM vw_get f 00;

In some cases it is useful to define table functions that can return different column sets depending
on how they are invoked. To support this, the table function can be declared as returning the pseudo-
type r ecor d with no OUT parameters. When such a function is used in a query, the expected row
structure must be specified in the query itself, so that the system can know how to parse and plan the
guery. This syntax looks like:

function_call [AS] alias (columm_definition [, 1)
function_call AS [alias] (columm_definition [, ...])
ROAMS FROM ... function_call AS (colum_definition [, 1)

[, ... 1)

When not using the RONS FROM) syntax, the col urm_defi ni ti on list replaces the column
aliaslist that could otherwise be attached to the FROMitem; the namesin the column definitions serve
as column aliases. When using the ROAS FROM) syntax, a col umm_def i ni ti on list can be
attached to each member function separately; or if there is only one member function and no W TH
ORDI NALI TY clause, acol utm_defi ni ti on list can be written in place of a column alias list
following ROAS FROM) .

Consider this example:

SELECT *

115

Queries

FROM dbl i nk(' dbname=nydb', ' SELECT pronane, prosrc FROM
pg_proc’)
AS t 1(pronane nane, prosrc text)
WHERE pronane LIKE ' bytea% ;

The dblink function (part of the dblink module) executes a remote query. It is declared to return
r ecor d since it might be used for any kind of query. The actual column set must be specified in the
calling query so that the parser knows, for example, what * should expand to.

This example uses ROAS FROM

SELECT *
FROM ROAS FROM

(
json_to recordset('[{"a":40,"b":"fo0"},
{"a":"100","b":"bar"}]")
AS (a | NTEGER, b TEXT),
generate_series(1, 3)
) AS x (p, d, s)

ORDER BY p;
p | a | s
_____ e E
40 | foo | 1
100 | bar | 2

I | 3

It joins two functions into a single FROMtarget.] son_t o_recor dset () isinstructed to return
two columns, thefirsti nt eger andthesecondt ext . Theresultof gener at e_seri es() isused
directly. The ORDER BY clause sorts the column values as integers.

7.2.1.5. LATERAL Subqueries

Subqueries appearing in FROM can be preceded by the key word LATERAL. This allows them
to reference columns provided by preceding FROM items. (Without LATERAL, each subquery is
evaluated independently and so cannot cross-reference any other FROMitem.)

Tablefunctions appearing in FROMcan also be preceded by the key word LATERAL, but for functions
the key word is optional; the function's arguments can contain references to columns provided by
preceding FROMitemsin any case.

A LATERAL item can appear at top level in the FROMIist, or withinaJO Ntree. In the latter case it
can also refer to any itemsthat are on the left-hand side of aJO Nthat it is on the right-hand side of.

When a FROMitem contains LATERAL cross-references, evaluation proceeds as follows: for each
row of the FROMitem providing the cross-referenced column(s), or set of rows of multiple FROM
items providing the columns, the LATERAL item is evaluated using that row or row set's values of
the columns. The resulting row(s) are joined as usual with the rows they were computed from. Thisis
repeated for each row or set of rows from the column source table(s).

A trivial example of LATERAL is
SELECT * FROM foo, LATERAL (SELECT * FROM bar WHERE bar.id =
foo. bar_id) ss;

Thisisnot especially useful since it has exactly the same result as the more conventional

116

Queries

7.2.2.

SELECT * FROM foo, bar WHERE bar.id = foo. bar_id;

LATERAL isprimarily useful when the cross-referenced columnis necessary for computing the row(s)
to be joined. A common application is providing an argument value for a set-returning function. For
example, supposing that vert i ces(pol ygon) returns the set of vertices of a polygon, we could
identify close-together vertices of polygons stored in atable with:

SELECT pl.id, p2.id, vl, v2
FROM pol ygons pl, pol ygons p2,
LATERAL vertices(pl.poly) vi,
LATERAL vertices(p2.poly) v2
WHERE (v1 <-> v2) < 10 AND pl.id != p2.id;

This query could also be written

SELECT pl.id, p2.id, vl, v2

FROM pol ygons pl CROSS JO N LATERAL vertices(pl.poly) vi,
pol ygons p2 CROSS JO N LATERAL vertices(p2.poly) v2

WHERE (v1 <-> v2) < 10 AND pl.id != p2.id;

or in severa other equivalent formulations. (As already mentioned, the LATERAL key word is
unnecessary in this example, but we use it for clarity.)

It is often particularly handy to LEFT JO N to a LATERAL subquery, so that source rows will
appear in the result even if the LATERAL subquery produces no rows for them. For example,
if get _product _nanes() returns the names of products made by a manufacturer, but some
manufacturers in our table currently produce no products, we could find out which ones those are
like this:

SELECT m nane

FROM manuf acturers m LEFT JO N LATERAL get product _names(m i d)
pname ON true

WHERE pnanme | S NULL;

The WHERE Clause

The syntax of the WHERE Clauseis

WHERE search_condition

where sear ch_condi ti on isany value expression (see Section 4.2) that returns a value of type
bool ean.

After the processing of the FROM clause is done, each row of the derived virtual table is checked
against the search condition. If the result of the condition is true, the row is kept in the output table,
otherwise (i.e, if the result is false or null) it is discarded. The search condition typically references
at least one column of the table generated in the FROMclause; thisis not required, but otherwise the
VWHERE clause will be fairly useless.

Note

The join condition of an inner join can be written either in the WHERE clause or inthe JO N
clause. For example, these table expressions are equivalent:

FROM a, b WHERE a.id = b.id AND b.val > 5

117

Queries

7.2.3.

and:

FROM a INNER JON b ON (a.id = b.id) WHERE b.val > 5

or perhaps even:

FROM a NATURAL JO N b WHERE b.val > 5

Which one of these you use is mainly a matter of style. The JO N syntax in the FROMclause
is probably not as portable to other SQL database management systems, even though it isin
the SQL standard. For outer joins there is no choice: they must be done in the FROMclause.
The ON or USI NG clause of an outer join is not equivalent to a WHERE condition, because
it results in the addition of rows (for unmatched input rows) as well as the removal of rows
in the final result.

Here are some examples of WHERE clauses:

SELECT ... FROM fdt WHERE c1 > 5

SELECT ... FROM fdt WHERE c1 IN (1, 2, 3)

SELECT ... FROM fdt WHERE c1 IN (SELECT cl FROMt2)

SELECT ... FROM fdt WHERE c1 IN (SELECT c¢3 FROMt2 WHERE c2 =
fdt.cl + 10)

SELECT ... FROM fdt WHERE c1 BETWEEN (SELECT ¢3 FROMt2 WHERE c2 =
fdt.cl + 10) AND 100

SELECT ... FROM fdt WHERE EXI STS (SELECT c1 FROM t2 WHERE c2 >
fdt.cl)

f dt isthetablederived inthe FROMclause. Rowsthat do not meet the search condition of the WHERE
clause are eliminated from f dt . Notice the use of scalar subqueries asvalue expressions. Just like any
other query, the subqueries can employ complex table expressions. Notice also how f dt isreferenced
in the subqueries. Qualifying c1 asf dt . c1 isonly necessary if c1 is aso the name of a column
in the derived input table of the subquery. But qualifying the column name adds clarity even when
it is not needed. This example shows how the column naming scope of an outer query extends into
itsinner queries.

The GROUP BY and HAVI NG Clauses

After passing the WHERE filter, the derived input table might be subject to grouping, using the GROUP
BY clause, and elimination of group rows using the HAVI NG clause.

SELECT sel ect _|i st
FROM . ..
[WHERE . . .]
GROUP BY groupi ng_col um_ref erence
[, grouping colum_reference]...

The GROUP BY Clause is used to group together those rows in a table that have the same values
in al the columns listed. The order in which the columns are listed does not matter. The effect isto
combine each set of rows having common values into one group row that represents all rows in the

118

Queries

group. This is done to eliminate redundancy in the output and/or compute aggregates that apply to
these groups. For instance:

=> SELECT * FROM test1;

x|y
T .
al| 3
c| 2
b|] 5
al| 1
(4 rows)

=> SELECT x FROM test1 GROUP BY x;
X

a
b
c
(3 rows)

In the second query, we could not have written SELECT * FROM t est 1 GROUP BY x, because
there is no single value for the column y that could be associated with each group. The grouped-by
columns can be referenced in the select list since they have a single value in each group.

Ingenerd, if atableis grouped, columnsthat are not listed in GROUP BY cannot be referenced except
in aggregate expressions. An example with aggregate expressionsiis:

=> SELECT x, sum(y) FROM test1l GROUP BY x;
X | sum

(e
~ N oA

(3 rows

Here sumisan aggregate function that computesasinglevalue over theentiregroup. Moreinformation
about the available aggregate functions can be found in Section 9.20.

Tip

Grouping without aggregate expressions effectively calculates the set of distinct valuesin a
column. This can aso be achieved using the DI STI NCT clause (see Section 7.3.3).

Here is another example: it calculates the total sales for each product (rather than the total sales of
all products):

SELECT product _id, p.name, (sun(s.units) * p.price) AS sales
FROM products p LEFT JO N sales s USI NG (product _id)
GROUP BY product _id, p.nane, p.price;

In this example, the columns pr oduct i d, p. nane, and p. pri ce must be in the GROUP BY
clause since they are referenced in the query select list (but see below). The column s. uni t s does
not have to be in the GROUP BY list sinceit is only used in an aggregate expression (sum . . .)),
which represents the sales of a product. For each product, the query returns a summary row about all
sales of the product.

119

Queries

If the productstableis set up sothat, say, pr oduct _i d istheprimary key, then it would be enough to
group by pr oduct _i d inthe above example, since name and price would be functionally dependent
on the product ID, and so there would be no ambiguity about which name and price value to return
for each product 1D group.

In strict SQL, GROUP BY can only group by columns of the source table but PostgreSQL extends
thisto also allow GROUP BY to group by columnsin the select list. Grouping by value expressions
instead of simple column namesis also allowed.

If atable has been grouped using GROUP BY, but only certain groups are of interest, the HAVI NG
clause can be used, much like a WHERE clause, to eliminate groups from the result. The syntax is.

SELECT select list FROM... [WHERE ...] GROUP BY ...
HAVI NG bool ean_expressi on

Expressionsinthe HAVI NGclause can refer both to grouped expressionsand to ungrouped expressions
(which necessarily involve an aggregate function).

Example:

=> SELECT x, sum(y) FROMtest1l GROUP BY x HAVI NG sun({y) > 3;
X | sum

a | 4
b | 5
(2 rows)

=> SELECT x, sun(y) FROMtest1l GROUP BY x HAVING x < 'c';
X | sum

a | 4
b | 5
(2 rows)

Again, amore reglistic example:

SELECT product _id, p.nanme, (sun(s.units) * (p.price - p.cost)) AS
profit
FROM products p LEFT JO N sal es s USI NG (product _id)
WHERE s. date > CURRENT _DATE - | NTERVAL '4 weeks'
GROUP BY product _id, p.nane, p.price, p.cost
HAVI NG sum(p. price * s.units) > 5000;

In the example above, the WHERE clause is selecting rows by a column that is not grouped (the
expression is only true for sales during the last four weeks), while the HAVI NG clause restricts the
output to groupswith total grosssalesover 5000. Notethat the aggregate expressionsdo not necessarily
need to be the samein all parts of the query.

If aquery contains aggregate function calls, but no GROUP BY clause, grouping still occurs: the result
is a single group row (or perhaps no rows at al, if the single row is then eliminated by HAVI NG).
The sameistrueif it contains a HAVI NG clause, even without any aggregate function calls or GROUP
BY clause.

7.2.4. GROUPI NG SETS, CUBE, and ROLLUP

120

Queries

More complex grouping operations than those described above are possible using the concept of
grouping sets. The data selected by the FROM and WHERE clauses is grouped separately by each
specified grouping set, aggregates computed for each group just as for simple GROUP BY clauses,
and then the results returned. For example:

=> SELECT * FROM itens_sol d;
brand | size | sales

_______ .
Foo | L | 10
Foo | M | 20
Bar | M | 15
Bar | L | 5
(4 rows)

=> SELECT brand, size, sun{sales) FROMitens_sold GROUP BY GROUPI NG
SETS ((brand), (size), ());
brand | size | sum

_______ e .
Foo | | 30
Bar | | 20

| L | 15

| M | 35

| | 50
(5 rows)

Each sublist of GROUPI NG SETS may specify zero or more columnsor expressions and isinterpreted
the same way as though it were directly in the GROUP BY clause. An empty grouping set means that
all rows are aggregated down to asingle group (which is output even if no input rows were present),
as described above for the case of aggregate functions with no GROUP BY clause.

References to the grouping columns or expressions are replaced by null values in result rows for
grouping setsin which those columns do not appear. To distinguish which grouping a particular output
row resulted from, see Table 9.56.

A shorthand notation is provided for specifying two common types of grouping set. A clause of the
form

ROLLUP (el, e2, e3, ...)

represents the given list of expressions and all prefixes of the list including the empty list; thus it is

equivalent to

GROUPI NG SETS (

(el, e2, e3, ...),
(el, e2),
(el),

()
)

Thisis commonly used for analysis over hierarchical data; e.g., total salary by department, division,
and company-wide total.

A clause of the form

CUBE (el, e2, ...)

121

Queries

represents the given list and all of its possible subsets (i.e., the power set). Thus

CUBE (a, b, c)

isequivalent to

GROUPI NG SETS (
(a b, c),
(a b),
(a, c),
(a),
(b, ¢),
(b),
(c),
()

)

Theindividual elementsof a CUBE or ROLL UP clause may beeither individual expressions, or sublists
of elements in parentheses. In the latter case, the sublists are treated as single units for the purposes
of generating the individua grouping sets. For example:

CUBE ((a, b), (c, d))

is equivalent to

GROUPI NG SETS (
(a b, c, d),

(a b),
(c, d),
()
)
and

ROLLUP (a, (b, c), d)

isequivalent to

GROUPI NG SETS (
(a b, c, d)
(a b, c),

(a)

()

)

The CUBE and ROLLUP constructs can be used either directly in the GROUP BY clause, or nested
inside a GROUPI NG SETS clause. If one GROUPI NG SETS clause is nested inside another, the
effect isthe same asif all the elements of the inner clause had been written directly in the outer clause.

If multiple grouping items are specified in asingle GROUP BY clause, then the final list of grouping
setsis the cross product of the individual items. For example:

GROUP BY a, CUBE (b, c), GROUPING SETS ((d), (e))

122

Queries

isequivalent to

GROUP BY GROUPI NG SETS (
(a, b, ¢, d, (a, b, c, e),

(a, b, d), (a, b, e),
(a, c, d), (a, c, e),
(a, d), (a, e)

Note

Theconstruct (a, b) isnormally recognized in expressions as arow constructor. Within the
GROUP BY clause, this does not apply at thetop levels of expressions, and (a, b) isparsed
as alist of expressions as described above. If for some reason you need arow constructor in
agrouping expression, use RON a, b).

7.2.5. Window Function Processing

If the query contains any window functions (see Section 3.5, Section 9.21 and Section 4.2.8), these
functions are evaluated after any grouping, aggregation, and HAVI NGfiltering isperformed. That is, if
the query uses any aggregates, GROUP BY, or HAVI NG, then the rows seen by the window functions
are the group rows instead of the original table rows from FROMWHERE.

When multiple window functions are used, all the window functions having syntactically equivalent
PARTI TI ON BY and ORDER BY clausesin their window definitions are guaranteed to be evaluated
in asingle pass over the data. Therefore they will see the same sort ordering, even if the ORDER BY
does not uniquely determine an ordering. However, no guarantees are made about the evaluation of
functions having different PARTI TI ON BY or ORDER BY specifications. (In such casesasort step is
typically required between the passes of window function evaluations, and the sort is not guaranteed
to preserve ordering of rows that its ORDER BY sees as equivalent.)

Currently, window functions always require presorted data, and so the query output will be ordered
according to one or another of the window functions PARTI TI ON BY/ORDER BY clauses. It is not
recommended to rely on this, however. Use an explicit top-level ORDER BY clause if you want to be
sure the results are sorted in a particular way.

7.3. Select Lists

7.3.1.

As shown in the previous section, the table expression in the SELECT command constructs an
intermediate virtual table by possibly combining tables, views, eliminating rows, grouping, etc. This
tableisfinally passed on to processing by the select list. The select list determines which columns of
the intermediate table are actually outpuit.

Select-List Items

The simplest kind of select list is * which emits all columns that the table expression produces.
Otherwise, aselect list isacommar-separated list of value expressions (as defined in Section 4.2). For
instance, it could be alist of column names:

SELECT a, b, ¢ FROM ...

The columns names a, b, and ¢ are either the actual names of the columns of tables referenced in the
FROMclause, or the aliases given to them as explained in Section 7.2.1.2. The name space available

123

Queries

7.3.2.

7.3.3.

in the select list is the same as in the WHERE clause, unless grouping is used, in which case it is the
same asin the HAVI NGclause.

If more than one table has a column of the same name, the table name must also be given, asin:

SELECT tbl1l.a, tbl2.a, tbll.b FROM...

When working with multipletables, it can also be useful to ask for all the columns of a particular table:

SELECT tbl1.*, tbl2.a FROM ...
See Section 8.16.5 for more about thet abl e_nane. * notation.

If an arbitrary value expression is used in the select list, it conceptually adds a new virtual column to
the returned table. The value expression is evaluated once for each result row, with the row's values
substituted for any column references. But the expressions in the select list do not have to reference
any columnsin the table expression of the FROMclause; they can be constant arithmetic expressions,
for instance.

Column Labels

The entries in the select list can be assigned names for subsequent processing, such as for usein an
ORDER BY clause or for display by the client application. For example:

SELECT a AS value, b + ¢ AS sum FROM . ..

If no output column nameis specified using AS, the system assigns adefault column name. For simple
column references, this is the name of the referenced column. For function calls, thisis the name of
the function. For complex expressions, the system will generate a generic name.

The AS keyword is optional, but only if the new column name does not match any PostgreSQL
keyword (see Appendix C). To avoid an accidental match to a keyword, you can double-quote the
column name. For example, VALUE is a keyword, so this does not work:

SELECT a value, b + ¢ AS sum FROM . ..

but this does:

SELECT a "value", b + ¢ AS sum FROM . ..

For protection against possible future keyword additions, it is recommended that you always either
write AS or double-quote the output column name.

Note

The naming of output columns here is different from that done in the FROM clause (see
Section 7.2.1.2). It is possible to rename the same column twice, but the name assigned in the
select list isthe one that will be passed on.

DI STI NCT

After the select list has been processed, the result table can optionally be subject to the elimination of
duplicate rows. The DI STI NCT key word iswritten directly after SELECT to specify this:

124

Queries

SELECT DI STI NCT sel ect i st

(Instead of DI STI NCT the key word ALL can be used to specify the default behavior of retaining
all rows.)

Obvioudy, two rows are considered distinct if they differ in at least one column value. Null values

are considered egual in this comparison.

Alternatively, an arbitrary expression can determine what rows are to be considered distinct:

SELECT DI STI NCT ON (expression [, expression ...]) select list

Here expr essi on isan arbitrary value expression that is evaluated for al rows. A set of rows for
which all the expressions are equal are considered duplicates, and only the first row of the set is kept
in the output. Note that the “first row” of a set is unpredictable unless the query is sorted on enough
columns to guarantee a unique ordering of the rows arriving at the DI STI NCT filter. (DI STI NCT
ON processing occurs after ORDER BY sorting.)

The DI STI NCT ON clause is not part of the SQL standard and is sometimes considered bad style
because of the potentially indeterminate nature of its results. With judicious use of GROUP BY and
subqueriesin FROM this construct can be avoided, but it is often the most convenient alternative.

7.4. Combining Queries

Theresults of two queries can be combined using the set operations union, intersection, and difference.
The syntax is

gqueryl UNION [ALL] query?2
queryl | NTERSECT [ALL] query2
queryl EXCEPT [ALL] query2

where quer y1 and quer y2 are queries that can use any of the features discussed up to this point.

UNI ON effectively appends the result of quer y2 to the result of quer y1 (athough there is no
guarantee that this is the order in which the rows are actually returned). Furthermore, it eliminates
duplicate rows from its result, in the same way as DI STI NCT, unlessUNI ON ALL isused.

| NTERSECT returns al rows that are both in the result of quer y1 and in the result of quer y2.
Duplicate rows are eliminated unless | NTERSECT ALL isused.

EXCEPT returns all rows that are in the result of quer y1 but not in the result of quer y2. (This
is sometimes called the difference between two queries.) Again, duplicates are eliminated unless
EXCEPT ALL isused.

In order to calculate the union, intersection, or difference of two queries, the two queries must be
“union compatible”, which means that they return the same number of columns and the corresponding
columns have compatible data types, as described in Section 10.5.

Set operations can be combined, for example

queryl UNI ON query2 EXCEPT query3

which isequivalent to

(queryl UNI ON query2) EXCEPT query3

125

Queries

As shown here, you can use parentheses to control the order of evaluation. Without parentheses,
UNI ON and EXCEPT associate left-to-right, but | NTERSECT binds more tightly than those two
operators. Thus

queryl UNI ON query2 | NTERSECT query3

means

gueryl UNI ON (query2 | NTERSECT query3)

Y ou can also surround an individual quer y with parentheses. Thisisimportant if the quer y needs
to use any of the clauses discussed in following sections, such asL1 M T. Without parentheses, you'll
get a syntax error, or e€lse the clause will be understood as applying to the output of the set operation
rather than one of itsinputs. For example,

SELECT a FROM b UNI ON SELECT x FROMy LIMT 10

is accepted, but it means

(SELECT a FROM b UNI ON SELECT x FROMy) LIMT 10

not

SELECT a FROM b UNI ON (SELECT x FROMy LIM T 10)

7.5. Sorting Rows

After aquery has produced an output table (after the select list has been processed) it can optionally
be sorted. If sorting is not chosen, the rows will be returned in an unspecified order. The actual order
in that case will depend on the scan and join plan types and the order on disk, but it must not berelied
on. A particular output ordering can only be guaranteed if the sort step is explicitly chosen.

The ORDER BY clause specifies the sort order:

SELECT sel ect _|i st
FROM t abl e_expr essi on
ORDER BY sort_expressionl [ASC | DESC] [NULLS { FIRST | LAST }]
[, sort_expression2 [ASC | DESC] [NULLS { FIRST |
LAST }] ...]

The sort expression(s) can be any expression that would be valid in the query's select list. An example
is.

SELECT a, b FROMtabl el ORDER BY a + b, c;

When more than one expression is specified, the later values are used to sort rows that are equal
according to the earlier values. Each expression can befollowed by an optional ASC or DESC keyword
to set the sort direction to ascending or descending. ASC order is the default. Ascending order puts
smaller valuesfirst, where“smaller” isdefined in terms of the < operator. Similarly, descending order
is determined with the > operator. *

L Actually, PostgreSQL uses the default B-tree operator class for the expression's data type to determine the sort ordering for ASC and DESC.
Conventionally, data types will be set up so that the < and > operators correspond to this sort ordering, but a user-defined data type's designer
could choose to do something different.

126

Queries

TheNULLS FI RST and NULLS LAST options can be used to determine whether nulls appear before
or after non-null values in the sort ordering. By default, null values sort asif larger than any non-null
value; that is, NULLS FI RST isthe default for DESC order, and NULLS LAST otherwise.

Notethat the ordering optionsare considered independently for each sort column. For example ORDER
BY x, y DESCmeans ORDER BY x ASC, y DESC, which isnot the same as ORDER BY
x DESC, y DESC.

A sort_expressi on can aso be the column label or number of an output column, asin:

SELECT a + b AS sum c¢ FROM t abl el ORDER BY sum
SELECT a, max(b) FROM tabl el GROUP BY a ORDER BY 1;

both of which sort by the first output column. Note that an output column name has to stand alone,
that is, it cannot be used in an expression — for example, thisis not correct:

SELECT a + b AS sum ¢ FROMtabl el ORDER BY sum + c; - -
Wr ong

Thisrestriction is made to reduce ambiguity. Thereisstill ambiguity if an ORDER BY itemisasimple
name that could match either an output column name or a column from the table expression. The
output column is used in such cases. This would only cause confusion if you use AS to rename an
output column to match some other table column's name.

ORDER BY can be applied to the result of a UNI ON, | NTERSECT, or EXCEPT combination, but in
this caseit isonly permitted to sort by output column names or numbers, not by expressions.

7.6. LI M Tand OFFSET

LI M T and OFFSET allow you to retrieve just a portion of the rows that are generated by the rest
of the query:

SELECT select |ist
FROM t abl e_expr essi on
[ORDER BY ...]
[LIMT { number | ALL }] [OFFSET number]

If alimit count is given, no more than that many rows will be returned (but possibly fewer, if the
query itself yields fewer rows). LI M T ALL isthe same asomittingtheLl M T clause, asisLIM T
with aNULL argument.

OFFSET says to skip that many rows before beginning to return rows. OFFSET 0 is the same as
omitting the OFFSET clause, asis OFFSET with aNULL argument.

If both OFFSET and LI M T appear, then OFFSET rows are skipped before starting to count the
LI M T rowsthat are returned.

Whenusing LI M T, it isimportant to use an ORDER BY clause that constrains the result rows into a
unique order. Otherwise you will get an unpredictable subset of the query'srows. Y ou might be asking
for the tenth through twentieth rows, but tenth through twentieth in what ordering? The ordering is
unknown, unless you specified ORDER BY.

The query optimizer takes LI M T into account when generating query plans, so you are very likely
to get different plans (yielding different row orders) depending on what you give for LIM T and
OFFSET. Thus, using different LI M T/OFFSET values to select different subsets of a query result
will give inconsistent results unless you enforce a predictable result ordering with ORDER BY. This
isnot abug; it is an inherent consegquence of the fact that SQL does not promise to deliver the results
of aquery in any particular order unless ORDER BY is used to constrain the order.

127

Queries

The rows skipped by an OFFSET clause still have to be computed inside the server; therefore alarge
OFFSET might be inefficient.

7.7. VALUES Lists

VALUES provides away to generate a“ constant table” that can be used in a query without having to
actually create and populate atable on-disk. The syntax is

VALUES (expression [, ...]) [, ...]

Each parenthesized list of expressions generates a row in the table. The lists must all have the same
number of elements (i.e., the number of columns in the table), and corresponding entries in each
list must have compatible data types. The actual data type assigned to each column of the result is
determined using the same rules as for UNI ON (see Section 10.5).

Asan example:

VALUES (1, 'one'), (2, "two'), (3, 'three');

will return atable of two columns and three rows. It's effectively equivalent to:

SELECT 1 AS columl, 'one' AS colum2
UNI ON ALL

SELECT 2, 'two'

UNI ON ALL

SELECT 3, 'three';

By default, PostgreSQL assigns the names col unm1, col uimz2, etc. to the columns of a VALUES

table. The column names are not specified by the SQL standard and different database systems do it
differently, soit's usually better to override the default names with atable aliaslist, like this:

=> SELECT * FROM (VALUES (1, 'one'), (2, '"two'), (3, '"three')) AS't
(numletter);
num | letter

Syntactically, VALUES followed by expression listsis treated as equivalent to:

SELECT sel ect _|ist FROM tabl e_expression

and can appear anywhere a SEL ECT can. For example, you can use it as part of a UNI ON, or attach a
sort _specificati on(ORDER BY, LI M T, and/or OFFSET) to it. VALUES is most commonly
used as the data source in an | NSERT command, and next most commonly as a subquery.

For more information see VALUES.

7.8. W THQueries (Common Table
Expressions)

128

Queries

7.8.1.

W TH provides away to write auxiliary statements for usein alarger query. These statements, which
are often referred to as Common Table Expressions or CTEs, can be thought of as defining temporary
tables that exist just for one query. Each auxiliary statement in a W TH clause can be a SELECT,
| NSERT, UPDATE, or DELETE; and the W TH clause itself is attached to a primary statement that
can also be a SELECT, | NSERT, UPDATE, or DELETE.

SELECT in WTH

The basic value of SELECT in W TH is to break down complicated queries into simpler parts. An
exampleis:

W TH regi onal _sales AS (
SELECT regi on, SUM anount) AS total sales
FROM or ders
GROUP BY region
), top_regions AS (
SELECT region
FROM r egi onal _sal es
WHERE total sales > (SELECT SUMtotal sales)/ 10 FROM
regi onal _sal es)
)
SELECT r egi on,
product,
SUM quantity) AS product_units,
SUM amount) AS product _sal es
FROM or ders
WHERE regi on I N (SELECT regi on FROM top_regi ons)
GROUP BY regi on, product;

which displays per-product sales totals in only the top sales regions. The W TH clause defines
two auxiliary statements named r egi onal _sal es and t op_r egi ons, where the output of
regi onal sal es isused intop_regi ons and the output of t op_r egi ons is used in the
primary SELECT query. This example could have been written without W TH, but we'd have needed
two levels of nested sub-SELECTS. It's a bit easier to follow thisway.

The optional RECURSI VE modifier changes W TH from a mere syntactic convenience into afeature
that accomplishes things not otherwise possiblein standard SQL . Using RECURSI VE, aW TH query
canrefer toitsown output. A very simple exampleisthis query to sum theintegersfrom 1 through 100:

W TH RECURSI VE t(n) AS (
VALUES (1)
UNI ON ALL
SELECT n+1 FROMt WHERE n < 100

)
SELECT sunm{n) FROMt;

The general form of arecursive W TH query is always a non-recursive term, then UNI ON (or UNI ON
ALL), then arecursive term, where only the recursive term can contain a reference to the query's own
output. Such aquery is executed as follows:

Recursive Query Evaluation

1. Evaluate the non-recursive term. For UNI ON (but not UNI ON ALL), discard duplicate rows.
Include al remaining rowsin theresult of the recursive query, and al so place them in atemporary
working table.

129

Queries

2. Solong asthe working table is not empty, repeat these steps:

a. Evauate the recursive term, substituting the current contents of the working table for the
recursive self-reference. For UNI ON (but not UNI ON ALL), discard duplicate rows and
rows that duplicate any previous result row. Include all remaining rows in the result of the
recursive query, and also place them in atemporary intermediate table.

b. Replace the contents of the working table with the contents of the intermediate table, then
empty the intermediate table.

Note

Strictly speaking, this process is iteration not recursion, but RECURSI VE is the terminology
chosen by the SQL standards committee.

In the exampl e above, the working table has just a single row in each step, and it takes on the values
from 1 through 100 in successive steps. In the 100th step, there is no output because of the WHERE
clause, and so the query terminates.

Recursive queries are typically used to deal with hierarchical or tree-structured data. A useful example
is this query to find all the direct and indirect sub-parts of a product, given only a table that shows
immediate inclusions:

W TH RECURSI VE i ncl uded_parts(sub_part, part, quantity) AS (
SELECT sub_part, part, quantity FROM parts WHERE part =
"our _product'
UNI ON ALL
SELECT p.sub_part, p.part, p.quantity
FROM i ncl uded_parts pr, parts p
WHERE p. part = pr.sub_part
)
SELECT sub_part, SUMquantity) as total quantity
FROM i ncl uded_parts
GROUP BY sub_part

When working with recursive queriesit isimportant to be sure that the recursive part of the query will
eventually return no tuples, or else the query will loop indefinitely. Sometimes, using UNI ON instead
of UNI ON ALL can accomplish thisby discarding rowsthat duplicate previous output rows. However,
often a cycle does not involve output rows that are completely duplicate: it may be necessary to check
just one or a few fields to see if the same point has been reached before. The standard method for
handling such situations is to compute an array of the already-visited values. For example, consider
the following query that searches atable gr aph using al i nk field:

W TH RECURSI VE search_graph(id, link, data, depth) AS (
SELECT g.id, g.link, g.data, 1
FROM gr aph g
UNI ON ALL
SELECT g.id, g.link, g.data, sg.depth + 1
FROM graph g, search_graph sg
VWHERE g.id = sg.link
)
SELECT * FROM search_graph;

This query will loop if thel i nk relationships contain cycles. Because we require a “depth” output,
just changing UNI ON ALL to UNI ON would not eliminate the looping. Instead we need to recognize

130

Queries

whether we have reached the same row again while following a particular path of links. We add two
columnspat h and cycl e to the loop-prone query:

W TH RECURSI VE search_graph(id, link, data, depth, path, cycle) AS
(
SELECT g.id, g.link, g.data, 1,
ARRAY[g. i d],
fal se
FROM graph ¢
UNI ON ALL
SELECT g.id, g.link, g.data, sg.depth + 1,
path || g.id,
g.id = ANY(path)
FROM graph g, search_graph sg
WHERE g.id = sg.link AND NOT cycle
)
SELECT * FROM sear ch_gr aph;

Aside from preventing cycles, the array valueis often useful in its own right as representing the “ path”
taken to reach any particular row.

In the general case where more than one field needs to be checked to recognize a cycle, use an array
of rows. For example, if we needed to comparefieldsf 1 and f 2:

W TH RECURSI VE search_graph(id, link, data, depth, path, cycle) AS
(
SELECT g.id, g.link, g.data, 1,
ARRAY[RONg.f1, g.f2)],
fal se
FROM graph g
UNI ON ALL
SELECT g.id, g.link, g.data, sg.depth + 1,
path || ROWNg.f1, g.f2),
ROWNg.f1, g.f2) = ANY(path)
FROM graph g, search_graph sg
WHERE g.id = sg.link AND NOT cycle

)
SELECT * FROM search_graph;

Tip

Omit the RON() syntax in the common case where only one field needs to be checked to
recognize a cycle. This allows a simple array rather than a composite-type array to be used,
gaining efficiency.

Tip

Therecursive query evaluation algorithm producesitsoutput in breadth-first search order. You
can display the results in depth-first search order by making the outer query ORDER BY a
“path” column constructed in this way.

A helpful trick for testing queries when you are not certain if they might loop isto placeaLl M T in
the parent query. For example, this query would loop forever without the LI M T:

131

Queries

7.8.2.

W TH RECURSI VE t(n) AS (
SELECT 1
UNI ON ALL
SELECT n+1 FROM t

)
SELECT n FROMt LIM T 100;

This works because PostgreSQL 's implementation evaluates only as many rows of a W TH query as
are actually fetched by the parent query. Using this trick in production is not recommended, because
other systems might work differently. Also, it usually won't work if you make the outer query sort the
recursive query's results or join them to some other table, because in such cases the outer query will
usually try to fetch all of the W TH query's output anyway.

A useful property of W TH queriesis that they are evaluated only once per execution of the parent
query, even if they are referred to more than once by the parent query or sibling W TH queries.
Thus, expensive calculations that are needed in multiple places can be placed within a W TH query
to avoid redundant work. Another possible application is to prevent unwanted multiple evaluations
of functions with side-effects. However, the other side of this coin is that the optimizer is less able
to push restrictions from the parent query down into a W TH query than an ordinary subquery. The
W TH query will generally be evaluated as written, without suppression of rows that the parent query
might discard afterwards. (But, as mentioned above, evaluation might stop early if the reference(s) to
the query demand only alimited number of rows.)

The examples above only show W TH being used with SELECT, but it can be attached in the same
way to | NSERT, UPDATE, or DELETE. In each case it effectively provides temporary table(s) that
can be referred to in the main command.

Data-Modifying Statements in W TH

Y ou can use data-modifying statements (I NSERT, UPDATE, or DELETE) in W TH. Thisallows you
to perform severa different operations in the same query. An exampleis:

W TH noved_rows AS (
DELETE FROM product s
VWHERE
"date" >= '2010-10-01'" AND
"date" < '2010-11-01'
RETURNI NG *
)
| NSERT | NTO products_I og
SELECT * FROM noved_rows;

This query effectively moves rows from pr oduct s to product s_| og. The DELETE in W TH
deletes the specified rows from pr oduct s, returning their contents by means of its RETURNI NG
clause; and then the primary query reads that output and insertsit into pr oduct s_| og.

A fine point of the above example is that the W TH clause is attached to the | NSERT, not the sub-
SELECT within the | NSERT. Thisis necessary because data-modifying statements are only alowed
in W TH clauses that are attached to the top-level statement. However, normal W TH visibility rules
apply, soitis possible to refer to the W TH statement's output from the sub-SELECT.

Data-modifying statements in W TH usually have RETURNI NG clauses (see Section 6.4), as shown
in the example above. It is the output of the RETURNI NG clause, not the target table of the data-
modifying statement, that forms the temporary table that can be referred to by the rest of the query.
If adata-modifying statement in W TH lacks a RETURNI NG clause, then it forms no temporary table
and cannot be referred to in the rest of the query. Such a statement will be executed nonetheless. A
not-particularly-useful exampleis:

132

Queries

WTH t AS (
DELETE FROM f 00

)
DELETE FROM bar ;

Thisexamplewould removeal rowsfromtablesf oo and bar . The number of affected rowsreported
to the client would only include rows removed from bar .

Recursive self-references in data-modifying statements are not allowed. In some cases it is possible
to work around this limitation by referring to the output of arecursive W TH, for example:

W TH RECURSI VE i ncl uded_parts(sub_part, part) AS (
SELECT sub_part, part FROM parts WHERE part = 'our_product'’
UNI ON ALL
SELECT p.sub_part, p.part
FROM i ncl uded_parts pr, parts p
WHERE p. part = pr.sub_part
)
DELETE FROM parts
WHERE part | N (SELECT part FROM i ncl uded_parts);

This query would remove all direct and indirect subparts of a product.

Data-modifying statements in W TH are executed exactly once, and always to completion,
independently of whether the primary query readsall (or indeed any) of their output. Noticethat thisis
different from therulefor SELECT in W TH: as stated in the previous section, execution of a SELECT
iscarried only as far asthe primary query demands its output.

The sub-statements in W TH are executed concurrently with each other and with the main query.
Therefore, when using data-modifying statements in W TH, the order in which the specified updates
actually happen is unpredictable. All the statements are executed with the same snapshot (see
Chapter 13), so they cannot “see” one another's effects on the target tables. This alleviates the effects
of the unpredictability of the actual order of row updates, and means that RETURNI NG data is the
only way to communicate changes between different W TH sub-statements and the main query. An
example of thisisthat in

WTH t AS (
UPDATE products SET price = price * 1.05
RETURNI NG *

)
SELECT * FROM products;

the outer SELECT would return the original prices before the action of the UPDATE, whilein

WTH t AS (
UPDATE products SET price = price * 1.05
RETURNI NG *

)
SELECT * FROM t;

the outer SEL ECT would return the updated data.

Trying to update the same row twice in a single statement is not supported. Only one of the
modificationstakes place, but it isnot easy (and sometimes not possible) to reliably predict which one.
This also applies to deleting a row that was already updated in the same statement: only the update
is performed. Therefore you should generally avoid trying to modify a single row twice in a single

133

Queries

statement. In particular avoid writing W TH sub-statementsthat coul d affect the same rows changed by
the main statement or a sibling sub-statement. The effects of such a statement will not be predictable.

At present, any table used as the target of a datamodifying statement in W TH must not have a
conditional rule, nor an ALSOrule, nor an | NSTEAD rule that expands to multiple statements.

134

Chapter 8. Data Types

PostgreSQL has a rich set of native data types available to users. Users can add new types to
PostgreSQL using the CREATE TY PE command.

Table 8.1 shows al the built-in general-purpose data types. Most of the alternative names listed in
the“Aliases’ column are the names used internally by PostgreSQL for historical reasons. In addition,
some internally used or deprecated types are available, but are not listed here.

Table8.1. Data Types

Name Aliases Description

bi gi nt int8 signed eight-byte integer

bi gseri al serial8 autoi ncrementing eight-byte
integer

bit [(n)] fixed-length bit string

bit varying [(n)]

varbit [(n)]

variable-length bit string

bool ean bool logical Boolean (true/false)
box rectangular box on aplane
byt ea binary data (“byte array”)

character [(n)]

char [(n)]

fixed-length character string

character varying|varchar [(n)] variable-length character string

[(n)]

cidr IPv4 or |Pv6 network address

circle circleon aplane

dat e calendar date (year, month, day)

doubl e precision float8 double precision floating-point
number (8 bytes)

i net IPv4 or |Pv6 host address

i nteger int,int4 signed four-byte integer

interval [fields] time span

[(p)]

j son textual JSON data

j sonb binary JSON data, decomposed

line infinite line on aplane

| seg line segment on a plane

macaddr MAC (Media Access Control)
address

macaddr 8 MAC (Media Access Control)
address (EUI-64 format)

noney currency amount

nuneric [(p, S)] decimal [(p, s)] exact numeric of selectable

precision

pat h geometric path on aplane

pg_l sn PostgreSQL Log Sequence
Number

poi nt geometric point on aplane

135

Data Types

Name Aliases Description

pol ygon closed geometric path on aplane

r eal float4 single precision floating-point
number (4 bytes)

smal | i nt int2 signed two-byte integer

smal | seri al serial 2 autoi ncrementing two-byte
integer

seri al serial4 autoi ncrementing four-byte
integer

t ext variable-length character string

time [(p)] [wthout
tinme zone]

time of day (no time zone)

time [(p)] with time
zone

tinmetz

time of day, including time zone

timestanp [(p) |
[without tine zone]

date and time (no time zone)

timestanp [(p)] with
tinme zone

ti nmestanptz

date and time, including time
zone

tsquery text search query

t svector text search document

t xi d_snapshot user-level transaction ID
snapshot

uui d universally unique identifier

xm XML data

Compatibility

varyi ng, bool ean, char, char act er

The following types (or spellings thereof) are specified by SQL: bi gi nt, bit, bit
varyi ng, charact er, varchar, date,
doubl e precision,integer,interval ,nuneric,decinal,real,snallint,
ti me (with or without time zone), t i nest anp (with or without time zone), xn .

Each datatype has an external representation determined by itsinput and output functions. Many of the
built-in types have obvious external formats. However, several types are either unique to PostgreSQL,
such as geometric paths, or have several possible formats, such asthe date and time types. Some of the
input and output functions are not invertible, i.e., the result of an output function might lose accuracy
when compared to the original input.

8.1. Numeric Types

Numeric types consist of two-, four-, and eight-byte integers, four- and eight-byte floating-point
numbers, and selectable-precision decimals. Table 8.2 lists the avail able types.

Table 8.2. Numeric Types

Name Storage Size Description Range

smal | i nt 2 bytes small-range integer -32768 to +32767

i nt eger 4 bytes typical choice for|-2147483648 to
integer +2147483647

136

Data Types

8.1.1.

8.1.2.

Name Storage Size Description Range
bi gi nt 8 bytes large-range integer -9223372036854 775308
to
+9223372036854775807
deci nal variable user-specified up to 131072 digits
precision, exact before the decima

point; up to 16383 digits
after the decimal point

nuneric variable user-specified up to 131072 digits
precision, exact before the decima
point; up to 16383 digits
after the decimal point

real 4 bytes variable-precision, 6 decimal digits
inexact precision

doubl e preci si on|8bytes variable-precision, 15 decima digits
inexact precision

smal | seri al 2 bytes small autoincrementing |1 to 32767
integer

seri al 4 bytes autoi ncrementing 1to0 2147483647
integer

bi gseri al 8 bytes large autoincrementing|1 to
integer 9223372036854775807

The syntax of constants for the numeric typesis described in Section 4.1.2. The numeric types have a
full set of corresponding arithmetic operators and functions. Refer to Chapter 9 for moreinformation.
The following sections describe the typesin detail.

Integer Types

The types smal | i nt, i nt eger, and bi gi nt store whole numbers, that is, humbers without
fractional components, of various ranges. Attempts to store values outside of the allowed range will
result in an error.

Thetypei nt eger isthecommon choice, asit offersthe best balance between range, storage size, and
performance. Thesmal | i nt typeisgenerally only used if disk spaceisat apremium. Thebi gi nt
type is designed to be used when the range of thei nt eger typeisinsufficient.

SQL only specifiestheinteger typesi nt eger (ori nt),smal | i nt,andbi gi nt . Thetype names
int2,int4,andi nt 8 are extensions, which are also used by some other SQL database systems.

Arbitrary Precision Numbers

Thetypenuner i ¢ canstorenumberswith avery large number of digits. Itisespecialy recommended
for storing monetary amounts and other quantities where exactness is required. Calculations with
nuneri c vaues yield exact results where possible, e.g., addition, subtraction, multiplication.
However, calculations on nuner i ¢ values are very slow compared to the integer types, or to the
floating-point types described in the next section.

We usethefollowing termsbelow: The precision of anuner i ¢ isthetotal count of significant digits
in the whole number, that is, the number of digits to both sides of the decimal point. The scale of a
nuner i ¢ isthe count of decimal digitsin the fractional part, to the right of the decimal point. So the
number 23.5141 hasaprecision of 6 and ascale of 4. Integers can be considered to have ascale of zero.

Both the maximum precision and the maximum scale of anuner i ¢ column can be configured. To
declare acolumn of type nuner i ¢ use the syntax:

137

Data Types

NUMERI C(pr eci si on, scal e)

The precision must be positive, the scale zero or positive. Alternatively:

NUMERI C(pr eci si on)

selects ascale of 0. Specifying:

NUMERI C

without any precision or scale creates a column in which numeric values of any precision and scale
can be stored, up to theimplementation limit on precision. A column of thiskind will not coerce input
values to any particular scale, whereas nuner i ¢ columns with a declared scale will coerce input
valuesto that scale. (The SQL standard requires adefault scale of 0, i.e., coercion to integer precision.
Wefind thisabit useless. If you're concerned about portability, always specify the precision and scale
explicitly.)

Note

The maximum allowed precision when explicitly specified in the type declaration is 1000;
NUMERI C without a specified precision is subject to the limits described in Table 8.2.

If the scale of a value to be stored is greater than the declared scale of the column, the system will
round the value to the specified number of fractional digits. Then, if the number of digitsto the left of
the decimal point exceeds the declared precision minus the declared scale, an error is raised.

Numeric values are physically stored without any extraleading or trailing zeroes. Thus, the declared
precision and scale of a column are maximums, not fixed alocations. (In this sense the nuneri c
typeis more akin to var char (n) thanto char (n).) The actual storage requirement is two bytes
for each group of four decimal digits, plus three to eight bytes overhead.

In addition to ordinary numeric values, the nurrer i ¢ type allows the special value NaN, meaning
“not-a-number”. Any operation on NaN yields another NaN. When writing this value as a constant in
an SQL command, you must put quotes around it, for example UPDATE t abl e SET x = ' NaN .
On input, the string NaN is recognized in a case-insensitive manner.

Note

In most implementations of the “not-a-number” concept, NaN is not considered equal to any
other numeric value (including NaN). In order to allow nuner i ¢ valuesto be sorted and used
in tree-based indexes, PostgreSQL treats NaN values as equal, and greater than all non-NaN
values.

Thetypesdeci mal and nuneri ¢ are equivalent. Both types are part of the SQL standard.

When rounding values, the nuner i ¢ type rounds ties away from zero, while (on most machines) the
real anddoubl e preci si on typesround tiesto the nearest even number. For example:

SELECT x,
round(x: : numeric) AS numround,
round(x: : doubl e precision) AS dbl_round

138

Data Types

8.1.3.

FROM generate_series(-3.5, 3.5, 1) as x;

X | numround | dbl _round
______ e,
-3.5 | -4 | -4
-2.5 | -3 | -2
-1.5 | -2 | -2
-0.5 | -1 | -0

0.5 | 1] 0

1.5 | 2| 2

2.5 | 3 2

3.5 | 4 | 4
(8 rows)

Floating-Point Types

The datatypesr eal and doubl e preci si on areinexact, variable-precision numeric types. In
practice, these types are usually implementations of |IEEE Standard 754 for Binary Floating-Point
Arithmetic (single and double precision, respectively), to the extent that the underlying processor,
operating system, and compiler support it.

Inexact means that some values cannot be converted exactly to the internal format and are stored as
approximations, so that storing and retrieving avalue might show slight discrepancies. Managing these
errors and how they propagate through calculations is the subject of an entire branch of mathematics
and computer science and will not be discussed here, except for the following points:

* If you require exact storage and calculations (such as for monetary amounts), use the nurreri ¢
typeinstead.

 If you want to do complicated calculations with these types for anything important, especially
if you rely on certain behavior in boundary cases (infinity, underflow), you should evaluate the
implementation carefully.

» Comparing two floating-point values for equality might not always work as expected.

On most platforms, ther eal type hasarange of at least 1E-37 to 1E+37 with a precision of at |east
6 decimal digits. Thedoubl e pr eci si on typetypically hasarange of around 1E-307 to 1E+308
withaprecision of at least 15 digits. Valuesthat aretoo large or too small will cause an error. Rounding
might take place if the precision of an input humber is too high. Numbers too close to zero that are
not representable as distinct from zero will cause an underflow error.

Note

The extra float_digits setting controls the number of extra significant digits included when a
floating point value is converted to text for output. With the default value of 0, the output is
the same on every platform supported by PostgreSQL . Increasing it will produce output that
more accurately represents the stored value, but may be unportable.

In addition to ordinary numeric values, the floating-point types have several specia values:

Infinity
-Infinity
NaN

These represent the IEEE 754 specia values “infinity”, “negative infinity”, and “not-a-number”,
respectively. (On a machine whose floating-point arithmetic does not follow |EEE 754, these values
will probably not work as expected.) When writing these values as constants in an SQL command,

139

Data Types

8.1.4.

you must put quotes around them, for example UPDATE table SET x = '-Infinity'.On
input, these strings are recognized in a case-insensitive manner.

Note

IEEE754 specifies that NaN should not compare equal to any other floating-point value
(including NaN). In order to allow floating-point values to be sorted and used in tree-based
indexes, PostgreSQL treats NaN values as equal, and greater than all non-NaN values.

PostgreSQL also supports the SQL -standard notationsf | oat andf | oat (p) for specifying inexact
numeric types. Here, p specifies the minimum acceptable precision in binary digits. PostgreSQL
acceptsf | oat (1) tof | oat (24) assdlectingther eal type, whilef | oat (25) tofl oat (53)
select doubl e preci si on. Vauesof p outside the allowed range draw an error. f | oat with no
precision specified is taken to mean doubl e pr eci si on.

Note

The assumption that r eal and doubl e preci si on have exactly 24 and 53 bits in the
mantissa respectively is correct for IEEE-standard floating point implementations. On non-
|EEE platforms it might be off a little, but for simplicity the same ranges of p are used on
all platforms.

Serial Types

Note

This section describes a PostgreSQL -specific way to create an autoincrementing column.
Another way is to use the SQL-standard identity column feature, described at CREATE
TABLE.

Thedatatypessnal | seri al ,seri al andbi gseri al arenottruetypes, but merely anotational
convenience for creating unique identifier columns (similar to the AUTO_| NCREMENT property
supported by some other databases). In the current implementation, specifying:

CREATE TABLE t abl enane (
col nane SERI AL

)

is equivalent to specifying:

CREATE SEQUENCE t abl enanme_col name_seq AS i nteger;
CREATE TABLE t abl enane (

col nane integer NOT NULL DEFAULT
next val ('t abl ename_col name_seq')

)
ALTER SEQUENCE t abl ename_col name_seq OANED BY t abl enamne. col nane;

Thus, we have created an integer column and arranged for its default values to be assigned from a
sequence generator. A NOT NULL constraint is applied to ensure that a null value cannot be inserted.
(In most cases you would also want to attach a UNI QUE or PRI MARY KEY constraint to prevent

140

Data Types

duplicate values from being inserted by accident, but this is not automatic.) Lastly, the sequence is
marked as “owned by” the column, so that it will be dropped if the column or table is dropped.

Note

Becausesmal | seri al ,seri al andbi gseri al areimplemented using sequences, there
may be "holes' or gapsin the sequence of values which appearsin the column, even if no rows
areever deleted. A value allocated from the sequenceis still "used up" evenif arow containing
that value is never successfully inserted into the table column. This may happen, for example,
if the inserting transaction rolls back. See next val () in Section 9.16 for details.

To insert the next value of the sequenceintotheseri al column, specify that theseri al column
should be assigned its default value. This can be done either by excluding the column from the list of
columnsinthe | NSERT statement, or through the use of the DEFAULT key word.

The type names seri al and seri al 4 are equivalent; both create i nt eger columns. The type
names bi gseri al andseri al 8 work the same way, except that they create abi gi nt column.
bi gseri al should be used if you anticipate the use of more than 23t identifiers over the lifetime of
the table. Thetype namessnal | seri al andseri al 2 also work the same way, except that they
createasmal | i nt column.

The sequence created for aseri al column is automatically dropped when the owning column is
dropped. Y ou can drop the sequence without dropping the column, but this will force removal of the
column default expression.

8.2. Monetary Types

The noney type stores a currency amount with a fixed fractional precision; see Table 8.3. The
fractional precision is determined by the database'sIc_monetary setting. The range shown in the table
assumes there are two fractional digits. Input is accepted in a variety of formats, including integer
and floating-point literals, as well astypical currency formatting, suchas' $1, 000. 00" . Output is
generaly in the latter form but depends on the locale.

Table8.3. Monetary Types

Name Storage Size Description Range

noney 8 bytes currency amount -92233720368547758.08
to
+92233720368547758.07

Since the output of this data type is locale-sensitive, it might not work to load noney data into a
database that has a different setting of | c_rnonet ar y. To avoid problems, before restoring a dump
into a new database make sure | ¢_nonet ar y has the same or equivaent value as in the database
that was dumped.

Values of thenuneri c, i nt, and bi gi nt datatypes can be cast to noney. Conversion from the
real anddoubl e preci si on datatypes can be done by castingto numer i c¢ first, for example:
SELECT ' 12.34'::float8::numeric::noney;

However, thisis not recommended. Floating point numbers should not be used to handle money due
to the potential for rounding errors.

A noney value can be cast to nunrer i ¢ without loss of precision. Conversion to other types could
potentially lose precision, and must also be done in two stages:

141

Data Types

SELECT ' 52093. 89" : : noney: : nuneric::fl oat8;

Division of a noney value by an integer value is performed with truncation of the fractional part
towards zero. To get a rounded result, divide by a floating-point value, or cast the noney value to
numer i ¢ before dividing and back to noney afterwards. (The latter is preferable to avoid risking
precision loss.) When a noney value is divided by another noney value, the result is doubl e
pr eci si on (i.e, apure number, not money); the currency units cancel each other out in thedivision.

8.3. Character Types

Table 8.4. Character Types

Name Description

character varying(n),varchar(n) variable-length with limit
character(n),char(n) fixed-length, blank padded
t ext variable unlimited length

Table 8.4 shows the genera -purpose character types available in PostgreSQL .

SQL definestwo primary character types: char act er varyi ng(n) andchar act er (n) ,where
n isapositive integer. Both of these types can store strings up to n characters (not bytes) inlength. An
attempt to store alonger string into a column of these types will result in an error, unless the excess
characters are al spaces, in which case the string will be truncated to the maximum length. (This
somewhat bizarre exception isrequired by the SQL standard.) If the string to be stored is shorter than
the declared length, values of type char act er will be space-padded; values of type char act er

varyi ng will simply store the shorter string.

If one explicitly casts avalue to char act er varyi ng(n) or character(n), then an over-
length value will be truncated to n characters without raising an error. (This too is required by the
SQL standard.)

The notations var char(n) and char(n) are aiases for character varyi ng(n)
and character(n), respectively. character without length specifier is equivaent to
character (1) .lfcharacter varyi ngisusedwithoutlength specifier, thetypeacceptsstrings
of any size. The latter is a PostgreSQL extension.

In addition, PostgreSQL providesthet ext type, which storesstrings of any length. Although thetype
t ext isnotinthe SQL standard, severa other SQL database management systems have it as well.

Vadues of type char act er are physically padded with spaces to the specified width n, and are
stored and displayed that way. However, trailing spaces are treated as semantically insignificant and
disregarded when comparing two values of type char act er . In collations where whitespace is
significant, this behavior can produce unexpected results; for example SELECT 'a ' :: CHAR(2)
collate "C'" < E a\n'::CHAR(2) returnstrue, even though Clocale would consider a space
to be greater than a newline. Trailing spaces are removed when converting a char act er value to
one of the other string types. Note that trailing spaces are semantically significant in char act er
varyi ng andt ext values, and when using pattern matching, that is LI KE and regular expressions.

Thecharactersthat can be stored in any of these datatypes are determined by the database character set,
which is selected when the database is created. Regardless of the specific character set, the character
with code zero (sometimes called NUL) cannot be stored. For more information refer to Section 23.3.

The storage requirement for a short string (up to 126 bytes) is 1 byte plus the actual string, which
includesthe space paddinginthe caseof char act er . Longer stringshave4 bytes of overhead instead
of 1. Long strings are compressed by the system automatically, so the physical requirement on disk
might be less. Very long values are also stored in background tables so that they do not interfere with

142

Data Types

rapid access to shorter column values. In any case, the longest possible character string that can be
stored isabout 1 GB. (The maximum valuethat will beallowed for n inthe datatype declarationisless
than that. It wouldn't be useful to change this because with multibyte character encodings the number
of characters and bytes can be quite different. If you desire to store long strings with no specific upper
limit, use t ext or character varyi ng without a length specifier, rather than making up an
arbitrary length limit.)

Tip

There is no performance difference among these three types, apart from increased storage
space when using the blank-padded type, and a few extra CPU cycles to check the length
when storing into a length-constrained column. While char act er (n) has performance
advantages in some other database systems, there is no such advantage in PostgreSQL ; in fact
char act er (n) isusualy the slowest of the three because of its additional storage costs. In
most situationst ext or char act er varyi ng should be used instead.

Refer to Section 4.1.2.1 for information about the syntax of string literals, and to Chapter 9 for
information about available operators and functions.

Example 8.1. Using the Character Types

CREATE TABLE testl (a character(4));
| NSERT | NTO test1 VALUES (' ok');

SELECT a, char_length(a) FROMtestl; --
a | char _length

______ e e e e e e e m - -

ok | 2

CREATE TABLE test2 (b varchar(5));

| NSERT | NTO test2 VALUES (' ok');

| NSERT | NTO test2 VALUES (' good ");

| NSERT | NTO test2 VALUES ('too long');

ERROR: value too long for type character varying(5)

I NSERT | NTO test2 VALUES ('too long' ::varchar(5)); -- explicit
truncation

SELECT b, char_Iength(b) FROMtest2;

b | char _length
_______ e e e e e e e m - -
ok | 2
good | 5
too | | 5

Thechar _| engt h function is discussed in Section 9.4.

There are two other fixed-length character types in PostgreSQL, shown in Table 8.5. The nane type
exists only for the storage of identifiers in the internal system catalogs and is not intended for use
by the general user. Itslength is currently defined as 64 bytes (63 usable characters plus terminator)
but should be referenced using the constant NAMEDATALEN in C source code. The length is set at
compiletime (and is therefore adjustable for specia uses); the default maximum length might change
inafuturerelease. Thetype" char " (notethe quotes) isdifferent fromchar (1) inthat it only uses
one byte of storage. It isinternally used in the system catalogs as a simplistic enumeration type.

143

Data Types

Table 8.5. Special Character Types

Name Storage Size Description
"char" 1 byte single-byte interna type
nane 64 bytes internal type for object names

8.4. Binary Data Types

8.4.1.

8.4.2.

The byt ea datatype allows storage of binary strings; see Table 8.6.

Table 8.6. Binary Data Types

Name Storage Size Description
byt ea 1 or 4 bytesplusthe actual binary | variable-length binary string
string

A binary string is a sequence of octets (or bytes). Binary strings are distinguished from character
stringsin two ways. First, binary strings specifically allow storing octets of value zero and other “non-
printable” octets (usually, octets outside the decimal range 32 to 126). Character strings disallow zero
octets, and also disallow any other octet values and sequences of octet valuesthat areinvalid according
to the database's selected character set encoding. Second, operations on binary strings process the
actual bytes, whereas the processing of character strings depends on locale settings. In short, binary
strings are appropriatefor storing datathat the programmer thinks of as*“raw bytes’, whereas character
strings are appropriate for storing text.

Thebyt ea type supportstwo formats for input and output: “hex” format and PostgreSQL 's historical
“escape”’ format. Both of these are always accepted on input. The output format depends on the
configuration parameter bytea_output; the default is hex. (Note that the hex format was introduced in
PostgreSQL 9.0; earlier versions and some tools don't understand it.)

The SQL standard defines a different binary string type, called BLOB or Bl NARY LARGE OBJECT.
The input format is different from byt ea, but the provided functions and operators are mostly the
same.

byt ea Hex Format

The “hex” format encodes binary data as 2 hexadecimal digits per byte, most significant nibble first.
The entire string is preceded by the sequence\ x (to distinguish it from the escape format). In some
contexts, theinitial backslash may need to be escaped by doubling it (see Section 4.1.2.1). For input,
the hexadecimal digits can be either upper or lower case, and whitespace is permitted between digit
pairs (but not within adigit pair nor inthe starting \ x sequence). The hex format is compatible with a
wide range of external applications and protocols, and it tends to be faster to convert than the escape
format, so itsuse is preferred.

Example:

SELECT ' \ xDEADBEEF' ;

byt ea Escape Format

The“escape” format isthe traditional PostgreSQL format for thebyt ea type. It takesthe approach of
representing abinary string asasequenceof ASCII characters, while converting those bytesthat cannot
be represented as an ASCI| character into special escape sequences. If, from the point of view of the
application, representing bytes as characters makes sense, then this representation can be convenient.
But in practiceit is usually confusing because it fuzzes up the distinction between binary strings and

144

Data Types

character strings, and also the particular escape mechanism that was chosen is somewhat unwieldy.
Therefore, this format should probably be avoided for most new applications.

When entering byt ea values in escape format, octets of certain values must be escaped, while all
octet values can be escaped. In general, to escape an octet, convert it into itsthree-digit octal value and
precede it by a backslash. Backslash itself (octet decimal value 92) can alternatively be represented
by double backslashes. Table 8.7 shows the characters that must be escaped, and gives the alternative
escape sequences where applicable.

Table8.7. byt ea Literal Escaped Octets

Decimal Octet | Description Escaped Input|Example Hex
Value Representation Representation
0 zero octet "\ 000’ SELECT \ x00
"\ 000" :: byt ea]
39 single quote "YUt oor'\047' |SELECT \ x27
""" byt ea;
92 backslash "\\'" or'\134" |SELECT "\ [\ x5¢c
\ byt ea
0 to 31 and 127 to|“non-printable’ "\ xxx' (octal | SELECT \ x01
255 octets value) "\001':: bytea]

The requirement to escape non-printable octets varies depending on local e settings. In some instances
you can get away with leaving them unescaped.

The reason that single quotes must be doubled, as shown in Table 8.7, isthat thisis true for any string
literal in a SQL command. The generic string-literal parser consumes the outermost single quotes and
reduces any pair of single quotes to one data character. What the byt ea input function seesis just
one single quote, which it treats as a plain data character. However, the byt ea input function treats
backsl ashes as special, and the other behaviors shown in Table 8.7 are implemented by that function.

In some contexts, backslashes must be doubled compared to what is shown above, because the generic
string-literal parser will also reduce pairs of backslashes to one data character; see Section 4.1.2.1.

Byt ea octets are output in hex format by default. If you change bytea output to escape, “non-
printable” octets are converted to their equivalent three-digit octal value and preceded by one
backslash. Most “printable” octets are output by their standard representation in the client character
set, e.0.:

SET bytea_output = 'escape';

SELECT 'abc \ 153\ 154\ 155 \ 052\ 251\ 124" : : byt ea;
byt ea

abc klm *\ 251T

The octet with decimal value 92 (backslash) is doubled in the output. Details arein Table 8.8.

Table 8.8. byt ea Output Escaped Octets

Decimal Octet | Description Escaped Output|Example Output Result
Value Representation
92 backdlash \\ SELECT \\
"\ 134':: byt ea]
0 to 31 and 127 to|“non-printable” \ xxx (octal value) | SELECT \ 001
255 octets "\ 001" :: byt ea

145

Data Types

Decimal Octet | Description Escaped Output|Example Output Result

Value Representation

32t0 126 “printable” octets |client character set| SELECT ~
representation "\176' : : byt ea]

Depending on the front end to PostgreSQL you use, you might have additional work to do in terms of
escaping and unescaping byt ea strings. For example, you might also have to escape line feeds and
carriage returnsif your interface automatically trangl ates these.

8.5. Date/Time Types

PostgreSQL supports the full set of SQL date and time types, shown in Table 8.9. The operations
available onthese datatypesare described in Section 9.9. Dates are counted according to the Gregorian
calendar, even in years before that calendar was introduced (see Section B.6 for more information).

Table 8.9. Date/Time Types

Name Storage Size | Description Low Value High Value |Resolution
ti nestanp |8bytes both date and|4713BC 294276 AD 1 microsecond
[(p)] time (no time
[without Zone)
time zone |
ti mestanp |8bytes both date and|4713BC 294276 AD 1 microsecond
[(p)] time, with time
with tine zone
zone
date 4 bytes date (notime of 4713 BC 5874897 AD |1 day

day)
tinme 8 bytes time of day (no|00:00:00 24.00:00 1 microsecond
[(P] date)
[without
time zone |
tinme 12 bytes time of day (no|00:00:00+1559 |24:00:00-1559 |1 microsecond
[(p)] date), with time
with tinme zone
zone
interval [|16 bytes timeinterval |-178000000 178000000 1 microsecond
fields] years years
[(p)]

Note

The SQL standard requires that writing just t i mest anp be equivalent to t i nest anp
wi t hout time zone, and PostgreSQL honorsthat behavior. t i mest anpt z isaccepted
asan abbreviationforti mestanp with tine zone;thisisaPostgreSQL extension.

tinme,timestanp,andi nt erval acceptanoptional precisionvaluep which specifiesthe number
of fractional digits retained in the seconds field. By default, there is no explicit bound on precision.
The allowed range of p isfrom 0 to 6.

Thei nt er val type has an additional option, which isto restrict the set of stored fields by writing
one of these phrases:

146

Data Types

8.5.1.

YEAR

MONTH

DAY

HOUR

M NUTE

SECOND

YEAR TO MONTH
DAY TO HOUR
DAY TO M NUTE
DAY TO SECOND
HOUR TO M NUTE
HOUR TO SECOND
M NUTE TO SECOND

Notethat if bothf i el ds and p are specified, thef i el ds must include SECOND, sincethe precision
applies only to the seconds.

Thetypetinme with tinme zone isdefined by the SQL standard, but the definition exhibits
properties which lead to questionable usefulness. In most cases, a combination of dat e, ti ne,
tinmestanp without tine zone,andtimestanp with time zone should provide a
complete range of date/time functionality required by any application.

The types absti me and rel ti ne are lower precision types which are used internaly. You are
discouraged from using these types in applications; these internal types might disappear in a future
release.

Date/Time Input

Dateand timeinput isaccepted in almost any reasonableformat, including | SO 8601, SQL -compatible,
traditional POSTGRES, and others. For some formats, ordering of day, month, and year in date
input is ambiguous and there is support for specifying the expected ordering of these fields. Set the
DateStyle parameter to MDY to select month-day-year interpretation, DMY to select day-month-year
interpretation, or YMD to select year-month-day interpretation.

PostgreSQL is more flexible in handling date/time input than the SQL standard requires. See
Appendix B for the exact parsing rules of date/time input and for the recognized text fields including
months, days of the week, and time zones.

Remember that any date or time literal input needs to be enclosed in single quotes, like text strings.
Refer to Section 4.1.2.7 for more information. SQL requires the following syntax

type [(p)] "value

where p is an optional precision specification giving the number of fractional digits in the seconds
field. Precision can be specified fort i ne, ti mest anp, andi nt er val types, and can range from
0to 6. If no precision is specified in a constant specification, it defaults to the precision of the literal
value (but not more than 6 digits).

8.5.1.1. Dates

Table 8.10 shows some possible inputs for the dat e type.

Table 8.10. Date I nput

Example Description
1999-01-08 SO 8601; January 8 in any mode (recommended
format)

147

Data Types

8.5.1.2.

Example Description

January 8, 1999 unambiguousin any dat est yl e input mode

1/8/1999 January 8 in MDY mode; August 1 in DMY mode

1/18/1999 January 18 in MDY mode; rejected in other modes

01/02/03 January 2, 2003 in MDY mode; February 1, 2003
in DMY mode; February 3, 2001 in YMD mode

1999-Jan-08 January 8 in any mode

Jan-08-1999 January 8 in any mode

08-Jan-1999 January 8 in any mode

99-Jan-08 January 8 in YMD mode, else error

08-Jan-99 January 8, except error in YND mode

Jan-08-99 January 8, except error in YND mode

19990108 SO 8601; January 8, 1999 in any mode

990108 SO 8601; January 8, 1999 in any mode

1999.008 year and day of year

J2451187 Julian date

January 8, 99 BC year 99 BC

Times

Thetime-of-day typesaretine [(p)] without time zoneandtime [(p)] with
time zone.tinme aoneisequivalenttoti me wit hout time zone.

Valid input for these types consists of atime of day followed by an optional time zone. (See Table8.11
and Table8.12)) If atimezoneisspecifiedintheinputfort i me wi t hout ti ne zone,itisslently
ignored. You can also specify a date but it will be ignored, except when you use a time zone name
that involves adaylight-savings rule, such as Arrer i ca/ New_Yor K. In this case specifying the date
isrequired in order to determine whether standard or daylight-savings time applies. The appropriate
time zone offset isrecorded inthetine with ti ne zone vaue

Table8.11. Time Input

Example Description

04: 05: 06. 789 SO 8601

04: 05: 06 SO 8601

04: 05 SO 8601

040506 SO 8601

04: 05 AM same as 04:05; AM does not affect value
04: 05 PM same as 16:05; input hour must be <= 12

04: 05: 06. 789-8

1SO 8601, with time zone as UTC offset

04: 05: 06- 08: 00

1SO 8601, with time zone as UTC offset

04: 05-08: 00 1SO 8601, with time zone as UTC offset
040506- 08 1SO 8601, with time zone as UTC offset
040506+0730 1SO 8601, with fractiona-hour time zoneas UTC

offset

040506+07: 30: 00

UTC offset specified to seconds (not allowed in

1SO 8601)

148

Data Types

Example Description

04: 05: 06 PST time zone specified by abbreviation
2003-04-12 04: 05: 06 Amer i cal/ |time zone specified by full name
New_Yor k

Table8.12. Time Zone I nput

Example Description

PST Abbreviation (for Pacific Standard Time)

Arer i ca/ New_Yor k Full time zone name

PST8PDT POSI X -style time zone specification

-8:00: 00 UTC offset for PST

-8:00 UTC offset for PST (1SO 8601 extended format)
- 800 UTC offset for PST (1SO 8601 basic format)

-8 UTC offset for PST (1SO 8601 basic format)
zul u Military abbreviation for UTC

z Short form of zul u (also in 1SO 8601)

Refer to Section 8.5.3 for more information on how to specify time zones.

8.5.1.3. Time Stamps

Valid input for the time stamp types consists of the concatenation of a date and a time, followed by
an optional time zone, followed by an optional AD or BC. (Alternatively, AD/BC can appear before the
time zone, but thisis not the preferred ordering.) Thus:

1999- 01-08 04:05: 06

and:

1999-01-08 04:05:06 -8:00

are valid values, which follow the SO 8601 standard. In addition, the common format:

January 8 04:05:06 1999 PST
is supported.

The SQL standard differentiatest i mestanp without tine zoneandtinestanp wth
ti me zone literalsby the presence of a“+” or “-” symbol and time zone offset after the time. Hence,
according to the standard,

TI MESTAMP ' 2004-10- 19 10: 23: 54'
isati nestanp wi thout tine zone,while
TI MESTAMP ' 2004-10- 19 10: 23: 54+02'

isatinestanp with time zone. PostgreSQL never examines the content of aliteral string
before determining its type, and therefore will treat both of the above asti mest anp wi t hout
ti me zone. To ensurethat aliteral istreated asti nestanp with tinme zone, giveitthe
correct explicit type:

TI MESTAMP WTH TI ME ZONE ' 2004-10-19 10: 23: 54+02'

149

Data Types

In aliteral that has been determinedto bet i nest anp wi t hout tinme zone, PostgreSQL will
silently ignoreany time zoneindication. That is, theresulting valueis derived from the date/time fields
in the input value, and is not adjusted for time zone.

Fortimestanp with tine zone, theinternaly stored value is dways in UTC (Universal
Coordinated Time, traditionally known as Greenwich Mean Time, GMT). An input value that has an
explicit time zone specified is converted to UTC using the appropriate offset for that time zone. If
no time zone is stated in the input string, then it is assumed to be in the time zone indicated by the
system's TimeZone parameter, and is converted to UTC using the offset for thet i nezone zone.

Whenatinmestanp with tine zone vaueisoutput, it isaways converted from UTC to the
current t i mezone zone, and displayed as local time in that zone. To see the time in another time
zone, either changet i mezone or usethe AT TI ME ZONE construct (see Section 9.9.3).

Conversionsbetweent i nest anp wi t hout tine zoneandti mestanp with ti me zone
normally assume that thet i nest anp wi t hout tinme zone value should be taken or given as
ti mezone local time. A different time zone can be specified for the conversion using AT Tl ME
ZONE.

8.5.1.4. Special Values

PostgreSQL supports several specia date/time input values for convenience, as shown in Table 8.13.
The valuesinfinity and -i nfinity are specialy represented inside the system and will be
displayed unchanged; but the othersare simply notational shorthandsthat will be converted to ordinary
date/time values when read. (In particular, now and related strings are converted to a specific time
value as soon as they are read.) All of these values need to be enclosed in single quotes when used
as constants in SQL commands.

Table 8.13. Special Date/Time Inputs

Input String Valid Types Description

epoch dat e, ti nest anp 1970-01-01 00:00:00+00 (Unix
system time zero)

infinity date,ti nest anp later than all other time stamps

-infinity dat e, ti nest anp earlier than all other time stamps

now date,tinme,tinestanp current transaction's start time

t oday dat e, ti nest anp midnight (00: 00) today

t onmor r ow date,ti nest anp midnight (00: 00) tomorrow

yest er day dat e, ti nest anp midnight (00: 00) yesterday

all balls time 00:00:00.00 UTC

The following SQL-compatible functions can also be used to obtain the current time value
for the corresponding data type: CURRENT_DATE, CURRENT_TI ME, CURRENT_TI MESTAMP,
LOCALTI ME, LOCALTI MESTAMP. (See Section 9.9.4.) Note that these are SQL functions and are
not recognized in datainput strings.

Caution

While the input strings now, t oday, t onor r ow, and yest er day are fine to use in
interactive SQL commands, they can have surprising behavior when the command is saved
to be executed later, for example in prepared statements, views, and function definitions. The
string can be converted to a specific time value that continues to be used long after it becomes
stale. Use one of the SQL functions instead in such contexts. For example, CURRENT _DATE
+ lissaferthan' t onorrow : : date.

150

Data Types

8.5.2. Date/Time Output

The output format of the date/time types can be set to one of the four styles 1SO 8601, SQL (Ingres),
traditional POSTGRES (Unix date format), or German. The default is the 1SO format. (The SQL
standard requires the use of the 1 SO 8601 format. The name of the “SQL" output format is a historical
accident.) Table 8.14 shows exampl es of each output style. The output of thedat e andt i e typesis
generaly only the date or time part in accordance with the given examples. However, the POSTGRES
style outputs date-only valuesin 1SO format.

Table 8.14. Date/Time Output Styles

Style Specification Description Example
| SO SO 8601, SQL standard 1997-12-17
07:37:16-08
SQL traditional style 12/ 17/ 1997
07:37:16.00 PST
Post gres origina style Wwed Dec 17 07:37:16
1997 PST
Ger man regional style 17.12. 1997
07:37:16. 00 PST

Note

SO 8601 specifies the use of uppercase letter T to separate the date and time. PostgreSQL
accepts that format on input, but on output it uses a space rather than T, as shown above. This
isfor readability and for consistency with RFC 3339 as well as some other database systems.

In the SQL and POSTGRES styles, day appears before month if DMY field ordering has been
specified, otherwise month appears before day. (See Section 8.5.1 for how this setting also affects
interpretation of input values.) Table 8.15 shows examples.

Table 8.15. Date Order Conventions

dat est yl e Setting Input Ordering Example Output

SQL, Dw day/mont h/year 17/ 12/ 1997
15:37:16. 00 CET

SQL, MDY nont h/day/year 12/ 17/ 1997
07:37:16.00 PST

Post gres, DMWY day/mont h/year Wed 17 Dec 07:37:16
1997 PST

In the 1SO style, the time zone is always shown as a signed numeric offset from UTC, with positive
sign used for zones east of Greenwich. The offset will be shown as hh (hoursonly) if it isan integral
number of hours, elseashh:nmif itisanintegral number of minutes, elseashh:mmss. (Thethird case
is not possible with any modern time zone standard, but it can appear when working with timestamps
that predate the adoption of standardized time zones.) In the other date styles, the time zone is shown
as an alphabetic abbreviation if oneisin common use in the current zone. Otherwise it appears as a
signed numeric offset in 1SO 8601 basic format (hh or hhmm).

The date/time style can be selected by the user using the SET dat est yl e command, the DateStyle
parameter in the post gresql . conf configuration file, or the PGDATESTYLE environment
variable on the server or client.

151

Data Types

8.5.3.

Theformatting functiont o_char (see Section 9.8) isalso available asamore flexible way to format
date/time output.

Time Zones

Time zones, and time-zone conventions, are influenced by political decisions, not just earth geometry.
Time zones around the world became somewhat standardized during the 1900s, but continue to be
prone to arbitrary changes, particularly with respect to daylight-savings rules. PostgreSQL uses the
widely-used IANA (Olson) time zone database for information about historical time zone rules. For
times in the future, the assumption is that the latest known rules for a given time zone will continue
to be observed indefinitely far into the future.

PostgreSQL endeavorsto be compatiblewith the SQL standard definitionsfor typical usage. However,
the SQL standard has an odd mix of date and time types and capabilities. Two obvious problems are:

» Although the dat e type cannot have an associated time zone, thet i me type can. Time zonesin
the real world have little meaning unless associated with a date as well as a time, since the offset
can vary through the year with daylight-saving time boundaries.

» Thedefault time zoneis specified as a constant numeric offset from UTC. It istherefore impossible
to adapt to daylight-saving time when doing date/time arithmetic across DST boundaries.

To address these difficulties, we recommend using date/time types that contain both date and time
when using time zones. We do not recommend using thetypetime with time zone (though
it is supported by PostgreSQL for legacy applications and for compliance with the SQL standard).
PostgreSQL assumes your local time zone for any type containing only date or time.

All timezone-aware dates and times are stored internally in UTC. They are converted to local timein
the zone specified by the TimeZone configuration parameter before being displayed to the client.

PostgreSQL allows you to specify time zones in three different forms:

« A full time zone name, for example Amer i ca/ New_Yor k. The recognized time zone names are
listedinthepg_ti mezone_names view (see Section 52.90). PostgreSQL uses the widely-used
IANA time zone data for this purpose, so the same time zone names are also recognized by other
software.

A time zone abbreviation, for example PST. Such a specification merely defines a particul ar offset
from UTC, in contrast to full time zone names which can imply a set of daylight savingstransition
rules aswell. The recognized abbreviationsare listedinthepg_t i nezone_abbr evs view (see
Section 52.89). Y ou cannot set the configuration parameters TimeZone or log_timezone to atime
zone abbreviation, but you can use abbreviations in date/time input values and with the AT TI ME
ZONE operator.

* In addition to the timezone names and abbreviations, PostgreSQL will accept POSIX-style time
zone specifications, as described in Section B.5. This option is not normally preferable to using a
named time zone, but it may be necessary if no suitable IANA time zone entry is available.

In short, thisisthe difference between abbreviations and full names: abbreviations represent a specific
offset from UTC, whereas many of thefull namesimply alocal daylight-savingstimerule, and so have
two possible UTC offsets. Asan example, 2014- 06- 04 12: 00 Aneri ca/ New_Yor k represents
noon local timein New Y ork, which for this particular date was Eastern Daylight Time (UTC-4). So
2014-06-04 12: 00 EDT specifies that same time instant. But 2014- 06- 04 12: 00 EST
specifies noon Eastern Standard Time (UTC-5), regardless of whether daylight savingswas nominally
in effect on that date.

To complicate matters, some jurisdictions have used the same timezone abbreviation to mean different
UTC offsets at different times; for example, in Moscow MBK has meant UTC+3 in some years and
UTC+4in others. PostgreSQL interprets such abbreviations according to whatever they meant (or had

152

Data Types

8.5.4.

most recently meant) on the specified date; but, aswith the EST example above, thisis not necessarily
the same aslocal civil time on that date.

In al cases, timezone names and abbreviations are recognized case-insensitively. (This is a change
from PostgreSQL versions prior to 8.2, which were case-sensitive in some contexts but not others.)

Neither timezone names nor abbreviations are hard-wired into the server; they are obtained from
configuration files stored under . . . / share/ti nezone/ and.../share/ti nezonesets/
of the installation directory (see Section B.4).

The TimeZone configuration parameter can be set in the file post gr esql . conf, or in any of the
other standard ways described in Chapter 19. There are also some special ways to set it:

* The SQL command SET TI ME ZONE sets the time zone for the session. Thisis an aternative
spelling of SET TI MEZONE TOwith a more SQL -spec-compatible syntax.

e The PGTZ environment variable is used by libpq clientsto send aSET TI ME ZONE command
to the server upon connection.

Interval Input

i nt er val vaues can be written using the following verbose syntax:

[@ quantity unit [quantity unit...] [direction]

where quantity is a number (possibly signed); unit is mi crosecond, m|lisecond,
second, m nut e, hour, day, week, nont h, year, decade, century, m || enni um or
abbreviations or plurals of these units; di r ect i on canbeago or empty. Theat sign (@ is optional
noise. The amounts of the different units are implicitly added with appropriate sign accounting.
ago negates al the fields. This syntax is also used for interval output, if IntervalStyle is set to
post gres_ver bose.

Quantities of days, hours, minutes, and seconds can be specified without explicit unit markings. For
example,' 1 12:59: 10" isreadthesameas' 1 day 12 hours 59 min 10 sec'.Also,
acombination of years and months can be specified with a dash; for example' 200- 10" isread the
sameas' 200 years 10 nont hs' . (Theseshorter formsarein fact the only ones allowed by the
SQL standard, and are used for output when | nt er val St yl e issettosql _st andard.)

Interval values can also be written as ISO 8601 time intervals, using either the “format with
designators’ of the standard's section 4.4.3.2 or the “alternative format” of section 4.4.3.3. The format
with designators looks like this:

P quantity unit [quantity unit ...] [T [quantity unit ...]]

The string must start with aP, and may includeaT that introduces the time-of-day units. The available
unit abbreviations are given in Table 8.16. Units may be omitted, and may be specified in any order,
but units smaller than a day must appear after T. In particular, the meaning of Mdepends on whether
it isbefore or after T.

Table 8.16. 1SO 8601 I nterval Unit Abbreviations

Abbreviation Meaning

Y Years

M Months (in the date part)
w Weeks

D Days

H Hours

153

Data Types

Abbreviation Meaning
M Minutes (in the time part)
S Seconds

In the alternative format:

P [years-nonths-days] [T hours:ninutes:seconds]

the string must begin with P, and a T separates the date and time parts of the interval. The values are
given as numbers similar to SO 8601 dates.

When writing an interval constant with a f i el ds specification, or when assigning a string to
an interval column that was defined with afi el ds specification, the interpretation of unmarked
guantitiesdependsonthef i el ds. For example!| NTERVAL ' 1' YEARIisread as 1 year, whereas
| NTERVAL ' 1' means1second. Also, field values“totheright” of theleast significant field allowed
by the fi el ds specification are silently discarded. For example, writing | NTERVAL ' 1 day
2:03: 04" HOUR TO M NUTE resultsin dropping the seconds field, but not the day field.

According to the SQL standard all fields of an interval value must have the same sign, so a leading
negative sign appliesto all fields; for examplethe negativesignintheinterval literal ' - 1 2: 03: 04’
appliesto both the days and hour/minute/second parts. PostgreSQL allows the fields to have different
signs, and traditionally treats each field in the textual representation as independently signed, so that
the hour/minute/second part is considered positive in this example. If | nt er val Styl e is set to
sql _st andar d then aleading sign is considered to apply to all fields (but only if no additional
signs appear). Otherwise the traditional PostgreSQL interpretation is used. To avoid ambiguity, it's
recommended to attach an explicit sign to each field if any field is negative.

Field values can have fractional parts: for example,' 1. 5 weeks' or' 01: 02: 03. 45' . However,
because interval internally stores only three integer units (months, days, microseconds), fractional
units must be spilled to smaller units. Fractional parts of units greater than months are truncated to be
an integer number of months, eg.' 1. 5 years' becomes' 1 year 6 nons'. Fractiona parts
of weeks and days are computed to be an integer number of days and microseconds, assuming 30 days
per month and 24 hours per day, e.g.,' 1. 75 nont hs' becomes1l non 22 days 12:00: 00.
Only seconds will ever be shown as fractional on output.

Table 8.17 shows some examples of valid i nt er val input.

Table8.17. Interval I nput

Example Description

1-2 SQL standard format: 1 year 2 months

34:05:06 SQL standard format: 3 days 4 hours 5 minutes 6
seconds

1 year 2 months 3 days 4 hours 5 minutes 6| Traditional Postgres format: 1 year 2 months 3

seconds days 4 hours 5 minutes 6 seconds

P1Y2M3DT4H5M6S ISO 8601 “format with designators’: same
meaning as above

P0O001-02-03T04:05:06 SO 8601 “alternative format”: same meaning as
above

Internally i nt er val values are stored as months, days, and microseconds. This is done because
the number of days in a month varies, and a day can have 23 or 25 hours if a daylight savings time
adjustment is involved. The months and days fields are integers while the microseconds field can
store fractional seconds. Because intervals are usually created from constant stringsor t i nest anp
subtraction, this storage method works well in most cases, but can cause unexpected results:

154

Data Types

8.5.5.

SELECT EXTRACT(hours from'80 mnutes'::interval);
dat e_part

SELECT EXTRACT(days from ' 80 hours'::interval);
dat e_part

Functionsj usti fy _days andj ustify_ hours are available for adjusting days and hours that
overflow their normal ranges.

Interval Output

The output format of the interval type can be set to one of the four styles sql _st andard,
post gr es, post gres_verbose, ori so_8601, using the command SET i nt erval styl e.
The default isthe post gr es format. Table 8.18 shows examples of each output style.

The sql _st andar d style produces output that conforms to the SQL standard's specification for
interval literal strings, if theinterval value meetsthe standard's restrictions (either year-month only or
day-time only, with no mixing of positive and negative components). Otherwise the output |ooks like
a standard year-month literal string followed by a day-time litera string, with explicit signs added to
disambiguate mixed-sign intervals.

The output of the post gr es style matches the output of PostgreSQL releases prior to 8.4 when the
DateStyle parameter was set to | SO

The output of the post gr es_ver bose style matches the output of PostgreSQL releases prior to
8.4 when the Dat eSt y| e parameter was set to non-1 SO output.

Theoutput of thei so_8601 style matchesthe “format with designators’ described in section 4.4.3.2
of the ISO 8601 standard.

Table 8.18. Interval Output Style Examples

Style Specification Year-Month Interval |Day-Timelnterval Mixed Interval

sql _standard 1-2 34:05:06 -1-2 +3-4:05:06

post gres 1 year 2 mons 3 days 04:05:06 -1 year -2 mons +3 days
-04:05:06

post gres_ver bose |@ 1 year 2 mons @ 3 days4 hours5mins| @ 1 year 2 mons-3 days

6 secs 4 hours 5 mins 6 secs

ago

i so_8601 P1Y2M P3DT4H5M6S P-1Y-2M3DT-4H-5M-6S

8.6. Boolean Type

PostgreSQL provides the standard SQL typebool ean; see Table 8.19. Thebool ean type can have
severa states: “true”, “false”, and athird state, “unknown”, whichisrepresented by the SQL null value.

Table 8.19. Boolean Data Type

Name Storage Size Description

bool ean 1 byte state of true or false

155

Data Types

Boolean constants can be represented in SQL queries by the SQL key words TRUE, FALSE, and NULL.
Thedatatypeinput function for typebool ean acceptsthese string representationsfor the“true” state:

true
yes
on

1

and these representations for the “false” state:

fal se
no

of f

0

Unique prefixes of these strings are also accepted, for examplet or n. Leading or trailing whitespace
isignored, and case does not matter.

The datatype output function for typebool ean alwaysemitseithert or f , asshownin Example 8.2.

Example 8.2. Using the bool ean Type

CREATE TABLE testl (a boolean, b text);

I NSERT | NTO testl VALUES (TRUE, 'sic est');
I NSERT | NTO test1 VALUES (FALSE, 'non est');
SELECT * FROM test1;

a | b

t | sic est
f | non est

SELECT * FROM test1l WHERE a;
a | b

t | sic est

The key words TRUE and FALSE are the preferred (SQL-compliant) method for writing Boolean
constants in SQL queries. But you can also use the string representations by following the generic
string-literal constant syntax described in Section 4.1.2.7, for example' yes' : : bool ean.

Note that the parser automatically understands that TRUE and FALSE are of type bool ean, but this
isnot so for NULL because that can have any type. So in some contexts you might have to cast NULL
tobool ean explicitly, for example NULL: : bool ean. Conversely, the cast can be omitted from a
string-literal Boolean value in contexts where the parser can deduce that the literal must be of type
bool ean.

8.7. Enumerated Types

Enumerated (enum) types are data types that comprise a static, ordered set of values. They are
equivaent to the enumtypes supported in a number of programming languages. An example of an
enum type might be the days of the week, or a set of status values for a piece of data.

8.7.1. Declaration of Enumerated Types

Enum types are created using the CREATE TY PE command, for example:

156

Data Types

8.7.2.

8.7.3.

CREATE TYPE nood AS ENUM (' sad', 'ok', 'happy');

Once created, the enum type can be used in table and function definitions much like any other type:

CREATE TYPE npbod AS ENUM ('sad', 'ok', 'happy');
CREATE TABLE person (
name text,
current _nood nood
)
| NSERT | NTO person VALUES (' Moe', 'happy');
SELECT * FROM person WHERE current _nood = ' happy';
nane | current_nood

______ o,
Moe | happy

(1 row

Ordering

The ordering of the values in an enum type is the order in which the values were listed when the
type was created. All standard comparison operators and related aggregate functions are supported
for enums. For example:

| NSERT | NTO person VALUES ('Larry', 'sad');

| NSERT | NTO person VALUES ('Curly', 'ok');

SELECT * FROM person WHERE current _nood > 'sad';
name | current_nood

SELECT * FROM person WHERE current _nmood > 'sad' ORDER BY
current _nood;
name | current_nood

Curly | ok
Moe | happy
(2 rows)

SELECT name

FROM per son

WHERE current_nood = (SELECT M N(current _nood) FROM person);
name

Type Safety

Each enumerated data type is separate and cannot be compared with other enumerated types. Seethis
example:

CREATE TYPE happi ness AS ENUM (' happy', 'very happy', 'ecstatic');
CREATE TABLE hol i days (
num weeks i nt eger,

157

Data Types

8.7.4.

happi ness happi ness

)
I NSERT | NTO hol i days(num weeks, happi ness) VALUES (4, ' happy');
I NSERT | NTO hol i days(num weeks, happi ness) VALUES (6, 'very happy');
| NSERT | NTO hol i days(num weeks, happi ness) VALUES (8, 'ecstatic');
I NSERT | NTO hol i days(num weeks, happi ness) VALUES (2, 'sad');
ERROR: invalid input value for enum happi ness: "sad"
SELECT person. nane, holidays. num weeks FROM person, holidays

WHERE per son. current _nood = hol i days. happi ness;
ERROR: operator does not exist: npod = happi ness

If you really need to do something like that, you can either write a custom operator or add explicit
casts to your query:

SELECT person. nane, holidays. num weeks FROM person, holidays
VWHERE person. current _nood: :text = holidays. happi ness: :text;
nanme | num weeks

Implementation Details

Enum labels are case sensitive, so ' happy' isnotthesameas' HAPPY' . White space in the labels
is significant too.

Although enum types are primarily intended for static sets of values, there is support for adding new
values to an existing enum type, and for renaming values (see ALTER TY PE). Existing values cannot
be removed from an enum type, nor can the sort ordering of such values be changed, short of dropping
and re-creating the enum type.

An enum value occupies four bytes on disk. The length of an enum value's textual 1abel is limited by
the NAMEDATAL EN setting compiled into PostgreSQL ; in standard buildsthis means at most 63 bytes.

Thetrand ations from internal enum valuesto textual 1abels are kept in the system catalog pg_enum
Querying this catalog directly can be useful.

8.8. Geometric Types

Geometric datatypes represent two-dimensional spatial objects. Table 8.20 showsthe geometric types
available in PostgreSQL .

Table 8.20. Geometric Types

Name Storage Size Description Representation

poi nt 16 bytes Point on a plane x,y)

I'ine 32 bytes Infiniteline {A,B,C}

| seg 32 bytes Finite line segment (x1,y1),(x2,y2))

box 32 bytes Rectangular box ((x1,y1),(x2,y2))

pat h 16+16n bytes Closed path (similar to|((x1,y1),...)
polygon)

pat h 16+16n bytes Open path [(x1,y1),..]

pol ygon 40+16n bytes Polygon (similar to|((x1,y1),...)
closed path)

158

Data Types

8.8.1.

8.8.2.

8.8.3.

8.8.4.

Name Storage Size Description Representation
circle 24 bytes Circle <(x,y),r> (center point
and radius)

A rich set of functions and operators is available to perform various geometric operations such as
scaling, trandlation, rotation, and determining intersections. They are explained in Section 9.11.

Points

Pointsarethefundamental two-dimensional building block for geometrictypes. Valuesof typepoi nt
are specified using either of the following syntaxes:

(x,y)
X,y

where x and y are the respective coordinates, as floating-point numbers.

Points are output using the first syntax.

Lines

Lines are represented by the linear equation Ax + By + C= 0, where A and B are not both zero. Values
of typel i ne areinput and output in the following form:

{ A B C}
Alternatively, any of the following forms can be used for input:
x1, yl) , (x2,
x1, yl) , (x2,

y
y
x1, yl) , (x2, vy
x1, yl , X2 , ¥

—r—
—~ A~~~

where (x1, y1) and (x2, y2) aretwo different points on theline.

Line Segments

Line segments are represented by pairs of pointsthat are the endpoints of the segment. Values of type
| seg are specified using any of the following syntaxes:

x1, yl) , (x2, y2)]
x1, yl) , (x2, y2))
x1, yl) , (x2, y2)
x1, yl , X2 , y2

—r—
—~ A~~~

where (x1, y1) and (x2, y2) arethe end points of the line segment.
Line segments are output using the first syntax.
Boxes

Boxes are represented by pairs of points that are opposite corners of the box. Values of type box are
specified using any of the following syntaxes:

159

Data Types

8.8.5.

8.8.6.

8.8.7.

((x1,yl) , (x2,y2))
(x1, y1) , (x2, y2)
x1, yl , X2 , y2
where (x1, y1) and (x2, y2) areany two opposite corners of the box.

Boxes are output using the second syntax.

Any two opposite corners can be supplied on input, but the values will be reordered as needed to store
the upper right and lower |eft corners, in that order.

Paths

Paths are represented by lists of connected points. Paths can be open, where the first and last pointsin
thelist are considered not connected, or closed, wherethefirst and last points are considered connected.

Vaues of type pat h are specified using any of the following syntaxes:

[(x1, y1) , ..., (xn, yn)]
((x¥1,vyl1), ... , (xn, yn))
(x1, vy1), ..., (Xn, yn)

(x1, yl s e, Xn , yn)
x1, vyl y e Xn , yn

where the points are the end points of the line segments comprising the path. Square brackets ([])
indicate an open path, while parentheses (()) indicate a closed path. When the outermost parentheses
are omitted, as in the third through fifth syntaxes, a closed path is assumed.

Paths are output using the first or second syntax, as appropriate.

Polygons

Polygons are represented by lists of points (the vertexes of the polygon). Polygons are very similar to
closed paths, but are stored differently and have their own set of support routines.

Vaues of type pol ygon are specified using any of the following syntaxes:

((x¥1,vy1l), ... , (xn, yn))
(x1, vy1), ..., (Xxn, yn)
(x1, y1l s e Xn , yn)
x1, vyl y e Xn , yn

where the points are the end points of the line segments comprising the boundary of the polygon.

Polygons are output using the first syntax.

Circles

Circles are represented by a center point and radius. Vaues of typeci r cl e are specified using any
of the following syntaxes:

~ A
—~ A~~~
X X X X
<K K
— — —
_~ = = =

160

Data Types

where (X, y) isthe center point and r istheradius of thecircle.

Circles are output using the first syntax.

8.9. Network Address Types

8.9.1.

8.9.2.

PostgreSQL offers data types to store IPv4, |Pv6, and MAC addresses, as shown in Table 8.21. It is
better to use these types instead of plain text types to store network addresses, because these types
offer input error checking and specialized operators and functions (see Section 9.12).

Table 8.21. Network Address Types

Name Storage Size Description

cidr 7 or 19 bytes IPv4 and IPv6 networks

i net 7 or 19 bytes IPv4 and IPv6 hosts and
networks

macaddr 6 bytes MAC addresses

macaddr 8 8 bytes MAC addresses (EUI-64 format)

When sorting i net or cidr data types, IPv4 addresses will aways sort before IPv6
addresses, including |Pv4 addresses encapsulated or mapped to |Pv6 addresses, such as ::10.2.3.4
or ::ffff:10.4.3.2.

| net

Thei net typeholdsan1Pv4 or IPv6 host address, and optionally its subnet, all in onefield. The subnet
is represented by the number of network address bits present in the host address (the “netmask”). If
the netmask is 32 and the address is | Pv4, then the value does not indicate a subnet, only a single host.
In IPv6, the address length is 128 bits, so 128 bits specify a unique host address. Note that if you want
to accept only networks, you should usethe ci dr typerather thani net .

The input format for thistypeisaddr ess/ y where addr ess isan IPv4 or IPv6 addressand y is
the number of bits in the netmask. If the / y portion is missing, the netmask is 32 for IPv4 and 128
for IPv6, so the value represents just a single host. On display, the / y portion is suppressed if the
netmask specifies a single host.

ci dr

Theci dr typeholdsan IPv4 or IPv6 network specification. Input and output formatsfollow Classless
Internet Domain Routing conventions. The format for specifying networks is addr ess/ y where
addr ess isthe network represented as an 1Pv4 or 1Pv6 address, and y is the number of bitsin the
netmask. If y isomitted, it is cal culated using assumptions from the older classful network numbering
system, except it will be at least large enough to include al of the octets written in the input. It isan
error to specify anetwork address that has bits set to the right of the specified netmask.

Table 8.22 shows some examples.

Table8.22. ci dr Typelnput Examples

ci dr Input ci dr Output abbrev(cidr)
192.168.100.128/25 192.168.100.128/25 192.168.100.128/25
192.168/24 192.168.0.0/24 192.168.0/24
192.168/25 192.168.0.0/25 192.168.0.0/25
192.168.1 192.168.1.0/24 192.168.1/24

161

Data Types

8.9.3.

8.9.4.

ci dr Input ci dr Output abbrev(cidr)
192.168 192.168.0.0/24 192.168.0/24
128.1 128.1.0.0/16 128.1/16

128 128.0.0.0/16 128.0/16

128.1.2 128.1.2.0/24 128.1.2/24

10.1.2 10.1.2.0/24 10.1.2/24

10.1 10.1.0.0/16 10.1/16

10 10.0.0.0/8 10/8

10.1.2.3/32 10.1.2.3/32 10.1.2.3/32
2001:4f8:3:ba::/64 2001:4f8:3:ba::/64 2001:4f8:3:ba::/64
2001:4f8:3:ba:2e0:81ff:fe22: d1f 12108 : 4f8:3: ba: 2€0: 81ff :fe22: d1f 121¥A : 41 8:3: ba: 2€0:81ff :fe22:d1f 1
.:ffff:1.2.3.0/120 .:ffff:1.2.3.0/120 +ffff:1.2.3/120
::ffff:1.2.3.0/128 ::ffff:1.2.3.0/128 :ffff:1.2.3.0/128

| net vs. ci dr

Theessential differencebetweeni net andci dr datatypesisthati net acceptsvaueswith nonzero
bits to the right of the netmask, whereas ci dr does not. For example, 192. 168. 0. 1/ 24 isvdid
fori net but not for ci dr .

Tip
If you do not like the output format for i net or ci dr values, try the functionshost , t ext
and abbr ev.
macaddr

Thenacaddr typestoresMAC addresses, known for examplefrom Ethernet card hardware addresses
(although MAC addresses are used for other purposes as well). Input is accepted in the following
formats:

' 08: 00: 2b: 01: 02: 03’
' 08- 00- 2b- 01- 02- 03’
' 08002b: 010203’

' 08002b- 010203’

' 0800. 2b01. 0203"

' 0800- 2b01- 0203"

' 08002b010203'

These examples would all specify the same address. Upper and lower case is accepted for the digits
a through f . Output is always in the first of the forms shown.

IEEE Std 802-2001 specifies the second shown form (with hyphens) as the canonical form for
MAC addresses, and specifies the first form (with colons) as the bit-reversed notation, so that
08-00-2b-01-02-03 = 01:00:4D:08:04:0C. This convention is widely ignored nowadays, and it is
relevant only for obsolete network protocols (such as Token Ring). PostgreSQL makes no provisions
for bit reversal, and al accepted formats use the canonical LSB order.

The remaining five input formats are not part of any standard.

8.9.5. nacaddr 8

162

Data Types

8.10

The macaddr 8 type stores MAC addresses in EUI-64 format, known for example from Ethernet
card hardware addresses (although MAC addresses are used for other purposes as well). This type
can accept both 6 and 8 byte length MAC addresses and stores them in 8 byte length format. MAC
addresses given in 6 byte format will be stored in 8 byte length format with the 4th and 5th bytes set
to FF and FE, respectively. Note that IPv6 uses a modified EUI-64 format where the 7th bit should
be set to one after the conversion from EUI-48. The function macaddr 8_set 7bi t is provided to
make this change. Generally speaking, any input which is comprised of pairs of hex digits (on byte
boundaries), optionally separated consistently by oneof ' ;' ," -' or'. ", isaccepted. The number
of hex digits must be either 16 (8 bytes) or 12 (6 bytes). Leading and trailing whitespace is ignored.
The following are examples of input formats that are accepted:

' 08: 00: 2b: 01: 02: 03: 04: 05’
' 08- 00- 2b- 01- 02- 03- 04- 05’
' 08002b: 0102030405

' 08002b- 0102030405

' 0800. 2b01. 0203. 0405'

' 0800- 2b01- 0203- 0405

' 08002b01: 02030405

' 08002b0102030405

These examples would all specify the same address. Upper and lower case is accepted for the digits
a through f . Output is always in the first of the forms shown. The last six input formats that are
mentioned above are not part of any standard. To convert a traditional 48 bit MAC address in
EUI-48 format to modified EUI-64 format to be included as the host portion of an |Pv6 address, use
macaddr 8_set 7bi t asshown:

SELECT nacaddr 8 set 7bi t (' 08: 00: 2b: 01: 02: 03') ;

nmacaddr 8 _set 7bi t

Oa: 00: 2b: ff:fe: 01:02: 03
(1 row)

Bit String Types

Bit strings are strings of 1's and 0's. They can be used to store or visualize bit masks. There are two
SQL bittypes: bi t (n) andbit varyi ng(n),wheren isapositive integer.

bi t type data must match the length n exactly; it is an error to attempt to store shorter or longer bit
strings. bi t varyi ng datais of variable length up to the maximum length n; longer strings will
be rejected. Writing bi t without a length is equivalent tobi t (1) , whilebi t varyi ng without
alength specification means unlimited length.

Note

If one explicitly castsabit-string valueto bi t (n) , it will be truncated or zero-padded on the
right to be exactly n bits, without raising an error. Similarly, if one explicitly casts abit-string
valuetobi t varyi ng(n),itwill betruncated on theright if it is more than n bits.

Refer to Section 4.1.2.5 for information about the syntax of bit string constants. Bit-logical operators
and string manipulation functions are available; see Section 9.6.

Example 8.3. Using the Bit String Types

163

Data Types

8.11

CREATE TABLE test (a BIT(3), b BIT VARYING5));
I NSERT | NTO test VALUES (B 101', B 00');
| NSERT | NTO test VALUES (B 10', B 101');

ERROR: bit string length 2 does not match type bit(3)

I NSERT | NTO test VALUES (B 10'::bit(3), B 101');
SELECT * FROM test;

a | b
_____ Fe e - - -
101 | 00
100 | 101

A bit string value requires 1 byte for each group of 8 hits, plus 5 or 8 bytes overhead depending on
the length of the string (but long values may be compressed or moved out-of-line, as explained in
Section 8.3 for character strings).

Text Search Types

PostgreSQL provides two datatypes that are designed to support full text search, which isthe activity
of searching through a collection of natural-language documents to locate those that best match a
guery. Thet svect or typerepresents adocument in aform optimized for text search; thet squery
type similarly represents atext query. Chapter 12 provides a detailed explanation of this facility, and
Section 9.13 summarizes the related functions and operators.

8.11.1.t svect or

A tsvector vaueisasorted list of distinct lexemes, which are words that have been normalized
to merge different variants of the same word (see Chapter 12 for details). Sorting and duplicate-
elimination are done automatically during input, as shown in this example:

SELECT 'a fat cat sat on a mat and ate a fat rat'::tsvector;
t svect or

To represent lexemes containing whitespace or punctuation, surround them with quotes:

SELECT $$the | exene ' ' contains spaces$$::tsvector;
t svect or

‘contains' 'l|lexene' 'spaces' 'the'

(Weuse dollar-quoted string literalsin this example and the next one to avoid the confusion of having
to double quote marks within the literals.) Embedded quotes and backsl ashes must be doubled:

SELECT $$the |l exene 'Joe''s' contains a quote$$::tsvector;
t svect or

' 'contains' 'lexenme' 'quote' 'the'

Optionally, integer positions can be attached to lexemes:

164

Data Types

SELECT '"a:1 fat:2 cat:3 sat:4 on:5 a:6 mat:7 and: 8 ate: 9 a: 10
fat:11 rat:12'::tsvector;
t svect or

'a':1,6,10 '"and':8 '"ate':9 'cat':3 'fat':2,11 '"mat':7 'on':5
‘rat':12 'sat': 4

A position normally indicates the source word's location in the document. Positional information can
be used for proximity ranking. Position values can range from 1 to 16383; larger numbers are silently
set to 16383. Duplicate positions for the same lexeme are discarded.

Lexemes that have positions can further be labeled with aweight, which can be A, B, C, or D. Disthe
default and hence is not shown on output:

SELECT 'a: 1A fat: 2B, 4C cat: 5D ::tsvector;
t svect or

WEeights are typically used to reflect document structure, for example by marking title words
differently from body words. Text search ranking functions can assign different priorities to the
different weight markers.

It isimportant to understand that thet svect or typeitself does not perform any word normalization;
it assumes the wordsiit is given are normalized appropriately for the application. For example,

SELECT ' The Fat Rats'::tsvector;
t svect or

"Fat' 'Rats' ' The'

For most English-text-searching applications the above words would be considered non-normalized,
butt svect or doesn't care. Raw document text should usually be passed throught o_t svect or
to normalize the words appropriately for searching:

SELECT to_tsvector('english', 'The Fat Rats');
to_tsvector

Again, see Chapter 12 for more detail.

8.11.2. t squery

At squery vauestoreslexemesthat areto be searched for, and can combine them using the Boolean
operators & (AND), | (OR), and! (NOT), aswell as the phrase search operator <- > (FOLLOWED
BY). Thereisaso avariant <N> of the FOLLOWED BY operator, where Nisan integer constant that
specifies the distance between the two lexemes being searched for. <- > isequivalent to <1>.

Parentheses can be used to enforce grouping of these operators. In the absence of parentheses,! (NOT)
binds most tightly, <- > (FOLLOWED BY) next most tightly, then & (AND), with | (OR) binding
the least tightly.

Here are some examples:

165

Data Types

SELECT 'fat & rat'::tsquery;
tsquery

SELECT 'fat & (rat | cat)'::tsquery;
t squery

SELECT 'fat & rat & ! cat'::tsquery;
tsquery

Optionaly, lexemesin at squery can be labeled with one or more weight letters, which restricts
them to match only t svect or lexemes with one of those weights:

SELECT 'fat:ab & cat'::tsquery;
tsquery

Also, lexemesin at squery can be labeled with * to specify prefix matching:

SELECT ' super:*'::tsquery;
t squery

'super' :*
This query will match any word inat svect or that begins with “super”.

Quotingrulesfor lexemesarethe same asdescribed previously for lexemesint svect or ; and, aswith
t svect or, any required normalization of words must be done before converting to the t squery
type. Thet o_t squery function is convenient for performing such normalization:

SELECT to_tsquery('Fat:ab & Cats');
to_tsquery

"fat': AB & 'cat'
Note that t 0_t squery will process prefixes in the same way as other words, which means this
comparison returns true:

SELECT to_tsvector('postgraduate’) @@to_tsquery('postgres:*');
?col um?

because post gr es gets stemmed to post gr :

SELECT to_tsvector('postgraduate'), to_tsquery('postgres:*');
to_tsvector | to_tsquery

'postgradu’ :1 | 'postgr':*

166

Data Types

which will match the stemmed form of post gr aduat e.

UUID Type

The data type uui d stores Universally Unique Identifiers (UUID) as defined by RFC 4122, 1SO/
|EC 9834-8:2005, and related standards. (Some systems refer to this data type as a globally unique
identifier, or GUID, instead.) This identifier is a 128-bit quantity that is generated by an algorithm
chosen to make it very unlikely that the same identifier will be generated by anyone else in the known
universe using the same algorithm. Therefore, for distributed systems, theseidentifiers provide abetter
uni queness guarantee than sequence generators, which are only unique within a single database.

8.12

A UUID is written as a sequence of lower-case hexadecimal digits, in several groups separated by
hyphens, specifically agroup of 8 digitsfollowed by three groups of 4 digitsfollowed by agroup of 12
digits, for atotal of 32 digitsrepresenting the 128 bits. An example of aUUID inthisstandard formis:

aleebc99- 9¢c0b- 4ef 8- bb6d- 6bb9bd380all

PostgreSQL also accepts the following alternative forms for input: use of upper-case digits, the
standard format surrounded by braces, omitting some or al hyphens, adding a hyphen after any group
of four digits. Examples are:

AOEEBC99- 9C0B- 4EF8- BB6D- 6BB9BD380A11
{a0eebc99- 9cOb- 4ef 8- bb6d- 6bb9bd380al1}
aleebc999cOb4ef 8bb6d6bb9bd380all

alee- bc99- 9cOb- 4ef 8- bb6d- 6bb9- bd38- 0all
{a0eebc99- 9cOb4ef 8- bb6d6bb9- bd380a11}

Output is always in the standard form.

PostgreSQL provides storage and comparison functions for UUIDs, but the core database does not
include any function for generating UUIDs, because no single algorithm is well suited for every
application. The uuid-ossp module provides functions that implement several standard algorithms.
The pgcrypto module also provides a generation function for random UUIDs. Alternatively, UUIDs
could be generated by client applications or other libraries invoked through a server-side function.

8.13. XML Type

The xm datatype can be used to store XML data. Its advantage over storing XML datain at ext
field isthat it checks the input values for well-formedness, and there are support functions to perform
type-safe operations on it; see Section 9.14. Use of this data type requires the installation to have been
built withconfi gure --with-1ibxnl.

The xm type can store well-formed “documents’, as defined by the XML standard, as well as
“content” fragments, which are defined by reference to the more permissive “document node” L of the
XQuery and XPath data model. Roughly, this means that content fragments can have more than one
top-level element or character node. The expression xm val ue 1S DOCUMENT can be used to
evaluate whether a particular xm valueisafull document or only a content fragment.

Limits and compatibility notes for the xm data type can be found in Section D.3.

8.13.1. Creating XML Values

To produce avalue of type xml from character data, use the function xi par se:

L hitps://www.w3.0rg/ TR/2010/REC-xpath-datamodel-20101214/#DocumentNode

167

https://www.w3.org/TR/2010/REC-xpath-datamodel-20101214/#DocumentNode
https://www.w3.org/TR/2010/REC-xpath-datamodel-20101214/#DocumentNode

Data Types

XMLPARSE ({ DOCUMVENT | CONTENT } val ue)

Examples:

XMLPARSE (DOCUMENT ' <?xm version="1. 0" ?><book><titl| e>Manual </
titl e><chapter>...</chapter></book>")
XM_LPARSE (CONTENT ' abc<f oo>bar </ f oo><bar >f oo</ bar >')

Whilethisistheonly way to convert character stringsinto XML values according to the SQL standard,
the PostgreSQL -specific syntaxes:

xm ' <f oo>bar </ f 00>’
' <f oo>bar </ foo>":: xni

can also be used.

Thexm type does not validate input values against a document type declaration (DTD), even when
theinput value specifiesaDTD. Thereisal so currently no built-in support for validating against other
XML schemalanguages such as XML Schema.

The inverse operation, producing a character string value from xm , uses the function
xm serialize:

XMLSERI ALI ZE ({ DOCUMENT | CONTENT } val ue AS type)

type canbechar act er,charact er varyi ng,ort ext (oranaliasfor oneof those). Again,
according to the SQL standard, thisisthe only way to convert between type xm and character types,
but PostgreSQL also allows you to simply cast the value.

When a character string value is cast to or from type xm without going through XM_LPARSE or
XMLSERI ALI ZE, respectively, the choice of DOCUMENT versus CONTENT is determined by the
“XML option” session configuration parameter, which can be set using the standard command:

SET XML OPTI ON { DOCUMENT | CONTENT };

or the more PostgreSQL -like syntax

SET xm option TO { DOCUMENT | CONTENT };

The default is CONTENT, so all forms of XML data are allowed.

8.13.2. Encoding Handling

Care must be taken when dealing with multiple character encodings on the client, server, and in
the XML data passed through them. When using the text mode to pass queries to the server and
guery results to the client (which is the normal mode), PostgreSQL converts all character data passed
between the client and the server and vice versa to the character encoding of the respective end; see
Section 23.3. Thisincludes string representations of XML values, such asin the above examples. This
would ordinarily mean that encoding declarations contained in XML data can become invalid as the
character datais converted to other encodings while traveling between client and server, because the
embedded encoding declaration is not changed. To cope with this behavior, encoding declarations
contained in character strings presented for input to thexm type areignored, and content is assumed
to be in the current server encoding. Consequently, for correct processing, character strings of XML

168

Data Types

data must be sent from the client in the current client encoding. It is the responsibility of the client
to either convert documents to the current client encoding before sending them to the server, or to
adjust the client encoding appropriately. On output, values of type xm will not have an encoding
declaration, and clients should assume all dataisin the current client encoding.

When using binary mode to pass query parametersto the server and query results back to the client, no
encoding conversion is performed, so the situation is different. In this case, an encoding declaration
in the XML data will be observed, and if it is absent, the data will be assumed to be in UTF-8 (as
required by the XML standard; note that PostgreSQL does not support UTF-16). On output, data will
have an encoding declaration specifying the client encoding, unless the client encoding is UTF-8, in
which case it will be omitted.

Needless to say, processing XML data with PostgreSQL will be less error-prone and more efficient
if the XML data encoding, client encoding, and server encoding are the same. Since XML data is
internally processed in UTF-8, computations will be most efficient if the server encoding is also
UTF-8.

Caution

Some XML -related functionsmay not work at all on non-ASCI| datawhen the server encoding
isnot UTF-8. Thisisknown to be anissuefor xmi t abl e() and xpat h() in particular.

8.13.3. Accessing XML Values

The xm datatype is unusual in that it does not provide any comparison operators. This is because
thereisno well-defined and universally useful comparison algorithm for XML data. One consequence
of thisis that you cannot retrieve rows by comparing an xm column against a search value. XML
values should therefore typically be accompanied by a separate key field such asan ID. An aternative
solution for comparing XML valuesisto convert them to character stringsfirst, but note that character
string comparison has little to do with a useful XML comparison method.

Since there are no comparison operators for the xm data type, it is not possible to create an index
directly on a column of thistype. If speedy searchesin XML data are desired, possible workarounds
include casting the expression to a character string type and indexing that, or indexing an XPath
expression. Of course, the actual query would have to be adjusted to search by the indexed expression.

The text-search functionality in PostgreSQL can also be used to speed up full-document searches of
XML data. The necessary preprocessing support is, however, not yet available in the PostgreSQL
distribution.

JSON Types

JSON data types are for storing JSON (JavaScript Object Notation) data, as specified in RFC 7159,
Such data can also be stored ast ext , but the JSON data types have the advantage of enforcing that
each stored valueisvalid according to the JSON rules. There are al so assorted JSON-specific functions
and operators available for data stored in these data types; see Section 9.15.

8.14

Therearetwo JSON datatypes: j son andj sonb. They accept almost identical sets of valuesasinput.
The major practical difference is one of efficiency. The j son data type stores an exact copy of the
input text, which processing functions must reparse on each execution; whilej sonb dataisstoredin
a decomposed binary format that makes it dightly slower to input due to added conversion overhead,
but significantly faster to process, since no reparsing isneeded. j sonb also supportsindexing, which
can be a significant advantage.

2 https://tool s.ietf.org/html/rfc7159

169

https://tools.ietf.org/html/rfc7159
https://tools.ietf.org/html/rfc7159

Data Types

Becausethej son typestoresan exact copy of theinput text, it will preserve semantically-insignificant
white space between tokens, as well as the order of keyswithin JSON objects. Also, if a JSON object
within the value contai nsthe same key morethan once, all the key/value pairs are kept. (The processing
functions consider the last value as the operative one.) By contrast,] sonb does not preserve white
space, does not preserve the order of object keys, and does not keep duplicate object keys. If duplicate
keys are specified in the input, only the last value is kept.

In general, most applications should prefer to store JSON data as j sonb, unless there are quite
specialized needs, such as legacy assumptions about ordering of object keys.

PostgreSQL allows only one character set encoding per database. It is therefore not possible for the
JSON types to conform rigidly to the JSON specification unless the database encoding is UTFS8.
Attempts to directly include characters that cannot be represented in the database encoding will fail;
conversely, characters that can be represented in the database encoding but not in UTF8 will be
allowed.

RFC 7159 permits JSON strings to contain Unicode escape sequences denoted by \ uXXXX. In the
input function for thej son type, Unicode escapes are allowed regardless of the database encoding,
and are checked only for syntactic correctness (that is, that four hex digits follow \ u). However,
the input function for j sonb is stricter: it disallows Unicode escapes for non-ASCI| characters
(those above U+007F) unless the database encoding isUTF8. Thej sonb type also rgjects\ u0000
(because that cannot be represented in PostgreSQL 'st ext type), and it insiststhat any use of Unicode
surrogate pairs to designate characters outside the Unicode Basic Multilingual Plane be correct. Valid
Unicode escapes are converted to the equivalent ASCII or UTF8 character for storage; this includes
folding surrogate pairs into a single character.

Note

Many of the JSON processing functions described in Section 9.15 will convert Unicode
escapes to regular characters, and will therefore throw the same types of errorsjust described
even if their inputisof typej son notj sonb. Thefact that thej son input function does not
make these checks may be considered a historical artifact, although it does allow for simple
storage (without processing) of JSON Unicode escapes in a non-UTF8 database encoding.
In general, it is best to avoid mixing Unicode escapes in JSON with a non-UTF8 database
encoding, if possible.

When converting textual JSON input into j sonb, the primitive types described by RFC 7159 are
effectively mapped onto native PostgreSQL types, as shown in Table 8.23. Therefore, there are some
minor additional constraints on what constitutesvalidj sonb datathat do not apply tothej son type,
nor to JSON in the abstract, corresponding to limits on what can be represented by the underlying data
type. Notably, j sonb will rgject numbers that are outside the range of the PostgreSQL nuneri c
datatype, whilej son will not. Such implementation-defined restrictions are permitted by RFC 7159.
However, in practice such problems are far more likely to occur in other implementations, as it is
common to represent JSON's nunber primitive type as |IEEE 754 double precision floating point
(which RFC 7159 explicitly anticipates and allows for). When using JSON as an interchange format
with such systems, the danger of losing numeric precision compared to data originally stored by
PostgreSQL should be considered.

Conversdly, as noted in the table there are some minor restrictions on the input format of JSON
primitive types that do not apply to the corresponding PostgreSQL types.

Table 8.23. JSON primitive types and corresponding PostgreSQL types

JSON primitive type PostgreSQL type Notes

string t ext \ u0000 is disdlowed, as are
non-ASCIl Unicode escapes if
database encoding isnot UTF8

170

Data Types

JSON primitive type PostgreSQL type Notes

nunber nuneric NaNandi nfinity valuesare
disallowed

bool ean bool ean Only lowercase true and
f al se spellings are accepted

nul | (none) SQL NULL isadifferent concept

8.14.1. JSON Input and Output Syntax

The input/output syntax for the JSON datatypesis as specified in RFC 7159.

Thefollowing are al validj son (or j sonb) expressions:

-- Sinple scalar/prinmtive val ue

-- Primtive values can be nunbers, quoted strings, true, false, or
nul |

SELECT '5'::json;

-- Array of zero or nore elenents (el enents need not be of sane

type)
SELECT '[1, 2, "foo", null]'::json;

-- (bject containing pairs of keys and val ues
-- Note that object keys nust always be quoted strings
SELECT '{"bar": "baz", "balance": 7.77, "active": false}'::json;

-- Arrays and objects can be nested arbitrarily
SELECT '{"foo0": [true, "bar"], "tags": {"a": 1, "b": null}}'::json;

As previoudly stated, when a JSON valueisinput and then printed without any additional processing,
j son outputsthe sametext that wasinput, whilej sonb does not preserve semantically-insignificant
details such as whitespace. For example, note the differences here:

SELECT '{"bar": "baz", "balance": 7.77, "active":false}'::json;
j son

{"bar": "baz", "balance": 7.77, "active":false}

(1 row)

SELECT '{"bar": "baz", "balance": 7.77, "active":false}'::jsonb;
j sonb

{"bar": "baz", "active": false, "balance": 7.77}

(1 row)

One semantically-insignificant detail worth notingisthatinj sonb, numberswill beprinted according
to the behavior of the underlying nuner i ¢ type. In practice this means that numbers entered with E
notation will be printed without it, for example:

SELECT '{"reading": 1.230e-5}'::json, '{"reading":
1.230e-5}"::jsonb;
j son | j sonb

{"reading": 1.230e-5} | {"reading": 0.00001230}

171

Data Types

(1 row

However, j sonb will preserve trailing fractional zeroes, as seen in this example, even though those
are semantically insignificant for purposes such as equality checks.

8.14.2. Designing JSON documents effectively

Representing data as JSON can be considerably more flexible than the traditional relational data
model, which is compelling in environments where requirements arefluid. It is quite possible for both
approaches to co-exist and complement each other within the same application. However, even for
applications where maximal flexibility is desired, it is still recommended that JSON documents have
a somewhat fixed structure. The structure is typically unenforced (though enforcing some business
rules declaratively is possible), but having a predictable structure makes it easier to write queries that
usefully summarize a set of “documents’ (datums) in atable.

JSON data is subject to the same concurrency-control considerations as any other data type when
stored in a table. Although storing large documents is practicable, keep in mind that any update
acquires arow-level lock on the whole row. Consider limiting JSON documents to a manageable size
in order to decrease lock contention among updating transactions. Ideally, JSON documents should
each represent an atomic datum that business rules dictate cannot reasonably be further subdivided
into smaller datums that could be modified independently.

8.14.3.] sonb Containment and Existence

Testing containment is an important capability of j sonb. Thereisno parallel set of facilities for the
j son type. Containment tests whether one j sonb document has contained within it another one.
These examples return true except as noted:

-- Sinple scalar/prinmtive values contain only the identical val ue:
SELECT '"foo0"'::jsonb @ '"foo"'::jsonb;

-- The array on the right side is contained within the one on the
left:
SELECT '[1, 2, 3]'::jsonb @ '[1, 3]'::jsonb;

-- Oder of array elenents is not significant, so this is also
true:
SELECT '[1, 2, 3]'::jsonb @ '[3, 1]'::jsonb;

-- Duplicate array elenents don't matter either:
SELECT '[1, 2, 3]'::jsonb @ '[1, 2, 2]'::]jsonb;

-- The object with a single pair on the right side is contained
-- within the object on the left side:

SELECT ' {"product": "PostgreSQ.", "version": 9.4, "jsonb":
true}'::jsonb @ '{"version": 9.4}'::jsonb;

-- The array on the right side is not considered contained within

t he

-- array on the left, even though a simlar array is nested within
it:

SELECT '[1, 2, [1, 3]]'::jsonb @ '[1, 3]'::jsonb; -- yields false

-- But with a layer of nesting, it is contained:
SELECT '[1, 2, [1, 3]]'::jsonb @ '[[1, 3]]'::]sonb;

-- Simlarly, containnment is not reported here:

172

Data Types

SELECT '{"foo": {"bar": "baz"}}'::jsonb @ '{"bar": "baz"}'::jsonb;
-- yields fal se

-- Atop-level key and an enpty object is contained:
SELECT ' {"foo": {"bar": "baz"}}'::jsonb @ '{"foo": {}}'::jsonb;

The general principleisthat the contained object must match the containing object asto structure and
data contents, possibly after discarding some non-matching array elements or object key/value pairs
from the containing object. But remember that the order of array elements is not significant when
doing a containment match, and duplicate array elements are effectively considered only once.

As a specia exception to the general principle that the structures must match, an array may contain
aprimitive value:

-- This array contains the primtive string val ue:

SELECT '["fo0", "bar"]'::jsonb @ '"bar"'::jsonb;

-- This exception is not reciprocal -- non-containment is reported
here:

SELECT '"bar"'::jsonb @ '["bar"]'::jsonb; -- yields false

j sonb aso has an existence operator, which is a variation on the theme of containment: it tests
whether astring (given asat ext value) appears as an object key or array element at the top level of
thej sonb value. These examples return true except as noted:

-- String exists as array el ement:
SELECT '["foo0", "bar", "baz"]'::jsonb ? 'bar';

-- String exists as object key:
SELECT '{"foo": "bar"}'::jsonb ? 'foo';

-- (bject values are not considered:

SELECT '{"foo": "bar"}'::jsonb ? "bar'; -- yields false

-- As with contai nment, existence nmust match at the top |evel:
SELECT '{"foo": {"bar": "baz"}}'::jsonb ? "bar'; -- yields fal se
-- Astring is considered to exist if it matches a primtive JSON
string:

SELECT '"foo0"'::jsonb ? 'foo';

JSON objects are better suited than arrays for testing containment or existence when there are many
keys or elements involved, because unlike arrays they are internally optimized for searching, and do
not need to be searched linearly.

Tip

Because JSON containment is nested, an appropriate query can skip explicit selection of sub-
objects. Asan example, supposethat we haveadoc column containing objectsat thetop level,
with most objects containing t ags fields that contain arrays of sub-objects. This query finds
entries in which sub-objects containing both "t ermi': "pari s" and "terni:"food"
appear, while ignoring any such keys outside thet ags array:

SELECT doc->'site_nane' FROM websites
WHERE doc @ '{"tags":[{"term':"paris"}, {"ternm':"food"}]}";

173

Data Types

One could accomplish the same thing with, say,

SELECT doc->'site_nane' FROM websites
WHERE doc->'tags' @ '[{"ternt:"paris"}, {"ternf:"food"}]";

but that approach is less flexible, and often less efficient as well.

On the other hand, the JSON existence operator is not nested: it will only look for the specified
key or array element at top level of the JSON value.

The various containment and existence operators, along with all other JSON operators and functions
are documented in Section 9.15.

8.14.4.] sonb Indexing

GIN indexes can be used to efficiently search for keys or key/value pairs occurring within a large
number of j sonb documents (datums). Two GIN “operator classes’ are provided, offering different
performance and flexibility trade-offs.

The default GIN operator classfor j sonb supports queries with top-level key-exists operators ?, ?&
and ?| operators and path/value-exists operator @ . (For details of the semantics that these operators
implement, see Table 9.44.) An example of creating an index with this operator classis:

CREATE | NDEX idxgin ON api USING G N (jdoc);

The non-default GIN operator classj sonb_pat h_ops supports indexing the @ operator only. An
example of creating an index with this operator classis:

CREATE | NDEX i dxgi np ON api USING G N (jdoc jsonb_path_ops);

Consider the example of atable that stores JISON documents retrieved from athird-party web service,
with a documented schema definition. A typical document is:

{
"guid": "9c36adcl- 7f b5- 4d5b- 83b4- 90356a46061a",
"nanme": "Angel a Barton",
"is_active": true,
"conpany": "Magnafone",
"address": "178 Howard Place, Gulf, Washington, 702",
"registered": "2009-11-07T08:53:22 +08: 00",
"latitude": 19.793713,
"l ongi tude": 86.513373,
"tags": |
"enin',
"al i quip",
"qui
]
}

We store these documents in atable named api ,inaj sonb column namedj doc. If aGIN index is
created on this column, queries like the following can make use of the index:

-- Find docunents in which the key "conpany" has val ue "Magnaf one"

174

Data Types

SELECT j doc->'guid', jdoc-> nane' FROM api WHERE j doc @
"{"company": "Magnafone"}";

However, theindex could not be used for queries like the following, because though the operator ? is
indexable, it is not applied directly to the indexed column j doc:

-- Find docunents in which the key "tags" contains key or array
el erent "qui"

SELECT jdoc->'guid', jdoc->' nane' FROM api WHERE jdoc -> 'tags' ?
"qui';

Still, with appropriate use of expression indexes, the above query can use an index. If querying for
particular itemswithinthe "t ags" key iscommon, defining an index like this may be worthwhile:

CREATE | NDEX i dxgi ntags ON api USING AN ((jdoc -> '"tags'));
Now, the WHERE clausej doc -> 'tags' ? 'qui' will berecognized asan application of the
indexable operator ? to theindexed expressionj doc -> 't ags' .(Moreinformation on expression

indexes can be found in Section 11.7.)

Another approach to querying is to exploit containment, for example:

-- Find docunents in which the key "tags" contains array el ement

Ilqui n
SELECT jdoc->'guid', jdoc->' nane' FROM api WHERE jdoc @ '{"tags":
["qui "]}

A simple GIN index on the j doc column can support this query. But note that such an index will
store copies of every key and valueinthej doc column, whereas the expression index of the previous
example stores only data found under the t ags key. While the simple-index approach is far more
flexible (since it supports queries about any key), targeted expression indexes are likely to be smaller
and faster to search than asimple index.

Although the j sonb_pat h_ops operator class supports only queries with the @ operator, it has
notabl e performance advantages over the default operator classj sonb_ops.Aj sonb_pat h_ops
index is usually much smaller than aj sonb_ops index over the same data, and the specificity of
searchesis better, particularly when queries contain keys that appear frequently in the data. Therefore
search operations typically perform better than with the default operator class.

The technical difference between aj sonb_ops and aj sonb_pat h_ops GIN index is that the
former creates independent index items for each key and value in the data, while the latter creates
index items only for each value in the data. 3 Basicaly, each j sonb_pat h_ops index item is a
hash of the value and the key(s) leading to it; for exampletoindex { " f 00" : {"bar": "baz"}},
a single index item would be created incorporating al three of f 0o, bar, and baz into the hash
value. Thus a containment query looking for this structure would result in an extremely specific index
search; but there is no way at all to find out whether f 0o appears as a key. On the other hand, a
j sonb_ops index would creste three index items representing f 0o, bar , and baz separately; then
to do the containment query, it would look for rows containing al three of these items. While GIN
indexes can perform such an AND search fairly efficiently, it will still be less specific and slower
than the equivalent j sonb_pat h_ops search, especidly if there are a very large number of rows
containing any single one of the three index items.

A disadvantage of thej sonb_pat h_ops approach is that it produces no index entries for JSON
structures not containing any values, suchas{"a": {}}.If asearchfor documents containing such

3 For this purpose, the term “value’ includes array elements, though JSON terminology sometimes considers array elements distinct from
values within objects.

175

Data Types

astructure is requested, it will require a full-index scan, which is quite low. j sonb_pat h_ops is
therefore ill-suited for applications that often perform such searches.

j sonb also supports bt r ee and hash indexes. These are usually useful only if it's important to
check equality of complete JSON documents. The bt r ee ordering for j sonb datums is seldom of
great interest, but for completenessit is:

ohject > Array > Bool ean > Nunmber > String > Null

Qbject with n pairs > object with n - 1 pairs

Array with n elenments > array with n - 1 elenents

Objects with equal numbers of pairs are compared in the order:

key-1, value-1, key-2 ...

Note that object keys are compared in their storage order; in particular, since shorter keys are stored
before longer keys, this can lead to results that might be unintuitive, such as:

{ "aa": 1, "c": 1} > {"b": 1, "d": 1}

Similarly, arrays with equal numbers of elements are compared in the order:

elenent-1, elenent-2 ...

Primitive JSON values are compared using the same comparison rules as for the underlying
PostgreSQL data type. Strings are compared using the default database collation.

8.14.5. Transforms

8.15.

Additional extensions are available that implement transforms for the j sonb type for different
procedural languages.

The extensions for PL/Perl are called j sonb_pl perl andj sonb_pl per| u. If you use them,
j sonb values are mapped to Perl arrays, hashes, and scalars, as appropriate.

The extensions for PL/Python are caled j sonb_pl pyt honu, j sonb_pl pyt hon2u, and
j sonb_pl pyt hon3u (see Section 46.1 for the PL/Python naming convention). If you use them,
j sonb values are mapped to Python dictionaries, lists, and scalars, as appropriate.

Arrays

PostgreSQL allows columnsof atableto bedefined asvariable-length multidimensional arrays. Arrays
of any built-in or user-defined base type, enum type, composite type, range type, or domain can be
created.

8.15.1. Declaration of Array Types

Toillustrate the use of array types, we create this table:

CREATE TABLE sal _enp (
nane t ext,
pay by quarter integer[],

176

Data Types

schedul e text[][]
)

Asshown, an array datatypeis named by appending square brackets ([]) to the data type name of the
array elements. The above command will create atablenamed sal _enp with acolumn of typet ext
(name), a one-dimensiona array of type i nt eger (pay_by_quart er), which represents the
employee's salary by quarter, and a two-dimensional array of t ext (schedul e), which represents
the employee's weekly schedule.

The syntax for CREATE TABLE alows the exact size of arraysto be specified, for example:

CREATE TABLE tictactoe (
squar es i nteger[3][3]

)

However, the current implementation ignores any supplied array size limits, i.e., the behavior is the
same as for arrays of unspecified length.

The current implementation does not enforce the declared number of dimensions either. Arrays of
a particular element type are all considered to be of the same type, regardless of size or number of
dimensions. So, declaring the array size or number of dimensions in CREATE TABLE is simply
documentation; it does not affect run-time behavior.

An aternative syntax, which conformsto the SQL standard by using the keyword ARRAY, can be used
for one-dimensional arrays. pay_by_quart er could have been defined as:

pay_by _quarter integer ARRAY[4],

Or, if no array size isto be specified:

pay_by quarter integer ARRAY,

As before, however, PostgreSQL does not enforce the size restriction in any case.

8.15.2. Array Value Input

Towriteanarray valueasalitera constant, enclosethe element valueswithin curly bracesand separate
them by commas. (If you know C, thisis not unlike the C syntax for initializing structures.) Y ou can
put double quotes around any element value, and must do so if it contains commas or curly braces.
(More details appear below.) Thus, the general format of an array constant is the following:

'{ vall delimval2 delim... }'

where del i misthe delimiter character for the type, as recorded in its pg_t ype entry. Among the
standard data types provided in the PostgreSQL distribution, al useacommay(,), except for type box
which uses a semicolon (;). Each val is either a constant of the array element type, or a subarray.
An example of an array constant is:

"{{1,2,3},{4,5,6},{7,8,9}}'
This constant is atwo-dimensional, 3-by-3 array consisting of three subarrays of integers.

To set an element of an array constant to NULL, write NULL for the element value. (Any upper- or
lower-case variant of NULL will do.) If you want an actual string value“NULL”, you must put double
guotes around it.

177

Data Types

(These kinds of array constants are actually only a special case of the generic type constants discussed
in Section 4.1.2.7. The constant isinitially treated as a string and passed to the array input conversion
routine. An explicit type specification might be necessary.)

Now we can show some | NSERT statements:

| NSERT | NTO sal _enp

VALUES ("Bill",
' {10000, 10000, 10000, 10000}',
"{{"neeting", "lunch"}, {"training", "presentation"}}');

| NSERT | NTO sal _enp
VALUES (' Carol ',
' {20000, 25000, 25000, 25000%}',
"{{"breakfast", "consulting"}, {"neeting", "lunch"}}");

The result of the previous two inserts looks like this:

SELECT * FROM sal _enp;
name | pay_by_quarter | schedul e

Bill | {10000, 10000, 10000, 10000} | {{neeting,!lunch},
{training, presentation}}

Carol | {20000, 25000, 25000, 25000} | {{breakfast, consulting},
{meeting, | unch}}
(2 rows)

Multidimensional arrays must have matching extentsfor each dimension. A mismatch causesan error,
for example:

| NSERT | NTO sal _enp

VALUES ('Bill",
' {10000, 10000, 10000, 10000}',
"{{"neeting", "lunch"}, {"nmeeting"}}");

ERROR: nultidinensional arrays nust have array expressions wth
mat chi ng di nensi ons

The ARRAY constructor syntax can also be used:

| NSERT | NTO sal _enp

VALUES ('Bill",
ARRAY[10000, 10000, 10000, 10000],
ARRAY[[' neeting', 'lunch'], ['training', 'presentation']]);

| NSERT | NTO sal _enp
VALUES (' Carol ',
ARRAY[20000, 25000, 25000, 25000],
ARRAY[[' breakfast', 'consulting'], ['neeting', 'lunch']]);

Notice that the array elements are ordinary SQL constants or expressions; for instance, string literals
aresingle quoted, instead of double quoted asthey would bein an array literal. The ARRAY constructor
syntax is discussed in more detail in Section 4.2.12.

8.15.3. Accessing Arrays

178

Data Types

Now, we can run some queries on the table. First, we show how to access asingle element of an array.
This query retrieves the names of the employees whose pay changed in the second quarter:

SELECT nane FROM sal _enp WHERE pay_by quarter[1l] <>
pay_by quarter[2];

The array subscript numbers are written within square brackets. By default PostgreSQL uses a one-
based numbering convention for arrays, that is, an array of n elements starts with arr ay[1] and
endswitharray[n] .

This query retrieves the third quarter pay of all employees:

SELECT pay_by quarter[3] FROM sal _enp;

pay_ by quarter

(2 rows)

We can also access arbitrary rectangular slices of an array, or subarrays. An array dliceis denoted by
writing | ower - bound: upper - bound for one or more array dimensions. For example, this query
retrieves the first item on Bill's schedule for the first two days of the week:

SELECT schedul e[1: 2] [1: 1] FROM sal _enp WHERE name = 'Bill";

schedul e

{{meeting}. {training}}
(1 row

If any dimension is written as a dlice, i.e., contains a colon, then al dimensions are treated as slices.
Any dimension that has only a single number (no colon) is treated as being from 1 to the number
specified. For example, [2] istreated as[1: 2] , asin this example:

SELECT schedul e[1: 2][2] FROM sal _enp WHERE nanme = 'Bill";

schedul e

{{meeting, lunch}, {training, presentation}}

(1 row

To avoid confusion with the non-slice case, it's best to use slice syntax for all dimensions, e.g., [1: 2]
[1:1],not[2][1:1].

It is possible to omit the | ower - bound and/or upper - bound of a slice specifier; the missing
bound is replaced by the lower or upper limit of the array's subscripts. For example:

SELECT schedul e[:2][2:] FROM sal _enp WHERE nanme = 'Bill";

179

Data Types

schedul e

{1 unch}, {present ati on}}
(1 row

SELECT schedul e[:][1:1] FROM sal _enmp WHERE nane = 'Bill";

schedul e

{{meeting}. {training}}
(1 row

Anarray subscript expressionwill return null if either thearray itself or any of the subscript expressions
are null. Also, null is returned if a subscript is outside the array bounds (this case does not raise
an error). For example, if schedul e currently has the dimensions[1: 3] [1: 2] then referencing
schedul e[3] [3] yieldsNULL. Similarly, an array reference with the wrong number of subscripts
yields anull rather than an error.

An array dlice expression likewiseyields null if the array itself or any of the subscript expressions are
null. However, in other cases such as selecting an array slicethat iscompletely outside the current array
bounds, a dlice expression yields an empty (zero-dimensional) array instead of null. (This does not
match non-slice behavior and is done for historical reasons.) If the requested slice partially overlaps
the array bounds, then it is silently reduced to just the overlapping region instead of returning null.

The current dimensions of any array value can be retrieved with thear r ay_di ns function:

SELECT array_di ns(schedul e) FROM sal _enp WHERE nane = 'Carol';

array_di s

[1:2][1:2]
(1 row)
array_di nms produces a t ext result, which is convenient for people to read but perhaps

inconvenient for programs. Dimensions can aso be retrieved with array_upper and
array_| ower ,whichreturn the upper and lower bound of aspecified array dimension, respectively:

SELECT array_upper (schedule, 1) FROM sal _enp WHERE nanme = 'Carol';

array_upper

(1 row

array_| engt h will return the length of a specified array dimension:

SELECT array_| engt h(schedul e, 1) FROM sal _enp WHERE nane = 'Carol"';

array_l ength

(1 row

car di nal i ty returnsthetotal number of elementsin an array acrossall dimensions. It iseffectively
the number of rowsacall tounnest would yield:

180

Data Types

SELECT cardi nality(schedul e) FROM sal _enp WHERE nane = ' Carol"';

cardinality

(1 row
8.15.4. Modifying Arrays

An array value can be replaced completely:

UPDATE sal _enp SET pay_by quarter
WHERE nane = 'Carol';

' {25000, 25000, 27000, 27000} *

or using the ARRAY expression syntax:

UPDATE sal _enp SET pay_by_quarter
VWHERE nane = 'Carol';

ARRAY[25000, 25000, 27000, 27000]

An array can also be updated at a single element:

UPDATE sal _enp SET pay_by_quarter[4] = 15000
VWHERE nanme = 'Bill";

or updated in adlice:

UPDATE sal _enp SET pay_by quarter[1:2] = '{27000, 27000}’
VWHERE nane = 'Carol';

The dlice syntaxes with omitted | ower - bound and/or upper - bound can be used too, but only
when updating an array value that is not NULL or zero-dimensional (otherwise, there is no existing
subscript limit to substitute).

A stored array value can be enlarged by assigning to elements not aready present. Any positions
between those previously present and the newly assigned elements will be filled with nulls. For
example, if array myar r ay currently has 4 elements, it will have six elements after an update that
assignsto nyar ray[6] ; myar ray[5] will contain null. Currently, enlargement in this fashion is
only alowed for one-dimensional arrays, not multidimensional arrays.

Subscripted assignment allows creation of arrays that do not use one-based subscripts. For example
onemight assigntonyarray|[- 2: 7] to create an array with subscript valuesfrom -2to 7.

New array values can aso be constructed using the concatenation operator, | | :

SELECT ARRAY[1,2] || ARRAY[3,4];
?col uim?

{1,234
(1 row

SELECT ARRAY[5,6] || ARRAY[[1,2],[3,4]]1;
?col um?

181

Data Types

{{5.6},{1,2},{3,4}}
(1 row

The concatenation operator alows a single element to be pushed onto the beginning or end of a
one-dimensional array. It also accepts two N-dimensiona arrays, or an N-dimensional and an N+1-
dimensional array.

When a single element is pushed onto either the beginning or end of a one-dimensional array, the
result is an array with the same lower bound subscript as the array operand. For example:

SELECT array_dims(1 || "[0:1]={2,3}' ::int[]);
array_dinms

SELECT array_di ms(ARRAY[1,2] || 3);
array_dinms

When two arrays with an equal number of dimensions are concatenated, the result retains the lower
bound subscript of the left-hand operand's outer dimension. The result is an array comprising every
element of the left-hand operand followed by every element of the right-hand operand. For example:

SELECT array_di ns(ARRAY[1,2] || ARRAY[3,4,5]);
array_dins

SELECT array_di ns(ARRAY[[1,2],[3,4]] || ARRAY[[5,6],[7,8],[9,011);
array_dins

[usn2
(1 row

When an N-dimensional array is pushed onto the beginning or end of an N+1-dimensional array, the
result is analogous to the element-array case above. Each N-dimensional sub-array is essentialy an
element of the N+1-dimensional array's outer dimension. For example:

SELECT array_di ms(ARRAY[1,2] || ARRAY[[3,4],[5,6]]);
array_di s

[uaL
(1 row

An array can aso be constructed by using the functions array_prepend, array_append,
or array_cat. The first two only support one-dimensional arrays, but array_cat supports
multidimensional arrays. Some examples:

SELECT array_prepend(1, ARRAY[2, 3]);
array_prepend

182

Data Types

{1, 2,3}
(1 row

SELECT array_append(ARRAY[1, 2], 3);
array_append

SELECT array_cat (ARRAY[1, 2], ARRAY[3,4]);
array_cat
{1, 2,3, 4}

(1 row

SELECT array_cat (ARRAY[[1,2],[3,4]], ARRAY[5,6]);
array_cat

{{1,2},{3,4},{5, 6}}
(1 row

SELECT array_cat (ARRAY[5, 6], ARRAY[[1,2],[3,4]]);
array_cat

{{5,6},{1,2},{3,4}}

In simple cases, the concatenation operator discussed above is preferred over direct use of these
functions. However, because the concatenation operator is overloaded to serve al three cases, there
are situations where use of one of the functionsis helpful to avoid ambiguity. For example consider:

SELECT ARRAY[1, 2] || '{3, 4}'; ~-- the untyped literal is taken as
an array
?col um?

{1, 2, 3, 4}

SELECT ARRAY[1, 2] || '7"; -- so is this one
ERROR: malforned array literal: "7"

SELECT ARRAY[1, 2] || NULL; -- so is an undecorated
NULL
?col um?

SELECT array_append(ARRAY[1, 2], NULL); -- this mght have been
meant
array_append

{1, 2, NULL}

In the examples above, the parser sees an integer array on one side of the concatenation operator,
and a constant of undetermined type on the other. The heuristic it uses to resolve the constant's type
is to assume it's of the same type as the operator's other input — in this case, integer array. So the
concatenation operator is presumed torepresent ar r ay_cat , notar r ay_append. When that'sthe
wrong choaice, it could be fixed by casting the constant to the array's element type; but explicit use of
array_append might be apreferable solution.

183

Data Types

8.15.5. Searching in Arrays

Tosearch for avaluein an array, each value must be checked. This can be done manually, if you know
the size of the array. For example:

SELECT * FROM sal _enmp WHERE pay_by quarter[1] = 10000 OR
pay_by quarter[2] = 10000 OR
pay_by quarter[3] = 10000 OR
pay_ by quarter[4] = 10000;

However, this quickly becomes tedious for large arrays, and is not helpful if the size of the array is
unknown. An alternative method is described in Section 9.23. The above query could be replaced by:

SELECT * FROM sal _enp WHERE 10000 = ANY (pay_by quarter);

In addition, you can find rows where the array has all values equal to 10000 with:

SELECT * FROM sal _enmp WHERE 10000 = ALL (pay_by quarter);

Alternatively, thegener at e_subscri pt s function can be used. For example:

SELECT * FROM
(SELECT pay_by quarter,
generate_subscripts(pay_by quarter, 1) AS s
FROM sal _enp) AS foo
WHERE pay_ by quarter[s] = 10000;

Thisfunction is described in Table 9.59.

Y ou can also search an array using the && operator, which checks whether the |eft operand overlaps
with the right operand. For instance:

SELECT * FROM sal _enmp WHERE pay_ by quarter && ARRAY[10000];

This and other array operators are further described in Section 9.18. It can be accelerated by an
appropriate index, as described in Section 11.2.

You can aso search for specific values in an array using the array_position and
array_posi tions functions. The former returns the subscript of the first occurrence of avalue
in an array; the latter returns an array with the subscripts of all occurrences of the value in the array.
For example:

SELECT

array_position(ARRAY['sun','non','tue',"'wed' ,'thu,'fri','sat'],
‘mon') ;

array_positions

SELECT array_positions(ARRAY[1, 4, 3, 1, 3, 4, 2, 1], 1);
array_positions

184

Data Types

Tip

Arrays are not sets; searching for specific array elements can be a sign of database misdesign.
Consider using a separate table with arow for each item that would be an array element. This
will be easier to search, and is likely to scale better for alarge number of elements.

8.15.6. Array Input and Output Syntax

The external text representation of an array value consists of items that are interpreted according to
the 1/O conversion rulesfor the array's element type, plus decoration that indicates the array structure.
The decoration consists of curly braces ({ and }) around the array value plus delimiter characters
between adjacent items. The delimiter character is usually acomma (,) but can be something else: it
is determined by thet ypdel i msetting for the array's element type. Among the standard data types
providedin the PostgreSQL distribution, all useacomma, except for typebox, which usesasemicolon
(;). Inamultidimensional array, each dimension (row, plane, cube, etc.) gets its own level of curly
braces, and delimiters must be written between adjacent curly-braced entities of the same level.

The array output routine will put double quotes around element values if they are empty strings,
contain curly braces, delimiter characters, double quotes, backslashes, or white space, or match the
word NULL. Double quotes and backslashes embedded in element values will be backslash-escaped.
For numeric data typesit is safe to assume that double quotes will never appear, but for textual data
types one should be prepared to cope with either the presence or absence of quotes.

By default, the lower bound index value of an array's dimensions is set to one. To represent arrays
with other lower bounds, the array subscript ranges can be specified explicitly beforewriting the array
contents. This decoration consists of square brackets ([]) around each array dimension's lower and
upper bounds, with a colon (:) delimiter character in between. The array dimension decoration is
followed by an equal sign (=). For example:

SELECT f1[1][-2][3] AS el, f1[1][-1][5] AS e2
FROM (SELECT '[1:1][-2:-1][3:5]={{{1,2,3},{4,5,6}}}' ::int[] AS f1)
AS ss;

el | e2

e
1] 6

(1 row

The array output routine will include explicit dimensionsin itsresult only when there are one or more
lower bounds different from one.

If the value written for an element is NULL (in any case variant), the element is taken to be NULL.
The presence of any quotes or backslashes disables this and allows the literal string value “NULL”
to be entered. Also, for backward compatibility with pre-8.2 versions of PostgreSQL, the array _nulls
configuration parameter can be turned of f to suppress recognition of NULL asaNULL.

As shown previously, when writing an array value you can use double quotes around any individual
array element. You must do so if the element value would otherwise confuse the array-value parser.
For example, elements containing curly braces, commas (or the datatype's delimiter character), double
quotes, backslashes, or leading or trailing whitespace must be double-quoted. Empty stringsand strings
matching the word NULL must be quoted, too. To put a double quote or backslash in a quoted array
element value, precede it with a backslash. Alternatively, you can avoid quotes and use backslash-
escaping to protect all data characters that would otherwise be taken as array syntax.

Y ou can add whitespace before aleft brace or after aright brace. Y ou can also add whitespace before
or after any individual item string. In all of these cases the whitespace will be ignored. However,

185

Data Types

whitespace within double-quoted elements, or surrounded on both sides by non-whitespace characters
of an element, is not ignored.

Tip

The ARRAY constructor syntax (see Section 4.2.12) is often easier to work with than the array-
literal syntax when writing array values in SQL commands. In ARRAY, individual element
values are written the same way they would be written when not members of an array.

8.16. Composite Types

A composite type represents the structure of arow or record; it is essentialy just alist of field names
and their data types. PostgreSQL allows composite types to be used in many of the same ways that
simple types can be used. For example, a column of atable can be declared to be of a composite type.

8.16.1. Declaration of Composite Types

Here are two simple examples of defining composite types:

CREATE TYPE conpl ex AS (
r doubl e preci sion,
[doubl e precision

)

CREATE TYPE inventory item AS (

nane t ext,
supplier_id i nteger,
price nuneric

)

Thesyntax iscomparableto CREATE TABLE, except that only field names and types can be specified;
no constraints (such as NOT NULL) can presently be included. Note that the AS keyword is essential;
without it, the system will think a different kind of CREATE TYPE command is meant, and you will
get odd syntax errors.

Having defined the types, we can use them to create tables:

CREATE TABLE on_hand (
item inventory_item
count i nt eger

);

| NSERT | NTO on_hand VALUES (ROW' fuzzy dice', 42, 1.99), 1000);
or functions:

CREATE FUNCTI ON price_extension(inventory item integer) RETURNS

numeric
AS ' SELECT $1.price * $2' LANGUAGE SQ.;

SELECT price_extension(item 10) FROM on_hand;

Whenever you create a table, a composite type is also automatically created, with the same name as
the table, to represent the table's row type. For example, had we said:

186

Data Types

CREATE TABLE inventory_item (

name t ext,
supplier_id i nt eger REFERENCES suppliers,
price numeri ¢ CHECK (price > 0)

)

then the same i nvent ory_i t em composite type shown above would come into being as a
byproduct, and could be used just as above. Note however an important restriction of the current
implementation: since no constraints are associated with a composite type, the constraints shown in
the table definition do not apply to values of the composite type outside the table. (To work around
this, create adomain over the composite type, and apply the desired constraints as CHECK constraints
of the domain.)

8.16.2. Constructing Composite Values

Towriteacompositevalueasalitera constant, enclosethefield valueswithin parenthesesand separate
them by commas. Y ou can put double quotes around any field value, and must do so if it contains
commas or parentheses. (More details appear below.) Thus, the general format of acomposite constant
isthe following:

"(vall, val2, ...)’

Anexampleis:

"("fuzzy dice",42,1.99)'

which would be a valid value of thei nvent ory_i t emtype defined above. To make a field be
NULL, write no charactersat all initsposition in thelist. For example, this constant specifiesaNULL
third field:

"("fuzzy dice",42,)’

If you want an empty string rather than NULL, write double quotes:

1 (nn , 42’) 1
Herethefirst field isanon-NULL empty string, the third isNULL.

(These constants are actually only a special case of the generic type constants discussed in
Section 4.1.2.7. The constant is initially treated as a string and passed to the composite-type input
conversion routine. An explicit type specification might be necessary to tell which type to convert
the constant to.)

The ROWexpression syntax can also be used to construct composite values. In most cases this is
considerably simpler to use than the string-literal syntax since you don't have to worry about multiple
layers of quoting. We aready used this method above:

RON ' fuzzy dice', 42, 1.99)
RON"', 42, NULL)

The ROW keyword is actually optional as long as you have more than one field in the expression,
so these can be simplified to:

187

Data Types

('fuzzy dice', 42, 1.99)
("', 42, NULL)

The ROWexpression syntax is discussed in more detail in Section 4.2.13.

8.16.3. Accessing Composite Types

To access afield of a composite column, one writes a dot and the field name, much like selecting a
field from atable name. In fact, it's so much like selecting from atable name that you often have to use
parentheses to keep from confusing the parser. For example, you might try to select some subfields
from our on_hand example table with something like:

SELECT item nanme FROM on_hand WHERE item price > 9.99;

Thiswill not work sincethe namei t emistaken to be atable name, not acolumn nameof on_hand,
per SQL syntax rules. You must write it like this:

SELECT (itenm).nanme FROM on_hand WHERE (item.price > 9.99;

or if you need to use the table name as well (for instance in a multitable query), like this:

SELECT (on_hand.iten).name FROM on_hand WHERE (on_hand.item. price

> 9, 99;

Now the parenthesized object is correctly interpreted as areference to thei t emcolumn, and then the
subfield can be selected fromit.

Similar syntactic issues apply whenever you select a field from a composite value. For instance, to
select just one field from the result of a function that returns a composite value, you'd need to write
something like:

SELECT (my_func(...)).field FROM ...

Without the extra parentheses, thiswill generate a syntax error.

The special field name* means“all fields’, as further explained in Section 8.16.5.

8.16.4. Modifying Composite Types

Here are some examples of the proper syntax for inserting and updating composite columns. First,
inserting or updating a whole column:

| NSERT | NTO nytab (conplex_col) VALUES((1.1,2.2));
UPDATE nytab SET conplex col = RON1.1,2.2) WHERE .. .;

The first example omits ROW the second uses it; we could have done it either way.

We can update an individual subfield of a composite column:

UPDATE nytab SET conplex _col.r = (conplex_col).r + 1 WHERE . ..;

Notice here that we don't need to (and indeed cannot) put parentheses around the column name
appearing just after SET, but we do need parentheses when referencing the same column in the
expression to the right of the equal sign.

188

Data Types

And we can specify subfields as targets for | NSERT, too:

| NSERT | NTO nytab (conplex_col.r, conmplex_col.i) VALUES(1l.1l, 2.2);

Had we not supplied values for all the subfields of the column, the remaining subfields would have
been filled with null values.

8.16.5. Using Composite Types in Queries

Therearevarious special syntax rules and behaviors associated with composite typesin queries. These
rules provide useful shortcuts, but can be confusing if you don't know the logic behind them.

In PostgreSQL, a reference to a table name (or dias) in a query is effectively a reference to the

composite value of the table's current row. For example, if we had atablei nventory_i t emas
shown above, we could write:

SELECT ¢ FROM inventory itemc;

This query produces a single composite-valued column, so we might get output like:

("fuzzy dice", 42,1.99)
(1 row)

Note however that simple names are matched to column names before table names, so this example
works only because there is no column named ¢ in the query's tables.

The ordinary qualified-column-name syntax t abl e_nane. col unm_nane can be understood as
applying field selection to the composite value of the tabl€e's current row. (For efficiency reasons, it's
not actually implemented that way.)

When we write

SELECT c.* FROM inventory itemc;

then, according to the SQL standard, we should get the contents of the table expanded into separate

columns:;

name | supplier_id | price
____________ .
fuzzy dice | 42 | 1.99
(1 row)

asif the query were

SELECT c. name, c.supplier_id, c.price FROMinventory_ item c;

PostgreSQL will apply this expansion behavior to any composite-valued expression, although as
shown above, you need to write parentheses around the valuethat . * is applied to whenever it'snot a
simpletable name. For example, if myf unc() isafunction returning acomposite type with columns
a, b, and ¢, then these two queries have the same result:

189

Data Types

SELECT (myfunc(x)).* FROM sone_t abl e;
SELECT (myfunc(x)).a, (myfunc(x)).b, (nyfunc(x)).c FROM sone_tabl e;

Tip

PostgreSQL handles column expansion by actually transforming thefirst form into the second.
So, inthisexample, myf unc() would get invoked three times per row with either syntax. If
it's an expensive function you may wish to avoid that, which you can do with a query like:

SELECT m* FROM sone_t abl e, LATERAL myfunc(x) AS m

Placing thefunctioninaL ATERAL FROMitem keepsit from being invoked morethan once per
row. m * isstill expandedintom a, m b, m c, but now those variablesarejust references
to the output of the FROMitem. (The LATERAL keyword is optional here, but we show it to
clarify that the function is getting x from sone_t abl e.)

The conposi t e_val ue. * syntax results in column expansion of this kind when it appears
at the top level of a SELECT output list, a RETURNI NG list in | NSERT/UPDATE/DELETE, a
VALUES clause, or a row constructor. In al other contexts (including when nested inside one of
those constructs), attaching . * to a composite value does not change the value, since it means “all
columns’ and so the same composite valueis produced again. For example, if somref unc() accepts
a composite-valued argument, these queries are the same:

SELECT sonefunc(c.*) FROM inventory_ item c;
SELECT sonefunc(c) FROMinventory itemc;

In both cases, the current row of i nvent ory_i t emispassed to the function as a single composite-
valued argument. Even though . * does nothing in such cases, using it is good style, since it makes
clear that a composite value is intended. In particular, the parser will consider ¢ inc. * to refer to a
table name or alias, not to a column name, so that there is no ambiguity; whereas without . * , it is not
clear whether ¢ means a table name or a column name, and in fact the column-name interpretation
will be preferred if thereis acolumn named c.

Another example demonstrating these conceptsis that all these queries mean the same thing:

SELECT * FROM inventory_item c ORDER BY c;
SELECT * FROM inventory itemc ORDER BY c.*;
SELECT * FROM inventory_item c ORDER BY RONcC. *);

All of these ORDER BY clauses specify the row's composite value, resulting in sorting the rows
according to the rules described in Section 9.23.6. However, if i nvent ory_it emcontained a
column named c, the first case would be different from the others, as it would mean to sort by that
column only. Given the column names previously shown, these queries are also equivalent to those
above:

SELECT * FROM inventory_item c ORDER BY RONc. name, c.supplier_id,
c.price);

SELECT * FROM inventory item c ORDER BY (c.nanme, c.supplier_id,
c.price);

(The last case uses arow constructor with the key word ROWomitted.)

Another special syntactical behavior associated with composite values is that we can use functional
notation for extracting a field of a composite value. The ssmple way to explain this is that the

190

Data Types

notationsf i el d(t abl e) andt abl e. fi el d areinterchangeable. For example, these queries are
equivalent:

SELECT c.nane FROM inventory_itemc WHERE c. price > 1000;
SELECT nane(c) FROM inventory itemc WHERE price(c) > 1000;

Moreover, if we have a function that accepts a single argument of a composite type, we can call it
with either notation. These queries are al equivalent:

SELECT sonefunc(c) FROMinventory itemc;
SELECT sonefunc(c.*) FROM inventory_ item c;
SELECT c. somefunc FROM i nventory_item c;

This equivalence between functional notation and field notation makesit possible to use functions on
composite typesto implement “computed fields’. An application using thelast query above wouldn't
need to be directly aware that sonef unc isn't areal column of the table.

Tip

Because of this behavior, it's unwise to give a function that takes a single composite-type
argument the same name as any of the fields of that composite type. If there is ambiguity, the
field-name interpretation will be chosen if field-name syntax is used, while the function will
be chosen if function-call syntax is used. However, PostgreSQL versions before 11 always
chose the field-name interpretation, unless the syntax of the call required it to be a function
call. One way to force the function interpretation in older versions is to schema-qualify the
function name, that is, write schema. f unc(conposi t eval ue) .

8.16.6. Composite Type Input and Output Syntax

The external text representation of a composite value consists of items that are interpreted according
to the 1/0O conversion rules for the individual field types, plus decoration that indicates the composite
structure. The decoration consists of parentheses ((and)) around the whole value, plus commas (,)
between adjacent items. Whitespace outside the parentheses is ignored, but within the parentheses it
is considered part of the field value, and might or might not be significant depending on the input
conversion rules for the field data type. For example, in:

] (42)]
the whitespace will beignored if the field type isinteger, but not if it istext.

As shown previously, when writing a composite value you can write double quotes around any
individua field value. Y ou must do so if the field value would otherwise confuse the composite-value
parser. In particular, fields containing parentheses, commas, double quotes, or backslashes must be
double-quoted. To put a double quote or backslash in a quoted composite field value, precede it with
a backdash. (Also, apair of double quotes within a double-quoted field value is taken to represent a
double quote character, analogously to therulesfor single quotesin SQL literal strings.) Alternatively,
you can avoid quoting and use backslash-escaping to protect all data characters that would otherwise
be taken as composite syntax.

A completely empty field value (no characters at al between the commas or parentheses) represents
aNULL. Towrite avaluethat isan empty string rather than NULL, write" " .

The composite output routine will put double quotes around field values if they are empty strings or
contain parentheses, commas, double quotes, backslashes, or white space. (Doing so for white space

191

Data Types

is not essential, but aids legihility.) Double quotes and backslashes embedded in field values will be
doubled.

Note

Remember that what you write in an SQL command will first beinterpreted asastring literal,
and then as a composite. This doubles the number of backslashes you need (assuming escape
string syntax is used). For example, to insert at ext field containing a double quote and a
backslash in a composite value, you'd need to write:

INSERT ... VALUES (' ("\"\\")');

The string-literal processor removes one level of backslashes, so that what arrives at the
composite-value parser looks like ("\ "\ \ ") . Inturn, the string fed to the t ext datatype's
input routine becomes "\ . (If we were working with a data type whose input routine also
treated backslashes specially, byt ea for example, wemight need asmany aseight backslashes
in the command to get one backslash into the stored composite field.) Dollar quoting (see
Section 4.1.2.4) can be used to avoid the need to double backslashes.

Tip
The ROWconstructor syntax is usually easier to work with than the composite-literal syntax

when writing composite valuesin SQL commands. In ROW individual field values are written
the same way they would be written when not members of a composite.

8.17. Range Types

Range types are data types representing a range of values of some element type (called the range's
subtype). For instance, ranges of t i mest anp might be used to represent the ranges of time that a
meeting room is reserved. In this case the datatypeist sr ange (short for “timestamp range”), and
t i mest anp isthe subtype. The subtype must have a total order so that it is well-defined whether
element values are within, before, or after arange of values.

Range types are useful because they represent many element values in a single range value, and
because concepts such as overlapping ranges can be expressed clearly. The use of time and date
ranges for scheduling purposesisthe clearest example; but price ranges, measurement ranges from an
instrument, and so forth can a so be useful.

8.17.1. Built-in Range Types

PostgreSQL comes with the following built-in range types:

* i nt4range — Rangeof i nt eger

* i nt 8range — Range of bi gi nt

* nunr ange — Range of numeri ¢

e tsrange —Rangeofti nestanp wi thout tinme zone
e tstzrange — Rangeofti mestanp with tinme zone
» dat erange — Range of dat e

In addition, you can define your own range types; see CREATE TY PE for more information.

192

Data Types

8.17.2. Examples

CREATE TABLE reservation (roomint, during tsrange);
| NSERT | NTO reservati on VALUES
(1108, '[2010-01-01 14:30, 2010-01-01 15:30)');

-- Cont ai nnent
SELECT i nt4range(10, 20) @ 3;

-- Overl aps
SELECT nunrange(11.1, 22.2) && nunrange(20.0, 30.0);

-- Extract the upper bound
SELECT upper (i nt 8range(15, 25));

-- Conpute the intersection
SELECT i nt4range(10, 20) * int4range(15, 25);

-- Is the range enpty?
SELECT i senmpty(nunrange(1l, 5));

See Table 9.50 and Table 9.51 for complete lists of operators and functions on range types.

8.17.3. Inclusive and Exclusive Bounds

Every non-empty range has two bounds, the lower bound and the upper bound. All points between
these values are included in the range. An inclusive bound means that the boundary point itself is
included in the range as well, while an exclusive bound means that the boundary point is not included
in the range.

In the text form of arange, an inclusive lower bound is represented by “[” while an exclusive lower
bound is represented by “(”. Likewise, an inclusive upper bound is represented by “] ”, while an
exclusive upper bound is represented by “) ”. (See Section 8.17.5 for more details.)

The functions | ower _i nc and upper _i nc test the inclusivity of the lower and upper bounds of
arange value, respectively.

8.17.4. Infinite (Unbounded) Ranges

The lower bound of a range can be omitted, meaning that all values less than the upper bound are
included intherange, e.g., (, 3] . Likewise, if the upper bound of the range is omitted, then all values
greater than the lower bound areincluded in the range. If both lower and upper bounds are omitted, all
values of the element type are considered to be in the range. Specifying a missing bound asinclusive
isautomatically converted to exclusive, e.g.,[,] isconvertedto(,) . You can think of these missing
values as +/-infinity, but they are special range type values and are considered to be beyond any range
element type's +/-infinity values.

Element types that have the notion of “infinity” can use them as explicit bound values. For example,
with timestamp ranges, [t oday, i nfi ni ty) excludesthespecialti nest anp valuei nfinity,
while[t oday, i nfi ni ty] includeit, asdoes[t oday,) and[t oday,] .

The functions | ower _i nf and upper _i nf test for infinite lower and upper bounds of a range,
respectively.

8.17.5. Range Input/Output

Theinput for arange value must follow one of the following patterns:

193

Data Types

(1 ower - bound, upper - bound)
(1 ower - bound, upper - bound]
[ower - bound, upper - bound)
[| ower - bound, upper - bound]

enpty

The parentheses or brackets indicate whether the lower and upper bounds are exclusive or inclusive,
as described previously. Notice that the final pattern is enpt y, which represents an empty range (a
range that contains no points).

The | ower - bound may be either a string that is valid input for the subtype, or empty to indicate
no lower bound. Likewise, upper - bound may be either a string that is valid input for the subtype,
or empty to indicate no upper bound.

Each bound value can be quoted using " (double quote) characters. This is necessary if the bound
value contains parentheses, brackets, commas, double quotes, or backslashes, since these characters
would otherwise be taken as part of the range syntax. To put a double quote or backslash in a quoted
bound value, precede it with abackslash. (Also, apair of double quotes within a double-quoted bound
value istaken to represent a double quote character, analogously to the rules for single quotesin SQL
literal strings.) Alternatively, you can avoid quoting and use backslash-escaping to protect al data
charactersthat would otherwise be taken as range syntax. Also, to write abound value that isan empty
string, write" "', since writing nothing means an infinite bound.

Whitespace is allowed before and after the range value, but any whitespace between the parentheses
or brackets is taken as part of the lower or upper bound value. (Depending on the element type, it
might or might not be significant.)

Note

These rules are very similar to those for writing field values in composite-type literals. See
Section 8.16.6 for additional commentary.

Examples:

-- includes 3, does not include 7, and does include all points in
bet ween
SELECT '[3,7)'::intdrange;

-- does not include either 3 or 7, but includes all points in
bet ween
SELECT ' (3,7)'::intdrange;

-- includes only the single point 4

SELECT '[4,4]'::intdrange;
-- includes no points (and will be nornalized to 'enpty')
SELECT '[4,4)'::intdrange;

8.17.6. Constructing Ranges

Each range type has a constructor function with the same name asthe range type. Using the constructor
function isfrequently more convenient than writing arangeliteral constant, sinceit avoidsthe need for
extraquoting of the bound values. The constructor function accepts two or three arguments. The two-
argument form constructs a range in standard form (lower bound inclusive, upper bound exclusive),

194

Data Types

while the three-argument form constructs a range with bounds of the form specified by the third
argument. The third argument must be one of the strings“() ", “(] ", “[) ", or“[] . For example:

-- The full formis: |ower bound, upper bound, and text argunent
i ndi cating

-- inclusivity/exclusivity of bounds.

SELECT nunrange(1.0, 14.0, '(]1');

-- If the third argunent is omtted, '[)' is assuned.
SELECT nunrange(1.0, 14.0);

-- Although '(]'" is specified here, on display the value will be
converted to

-- canonical form since int8range is a discrete range type (see
bel ow) .

SELECT int8range(1, 14, '(]1');

-- Using NULL for either bound causes the range to be unbounded on
t hat side.
SELECT nunr ange(NULL, 2.2);

8.17.7. Discrete Range Types

A discrete range is one whose element type has a well-defined “step”, such asi nt eger or dat e.
In these types two elements can be said to be adjacent, when there are no valid values between them.
This contrasts with continuous ranges, where it's always (or amost always) possible to identify other
element values between two given values. For example, arangeover thenumner i ¢ typeiscontinuous,
asisarange over ti mest anp. (Even though t i nest anp has limited precision, and so could
theoretically be treated as discrete, it's better to consider it continuous since the step size is normally
not of interest.)

Another way to think about a discrete range type isthat there is a clear idea of a“next” or “previous’
value for each element value. Knowing that, it is possible to convert between inclusive and exclusive
representations of arange's bounds, by choosing the next or previous element value instead of the one
originally given. For example, in an integer range type [4, 8] and (3, 9) denote the same set of
values; but this would not be so for arange over numeric.

A discrete range type should have a canonicalization function that is aware of the desired step sizefor
the element type. The canonicalization function is charged with converting equivalent values of the
range type to have identical representations, in particular consistently inclusive or exclusive bounds.
If a canonicalization function is not specified, then ranges with different formatting will always be
treated as unequal, even though they might represent the same set of valuesin redlity.

Thebuilt-inrange typesi nt 4r ange, i nt 8r ange, and dat er ange all use a canonical form that
includes the lower bound and excludes the upper bound; that is, [) . User-defined range types can use
other conventions, however.

8.17.8. Defining New Range Types

Users can define their own range types. The most common reason to do this is to use ranges over
subtypes not provided among the built-in range types. For example, to define a new range type of
subtypef | oat 8:

CREATE TYPE fl oatrange AS RANGE (
subtype = fl oat8,
subtype diff = fl oat8m

)

195

Data Types

SELECT '[1.234, 5.678]'::fl oatrange;

Because f | oat 8 has no meaningful “step”, we do not define a canonicalization function in this
example.

Defining your own range type a so alows you to specify a different subtype B-tree operator class or
collation to use, so asto change the sort ordering that determines which valuesfall into agiven range.

If the subtype is considered to have discrete rather than continuous values, the CREATE TYPE
command should specify acanoni cal function. The canonicalization function takes an input range
value, and must return an equivalent range value that may have different bounds and formatting. The
canonical output for two ranges that represent the same set of values, for example the integer ranges
[1, 7] and[1, 8),mustbeidentical. It doesn't matter which representation you choose to be the
canonical one, so long as two equivalent values with different formattings are always mapped to the
same value with the same formatting. In addition to adjusting the inclusive/exclusive bounds format, a
canonicalization function might round off boundary values, in case the desired step sizeislarger than
what the subtype is capable of storing. For instance, arangetype over t i nest anp could be defined
to have a step size of an hour, in which case the canonicalization function would need to round off
bounds that weren't amultiple of an hour, or perhaps throw an error instead.

In addition, any range type that is meant to be used with GiST or SP-GiST indexes should
define a subtype difference, or subt ype_di f f, function. (The index will still work without
subtype_di ff, but it is likely to be considerably less efficient than if a difference function is
provided.) The subtype difference function takes two input values of the subtype, and returns their
difference (i.e,, X minus Y) represented as a f | oat 8 value. In our example above, the function
f | oat 8m that underliestheregular f | oat 8 minusoperator can be used; but for any other subtype,
sometype conversion would be necessary. Some creative thought about how to represent differencesas
numbers might be needed, too. To the greatest extent possible, the subt ype_di f f function should
agree with the sort ordering implied by the selected operator class and collation; that is, its result
should be positive whenever itsfirst argument is greater than its second according to the sort ordering.

A less-oversimplified example of asubt ype_di f f functionis:

CREATE FUNCTION time_subtype diff(x tine, y tine) RETURNS float8 AS
' SELECT EXTRACT(EPOCH FROM (x - y))' LANGUAGE sql STRICT | MMUTABLE;

CREATE TYPE tinmerange AS RANGE (
subtype = tine,
subtype diff = tine_subtype diff
)

SELECT '[11:10, 23:00]'::tinerange;

See CREATE TY PE for more information about creating range types.

8.17.9. Indexing

GiST and SP-GiST indexes can be created for table columns of range types. For instance, to create
aGiST index:

CREATE | NDEX reservation_idx ON reservation USING G ST (during);

A GiST or SP-GiST index can accelerate queries involving these range operators: =, &&, <@ @, <<,
>> - | -, &<, and &> (see Table 9.50 for more information).

In addition, B-tree and hash indexes can be created for table columns of range types. For these index
types, basically the only useful range operation is equality. Thereis a B-tree sort ordering defined for

196

Data Types

range values, with corresponding < and > operators, but the ordering israther arbitrary and not usually
useful in the real world. Range types' B-tree and hash support is primarily meant to allow sorting and
hashing internally in queries, rather than creation of actual indexes.

8.17.10. Constraints on Ranges

While UNI QUE is a natural constraint for scalar values, it is usually unsuitable for range types.
Instead, an exclusion constraint is often more appropriate (see CREATE TABLE ... CONSTRAINT ...
EXCLUDE). Exclusion constraints allow the specification of constraints such as “non-overlapping”
on arange type. For example:

CREATE TABLE reservation (
during tsrange,
EXCLUDE USI NG d ST (during WTH &&)

)

That constraint will prevent any overlapping values from existing in the table at the same time:

| NSERT | NTO reservati on VALUES
('[2010-01-01 11:30, 2010-01-01 15:00)');
I NSERT 0 1

| NSERT | NTO reservati on VALUES
(' [2010-01-01 14:45, 2010-01-01 15:45)');

ERROR: conflicting key val ue viol ates excl usi on constraint
"reservation_during_excl"

DETAIL: Key (during)=(["2010-01-01 14:45: 00", "2010-01-01
15:45:00")) conflicts

with existing key (during)=(["2010-01-01 11:30: 00", "2010-01-01
15: 00: 00")).

You can usethe bt r ee_gi st extension to define exclusion constraints on plain scalar data types,
which can then be combined with range exclusions for maximum flexibility. For example, after
btree_gi st isinstalled, the following constraint will reject overlapping ranges only if the meeting
room numbers are equal :

CREATE EXTENSI ON btree_gi st;
CREATE TABLE room reservation (

room t ext,

during tsrange,

EXCLUDE USING A ST (room WTH =, during WTH &&)
)

I NSERT | NTO room reservati on VALUES
("123A", '[2010-01-01 14:00, 2010-01-01 15:00)');
I NSERT 0 1

I NSERT | NTO room reservati on VALUES
("123A", '[2010-01-01 14:30, 2010-01-01 15:30)');
ERROR: conflicting key val ue viol ates exclusi on constraint
"roomreservation_roomduring_excl"
DETAIL: Key (room during)=(123A, ["2010-01-01
14:30: 00", "2010-01-01 15:30:00")) conflicts
with existing key (room during)=(123A, ["2010-01-01
14: 00: 00", "2010-01-01 15:00:00")).

197

Data Types

8.18

8.19

I NSERT | NTO room reservati on VALUES
('123B', '[2010-01-01 14:30, 2010-01-01 15:30)');
I NSERT 0 1

Domain Types

A domain is a user-defined data type that is based on another underlying type. Optionally, it can have
constraintsthat restrict itsvalid values to a subset of what the underlying type would allow. Otherwise
it behaves like the underlying type — for example, any operator or function that can be applied to the
underlying type will work on the domain type. The underlying type can be any built-in or user-defined
base type, enum type, array type, composite type, range type, or another domain.

For example, we could create a domain over integers that accepts only positive integers:

CREATE DOWAI N posint AS integer CHECK (VALUE > 0);
CREATE TABLE mytable (id posint);

| NSERT | NTO nyt abl e VALUES(1); -- works

| NSERT | NTO nyt abl e VALUES(-1); -- fails

When an operator or function of the underlying type is applied to a domain value, the domain is
automatically down-cast to the underlying type. Thus, for example, theresultof nyt abl e.id - 1is
considered to be of typei nt eger not posi nt . Wecouldwrite(mytable.id - 1):: posint

to cast the result back to posi nt , causing the domain's constraints to be rechecked. In this case, that
would result in an error if the expression had been applied to ani d value of 1. Assigning a value of
the underlying type to afield or variable of the domain type is allowed without writing an explicit
cast, but the domain's constraints will be checked.

For additiona information see CREATE DOMAIN.

Object Identifier Types

Object identifiers (OIDs) are used internally by PostgreSQL as primary keys for various system
tables. OIDs are not added to user-created tables, unless W TH QO DS is specified when the
table is created, or the default_with_oids configuration variable is enabled. Type oi d represents
an object identifier. There are also severa aias types for oi d: regproc, regprocedure,
regoper, regoper at or, regcl ass, regtype, regrol e, regnanespace, regconfi g,
and r egdi cti onary. Table 8.24 shows an overview.

The oi d type is currently implemented as an unsigned four-byte integer. Therefore, it is not large
enough to provide database-wide uniquenessin large databases, or even in large individual tables. So,
using a user-created table's OID column as a primary key is discouraged. OIDs are best used only for
references to system tables.

The oi d type itself has few operations beyond comparison. It can be cast to integer, however, and
then manipulated using the standard integer operators. (Beware of possible signed-versus-unsigned
confusion if you do this.)

The OID alias types have no operations of their own except for specialized input and output routines.
These routines are able to accept and display symbolic names for system objects, rather than the raw
numeric value that type oi d would use. The dlias types alow simplified lookup of OID values for
objects. For example, to examinethe pg_at t ri but e rows related to atable myt abl e, one could
write:

SELECT * FROM pg_attribute WHERE attrelid = 'nmytable'::regcl ass;

198

Data Types

rather than:

SELECT * FROM pg_attribute
WHERE attrelid = (SELECT oid FROM pg_cl ass WHERE rel nanme =
"nytable');

While that doesn't look all that bad by itself, it's still oversimplified. A far more complicated sub-
select would be needed to select theright OID if there are multipletablesnamed nyt abl e indifferent
schemas. The r egcl ass input converter handles the table lookup according to the schema path
setting, and so it does the “right thing” automatically. Similarly, casting atables OID tor egcl ass
is handy for symbolic display of a numeric OID.

Table 8.24. Object Identifier Types

Name References Description Value Example
oid any numeric object| 564182
identifier
regproc pg_proc function name sum
regpr ocedure pg_proc function with argument|sun{i nt 4)
types
regoper pg_oper at or operator name +
r egoper at or pg_oper at or operator with argument|* (i nt eger, i nt eger
types or -
(NONE, i nt eger)
regcl ass pg_cl ass relation name pg_type
regtype pg_type data type name i nt eger
regrol e pg_aut hid role name smit hee
regnanespace pg_nanespace namespace name pg_cat al og
regconfig pg_ts config text search|engl i sh
configuration
regdi ctionary pg_ts_dict text search dictionary |si npl e

All of the OID aliastypesfor objects grouped by namespace accept schema-qualified names, and will
display schema-qualified names on output if the object would not be found in the current search path
without being qualified. Ther egpr oc andr egoper aiastypeswill only accept input namesthat are
unique (not overloaded), sothey are of limited use; for most usesr egpr ocedur e orr egoper at or
are more appropriate. For r egoper at or , unary operators are identified by writing NONE for the
unused operand.

An additional property of most of the OID alias types is the creation of dependencies. If a
constant of one of these types appears in a stored expression (such as a column default expression
or view), it creates a dependency on the referenced object. For example, if a column has a
default expression next val (' ny_seq' : : regcl ass) , PostgreSQL understands that the default
expression depends on the sequence ny _seq; the system will not let the sequence be dropped without
first removing the default expression. r egr ol e isthe only exception for the property. Constants of
this type are not allowed in such expressions.

Note

The OID dlias types do not completely follow transaction isolation rules. The planner aso
treats them as simple constants, which may result in sub-optimal planning.

199

Data Types

8.20.

8.21.

Another identifier type used by the systemisxi d, or transaction (abbreviated xact) identifier. Thisis
the data type of the system columns xni n and xmax. Transaction identifiers are 32-bit quantities.

A third identifier type used by the systemisci d, or command identifier. Thisis the data type of the
system columns cni n and crmax. Command identifiers are also 32-bit quantities.

A final identifier type used by the systemist i d, or tuple identifier (row identifier). Thisisthe data
type of the system column ct i d. A tuple ID isapair (block number, tuple index within block) that
identifies the physical location of the row within itstable.

(The system columns are further explained in Section 5.4.)

pg_lIsn Type

The pg_| sn datatype can be used to store LSN (Log Sequence Number) data which is a pointer to
alocation in the WAL. This type is a representation of XLogRecPt r and an internal system type
of PostgreSQL.

Internally, an LSN is a 64-bit integer, representing a byte position in the write-ahead log stream. It is
printed as two hexadecimal numbers of up to 8 digits each, separated by a dash; for example, 16/
B374D848. Thepg_| sn type supports the standard comparison operators, like = and >. Two LSNs
can be subtracted using the - operator; the result is the number of bytes separating those write-ahead
log locations.

Pseudo-Types

The PostgreSQL type system contains a number of special-purpose entries that are collectively called
pseudo-types. A pseudo-type cannot be used as a column data type, but it can be used to declare a
function's argument or result type. Each of the available pseudo-typesis useful in situations where a
function's behavior does not correspond to simply taking or returning a value of a specific SQL data
type. Table 8.25 lists the existing pseudo-types.

Table 8.25. Pseudo-Types

Name Description

any Indicates that a function accepts any input data
type.

anyel enent Indicatesthat afunction acceptsany datatype (see
Section 38.2.5).

anyarray Indicates that a function accepts any array data
type (see Section 38.2.5).

anynonarray Indicates that a function accepts any non-array
data type (see Section 38.2.5).

anyenum Indicates that a function accepts any enum data
type (see Section 38.2.5 and Section 8.7).

anyr ange Indicates that a function accepts any range data
type (see Section 38.2.5 and Section 8.17).

cstring Indicates that a function accepts or returns a null-
terminated C string.

i nternal Indicates that a function accepts or returns a
server-interna datatype.

| anguage_handl er A procedural language call handler is declared to
return| anguage_handl er.

200

Data Types

Name Description

f dw_handl er A foreign-data wrapper handler is declared to
return f dw_handl er.

i ndex_am handl er An index access method handler is declared to
returni ndex_am handl er.

t sm_handl er A tablesample method handler is declared to
returnt sm _handl er.

record Identifies a function taking or returning an
unspecified row type.

trigger A trigger function is declared to return
trigger.

event trigger An event trigger function is declared to return
event trigger.

pg_ddl _commrand | dentifiesarepresentation of DDL commandsthat
isavailable to event triggers.

voi d Indicates that a function returns no value.

unknown Identifies a not-yet-resolved type, eg., of an

undecorated string literal.

opaque An obsolete type name that formerly served many
of the above purposes.

Functions coded in C (whether built-in or dynamically loaded) can be declared to accept or return any
of these pseudo data types. It is up to the function author to ensure that the function will behave safely
when a pseudo-type is used as an argument type.

Functions coded in procedural languages can use pseudo-types only as alowed by ther
implementation languages. At present most procedural languages forbid use of a pseudo-type
as an argument type, and alow only voi d and record as a result type (plus tri gger or
event _trigger when the function is used as a trigger or event trigger). Some also support
polymorphic functionsusing thetypesanyel enent , anyar r ay, anynonarr ay, anyenum and
anyr ange.

Thei nt er nal pseudo-type is used to declare functions that are meant only to be called internally
by the database system, and not by direct invocation in an SQL query. If afunction has at least one
i nt er nal -type argument then it cannot be called from SQL. To preserve the type safety of this
restriction it isimportant to follow this coding rule: do not create any function that isdeclared to return
i nt ernal unlessit hasat least onei nt er nal argument.

201

Chapter 9. Functions and Operators

PostgreSQL provides alarge number of functions and operators for the built-in data types. Users can
also define their own functions and operators, as described in Part V. The psgl commands\ df and
\ do can be used to list all available functions and operators, respectively.

If you are concerned about portability then note that most of the functions and operators described
in this chapter, with the exception of the most trivia arithmetic and comparison operators and some
explicitly marked functions, are not specified by the SQL standard. Some of this extended functionality
is present in other SQL database management systems, and in many cases this functionality is
compatible and consistent between the various implementations. This chapter is also not exhaustive;
additional functions appear in relevant sections of the manual.

9.1. Logical Operators

The usual logical operators are available:

AND
OR
NOT

SQL uses a three-valued logic system with true, false, and nul | , which represents “unknown”.
Observe the following truth tables:

a b aAND b aORDb
TRUE TRUE TRUE TRUE
TRUE FALSE FALSE TRUE
TRUE NULL NULL TRUE
FALSE FALSE FALSE FALSE
FALSE NULL FALSE NULL
NULL NULL NULL NULL
a NOT a
TRUE FALSE
FALSE TRUE
NULL NULL

The operators AND and OR are commutative, that is, you can switch the left and right operand without
affecting the result. But see Section 4.2.14 for more information about the order of evaluation of
subexpressions.

9.2. Comparison Functions and Operators

The usua comparison operators are available, as shown in Table 9.1.

Table 9.1. Comparison Operators

Operator Description

< less than

> greater than

<= less than or equal to
>= greater than or equal to

202

Functions and Operators

Operator Description

= equal

<>or!= not equal
Note

The! = operator is converted to <> in the parser stage. It is not possible to implement ! = and
<> operatorsthat do different things.

Comparison operators are available for all relevant data types. All comparison operators are binary
operators that return values of type bool ean; expressionslikel < 2 < 3 arenot valid (because
there is no < operator to compare a Boolean value with 3).

There are al so some comparison predicates, as shown in Table 9.2. These behave much like operators,
but have specia syntax mandated by the SQL standard.

Table 9.2. Comparison Predicates

Predicate Description

a BETWEEN X ANDy between

a NOT BETWEENX ANDy not between

a BETWEEN SYMVETRI Cx ANDy between, after sorting the comparison values
a NOT BETVEEN SYMMETRI Cx ANDY not between, after sorting the comparison values
alS DI STINCT FROMb not equal, treating null like an ordinary value
alS NOT DI STI NCT FROMb equal, treating null like an ordinary value
expressionl|S NULL isnull

expression|S NOT NULL isnot null

expressi on | SNULL isnull (nonstandard syntax)

expr essi on NOTNULL isnot null (nonstandard syntax)

bool ean_expression| S TRUE istrue

bool ean_expression| S NOT TRUE isfalse or unknown

bool ean_expression| S FALSE isfalse

bool ean_expression|S NOT FALSE istrue or unknown

bool ean_expressi on | S UNKNOAN is unknown

bool ean_expression| S NOT UNKNOMN |istrue or false

The BETWVEEN predicate simplifies range tests:

a BETWEEN x AND y

is equivalent to

a > x AND a <=y

Notice that BETVIEEEN treats the endpoint values as included in the range. NOT BETWEEN does the

opposite comparison:

a NOT BETWEEN x AND y

203

Functions and Operators

isequivalent to

a<xORa>y

BETWEEN SYMVETRI Cis like BETVEEN except there is no requirement that the argument to the
left of AND be less than or equal to the argument on the right. If it is not, those two arguments are
automatically swapped, so that a nonempty range is always implied.

Ordinary comparison operatorsyield null (signifying “ unknown™), not true or false, when either input
isnull. For example, 7 = NULL yieldsnull, asdoes7 <> NULL. When thisbehavior isnot suitable,
usethel S [NOT] DI STI NCT FROMpredicates:

a |'S DI STINCT FROM b
a |I'S NOT DI STINCT FROM b

For non-null inputs, | S DI STI NCT FROMis the same as the <> operator. However, if both inputs
arenull it returns false, and if only one input is null it returnstrue. Similarly, | S NOT DI STI NCT
FROMisidentical to = for non-null inputs, but it returns true when both inputs are null, and false when
only oneinput is null. Thus, these predicates effectively act as though null were anormal datavalue,
rather than “unknown”.

To check whether avalueisor is not null, use the predicates:

expression IS NULL
expression |'S NOT NULL

or the equivalent, but nonstandard, predicates:

expressi on | SNULL
expressi on NOTNULL

Do not write expressi on = NULL because NULL is not “equal to” NULL. (The null value
represents an unknown value, and it is not known whether two unknown values are equal .)

Tip

Some applications might expect that expr essi on = NULL returnstrueif expr essi on
evaluates to the null value. It is highly recommended that these applications be modified to
comply with the SQL standard. However, if that cannot be done the transform_null_equals
configuration variable is available. If it is enabled, PostgreSQL will convert x = NULL
clausestox |'S NULL.

If the expr essi on isrow-vaued, then | S NULL is true when the row expression itself is null
or when al the row's fields are null, while | S NOT NULL is true when the row expression itself
is non-null and all the row's fields are non-null. Because of this behavior, | S NULL and | S NOT
NULL do not always return inverse results for row-valued expressions; in particular, a row-valued
expression that contains both null and non-null fields will return false for both tests. In some cases,
it may be preferable to writerow | S DI STINCT FROM NULL orrowl S NOT DI STI NCT
FROM NULL, which will simply check whether the overall row value is null without any additional
tests on the row fields.

Boolean values can also be tested using the predicates

204

Functions and Operators

bool ean_expression 1S TRUE

bool ean_expression 1S NOT TRUE
bool ean_expression | S FALSE

bool ean_expression 1S NOT FALSE
bool ean_expression 1S UNKNOAN
bool ean_expressi on 1S NOT UNKNOAN

These will always return true or false, never anull value, even when the operand is null. A null input
is treated as the logical value “unknown”. Noticethat | S UNKNOAN and | S NOT UNKNOWN are
effectively thesameas| S NULL and1 S NOT NULL, respectively, except that the input expression
must be of Boolean type.

Some comparison-related functions are also available, as shown in Table 9.3.

Table 9.3. Comparison Functions

Function Description Example Example Result

returns the number of [num nonnul I s(1, |2
num_nonnul | s(VARI A®I-&ill arguments NULL, 2)

"any")

returns the number of \num nul | s(1, 1
num nul | s(VARI ADI| il arguments NULL, 2)
“any")

9.3. Mathematical Functions and Operators

Mathematical operators are provided for many PostgreSQL types. For types without standard
mathematical conventions (e.g., date/time types) we describe the actual behavior in subsegquent
sections.

Table 9.4 shows the available mathematical operators.

Table 9.4. Mathematical Operators

Operator Description Example Result
+ addition 2 +3 5
- subtraction 2 -3 -1
* multiplication 2 * 3
/ division (integer|4 | 2
divison truncates the
result)
% modulo (remainder) 5 %4
A exponentiation 2.0~ 3.0
(associates |eft to right)
|/ sguare root |/ 25.0 5
[]/ cube root ||/ 27.0 3
! factorial (deprecated, |5 ! 120
use factorial()
instead)
I factorial as a prefix|!! 5 120

operator (deprecated,
use factorial()
instead)

@ absolute value @-5.0 5

205

Functions and Operators

Operator Description Example Result
& bitwise AND 91 & 15 11
| bitwise OR 32 | 3 35
bitwise XOR 17 # 5 20
~ bitwise NOT ~1 -2
<< bitwise shift |eft 1 << 4 16
>> bitwise shift right 8 >> 2 2

The bitwise operators work only on integral data types and are also available for the bit string types
bit andbit varyi ng, asshownin Table9.13.

Table 9.5 shows the available mathematical functions. In the table, dp indicates doubl e

pr eci si on. Many of these functions are provided in multiple forms with different argument types.

Except where noted, any given form of a function returns the same data type as its argument. The
functions working with doubl e preci si on data are mostly implemented on top of the host
system's C library; accuracy and behavior in boundary cases can therefore vary depending on the host

system.

Table 9.5. Mathematical Functions

equal to argument
(sameascei |l)

Function Return Type Description Example Result
abs(x) (same asinput) absolute value abs(-17. 4) 17. 4
cbrt (dp) dp cube root cbrt (27.0) 3
ceil (dp or |(sameasinput) nearest integer|cei | (-42.8) |-42
nuneri c) greater than or
equal to argument
cei l i ng(dp|(sameasinput) nearest integer|cei | i ng(-95. 3)- 95
or nuneric) greater than or

412

905

degrees(dp) |dp radians to degrees |degr ees(0.5) |28. 6478897565
di v(y|nuneric integer quotient of |di v(9, 4) 2

nuneri c, X y/IX
nuneri c)

exp(dp or |(same asinput) exponential exp(1.0) 2.71828182845
nuneri c)

nuneric factorial factorial (5) [120

factorial (bigjnt)

floor(dp or |(sameasinput) nearest integer less|f | oor (-42. 8) |-43

9945

nuneri c) than or equal to
argument

I n(dp or |(sameasinput) natural logarithm |l n(2. 0) 0. 69314718055
nuneri c)

l og(dp or |(same asinput) base 10 logarithm |l 0g(100. 0) 2
nuneri c)
| og(b nuneric logarithmtobaseb |l og(2. 0, 6. 0000000000
nuneri c, X 64. 0)
nuneri c)
mod(y, X) (same as argument [remainder of y/x [nod(9, 4) 1

types)

pi () dp “#' constant pi () 3.14159265358

979

206

Functions and Operators

Function Return Type Description Example Result

power (a dp, b|dp a raised to the|power (9.0, 729

dp) power of b 3.0)

power (a nuneric a raised to the|power (9.0, 729

nuneri c, b power of b 3.0)

nuneri c)

radi ans(dp) |dp degreestoradians |r adi ans(45. 0)|0. 78539816339

7448

round(dp or

(same asinput)

round to nearest

round(42. 4)

42

numeri c) integer
round(v nuneric roundto s decimal |r ound(42. 4382,42. 44
nuneri c, S places 2)
i nt)
i nteger scale of thelscal e(8.41) |2

scal e(nureric argument (the

number of decimal

digits in the

fractional part)

sign(dp or |(sameasinput) sign of the|si gn(- 8. 4) -1

numeri c) argument (-1, O,

+1)

sqrt(dp or |(sameasinput) sguare root sqrt(2.0) 1.41421356237
nuneri c)
trunc(dp or |(sameasinput) truncate toward|trunc(42.8) |42
nuneri c) zero
trunc(v nuneric truncate to s|trunc(42.4382/42.43
nuneri c, S decimal places 2)
int)
i nt return the bucket|wi dt h_bucket (8 35,

wi dt h_bucket (oper and number to which|0. 024, 10. 06,
dp, bl dp, operand would|5)
b2 dp, count be assigned in a
int) histogram having

count equal-

width buckets

spanning the range

bl to b2; returns

0 or count +1 for

aninput outsidethe

range
wi dt h_bucket (joper and return the bucket|wi dt h_bucket (8 35,
nuneri c, b1 number to which|0. 024, 10. 06,
nuneri c, b2 operand would|5)
nuneri c, be assigned in a
count int) histogram having

count equal-

width buckets

spanning the range

bl to b2; returns

0 or count +1 for

aninput outsidethe

range
wi dt h_bucket (opgr and return the bucket|wi dt h_bucket (row() ,

anyel enent,

number to which

array['yester

day' ,

207

Functions and Operators

Function Return Type Description Example Result
t hreshol ds operand would|' t oday',
anyarray) be assigned given|' tonorrow]::tinestanptz[]
an array listing
the lower bounds
of the buckets;
returns 0 for an
input less than the
first lower bound;
the t hr eshol ds
aray must be
sorted, smallest
first, or unexpected
results will be
obtained
Table 9.6 shows functions for generating random numbers.
Table 9.6. Random Functions
Function Return Type Description
random() dp random valueintherange0.0 <=
x<1.0
set seed(dp) voi d set seed for subsequent
randon() calls(valuebetween
-1.0 and 1.0, inclusive)

The characteristics of the values returned by r andon() depend on the system implementation. It is
not suitable for cryptographic applications; see pgcrypto module for an aternative.

Finally, Table 9.7 shows the available trigonometric functions. All trigonometric functions take
arguments and return values of type doubl e preci si on. Each of the trigonometric functions
comes in two variants, one that measures angles in radians and one that measures angles in degrees.

Table9.7. Trigonometric Functions

Function (radians) Function (degr ees) Description
acos(x) acosd(x) inverse cosine
asi n(x) asi nd(x) inverse sine
at an(x) at and(x) inverse tangent
atan2(y, x) atan2d(y, x) inverse tangent of y/ x
cos(x) cosd(x) cosine
cot (x) cot d(x) cotangent
si n(x) si nd(x) sine
tan(x) t and(x) tangent

Note

Another way to work with angles measured in degrees is to use the unit transformation
functions r adi ans() and degr ees() shown earlier. However, using the degree-based
trigonometric functionsis preferred, as that way avoids round-off error for special cases such
assi nd(30).

208

Functions and Operators

9.4. String Functions and Operators

This section describes functions and operators for examining and manipulating string values. Strings
in this context include values of thetypeschar act er ,char act er varyi ng,andt ext . Unless
otherwise noted, all of the functions listed below work on all of these types, but be wary of potential
effects of automatic space-padding when using the char act er type. Some functions also exist
natively for the bit-string types.

SQL defines some string functions that use key words, rather than commas, to separate arguments.
Details are in Table 9.8. PostgreSQL also provides versions of these functions that use the regular
function invocation syntax (see Table 9.9).

Note

Before PostgreSQL 8.3, these functionswould silently accept values of several non-string data
types as well, due to the presence of implicit coercions from those datatypestot ext . Those
coercions have been removed because they frequently caused surprising behaviors. However,
the string concatenation operator (| |) still accepts non-string input, so long as at least one
input is of a string type, as shown in Table 9.8. For other cases, insert an explicit coercion to
t ext if you need to duplicate the previous behavior.

Table 9.8. SQL String Functions and Operators

Function Return Type Description Example Result
string |] [text String ' Post' | | |Post gr eSQ
string concatenation ‘gresqQ’
string |] [text String "Value: ' || |Value: 42
non-string or concatenation with |42
non-string || one non-string
string input

i nt Number of bitsin|bit | ength('j@&2')
bit | ength(string) string

i nt Number of|char _| ength(' jdose')
char | ength(string) charactersin string
or
character | ength(string)

t ext Convert string to|l ower (' TOM) |tom
| ower (string) lower case

i nt Number of bytesin|oct et _| engt h([4 ose')
octet | ength(string) string

t ext Replace substring |over | ay(' TxxxXdsimas
overlay(string pl aci ng ' hom
pl aci ng from2 for 4)
string from
i nt [for
int])

i nt Location of|posi tion(' om |3
posi tion(substring specified substring |i n ' Thonas')
in string)

t ext Extract substring |substri ng(' Thdras'
substring(string from2 for 3)
[from int]
[for int])

209

Functions and Operators

Function

Return Type

Description

Example

Result

substring(str
frompattern)

trext

Extract substring
matching POSIX
regular expression.
See Section 9.7 for
more information
on pattern
matching.

substring(' Th
from'...$")

OTEEsS

substring(str
from pattern
for escape)

Extract substring
matching SQL
regular expression.
See Section 9.7 for
more information
on pattern
matching.

substring(' Th
from

" 94t" o_a#" '
for "#)

GOTEES

trim([I|eading
[trailing
[bot h]
[characters]
from string)

t ext

the
string

Remove
longest
containing only
characters from
characters (a
space by default)
from the dart,
end, or both
ends (both is
the default) of
string

trim both
' xyz' from
"yxTonxx")

Tom

trim([I|eading
| trailing |
both] [fron
string [,
characters])

t ext

Non-standard
syntax
trim)

for

trim both
from
"yxTonmkx',
'xyz')

Tom

upper (string)

t ext

Convert string to
upper case

upper (' tom)

TOM

Additional string manipulation functions are available and are listed in Table 9.9. Some of them are

used internally to implement the SQL -standard string functions listed in Table 9.8.

Table 9.9. Other String Functions

Function Return Type Description Example Result
i nt ASCIl code of|ascii('x") 120

ascii(string) the first character

of the argument.

For UTF8 returns

the Unicode code

point of the

character. For

other multibyte

encodings, the

argument must

be an ASCII

character.
btrinm(string|text Remove the|bt ri m(' xyxtri rynyxh,
t ext [, longest string|' xyz')

consisting only

210

Functions and Operators

Function

Return Type

Description

Example

Result

characters
text])

of characters in
characters (a
space by default)
from the start and
endof string

chr(int)

t ext

Character with
the given code.
For UTF8 the
argument istreated
as a Unicode
code point. For
other multibyte
encodings the
argument must
designate an
ASCIl character.
The NULL (0)
character is not
adlowed because
text data types
cannot store such
bytes.

chr (65)

concat (str
a.r]yll [,
str "any"

L ...1 1

t ext

Concatenate the
text

representations of
al the arguments.
NULL arguments

areignored.

concat (' abcde
2, NULL, 22)

abcde222

concat_ws(sep
text, str
"any” [
str "any"

. ...1 1

t ext

Concatenate al but
the first argument
with separators.
The first argument
is used as the
separator string.
NULL arguments
areignored.

concat _ws(',"
"abcde', 2,
NULL, 22)

,abcde, 2, 22

convert(strin
byt ea,
src_encodi ng
namne,
dest _encodi ng
nane)

byt ea

Convert string to
dest _encodi ng

The original
encoding is
specified by

src_encodi ng.
Thestri ng must

be valid in
this encoding.
Conversions can
be defined by
CREATE
CONVERSI ON.
Also there are

some predefined
conversions. See
Table 9.10 for
available

convert ('text
! UTF8'
"LATI N1')

conversions.

[tiextutifr8'ut f 8
represented in
Latin-1 encoding
(1SO 8859-1)

211

Functions and Operators

Function

Return Type

Description

Example

Result

convert _from(
byt ea,
src_encodi ng
nane)

t ext
string

Convert string
to the database
encoding. The
origina encoding
is specified by
src_encodi ng.
Thest ri ng must
be valid in this
encoding.

convert _from
" UTF8')

ttesott_iim uitffes’
represented in the
current database
encoding

convert to(st
text,
dest _encodi ng
nane)

byt ea
ring

Convert string to
dest _encodi ng

convert _to('s
text',
"UTF8")

e t ext
represented in the
UTF8 encoding

decode(string
text, format
text)

byt ea

Decode binary
data from textual
representation in
string. Options
for format are
same as in
encode.

decode("' MTl zA
' base64')

AE3132330001

encode(dat a
byt ea, format
text)

t ext

Encode binary data
into a textua
representation.
Supported formats
are; base64,
hex, escape.
escape converts
zero bytes and
high-bit-set bytes
to octal sequences
(\ nnn) and
doubles
backslashes.

encode(' 123\ 0
' base64')

(NIRI ONAE =

format (f or mat
t ext [,
formatarg

"any

[, ...]

1)

t ext
str

Format arguments
according to a
format string. This
function is similar
to the C function
sprintf. See
Section 9.4.1.

format (' Hell o
%s, %W$s',
"Worl d')

Hello World,
Worl d

initcap(strin

t ext

Convert the first
|etter of each word
to upper case
and the rest to
lower case. Words
are sequences
of aphanumeric
characters
separated by non-
alphanumeric
characters.

i nitcap(' hi
THOWAS')

H Thonmms

left(str

text, nint)

t ext

Return first n
characters in the

| eft (' abcde',

ab

2)

212

Functions and Operators

f b0
f72

Function Return Type Description Example Result
string. When n
is negative, return
al but last |n|
characters.
i nt Number of |l ength('jose')4
I ength(string characters in
string
I engt h(string|int Number of |l ength('jose' |4
byt ea, characters in|" UTF8")
encodi ng nane string in the
) given encodi ng.
Thest ri ng must
be valid in this
encoding.
| pad(string|text Fill up the(l pad(' hi', 5, |xyxhi
text, length string tolength|' xy')
int [, fill | ength by
text]) prepending the
charactersfil | (a
space by default).
If the string is
aready longer than
| engt h then it is
truncated (on the
right).
Itrim(string|text Remove thell trim(' zzzyt egtést
t ext [, longest string|' xyz')
characters containing only
text]) characters from
characters (a
space by default)
from the start of
string
md5(string) |text Calculates the/md5(" abc') 900150983cd24
MD5 hash of d6963f 7d28el7
string,
returning the result
in hexadecimal
text[] Split parse_i dent (' [{SomeSoiema, .3
parse_ident (qualified_identgbakerfied_ identifier
t ext [, into an array
strictnode of identifiers,
bool ean removing any
DEFAULT quoting of
true]) individual
identifiers. By
default, extra
characters after

the last identifier
are considered an
error; but if the
second parameter
is fal se, then
such extra

roTes el ed')

213

Functions and Operators

Function

Return Type

Description

Example

Result

characters are
ignored. (This
behavior is useful
for parsing names
for objects like
functions) Note
that this function
does not truncate
over-length

identifiers. If you
want truncation
you can cast the
result tonane[] .

pg_client_enc

nane
odi ng()

Current client
encoding name

pg_client_enc

EONAASC |

quote_ident (s
text)

t ext
tring

Return the given
string suitably
quoted to be used
as an identifier
in an SQL
statement string.
Quotes are added
only if necessary
(i.e, if the string
contains non-
identifier
characters or
would be case
folded). Embedded
quotes are properly
doubled. See also
Example 43.1.

quot e_i dent ('
bar')

Fdwo bar"

quote literal
text)

t ext
string

Return the given
string suitably
quoted to be used
asastring literal in
an SQL statement
string. Embedded
single-quotes and
backslashes are
properly doubled.
Note that
quote literal
returns null on
null input; if
the argument
might be null,
quot e_nul | abl
is often more
suitable. See aso
Example 43.1.

quote literal
\'Reilly")

"EYORei | |y’

quote literal
anyel enent)

tveedtue

Coerce the given
value to text and
then quote it as a
literal. Embedded

quote_ literal

214

Functions and Operators

Function

Return Type

Description

Example

Result

single-quotes and
backdlashes are
properly doubled.

quot e_nul | abl
text)

t ext
e(string

Return the given
string suitably
quoted to be
used as a string
literal in an SQL
statement string;
or, if the argument
is null, return
NULL. Embedded
single-quotes and
backslashes are
properly doubled.
See aso
Example 43.1.

quot e_nul | abl

ENUNLIL L)

quot e_nul | abl
anyel ement)

d(exdl ue

Coerce the given
value to text and
then quote it
as a literd; or,
if the argument
is null, return
NULL. Embedded
single-quotes and
backslashes are
properly doubled.

quot e_nul | abl

842 5B)

regexp_nat ch(
text, pattern
text [, flags
text])

text[]
string

Return captured
substring(s)

resulting from the
first match of
a POSIX regular
expression to the
string. See
Section 9.7.3 for
more information.

regexp_mat ch(
"(bar)
(beque) ')

{fmoh drezpop}ebs

setof text[] |Return captured|r egexp_mat ched(Bdrgobar bequebaz' ,
regexp_mat ches(string substring(s) "ba.', 'g")
text, pattern resulting ~ from { baz}
text [, flags matching a POSIX
text]) regular expression (2rows)
to the string.
See Section 9.7.3
for more
information.
t ext Replace regexp_repl acgliMhonas' ,
regexp_replace(string substring(s) ".[mMNJa.',
text, pattern matching a POSIX |' M)
t ext, regular expression.

repl acenent
text [, flags
text])

See Section 9.7.3
for more
information.

215

Functions and Operators

Function Return Type Description Example Result
text[] Split string|regexp_split_Hdaedrawdria}l
regexp_split_to_array(stringsing a POSIX|world', "\'s
text, pattern regular expression|+')
text [, flags as the delimiter.
text]) See Section 9.7.3
for more
information.
set of text Split string|regexp_split_theltlabl e(' hel |
regexp_split_to table(stringsing a POSIX|world', "\'s
text, pattern regular expression|+') wor | d
text [, flags as the delimiter.
text]) See Section 9.7.3 (2 rows)
for more
information.
t ext Repeat string|repeat (' Pg', |PgPgPgPg
repeat (string the specified|4)
text, nunber nunber of times
int)
t ext Replace al|repl ace(' abcdeftabtdetdXXef
repl ace(string occurrences in'cd , 'XX)
text, from string of
t ext, to substring from
text) with substring t o
reverse(str) |text Return reversed|r ever se(' abcdedcba
string.
right(str|text Return last njri ght (' abcde' |de
text, nint) characters in the|2)
string. When n
is negative, return
al but first |n|
characters.
rpad(string|text Fill up the[rpad(' hi', 5, |hi xyx
text, length string tolength|' xy')
int [, fill | ength by
text]) appending the
charactersfil | (a
space by default).
If the string is
aready longer than
| engt h then it is
truncated.
rtrim(string|text Remove theirtrinm('testxxgxest
t ext [, longest string|* xyz')
characters containing only
text]) characters from

characters (a
space by default)
from the end of
string

split_part (st
t ext,
delimter

t ext
ring

Split string on
delimter and
return the given

split_part('a
—@', 2)

et @-def ~@-ghi

216

(o]

Functions and Operators

replaced by the
corresponding
character in the
to set. If from
is longer than
t 0, occurrences of
theextracharacters
in from are
removed.

Function Return Type Description Example Result
t ext, field field (counting
int) from one)
i nt Location ofstrpos(' high'|2
strpos(string, specified substring|' i ')
substring) (same as
posi tion(substring
in string),but
note the reversed
argument order)
t ext Extract substring|substr (' al phahst ',
substr(string, (same as|3, 2)
from [, substring(string
count]) fromfromfor
count))
bool Returns true if|starts_wi th(' @l phabet"',
starts_w th(string, string starts|' al ph')
prefix) with prefi x.
t ext Convert string|to_ascii (' Kargdrel
to_ascii(string to ASCIl from
t ext [, another encoding
encodi ng (only supports
text]) conversion from
LATI N1,
LATI N2,
LATI N9, and
W N1250
encodings)
t ext Convert nunber |t o_hex(2147483847)f f f f
t o_hex(nunber to its equivaent
i nt or hexadecimal
bi gi nt) representation
t ext Any character|t r ansl at e(' 12345
transl ate(strjng in string that|' 143", 'ax')
t ext, from matches a
t ext, to character in the
text) from st s

Theconcat,concat _ws andf or mat functionsarevariadic, soit ispossibleto passthe valuesto
be concatenated or formatted as an array marked with the VARI ADI C keyword (see Section 38.5.5).
The array's elements are treated as if they were separate ordinary arguments to the function. If the
variadic array argument is NULL, concat and concat _ws return NULL, but f or nat treats a

NULL as azero-element array.

See also the aggregate function st r i ng_agg in Section 9.20.

217

Functions and Operators

Table 9.10. Built-in Conversions

Conversion Name?

Sour ce Encoding

Destination Encoding

ascii _to_mc SQ._ASCI | MULE_| NTERNAL
ascii_to utf8 SQL_ASCI | UTF8

bigs to euc tw Bl G5 EUC TW
big5_to_mc Bl G5 MULE_| NTERNAL
big5 to utf8 Bl G5 UTF8

euc_cn_to mc EUC CN MULE | NTERNAL
euc_cn_to utf8 EUC CN UTF8

euc_jp_to mc EUC JP MULE | NTERNAL
euc_jp_to_sjis EUC JP SJIS

euc_jp_to utf8 EUC JP UTF8

euc_kr _to nmc EUC KR MULE | NTERNAL
euc_kr_to utf8 EUC KR UTF8

euc_tw to_bigs EUC TW Bl G5

euc_twto _mc EUC TW MULE_| NTERNAL
euc_twto utf8 EUC TW UTF8
gh18030_to_utf8 GB18030 UTF8
gbk_to_utf8 GBK UTF8
iso_8859 10 to_utf8 LATI N6 UTF8
iso_8859 13 to utf8 LATI N7 UTF8
iso_8859 14 to_utf8 LATI N8 UTF8

iso_ 8859 15 to utf8 LATI N9 UTF8
iso_8859 16 to_utf8 LATI N10 UTF8
iso_8859 1 to mc LATI N1 MULE_| NTERNAL
iso 8859 1 to utf8 LATI N1 UTF8

iso 8859 2 to mc LATI N2 MULE_| NTERNAL
iso_8859 2 to utf8 LATI N2 UTF8

i so_8859 2 to w ndows 1260 N2 W N1250

iso 8859 3 to mc LATI N3 MULE | NTERNAL
iso_ 8859 3 to utf8 LATI N3 UTF8
iso_8859 4 to_mc LATI N4 MULE_| NTERNAL
iso 8859 4 to utf8 LATI N4 UTF8
iso_8859 5 to_koi8_r |[1SO 8859 5 KO 8R

iso_ 8859 5 to mc | SO 8859 5 MULE_| NTERNAL
iso_8859 5 to utf8 | SO 8859 _5 UTF8
iso_8859 5 to wi ndows [1Z¥1 8859 5 W N1251

i so_8859 5 to_wi ndows_B6&8 8859 5 W N866

iso_ 8859 6 to utf8 | SO 8859 _6 UTF8
iso_8859 7 to utf8 | SO 8859_7 UTF8
iso_8859 8 to_utf8 | SO 8859_8 UTF8
iso_8859 9 to utf8 LATI N5 UTF8

218

Functions and Operators

Conversion Name?

Sour ce Encoding

Destination Encoding

johab_to_utf8

JOHAB

UTF8

koi8 r to iso 8859 5 |KO 8R | SO 8859 5
koi 8_r_to_mc KA 8R MULE_| NTERNAL
koi8 r to utf8 KA 8R UTF8

koi 8 r _to_w ndows_1251KO 8R W N1251

koi 8 r _to _w ndows 866 KO 8R W N866

koi8 u to utf8 KO 8U UTF8
mc_to_ascii MULE_| NTERNAL SQ._ASC |
mc_to_bigb MULE_| NTERNAL Bl G5

mc to_euc_cn MULE | NTERNAL EUC CN

mc to euc_jp MULE | NTERNAL EUC JP

m c_t o_euc_kr MULE_| NTERNAL EUC KR
mc_to_euc_tw MULE_| NTERNAL EUC_TW
mc_to_iso 8859 1 MULE_| NTERNAL LATI N1

mc to_ iso 8859 2 MULE_| NTERNAL LATI N2
mc_to_iso_8859 3 MULE_| NTERNAL LATI N3
mc_to_iso 8859 4 MULE_| NTERNAL LATI N4
mc_to_iso 8859 5 MULE_| NTERNAL | SO 8859 _5
mc to koi8 r MULE | NTERNAL KA 8R

mc to sjis MULE_| NTERNAL SJIS

m c_to_w ndows_1250 MULE_| NTERNAL W N1250

m c_to_w ndows_1251 MULE_| NTERNAL W N1251

m c_to_wi ndows 866 MULE | NTERNAL W N866
sjis_to_euc_jp SJIS EUC JP
sjis_to_mc SJIS MULE_| NTERNAL
sjis_to utf8 SJI S UTF8

wi ndows 1258 to utf8 |W N1258 UTF8

uhc to utf8 UHC UTF8

utf8 to_ascii UTF8 SQL_ASC |
utf8 to_bigb UTF8 Bl G5

utf8 to_euc_cn UTF8 EUC CN

utf8 to_euc_jp UTF8 EUC JP

utf8 to_euc_kr UTF8 EUC KR

utf8 to _euc tw UTF8 EUC TW
utf8_to_ghl18030 UTF8 GB18030

utf8 to_gbk UTF8 GBK

utf8 to_iso 8859 1 UTF8 LATI N1
utf8_ to_iso_8859 10 UTF8 LATI N6

utf8 to iso 8859 13 UTF8 LATI N7

utf8 to iso 8859 14 UTF8 LATI N8

utf8 to_iso 8859 15 UTF8 LATI N9

219

Functions and Operators

Conversion Name ? Sour ce Encoding Destination Encoding
utf8 to_iso 8859 16 UTF8 LATI N10
utf8 to iso 8859 2 UTF8 LATI N2

utf8 to iso 8859 3 UTF8 LATI N3

utf8 to iso 8859 4 UTF8 LATI N4

utf8 to_iso 8859 5 UTF8 | SO 8859 _5
utf8 to_iso 8859 6 UTF8 | SO 8859_6
utf8 to_iso 8859 7 UTF8 | SO 8859_7
utf8 to_iso 8859 8 UTF8 | SO 8859_8
utf8 to_iso 8859 9 UTF8 LATI N5

utf8 to_johab UTF8 JOHAB

utf8 to koi8 r UTF8 KA 8R

utf8 to_koi8 u UTF8 KO 8U

utf8 to_sjis UTF8 SJI S

utf8 to_w ndows_ 1258 |UTF8 W N1258
utf8 to_uhc UTF8 UHC

utf8 to_w ndows_1250 |UTF8 W N1250
utf8 to_wi ndows_1251 |UTF8 W N1251
utf8 to_w ndows_ 1252 |UTF8 W N1252
utf8 to wi ndows_ 1253 |UTF8 W N1253
utf8_ to_wi ndows_1254 |UTF8 W N1254
utf8 to_wi ndows_1255 |UTF8 W N1255
utf8 to_w ndows_ 1256 |UTF8 W N1256
utf8 to wi ndows_ 1257 |UTF8 W N1257
utf8 to w ndows 866 UTF8 W N866
utf8_to_wi ndows_874 UTF8 W N874

wi ndows_ 1250 to_iso_ 8854 N1250 LATI N2

wi ndows_1250_to_mic W N1250 MULE_| NTERNAL
wi ndows_1250 to_utf8 |WN1250 UTF8

wi ndows_1251 to_i so_88B88 Na251 | SO 8859 _5
wi ndows_ 1251 to_koi 8 r|{WN1251 KA 8R

wi ndows_1251 to mic |WN1251 MULE_| NTERNAL
wi ndows_1251 to_utf8 |WN1251 UTF8

w ndows_1251 to_w ndowsNaaE&R51 W N866

wi ndows 1252 to utf8 |WN1252 UTF8

wi ndows 1256 to utf8 |W N1256 UTF8

wi ndows_866_t o_i so_8850N'N866 | SO 8859_5
w ndows_866_to_koi 8 r |W N866 KA 8R

w ndows_ 866 _to _mc W N866 MULE | NTERNAL
wi ndows 866 to utf8 W N866 UTF8

w ndows 866 t o w ndows|\WNBbK6 W N

wi ndows_874_to_utf8 W N874 UTF8

220

Functions and Operators

9.4.1.

Conversion Name?

Sour ce Encoding

Destination Encoding

euc_jis_2004_to utf8 |EUC JIS 2004 UTF8
utf8 to euc jis_2004 |UTF8 EUC JI S 2004
shift_jis_2004_to_utf8SH FT_JI S 2004 UTF8

utf8 to_shift_jis_2004/UTF8
euc_jis_2004_to_shift_jEUC 208! 2004 SHI FT_JI'S_2004
shift_jis_2004_to_euc_jSH FAOM4 S 2004 EUC JI S_2004

8The conversion names follow a standard naming scheme: The official name of the source encoding with all non-al phanumeric
characters replaced by underscores, followed by _t o_, followed by the similarly processed destination encoding name.
Therefore, the names might deviate from the customary encoding names.

SHI FT_JI'S_2004

f or mat

The function f or mat produces output formatted according to a format string, in a style similar to
the C functionspri nt f .

format (formatstr text [, formatarg "any" [, ...] 1)

format str isaformat string that specifies how the result should be formatted. Text in the format
string is copied directly to the result, except where format specifiers are used. Format specifiers act
as placeholders in the string, defining how subsequent function arguments should be formatted and
inserted into the result. Each f or mat ar g argument is converted to text according to the usual output
rules for its data type, and then formatted and inserted into the result string according to the format
specifier(s).

Format specifiers are introduced by a %character and have the form

% position][flags][w dth]type
where the component fields are:
posi ti on (optional)

A string of the form n$ where n is the index of the argument to print. Index 1 means the first
argument after f or mat st r . If theposi t i on isomitted, the default isto use the next argument
in sequence.

fl ags (optional)

Additional options controlling how the format specifier's output is formatted. Currently the only
supported flagisaminussign (-) which will cause the format specifier's output to beleft-justified.
This has no effect unlessthewi dt h field is also specified.

wi dt h (optional)

Specifies the minimum number of characters to use to display the format specifier's output. The
output is padded on the left or right (depending on the - flag) with spaces as needed to fill the
width. A too-small width does not cause truncation of the output, but issimply ignored. The width
may be specified using any of the following: a positive integer; an asterisk (*) to use the next
function argument as the width; or a string of the form * n$ to use the nth function argument
as the width.

If the width comes from afunction argument, that argument is consumed before the argument that
isused for the format specifier'svalue. If the width argument is negative, the result isleft aligned
(asif the- flag had been specified) within afield of length abs (wi dt h).

221

Functions and Operators

t ype (required)

Thetype of format conversion to use to produce the format specifier's output. Thefollowing types
are supported:

« s formats the argument value as asimple string. A null value istreated as an empty string.

* | treatsthe argument value as an SQL identifier, double-quoting it if necessary. It is an error
for the value to be null (equivalent to quot e_i dent).

* L quotes the argument value as an SQL literal. A null value is displayed as the string NULL,
without quotes (equivalent to quot e_nul | abl e).

In addition to the format specifiers described above, the specia sequence %86may be used to output
aliteral %character.

Here are some examples of the basic format conversions:

SELECT format('Hello %', 'Wrld');
Result: Hello Wrld

SELECT format (' Testing %, %, %, %6, 'one', '"two', 'three');
Result: Testing one, two, three, %

SELECT format (' I NSERT I NTO %9 VALUES(%.)', 'Foo bar', E O
\"Reilly");
Resul t: INSERT I NTO "Foo bar" VALUES(' O 'Reilly")

SELECT format (' I NSERT I NTO %4 VALUES(%.)', 'locations', 'C: \Program
Files');
Result: I NSERT I NTO | ocations VALUES(' C:\Program Files')

Here are examplesusing wi dt h fields and the - flag:

SELECT format ('|%0s|', 'foo');
Result: | foo|
SELECT format ('|% 10s|', 'foo0');

Result: |foo |

SELECT format (' | %s|', 10, 'foo');
Result: | foo|

SELECT format (' | %s|', -10, 'foo');
Result: |foo |

SELECT format (' | % *s|', 10, 'foo');
Result: |foo |

SELECT format (' | % *s|', -10, 'foo0');
Result: |foo |

These examples show use of posi ti on fields:

SELECT format (' Testing ¥8%s, %®@$s, %$s', 'one', 'two', 'three');
Result: Testing three, two, one

222

Functions and Operators

SELECT format (' | %2%$s|', 'foo', 10, 'bar');
Result: | bar |
SELECT format (' | %$*2%$s|', 'foo', 10, 'bar');

Result: | f oo|

Unlike the standard C function spri nt f , PostgreSQL's f or mat function allows format specifiers
with and without posi t i on fieldsto be mixed in the same format string. A format specifier without
aposi ti on field aways uses the next argument after the last argument consumed. In addition, the
f or mat function doesnot requireall function argumentsto be used in theformat string. For example:

SELECT format (' Testing ¥3$s,
Result: Testing three, two,

92 $s,
t hree

%', 'one', '"two', 'three');

The 94 and % format specifiers are particularly useful for safely constructing dynamic SQL
statements. See Example 43.1.

9.5. Binary String Functions and Operators

This section describes functions and operators for examining and manipulating values of typebyt ea.

SQL defines some string functions that use key words, rather than commas, to separate arguments.
Details are in Table 9.11. PostgreSQL aso provides versions of these functions that use the regular
function invocation syntax (see Table 9.12).

Note

The sample results shown on this page assume that the server parameter byt ea_out put is
set to escape (the traditional PostgreSQL format).

Table9.11. SQL Binary String Functions and Operators

Function Return Type Description Example Result
string || [byt ea String "\ \\ Post ' gres
string concatenation \ Post ' : : byt eal\ 000
|| '\047gres
\000': : byt ea

i nt Number of bytesin|oct et _| engt h(5 o
octet | ength(string) binary string \ 000se' : : byt ep)

byt ea Replace substring |overl ay(' Th |[T\\ 002\
overlay(string \ 000onms' : : byf\d®3mas
pl aci ng pl aci ng
string from "\ 002\ 003' :: byt ea
i nt [for from2 for 3)
int])

i nt Location of|[posi tion('\00@®m :: byt ea
posi tion(substring specified substring |i n "Th
in string) \ 000onms' : : byt ea)

byt ea Extract substring |substri ng(' Thih\ 0000
substring(string \ 000ommas' : : byt ea
[from int] from2 for 3)
[for int])

223

Functions and Operators

bytes appearing in
byt es from the
start and end of
string

Function Return Type Description Example Result
trim([both] |bytea Remove the[t ri m("' \ 000\ O0Tambyt ea

byt es from longest string|f rom' \ 000Tom

string) containing only|\ 001' : : byt ea)

Additional binary string manipulation functions are available and are listed in Table 9.12. Some of
them are used internally to implement the SQL -standard string functionslisted in Table 9.11.

Table 9.12. Other Binary String Functions

Function

Return Type

Description

Example

Result

btrim(string
bytea, bytes
byt ea)

byt ea

Remove the
longest string
containing only
bytes appearing in
byt es from the
start and end of

string

btrinm('\000tr
\001': : byt ea,
"\000\001'::b

tmi m

yt ea)

decode(string
text, format
text)

byt ea

Decode binary
data from textual
representation in
string. Options
for format are
same as in
encode.

decode(' 123\ 0
' escape')

B ®00456

encode(dat a
byt ea, format
text)

t ext

Encode binary data
into a textud
representation.
Supported formats
are; base64,
hex, escape.
escape converts
zero bytes and
high-bit-set bytes
to octal sequences
(\ nnn) and
doubles
backslashes.

encode(' 123\ 0
' escape')

QRSB AA045E ea,

get_bit(strin
of f set)

i nt

Extract bit from
string

get _bit('Th
\ 000omms' : :
45)

by

1
tea,

get _byte(stri
of fset)

i nt
ng,

Extract byte from
string

get _byte(' Th
\ 000onms' : : by
4)

109
tea,

I ength(string

Length of binary
string

length('jo
\ 000se' :: byte

5
R)

md5(st ring)

t ext

the
of

Calculates
MD5 hash
string,
returning the result
in hexadecimal

nd5("' Th
\ 000omas' : : by

8ab2d3c9689aa
the9)58c334c82d

f18
8bl

224

Functions and Operators

Function Return Type Description Example Result
byt ea Set bit in string set_bit (' Th |Th\ 0000mAs
set_bit(string, \ 000omas' : : byt ea,
of f set, 45, 0)
newal ue)
byt ea Set byteinstring |set _byte(' Th |Th\ 000o@s
set _byte(string, \ 000onms' : : byt ea,
of f set, 4, 64)
newal ue)
byt ea SHA-224 hash sha224(' abc')|\ x23097d223405d8228642a47
sha224(byt ea) 55b32aadbce4bdaOb3f 7e36¢9
byt ea SHA-256 hash sha256("' abc')|\ xba7816bf 8f Oflcf ea414140d
sha256(byt ea) b00361a396177a9ch410f f 61f
byt ea SHA-384 hash sha384(' abc')|\ xcb00753f 45a35e8bb5a03d6
sha384(byt ea) 272c32ab0eded1631a8b605a4
8086072bale7cc2358baecall
byt ea SHA-512 hash sha512(' abc') |\ xddaf 35a1936{L7abacc41734
sha512(byt ea) 12e6f a4e89a97ea20a9eeeeb4
2192992a274f cla836ba3c23a
454d4423643ceB0e2a%ac94f a

get _byte and set byt e number the first byte of a binary string as byte 0. get _bit and
set _bi t number bitsfrom the right within each byte; for example bit O isthe least significant bit of
the first byte, and bit 15 isthe most significant bit of the second byte.

Note that for historic reasons, the function nd5 returns a hex-encoded value of typet ext whereasthe
SHA-2 functionsreturn type byt ea. Usethefunctionsencode and decode to convert between the

two, for example encode(sha256("' abc'),

' hex') to get ahex-encoded text representation.

See also the aggregate function stri ng_agg in Section 9.20 and the large object functions in

Section 35.4.

9.6. Bit String Functions and Operators

This section describes functions and operators for examining and manipulating bit strings, that is
valuesof thetypesbi t andbi t varyi ng. Asidefromtheusual comparison operators, the operators
shown in Table 9.13 can be used. Bit string operands of &, | , and # must be of equal length. When bit
shifting, the original length of the string is preserved, as shown in the examples.

Table 9.13. Bit String Operators

Operator Description Example Result

[concatenation B' 10001" || |10001011
B' 011"

& bitwise AND B' 10001" &(00001
B' 01101"

[bitwise OR B' 10001" | (11101
B' 01101'

bitwise XOR B' 10001" #/11100
B' 01101'

~ bitwise NOT ~ B' 10001" 01110

<< bitwise shift left B' 10001' << 3 01000

>> bitwise shift right B' 10001' >> 2 00100

225

Functions and Operators

The following SQL-standard functions work on bhit strings as well as character strings: | engt h,
bit | ength,octet |ength,position,substring,overlay.

The following functions work on bit strings as well as binary strings: get _bi t, set _bi t. When
working with abit string, these functions number the first (leftmost) bit of the string as bit 0.

In addition, it is possible to cast integral values to and from type bi t . Some examples:

44 :bit (10) 0000101100
44: :bit (3) 100

cast (-44 as bit(12)) 111111010100
'1110'::bit(4)::integer 14

Note that casting to just “bit” means castingto bi t (1) , and so will deliver only the least significant
bit of the integer.

Note

Casting an integer to bi t (n) copies the rightmost n bits. Casting an integer to a bit string
width wider than the integer itself will sign-extend on the | eft.

9.7. Pattern Matching

There are three separate approaches to pattern matching provided by PostgreSQL : the traditional SQL
LI KE operator, the more recent SI M LAR TO operator (added in SQL:1999), and POSIX-style
regular expressions. Aside from the basic “does this string match this pattern?’ operators, functions
are available to extract or replace matching substrings and to split a string at matching locations.

Tip

If you have pattern matching needs that go beyond this, consider writing a user-defined
function in Perl or Tcl.

Caution

While most regul ar-expression searches can be executed very quickly, regular expressions can
be contrived that take arbitrary amounts of time and memory to process. Be wary of accepting
regular-expression search patterns from hostile sources. If you must do so, it is advisable to
impose a statement timeout.

Searchesusing SI M LAR TO patterns have the same security hazards, since SI M LAR TO
provides many of the same capabilities as POS| X -style regular expressions.

LI KE searches, being much simpler than the other two options, are safer to use with possibly-
hostile pattern sources.

9.7.1. LI KE

string LIKE pattern [ESCAPE escape-character]
string NOT LIKE pattern [ESCAPE escape-character]

226

Functions and Operators

9.7.2.

The LI KE expression returns true if the st r i ng matches the supplied pat t er n. (As expected, the
NOT LI KE expression returns false if LI KE returns true, and vice versa. An equivalent expression
iSNOT (string LIKE pattern).)

If pat t er n does not contain percent signs or underscores, then the pattern only represents the string
itself; in that case LI KE acts like the equals operator. An underscore () in pat t er n stands for
(matches) any single character; a percent sign (%9 matches any sequence of zero or more characters.

Some examples:

"abc' LIKE 'abc’ true
"abc' LIKE 'a% true
"abc' LIKE' b’ true
"abc' LIKE 'c' fal se

LI KE pattern matching always covers the entire string. Therefore, if it's desired to match a sequence
anywhere within a string, the pattern must start and end with a percent sign.

To match a literal underscore or percent sign without matching other characters, the respective
character in pat t er n must be preceded by the escape character. The default escape character is
the backslash but a different one can be selected by using the ESCAPE clause. To match the escape
character itself, write two escape characters.

Note

If you have standard_conforming_stringsturned off, any backslashesyou writein literal string
constants will need to be doubled. See Section 4.1.2.1 for more information.

It's also possible to select no escape character by writing ESCAPE ' ' . This effectively disables
the escape mechanism, which makes it impossible to turn off the special meaning of underscore and
percent signsin the pattern.

The key word | LI KE can be used instead of LI KE to make the match case-insensitive according to
the active locale. Thisis not in the SQL standard but is a PostgreSQL extension.

The operator ~~ is equivalent to LI KE, and ~~* correspondsto | LI KE. Therearealso! ~~ and !
~~* operators that represent NOT LI KE and NOT | LI KE, respectively. All of these operators are
PostgreSQL -specific. Y ou may see these operator namesin EXPLAI Noutput and similar places, since
the parser actually translates L1 KE et al. to these operators.

The phrases LI KE, | LI KE, NOT LI KE, and NOT | LI KE are generally treated as operators in
PostgreSQL syntax; for example they can be used in expr essi on oper at or ANY (subquery)
constructs, although an ESCAPE clause cannot be included there. In some obscure cases it may be
necessary to use the underlying operator names instead.

Thereis aso the prefix operator * @and corresponding st art s_wi t h function which covers cases
when only searching by beginning of the string is needed.

SI M LAR TORegular Expressions

string SIMLAR TO pattern [ESCAPE escape-character]
string NOT SIMLAR TO pattern [ESCAPE escape-character]

The SI M LAR TOoperator returns true or false depending on whether its pattern matches the given
string. Itissimilar to LI KE, except that it interpretsthe pattern using the SQL standard's definition of a
regular expression. SQL regular expressions are a curious cross between L1 KE notation and common
regular expression notation.

227

Functions and Operators

9.7.3.

Like LI KE, the SI M LAR TO operator succeeds only if its pattern matches the entire string; thisis
unlike common regular expression behavior where the pattern can match any part of the string. Also
likeLl KE, SI M LAR TOuses__ and %as wildcard characters denoting any single character and any
string, respectively (these are comparableto. and . * in POSIX regular expressions).

In addition to these facilities borrowed from L1 KE, SI M LAR TO supports these pattern-matching
metacharacters borrowed from POSIX regular expressions:

* | denotes alternation (either of two aternatives).
» * denotes repetition of the previous item zero or more times.
» + denotes repetition of the previous item one or more times.

» ? denotes repetition of the previous item zero or onetime.

{n} denotes repetition of the previousitem exactly mtimes.
* {m } denotes repetition of the previous item mor more times.

* {m n} denotesrepetition of the previousitem at least mand not more than n times.

Parentheses () can be used to group itemsinto asingle logical item.
» A bracket expression|[. ..] specifiesacharacter class, just asin POSIX regular expressions.
Notice that the period (.) is not a metacharacter for SI M LAR TO.

Aswith LI KE, abackslash disables the special meaning of any of these metacharacters; or adifferent
escape character can be specified with ESCAPE.

Some examples:

"abc' SIMLAR TO ' abc’ true
abc' SIMLAR TO'a' fal se
"abc' SIMLAR TO '%b|d)% true
abc' SIMLAR TO ' (b|c)% fal se

The subst ri ng function with three parameters, substri ng(string from pattern for

escape- char act er) , provides extraction of a substring that matches an SQL regular expression
pattern. Aswith SI M LAR TO, the specified pattern must match the entire data string, or else the
function fails and returns null. To indicate the part of the pattern that should be returned on success,
the pattern must contain two occurrences of the escape character followed by adouble quote ("). The
text matching the portion of the pattern between these markersis returned.

Some examples, with #" delimiting the return string:

substring(' foobar' from' %" o _b#'% for '#') oob
substring(' foobar' from'#"'o_b#'% for '#') NULL

POSIX Regular Expressions

Table 9.14 lists the available operators for pattern matching using POSIX regular expressions.

Table 9.14. Regular Expression Match Operators

Operator Description Example

~ Matchesregular expression, case|' t honas' ~
sengitive ".*thonas. *'

228

Functions and Operators

Operator Description Example

~* Matchesregular expression, case|' t hormas' ~*
insensitive " . *Thomas. *'

I~ Does not match regular|' t homas' I~
expression, case sensitive ' . *Thonas. *'

I ~* Does not match regular|' t hormas' I ~*
expression, case insensitive ".*vadim*'

POSIX regular expressions provide a more powerful means for pattern matching than the LI KE and
SIM LAR TO operators. Many Unix tools such as egr ep, sed, or awk use a pattern matching
language that is similar to the one described here.

A regular expression is a character sequence that is an abbreviated definition of a set of strings (a
regular set). A string issaid to match aregular expressionif it isamember of the regular set described
by the regular expression. As with LI KE, pattern characters match string characters exactly unless
they are special charactersin the regular expression language — but regular expressions use different
special characters than LI KE does. Unlike LI KE patterns, aregular expression is allowed to match
anywhere within a string, unless the regular expression is explicitly anchored to the beginning or end
of the string.

Some examples:

"abc' ~ '"abc’ true
"abc' ~ '7a' true
"abc' ~ "(b|d)" true
"abc' ~ "~(blc)" false

The POSIX pattern language is described in much greater detail below.

The substri ng function with two parameters, substring(string from pattern),
provides extraction of a substring that matches a POSIX regular expression pattern. It returns null if
there is no match, otherwise the portion of the text that matched the pattern. But if the pattern contains
any parentheses, the portion of the text that matched the first parenthesized subexpression (the one
whose left parenthesis comesfirst) isreturned. Y ou can put parentheses around the whole expression
if you want to use parentheses within it without triggering this exception. If you need parenthesesin
the pattern before the subexpression you want to extract, see the non-capturing parentheses described
below.

Some examples:

substring(' foobar' from'o.b") oob
substring(' foobar' from'o(.)b") o]

The regexp_repl ace function provides substitution of new text for substrings that match
POSIX regular expression patterns. It has the syntax r egexp_r epl ace(sour ce, pattern,
repl acenent [, flags]). The sour ce string is returned unchanged if there is no match to
the pat t er n. If there is a match, the sour ce string is returned with the r epl acenment string
substituted for the matching substring. The r epl acenent string can contain \ n, where n is 1
through 9, to indicate that the source substring matching the n'th parenthesized subexpression of the
pattern should be inserted, and it can contain \ & to indicate that the substring matching the entire
pattern should be inserted. Write\ \ if you need to put aliteral backslash in the replacement text. The
f | ags parameter is an optional text string containing zero or more single-letter flags that change the
function's behavior. Flagi specifies case-insensitive matching, while flag g specifies replacement of
each matching substring rather than only the first one. Supported flags (though not g) are described
in Table 9.22.

Some examples:

229

Functions and Operators

regexp_repl ace(' foobarbaz', '"b..", 'X)
f ooXbaz
regexp_replace(' foobarbaz', 'b..", "X, 'g")
f ooXX

regexp_replace(' foobarbaz', "b(..)", "X\1Y', 'g')
f ooXar YXazY

Ther egexp_mat ch function returns a text array of captured substring(s) resulting from the first
match of a POSIX regular expression patternto astring. It hasthe syntax r egexp_mat ch(stri ng,
pattern[,fl ags]).!f thereisnomatch, theresultisNULL. If amatchisfound, andthepatt ern
contains no parenthesized subexpressions, then the result is a single-element text array containing the
substring matching the whole pattern. If a match is found, and the pat t er n contains parenthesized
subexpressions, then the result is a text array whose n'th element is the substring matching the n'th
parenthesized subexpression of the pat t er n (not counting “non-capturing” parentheses; see below
for details). Thef | ags parameter isan optional text string containing zero or more single-letter flags
that change the function's behavior. Supported flags are described in Table 9.22.

Some examples:

SELECT regexp_mat ch(' f oobar bequebaz', 'bar.*que');
regexp_mat ch

{ bar beque}
(1 row

SELECT regexp_mat ch(' f oobar bequebaz', ' (bar) (beque)');
regexp_mat ch
{bar, beque}

(1 row

In the common case where you just want the whole matching substring or NULL for no match, write
something like

SELECT (regexp_match('foobarbequebaz', 'bar.*que'))[1];
regexp_natch

bar beque

(1 row

Ther egexp_mat ches function returns a set of text arrays of captured substring(s) resulting from
matching a POSI X regular expression pattern to astring. It has the same syntax asr egexp_rat ch.
Thisfunction returnsno rowsif thereisno match, onerow if thereisamatch and theg flagisnot given,
or Nrowsif thereare Nmatches and the g flag isgiven. Each returned row isatext array containing the
whole matched substring or the substrings matching parenthesized subexpressions of the pat t er n,
just as described above for r egexp_mat ch. r egexp_nat ches accepts al the flags shown in
Table 9.22, plusthe g flag which commandsiit to return all matches, not just the first one.

Some examples:

SELECT regexp_matches('foo', 'not there');
regexp_mat ches

230

Functions and Operators

SELECT regexp_mat ches(' f oobar bequebazi | bar f bonk', ' (b[”b]+)
(b["b]+)", "g");
regexp_mat ches

{bar, beque}
{bazil, barf}
(2 rows)

Tip
In most cases r egexp_mat ches() should be used with the g flag, since if you only
want the first match, it's easier and more efficient to use r egexp_mat ch() . However,

regexp_mat ch() only exists in PostgreSQL version 10 and up. When working in older
versions, acommontrick istoplacear egexp_mat ches() call inasub-select, for example:

SELECT col 1, (SELECT regexp_matches(col 2, ' (bar)(beque)'))
FROM t ab;

This produces atext array if there'samatch, or NULL if not, the sameasr egexp_nat ch()
would do. Without the sub-select, this query would produce no output at al for table rows
without a match, which is typically not the desired behavior.

Theregexp_split _to_tabl e function splitsastring using aPOSIX regular expression pattern
asadelimiter. It hasthe syntax regexp_split _to table(string,pattern[,flags]).If
there is no match to the pat t er n, the function returns the st r i ng. If thereis at least one match,
for each match it returns the text from the end of the last match (or the beginning of the string) to
the beginning of the match. When there are no more matches, it returns the text from the end of the
last match to the end of the string. Thef | ags parameter is an optional text string containing zero or
more single-letter flags that change the function's behavior. r egexp_spl it _t o_t abl e supports
the flags described in Table 9.22.

Theregexp_split_to_array function behaves the sasme asregexp_split _to_tabl e,
except that regexp_split_to_array returnsitsresult as an array of t ext . It has the syntax
regexp_split _to_array(string,pattern[,flags]). Theparametersarethe sameasfor
regexp_split _to_table.

Some examples:

SELECT foo FROM regexp_split _to _table('the quick brown fox junps
over the lazy dog', '\s+') AS foo;
f oo

SELECT regexp_split_to_array('the quick brown fox junps over the
| azy dog', '\s+');

231

Functions and Operators

regexp_split_to_array
{t he, qui ck, br own, f ox, j unps, over, t he, | azy, dog}

(1 row

SELECT foo FROM regexp_split_to_table('the quick brown fox', "\s*")
AS f oo;

As the last example demonstrates, the regexp split functions ignore zero-length matches that occur
at the start or end of the string or immediately after a previous match. This is contrary to the strict
definition of regexp matching that isimplemented by r egexp_nat ch andr egexp_nat ches, but
is usualy the most convenient behavior in practice. Other software systems such as Perl use similar
definitions.

9.7.3.1. Regular Expression Detalils

PostgreSQL's regular expressions are implemented using a software package written by Henry
Spencer. Much of the description of regular expressions below is copied verbatim from his manual.

Regular expressions (RES), as defined in POSIX 1003.2, come in two forms. extended REs or ERES
(roughly those of egr ep), and basic REs or BREs (roughly those of ed). PostgreSQL supports both
forms, and also implements some extensions that are not in the POSIX standard, but have become
widely used due to their availability in programming languages such as Perl and Tcl. REs using these
non-POSIX extensions are called advanced REs or AREs in this documentation. ARES are amost an
exact superset of EREs, but BRES have several notational incompatibilities (as well as being much
more limited). We first describe the ARE and ERE forms, noting features that apply only to ARES,
and then describe how BREs differ.

Note

PostgreSQL aways initially presumes that a regular expression follows the ARE rules.
However, the more limited ERE or BRE rules can be chosen by prepending an embedded
option to the RE pattern, as described in Section 9.7.3.4. This can be useful for compatibility
with applications that expect exactly the POSIX 1003.2 rules.

A regular expression is defined as one or more branches, separated by | . It matches anything that
matches one of the branches.

232

Functions and Operators

A branch is zero or more quantified atoms or constraints, concatenated. It matches a match for the
first, followed by amatch for the second, etc; an empty branch matches the empty string.

A quantified atom isan atom possibly followed by asingle quantifier. Without aquantifier, it matches
amatch for the atom. With a quantifier, it can match some number of matches of the atom. An atom
can be any of the possibilities shown in Table 9.15. The possible quantifiers and their meanings are

shown in Table 9.16.

A constraint matches an empty string, but matches only when specific conditionsare met. A constraint
can be used where an atom could be used, except it cannot be followed by a quantifier. The simple
constraints are shown in Table 9.17; some more constraints are described later.

Table 9.15. Regular Expression Atoms

Atom

Description

(re)

(where r e is any regular expression) matches a
match for r e, with the match noted for possible

reporting

(?:re)

as above, but the match is not noted for reporting
(a “non-capturing” set of parentheses) (AREs

only)

matches any single character

[char s]

a bracket expression, matching any one of the
char s (see Section 9.7.3.2 for more detail)

\ k

(where k is a non-aphanumeric character)
matches that character taken as an ordinary
character, e.g.,\ \ matches a backslash character

\c

where ¢ is alphanumeric (possibly followed by
other characters) is an escape, see Section 9.7.3.3
(AREs only; in EREs and BREs, this matches c)

when followed by a character other than a digit,
matchestheleft-brace character { ; when followed
by a digit, it is the beginning of a bound (see
below)

where x is a single character with no other
significance, matches that character

An RE cannot end with abackslash (\).

Note

If you have standard_conforming_stringsturned off, any backslashesyou writein literal string
constants will need to be doubled. See Section 4.1.2.1 for more information.

Table 9.16. Regular Expression Quantifiers

Quantifier Matches

* a sequence of 0 or more matches of the atom
+ a sequence of 1 or more matches of the atom
? a sequence of 0 or 1 matches of the atom
{n} a sequence of exactly mmatches of the atom
{m} a sequence of mor more matches of the atom

233

Functions and Operators

Quantifier Matches

{m n} a sequence of mthrough n (inclusive) matches of
the atom; mcannot exceed n

*? non-greedy version of *

+7? non-greedy version of +

?7? non-greedy version of ?

{m?2 non-greedy version of { n}

{m}? non-greedy version of { m }

{mn}? non-greedy version of { m n}

Theformsusing {. . . } are known as bounds. The numbers mand n within a bound are unsigned
decimal integers with permissible values from 0 to 255 inclusive.

Non-greedy quantifiers (available in AREs only) match the same possibilities as their corresponding
normal (greedy) counterparts, but prefer the smallest number rather than thelargest number of matches.
See Section 9.7.3.5 for more detail.

Note

A quantifier cannot immediately follow another quantifier, e.g., ** isinvalid. A quantifier
cannot begin an expression or subexpression or follow ” or | .

Table 9.17. Regular Expression Constraints

Constraint Description

" matches at the beginning of the string

$ matches at the end of the string

(?=re) positive lookahead matches at any point where a

substring matching r e begins (AREs only)

(?'re) negativelookahead matchesat any point whereno
substring matching r e begins (AREs only)

(?<=re) positive lookbehind matches at any point where a
substring matching r e ends (AREs only)

(?<lre) negative lookbehind matches at any point where
no substring matching r e ends (AREs only)

Lookahead and lookbehind constraints cannot contain back references (see Section 9.7.3.3), and all
parentheses within them are considered non-capturing.

9.7.3.2. Bracket Expressions

A bracket expression is alist of charactersenclosed in [] . It normally matches any single character
from the list (but see below). If the list begins with ~, it matches any single character not from the
rest of the list. If two characters in the list are separated by -, this is shorthand for the full range of
characters between those two (inclusive) in the collating sequence, e.g., [0- 9] in ASCII matchesany
decimal digit. Itisillegal for two rangesto share an endpoint, e.g., a- ¢- €. Ranges are very collating-
sequence-dependent, so portable programs should avoid relying on them.

To include a literal] in the list, make it the first character (after », if that is used). To include a
literal -, make it the first or last character, or the second endpoint of a range. To use aliteral - as
the first endpoint of arange, encloseitin[. and .] to make it a collating element (see below).
With the exception of these characters, some combinationsusing [(see next paragraphs), and escapes

234

Functions and Operators

(AREs only), al other special characters lose their special significance within a bracket expression.
In particular, \ is not specia when following ERE or BRE rules, though it is special (as introducing
an escape) in AREs.

Within a bracket expression, a collating element (a character, a multiple-character sequence that
collates as if it were a single character, or a collating-sequence name for either) enclosed in [.
and .] stands for the sequence of characters of that collating element. The sequence is treated as a
single element of the bracket expression'slist. This allows a bracket expression containing a multiple-
character collating element to match more than one character, e.g., if the collating sequence includes
ach collating element, thenthe RE[[. ch.]] * ¢ matchesthefirst five characters of chchcc.

Note

PostgreSQL currently does not support multi-character collating el ements. This information
describes possible future behavior.

Within a bracket expression, a collating element enclosed in [= and =] is an equivalence class,
standing for the sequences of characters of all collating elements equivalent to that one, including
itself. (If there are no other equivalent collating elements, thetreatment isasif the enclosing delimiters
were[. and.].) For example, if 0 and * are the members of an equivalence class, then[[=0=]],
[[="=]],and[0"] areal synonymous. An equivalence class cannot be an endpoint of arange.

Within a bracket expression, the name of acharacter classenclosedin[: and:] standsfor thelist of
all characters belonging to that class. Standard character class names are: al num al pha, bl ank,
cntrl,digit,graph,lower,print,punct,space, upper, xdi gi t. These stand for the
character classes defined in ctype. A locale can provide others. A character class cannot be used as
an endpoint of arange.

There are two special cases of bracket expressions: the bracket expressions[[: <:]] and[[: >:1]]
are constraints, matching empty strings at the beginning and end of a word respectively. A word is
defined as a sequence of word charactersthat is neither preceded nor followed by word characters. A
word character is an al numcharacter (as defined by ctype) or an underscore. Thisis an extension,
compatible with but not specified by POSIX 1003.2, and should be used with caution in software
intended to be portableto other systems. The constraint escapes described below are usually preferable;
they are no more standard, but are easier to type.

9.7.3.3. Regular Expression Escapes

Escapesare special sequencesbeginningwith\ followed by an alphanumeric character. Escapescome
in several varieties: character entry, class shorthands, constraint escapes, and back references. A \
followed by an a phanumeric character but not constituting avalid escapeisillegal in AREs. In EREs,
there are no escapes: outside a bracket expression, a\ followed by an alphanumeric character merely
stands for that character as an ordinary character, and inside a bracket expression, \ is an ordinary
character. (The latter is the one actual incompatibility between EREs and ARES.)

Character-entry escapes exist to make it easier to specify non-printing and other inconvenient
charactersin REs. They are shown in Table 9.18.

Class-shorthand escapes provide shorthands for certain commonly-used character classes. They are
shown in Table 9.19.

A constraint escape is a constraint, matching the empty string if specific conditions are met, written
as an escape. They are shown in Table 9.20.

A back reference (\ n) matches the same string matched by the previous parenthesi zed subexpression
specified by the number n (see Table 9.21). For example, ([bc])\ 1 matches bb or cc but not
bc or cb. The subexpression must entirely precede the back reference in the RE. Subexpressions
are numbered in the order of their leading parentheses. Non-capturing parentheses do not define
subexpressions.

235

Functions and Operators

Table 9.18. Regular Expression Character-entry Escapes

Escape Description

\a aert (bell) character, asin C

\b backspace, asin C

\B synonym for backslash (\) to help reduce the need
for backslash doubling

\cX (where X is any character) the character whose
low-order 5 bits are the same as those of X, and
whose other bitsare al zero

\e the character whose collating-sequence name is
ESC, or failing that, the character with octal value
033

\ f form feed, asin C

\n newline, asin C

\r carriage return, asin C

\ 't horizontal tab, asin C

\ uwxyz (where wxyz is exactly four hexadecimal
digits) the character whose hexadecimal value is
Oxwxyz

\ Ust uvwxyz (where st uvwxyz is exactly eight hexadecimal
digits) the character whose hexadecimal value is
Oxst uvwxyz

\v vertical tab, asin C

\ xhhh (where hhh is any sequence of hexadecimal
digits) the character whose hexadecimal value is
Oxhhh (a single character no matter how many
hexadecimal digits are used)

\0 the character whose valueis O (the null byte)

\ xy (where xy is exactly two octal digits, and is not
aback reference) the character whose octal value
isOxy

\ xyz (wherexyz isexactly three octal digits, and isnot
aback reference) the character whose octal value
isOxyz

Hexadecimal digitsare 0-9, a-f , and A-F. Octal digitsare 0-7.

Numeric character-entry escapes specifying values outside the ASCII range (0-127) have meanings
dependent on the database encoding. When the encoding is UTF-8, escape values are equivaent
to Unicode code points, for example \ u1234 means the character U+1234. For other multibyte
encodings, character-entry escapes usually just specify the concatenation of the byte values for the
character. If the escape value does not correspond to any legal character in the database encoding, no
error will beraised, but it will never match any data.

Thecharacter-entry escapes are dwaystaken asordinary characters. For example,\ 135is] inASCII,
but\ 135 does not terminate a bracket expression.

Table 9.19. Regular Expression Class-shorthand Escapes

Escape Description
\d [[:digit:]]

236

Functions and Operators

Escape Description

\'s [[:space:]]

\'w [[:al num] _] (noteunderscoreisincluded)
\D [AM:digit:]]

\'S [*[:space:]]

\'W [~ :al num] _] (noteunderscoreisincluded)

Within bracket expressions, \ d, \'s, and \ w lose their outer brackets, and \ D, \' S, and \ Ware
illegal. (So, for example, [a- c\ d] isequivalentto[a-c[:digit:]].Also, [a-c\D],whichis
equivaentto[a-c”[:digit:]],isillega.)

Table 9.20. Regular Expression Constraint Escapes

Escape

Description

\A

matches only at the beginning of the string (see
Section 9.7.3.5 for how this differsfrom ")

\'m

matches only at the beginning of aword

\M

matches only at the end of aword

\y

matches only at the beginning or end of aword

\'Y

matches only at a point that is not the beginning
or end of aword

\Z

matches only at the end of the string (see
Section 9.7.3.5 for how this differs from $)

A word is defined as in the specificationof [[: <:]] and[[: >:]] above. Constraint escapes are
illegal within bracket expressions.

Table 9.21. Regular Expression Back References

Escape Description

\'m

(where mis a nonzero digit) a back reference to
the mith subexpression

\' mn

(where mis a nonzero digit, and nn is some
more digits, and the decimal value mn is not
greater than the number of closing capturing
parentheses seen so far) a back reference to the
mmn'th subexpression

Note

There is an inherent ambiguity between octal character-entry escapes and back references,
which is resolved by the following heuristics, as hinted at above. A leading zero always
indicates an octal escape. A single non-zero digit, not followed by another digit, is always
taken as a back reference. A multi-digit sequence not starting with a zero is taken as a back
reference if it comes after a suitable subexpression (i.e., the number isin the legal range for
aback reference), and otherwise is taken as octal.

9.7.3.4. Regular Expression Metasyntax

In addition to the main syntax described above, there are some special forms and miscellaneous
syntactic facilities available.

237

Functions and Operators

An RE can begin with one of two special director prefixes. If an RE begins with *** ;| the rest of
the RE istaken asan ARE. (This normally has no effect in PostgreSQL., since RES are assumed to be
ARES; but it does have an effect if ERE or BRE mode had been specified by the f | ags parameter
to aregex function.) If an RE beginswith * * * =, the rest of the RE istaken to be aliteral string, with
all characters considered ordinary characters.

An ARE can begin with embedded options. asequence (?xyz) (wherexyz isoneor more alphabetic
characters) specifies options affecting the rest of the RE. These options override any previously
determined options— in particular, they can override the case-sensitivity behavior implied by aregex
operator, or the f | ags parameter to a regex function. The available option letters are shown in
Table 9.22. Note that these same option letters are used in the f | ags parameters of regex functions.

Table9.22. ARE Embedded-option Letters

Option Description

b rest of REisaBRE

c case-sensitive matching (overrides operator type)

e rest of RE isan ERE

i case-insensitive matching (see Section 9.7.3.5)
(overrides operator type)

m historical synonym for n

n newline-sensitive matching (see Section 9.7.3.5)

p partial newline-sensitive matching (see
Section 9.7.3.5)

q rest of RE isaliteral (“quoted”) string, al ordinary
characters

S non-newline-sensitive matching (default)

t tight syntax (default; see below)

w inverse partiadl newline-sensitive (“weird”)
matching (see Section 9.7.3.5)

X expanded syntax (see below)

Embedded options take effect at the) terminating the sequence. They can appear only at the start of
an ARE (after the***: director if any).

In addition to the usual (tight) RE syntax, in which all characters are significant, there is an expanded
syntax, available by specifying the embedded x option. Inthe expanded syntax, white-space characters
in the RE are ignored, as are all characters between a# and the following newline (or the end of the
RE). This permits paragraphing and commenting a complex RE. There are three exceptions to that
basic rule:

» awhite-space character or # preceded by \ isretained
 white space or # within a bracket expression is retained
 white space and comments cannot appear within multi-character symbols, such as (?:

For this purpose, white-space characters are blank, tab, newline, and any character that belongs to the
space character class.

Finally, in an ARE, outside bracket expressions, the sequence (?#t tt) (wherettt isany text not
containinga)) isacomment, completely ignored. Again, thisis not allowed between the characters of
multi-character symbols, like (?: . Such comments are more ahistorical artifact than auseful facility,
and their use is deprecated; use the expanded syntax instead.

238

Functions and Operators

None of these metasyntax extensionsisavailableif aninitial * * * = director has specified that the user's
input be treated as a literal string rather than as an RE.

9.7.3.5. Regular Expression Matching Rules

In the event that an RE could match more than one substring of a given string, the RE matches the
one starting earliest in the string. If the RE could match more than one substring starting at that point,
either the longest possible match or the shortest possible match will be taken, depending on whether
the RE is greedy or non-greedy.

Whether an RE is greedy or not is determined by the following rules:

* Most atoms, and all constraints, have no greediness attribute (because they cannot match variable
amounts of text anyway).

» Adding parentheses around an RE does not change its greediness.

e A quantified atom with a fixed-repetition quantifier ({n} or {n} ?) has the same greediness
(possibly none) as the atom itself.

» A quantified atom with other normal quantifiers (including { m n} with mequa to n) is greedy
(prefers longest match).

* A quantified atom with anon-greedy quantifier (including{ m n} ? with mequal to n) isnon-greedy
(prefers shortest match).

» A branch — that is, an RE that has no top-level | operator — has the same greediness as the first
quantified atom in it that has a greediness attribute.

» An RE consisting of two or more branches connected by the | operator is always greedy.

The above rules associate greediness attributes not only with individual quantified atoms, but with
branches and entire REs that contain quantified atoms. What that means is that the matching is done
in such a way that the branch, or whole RE, matches the longest or shortest possible substring as a
whole. Once the length of the entire match is determined, the part of it that matches any particular
subexpression is determined on the basis of the greediness attribute of that subexpression, with
subexpressions starting earlier in the RE taking priority over ones starting later.

An example of what this means:

SELECT SUBSTRI NG(' XY1234Z', 'Y*([0-9]{1,3})"');

Result: 123
SELECT SUBSTRI NG(' XY1234Z', 'Y*?([0-9]{1,3})");
Result: 1

In the first case, the RE as awhole is greedy because Y* is greedy. It can match beginning at the Y,
and it matches the longest possible string starting there, i.e., Y123. The output is the parenthesized
part of that, or 123. In the second case, the RE as awhole is non-greedy because Y* ? is non-greedy.
It can match beginning at the Y, and it matches the shortest possible string starting there, i.e., Y1.
The subexpression[0- 9] { 1, 3} isgreedy but it cannot change the decision as to the overall match
length; so it isforced to match just 1.

In short, when an RE contains both greedy and non-greedy subexpressions, the total match length is
either as long as possible or as short as possible, according to the attribute assigned to the whole RE.
The attributes assigned to the subexpressions only affect how much of that match they are allowed
to “eat” relative to each other.

The quantifiers{ 1, 1} and{ 1, 1} ? can be used to force greediness or non-greediness, respectively,
on a subexpression or awhole RE. Thisis useful when you need the whole RE to have a greediness
attribute different from what's deduced from its elements. As an example, suppose that we are trying
to separate a string containing some digitsinto the digits and the parts before and after them. We might
try to do that like this:

239

Functions and Operators

SELECT regexp_mat ch(' abc01234xyz', ' (.*)(\d+)(.*)");
Resul t: {abc0123, 4, xyz}

That didn't work: thefirst . * isgreedy so it “eats’ as much asit can, leaving the\ d+ to match at the
last possible place, the last digit. We might try to fix that by making it non-greedy:

SELECT regexp_mat ch(' abc01234xyz', '(.*?)(\d+)(.*)");
Result: {abc,0,""}

That didn't work either, because now the RE asawholeis non-greedy and so it ends the overall match
as soon as possible. We can get what we want by forcing the RE as a whole to be greedy:

SELECT regexp_match('abc01234xyz', ' (?2:(.*?2)(\d+)(.*)){1,1}");
Resul t: {abc, 01234, xyz}

Controlling the RE's overall greediness separately from its components greediness allows great
flexibility in handling variable-length patterns.

When deciding what is a longer or shorter match, match lengths are measured in characters, not
collating elements. An empty string is considered longer than no match at al. For example: bb*
matches the three middle characters of abbbc; (week]| wee) (ni ght | kni ght s) matchesall ten
charactersof weekni ght s;when (. *) . * ismatched against abc the parenthesized subexpression
matches all three characters;, and when (a*) * is matched against bc both the whole RE and the
parenthesized subexpression match an empty string.

If case-independent matching is specified, the effect is much as if al case distinctions had vanished
from the alphabet. When an alphabetic that exists in multiple cases appears as an ordinary character
outside a bracket expression, it is effectively transformed into a bracket expression containing both
cases, e.g., X becomes|[xX] . When it appears inside a bracket expression, all case counterparts of it
are added to the bracket expression, e.g., [Xx] becomes[xX] and [*x] becomes|[*xX] .

If newline-sensitive matching is specified, . and bracket expressions using * will never match the
newline character (so that matches will never cross newlines unless the RE explicitly arrangesit) and
~ and $ will match the empty string after and before anewline respectively, in addition to matching at
beginning and end of string respectively. But the ARE escapes\ Aand\ Z continueto match beginning
or end of string only.

If partial newline-sensitive matching is specified, this affects . and bracket expressions as with
newline-sensitive matching, but not ~ and $.

If inverse partial newline-sensitive matching is specified, thisaffects” and $ aswith newline-sensitive
matching, but not . and bracket expressions. Thisisn't very useful but is provided for symmetry.

9.7.3.6. Limits and Compatibility

No particular limit is imposed on the length of REs in this implementation. However, programs
intended to be highly portable should not employ REs longer than 256 bytes, as a POSI X -compliant
implementation can refuse to accept such REs.

The only feature of AREs that is actually incompatible with POSIX EREsisthat \ does not lose its
specia significance inside bracket expressions. All other ARE features use syntax which isillegal or
has undefined or unspecified effectsin POSIX EREs; the * * * syntax of directors likewise is outside
the POSIX syntax for both BREs and EREs.

Many of the ARE extensions are borrowed from Perl, but some have been changed to clean them
up, and a few Perl extensions are not present. Incompatibilities of note include \ b, \ B, the lack
of special treatment for atrailing newline, the addition of complemented bracket expressions to the
things affected by newline-sensitive matching, the restrictions on parentheses and back referencesin

240

Functions and Operators

lookahead/l ookbehind constraints, and the longest/shortest-match (rather than first-match) matching
semantics.

Two significant incompatibilities exist between AREs and the ERE syntax recognized by pre-7.4
releases of PostgreSQL :

* INAREs,\ followed by an aphanumeric character is either an escape or an error, whilein previous
releases, it wasjust another way of writing the alphanumeric. This should not be much of aproblem
because there was no reason to write such a sequence in earlier releases.

* In AREs,\ remains a special character within[], so aliteral \ within a bracket expression must
bewritten\ \ .

9.7.3.7. Basic Regular Expressions

BREs differ from ERESs in several respects. In BREs, | , +, and ? are ordinary characters and there
is no equivalent for their functionality. The delimiters for bounds are\ { and\ }, with{ and } by
themselves ordinary characters. The parentheses for nested subexpressionsare\ (and\) , with (and
) by themselves ordinary characters. * is an ordinary character except at the beginning of the RE or
the beginning of a parenthesized subexpression, $ is an ordinary character except at the end of the
RE or the end of a parenthesized subexpression, and * is an ordinary character if it appears at the
beginning of the RE or the beginning of a parenthesized subexpression (after a possible leading).
Finally, single-digit back references are available, and \ < and \ > are synonymsfor [[: <:]] and
[[:>:]] respectively; no other escapes are available in BREs.

9.8. Data Type Formatting Functions

The PostgreSQL formatting functions provide a powerful set of toolsfor converting various datatypes
(date/time, integer, floating point, numeric) to formatted strings and for converting from formatted
strings to specific data types. Table 9.23 lists them. These functions all follow a common calling
convention: the first argument is the value to be formatted and the second argument is atemplate that
defines the output or input format.

Table 9.23. Formatting Functions

Function Return Type Description Example
t ext convert time stamp to|t o_char (current _ti mest anp,
to_char (ti mest anp, string "HH12: M : SS')
text)
to_char (interval |t ext convertinterval tostring|t o_char (i nt erval
text) "15h 2m 12s',
' HH24: M : SS')

to_char (int, t ext convert integer to string |t o_char (125,
text) '999')
to_char (doubl e |text convert real/double|t o_char (125. 8: : r e¢al ,
precision, text) precision to string ' 999D9')
to_char (nureric, |text convert numeric to|to_char(-125. 8,
text) string ' 999DQ9S')

to_date(text, |date convert stringtodate |t o_dat e(' 0BO00' ,
text) "DD Mon YYYY')

to_nunber (text, [nuneric convert string to|t o_nunber (' 12, 454. 8-"',
text) numeric ' 99@P99D9S')
ti mestanp Wi t h|convert string to time|t o_ti nmest a@ARaD5

to_timestanp(texttinme zone stamp "DD Mon YYYY')
text)

241

Functions and Operators

Note

Thereisaso asingle-argumentt o_t i mest anp function; see Table 9.30.

Tip

to_timestanp andto_dat e exist to handle input formats that cannot be converted by
simple casting. For most standard date/time formats, simply casting the source string to the
required data type works, and is much easier. Similarly, t o_nunber is unnecessary for
standard numeric representations.

Inat o_char output template string, there are certain patterns that are recognized and replaced with
appropriatel y-formatted data based on the given value. Any text that is not atemplate patternissimply
copied verbatim. Similarly, in an input template string (for the other functions), template patterns
identify the valuesto be supplied by the input data string. If there are charactersin the template string
that are not templ ate patterns, the corresponding characters in the input data string are smply skipped

over (whether or not they are equal to the template string characters).

Table 9.24 shows the template patterns available for formatting date and time values.

Table 9.24. Template Patternsfor Date/Time Formatting

Pattern Description

HH hour of day (01-12)

HH12 hour of day (01-12)

HH24 hour of day (00-23)

M minute (00-59)

SS second (00-59)

VB millisecond (000-999)

us microsecond (000000-999999)
SSSS seconds past midnight (0-86399)

AM am PMor pm

meridiem indicator (without periods)

A M,a.m,P.Morp.m

meridiem indicator (with periods)

Y, YYY year (4 or more digits) with comma

YYYY year (4 or more digits)

YYY last 3 digits of year

YY last 2 digits of year

Y last digit of year

I YYY 1 SO 8601 week-numbering year (4 or moredigits)
I YY last 3 digits of 1SO 8601 week-numbering year
Y last 2 digits of 1SO 8601 week-numbering year

I last digit of 1SO 8601 week-numbering year

BC, bc, ADor ad eraindicator (without periods)

B.C.,b.c.,A D ora.d. eraindicator (with periods)

MONTH full upper case month name (blank-padded to 9

chars)

242

Functions and Operators

Pattern Description

Mont h full capitalized month name (blank-padded to 9
chars)

nmont h full lower case month name (blank-padded to 9
chars)

MON abbreviated upper case month name (3 chars in
English, localized lengths vary)

Mon abbreviated capitalized month name (3 chars in
English, localized lengths vary)

non abbreviated lower case month name (3 chars in
English, localized lengths vary)

WM month number (01-12)

DAY full upper case day name (blank-padded to 9
chars)

Day full capitalized day name (blank-padded to 9
chars)

day full lower case day name (blank-padded to 9
chars)

DY abbreviated upper case day name (3 chars in
English, localized lengths vary)

Dy abbreviated capitalized day name (3 chars in
English, localized lengths vary)

dy abbreviated lower case day name (3 chars in
English, localized lengths vary)

DDD day of year (001-366)

| DDD day of 1SO 8601 week-numbering year (001-371,;
day 1 of theyear isMonday of thefirst SO week)

DD day of month (01-31)

D day of the week, Sunday (1) to Saturday (7)

I D SO 8601 day of theweek, Monday (1) to Sunday
(7)

w week of month (1-5) (the first week starts on the
first day of the month)

WV week number of year (1-53) (the first week starts
on thefirst day of the year)

W week number of 1SO 8601 week-numbering year
(01-53; thefirst Thursday of theyear isin week 1)

CcC century (2 digits) (the twenty-first century starts
on 2001-01-01)

J Julian Date (integer days since November 24,
4714 BC at local midnight; see Section B.7)

Q quarter

RM month in upper case Roman numerals (I-XII;
I=January)

rm month in lower case Roman numerals (i-xii;
i=January)

TZ upper case time-zone abbreviation (only

supportedint o_char)

243

Functions and Operators

Pattern Description

tz lower case time-zone abbreviation (only
supportedint o_char)

TZH time-zone hours

TZM time-zone minutes

OF time-zone offset from UTC (only supported in
to_char)

Modifiers can be applied to any template pattern to alter its behavior. For example, FMvont h isthe
Mont h pattern with the FMmodifier. Table 9.25 shows the modifier patternsfor date/time formatting.

Table 9.25. Template Pattern Modifiersfor Date/Time Formatting

M odifier Description Example
FMprefix fill mode (suppress leading|FMvbnt h
zeroes and padding blanks)
TH suffix upper case ordinal number suffix| DDTH, e.g., 12TH
t h suffix lower case ordinal number suffix| DDt h, e.g., 12t h
FX prefix fixed format global option (see|FX Mont h DD Day
usage notes)
TMprefix translation mode (print localized| TMvVbnt h
day and month names based on
Ic_time)
SP suffix spell mode (not implemented) | DDSP

Usage notes for date/time formatting:

FMsuppresses leading zeroes and trailing blanks that would otherwise be added to make the output
of apattern be fixed-width. In PostgreSQL, FMmaodifies only the next specification, whilein Oracle
FMaffects all subsequent specifications, and repeated FMmodifiers toggle fill mode on and off.

TMdoes not include trailing blanks. t o_t i mest anp andt o_dat e ignore the TMmodifier.

to_timestanp and t o_dat e skip multiple blank spaces in the input string unless the FX
option is used. For example, t o_t i mest anp(' 2000 JUN , "YYYY MON) works,
but to_timestanp(' 2000 JUN , " FXYYYY MON) returns an error because
to_ti mest anp expects one space only. FX must be specified as the first item in the template.

Ordinary textisalowedint o_char templatesand will be output literally. Y ou can put asubstring
in double quotes to force it to be interpreted as literal text even if it contains template patterns. For
example,in' "Hel 1 o Year "YYYY',theYYYY will bereplaced by the year data, but the single
YinYear will notbe. Int o_dat e,t o_nunber,andt o_ti mest anp, literal text and double-
quoted stringsresult in skipping the number of characters contained in the string; for example™ XX"

skips two input characters (whether or not they are XX).

If you want to have a double quote in the output you must precede it with a backslash, for example
"\"YYYY Mont h\"' . Backsashes are not otherwise special outside of double-quoted strings.
Within a double-quoted string, a backslash causes the next character to be taken literally, whatever
itis (but this has no special effect unless the next character is a double quote or another backslash).

Into_timestanp andto_dat e, if the year format specification is less than four digits, e.g.,
YYY, and the supplied year isless than four digits, the year will be adjusted to be nearest to the year
2020, e.g., 95 becomes 1995.

Into_tinestanpandto_dat e, negative years are treated as signifying BC. If you write both
anegative year and an explicit BCfield, you get AD again. Aninput of year zeroistreated as 1 BC.

244

Functions and Operators

e Into_tinmestanp and t o_dat e, the YYYY conversion has a restriction when processing
years with more than 4 digits. You must use some non-digit character or template after YYYY,
otherwise the year is aways interpreted as 4 digits. For example (with the year 20000):
to_date('200001131', ' YYYYMVDD) will be interpreted as a 4-digit year; instead use
a non-digit separator after the year, like t o_dat e(' 20000- 1131', ' YYYY-MVDD) or
t o_dat e(' 20000Nov31l', ' YYYYMonDD).

* Into_tinmestanp andt o_dat e, the CC (century) field is accepted but ignored if there is a
YYY, YYYY or Y, YYY field. If CCis used with YY or Y then the result is computed as that year
in the specified century. If the century is specified but the year is not, the first year of the century
is assumed.

* Into_tinmestanpandt o_dat e, weekday names or numbers (DAY, D, and related field types)
are accepted but are ignored for purposes of computing the result. The same is true for quarter (Q
fields.

e Into_tinestanp and to_dat e, an I1SO 8601 week-numbering date (as distinct from a
Gregorian date) can be specified in one of two ways:

e Year, week number, and weekday: for examplet o_dat e(' 2006-42-4', "1YYY-IW
I D) returnsthe date 2006- 10- 19. If you omit the weekday it is assumed to be 1 (Monday).

e Year and day of year: for examplet o_dat e(' 2006-291', '1YYY-1DDD) also returns
2006- 10-19.

Attempting to enter a date using a mixture of SO 8601 week-numbering fields and Gregorian date
fieldsis nonsensical, and will cause an error. In the context of an SO 8601 week-numbering year,
the concept of a “month” or “day of month” has no meaning. In the context of a Gregorian year,
the 1SO week has no meaning.

Caution

Whilet o_dat e will reject a mixture of Gregorian and | SO week-numbering date fields,
t o_char will not, since output format specificationslike YYYY- MM DD (| YYY- | DDD)

can be useful. But avoid writing something like | YYY- MM DD; that would yield surprising
results near the start of the year. (See Section 9.9.1 for more information.)

e Into_tinmestanp, millisecond (M5) or microsecond (US) fields are used as the seconds
digits after the decimal point. For exampleto_tinestanp('12.3', 'SS.M5') isnot 3
milliseconds, but 300, because the conversion treats it as 12 + 0.3 seconds. So, for the format
SS. M5, the input values 12. 3, 12. 30, and 12. 300 specify the same number of milliseconds.
To get three milliseconds, one must write 12. 003, which the conversion treats as 12 + 0.003 =
12.003 seconds.

Here is a more complex example: to_tinestanp('15:12:02.020.001230',
"HH24: M : SS. M5. US') is 15 hours, 12 minutes, and 2 seconds + 20 milliseconds + 1230
microseconds = 2.021230 seconds.

eto char(..., 'ID)'s day of the week numbering matches the extract (i sodow
from ...) function, but to_char(..., "D)'s does not match extract (dow
from ...)'sday numbering.

e to_char(interval) formats HH and HH12 as shown on a 12-hour clock, for example zero
hours and 36 hours both output as 12, while HH24 outputs the full hour value, which can exceed
23inani nterval vaue

Table 9.26 shows the template patterns available for formatting numeric values.

245

Functions and Operators

Table 9.26. Template Patternsfor Numeric For matting

Pattern Description

9 digit position (can be dropped if insignificant)

0 digit position (will not be dropped, even if
insignificant)

. (period) decimal point

, (comma) group (thousands) separator

PR negative value in angle brackets

S sign anchored to number (uses locale)

L currency symbol (useslocal€)

D decimal point (uses local€)

G group separator (uses locale)

M minus sign in specified position (if number < 0)

PL plus sign in specified position (if number > 0)

SG plus/minus sign in specified position

RN Roman numeral (input between 1 and 3999)

THorth ordinal number suffix

\% shift specified number of digits (see notes)

EEEE exponent for scientific notation

Usage notes for numeric formatting:

» 0 specifiesadigit position that will always be printed, even if it contains aleading/trailing zero. 9
also specifies adigit position, but if it is aleading zero then it will be replaced by a space, while
if itisatrailing zero and fill mode is specified then it will be deleted. (For t o_nunber (), these
two pattern characters are equivalent.)

» The pattern characters S, L, D, and G represent the sign, currency symbol, decimal point, and
thousands separator characters defined by the current locale (seelc_monetary and Ic_numeric). The
pattern characters period and commarepresent those exact characters, with the meanings of decimal
point and thousands separator, regardless of locale.

« If no explicit provision is made for asignint o_char () 's pattern, one column will be reserved
for thesign, and it will be anchored to (appear just left of) the number. If S appearsjust |eft of some
9's, it will likewise be anchored to the number.

» Asignformatted using SG, PL, or M isnot anchored to the number; for example,t o_char (- 12,
"M 9999') produces' - 12' butto_char(-12, 'S9999') produces' -12'.(The
Oracleimplementation does not allow theuse of M before 9, but rather requiresthat 9 precedeM .)

» THdoes not convert values less than zero and does not convert fractional numbers.
» PL, SG and TH are PostgreSQL extensions.

e Int o_nunber, if non-datatemplate patterns such as L or TH are used, the corresponding number
of input characters are skipped, whether or not they match the template pattern, unlessthey are data
characters (that is, digits, sign, decimal point, or comma). For example, TH would skip two non-
data characters.

e Vwitht o_char multiplies the input values by 10" n, where n is the number of digits following
V.V witht o_nunber dividesin asimilar manner.t o_char andt o_nunber do not support
the use of V combined with adecimal point (e.g., 99. 9V99 isnot allowed).

246

Functions and Operators

» EEEE (scientific notation) cannot be used in combination with any of the other formatting patterns
or modifiers other than digit and decimal point patterns, and must be at the end of the format string
(eg., 9. 99EEEE isavalid pattern).

Certain modifiers can be applied to any template pattern to alter its behavior. For example, FVMB9. 99
is the 99. 99 pattern with the FM modifier. Table 9.27 shows the modifier patterns for numeric

formatting.

Table 9.27. Template Pattern M odifiersfor Numeric Formatting

M odifier Description Example

FMprefix fill mode (suppress trailing|FMB9. 99
zeroes and padding blanks)

TH suffix upper case ordinal number suffix| 999TH

t h suffix lower case ordinal number suffix| 999t h

Table 9.28 shows some examples of the use of thet o_char function.

Table9.28.t o_char Examples

Expression Result
to_char (current _timestanp, ' Tuesday , 06 05:39:18
'Day, DD HH12:M:SS')

to_char (current _tinmestanp, ' Tuesday, 6 05:39:18'
' FMDay, FMDD HH12: M : SS')

to_char(-0.1, '99.99") Y- 10

to char(-0.1, 'FM.99") I

to _char(-0.1, 'FMB0.99") '-0.1
to_char(0.1, '0.9") 0.1
to_char (12, '9990999.9") 0012. 0
to_char (12, 'FWMP990999.9') '0012."
to_char (485, '999') ' 485’
to_char(-485, '999") ' -485'
to_char (485, '9 9 9') 4 8 5
to_char (1485, '9,999') 1, 485’
to_char (1485, '9@99') " 1 485
to_char(148.5, '999.999") 148. 500'
to_char(148.5, 'FWM99.999") '148. 5'
to_char(148.5, 'FMP99.990") ' 148. 500
to_char(148.5, '999D999') ' 148, 500
to_char (3148.5, '9@99D999') 3 148, 500'
to_char (-485, '999S") ' 485-"
to_char(-485, '999M ") ' 485-"
to_char (485, '999M ") ' 485
to_char (485, ' FMB99M ') ' 485
to_char (485, 'PL999') ' +485'
to_char (485, 'S@99') ' +485'
to_char (-485, 'S&99') ' -485'

247

Functions and Operators

Expression Result

to_char (-485, '9S®9') ' 4- 85
to_char(-485, '999PR) ' <485>'

to_char (485, 'L999') ' DM 485’

to_char (485, 'RN) ' CDLXXXV'
to_char (485, 'FMRN) " CDLXXXV'
to_char (5.2, 'FMRN) 'V

to_char (482, '999th") ' 482nd'

to_char (485, '"Good nunber:"999') |' Good numnber: 485
to_char (485. 8, "Pre: 485 Post: . 800
""Pre:"999" Post:" .999")

to_char (12, '99Vv999') ' 12000

to _char(12.4, '99Vv999') ' 12400

to_char (12.45, '99V9') ' 125

to_char (0. 0004859, '9.99EEEE') ' 4. 86e-04'

9.9. Date/Time Functions and Operators

Table 9.30 shows the available functions for date/time value processing, with details appearing in
the following subsections. Table 9.29 illustrates the behaviors of the basic arithmetic operators (+,
* | etc.). For formatting functions, refer to Section 9.8. Y ou should be familiar with the background
information on date/time data types from Section 8.5.

In addition, the usual comparison operators shown in Table 9.1 are available for the date/time types.
Dates and timestamps (with or without time zone) are all comparable, while times (with or without
time zone) and interval s can only be compared to other values of the same datatype. When comparing
a timestamp without time zone to a timestamp with time zone, the former value is assumed to be
given in the time zone specified by the TimeZone configuration parameter, and is rotated to UTC for
comparison to the latter value (whichisalready in UTC internally). Similarly, adate value is assumed
to represent midnight in the Ti meZone zone when comparing it to a timestamp.

All the functions and operators described below that taket i me ort i mest anp inputsactually come
intwo variants: onethat takesti me with tine zoneorti nestanp with tinme zone,and
onethattakesti me wi t hout tine zoneortimestanp w thout time zone.Forbrevity,
these variants are not shown separately. Also, the + and * operators come in commutative pairs (for
exampleboth dat e +i nt eger andi nt eger + dat e); we show only one of each such pair.

Table 9.29. Date/Time Operators

Operator Example Result

+ date '2001-09-28' +|date '2001-10-05'
integer '7'

+ date '2001-09-28' +|tinmestanp '2001-09-28
interval '1 hour' 01: 00: 00’

+ date '2001-09-28' +|tinmestanp '2001-09-28
time '03: 00 03: 00: 00’

+ interval '1 day' +|interval "1 day
interval '1 hour' 01: 00: 00’

+ timestanp '2001-09-28|tinmestanp '2001-09-29
01: 00" + interval '23[00:00: 00
hour s’

248

Functions and Operators

Operator Example Result

+ tine '01: 00 +(time '04:00: 00
interval '3 hours'

- - interval '23 hours' |interval '-23:00:00

- date '2001-10-01' - |[integer '3' (days)
date '2001-09-28'

- date '2001-10-01' - |date ' 2001-09- 24"
integer '7'

- date '2001-09-28' - |timestanp '2001-09-27
interval '1 hour' 23: 00: 00

- time '05:00" - tinelinterval '02:00: 00
' 03: 00

- tine ' 05: 00 -|time '03:00: 00

interval '2 hours'

- ti mestanp '2001-09-28|timestanp ' 2001-09-28

23: 00" - interval '23|00:00: 00
hour s’

- interval '1 day' - |interval "1 day
interval '1 hour' -01: 00: 00

- tinmestanp '2001-09-29|interval "1 day
03: 00’ - ti mestanp|15: 00: 00
' 2001- 09- 27 12: 00’

* 900 * interval "1linterval '00:15: 00
second'

* 21 * interval '1 day' |interval '21 days'

* doubl e precision '3.5" [interval '03:30: 00
* interval "1 hour'

/ interval "1 hour' [/ |interval '00:40:00

doubl e precision '1.5'

Table 9.30. Date/Time Functions

Function Return Type Description Example Result

i nterval Subtract age(tinestanp/43 years 9
age(ti nest anp, arguments, ' 2001-04-10' ,|npns 27 days
ti mest anp) producing ajti mestanp

“symbolic” result|' 1957- 06-13')
that uses years and
months, rather than

just days
age(ti mestanp)i nterval Subtract from|lage(ti mestanp|43 years 8
current _date |'1957-06-13')| nons 3 days
(at midnight)
ti mestanp Current date and
cl ock_ti nest amp(t)h time|time (changes
zone during statement
execution); see
Section 9.9.4
current _date |date Current date; see
Section 9.9.4

249

Functions and Operators

Function Return Type Description Example Result
current _time|tinme Wi t h|{Current time of
time zone day; see
Section 9.9.4
ti nmestanp Current date and
current _ti mespvarngh time|time (stat of
zone current
transaction); see
Section 9.9.4
doubl e Get subfield|dat e_part (' ho0 ,
date_part (textprecision (equivalent toti mest anp
ti mest anp) extract); see|' 2001-02-16
Section 9.9.1 20: 38:40")
dat e_part (textdoubl e Get subfield|dat e_part (' mofg h' ,
i nterval) preci sion (equivalent to|i nt erval ‘2
extract); seelyears 3
Section 9.9.1 nmont hs')
ti mestanp Truncate tojdate_trunc(' hd@001- 02- 16
date_trunc(text, specified ti mestanmp 20: 00: 00
ti mest anp) precision; see also|' 2001- 02- 16
Section 9.9.2 20: 38: 40")
dat e_trunc(teptnt erval Truncate tojdate_trunc(' hdur', days
i nterval) specified i nterval '2103: 00: 00
precision; see dso|days 3 hours
Section 9.9.2 40 m nutes')
doubl e Get subfield; see|extract (hour |20
extract (fiel dprecision Section 9.9.1 from
from ti mestanp
ti mest anp) ' 2001-02- 16
20: 38:40")
extract (fiel ddouble Get subfield; see|extract (nont h|3
from preci sion Section 9.9.1 frominterval
interval) "2 years 3
nmont hs')
bool ean Test for finite date|i sfi ni te(date|true
isfinite(date (not +/-infinity) ' 2001- 02-16")
i sfinite(tinmedicoiman Test for finitetime|i sfinite(ti negtrar
stamp (not +/-|' 2001- 02- 16
infinity) 21:28:30")
i sfinite(interbadl)ean Test for finite|i sfinite(intenwvale
interval "4 hours')
i nterval Adjust interval [j usti fy_days(ilntrervdd days
justify days(j nterval) so 30-day time|' 35 days')
periods are
represented as
months
i nterval Adjust interval [j usti fy_hours(li nterval day
justify hours|(interval) so 24-hour time|' 27 hours') |03:00: 00
periods are
represented asdays

250

Functions and Operators

Function Return Type Description Example Result
i nterval Adjust interval [j ustify_inter\d (intervdalys
justify_ interyal (interval) |using 'l mon -1{23:00:00
justify_days |hour')
and
justify_hoursj
with additional
sign adjustments
| ocal tine time Current time of
day; see
Section 9.9.4
ti mestanp Current date and
| ocal ti nestanp time (stat of
current
transaction); see
Section 9.9.4
dat e Create date from|nmake_dat e(2012013-07- 15
make_dat e(year year, month and|7, 15)
i nt, nmont h day fields
int, day int)
i nterval Create interval [make_i nt er val (Idaydays
make_i nterval (years from years,|=> 10)
i nt DEFAULT months, weeks,
0, nmont hs days, hours,
i nt DEFAULT minutes and
0, weeks seconds fields
i nt DEFAULT
0, days int
DEFAULT 0,
hour s i nt
DEFAULT 0,
m ns i nt
DEFAULT 0,
secs double
preci sion
DEFAULT 0. 0)
time Create time from|nake tine(8, |08:15:23.5
make ti nme(hour hour, minute and|15, 23.5)
int, mnint, seconds fields
sec doubl e
preci si on)
ti mestanp Create timestamp|nake ti nest anf{@@BLAN7- 15
make_ti nest anp(year from year, month,|7, 15, 8, 15, |08:15:23.5
i nt, nmont h day, hour, minute|23. 5)
int, day and seconds fields
int, hour
int, mnint,
sec doubl e
preci si on)
ti mestanp Create timestamp|nmake_t i nest anfA(R@73,15
make_ti nest anpiz(tyear tine|with time zone|7, 15, 8, 15, |08:15:23.5+01
int, nmont h|zone from year, month,|23. 5)
int, day day, hour, minute
int, hour and seconds fields;

251

Functions and Operators

Function Return Type Description Example Result
int, minint, if tinmezone is
sec doubl e not specified, the
precision, [current time zone
ti mezone t ext isused
1)
now() ti mestanp Current date and
with time|time (stat of
zone current
transaction); see
Section 9.9.4
ti mestanmp Current date and
statenment _ti npdttdnp() tinme|time (start of
zone current statement);
see Section 9.9.4
ti meof day() |text Current date and
time (like
cl ock_ti nmest anp,
but as a
text string); see
Section 9.9.4
ti mestanp Current date and
transaction_tjwddt anp(}i ne|time (stat of
zone current
transaction); see
Section 9.9.4
ti mestanp Convert Unix|t o_t i nest anp([PZB4BIIB2AB)
to_timestanp(peubi e ti me|epoch (seconds 04: 32: 03+00
preci si on) zone since 1970-01-01
00:00:00+00) to
timestamp

In addition to these functions, the SQL OVERLAPS operator is supported:

(start1i,
(start1i,

This expression yields true when two time periods (defined by their endpoints) overlap, false when
they do not overlap. The endpoints can be specified as pairs of dates, times, or time stamps; or as a
date, time, or time stamp followed by an interval. When a pair of valuesis provided, either the start or
the end can be written first; OVERLAPS automatically takes the earlier value of the pair as the start.
Each time period is considered to represent the half-open interval st art <=t i nme < end, unless
st art and end areequal inwhich caseit representsthat single timeinstant. This means for instance

endl) OVERLAPS (start2,
| engt hl) OVERLAPS (start?2,

end2)

| engt h2)

that two time periods with only an endpoint in common do not overlap.

SELECT (DATE ' 2001- 02- 16'
(DATE ' 2001- 10- 30'

Result: true

SELECT (DATE ' 2001- 02- 16'
(DATE ' 2001- 10- 30'

Result: false

SELECT (DATE ' 2001- 10- 29’
(DATE ' 2001- 10- 30'

Resul t: fal se

DATE ' 2001-12-21') OVERLAPS

DATE ' 2002- 10-

30");

| NTERVAL ' 100 days') OVERLAPS

DATE ' 2002- 10-

30");

DATE ' 2001- 10- 30') OVERLAPS

DATE ' 2001- 10-

31');

252

Functions and Operators

9.9.1.

SELECT (DATE '2001-10-30', DATE '2001-10-30') OVERLAPS
(DATE ' 2001- 10-30', DATE '2001-10-31");
Result: true

When adding an i nt er val value to (or subtracting an i nt er val value from) ati mest anp
wi th tine zone vaue, thedayscomponent advances or decrements the date of thet i mest anp
with tine zone by theindicated number of days, keeping the time of day the same. Across
daylight saving time changes (when the session time zone is set to a time zone that recognizes DST),
thismeansi nterval '1 day' does not necessarily equa i nterval '24 hours'. For
example, with the session time zone set to Arrer i ca/ Denver :

SELECT tinestanp with time zone '2005-04-02 12:00: 00-07'" + interval
"1 day';

Resul t: 2005-04-03 12: 00: 00- 06

SELECT tinestanp with time zone '2005-04-02 12:00: 00-07'" + interval
'24 hours';

Resul t: 2005-04-03 13: 00: 00- 06

This happens because an hour was skipped due to a change in daylight saving time at 2005- 04- 03
02: 00: 00 intime zone Aner i ca/ Denver .

Note there can be ambiguity in the nont hs field returned by age because different months have
different numbers of days. PostgreSQL's approach uses the month from the earlier of the two dates
when calculating partial months. For example, age(' 2004- 06-01', ' 2004-04-30') uses
April toyield1 non 1 day, whileusing May would yield1 non 2 days because May has
31 days, while April has only 30.

Subtraction of dates and timestamps can also be complex. One conceptually simple way to perform
subtraction isto convert each value to a number of seconds using EXTRACT(EPOCH FROM . . .),
then subtract the results; this produces the number of seconds between the two values. This will
adjust for the number of daysin each month, timezone changes, and daylight saving time adjustments.
Subtraction of date or timestamp values with the “- " operator returns the number of days (24-hours)
and hours/minutes/seconds between the values, making the same adjustments. The age function
returns years, months, days, and hours/minutes/seconds, performing field-by-field subtraction and
then adjusting for negative field values. The following queries illustrate the differences in these
approaches. The sample results were produced with t i nezone = ' US/ Eastern'; thereisa
daylight saving time change between the two dates used:

SELECT EXTRACT(EPOCH FROM ti nestanptz '2013-07-01 12:00:00') -
EXTRACT(EPOCH FROM ti mestanptz ' 2013-03-01 12: 00: 00');
Result: 10537200
SELECT (EXTRACT(EPOCH FROM ti mestanptz '2013-07-01 12:00:00") -
EXTRACT(EPOCH FROM ti nmestanptz ' 2013-03-01 12: 00: 00'))
/ 60/ 60 / 24;
Resul t: 121.958333333333
SELECT tinmestanptz '2013-07-01 12:00: 00" - tinmestanptz '2013-03-01
12: 00: 00" ;
Result: 121 days 23:00: 00
SELECT age(tinmestanptz '2013-07-01 12:00:00', tinmestanptz
'2013-03-01 12:00:00');
Result: 4 nons

EXTRACT, dat e_part

EXTRACT(fi el d FROM source)

253

Functions and Operators

Theext r act function retrieves subfields such as year or hour from date/time values. sour ce must
be a value expression of typeti mest anp, ti ne, ori nt erval . (Expressions of type dat e are
casttot i mest anp and can therefore be used aswell.) f i el d isan identifier or string that selects
what field to extract from the source value. The ext r act function returns values of type doubl e
pr eci si on. Thefollowing are valid field names:

century

The century

SELECT EXTRACT(CENTURY FROM TI MESTAMP ' 2000-12-16 12:21:13");

Result: 20
SELECT EXTRACT(CENTURY FROM Tl MESTAMP ' 2001-02-16 20: 38:40');
Result: 21

The first century starts at 0001-01-01 00:00:00 AD, athough they did not know it at the time.
This definition applies to all Gregorian calendar countries. There is no century number O, you
go from -1 century to 1 century. If you disagree with this, please write your complaint to: Pope,
Cathedral Saint-Peter of Roma, Vatican.

day
Fort i mest anp values, theday (of themonth) field (1- 31) ; fori nt er val values, the number
of days
SELECT EXTRACT(DAY FROM TI MESTAMP ' 2001- 02-16 20: 38:40');
Result: 16

SELECT EXTRACT(DAY FROM | NTERVAL ' 40 days 1 minute');
Resul t: 40

decade
The year field divided by 10
SELECT EXTRACT(DECADE FROM Tl MESTAMP ' 2001-02-16 20:38:40');
Resul t: 200

dow
The day of the week as Sunday (0) to Saturday (6)
SELECT EXTRACT(DOW FROM TI MESTAMP ' 2001- 02- 16 20: 38:40");
Result: 5

Notethat ext r act 'sday of theweek numbering differsfromthat of thet o_char (..., 'D)
function.

doy
The day of the year (1 - 365/366)

SELECT EXTRACT(DOY FROM TI MESTAMP ' 2001-02-16 20: 38:40');
Resul t: 47

254

Functions and Operators

epoch

Forti mestanmp with tine zone values, thenumber of seconds since 1970-01-01 00:00:00
UTC (negative for timestamps before that); for dat e and t i nest anp values, the nominal
number of seconds since 1970-01-01 00:00:00, without regard to timezone or daylight-savings
rules; for i nt er val values, the total number of secondsin theinterval

SELECT EXTRACT(EPOCH FROM TI MESTAMP W TH Tl ME ZONE ' 2001- 02- 16
20: 38:40.12-08");
Resul t: 982384720. 12

SELECT EXTRACT(EPCCH FROM TI MESTAMP ' 2001- 02-16 20: 38:40.12');
Resul t: 982355920. 12

SELECT EXTRACT(EPOCH FROM | NTERVAL '5 days 3 hours');
Resul t: 442800

You can convert an epoch value back to atinmestanp with tinme zone with
to_tinmestanp:
SELECT to_ti mestanp(982384720.12);
Result: 2001-02-17 04:38:40.12+00
Bewarethat applyingt o_t i mest anp toanepoch extractedfromadat e ort i mest anp value
could produce a misleading result: the result will effectively assume that the original value had
been given in UTC, which might not be the case.
hour
The hour field (0 - 23)
SELECT EXTRACT(HOUR FROM TI MESTAMP ' 2001- 02-16 20: 38:40');
Result: 20
i sodow
The day of the week as Monday (1) to Sunday (7)
SELECT EXTRACT(| SOCDOW FROM Tl MESTAMP ' 2001- 02- 18 20:38:40');
Result: 7
Thisisidentical to dowexcept for Sunday. Thismatchesthe | SO 8601 day of theweek numbering.
i soyear

The SO 8601 week-numbering year that the date fallsin (not applicable to intervals)

SELECT EXTRACT(| SOYEAR FROM DATE ' 2006-01-01');

Resul t: 2005
SELECT EXTRACT(| SOYEAR FROM DATE ' 2006- 01-02');
Resul t: 2006

Each 1SO 8601 week-numbering year begins with the Monday of the week containing the 4th of
January, so in early January or late December the 1SO year may be different from the Gregorian
year. See the week field for more information.

255

Functions and Operators

Thisfield is not available in PostgreSQL releases prior to 8.3.
julian
The Julian Date corresponding to the date or timestamp (not applicableto intervals). Timestamps

that are not local midnight result in a fractional value. See Section B.7 for more information.

SELECT EXTRACT(JULI AN FROM DATE ' 2006- 01-01');
Resul t: 2453737
SELECT EXTRACT(JULI AN FROM Tl MESTAMP ' 2006- 01-01 12:00");
Resul t: 2453737.5
nm cr oseconds
The seconds field, including fractional parts, multiplied by 1 000 000; note that thisincludes full
seconds

SELECT EXTRACT(M CROCSECONDS FROM TI ME ' 17:12:28.5');
Resul t: 28500000
m |1 enni um
The millennium
SELECT EXTRACT(M LLENNI UM FROM Tl MESTAMP ' 2001- 02- 16 20:38:40');
Result: 3
Y earsin the 1900s are in the second millennium. The third millennium started January 1, 2001.
mlliseconds
The seconds field, including fractional parts, multiplied by 1000. Note that this includes full
seconds.
SELECT EXTRACT(M LLI SECONDS FROM TI ME ' 17:12:28.5');
Resul t: 28500
m nut e
The minutes field (0 - 59)
SELECT EXTRACT(M NUTE FROM Tl MESTAMP ' 2001-02-16 20:38:40');
Result: 38
nont h
Fort i mest anp values, the number of themonthwithintheyear (1- 12) ; fori nt er val values,
the number of months, modulo 12 (0 - 11)
SELECT EXTRACT(MONTH FROM Tl MESTAMP ' 2001- 02-16 20: 38:40');

Result: 2

SELECT EXTRACT(MONTH FROM | NTERVAL ' 2 years 3 nonths');
Result: 3

256

Functions and Operators

SELECT EXTRACT(MONTH FROM | NTERVAL ' 2 years 13 nonths');
Result: 1

quarter

The quarter of the year (1 - 4) that the dateisin

SELECT EXTRACT(QUARTER FROM TI MESTAMP ' 2001- 02-16 20: 38:40');
Result: 1

second

The seconds field, including fractional parts (O - 591)

SELECT EXTRACT(SECOND FROM Tl MESTAMP ' 2001- 02- 16 20: 38:40');
Result: 40

SELECT EXTRACT(SECOND FROM TI ME ' 17:12:28.5'");
Result: 28.5

ti mezone

The time zone offset from UTC, measured in seconds. Positive values correspond to time zones
east of UTC, negative valuesto zoneswest of UTC. (Technically, PostgreSQL does not use UTC
because leap seconds are not handled.)

ti mezone_hour
The hour component of the time zone offset

ti mezone_m nute
The minute component of the time zone offset

week
The number of the ISO 8601 week-numbering week of the year. By definition, 1SO weeks start
on Mondays and the first week of ayear contains January 4 of that year. In other words, the first
Thursday of ayear isinweek 1 of that year.
In the ISO week-numbering system, it is possible for early-January dates to be part of the 52nd
or 53rd week of the previous year, and for late-December dates to be part of the first week of the
next year. For example, 2005- 01- 01 ispart of the 53rd week of year 2004, and 2006- 01- 01

is part of the 52nd week of year 2005, while 2012- 12- 31 is part of the first week of 2013. It's
recommended to usethei soyear field together with week to get consistent results.

SELECT EXTRACT(WEEK FROM TI MESTAMP ' 2001-02-16 20: 38:40');
Result: 7
year

The year field. Keep in mind thereisno 0 AD, so subtracting BC years from AD years should
be done with care.

160 if leap seconds are implemented by the operating system

257

Functions and Operators

9.9.2.

SELECT EXTRACT(YEAR FROM TI MESTAMP ' 2001- 02-16 20: 38:40');
Resul t: 2001

Note

Whentheinput valueis+/-Infinity, ext r act returns+/-Infinity for monotonically-increasing
fields (epoch,j uli an, year,i soyear, decade, century,and m | | enni un. For
other fields, NULL isreturned. PostgreSQL versions before 9.6 returned zero for all cases of
infinite input.

Theext ract functionis primarily intended for computational processing. For formatting date/time
values for display, see Section 9.8.

The dat e_part function is modeled on the traditional Ingres equivalent to the SQL-standard
functionext r act :

date_part('field , source)

Note that herethef i el d parameter needs to be astring value, not aname. The valid field names for
dat e_part arethesameasfor extract.

SELECT date_part (' day', TIMESTAWP '2001-02-16 20:38:40');
Resul t: 16

SELECT date _part (' hour', INTERVAL '4 hours 3 mnutes');
Result: 4

date_trunc

Thefunctiondat e_t r unc isconceptually similar to thet r unc function for numbers.

date_trunc('field , source)

sour ce isavalueexpression of typet i mest anp ori nt er val . (Vauesof typedat e andt i ne
arecast automaticallytot i mest anp ori nt er val ,respectively.) f i el d selectstowhichprecision
to truncate theinput value. Thereturn valueisof typet i mest anp ori nt er val withal fieldsthat
are less significant than the selected one set to zero (or one, for day and month).

Valid valuesfor fi el d are:

nm cr oseconds
mlliseconds
second

nm nut e

hour

day

week

nont h
quarter

year

decade
century

m |l enni um

258

Functions and Operators

9.9.8.

Examples:

SELECT date_trunc(' hour', TIMESTAWP '2001-02-16 20:38:40');
Result: 2001-02-16 20: 00: 00

SELECT date_trunc('year', TIMESTAWP '2001-02-16 20:38:40');
Result: 2001-01-01 00: 00: 00

AT TI ME ZONE

The AT TI ME ZONE converts time stamp without time zone to/from time stamp with time zone, and
time values to different time zones. Table 9.31 shows its variants.

Table9.31. AT TI ME ZONE Variants

Expression Return Type Description

tinmestanp without tinmejtinestanp wth tinme|Trea given time stamp without
zone AT TI ME ZONE zone|zone time zone as located in the
specified time zone

timestanp wth tinmeftimestanp w thout time|Convert given time stamp with
zone AT TI ME ZONE zone|zone time zone to the new time zone,
with no time zone designation

time with tinme zone AT|tinme with time zone Convert given time with time
TI ME ZONE zone zone to the new time zone

In these expressions, the desired time zone zone can be specified either as a text string (e.g.,
" Aneri cal/ Los_Angel es') or asaninterval (e.g., | NTERVAL ' - 08: 00'). Inthetext case, a
time zone name can be specified in any of the ways described in Section 8.5.3.

Examples (assuming the local time zoneis Arrer i ca/ Los_Angel es):

SELECT TI MESTAMP ' 2001-02-16 20: 38:40' AT TIME ZONE ' Aneri ca/
Denver"' ;
Resul t: 2001-02-16 19:38:40-08

SELECT TI MESTAMP W TH TI ME ZONE ' 2001-02-16 20: 38:40-05" AT TI M
ZONE ' Aneri cal/ Denver' ;
Resul t: 2001-02-16 18:38:40

SELECT TI MESTAMP ' 2001-02-16 20:38:40-05' AT TIME ZONE ' Asi a/ Tokyo'
AT TI ME ZONE ' Areri ca/ Chi cago';
Resul t: 2001-02-16 05:38: 40

The first example adds a time zone to a value that lacks it, and displays the value using the current
Ti meZone setting. The second example shifts the time stamp with time zone value to the specified
time zone, and returns the value without a time zone. This allows storage and display of values
different from the current Ti meZone setting. The third example converts Tokyo time to Chicago
time. Converting time values to other time zones uses the currently active time zone rules since no
dateis supplied.

The function t i nezone(zone, tinmestanp) is equivaent to the SQL-conforming construct
ti mestanp AT TIME ZONE zone.

9.9.4. Current Date/Time

259

Functions and Operators

PostgreSQL provides a number of functions that return values related to the current date and time.
These SQL-standard functions all return values based on the start time of the current transaction:

CURRENT_DATE

CURRENT_TI ME

CURRENT_TI MESTAMP

CURRENT_TI ME(pr eci si on)
CURRENT_TI MESTAMP(pr eci si on)
LOCALTI ME

LOCALTI MESTAMP

LOCALTI ME(pr eci si on)

LOCALTI MESTAMP(pr eci si on)

CURRENT _TI ME and CURRENT_TI MESTAMP deliver values with time zone; LOCALTI ME and
LOCALTI MESTANP deliver values without time zone.

CURRENT_TI ME, CURRENT_TI MESTAMP, LOCALTI ME, and LOCALTI MESTAMP can optionally
take a precision parameter, which causes the result to be rounded to that many fractional digitsin the
seconds field. Without a precision parameter, the result is given to the full available precision.

Some examples:

SELECT CURRENT_TI ME;
Resul t: 14:39:53. 662522- 05

SELECT CURRENT_DATE;
Resul t: 2001-12-23

SELECT CURRENT_TI MESTANP,
Resul t: 2001-12-23 14:39: 53. 662522- 05

SELECT CURRENT_TI MESTAMVP(2) ;
Resul t: 2001-12-23 14:39: 53. 66- 05

SELECT LOCALTI MESTANP,
Resul t: 2001-12-23 14:39:53. 662522

Since these functions return the start time of the current transaction, their values do not change during
the transaction. This is considered a feature: the intent is to alow a single transaction to have a
consistent notion of the“current” time, so that multiple modifications within the same transaction bear
the same time stamp.

Note

Other database systems might advance these values more frequently.

PostgreSQL also provides functions that return the start time of the current statement, as well as the
actua current time at the instant the function is called. The complete list of non-SQL-standard time
functionsis:

transaction_tinestanp()
statenment _tinmestanp()
cl ock_tinmestanp()

260

Functions and Operators

9.9.5.

ti meof day()
now()

transaction_ti nestanp() is equivdent to CURRENT_TI MESTAMP, but is named to
clearly reflect what it returns. st at ement _t i nest anp() returns the start time of the current
statement (more specificaly, the time of receipt of the latest command message from the
client). stat enent _ti mestanp() andtransacti on_ti nmestanp() returnthe samevalue
during the first command of a transaction, but might differ during subsequent commands.
cl ock_ti mestanp() returns the actual current time, and therefore its value changes even
within a single SQL command. ti meof day() is a historical PostgreSQL function. Like
cl ock_timestanp(), it returns the actual current time, but as a formatted t ext string rather
thanatimestanp with tine zone vaue now) isatraditiona PostgreSQL equivaent to
transaction_ti mestanp().

All the date/time datatypes al so accept the special literal value nowto specify the current date and time
(again, interpreted as the transaction start time). Thus, the following three all return the same result:

SELECT CURRENT_TI MESTAMP;
SELECT now() ;
SELECT Tl MESTAMP 'now ; -- but see tip bel ow