PostgreSQL 9.4.22 Documentation

The PostgreSQL Global Development Group

PostgreSQL 9.4.22 Documentation
by The PostgreSQL Global Development Group
Copyright © 1996-2019 The PostgreSQL Global Development Group

Legal Notice

PostgreSQL is Copyright © 1996-2019 by the PostgreSQL Global Development Group.
Postgres95 is Copyright © 1994-5 by the Regents of the University of California.

Permission to use, copy, modify, and distribute this software and its documentation for any purpose, without fee, and without a written
agreement is hereby granted, provided that the above copyright notice and this paragraph and the following two paragraphs appear in all
copies.

IN NO EVENT SHALL THE UNIVERSITY OF CALIFORNIA BE LIABLE TO ANY PARTY FOR DIRECT, INDIRECT, SPECIAL,
INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING LOST PROFITS, ARISING OUT OF THE USE OF THIS SOFTWARE
AND ITS DOCUMENTATION, EVEN IF THE UNIVERSITY OF CALIFORNIA HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

THE UNIVERSITY OF CALIFORNIA SPECIFICALLY DISCLAIMS ANY WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE SOFTWARE PRO-
VIDED HEREUNDER IS ON AN “AS-IS” BASIS, AND THE UNIVERSITY OF CALIFORNIA HAS NO OBLIGATIONS TO PROVIDE
MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR MODIFICATIONS.

Table of Contents

Preface xlii
1. What iS POStZIESQLT ...ccuuiiiiiiiiiieeceeteeet ettt st xlii
2. A Brief History of PoStreSQLu........coicuiiiiiirieiiieiieieecieeeceiteste ettt sve e beesnesae e xliii

2.1. The Berkeley POSTGRES Projectcceecveviiiiiieniienieeieenieenie e sve e xliii
2.2, POSEEIESOS ..ottt ettt ettt ettt st sttt st e et e bae st e enbeebee s xliii
2.3, POSEEIESQLou. ittt ettt st ettt et e sabeebeebee s xliv
3. COMNVENTIONS ...ttt ettt ettt ettt et e bt e atesaesat e be s bt easenbesbeensesaeemaenbeeanensene xliv
4. Further INfOrmation........coeoeerieririiniinieiencetee ettt ettt ettt saee e s saesaeens xlv
5. Bug Reporting GUIdEIINES........cccueiriieriieiieiieiieeieeite ettt ettt sttt xlv
5.1, Tdentifying BugScooieriiiiiiiieiece ettt st xlvi
5.2. What t0 REPOTT ..ottt sttt ettt st e xlvi
5.3. Where to Report BUZS ...c..coviiiiiiiieiiiiieiteiteeeeette ettt e xlviii
I. Tutorial 1
1. GEttING STATTEAeeeniiiieieieeiieeee ettt st e 1
1.1 INSEALIALION ..ottt et sttt st sttt et en 1
1.2. Architectural Fundamentals............ccoceriiriiriiiniiiieiieeceeceee e 1
1.3. Creating a Databasececueiuieieriieiieerie ettt ettt ettt et saeesaesbeeneens 2
1.4. Accessing @ Databasecooeeriiriiiriiiiiiieetee ettt 3
2. The SQL LaNGUAZEcovveiriiiiiieieenite ettt ettt st sa e st sttt e sbe e saneesbeenbee e 5
2.1, INEEOAUCTION 1ttt ettt et sttt e bttt et e e st e st e s be et e beeaeenes 5
2.2, COMCEPLS .uveeneeeiieeieeieeeite ettt e et st e b e bt e sat e e bt e sbtesate e bt e s bt esaeesabe e bt esbeesabeenbeesaeesaneen 5
2.3. Creating @ NeW Tablecccoviiiiiiiieieeee ettt 5
2.4. Populating a Table With ROWScccoeiiiiiiiiiiiiiiieeeecee e 6
2.5. QUErying @ TaDIEcc.coiiiiiiiiiiiiiee et st 7
2.6. Joins Between Tables........cocoviiiiiiiiiiiiieeeceereeesest et 9
2.7. Aggregate FUNCHIONS......ccccoviiiiiiieeteteeitete ettt sttt 11
2.8 UPAALES ..ottt sttt et sttt ettt b ettt et sa e bbbt ettt eae e 12
2.9, DCIETIONS ...conveeeenieieeiteteettete sttt ettt sttt sttt b ettt ebt et st sbe et et ebeenees 13
3. AdVANCEd FRATUIES ...c..eeiiiiiiiiiieiietceitctee ettt ettt ettt ettt s ennens 14
3.1 INTOAUCTION «.nveiiiiiiieiieitete ettt ettt ettt ettt eb s 14
3.2 VIBWS ittt ettt sttt ettt et sttt ettt na e sttt et eae e 14
3.3, FOTEIZN KEYS...uiiiiiiiiiiiieeie ettt ettt sttt ettt e bt e sbeeseneenbeenbeesene 14
3.4, TTANSACHIONS ..c.eevveniieiieteeitete sttt ettt ettt et sttt e st e e sbtebeesaesaeesbesbeeesemteeaeenees 15
3.5. WIndow FUNCHONSccuiiiiriiiiiiinieiececeteeceteste ettt st 17
3.6. INNETILANCE ...c.eeiiiiiiiciiecc ettt sttt 20
3.7 CONCIUSION ...ttt ettt ettt ettt sa et esae st e bt eneeaeemnes 21

I1. The SQL Language 22

4. SQL SYNEAX .eontiiieiieiieiete ettt ettt ettt ettt et e ae st h e n et ae e e nesreeanenee 24

4.1, LeXiCal SIUCLUTE.eivuiiiiiiiieteeitt ettt ettt ettt st sbe et e st e sbeesaee st ens 24
4.1.1. Identifiers and Key Words.........ccccceeveeriiiiniiniiniineeeeneeeieeeeiee e 24
1.2, CONSLANLS .e.uveeutieiteeieetee sttt ettt et st e bt e bt e st e e bt e bt e sbeesbe e bt enbeesanesaeeenbeas 26
4.1.2.1. String CONSLANESeeouervereietierieieeeeeeenteeeeete et eee et eesee s eeeseeeneenes 26

4.1.2.2. String Constants with C-style EScapes.........cccceccevirrenerieneneenne 26

4.1.2.3. String Constants with Unicode Escapes.......c..ccccoecvrreenereenenennnnne. 28

4.1.2.4. Dollar-quoted String CONStaNtscceeeeerierreerienieeieneneeee e 28

4.1.2.5. Bit-String CONSLANLSc..ccveueeurririinrerereeeieeestenteeeeeee e e seeaenenene 29

4.1.2.6. NUMEIIC CONSLANLSovereieniietieienieeieniesiteie ettt sttt sbe e 29

4.1.2.7. Constants of Other TYPEScccevereerererienenieieneeee e 30

iii

1.3, OPCTALOTSeeuvieiieeieeiiesite et et e sitesteeabte bt e satesabeesbeesasesateebeesseesssesnseeseenaees 31

4.1.4. SPecial CharaClers........cevueruersiieriieriestiesieeste st et esiteseesbeesbeesbeesaresnseenbeas 31
4.1.5. COMMENLS ...t 32
4.1.6. Operator PreCedeNCeoouiriiiriirieniieiieteee ettt 32

4.2, Value EXPIESSIONS......eiiuiiriiiiiieiienite ettt ettt ettt sttt et e st e bt e st e sateesbeesaeesaeeens 33
4.2.1. Column References..........coceoerieieriinieninieneneeieeeeeteeee et 34
4.2.2. Positional Parameters.........cceevueerierieriiiinienienieeieeitesee et 34
4.2.3. SUDSCIIPLS ..ottt ettt et 35
4.2.4. Field SEIECHONooueiiiiiiieiieiieeiteetee ettt st 35
4.2.5. Operator INVOCAtIONSc..coueevuiriiiiiiieiieie et 36
4.2.6. FUNCHON CallSeoiiiiiiiiiiieeiietete ettt s 36
4.2.77. Aggregate EXPreSSIONS.cccueiviiiiiirieriierieentenite ettt st 36
4.2.8. Window Function Calls...........cceeruiririeninierieieeeeeeee e 39
4.2.9. TYPE CaSS .. s 40
4.2.10. Collation EXPreSSionsccceeeeuertieienieneeniesieeiesieeieete st eee et 41
4.2.11. Scalar SUDQUETIES........covirieiirtieietieiieee ettt ettt 42
4.2.12. Array CONSLIUCTOTS .. .veenvienieriienieeniterteeieeeree st et esreesbeesreesseesbeesaresneeebees 42
4.2.13. ROW CONSLIUCLOTS....cuveeurenierrienieenitentteieesieesiteereesseesieeeteesseesreesmnesaneenbees 44
4.2.14. Expression Evaluation RuUlescccccocoviinininiininiiicccee 45

4.3. Calling FUNCHONS.ccuteiiriieiintieterieeterte sttt ettt sttt et sbe e b e 46
4.3.1. Using Positional NOtationcccueverierireenienenienienieeieneeeene e 47
4.3.2. Using Named NOtAtioNcccevueeieriirieniineeienentenienitetesieete et 47
4.3.3. Using Mixed NOtation......c..ccoeriieiiniirieniinienienenteeseeteseeee et 48

5. Data DefINItIONccoiiiiiiiiiiiicieieiccec et 49
5.1, Table BaSICScouiiuiiiiiiiiicieieireee e e 49
5.2. Default ValUEScccovuiiiiiiiiiiiiiiiiiiictcteeeee et 50
5.3 CONSLIANEScuiiiiiiiiieeiee ettt sttt s 51
5.3.1. Check CONSLIAINESo.ceuiiuiriiiiieiiiiiietiteeee e 51
5.3.2. Not-NUll CONSLIAINLSooviiiiiiiiiiiiiiiiiieieeeeeeese e 53
5.3.3. UnNiqUe CONSLIAINES. ..c.uveruiertieriienieeieenteeteeieesieesteeteesbeesteeteesbeesaresaseenseas 54
5.3.4. Primary KEYS.....cueoiieriirieiiiesieeieetest ettt st s 55
5.3.5. FOr@ign KEYS ...ccuviiiiiiiiiiiiiiesteeeetet ettt e 55
5.3.6. EXClusion CONSIIAINLScc.eecviruieiiniirieienieerenieeieere et enesneeaeennes 58

5.4, SyStem COIUMIS ...c..veitiiriieiiieieeite ettt ettt sttt e st st e bt et e sateebeebeesaee 58
5.5. Modifying TabIes........ccoociiriiriiiiiiiiiiieieeeceeeeeeee et 60
5.5.1. Adding @ COIUMN.....cccoeiiiiiiiiiieieic e 60
5.5.2. Removing @ COIUMINcccoeviiiiiiiiiiiiieieeecteeeee e 61
5.5.3. Adding @ COonStraintccuevuieiiiriiiienienieete et 61
5.5.4. Removing @ CONSIAINEccuevuiiiiiriiiieiiiieiceeeete e 61
5.5.5. Changing a Column’s Default Value............cccccoeveninienenineeeceeeeeee, 62
5.5.6. Changing a Column’s Data TYPEccceveruieiinieieieieereeeee e 62
5.5.7. Renaming @ COIUMN ...cc.eeuiiiiiiieiiiieieie e 62
5.5.8. Renaming @ Tablecccoeieiiiiiiiiiniiiiee e 62

5.6, PLIVIIEZES ..ttt ettt sttt et 63
5.7 SCREIMAS ...ttt ettt et sa e st b ettt 63
5.7.1. Creating @ SCheMAcceiiiiiiiiiiirieieeeeee e 64
5.7.2. The Public SChemaccccoivieiiiiiiiniiicicicieieereeeee e 65
5.7.3. The Schema Search Path..........cc.cccccoiniiiniiiiiiiccceee 65
5.7.4. Schemas and Privileges..........coceevuereriineniniiiniinieicsceeneetee e 66
5.7.5. The System Catalog SChemac.ccoceveririiiniiniiininieieneceeeeeeceee 67
5.7.6. USAZE PALEINIS ...ccuveveiuiiiiriieieeieetente ettt sttt 67
577 POTtabIlitycvoviiiicieiieiiirecece e 68

v

5.8, INNETILANCE ...t et ee et e e e e e e eetar e e e eeeteeeeeeeaareeeean 68

581 CAVEALS ... 71

5.9, PartitIONING ..cc.veevuieiiiieiienite ettt sttt ettt ettt e st sttt e sbt e sabe e be e bt e saneebeebeesane 72
5.9 10 OVEIVIEW ..uiiiiiiiicic e 72
5.9.2. Implementing Partitioningc.cceevveerieriieiiienienieeieesieeeeeee et 72
5.9.3. Managing Partitionsccoeeeveenirienenieieniieeetesceeese e 75
5.9.4. Partitioning and Constraint EXCIUSIONcc.ccceeveeviniiiininienenicicceeenne. 76
5.9.5. Alternative Partitioning Methods.........c..coceeceeiiiiiiniiiiniicncceeeene, 77
5.9.6. CAVEALS ...eouviiieeiieeiteeteete ettt ettt et et st b e st e b s 78

5.10. FOreign Datac..cocoeiiiiiiiiiiieiieeceecee et e 79
5.11. Other Database ObBJECLSccceriiiiiiiriiiiiieieeeeeeee et 79
5.12. Dependency Trackingccoeereiieierieieieeieee ettt 80
6. Data Manipulation.........cceeieitieieienie ettt ettt sttt et et e bt et esbees e e tesbeeneeseeeneenees 82
6.1. INSErting DAtaocuiiiiiiiiiee et ettt 82
6.2. UPdating Datal......cc.eeeeiiieiieiieiieiesieeee ettt ettt sttt 83
6.3. DEleting DAata.......ccueeuieiieiieiieieeiesieeete ettt sttt sttt et 84
6.4. Returning Data From Modified ROWScocoeviiiiiiiiniiiieeeeeeeece, 84
T QUBTIES ..ottt e et e ettt et e e et e e et e e e eteeeetteeeetaeeeetaeeeeaeseetaeeeaaseeeateeeeteseeaeeeeaeaeeateeeenreeeanes 86
T 1 OVEIVIEW ittt ettt ettt ettt st 86
7.2. Table EXPIESSIONSccuveuiiiieiiniieitintieiterte sttt ettt ettt et sb ettt st e b sbeeae b esnenee 86
7.2.1. The FROM CIAUSE.....c.cevruiriiiiieieiieiiniietiteiereteit et 87
7.2.1.1. Joined Tablesccccoveiririniniiicicicc e 87

7.2.1.2. Table and Column ALASES........cccccueiriririinienieieieieene e 91

7.2.1.3. SUDQUETIESeeuvienvieiieeieeieesiteeieesiee st e ereeieesteesreeseenteesabeenseeseesens 92

7.2.1.4. Table FUNCHONS ..c..cocviriiriiiiniieienieeieeeicetcetcetee st 92

7.2.1.5. LATERAL SUDQUETIESveevierireeieeiieniiesieeieenieesreeseesteeseveeseenseesens 93

7.2.2. The WHERE ClaUSE......cceviruiriiiiiiiiiiiciictiieeceecetec et 95
7.2.3. The GROUP BY and HAVING ClauSes........ccccceviririririinieiiiiiniiieeiecenes 95
7.2.4. Window Function ProCessingcceecueevervienieniieniiienienieeieeniee e 98

7.3 SEIECE LSS ...t e 98
7.3.1. Select-List IEMScccccoeiiiviiniiiiiiiiiiiiccc e 98
7.3.2. Column Labelsccocviiiiiiniiiiiiiiiiccce s 99

733 DISTINCT tuiiiiiieieiieiiet ittt st 99

7.4. Combining QUETIES......c..coueereriieietirietereetete ettt e e et resieene st eseessesaeennenaees 100
7.5, SOTtING ROWS ..ottt st 100
7.6. LIMIT QDA OFFSET.ccuteiiiiieieieeieeteereeresaeeneeneeneeaesueesnesseeseessesseenesseeneesaesaeennesnens 101
TT. VALUES LSS 1ottt st 102
7.8. wITH Queries (Common Table EXPIressions)cceeveeveereeneerieeneeneenieenieenieenae 103
7.8.1. SELECT 1N WITH c.uiiiiiieiieiiiieeenie ettt et s 103
7.8.2. Data-Modifying Statements in WITHcccceveeiererierieneeeieneeeeeneeeeeeeesnea 106

8. DA TYPES ...t e e e e 109
8.1 NUIMEIIC THPES . ..eutiiieeeitieieete ettt ettt et sttt e b e e e eaee 110
8.1 1. INtEZEL TYPES .ecneeeiiiiiieeiteete ettt sttt 111

8.1.2. Arbitrary Precision NUMDETScccecivieiiiniiieienieeeeee e 111

8.1.3. Floating-Point TYPESccceruerieriiniieiieieienieeteiesite ettt 113

814, SErTal TYPES . ..ecuvetieuieiieiteie sttt ettt sttt ettt ettt sbe et nae e 114

8.2. MONELATY TYPES -.eenveirnriiiieniieiieeteeee ettt ettt sttt ste b s sane e 115
8.3, Character TYPES ..c..eeueeuiriieieriieiteieettete ettt ettt ettt e 115
8.4. BINary Data TYPEScevuerueeieriieiieieeitetesteet ettt sttt sttt 117
8.4.1. bytea HEX FOrmMAaL........cc.ccooiiiiiiiiiiiiecciecee e e 118

8.4.2. bytea Escape FOrmat........c.ccocueviriiiiiniiiiniiiiieniciceeteeeeeeseeeeae 118

8.5. DAte/TIME TYPES..eurierieriierieiieeieeite ettt et ebe et e sbeeteebeesbaessbeenseesbaesssesnseenee 120

8.5.1. Date/Time INPULcocveeviiiiiiiieieeeeetee ettt 121

8.5, 1.1 DALeS ... 122

8.5.1.2. TIMES ..t 122

8.5.1.3. TIME StAMPS...eeeiieiiiriiieieiiterite ettt ettt sae e 123

8.5.1.4. Special ValUEScceeviiriiiiiiiiieieeiteiteee ettt 124

8.5.2. Date/Time OULPULc..coeeiiririeiieiietieteteste ettt 125
8.5.3. TIME ZONES ...ttt ettt ettt st ettt st e b e saeesaees 126
8.5.4. Interval INPUL.....c..cccoiiiiiiiiiiieee e 127
8.5.5. INterval OULPULceiiiiieiiiieieeeeeeeeeee e 129

8.6. BOOLEAN TYPE....ceiniiiiiiiiiieieiieeeee e e e 130
8.7. Enumerated TYPESccueriiiiiiiiiiiiiiciet e e 131
8.7.1. Declaration of Enumerated TYPes........ccceeereriereniesiineeiere e 131

8. 7.2, OTAETING ..ottt ettt sttt ettt e e e e 132
8.7.3. TYPE SALCLY ...ttt ettt s 132
8.7.4. Implementation Details...........ccocieieiiniiiiiiiee e 133

8.8, GEOMELIIC TYPES ..uvieientireieieiteeitete ettt ettt ettt et s be et be et e b st e e eae 133
881 POINLS ..ottt sttt 134
8L8. 2. LLIMES ettt st b et eae 134
8.8.3. LINE SEZMENLS.......eeuiiiiriieiiiieeiienteet ettt sttt et et sbe e nee e 134
B8 BOXES..c.uiiiiieiiiiiisitteete et s s 134
8.8.5. PathS ..o e 135
8.8.6. POLYZOMNS.....eutiiiiiniiiiiiieieeeseete ettt 135
8.8.7. CAICIES . 135

8.9. NetWOrk Address TYPES....cccueecveerieerieiiierieeniee st eteeieesteeaeeseestaesseeseessaesssesnseenne 136
B0 1. AMEE ittt sttt ettt aae st e e beenaaesntas 136
8.0, 2. CA AT ittt e 136
8.0.3. ANEL V8. Co AT ttiiiiiiiiierieeit ettt ettt sttt et st e bt e st e st e ebeesaeesaeas 137
8.9.4. MACAAAT tutteiieeieeieeiteete ettt ettt s e sttt e st e st e bt e st e st e ebeesaeesatas 137

810, Bit SHNEZ TYPES cnvrienrieiieiiieiieetestte sttt sttt ettt st ebe e sbtesabeeabeesbeesabesaseenne 138
.11, TeXt SEATCH TYPES ..couveeuieriieriieiterte sttt sttt st ettt e st ebeesbeesanesaneenne 138
Bl L. L. £ SVECEOT totterieeieetteete ettt ettt sttt sttt st be et 139

Bl 1.2, £ SUETLY tiieetreiee ettt et ee e e eeraae e e e eeeare e e e eeetreeeeeenareeeeeennres 140

12, UUID TYPE ettt ettt ettt sttt ettt ettt st e be st esbaesabesateesbeesaaesaneenne 141
BL3. XML TYPE ettt sttt sttt et ettt et e be e st et e b e s abe st eane 142
8.13.1. Creating XML ValUesccccceirieiiinieiienieieienecreeeecee e 142
8.13.2. Encoding Handlingc..ccceeiriiiiininiiniiiceniceeeeceeeee e 143
8.13.3. Accessing XML ValUues...........cccoeieviirieiiniiieienieieeeece e 143

814, ISON TYPES ..ttt sttt ettt ettt sttt et sae ettt sbe b neneens 144
8.14.1. JSON Input and Output SYNLAX.......cceveevueruirienienieieniieeene e eeenene 145
8.14.2. Designing JSON documents effectivelyccceeeereriereenenienenceeeeene 146
8.14.3. jsonb Containment and EXiSteNCe...........cccocovveeeeiiieeiieieieceeeeeee e 147
8.14.4. 350N INAEXING.....eiitieieiiiieietee ettt 148

BLS. ATTAYS ettt ettt sttt et sttt et sane e 150
8.15.1. Declaration Of Array TYPeS......ccceeerierierieneeienieniieiesie et 150
8.15.2. Array Value INPUL.........cooiiiiiiiiiieiiceencetee e 151
8.15.3. ACCESSING AITAYS ..eouviruieiirieriienieettete ettt sttt ettt et sae st sbeenee e eae 153
8.15.4. MOAIfYING ATTAYS...cuirueeeirierieniietieie ettt ettt ettt et et sbe e neeeae 154
8.15.5. Searching in AITAYS......ccocererierierieiineeie ettt ettt 157
8.15.6. Array Input and OUtPULt SYNTAX.....ccovireeriererienieniieieneetene et 158

8.16. COMPOSIE TYPES .evveneeiienieieriieieritetenteet ettt ettt et 159
8.16.1. Declaration of COmMPOSIte TYPES....cc.ereereererierieniieiinienienieneee e 159
8.16.2. Constructing Composite ValUes...........cecererierienienienenieneneeneneereniene 160

Vi

8.16.3. Accessing CompoSIite TYPES ..cvvverevirriierierieiiieniienie ettt 161

8.16.4. Modifying CompoSite TYPES.....uervirriierieriieriieniienieeieenitesee et esiee e 162
8.16.5. Using Composite Types in QUETIES.......cevcverrvierieriersiieniienienieenieesieenees 162
8.16.6. Composite Type Input and Output SYNtax........ccceeceevveeeneeneeriieeneeneennne. 164

17, RANZE TYPES ettt sttt st ettt ettt st e s bt e st e eateesbeesabesaneenne 165
8.17.1. Built-in Range TYPEScoceevieriirieiiirieienicieieneceteeecee e 165
8172 EXAMPIES.....coiiiieiiiiiiiieienieceteeeete ettt st 166
8.17.3. Inclusive and Exclusive Boundsc.cccecerviienienieniiinienienieeeceeee, 166
8.17.4. Infinite (Unbounded) Ranges.........ccccevieriiiriiiinieniieniiienieneenieeeeeeee 166
8.17.5. Range INput/OutpuL..........cccceviiiiriiiiiiiieienecicieeeeee e 167
8.17.6. Constructing Rangescccceieieiiiiiiiiniiiienieccece e 168
8.17.7. Discrete Range TYPES ...cc.ueevveerieriiiiiinieeieeiteeete ettt 168
8.17.8. Defining New Range TYPEsc..cocecvreririiniinienieininineneneeeeeeese e 169
8.17.9. INAEXING ..ttt ettt s 170
8.17.10. Constraints on RaNGes...........cceeieriirieiiinieierieeiieeeeee e 170

8.18. Object IAdentifier TYPES ...ccvevueeeeriiriieiiriieierie ettt sttt 171
819 PEISTI TYPC...eiiiiii s 172
8.20. PSEUAO-TYPES ...ttt ettt sttt s b e et 173
9. FUNCtions and OPEIAtOLScecuerueruierieniieienieeterie sttt sttt sttt e st st este bt e te bt eaeeneesaeenaenaeas 175
0.1. LOZICAl OPEIALOLSeeuviiienieiiriieieniiete sttt ettt sttt ettt st et este st e b sbeesnenaeene 175
0.2. ComPAriSON OPETALOTS......ccuerueruierieriietenieeitenteeteestesteeetenteebtetesteeseestesbeessesbeessenseene 175
9.3. Mathematical Functions and OpPerators...........ceccevererierieneerieneenienenieneneenenieene 177
9.4. String Functions and OPEeratorscc.ceeeieriireenererienieneetenieeteseeseeneesieenenieene 180
.4, 1. FOTTAL tvtetieeieeieeittente e e et estesteebeestbesabesabeesbaessbesaseebeessseenseeseesssesnsennee 194

9.5. Binary String Functions and OPeratorscocveereerverrieeneeneesireenieeneesseesseenseens 196
9.6. Bit String Functions and OPEeratorscueeveerieeriienieerieenieeneesreesieenieesseesseeneeens 198
0.7. Pattern MatChiNgccoveviiiiiiiieiie ettt ettt sttt st esbeebeebee s 199
0.7 1. LIKE ittt et 199
9.7.2. SIMILAR TO Regular EXPressions.......cceceeveerierieniieenienienieenieesieeieenne 200
9.7.3. POSIX Regular EXPressionsco.eeeeieriernieenieniesieenieesieeieesiee e seeenne 201
9.7.3.1. Regular Expression Detailsccccoeuervieeneiniiniieeneenienieeieeeene 205

9.7.3.2. Bracket EXPIesSionsccceevveeieerieenieiieeieenieesieeieeniee e eieeiee 207

9.7.3.3. Regular Expression ESCapes........ccccovverierieeniinieneeneenieeieeeene 208

9.7.3.4. Regular Expression MetasyntaX........cccceeeeeereneecrenreeveenueneennennens 210

9.7.3.5. Regular Expression Matching Rulesccccoceecininvininencnnen. 212

9.7.3.6. Limits and Compatibilitycccceeievienirieneninienieeeeeeeerenene 213

9.7.3.7. Basic Regular EXpressionscccccceeveevirieneneeceenieeeneencenenens 214

9.8. Data Type Formatting FUNCHONScccoiriiiiiiiiiiiiiiiieiineeicceece e 214
9.9. Date/Time Functions and OPErators............ccoeeierueririeniiniecieneeeese e seeneneene 221
9.9.1. EXTRACT, AT E_PATE tttiiieiiiieeeeiiieeeeeeeitteeeeeeeteeeeeeeerreeeeeseseseeeessreseeeensnnes 227
R e L oY o o 8 o Lo SRRSO 230
9.9.3. AT TIME ZONE...cciiiiiiiiiiiiiitiiienie et sttt st s e s 231
9.9.4. Current Date/TIimecceecuereeierieieiesiceeete ettt 232
9.9.5. Delaying EXECUtION.......c.cotririinieieieiteiietiseieteteiteie et 234

9.10. Enum Support FUNCHONSccceiruiriiriiieieiiiininenieieeetee st 234
9.11. Geometric Functions and OPerators...........c.cceccevererierenienienieesieneseeniesieeeenieens 235
9.12. Network Address Functions and Operators..........c.ccecuerereerierieenieneneeneneeienenne 239
9.13. Text Search Functions and OpPerators............ceceevererienienierienenieneneenieseeienieene 241
9.14. XML FUNCHONS ..ottt sttt 245
9.14.1. Producing XML CONtent..........ccccecveruerieuinerienenienienieerenieeeeeneeseeeeenaeas 245
9.14.1.1. XIMLCOMMENT wvervrereiieieeieerieeteesieessaeeteesseesteesseenseenseessseensesnseens 245

9.14.1.2. XINLCONCAL teveetreriieeieeieesiteeteesteesiaesteesseenseesbeesseenseessseeseenseens 246

Vii

9.14.1.3. XMLELEMENT wrrieeieeirrieeeeeiirreeeeeeitreeeeeeireeeeeesiareeeeenssreseeesiareeeeeenns 246

9.14.1.4. XINLEOTESET teteetieriieeieeieesiteete et e site ettt et e st eebe e beesabeebeeaee s 248

0. 14.1.5. KIMLPL cuiiiiiiiiiiiiiiii e s 248

9.14.1.6. XINLT OO terueieieeiieniieeieeie et ettt et ettt ettt e bt e beesateebeeaee s 249

D.14. 1.7, XIMLAGG ttttiiiiitriieeeeeitreeeeeeeireeeeeetiareeeeesereeeeeesareeeeeeeareeeeesareeeeeeas 249

9.14.2. XML PrediCatesc..coceecuerieieniiiieieniieienieeeenie et st eneeseeseeenne e 250
9.14.2.1. IS DOCUMENT ..eouveutieeeenrerieenrenteeerereeseesaesaeennesseeanesseeneensesaeennenaens 250

9.14.2.2. IS NOT DOCUMENT....ccuiriiiimiimiiriiuiriiieieiteie st s 250

9.14.2.3. XMLEXTISTS curerueeurerieieeresieeresieeeeseeseeaesreenesseeaseseeneesesaeenesuens 250

9.14.2.4. xml_is_well fOTrMEQ .iiiiiiiiiiiiiiiiiiirieieeeeeeeeeeeeeeeeeessannns 251

9.14.3. Processing XMLcccoooiiiiiiiniiiiieiieee e 251
9.14.4. Mapping Tables to XML........ccccceeieirininienenieieincnesesteeeeeeeneeresreneene 253

9.15. JSON Functions and OPEIatorsccceeeeeeuererrererueeeteenenressesseeeeesessessensennes 256
9.16. Sequence Manipulation FUNCHONSc..ccceveririnenenieieiiininceeeeeeeeeesee e 263
9.17. Conditional EXPreSSIONScccetririirieieieiniininienieteeetee e sresseseeeeseeveeaesaesaennes 265
0. 17,1 CASE ettt sttt s ettt 265
0.17.2. CORLESCE woiuiiiuiiiiiieiiiieit ettt 267

0. 17 3. NULLIF cutiuteutetiteieteeeteettsie sttt est et ae e et evesaesae st st euesbesnesaens 267
9.17.4. GREATEST aNd LEAST...ccuiiiiiiiiiiiiiiinieiiienineeic et 267

9.18. Array Functions and OPEratorscoeeceeruereeriererienienieienieetesieseeniesieessenieene 267
9.19. Range Functions and OPerators...........c..cecueruereerererienienienienieeteneesieeniesieesenieene 270
0.20. Aggregate FUNCHONSc..cocuiririiiiriieteniceitete ettt st 272
9.21. WINdow FUNCHONSc..coviiiiiiiiiiiiiitiictceteeese e 278
0.22. SUDQUETY EXPIESSIONS ...vvieevieiieniieriiierieeniiesiieeieenitesitesseesseessresseeseesseesssessesnseens 280
0.22. 1. EXISTS ittt 280
9.22.2. TNt et 281
9.22.3. NOT INuiiiiiiiiiiiiiiiiiiitiiciteicei ettt 281
9.22.4. ANY/SOME ...ovviviniiiiniitiiiitiiiieicteicet et 282
0.22.5. ALL ottt 282
9.22.6. Single-row COMPATISONeevuvereiriiieniienieetiesitesteeieesteesteeteenbeesresneenne 283

9.23. Row and Array COMPATISONS ...c..eeruvirruieruieriieeiieenieentesieesieesseesreesseesseessesnsessseens 283
9.23. 1. IN cti e e 283
9.23. 2. NOT INuuiiietiieiiieieiieteie ettt easenene e 283
9.23.3. ANY/SOME (AITAY) .veervveeurerreeniiereerieenttestesteesseesssesseesseessesssessseessessseenne 284
9.23.4. ALL (AITAY) cvveruveeteeriieeteeieesite et eteesttesitesbeesbtesatesateesbeesabesaseenbeesssesaseenne 284
9.23.5. Row Constructor COMPAriSON.........cc.eeeeuerrieeeruereenteneerenreeeeseesneenennens 285
9.23.6. Composite Type COMPAriSON.........cccueruiecueruieieriereerenieeresreeeeseeseenennen 285

9.24. Set Returning FUNCHONScccoeiuiiiiiiiniiiiiiiiiee et 286
9.25. System Information FUNCHONScceoveieiriniinininicicieeneeeceeeeeee e 289
9.26. System Administration FUNCHONScc.cceveririirenenieieiiinineerceeeeenc e 300
9.26.1. Configuration Settings FUNCHONS.........ccccoververieririniinininieieieencnenienene 300
9.26.2. Server Signaling FUNCHONScc.cceviririnenenieieincne et 301
9.26.3. Backup Control FUNCHIONScccccveiririinienieieieincne e 302
9.26.4. Recovery Control FUNCHONSccectririinenieierieinine et 304
9.26.5. Snapshot Synchronization FUNCtioNS.........c..ceceverieneneeiinenieneeceeeee 306
9.26.6. Replication FUNCLONSc.cocueiiriiiiniiiiiniieiecteeseeeeee e 306
9.26.7. Database Object Management FUNCtions.........c..cecceveveeveneneencnceniennen. 308
9.26.8. Generic File Access FUNCHONS........c.ccooiienienieieiniie e 310
9.26.9. Advisory Lock FUNCtions.........c.cceceeverieiiininiienenieneneeeeecec e 311

0.27. Trig@er FUNCHIONSccuiviiiiiiiriiiieiieiestcetee ettt st 313
0.28. Event Trigger FUNCHONSc..cooueriiiieieniirieienieeienieeteieeit ettt 314
1O, TYPE COMNVEISION. ..uuteeireeutierireeieeteesteesteeteeteesteeseeseesseesssessseesssesssessseesseesssessseensessseessees 316

viii

LO.1. OVEIVIEW ...vvvieeieeiieeeeeeeteee ettt eee e e e e et e e eeeareeeeeeaaaeeeeesareeeeeesaseeeeeensraeeees 316

1O.2. OPETALOTS ...euvveenvieeiieeieette st eteeitesiteebee it esttesbeeteesbeesabeesbeesseesabeenseenseessseeseenseens 317
10.3. FUNCLIONSviiiiiiiiiiiiciccr et 321
10.4. ValUe SOTAZEeeiueieieiieeiieeieeite sttt et ettt et e st sttt e sbeesabeebeesbeesateeseesee s 325
10.5. UNION, CASE, and Related CONnStIUCES.........ccooviiiiiieiiiieeiiiieieeeeeee e eeeeeeearavaeeeeees 326
L1 TIAEXES ..ttt ettt ettt et e b e s ae e sae st nesueeaneneeae 328
11,1, TNEPOAUCTION ..ottt ettt ettt ettt st e bt e st e st e beenaee s 328
T1.2. INAEX TYPES.curiniiiieiieieiteeteeee ettt st s 329
11.3. Multicolumn INAEXEScooueeruriiieiiieniieeieeieeitesteete ettt 331
11.4. Indexes and ORDER BYeeveeruieriieerieeniienieeieenieessteseeesbeesstesseessseesseesseesssesnsessseens 332
11.5. Combining Multiple INdeXesccccciririiiiiiiiiiiccec e 332
11.6. UNIQUE INAEXES ...cenveeeiiiiiiieeiiieeieee ettt ettt ettt st 333
11.7. Indexes on EXPreSSIONScceeieiirierierieeiesieeiieie ettt et s 334
11.8. Partial TNAEXESc.eoueeiiiiiieieieeiiee ettt s 334
11.9. Operator Classes and Operator Familiesc.ccccovereviecieninininenenenceeneneneenee 337
11.10. Indexes and COLLationS.cceeruirieriererienieei ettt et s 338
11.11. Examining Index USage........ccoeviririnenieniiiiiiinenicieietee et 339
12, FUll TEXE SEAICH ..cuviiiiiiiiieiieeee ettt be ettt st se b eae 341
12,1, INEFOAUCLION ...ttt s s 341
12.1.1. What Is @ DOCUMENL?.......coceoviviiiiiiieiiiieiceceeee e 342
12.1.2. Basic Text MatChingccocceveererieneniieienieetene e 342
12.1.3. CONfIGUIALIONS.....eveeuiiiieiiiiieitenieeitetesteet ettt sttt s 343

12.2. Tables and INAEXES.........ccovuiriiviiiiiiiiiiiiieeceene e 344
12.2.1. Searching a Table........cccccuieiierieiiieieeeeete ettt 344
12.2.2. Creating INAEXEScecveriiiriieriienie ettt ettt st see st e e saees 345

12.3. Controlling TeXt SEArCh.......cccviviiiiiiiieiere ettt 346
12.3.1. Parsing DOCUMENLScccueeiierierieiiieniienieeieenieente e esieesieesereenseesanesaeas 346
12.3.2. Parsing QUETIESccueeveeruieriieiieeieenitesteeteeieesiteeteebeessaessesnseenseessnesanes 347
12.3.3. Ranking Search ReSUltscccceevieriiiiieniiiiiiiieeieeeereeeeeeie e 349
12.3.4. Highlighting RESUILScccueeviiiiiiiiiiiiiiecctese e 351

12.4. Additional FEAtUIESccccoirieriirieieniiniiiineetenceteeee ettt et eenenaeeae 352
12.4.1. Manipulating DOCUMENLS........cceevieriiriiiieiiienieeieeie et 352
12.4.2. Manipulating QUETIES.ccevtrierriiinierieeieeite sttt et 353
12.4.2.1. Query REWTItNGcc.coieiiiriiiieiineeieeeecieeeeeeenie e 354

12.4.3. Triggers for Automatic Updatesccceevieveenireeneneniieninecieneenennens 355
12.4.4. Gathering Document StatiStiCscc.ceceevueruieieenereenieneerereeeere e 356

12,5, PATSEIS ettt ettt ettt ettt st e bt et st ae e i s 357
12.6. DICHONATIES. . ..eeuveeiieriiieieeieesite ettt ettt et sat et e st e st st e sbeesaeesaseebeenbee s 359
12.6.1. StOP WOIAS ..o s 360
12.6.2. SIMPIe DICHONATY ...cuveevieiiieieierie ettt sttt 361
12.6.3. Synonym DiCtiONArYccceeoieriiieieiieieeeeie e 362
12.6.4. Thesaurus DICHONATYccuevueeieriiieiesteeieee ettt 363
12.6.4.1. Thesaurus CONfigurationccccoeceerereeriereneesieneeieneeeceeenneas 364

12.6.4.2. Thesaurus EXampleccccooieieiinieieninieeneeeeee e 365

12.6.5. ISPEll DICHONATYcueitieiiiieiieieeiteieeteee ettt s 366
12.6.6. SNOWDAIL DICHONATY ..c.veeuviiieiieiiiiieieniceienie ettt 367

12.7. Configuration EXample...........ccceevirirniinirieniinieienieeeeneeteesiteee et 367
12.8. Testing and Debugging Text Searchc..ccccevveviniiiininienniecececeeeee 369
12.8.1. Configuration TeStING........cceeveerireenieniieienieetene sttt 369
12.8.2. Parser TeSINE ...cuevueeiertieiiniietenieeiteest ettt sttt s 371
12.8.3. Dictionary TSNcceeveruirieririieienieeteeetenee sttt 372

12.9. GiST and GIN INAEX TYPES ..ecvvierrerriieriieeieeieenitenre et esieesiteseesbeeseeesseessseenseenaeens 373

ix

12.10. PSL SUPPOTL.c.ntiiiiieiiiiieiieeieeite sttt ettt et e st e e bt esbeesabeebeesbeessbeenseeseens 374

12,11, LAMIEALIONS ...eeteeriieeieeieesiieeieeite sttt ettt stt e et e bt e bt e st e ebeesbeesabeebeenbeesaseenseenseens 377
12.12. Migration from Pre-8.3 Text Search.......ccoccooveeviiiiiiiiinniiniiiieeceeceeeeee 377
13. ConcurrenCy CONLIOL.....cocuiiiieeiiiiierieeie ettt ettt st e sbee st st e e beesanesaneenne 378
13,1, INETOQUCHION «.entiiiiieieeiee sttt ettt sttt sbe e st e b e e b e sateebeebee s 378
13.2. Transaction ISOIAtIONceceeruiiriiiiiiiiniieeieeeetteteee ettt 378
13.2.1. Read Committed Isolation Levelc.ccccceveeiieniiienciiecieece e, 379
13.2.2. Repeatable Read Isolation Level............ccccocoeceniiiinininiiniicicicceee 380
13.2.3. Serializable Isolation Level..........ccccceeviieeriieeciieeeeeeecee e 381

13.3. EXPLCit LOCKING ..o 384
13.3.1. Table-1evel LOCKScccciiiiiiieeiie ettt 384
13.3.2. ROW-1EVEI LOCKS ...cevieiieiieciiicieeieete ettt ettt 386
13.3.3. Page-1evel LOCKSoovuiiriiiiiiieeeececccceeeee e 388
13.3.4. DeadlOCKS.....cccuiieieeiieiieeiecie ettt ettt e s veeae e e s aeeaeebe e baesnnennnas 388
13.3.5. AdVISOTY LOCKS ..c..euieiiiiiiiiiniiicecieteteeeeeee et 389

13.4. Data Consistency Checks at the Application Level..........cccccocivevienevininicncnenne. 390
13.4.1. Enforcing Consistency With Serializable Transactions............ccccecceveuee 390
13.4.2. Enforcing Consistency With Explicit Blocking Locksc.ccccccvccenenen. 390

1305, CAVEALS. ...ttt ettt ettt e st e et e e et e e st e e et e e et e e e eabee e ateeeaee 391
13.6. Locking and INAEXES........cocverieruieriiriiiiinieiieienitee ettt 392
14, Performance TIPS «...c..ceovereeieriinieienieetenieei ettt ettt sttt ettt st saesbte b sbeeanenbeeae 393
14.1. USING EXPLATN .eotiriteteteeitenteettetesteetesteettentesttestesteeseessesseensesseessensesseensesueensensens 393
14.1.1. EXPLAIN BASICS ueuieuiiiiiiiiiiiienicnitetest ettt 393
14.1.2. EXPLAIN ANALYZE .otvterterierirenienieetenteeteniesseessesteeasensesseenuesmeensessesssensenne 399
L4.1.3. CAVEALS ...ttt ettt et et e e sttt e st e st e e e e sateeabe e beesaeesaseenseessnennnas 402

14.2. Statistics Used by the PIannercceeeeerieriieenienieiiecicereeeeeeeesiee e 403
14.3. Controlling the Planner with Explicit JOIN Clauses.........ccccceceevuererreeneneecrennenne 404
14.4. Populating @ Databasececueevieriirieeniienieeieeieesite ettt st seteebeenaee s 406
14.4.1. Disable AUtOCOMIMIL.....cccceeviiiiiieriierieiiteieeiee ettt e s 406
14.4.2. USE COPY .eeintiriteieriteientteteett oot setete sttt et e e st eaesbe s e bt saeesaesaeennennees 407
14.4.3. REMOVE INAEXES ...ceouviiniieiieiiiiieeitete ettt sttt ettt 407
14.4.4. Remove Foreign Key Constraintsceceeveerierniersieenienieensieenieeseenanes 407
14.4.5. Increase maint enance WOTK_ MEM . ceeieeeeeeeeeiereeeeeeeeeeeeeseeeeeeeeeeeneennnnnnns 407
14.4.6. Increase checkpoint_SEgmMENTS .couvvveeeeeeiiiieeeeeetreeeeeeireeeeeeeiareeeeeeennnes 408
14.4.7. Disable WAL Archival and Streaming Replicationccccceuereenennen. 408
14.4.8. Run ANALYZE AfterWards........ccueeeeueeeriieeiiieeieeeieeeeieeeseeeesveeesveeseneas 408
14.4.9. Some Notes AbOUL PE_AUMPeerveeriiiriieiiiieenieeie ettt 408

14.5. Non-Durable SEetNEScccceviirrierriiiniiieieeeeitesteete ettt st 409
II1. Server Administration 411
15. Installation from SOUrCe COAEcccviiieuiiiiiieeetee ettt eae e 413
15.1. SNOIt VEISION ...ttt ettt e e e et e e et e e eteeeeaaeeeeaeeeeeans 413
15.2. REQUITEIMGIIES ...ttt ettt sttt ettt ettt ettt et s b et esbeeaeenaesaeeaesbeas 413
15.3. Getting The SOUICE.......oiuiiiiiieiieiecee ettt 415
15.4. Installation ProCeaure...........c..coouiiiiiiieeiie ettt e 415
15.5. Post-Installation SEUP.........coeeeeriirieriniiiieniesiteee ettt 425
15.5.1. Shared LiDIari€Scocouiiiiiieeeiie ettt ettt e e e 425
15.5.2. Environment Variables...........cccuiieiiiiiiiieeiiieeeiee e 426

15.6. Supported PlatfOrmsccoueeieriiniiniiniiiieieneeseeteseeteeseete et 427
15.7. Platform-specific NOLEScceeiiriireiiinierieieriteeseetee ettt 427
I5.7. 10 ALX ettt sttt st sttt baenaeeeneas 427
15.7.1.1. GCC ISSUES c..veenereerieiiieiieeire et esieesiteseteeieesieesenesbeeseeseeesaresseenne 428

15.7.1.2. Unix-Domain SocKkets BroKen..........c.ccccooevvveieeeiiveeeeeiiineeeeeeinns 428

15.7.1.3. Internet Address ISSUES.........ccooviviriiieiiiiiiiieicceece 428

15.7.1.4. Memory Managementcoceereerveerieeneeneesnieenieeneessessneenne 429

References and Resources ..o 430

15.7.2. CYZWIN cniiiiiiiiiieiteete ettt sttt ettt st et e s 431
15730 HP-UX .ottt ettt sttt 431
I5.7.4. MACOS ...ttt ettt sttt 432
15.7.5. MINGW/Native WINAOWScovverriiiniiriinieiieenieeie ettt 433
15.7.5.1. Collecting Crash Dumps on Windowsc..ccccceeeeenieneeciennenne 433

15.7.6. SCO OpenServer and SCO UnixWare..........ccccoceeeevenieieninencncennennen. 433
15.7.6.1. SKUNKWATEcoouviriiiiiiiiiiieeieetetee ettt 433

15.7.6.2. GNU MaKEoouviuiiiiinieieieieinenestetetee ettt s 434

15.7.6.3. ReAALINE......ooveeiiiiieiieieeeee et 434

15.7.6.4. Using the UDK on OpenServer..........coceeverereeneenieenienesceenees 434

15.7.6.5. Reading the PostgreSQL Man Pages..........ccccoceeveniriencnccenenen. 434

15.7.6.6. C99 Issues with the 7.1.1b Feature Supplementc.cco.cu.e... 435

15.7.6.7. Threading on UnixXWarecccceveevenerienenienieneeieneeceenen 435

15.7.77. SOLATIS ..ttt ettt sttt s sbeas 435
15.7.7.1. Required TOOISccouevuieienirienienieeieieeiteee et 435

15.7.7.2. Problems with OpenSSLccccoiiiiininiininiiienenieenieeieee 435

15.7.7.3. configure Complains About a Failed Test Program 435

15.7.7.4. 64-bit Build Sometimes Crashes..........ccccceeeviveneneceeincncnnennee 436

15.7.7.5. Compiling for Optimal Performance............cccccoceverienenennucncne 436

15.7.7.6. Using DTrace for Tracing PostgreSQLc.ccoceverieneneniiencne 436

16. Installation from Source Code on WIndOWsccccvviririiienieieinininieicieiee e 438
16.1. Building with Visual C++ or the Microsoft Windows SDK.........c..cccccecenereiinnene 438
16.1.1. REQUITEIMENLS ...c.evievieiieniiieiieriieeie et eriteeite et et e saee st e e e saeeseteebeesanesaeas 439
16.1.2. Special Considerations for 64-bit Windowscccccecceervervienrieeneeneennne. 441
16.1.3. BUIIAING ..ooviiiiiiiiiiiiiiiccceeeeee e 441
16.1.4. Cleaning and INStallingcccceeveeriiriienieiniienieeieeieesre et 441
16.1.5. Running the Regression TeStSccceviiviieriieniienienieeieeneeeeeeieeieesiee e 442
16.1.6. Building the Documentation...........cc.cceovveerveeniienieniieenieenieeeeeieesiee e 442

16.2. Building libpq with Visual C++ or Borland CH++.......coceeviiiiiiiiiiniiniiiieeceee 443
16.2.1. Generated FIlescocoeviiriiiiniiieiinieiciceee e 443

17. Server Setup and OPErationccccoceeceeruerierieniieieniieteiereetenreeee et st eee e eseesaesaeenenneene 445
17.1. The PostgreSQL USEr ACCOUNLcccueriirieiiriieiiieeeeie et 445
17.2. Creating a Database CIUSLETcccoeviriiiiiiiiiiiiiicceeeeeeeece e 445
17.2.1. Use of Secondary File Systems...........ccccceeieveniiiiinininienieeciesceeenene 446
17.2.2. Use of Network File Systemscc.ccceceriiiiniiiiininiiiciceciceceeeeee 446

17.3. Starting the Database SEIVET..........ccceeviririiererieiereeese et 447
17.3.1. Server Start-up Failuresocccoveeviiiiiniiiiiinineeeeeeeeeeee 448
17.3.2. Client Connection Problemscccoceeiieririiineiienenieeeeeee e 449

17.4. Managing Kernel ReSOUICES..........coceeriiiirieniiiieiiieee e 450
17.4.1. Shared Memory and Semaphoresccceeeveerereeneneeieniecene e 450
17.4.2. systemd RemoveIPCcccoooiiiiiiiiniieieee e 455
17.4.3. ReSOUICE LIMILS ..c..oeuietiiiiiiiienieiteest e 456
17.4.4. Linux Memory OVEIrCOMMILcceevuertieieniieienieiieeienieetenee e sieeee e 457
17.4.5. Linux HUEe Pagescc.eeoiiriiiiiiiiiiieniecieectee e 458

17.5. Shutting DOWN the SEIVET.......cccccviriiiiiriiienieriteene ettt 459
17.6. Upgrading a PostgreSQL CIUSLETcc..coerierierieiinieiienieneeesieeteeeeeee e 460
17.6.1. Upgrading Data via pg_dumpall..........cccceviriinininininnininicncnceenene 460
17.6.2. Upgrading Data via pg_upgradeccccevereereneeieneneeneneenenieereniene 462

Xi

17.6.3. Upgrading Data via Replication.........cccceevveeriierieenierniienienieeieenieeseeeees 462

17.7. Preventing Server SPOOTINGccceviiiiiirienienieeieenite ettt sttt 462
17.8. ENCIYPLion OPHONS.....eeuiiiiieieeiteniieeieeitesiteeteetee st ste et esbeesabeesseesbeesaseeseenaeens 463
17.9. Secure TCP/IP Connections with SSLc..cccooiniiiiiiniiiineeeercee 464
17.9.1. Using Client CertifiCatescooeererriiriierieirieenieeieeieeseeeee et 465
17.9.2. SSL Server File USagecccuevviiiviiiiiiiieieiiiesieeeeieeste et 465
17.9.3. Creating CertifiCates..........coeevuerireenierieieniieeenie et 466
17.10. Secure TCP/IP Connections with SSH Tunnelscoecevierveinienicnienneeneen. 467
17.11. Registering Event Log on Windowsccceciniiiininienenieiieeeceeeeeneee 468
18. Server CONfIGUIATIONcc.eiiiiiiiiiiirieieeee ettt 469
18.1. Setting Parameterscocueiuieiiiiiiiiiiii et 469
18.1.1. Parameter Names and Values.........ccccevvueevieiiiiniinnieniieenieeeeeeeieeeee 469
18.1.2. Parameter Interaction via the Configuration File........c..cccccccvevininncnnne 469
18.1.3. Parameter Interaction via SQL...........ccccooiiiiiiiiiiiiieeeeeee e 470
18.1.4. Parameter Interaction via the Shell...........ccoccoiiiiiiiiiiieeeee 471
18.1.5. Managing Configuration File Contents...........cccccocceveneriieneneenencenennen. 471

18.2. FIle LOCALIONS ...ttt ettt b et et 472
18.3. Connections and AuthentiCation...........c.eeverierierienieerienentenesiteeese et 473
18.3.1. CONNECHION SELHINES ...eveeuverieiieniiriieienteeiente ettt ettt s saeas 473
18.3.2. Security and AuthentiCation...........ccceveeuererieneneeneneeteneeeeie e 476

18.4. Resource CONSUMPLION.........cvueruteriirieeierienitentenitetenteete st st ete st et sbeebeeseesaeesaesbeas 478
L84, 1. MBIMOIY ..ttt ettt ettt ettt st sttt et et s sbe s 479
I8.4.2. DISK .ttt 481
18.4.3. Kernel ReSoUrce USAge.......cc.eevvereeiinieeienienienieniieienieeeente st sieerenieene 481
18.4.4. Cost-based Vacuum Delaycccceevueeviiniiiiiinienieeieeeesee e 481
18.4.5. Back@round WIILeT........cccuieiierienieiiieiieete ettt ettt 482
18.4.6. Asynchronous Behavior..........ccceeviiiienieniiiiieniienie et 483

18.5. WIite ANEad LOZceviiiiiiiiiiiieiieciie ettt ettt sttt st 484
18.5. 1. SEUNES .c.eeeiiieiieiieete ettt ettt sttt st ettt e st e st e sabe e baesanesaees 484
18.5.2. ChECKPOINLS. ..cuttiiieriiieiieiieeiie ettt st ettt ettt e et e st e st e beesanesaeas 487
18.5.3. ATCHIVINZ 1ttt sttt ettt et 488

18.6. REPICAION. c...eitiiiiieiiiiie ittt ettt ettt sttt st e b e b e sabeebeebee s 489
18.6.1. SeNding SETVET(S)..cc.ueevvieriieriiiieeiiente sttt ettt ettt ettt e 489
18.6.2. MASLET SEIVETeuieiiiiieiiiiieteieeeetestt ettt st et 490
18.6.3. Standby SETVETScc.ceuieiiiriieiiniiiierereeeete ettt st 491

18.7. Query PIANNINGcc.coiiiiiiiiiieiiciiee et 492
18.7.1. Planner Method Configuration..............ccceeueeceeniiienieneniienieeeieseeeeee 492
18.7.2. Planner Cost CONSLANLScc.verueereeerieriieieeieenieeieeieesireete et enieesseesaees 493
18.7.3. Genetic QuUery OPtiMiZer.........cccooveevueriiiieniieieie it 494
18.7.4. Other Planner OPtions...........ccccoccoieiieiiiiieniiiiene e 495

18.8. Error Reporting and LOZZINGcccecevimirienieieiiinienicieteeeteeesieeeeeeee e 497
18.8.1. Where To LOg ..o 497
18.8.2. When To LOg ..o 499
18.8.3. What TO LOg «..eeeeiieieiieee ettt 501
18.8.4. Using CSV-Format Log Outputccccecerieriieneiienienieieneecee e 504

18.9. RUN-IME StALISTICS. . .eeuvetieiieieetieiieieete ettt sttt sttt ettt e saeeae b 505
18.9.1. Query and Index Statistics COIlECtOrcc.cecueririeneninienieieerceeeee 505
18.9.2. Statistics MONIOTINEZ ... ceuvervieieniiriieieniieienieetente sttt s 506
18.10. Automatic VACUUIMINEeevueeuieiirieeienieriteienitete ettt sttt et e e saee e v 507
18.11. Client Connection Defaultsc.ccovivieriiiiiiininiiicieiceeeeeeeeee e 508
18.11.1. Statement BEhavior...........cccouecieiiiiiniiniieiciceceeee e 509
18.11.2. Locale and FOrmattingc..ceceevuereenienenienenieieneneenie e 512

Xii

18.11.3. Shared Library Preloadingccoceevvvievieiniinieniieeienieeeeeieeeesee e 514

18.11.4. Other Defaults.......cc.coieviiniiiiniiieienieieeeec et 515
18.12. LOCK MaANaZEeMENLcc..eeruiieieeiieniieeieeieesiteeteeieesitesteeieesteesabeeseesbeesaseeseenseens 516
18.13. Version and Platform Compatibilityc.cceeveeveeniiriiensiienieiieeeenee e 517

18.13.1. Previous PostgreSQL Versionsc.ccceceevueerienniensieenienienieenieeseeeae 517

18.13.2. Platform and Client Compatibility..........cccccceniriieneniniininicninieenene 518
18.14. Error Handling.........ccooieiiiiiniiiiicictceeeeeeeeee et 519
18.15. Preset OPLONS....c..ooueeiiiiieieiieieeieeteete ettt ettt et sae e ne s 519
18.16. Customized OPLIONSccceouieuieiiiriieienieeieteee ettt s 521
18.17. DeVElOPEr OPLIONSovieuiiiieiieiieiieierte ettt ettt 521
18.18. ShOTt OPHONS ...ttt s 524

19. Client AUtNENTICALION ...eevieeiieeiieitieeieeieesteesteeiteesteestteeaeeseesssessseesseesseesssessseesseesssensseenns 526
19.1. The pg_hba.conf File ..ottt e 526
19.2. User Name MapSccooiiiiiiiiiiiiiceie e e s 532
19.3. Authentication Methodsc.cccieriieiieeiiieieerie ettt sbeesae e e 534

19.3.1. Trust AUtRENtICALIONcccvvereiieiieriieeieeieeieeieeeteeteeteesreeeeebeeseessneennas 534

19.3.2. Password AUthentiCationccceeveeeeiienieenieenieesieesieeseeeeeeseesseessnesnnes 534

19.3.3. GSSAPI AUthentiCationcceeveerieeiienieenienieesieesieeneeereereesseessneennes 534

19.3.4. SSPI AUthentiCation.......c..coueeteririenieniieieneetene ettt 536

19.3.5. Ident AUthentiCation..........cceeeeririenieniieienieetee et 536

19.3.6. Peer AUthentiCation...........co.eeveerereenienieeienieeiene ettt 537

19.3.7. LDAP AUthentiCationccccceereerierieerienienienieneeienieetenieeieenae e 537

19.3.8. RADIUS Authentication..........cocceceevuerieeienieniieneneenienieerenieeieenee oo e 539

19.3.9. Certificate AUthentiCationcoccecuereevienerienenieieneeeene e 540

19.3.10. PAM AUthentiCationcecccoereeriineeiienenienienieetenieeeenie st sieeneniene 541
19.4. Authentication Problemscoccoeevieririiniineeniineeieenteeeeeeenie et 541

20. Database ROIESccueviriiniiiiiieiietesitetctc ettt st sttt s 543
20.1. Database ROIEScceeieiimirieinieienieetete ettt sttt 543
20.2. ROIE ALITDULES.....c..evieiiiiieiienieeiieieritetescetete ettt ettt st ae s nneene 544
20.3. ROIE MEMDETSHIP ...covieiiiiiiiiiiiiiesit ettt sttt st 545
20.4. DIopping ROLES.......eovuiiriiiiiiiieiteeit ettt sttt ettt et st b i 546
20.5. FUNCHION SECUTILY....eeruieriieiiieiieiie st eieesite sttt et sitesbeesaeesaeesbeebeesbeesateenbeebeens 547
21. Managing DatabDasesccecueerueeriieriiiriieeniieste et ettt ettt e st e ste e bt e sbtesabesbe e beesabesaneenne 548
211 OVEIVIBW ettt ettt sttt ettt ettt e sbt e st e bt e s bt e st e e bt esbeesateenbeebeens 548
21.2. Creating a Database.........cccoeeveriirieieniinieieeeee ettt 548
21.3. Template Databasesccccoceeveriirieieniinicie ettt 549
21.4. Database Configurationccccoceecueruieieniinienienceieneee et 550
21.5. Destroying a Databaseccccoiiieiiniiiiiiiiiiee et 551
21.6. TabIESPACESeeeuiiiieiiiiieierie ettt ettt s 551
22, LLOCAIZAIONeeeiiiieeiieeeiieette et e ette e ettt e et e e st eesatee e saeeesbeeesseesnseeanseeeanseeeasseeennseennnne 554
22.1. LLOCALE SUPPOTL....ciuiiitiiriiiriiieieeite ettt ettt ettt st et st e e bt e b e sateebeebee s 554

22. 1.1, OVEIVIEW .eeerieiiieiieeeieeteeteesteeteesteesteeeteeteesteesssesaseesssesssassseeseesssanssennne 554

22.1.2. BERAVIOT c..eiiiieiiciieceeee ettt ettt e teete et eeaeebe et e s saeenaeenne 555

22.1.3. PTODICINIS ...ueviiiieiieeiieeie ettt ettt e teeveeseeesaeenveesbeessveenseenbeesssasssaenne 556
22.2. COllAtiON SUPPOIT..c..eeiiriieiirtieiierieiteeie st eettente et este st eteste ettt e bt esteseesaeenaesbeensenaeene 556

22.2. 1. CONCOPLS...enveemeetiritenieettete et ete st ettt sbt ettt e et e sae et ebesbees e beeaeeneesaeenaenbeas 556

22.2.2. Managing Collationscoeeviererierienieienieetenie sttt 558
22.3. Character SEt SUPPOIT......ccuevuirieriirieientieitete ettt sttt ettt st et see st et sbeessenieene 559

22.3.1. Supported Character SELS........ccoereererierienieienieneenteneerenteeee e sieeaenieas 559

22.3.2. Setting the Character Set.........ccocceuererieriinirienienienienieetene et 562

22.3.3. Automatic Character Set Conversion Between Server and Client........... 563

22.3.4. Further Readingccceecvieiiiinieiiieiienieeie ettt 565

xiii

23. Routine Database Maintenance TasKS...........ccovveiieiiiiriieieeiiireeeeeeeireeeeeeeireeeeeeerreeeeeeareeee s 566

23.1. ROUINEG VACUUIMIINGeovviiiiieiieiieniieeiteenite sttt ebeesitesttesteesaeesitesabeebeesseesateenseeseens 566
23.1.1. Vacuuming BasiCS......cecuerriierieriieiiieniienie ettt sttt et 566
23.1.2. Recovering DisK SPaceccceecuerviieniinieiiiienieeiecieciteeeee et 567
23.1.3. Updating Planner StatiStiCScevveerierriernieenierienieeniieeeeeieesieesreeeeenne 568
23.1.4. Updating The Visibility Mapccccceeveecuinieiieninieieniereneeeeie e 569
23.1.5. Preventing Transaction ID Wraparound Failures.............cccceceneniennennen. 569

23.1.5.1. Multixacts and Wraparound...........ccceeeeeeveneecrenieieencneennennn. 572

23.1.6. The Autovacuum DaCmOmncoceerierieriiienienienieerieeeieeie et 572

23.2. Routine ReINAEXINGcc.eecuiriiriiiiiiieiiiieieie ettt s 574

23.3. Log File Maintenance............ccccoueiieieriieieniieieesie ettt ene 574

24. Backup and RESTOIEcccuiiuiiiiiiiiieieiieete ettt sttt e saeas 576

24.1. SQL DUIMIP....cccouiiiiiiitiienteiceete ettt ettt sttt s e 576
24.1.1. Restoring the DUmMPccooiiiiiiiiieiinieeceee e 576
24.1.2. Using pg_dumpall.........ccccoeieiiiniiieieiieiereeere e 577
24.1.3. Handling Large Databasesccceeerierieniieienenieiesieeeseeee e 578

24.2. File System Level Backup........ccoceeivievieiiinininiinicicicieeesceceeeecec e 579

24.3. Continuous Archiving and Point-in-Time Recovery (PITR)........c.ccccceveniiiinnenne 580
24.3.1. Setting Up WAL ATChiVINg......cocevieriiniiiinieieneeteiesieeeeeeeee e 581
24.3.2. Making a Base Backupcccceveriiiiniiiiiniiiincceceeeetee e 583
24.3.3. Making a Base Backup Using the Low Level APIcccccceceniniannnen. 584
24.3.4. Recovering Using a Continuous Archive Backupcccccoceecveninenennen. 585
24.3.5. TIMEINES......veoviiiiiieieiiciiee ettt sttt 587
24.3.6. Tips and EXamMPIEScccuerriierieriieiienienieeieeneeste et esieeseresve e eseeeseees 588

24.3.6.1. Standalone Hot Backupscccecceevieiiienienienieeceee e 588

24.3.6.2. Compressed ATChive LOgSc.ceveerieiiieeneenienieeieenie e 589

24.3.6.3. archive_command SCIPLS ..cceereerierrieeriieniiesieenieeneesieeieenieens 589

24.3.7. CAVEALS ..ttt 589

25. High Availability, Load Balancing, and Replication..........c..cccccecereencnencienencencneenennen. 591

25.1. Comparison of Different SOIUtIONS.ccccuerierriierieniiiieeienec et 591

25.2. Log-Shipping Standby SETVETS.........cccceerieriiiiiierienieiieeieeste ettt 594
25.2.1. PIANNING «.ttiiieiiiiiteteete ettt ettt sttt st e 595
25.2.2. Standby Server OPerationcccceereeeeeriieenierieniieeniieseeeeeenieesreseeenne 595
25.2.3. Preparing the Master for Standby Serversc.cccoceveevenievenincenennen. 596
25.2.4. Setting Up a Standby SEIVerccceeieciinieiieniiieieneerceeeeie e 596
25.2.5. Streaming Replication...........ccccoeeeeiiinieiiniieieneneeieneeree e 597

25.2.5.1. AUthentiCationc..ceevuerrieeniierieeieeniie ettt 598
25.2.5.2. MONIEOTING.....cuvieuiiiieiieieritetesieeeete ettt 598
25.2.6. Replication SIOTSccoeciiriiiiiiniiiiiieiieee e 599
25.2.6.1. Querying and manipulating replication slotsc..ccceceeverenneneee 599
25.2.6.2. Configuration EXamplec.ccccecevverinieviiinninineneneeeencncneenee 599
25.2.7. Cascading RepliCationc.ccoeerieiienieiiinieeierie e 600
25.2.8. Synchronous Replicationcccceierierienieiienenieieseeesie e 600
25.2.8.1. Basic Configuration...........cccceveeierieieniencenienieeesieeeenee e 600
25.2.8.2. Planning for Performance.............cccceceviriinininiininiencsceeene 601
25.2.8.3. Planning for High Availabilityccocoooinininiiniiniinieeee 602

25,3, FaIlOVET ...ttt sttt e 602

25.4. Alternative Method for Log Shippingcccceceevererienenieiiinenieneseeiesieeeene 603
25.4.1. IMPLeMENTATION «..cvvventiiieiiieeiterieeitetesit ettt ettt s saeas 604
25.4.2. Record-based Log Shipping........cccevereeieniriienenienieneeienieeeenie e 604

25.5. HOt Standbycccoiiuiiiiriiiiiiiiiiicceeteee e 605
25.5.1. USEI'S OVEIVIEW...c.ecuviuieiiiiiiiiiiicicieitee sttt s 605

Xiv

25.5.2. Handling Query CONfliCtScecveriiienienieiiieniiesieeieesiteeee e 607

25.5.3. Administrator’s OVEIVIEWcoceververieieniieeenieneenieneerenseeeenaeseeennennens 609

25.5.4. Hot Standby Parameter Reference..........coeceevverierieeniienieniieeniesieeieene 611

25.5.5. CAVEALSecviiiiiiiicicic e 611

26. Recovery COnfigUIAtIONccceeruiiriiriieeniierieeieetee ettt et ete et e sbtestesbe e beesaaesaneenne 613
26.1. Archive ReCOVETry SEttNGSc.cocereeieriirieiiiieieneereieee ettt 613

26.2. Recovery Target SELHIEScocveviirieieniieietieeee ettt 614

26.3. Standby Server SEttNES........ccocuevuerierieriieiieiietee ettt 615

27. Monitoring Database ACHVILYc.ccceeiriiiriiiienieiieeseeiete et 617
27.1. Standard UniX TOOLScc.ceeuirriiiriiniiiieerterteeeet ettt st 617

27.2. The StatiStics COIECOTc...eivuiiriiiiiiiieeritete ettt st 618
27.2.1. Statistics Collection CONfiUIaAtionceeeeeereriereseeieneeeese e 618

27.2.2. Viewing Collected StatiStiCSceoveruereeriereeiereeierieseeetesie e see e saeas 618

27.2.3. Statistics FUNCHIONScc.eecuiriieiiiieieiesiieee et 632

27.3. VIEWING LOCKS ...ttt st s 634

27.4. DYNAMIC TIACINE -.euvventetieiieriieiieie ettt ettt sttt sbe et s st esaesbe e naeeae 634
27.4.1. Compiling for Dynamic Tracing.........ccecceveeienerieneneeienieeeene e 635

27.4.2. BUIlt-in PrODESceeiuiiiiiiiiieieie ettt 635

27.4.3. USING PrODES ..ottt 643

27.4.4. Defining New Probesc.ccoceviriiiiniiiiinieieneeeesceeeeee e 644

28. Monitoring DisK USAZEccuerieriiriiiiiriiiiiieetee ettt 646
28.1. Determining Disk USAZecocuevuerieiiriiriiniiiiiieneeieieetee et 646

28.2. Disk Full Failure........ccccoueoiiiiiiiiiiiiiiciciiesceee e 647

29. Reliability and the Write-Ahead LOg.........cocevvieririiniiniiiiiineenereeenieeteeeeeee e 648
29.1. REHADIIILY «.eouveiiiiniiiieieicetescetees ettt ettt ettt s st 648

29.2. Write-Ahead Logging (WAL) ..c..cooiiiiienieeiieieeteste ettt st 650

29.3. ASynchronous COMIMIL.........cceerieriienienienieeieentesteeieesieestesreeseesseesbeeseeseens 650

29.4. WAL CONfIGUIALIONeeuviiriiiiiieiiesiieeieesite st eieesitesitesbeesaeesieesabeenseesseesaseenseenseens 652

29.5. WAL INEEINALS «..ovveriieiiieiieienieeteniertetesiceitete ettt ettt et sae st ae b sneene 654

30. REZIESSION TESLS ..ecuuviruiieiieiiieetteteette et ete et e st e ettt e st esabeeabeesbtesatesabeesbeesaeesateebeenaeesanas 656
30.1. RUNNING the TESES ...eevieriiiriiiiieiieiieeieeite sttt ettt ettt esbee st ebeebee s 656
30.1.1. Running the Tests Against a Temporary Installation...........ccccceeveennenee. 656

30.1.2. Running the Tests Against an Existing Installationc.ccceceeveeneennee. 656

30.1.3. Additional TeSt SUIESc..cecverririeriiriieieneeietene et 657

30.1.4. Locale and Encoding............ccccceeeeviinienieninienienieieneeeeneeeereseenenene 657

30.1.5. EXITA TESES ..eeeueeeiieeiieeiteeiteeit ettt sttt ettt st 658

30.1.6. Testing Hot Standby.........c.ccocveoiriiiiiniiiiieiceneeeeece e 658

30.2. Test EVAIUATION ...oouveiiiiiiiiiiieieeitestteeeteete ettt sttt e 659
30.2.1. Error Message Differences............cocooieveniiiiiiniiiiniicnccecesecieee 659

30.2.2. Locale Differencesccooeeiereeieniieieiesieeteste ettt 659

30.2.3. Date and Time Differencesccceoceeierinerrieneniecereeese e 660

30.2.4. Floating-Point Differences............coccevierereeienenieeseeesee e 660

30.2.5. Row Ordering Differencescceoiriereneiienienieeseeeese e 660

30.2.6. Insufficient Stack Depth..........cccoeieiiiiiiiniiieeeeeeee e 661

30.2.7. The “random’ TeSt........ccererueriirienieeieie ettt s 661

30.2.8. Configuration Parameters...........cccueveveerienerienienieieneeene e 661

30.3. Variant CompariSOn Filesccoceiiiiiiriiiiniiieieieeteeeeeeee et 661

304 TAP TESES ..ttt st sttt s 662

30.5. Test Coverage EXamination..........coceevverierienieneenienenienienieetesieete st siesieesenieene 663

XV

IV. Client Interfaces 664

31, THDPQ = C LADTATY eoueiieiiieiieiieeteeeette ettt ettt st sttt st e sbe e sat e e beesaeesaeas 666
31.1. Database Connection Control FUNCtionscccccoeevveneriecienceniencnieenecienneene 666
31.1.1. CONNECLION SIS ..veerveerurietieriieeteeieeniteete et et e st et e st e st sabeesbeesieesaees 672
31.1.1.1. Keyword/Value Connection Stringsccccceceecverreeveenrercennennen. 672

31.1.1.2. Connection URIScc.covueeriirieiiiiniiinieeieeiee et 673

31.1.2. Parameter Key WOIdScccooiiriiiiiniiiiiiiceeeeeeeeceeeee e 673

31.2. Connection Status FUNCHONSccccuiriiiiriiniiiiiiienie ettt 677
31.3. Command Execution FUNCHONScccevieriiiiiiniiniiiieeececeeeeec e 681
31.3.1. Main FUNCHONS «...ooouiiiiiiiiiieeiteeceeeteete ettt 681
31.3.2. Retrieving Query Result Informationcccceeeeienieneniecenenceeee 688
31.3.3. Retrieving Other Result Informationc.cccceceevevvenvenenenecnnncnenennenn 692
31.3.4. Escaping Strings for Inclusion in SQL Commandsc.cccecveverenrennenn. 692

31.4. Asynchronous Command Processing..........cccceceeeruerueieirieninenenieneeeneneneneennen 695
31.5. Retrieving Query Results ROW-By-Rowcoccoeviiiiiininininiccnncnceee 699
31.6. Canceling Queries in PrOgress.ccoeiirieriiiieneneniesieeieeeieeee et 700
31.7. The Fast-Path INterface..........coceviiieiiiniiiiiiiiee et 701
31.8. Asynchronous NOtH{ICAIONcevueiieieriirieniirteie ettt 702
31.9. Functions Associated with the COPY Commandcccceeevvinenieceeinincncnenne. 703
31.9.1. Functions for Sending COPY Data........cccceverieriinieiiininiineneeeneeienene 703
31.9.2. Functions for Receiving COPY Data........ccoceveevierieieninieneneeneneeieniene 704
31.9.3. Obsolete Functions for COPYccccveiririiniinienieiiieineneeeeeeeeeeeeee 705
31.10. Control FUNCHIONSooueiiiriiriiiieniieienieetete ettt sttt 707
31.11. Miscellaneous FUNCHONScoerveierieriiniinieieneetenieeteteeeete et 708
31.12. NOUICE PrOCESSING .evvveeiieiiieiieriieeiieeitesite et eteeit e st ste et e st e sbeebeesseesebeenseeseens 710
31,13, EVENE SYSTEIM c..eiiitieiieiieeiieeieerite sttt esitesiteebeeieesatesabeesseesaeesabeenseeseesaseenseenseens 711
31131, EVENE TYPES .ueeiiiiiieiieeieetteete ettt sttt st ettt e e e 711
31.13.2. Event Callback Procedure...........ccceeveevienerienenieienineenceeeneneereniene 713
31.13.3. Event Support FUNCHONScccuerviiriienienieniteniteste ettt 714
31.13.4. Event EXampIecooieriiiiiiiiieiiiciteiteec ettt 715
31.14. Environment Variablesccoccovverieniriiiniinienineeienieneeresc e 717
31.15. The Password FIIeccccoirieriiiieiiniiiiiiiecencceieeeeteeeeeesee et 719
31.16. The Connection Service Fileccccoiiviiiiiiiiiiniiiiieniirciececc e 719
31.17. LDAP Lookup of Connection Parameters..........c..ccceeereeciininiinicniieneneecnennene 720
31,18, SSL SUPPOTT...eriniiiiiiiiieieneeee ettt sttt et 721
31.18.1. Client Verification of Server Certificatesccocuervveeneeneersieeneeneennne. 721
31.18.2. Client CertifiCaes.......ceruirrierrieniieieeniteeie ettt ettt 722
31.18.3. Protection Provided in Different Modesccoceeveeniiniensiinnenneennee. 722
31.18.4. SSL Client File USaZe.......cccceiueeuieriiriieierieeiesieeiieieete et 724
31.18.5. SSL Library InitialiZationccccceeeeriereeienienieieeieeeese e 724
31.19. Behavior in Threaded Programs........c..ccceccevevveneneniecieinneninenenieeeeeeneseneeneen 725
31.20. Building libpgq Programs............ccccceouerieieniiieneieeesieeeee et 726
31.21. EXample Programs........ccoccceveeriiiiiiniinienie ettt 727
32, Lar@E ODJECLS ...uveeieniiriieiesteeitete ettt ettt ettt et b et e ettt e bt s et et e e bt ea e bt eate bt sbeentesbeeanenteene 737
32,1 TAEOAUCTION ...ttt sttt et sttt be b seenaeeae 737
32.2. Implementation FEaturescc.ccoeeieriiiiniiiiieneeeeeeeete et 737
32.3. Client INEITACES.cc.evuirieieieiieiiiecicecee et s 737
32.3.1. Creating a Large ODJECtcocueruerieriiniiiiniiiieieniteeeetee et 738
32.3.2. Importing a Large ODBJECt........coevieviiriiiiniiieieniieieieeeee e 738
32.3.3. Exporting a Large ODBJeCt........cceeveviireeiineiieniiniieienieeteneseee e 739
32.3.4. Opening an Existing Large ODJect........ccccoevienierienieneniineneeneneereniene 739

xvi

32.3.5. Writing Data to a Large ObjJect........cccovievciirriienienieiiieniesieeieeieeee e 739

32.3.6. Reading Data from a Large ObjJectcoccevvveerieniiriiienienienieeieeneeeen 740
32.3.7. Seeking in a Large ObJeCt.......cceecvieriienieniieiiieiienieeieeniteste et 740
32.3.8. Obtaining the Seek Position of a Large Object........c.ccceveevveriiienieeneennee. 740
32.3.9. Truncating a Large ObJECtcceeueriierieriiiiiieiierieeieesiteste et 741
32.3.10. Closing a Large Object DeSCIiptorcccccevveerierierieenienienieenieeneenaes 741
32.3.11. Removing a Large ODJectccceeuivieiiniiiiiinieieieeceeeeeseereiene 741

32.4. Server-side FUNCLIONSc.c.oovuiiiiiiiiiiiieiienie ettt st 742
32.5. Example Programcccoieioiiiiiiiiiniiiiice e 743
33. ECPG - Embedded SQL N C.....ooouiiiiiriiniinieicieietnenesteteeeteie et 749
33.1. The CONCEPL......ooouiiiiiiiieieie ettt s s 749
33.2. Managing Database CONNECHIONScc.coveeruirerrenienieeeieenierenreneeeeneenesiesaesaennes 749
33.2.1. Connecting to the Database SeIverc..cococveeeeerinienenieneeeeenenrenenns 749
33.2.2. ChooSIiNg @ CONNECIONceuveitieeieiieiieieseeeiteteetcete st eneesee e see b eneeneeene 751
33.2.3. CloSing @ CONNECION........ccuerueertietietietietenteetetestcente st eeeesee e neesbeeneeneeene 752

33.3. Running SQL COMMANAS.........ccoerieriiriirieniieieie ettt st 752
33.3.1. Executing SQL Statementscccceceeeeriererienieniieieneetenesiceniesveeeeneeene 752
33.3.2. USING CUISOIS.euieutiriieienieeiienteettete st etesteeitebesbeeste bt eseesaesaeeaesbeenneneeene 753
33.3.3. Managing Transactionscceeeeruereereererienieniieienieeteneeseesiesbeeneneeene 754
33.3.4. Prepared StatemEnts.coeeverieruieniineeienieetentesieeiesieeete st esae s eaeeneeene 754

33.4. Using HOSt Variablescocceieriiiiieniniiieiteie ettt 755
33141 OVEIVIEW ..ouiiiiiicieteeee ettt s e 755
33.4.2. Declare SECHOMNS.ccuecveuiruiriirierieicieiee ettt 755
33.4.3. Retrieving Query ResultS........ccccecveviirieniininiinenieieneeeeneeeeieseeeiene 756
33.4.4. TYPE MAPPING ..eruvieiieiieeiiieieenite et et e setestesbeesteesatesbeessaesasessseenseesseesnsas 757
33.4.4.1. Handling Character Stringsccceevervveereeneeriieenieeneesveesieeneeens 758

33.4.4.2. Accessing Special Data TYPeS.....cceevervveereenieriieenieenee e 758

33.4.4.2.1. timestamp, date.........ceeceereerieenienierieeeesee e 759
33.4.4.2.2.I0te1Val ..o 759

33.4.4.2.3. numeric, decimal........ccccvvvvviiiiiiiiiiiiiiiiieeeee e 760

33.4.4.3. Host Variables with Nonprimitive Typesc.cccoeceeveeriieenennneen. 761

33443, 1. AITAYS weoeiiiiieiiee ettt sttt s 761

33.4.4.3.2. SIIUCLULESoviiiiiiiiiiicecc e 762

33.4.4.3.3. Typedefs......ccoeieieninieiiiceeeecteecere e 763

33.4.4.3.4. POINLETS ...eeouvieeieiieeieeitenite sttt et sttt st 764

33.4.5. Handling Nonprimitive SQL Data Types........cccceceecerincieninienenieiennene 764
33.4.5. 1. ALTAYS .ot e 764

33.4.5.2. CompOSIte TYPESoeveeuiriiiieiiiieiieeeie e 766

33.4.5.3. User-defined Base TYPesSccccccvuirieiiniiiiniiicciecienecieiene 768

33.4.6. INAICALOTS. . ..eeeieriiieiieeiteeeett ettt sttt st e e e 769

33.5. Dynamic SQL....c.coiiiiiriiieieiitreeteeetetet ettt ettt s 769
33.5.1. Executing Statements without a Result Setc.ccccccvvenenecieinncncnennenn. 769
33.5.2. Executing a Statement with Input Parameterscccccevevveneniicencne 770
33.5.3. Executing a Statement with a Result Setccceeveviniiniiiininiieee 770

33.0. PELYPES LADTATY ...ttt st 771
33.60.1. Character StrNZS.......coceerererienieeiieie ettt ettt sttt sbe e e ene 772
33.6.2. The NUMETIC TYPE ..cuveruieiiriiiieiieiteteeieete ettt 772
33.60.3. The date TYPE.....eeeeruireeiirieeienieeitete sttt sttt st 774
33.6.4. The timestamp TYPE.....ccoeruerieriirieiinieeienieetetesttete et 778
33.6.5. The interval TYPE ...cc.coeeiiririeiiriieieeeeteneeteesttete et 781
33.6.6. The decimal TYPE......coceeruererieniinieieneetenieetetesitete ettt 782
33.6.7. errno Values of ptypeslibcccocveviiriiiiiniiiiniinieicneeeeeeeseeeee 782

XVii

33.6.8. Special Constants of pgtypeslib.........ccocvevciiriienieniiiniiiieeeeeeeeee, 783

33.7. USING DESCIIPLOT ATCAS ...cuvieuviiiieriiiiiieniiesiteeieenite sttt et e satesbe et esieesbeeseenseens 784
33.7.1. Named SQL DeSCriptor ATEAScccueeruieriierriieniienienieenieenieeneeenieesieesanes 784
33.7.2. SQLDA DeSCTIPLOr ATEASeevurerurieiieniienierieeniteniteeieenitesitesteesseesseesanes 786

33.7.2.1. SQLDA Data StruCtUIe..........cccveeeeurrerrieenrieerrreesreeesereeesereeenenens 787
33.7.2.1.1. sqlda_t StrUCTUIEccceevvermerriiiniieiieceeene e 787
33.7.2.1.2. 8QIvar_t StrUCTUTEecvveeriirieeieeiee et 788
33.7.2.1.3. struct sqlname Structurecc.cccceeveeveerereeneneecuennenne 788

33.7.2.2. Retrieving a Result Set Using an SQLDAcccceinienenen. 789

33.7.2.3. Passing Query Parameters Using an SQLDA..............c.ccocceeenen. 790

33.7.2.4. A Sample Application Using SQLDAccccociiiiiiinininnnns 791

33.8. Error Handling......c.coevuirieieiiinirientitceeceiteese ettt ettt 797
33.8.1. Setting Callbacksccccceeireririerieiiinintietetceceeeeese e 797
33.8.2. SQLCA 1ttt et s 799
33.8.3. SQLSTATE VS. SQLCODE ..cuiiuiiiiiuieiiiiieie st st st eee s s sae s saene 800

33.9. Preprocessor DITECIIVESc.couriririirieieieieiinenieseeteeete et s 804
33.9.1. Including FIlesccooieiiiiiieiiieeeee et 804
33.9.2. The define and undef DireCtivescccceverierierieienenieneneeesieeeniene 804
33.9.3. ifdef, ifndef, else, elif, and endif DIirectives.........coovvvvveeecvieneeeeeeeeeeeeeennn. 805

33.10. Processing Embedded SQL Programs............cccccverienenieienennieneiienenceienene 806

33.11. Library FUNCHONS ...c..coeiiiriiriieiiiiieienieetete ettt st 807

33.12. LarZe ODJECLS...cuueruieuiirieeierieeiterie sttt ettt ettt sttt ettt et sae bt e b sbeesnenaeeae 807

33.13. CA4 APPICALIONS ...uvineieiiiiiriieieriietenieeitete ettt ettt ettt s eene e eae 809
33.13.1. Scope for HOost Variables..........cccueerieerieniieeiiieniienieeieenieesee e enaee e 809
33.13.2. C++ Application Development with External C Module....................... 811

33.14. Embedded SQL COmMmANdScc.ceeeviieeiiiieiiieeirieeeieeeieeeeieeesveeesereeeseveseeneas 813
ALLOCATE DESCRIPTORcoociiiiimiiiiiiinieieneeteneeeeieseeresie et 813
CONNECT ... st 815
DEALLOCATE DESCRIPTORcocootiiiiinieiiniinieneeeeteneeresteeeeenee e 818
DECLAREccoiiiiiice e 819
DESCRIBEcoiiiiiiiiiiiree e 821
DISCONNECT ..ottt 822
EXECUTE IMMEDIATEcc.cociiiiiiiinieienieteeetesie ettt st 824
GET DESCRIPTOR ..ottt et et 825
OPEN ...ttt ettt ettt ettt s sttt et b e 828
PREPARE ...ttt sttt 830
SET AUTOCOMMIT ..ottt 831
SET CONNECTIONcoioiiiiieieiinienentetctetet sttt e 832
SET DESCRIPTORccoiitiieieiriinerenteectetee sttt st 833
TYPE....o ettt ettt ettt 835
VAR .ttt s ettt 837
WHENEVERooiiiiiiiieecceteteese ettt sttt s e 838

33.15. Informix Compatibility MOdecccoeriiiiiiieiiiieieeeeeeee e 840
33.15.1. Additional TYPESceueerueruirieiieiieieeitete ettt 840
33.15.2. Additional/Missing Embedded SQL Statementsccccceceeveneeuenncnne 840
33.15.3. Informix-compatible SQLDA Descriptor Areas........cc.coeceeceeneneecuennenne 841
33.15.4. Additional FUNCHONS.........cccoerierieiiiiiriinieicrcteeeese e 844
33.15.5. Additional CONSLANES.........ceruerveriereiniiriinteiereteterese e 852

3316, INLEINALS ...ttt s s 853

34. The Information SChema.........cc.cceoiiiiiiiiiiiicic e 856

34.1. The SCREMAoouiiiiiiiiiiicieee e 856

34.2. DALA TYPES .eeuvreereerieieenieeeieerteesieesteesteesteessteebeesseesssessseesseesseesnseeseenseessseesesnseens 856

XViii

34.3. information_schema_catalog NAME .ueieeeoireeeeeiiireeeeeiireeeeeenirreeeeenerreeees 857
34.4. administrable role aUthOTrizZationS . eeeeeeeeeeeeeeeeeeeeeeeeeeeeeaeeeees 857
R Y o) R R) o1 =S o o Y K=Y TR TSSO PRSP O 857
7 N T ol o o) o1 o = - TSRS 858
B, O AT A O T SO S oo eee e ettt e e e e e e e e e e e e e et e e eeaeeaeeseeeeeeeteraa——————————. 862
34.8. check_constraint_roULinNe_USAGTE .ccieeeiiiireieeeeeitreeeeeeereeeeeeetreeeeeeevree s 863
34.9. CheCk _CONSETAINES tiiiiiiiiiiiiieiiciceeeee et ee e e e e e e e et e e reeeeeeeeeeesssssnssrssneeeees 863
34,10, COL LAt dONSutiiiiiiiiiieeieeiiree e ettt e e ee ettt e e e eetreeeeeeetbaeeeeeebaeeeeeeentaeeeeeetreeeeeaearaaeeas 864
34.11. collation_character_set_applicabilify ciermrieniieeniieenreeenenens 864
34.12. colUumn_AOMAIiN_USAGTE wueeiieeireieeeeeitieeeeeeeteeeeeeeitreeeeeeetreeeeeeeareeeeeeesreeeeeeenrreeeas 865
R 73 I T CTC N AL 111k Yo o ulk e o =TSP 865
34.14. COLUMN_PTivVIilEgeS cirriieeiiciiiiieeeeiiieeeeeetteeeeeeetteeeeeeetreeeeeeearaeeeeesasreeeeeenreeeeas 866
34,15, COLUMN_ UL _USAG e iiiitiiieeeeetiieeeeeeittteeeeeeteeeeeeetteeeeeeetteeeeeaassaeeeeeansreeeeeaessseeeas 866
34,16, COLUIMIIS weeiutieeeitieeeeteeeete e e ettt e eetee e et e e eetee e et e e eaeeeeateeeeaaeeeeseeeenseeeeseesenseeeeaseeeenneas 867
34.17. constraint_COLUMN_USAGTE wiireeieirrreeeerirrreeeeiitreeeeesetrereeesasraseeeassreseeesssseeens 872
34.18. constraint_table USAGE i iiieeeiiiireeeeiitreeeeeeetreeeeeserraeeeeesnrreseeesnseeeens 873
34.19. data_tyPe _PrivVileges i iieeeiieeeiiieeiiteerteeenteestteeesteeessteessbeeenaseesennens 873
34.20. OmMaIin COMSE TAIIIT S ttetttteeeeeeeeeee et e e e et eeeeeaaaeeseteeaeseseenaeeeeeneaeseennaaaaeee 874
34.21. AOMAain_ UL USAGC citiiiiiieeetieeeiteeeeiteeeeiteeeetreeeteeeetseeeeteeeenseeeesseeessesensseseeseens 875
34,22, AOMAIIIS tieetieeeitieeeteeeeteeeetteeeetteeeetteeeteeeeaeeeeasaeeesseseesseeetsseeseseesseesssesenssesenseeas 875
34,23, E1EMENT_ L YPES teetiiieieeeetiieeetreeeiteeeeteeeeiteeeeaeeeeseeeeabeeentaeeenteeeabaeeabeeeeareeeareas 878
3.2, ENIAD L A, T O LS et e e e e e et —————————————. 881
34.25. foreign_data WrapPer OPLIONS iieeieeiiiieeeeeietreeeeeeireeeeeenareeeeeenareeees 882
34.26. fOreign_data WIaPPEIS cievrereeeierrrereeieiereeeeeiireeeeeiesreeeeeiisrareeeesireeeeesnssreees 882
34,27, foreign._ Ser Vel _OPLIONS tiiiiiiciieieeeieeeeeeeeeteee e e eetre e e e e et e e e eetre e e e enraeee s 882
RE % T b ar=h e s o N =T= Y o 12 of - BRSO RS TETRRROPR 883
34.29. foreign_ table 0P iONS i iiieieeeiieeeeeeerreee e eetre e e e et e e et eeeerreee s 883
RZ G [0 I R o=k Re po N =1 N = DU USROS 884
34.3]. Ky COLUMN _USATC e iiitttrieeierrreeeeeeirreeeeeeitereeeeeireeeeeeestreeeeseeraseeeessreeeeeenrreeees 884
3.3 DA AMEE @ T Suuiiiiieiiriieeeecieeeeeeette e e e ee ettt e e e ee e e e e et e e e eetra e e e e et ae e e eeareeeeeenrraaean 885
34.33. referential CONSTIAINTS weeeeeeee ettt eeeeeeeeeeeeeeeeeeeteeeaareeaeaaeeeees 888
34.34. r0le_COLUMN__GIANTS tirrieeierireeeeeeirreeeeieirreeeeeeireeeeeeeisreeeessessseeeesssreseeessssseeens 889
34.35. role _roULANE _GrantS e e eeiieeeeeeeireeeeeeereeeeeeetreeeeeeeraeeeeeetreeeeeeearreeees 889
34.30. r0le_Lale_GLants cirieeieeiieeeeeeiireeeeeeeitreeeeeeereeeeeeetreeeeeeereeeeeeesreeeeeeenrreeeas 890
34,37, L0l e UGt GraNT S uiiiiiiiiiiieeieeitieeeeeeireeeeeeeeteeeeeeeetteeeeeeetaeeeeeeenraeeeeeeareeeeeeeareeeeas 891
34.38. 101 _USAGE_GTANES witreriiieerrierirreesiteresiteeesseeessseesssseesssseeassseesssseessseessseessssens 891
34.39. roUL INE_PTrivVileges ciiiiieiiiieeiieeeieeesireeesteeesreesssaeeasreessseessseeensseeesnses 892
34,40, LOUL AN S ceitriieeieiieeee ettt eeete e e ee ettt e e e e ettt e e e e e tae e e e e eebre e e e e e aabaeeeeeebaaeeeeanrraeeas 893
34,41, SCREMAT A ceetriieeieiiieee ettt e ettt e e ettt e e e e e e et e e e et e e e e e e ataa e e e eetreeeeeenrraeeas 899
Yo b LY Y=Y F SRR 899
34,43, Sl _fEAEUTES witreciiteiiieeiieeeeteeeete e st e e etteesteeessbeesateesseeeensseesnsaeesnseeennseeeansens 900
3444, sgl_implementation_iNF0 ciiiireiieeniieenieeeieeeeireesaeeesbeeenaaeesaeeas 901
34.45. SGL_LANGUAGES teeevreerreeeiuieeeitteeaatteestteeatteeaseeessseesasseesasseeassseesstesssseesnseesnnses 902
34,46, SGL_PACKAGES tevveerrreerreereerieeseesreesseesseessseasseesseesssesssessseesssesssesssesssssssseessessseens 902
R Yo AN oY= % o o= T O R U U SRR PP 903
3448, SOl _S1ZANGuuiiiiiiiiiiieeeiiiieee et e e ee e e e e e e e eb e e e e e etbe e e e e aabae e e e eanrtaeeeeanrraaeas 903
34.49. Sl _S1ZiNGg _PrOFiles iriiiiiciieeeitieeeiteeeeteeeeiteeeete e et e e et e e eeta e e e teeeereeeeaneas 904
34.50. LAl E COMSETAITITES teeteeeeteeteeeeee e e e e et e e e e e e e e e e e e e e e eeeeaesaaaaaaaaaaes 904
34, 5. LAl e PTiViLlEgeS ciiiiiiieeeiieeitieeeieeeeteeeetee e et e e eette e eeta e e ete e e eaae e beeenareeeareas 905
3,52, LA LS uiiieiieeeiee ettt et e et et e e et et e e e b e e et e e etaeeetaeeeaaeeeabeeeeareeenreas 906
34.53. triggered_UpPdate_COLUMNS .iiiiieieeeiiteeeeeeeireeeeeeetreeeeeensteeeeeesareeeeeenaseeeees 907
R Y S ok Ko o 1= of =SS SRRSO 907

Xix

RZ SIS TR Yo Nl ohak A B R =Y 1= B USSR 909
34,50, USAGE DT AVI L OGS iiiiitiieeieeiteeeeeeeereeeeeeeeeeeeeeeereeeeeeeetreeeeeeeraeeeeeetreeeeeenrraeeas 910
34,57, User_definNed L YDPES tiieiieeireieeeeeitteeeeeeiteeeeeeereeeeeeetreeeeeeeraeeeeeeareeeeeenrraee s 910
34.58. User_MapPPing _OPLAONS iiiiriiiieeeeiteeee e et e e eeetee e e et e e e eerae e e e eetreeeeeeearreee s 912
34,59, USE T _MAPPITIGS tertrieeeeeitrrieeeeeitteeeeeeete e e e eeetreeeeeeereeeeeeetreeeeeeenraeeeeeetreeeeeeenrraeeas 913
34.60. VieW_COLUMN_USAGE tiirrreeeieeirrreeeeeirreeeeeiirreeeeeeireeeeeeeisressessssssseeeesssseseesssssseeens 913
34.61. VieW _roULiNe_USAGE tiriiiieeiiiieeeeiteeeeeeetteeeeeeeteeeeeeetreeeeeeearaeeeeeeareeeeeseareeeeas 914
34,02, VieW LAl e USAT.ciiiiiiieeieiitieeeeeeiteeeeeeeitteeeeeeeteeeeeeetaeeeeeeenraeeeeeeareeeeeeenrraeeas 914
7 R TR o TP 915
V. Server Programming 917
35. Extending SQL ..o e e 919
35.1. How Extensibility WOrKS.......cccccviririenieniiininineneieicteescsceeceeeeeee e 919
35.2. The PostgreSQL Type SyStem..........ccoiuiiiiiiiiiiiiiiiiiiiiicieceeeere e 919
35.2.1. BASE TYPES vttt e e 919
35.2.2. COMPOSILE TYPES ...eveuvemrenierieiirierieieieitee sttt ettt s e 919
35.2.3. DOMAINS ...euviiieniieiieie ettt ettt ettt ettt et e et st sbeenne e eae 920
35.2.4. PSEUAO-TYPES ..cnveeieniiiiieieiieeiesieettete ettt ettt st s 920
35.2.5. POlymOIphiC TYPES ...ecveeverieriieiiniieiinieeie sttt 920

35.3. User-defined FUNCHONSc..ccueiririiiiieieiiieinesceeeeeee e 921
35.4. Query Language (SQL) FUNCHONSovveriiniiriiniiniiienienietesieeeene st 921
35.4.1. Arguments for SQL FUnctions..........cccceeueverienenienienienneneneeneneeienene 922
35.4.2. SQL Functions on Base TYPeSccccverreriieriiierienieeiieniieseesieenieeseee e 923
35.4.3. SQL Functions on Composite TYPEScecvervrierierieriiienienieeieenieeneenenes 925
35.4.4. SQL Functions with Output Parameterscc.ccoecveevivenienceencieeneeneennne. 927
35.4.5. SQL Functions with Variable Numbers of Arguments.............ccceevueenee. 928
35.4.6. SQL Functions with Default Values for Arguments............cceceereeneenee. 929
35.4.7. SQL Functions as Table SOUICESc..cccevierriieeiiieeiie e 930
35.4.8. SQL Functions Returning Setsccoceecuerriienieniieriiienienienieenieeseeenenes 931
35.4.9. SQL Functions RetUrning TABLEccocvevruerrieeriienierieenieeneesieenieeseenenes 933
35.4.10. Polymorphic SQL FUNCHONS ...c...oovuiiriiiriiiiiiiienieeieeieeseeeieeieesee e 933
35.4.11. SQL Functions with Collations............cccccueereuieeriiieesrieeriieesreeesvee e 935

35.5. Function OVerloading.........c..cecevereeieniinieniinieneneeeesieeeeresie st enesneene 936
35.6. Function Volatility CateZOTIiescecuerririeriirieriereeienieeeeteete st sieenenneene 936
35.7. Procedural Language FUnCtionsc..cccccoieieniinieiieniinieieneeeeseeeee e 938
35.8. Internal FUNCHONS ...ccc.eiriiiiiiiiiiieriieecetee ettt st 938
35.9. C-Language FUNCHONS........c.ccociiiiiiiiiiiiiiei et 938
35.9.1. Dynamic Loading.........ccccoiiiiiiiiiiiiiiiiiiccieeeee e 939
35.9.2. Base Types in C-Language Functions..........c.ccccceeeveeenenenreieenncnennennenn. 940
35.9.3. Version 0 Calling CONVENLIONScccecereruinrenienreeeinreneneneeeeeeesaesrenene 943
35.9.4. Version 1 Calling CONVENLIONScccecereruinrenrenreeeieineneneeeereeneesnenene 945
35.9.5. WIItING COAE.....ooviiiieieiieiieieriertceceetee sttt s 947
35.9.6. Compiling and Linking Dynamically-loaded Functions............c..ccceuen. 948
35.9.7. CompoSite-type ATZUIMENLScc.eeruiruieeerieeiienientieienieeeeeneesieeneesreeneeneeene 950
35.9.8. Returning Rows (Composite TYPES)cccververierierierienienieneneenesieeieniene 952
35.9.9. REtUINING SELS....eeueeriiriieiirieeiienieeiteteeit ettt 953
35.9.10. Polymorphic Arguments and Return TYPescccceveeveeneneenenencienene 958
35.9.11. Transform FUNCONSccccerieviiiiiiiriinicicicceeeee e 960
35.9.12. Shared Memory and LWLOCKScccceceririeniniiiinenieneneeicneeeee 960
35.9.13. Using C++ for EXtensibility........ccocevveevieniiiinenieniininienceeeenceveee 961
35.10. User-defined AZZIEZALEScccevuerueeierierieniinieenienieeteniesieetesteeeeseesreestesieessenienne 961
35.10.1. Moving-Aggregate MOdE.oocvieriierieniieiiienienie ettt 963

XX

35.10.2. Polymorphic and Variadic Aggregates.evvereerieenieneeriieeneeneennnes 964

35.10.3. Ordered-Set AZEreGates......ccvueruirriierierieeieeritenteeieesieesteseeenaeesaeesaeas 966
35.10.4. Support Functions for Aggregatescocceevveereeneerieenieniienieenieeneennnes 967
35.11. User-defined TYPES ...ccoueeruieriiirieniieieeriteste ettt ettt sttt e 967
35.12. User-defined OPerators.........ceceereeerieerienieeieenitesiteeieesieesieesreesseesieesseenseenseens 971
35.13. Operator Optimization Information............ceceeereeiieniniieciinieieneeeeesecrenene 972
35.13.1. COMMUTATOR tuttueeurirueerenieeiretenteetesateseesseensesnesseesnessesasesaesneennesneennesene 972
35.13.2. NEGATOR «.eeuteniiiierieieeresieeieeste et et et e sae e enesueesaesneeaeesae st enesneeanenene 973
35.13.3. RESTRICT weouteiieuieiieieerenieeieere st et eaeeseesee st esnesse e sneeseesaesaeenesaeeanennene 973
35,1314, TOTIN ettt ettt sttt ettt ettt b e sttt nee 974
35.13.5. HASHES .ottt ettt ettt e st s 974
35.13.0. MERGES . c.ceutiutruintiteienrenteteetesteseeeeaeestsue sttt ettt eneebesbesaesaesseaeenesnesnenenne 975
35.14. Interfacing Extensions To INAEXES........cccccceiririrenieieiiinininenieeeeeeneneneenen 976
35.14.1. Index Methods and Operator Classescoceeeeeeererenueeerererennennenne 976
35.14.2. Index Method Strateiesc..coevveeriruinienienieeeieeneneneeeeree e 977
35.14.3. Index Method Support ROUHINESccceveiieiinieiinieienceceesceeee 978
35.14.4. An EXQAMPIE ...eoeiiiiiiiiiiiieece et 981
35.14.5. Operator Classes and Operator Families..........c.ccccceveevieninienencncienenne 983
35.14.6. System Dependencies on Operator Classesc.ccoeeeerereeneneereenene 986
35.14.7. Ordering OPETratorscocueruereeruereerierierienienteetesiesseenieseeseesbeenensenne 987
35.14.8. Special Features of Operator Classes...........coereeviererreeneneenenenirenenne 987
35.15. Packaging Related Objects into an EXtensionccccceceeevereenieneneencnenienene 988
35.15.1. Defining EXtension ObJEctscceeveeviererienienienienienieneneenesieereniene 989
35.15.2. EXtension Files.....c.ccoceviiiriininiiiinieienccteiesitececetene e 989
35.15.3. Extension Relocatabilitycccecveeriierieriieiniienienieeieeseesee e 990
35.15.4. Extension Configuration Tables..........cccecerviienienieeiiienienieeieeeeseeeees 991
35.15.5. EXtension UPAatesccocverieriieriienienieeiteritesee et esiee e see e eseee e 992
35.15.6. Extension EXampleccccevieeiiiniiinieniieiiteeeeie et 993
35.16. Extension Building INfrastruCturecocooveevieniiniieeniieniceieecenee e 994
30, TIIZEETS wveeureenreeieeriie et et e sttt et e et e st e e bt e bt e st e et e e bt esstesatesabeesbtessbesateebeesstesateenseenaeesasas 998
36.1. Overview of Trigger Behavior..........cooceeviiiiiiiiiinieniceiecteeceeteee e 998
36.2. Visibility of Data Changes..........cceevueeviirriienienierieeniiesteee ettt 1000
36.3. Writing Trigger FUnctions in Ccccoeiiiniiiiiniiiniienieeieeieenteee et 1001
36.4. A Complete Trigger EXxample...........cccoeceeviinieiininiieniinieinceeeceeeeseeeeneeee 1003
37 EVENE TIIZEETS ..ttt st s 1007
37.1. Overview of Event Trigger Behaviorc..cccccoveeiieiiiiiiiininiiniieeeecee 1007
37.2. Event Trigger Firing MatriXc..coccooieiieriinienienenieeeeeeeee e 1007
37.3. Writing Event Trigger Functions in C...........ccccooiiiiiiiiiiiiniiieeeceee 1010
37.4. A Complete Event Trigger EXampleccooeevieriiiniinieniiinienieeceieeseeeeeeee 1011
38. The RULE SYSEIMeeiiiiiiiiiiieieeieeit ettt ettt et st ettt beenee e 1013
38.1. The QUETY TTEE.......eevuieiiiiiieieeieeete ettt sttt 1013
38.2. Views and the Rule SyStemcooeiiiiiiiiiiiieeeee e 1015
38.2.1. How SELECT Rules WOrKccccooviiiiiiiiiiiiiiiiiceccceeeeeeee 1015
38.2.2. View Rules in Non-SELECT Statementsccccecueeueeeenereenieneeseeneeenes 1020
38.2.3. The Power of Views in PostgreSQLc.ccccceiieiiininnenenieneneeeee 1021
38.2.4. UPdating @ VIBW.....coueeiiriiriieieiiieiesieetese sttt st 1021

38.3. Materialized VIEWScoueoveiiuiiiriiniiicicietetetese ettt 1022
38.4. Rules on INSERT, UPDATE, aNd DELETEccccviiiuiiiiiiiieiiececsess s 1024
38.4.1. How Update Rules WOrkccccoceviriininiinininiinciiencneecneeeee 1025
38.4.1.1. A First Rule Step by Step.....ccoceverieninieniiniiienceiceniceeee 1026

38.4.2. Cooperation With VIEWS.......cc.coceeviiririineniiienieiencetene e 1029

38.5. Rules and Privil@Zesccocereevieririiniiniiiineiiereeteiceteeseete et 1035

xxi

38.6. Rules and Command StatUs..........cocueeueeeerieneenienenrenieniereneeeeneeeesresieenesneenee 1037
38.7. RUIES VETSUS TIIZZOTS ...uveeruiieniieiieniieiitetteniteete et esteeste ettt e sibesateebeesaeesanesnees 1037
39. Procedural Lan@UaZEScccueeieriiiiniienieeieeieesiteeite ettt sttt et sateebeesieesateebeeaee e 1040
39.1. Installing Procedural Languagescocceevierieriieenienienieenieesteeie et 1040
40. PL/pgSQL - SQL Procedural Languagecocceevierierieiniienienieenieeseeeie e siee e 1043
40.1. OVEIVIBW ..ttt ettt ettt ettt st st ae e e saesaeenesaeens 1043
40.1.1. Advantages of Using PL/pESQLccccocieiiiiiiiiineiinceeneeeeeeee 1043
40.1.2. Supported Argument and Result Data Types.........cccceceneeveniniiencnene 1043

40.2. Structure of PL/PZSQL.....c.ooiiiiiieeeee e 1044
40.3. DECLAratiONSceuvieuiiiiieniiieieeeerit ettt ettt ettt ettt st et e b st e e e b e e 1046
40.3.1. Declaring Function Parameters..............c.cccccoiiiiiiiininiiniiicniiccee 1046
40.3.2. BLIAS ittt e et 1049
40.3.3. COPYING TYPES .nveuveniiiriiriinriteteteeeiteiese ettt ettt e 1049
40.3.4. ROW TYPES....coiiiiiiiiiiii e 1049
40.3.5. RECOTA TYPES ..eveeneieiiiiiieiteeiteeie ettt ettt ettt et 1050
40.3.6. Collation of PL/pgSQL Variablesc.ccoecererieninienineeeneeieeneeene 1050

40.4. EXPIESSIONSeeutitieiietietteteeteete et etestesitete et estesbeestesaesst e besbeentesaeeneenaesaeensenbeans 1052
40.5. BaSIC STABIMEILS....cueetiriieniieieetesttete ettt ettt et ste st et sbeesbesteeatesaesseenaenbens 1052
40.5.1. ASSIZNIMEGNL ...euveeniiiieiieieeiteieet ettt sttt sttt et st e b satenaesbeens 1052
40.5.2. Executing a Command With No Result........c..cccccoevieniniinininicncnen. 1053
40.5.3. Executing a Query with a Single-row Result..........ccccccevervininiencnenn. 1053
40.5.4. Executing Dynamic Commandsc.ccoccevererienenieniencenenenieneneens 1055
40.5.5. Obtaining the Result Status..........coceeceerireeneninieninieenceeneseeeee 1058
40.5.6. Doing Nothing At Allcoceoieiiinieiiininieeneeteneeeee et 1059

40.6. CONLIOL SIIUCTUIESeeuverurentirieeiiinieetenie sttt sttt sttt sbt et st eseesaesseennenbeens 1059
40.6.1. Returning From a FUNCONcccooviiviiiiiiiieiecicceceeeee e 1059
40.6.1.1. RETURN ..ottt 1060

40.6.1.2. RETURN NEXT and RETURN QUERYcccceceviriruenueieieinncnnennes 1060

40.6.2. CoNdItiONALS ..c..cevirvieierieeieienieteteet ettt ettt 1062
40.6.2.1. IF—THEN ettt 1062

40.6.2.2. IF-THEN=ELSE ...cceectviriiiiiiiiiieinieieietee e 1063

40.6.2.3. IF-THEN=ELSIF .ceectsiriiiiiiiiniinisieieieteienesne e snenes 1063

40.6.2.4. SIMPIE CASE ..ottt st eee e saeenesaeens 1064

40.6.2.5. Searched CASE......ccccevieieniinieiineeeeneeeereseere e 1065

40.6.3. SIMPIE LOOPS ...eouviiieiiiiieieeieeeeieie ettt 1065
40.6.3.1. LOOP ..ttt sttt sttt e sttt nes 1065

40.6.3.2. EXTIT weovieieiieeeie et s etete et et ene e s st ee st enesne s e enesneens 1065

40.6.3.3. CONTINUE ..cctertiruiereieeireteeieeeesreeeesaeseessesaeeeesaeesnessesanenesaeens 1066

40.6.3.4. WHILE .eotiiiiiieie ettt st s e s e s ne s 1067

40.6.3.5. FOR (Integer Variant)ceccevereerieneeieneseeieseeeeseeeeesie s 1067

40.6.4. Looping Through Query Resultscccooiiirieiinieninieeeeeeeee 1068
40.6.5. Looping Through AITAYSccceveverirererenienieiieneereseseseeeeeeenaenaens 1069
40.6.6. Trapping EITOTScooiiiiiiiiiiiieeieee e 1070
40.6.6.1. Obtaining Information About an Error..........cccccecceeeninienencn. 1072

40.6.7. Obtaining Execution Location Information............ccccecceveeveneniencnenne 1073

4.7, CULSOTS. ...eeueeeieeritieieeette et ettt ettt ettt st e bt e bt sate e bt ebeesatesabeebeesmeesaseeneenne 1074
40.7.1. Declaring Cursor Variablesccceecerireenenenieninieniesceeeneseeneniene 1074
40.7.2. OPening CUISOTSccueruerierieriieienieeientesieertesieetesteeseesteseeetessessaessesseens 1075
40.7.2.1. OPEN FOR QUEI YV cturreeeurreeiureeeireeeeireeeeseeesseeesseeesssessssssesesesenns 1075

40.7.2.2. OPEN FOR EXECUTE ..esueoteiruiriiniinieieneteneereeiesseseeeenseneeneenenes 1075

40.7.2.3. Opening a Bound Cursor...........coccevererienenienieneenieneneeieneens 1076

40.7.3. USING CUISOTS...cuvitieuiiriiriieieniietenteeitentesieete st eerestesteetesseeeessesseensenseens 1076

XXii

A0.7.3. 1. FETCH toottteeeeeeteeee ettt eere e e e et eeeetaee e e e eetaeeeeeenraeeeeeeaneeees 1077

40.7.3.2. MOVE weeiiiiiiiiicieiieieie sttt 1077

40.7.3.3. UPDATE/DELETE WHERE CURRENT OF ccoceevuimieuenuereennennenns 1077

40.7.3.4. CLOSE ioviieiiieieccienccieicecece et 1078

40.7.3.5. Returning CUTISOTSc.c.cerveerierrieriiienieeieenieesiteesteesieesieeeneenieenns 1078

40.7.4. Looping Through a Cursor’s Result..........cccccevvierviiiniinieniiennieenieeeenne, 1079

40.8. Errors and MESSAZES.........ccueruieuiruieienienieieeiieeestceeesie et eneesae e snesieas 1080
40.9. Trig@er PrOCEAULESccceociiriieiiiiiieieiicieeeteeeste ettt 1082
40.9.1. Triggers on Data Changes..........c.ccceeceevuirieneniniieniieieieneeeeseeeeesiene 1082
40.9.2. Triggers on EVENLSc..cocoeiiiiiiiiiiiiic e 1089
40.10. PL/pgSQL Under the HOOdcccooiiiiiiiiiiiiiicieceeeee e 1089
40.10.1. Variable SUDStItUONcoiuertieiiriieieste e 1089
40.10.2. P1an Cachingc..ccceceviruiriinienieieeninenenetetetee et 1091
40.11. Tips for Developing in PL/PESQL......cccccoeiiiiinininieicieieineneeeeeeenenaens 1093
40.11.1. Handling of Quotation Markscccceeverieveeineninenenenieeeieenennens 1093
40.11.2. Additional Compile-time Checkscoeevevvevrririninenieniceeinenennens 1095
40.12. Porting from Oracle PL/SQL........c.ccociiiniiniiiniiinicicieteeeeereeeeeese s 1095
40.12.1. Porting EXamPIescc.eeoierieriiiiiniieienieiceie ettt 1096
40.12.2. Other Things to Watch FOr.........cccociiiiiiniiiiieceeeeee 1101
40.12.2.1. Implicit Rollback after EXCeptions...........cecceeueveeienereenuennnnne 1101

40.12.2.2. EXECUTE toviuiiiiriiiiniiiiiciieicnieetesetess et 1102

40.12.2.3. Optimizing PL/pgSQL Functions............cecceeereevieneneencnnenns 1102

40.12.3. APPENAIX..iutiriiiiiniieiiriiiienienitet ettt sttt ettt ettt st et sieeas 1102

41. PL/Tcl - Tcl Procedural Language..........coccevererienienienienceienienteiesieeienieeee e sieeniesiens 1105
A1.1. OVEIVIBW ..ttt sttt s 1105
41.2. PL/Tcl Functions and ATZUIMENTS.......c..cevverrueereeriierieerieenieesreeieesieessesssesnseenns 1105
41.3. Data Values in PL/TCL.........ccooiiiiiiiiiiiiiciiiicceceeeeceee s 1106
41.4. Global Data in PLITCL ..c..ccuiiiiiiriiiienieienictencetene ettt 1107
41.5. Database Access from PL/TClcccccooiviniiiiiiiiiiiiiiiiccccce 1107
41.6. Trigger Procedures in PL/TCLcccoooviiiiiiiiiiiieicie et 1109
41.7. Event Trigger Procedures in PL/TCl.......cccccooiiviiniiiiiiiiiieieciceee e 1111
41.8. Modules and the unknown Command............cccccoceeveereriienieniecienenieneneenenens 1112
41.9. Tcl Procedure NAmMEScc.ooueiiiiiiiiiiiiiiiiciciccccec e 1112
42. PL/Perl - Perl Procedural Language............ccccoceecueviieieriinieneninieeneeeeneeeenie e 1113
42.1. PL/Perl Functions and ATgUMENLtS............cc.eeteeuerieriereneenienieeeneeeeesaeseenenneens 1113
42.2. Data Values in PL/PETL........c.coociiiiiiiiiiiiiieetcc ettt 1117
42.3. Built-in FUNCHONS ...couviiiiiiiiiiieiteeieeceitc ettt st 1117
42.3.1. Database Access from PL/Perl..........cccccocooiiiniiniiiniiniiniiiieieeece, 1117
42.3.2. Utility Functions in PL/Perl...........ccccociiiiiiiiccee 1120

42.4. Global Values in PL/Per]ccooiiiiiiiiiiieieeeeee et 1121
42.5. Trusted and Untrusted PL/Per]coccoiiiiiiiiiiiiiiieceeeeececeeeeee 1122
42.6. PL/PEIT TIIZZEIS ..veeueetieiieiietieie ettt ettt sttt st et e e st e et esaeeseennesaens 1123
42.77. PL/Per] EVENt TIIZZEISccueeuieieriieienieeiieieet ettt sttt sttt see et sae st siens 1125
42.8. PL/Perl Under the HOOdcoouiiiiiiiiiiiiieeeeeeeeee e 1125
42.8.1. CONfIGUIALION ...ttt ettt sttt sttt st e b st sbeene 1125
42.8.2. Limitations and Missing Features.............ccoccovevoeninieniincnnencniencnene 1126

43. PL/Python - Python Procedural Language............cccceceevueriinienerienienieieneeeenieseeiesieens 1128
43.1. Python 2 vs. Pythomn 3.......cooiiiiiiiiieieceteeees et 1128
43.2. PL/Python FUNCHONScc.eeitiriieiiniiiienieriteiesttetesi ettt sttt 1129
43.3. Data ValUCSooveieiciiiiiiiiinieteieeeetet ettt s 1130
43.3.1. Data Type Mapping........cccceeerveeienieeienieneenienieerenieeieenteseeeee e sieenienieens 1131
43.3.2. NUIL NODC ..ottt 1131

XXiil

43.3.3. ATTAYS, LISES c.eiiiiiiieeiieiiteiteete ettt ettt ettt st 1132

43.3.4. COMPOSILE TYPES...veeruririieriieriieriieniierte ettt ettt sttt see e e 1132
43.3.5. Set-returning FUNCLIONS........cccueriiiiriiiniiniieiieteee ettt 1134

43.4. Sharing Datac...oovuiiiiiiiiiiieeeecte ettt sttt st ettt 1135
43.5. Anonymous Code BIOCKScocuiriiiriiiniiiieiiteie ettt 1136
43.6. Trig@er FUNCHONSocuiiiiiiriieiiiieieneeteteeteestc ettt s 1136
43.77. DAtADASE ACCESS ..evveeerireserieerireeasireeaiereesoseeeaseeesseeesseeassseeasssesssssessssssessssesssseeens 1137
43.7.1. Database Access FUNCHONS...........ccccviiieiiieriieeiie e 1137
43.7.2. Trapping BITOTSc.cooiiiiiiiiiieiiiecc e 1139

43.8. EXpliCit SUbIranSaCtiONScccueruiriierierieieniieieeie et 1140
43.8.1. Subtransaction Context Managerscccccoeevueruieieceenieneneneenennenne 1140
43.8.2. Older Python VErsionsceceeeeierinienenieiesieece e 1141

43.9. UtIlity FUNCHONS c..c.eeuiiieiiiiiitiieieieteieetesesteeeeeie sttt ettt 1142
43.10. Environment Variablescccccuieviierieriieiiesiieniiesieesieesieesveeseesseesesesseesseenes 1143
44. Server Programming INterfaceccooeriiiiiiiiienieeeecee e 1144
44.1. Interface FUNCHONS ...cc.eeviieiieeiecie ettt st ettt e sveebeesaeesebeenseesee e 1144
SPI_CONNECT ... e e e ettt e e e e e e e e e eeeeeeaaaaaaanaaas 1144
SPLAINISR .ot 1146
SPLPUSH c.ceee et 1147

S _POP ettt sttt 1148

P EXECULE ...ceeieeeeieeeeeeeeeeeeeee ettt ettt e e e e e e e e e e s e s s e s aaasaseeeeeeeesenas 1149

N 24 o = TSRO PP P SRR 1152
SPI_eXecute_With_argsc.ccecuerierierierieiinieeterieeteteniee ettt 1153
SPI_PIEPATE......ccuiiiiieiieeieeitete ettt et stte s teebeesbeesateeaeeseessbesnseeseenns 1155

S P PIEPATE _CUISOTeeiiieiiieiieeiieeieenitesiteebeeaeestteseteebeesteesateeseesaesssesnsessaenes 1157
SPI_PIepare_Parammsceeveerueenieerienieesteenieeneesseesseesseesseesseesseesssesssessseenns 1158
SPI_ZELATZCOUNL ...c.vtiiieiiieeiieriie et eteeste sttt e it esteesebeebeesbeesabeebeebeessbeenseeseenns 1159
SPI_getargtyPeid.....ccceeriieiiiiiieiiieieerteste ettt sttt st 1160
SPIL_iS_CUISOT_PLAN .eueieiiiiiiieiieciie ettt sttt ettt e e e 1161
SPI_EXECULE_PlaN....eiiiiiiiiiiieiieiie ettt ettt sttt ettt e st et eaee e 1162
SPI_execute_plan_with_paramliSt........cccceevueeveeniiiiieeneenienieeieesee e eie e 1164

N o I (1) o OO OO P ORI PTURORPRRRRRIRt 1165
SPI_CUISOT_OPEI.c.ueeiuiieiiiiiieite ettt ettt sttt st et e e st ebeeaee e 1166
SPI_cursor_open_with_argsc..ccccceeevienienienenienienieiene e 1168
SPI_cursor_open_with_paramlist.........ccoccoveevieniiiriienieenienieeieeseesteeeeeieene 1170

N &4 IO T Y0l 1 ' L¢ PO 1171

N &4 e 15 T0) Al (1 o) o DR 1172
SPI_CUISOT_INOVE ...ttt e e e e e e e e e e e s e eeeeeeeeeeeeeas 1173
SPI_SCIoll_CUISOT _FEUCH ...t 1174
SPI_SCIOIl_CUISOT IMOVE ...ttt e e e e e e e eeeeeeaaaaaaaas 1175

SPI CUTSOT_CLOSE....oeeeeeeeeee e et e e e e e e e e e e et 1176
SPIL_KEEPPIAN ...ttt et 1177
SPIL_SAVEPIAN ...ttt e s 1178

44.2. Interface SUPPOIt FUNCHONSccoecveuiiuiniiniinieieieinenteteicret et 1179
SPI_ NAIME ...ttt e e e e e et e e e seatae e e e e eaaee 1179
SPILUANUIMDET c.ceiiiiiieeeeeeeeeeeeeeeeeee et e e e e e e e e e e e e e e e e e e eeeaeeeeeas 1180
SPI_EVALUE ..ottt sttt 1181
SPI_getbinvalcc.eiiiiiiiiiiiiieietee e e 1182
SPI_GELEYPE ..ttt ettt sttt 1183
SPI_EttYPEId....ceeiieiiiieiinieeteeet ettt 1184
SPI_gEtreINamEc..ceveruieiiiieiieieriteeeeetesc ettt sttt 1185
SPI_ZENSPNAIME. ... eeevieeiieeiieriieeieeieeste st ebeesteesteesbeebeesseessteenseenseesssesnseenseenes 1186

XXV

44.3. Memory ManaZEemMENLtcceeueereerrieerieeniienieesieenieesseesseesseesesesssessseesssesssessseenns 1187

SPI_PALlOC ..cuiiiiiiieiieteee ettt sttt st et 1187
SPI_TEPAIIOC ...ttt sttt st 1189
SPI_PITEE. ..ottt st et st 1190
SPI_COPYLUPIE ...ttt sttt st e 1191
SPIL_TEIUINTUPLE ...ttt st 1192
SPL_mOAIfYtuplecooouieiiiiiieieeeeeee e e 1193
SPIL_TEEIUPIE. ..c.eeeieieiieee ettt st 1195
SPIL_freetuptable.coo.viiiiiiiiieiieieete et 1196
SPILTEePIan....c...ooiuiiiiiiiiee et 1197

44.4. Visibility of Data Changes.............ccceoiiieiiiiiiiiniiieneneeeseeeee e 1198
44.5. EXAMPIES ...ttt e 1198
45. Background WOrker PrOCESSES.evuiriiiniiiiiiieiiieeeeecteteee et 1202
46. LoICAl DECOINGeieieiiiieiiitieeee ettt ettt sttt b ettt sae st e beeneens 1205
46.1. Logical Decoding EXamples..........ccccererieiiiniiininieiereeeeiesicee e 1205
46.2. Logical Decoding CONCEPLSc.evuereererierientieienieetesiesitente st ete e eeeseesieenaeseens 1207
46.2.1. Logical DeCOINg........coueriiriiriieiiniieienie ettt 1207
46.2.2. Replication SIOtSc.coiiierieriiiiiniieiente ettt 1207
46.2.3. OUtPUL PIUZINS ..ottt 1208
46.2.4. Exported SNapsShots.cocvereriieiinieienieieeieseetesteeieete et 1208

46.3. Streaming Replication Protocol Interfacecoceverieneniiiinniencniencnene 1208
46.4. Logical Decoding SQL Interface.......c..ccceeuevieviineriienenienenieieneeeeneseeeniene 1208
46.5. System Catalogs Related to Logical Decodingc.ccoceevereevienenveeneniencnens 1209
46.6. Logical Decoding Output PIUZINSc..cocvevierieiiniiiininieienceieneceene e 1209
46.6.1. Initialization FUNCHOMNcceiiiiiririiniiieeicectesceeeeecee e 1209
46.6.2. Capabilitiescc.ccveiiiiiriiiiiieieieieeee e 1209
46.6.3. OULPUL MOALS.....covieiieeiieiieeiieeieeriteeiteeie ettt sae et estesabeesbeesaaesanesnns 1210
46.6.4. Output Plugin Callbackscecceeruierieriieniienienieeneeniesie e 1210
46.6.4.1. Startup Callbackccceevieriiriiiiiiiiieeeceesee e 1210

46.6.4.2. Shutdown Callback............ccccouvirininiiniiiniiiiiiinicccceces 1210

46.6.4.3. Transaction Begin Callbackccocevviiiiiiniiniinniienieiieeeee 1211

46.6.4.4. Transaction End Callbackcccccoeevieniniinvininnincncnieneens 1211

46.6.4.5. Change Callbackccceoierieriiiiiiiiiienieeieesieeeeee e 1211

46.6.5. Functions for Producing OUtpuL...........cceceevierieniieineenienieeieeneeeeeeae 1211

46.7. Logical Decoding Output WIILETScoceecuirireuinieiieneneeienierenie e 1212
46.8. Synchronous Replication Support for Logical Decoding............ccccevervenienncne 1212
VI. Reference 1213
L SQL COMMANGS....ccciiiiiiiiieeiiiiee et eecte e ettt e e eeette e e e eetareeeeettaeeeeeeabaeeeeeenraseeeeensraeeas 1215
ABORT ...ttt ettt ettt e 1216
ALTER AGGREGATEcciiiiiiiiiiiiieienteseeeetetne sttt ettt 1218
ALTER COLLATION ...c.cctiiiiiintiteieiet ettt sttt eve et e e ene v saens 1220
ALTER CONVERSIONccoiiiiiiiitiieieinenesteeeeet ettt et saens 1222
ALTER DATABASE ...ttt sttt ettt s 1224
ALTER DEFAULT PRIVILEGESccocciiiiiiiniiiininiiectceeteeeeseseeeeeeeie s 1226
ALTER DOMALINoiiiiiiiiiiieitietee ettt sttt 1229
ALTER EVENT TRIGGERc.cciiiiiiiiiiiiiiiicicinne ettt 1233
ALTER EXTENSIONoooiiiiiiiiiiiieieieieteneeeeeeeese sttt ettt s 1234
ALTER FOREIGN DATA WRAPPERcccccoiiiiiiiiiiniiiiiiietceeeeeeeeeeeee s 1238
ALTER FOREIGN TABLEccooiiiiiiiiiiiiiietcctee sttt 1240
ALTER FUNCTIONcoiiiiiiiiiiiiiieie sttt 1244
ALTER GROUP ..ottt 1247

XXV

ALTER INDEX ...ttt 1249

ALTER LANGUAGE........ccocoiiiiiiiiiiiiiiciicc st 1252
ALTER LARGE OBJECTccoociiiiiiiiiiiiiiiiiiciisceteee e 1253
ALTER MATERIALIZED VIEWcccccoiiiiiiiiiiiiiiiiinicicicceneiceeeeeeec s 1254
ALTER OPERATORccooiiiiiiiiiiiiiiiic e 1256
ALTER OPERATOR CLASS......cooiiiiiiiiiiiiiiceeeeec 1258
ALTER OPERATOR FAMILYccoooiiiiiiiiiiiieietcteeteeeere ettt 1259
ALTER ROLE ...ttt sttt s 1263
ALTER RULE ..ottt s 1267
ALTER SCHEMAc.ooiiiiieet ettt e s 1268
ALTER SEQUENCEc.ooiiiiiiiiiiiiteeseneeetteee ettt e s 1269
ALTER SERVER......ccoooiieeceee e s 1272
ALTER SYSTEMoooiiiiiiiiiiee ettt e s 1274
ALTER TABLE ... s 1276
ALTER TABLESPACEccoooiiiiiii e 1288
ALTER TEXT SEARCH CONFIGURATIONcccocciiiiiiiiiiiiiiiiiiicccecicee 1290
ALTER TEXT SEARCH DICTIONARYccccoiiiiiiiiiiiiiiiceiiicn e 1292
ALTER TEXT SEARCH PARSERcccooiiiiiiiiiiicc e 1294
ALTER TEXT SEARCH TEMPLATEcccooceiiiiiiiiiiniicicietceeeeeeeeeeeee s 1295
ALTER TRIGGERcocoiiiiiiiiiiiiiieicteteteseeeeee sttt s 1296
ALTER TYPE... .o 1298
ALTER USERcoiiiiiiiiiiiiiineeet ettt sttt 1302
ALTER USER MAPPINGc.coociriiiiiiiiiiiitieteteeeee sttt 1303
ALTER VIEW ..o 1305
ANALYZE ..ottt sttt s 1307
BEGIN ...ttt 1310
CHECKPOINTccoiiiiiiiiiiectcene sttt 1312
CLOSE ..o 1313
CLUSTER ..ottt 1315
COMMENTooiiiiii et 1318
COMMIT ..ottt s 1322
COMMIT PREPARED........ccociiiiiiiiiiiiiiicicicc e 1323
COPY oo 1325
CREATE AGGREGATEccooiiiiiiiiiiiiiiicicc e 1335
CREATE CAST ...ttt s 1341
CREATE COLLATION.......c..oociiiiitiienieeieteeete ettt 1346
CREATE CONVERSIONcoiiiiiiiiiiiieiieee ettt 1348
CREATE DATABASEottt 1350
CREATE DOMAIN.......ooiiiiiiit ettt s 1353
CREATE EVENT TRIGGER.........cccciiiiiiiiiiiiiiiiceeeeeeee e 1356
CREATE EXTENSION......coiiiiiiiiiiieeee e e 1358
CREATE FOREIGN DATA WRAPPER..........cccoooiiiiiiiicceece e 1360
CREATE FOREIGN TABLEccooiiiiiiiiiiiiceee e 1362
CREATE FUNCTION........ooiiiiiiiiiie e 1365
CREATE GROUP.......oooiiiii e 1373
CREATE INDEX........ooiiiiiiiiii i 1374
CREATE LANGUAGEcooooiiiiiiiiiiiiiii s 1381
CREATE MATERIALIZED VIEWcccooiiiiiiiiiiiiiinieieieicteeeiteteeeeeeeneeesie s 1384
CREATE OPERATORooiiiiiiiiiiiintieetceteese ettt 1386
CREATE OPERATOR CLASS ...ttt 1389
CREATE OPERATOR FAMILYcociriiiiiiiiiiiiieinenetcieieceee e 1392
CREATE ROLE......coooiiiiiiiiiciicseteeeeee ettt 1394

XXVi

CREATE RULE.......coociiiiiiiiiiiiiiicteeetete et 1399

CREATE SCHEMA ...ttt 1402
CREATE SEQUENCEcccooiiiiiiiiiiiiieiceeeeec st 1405
CREATE SERVERccciiiiiiiiiiiiiiiiccc e 1409
CREATE TABLEooiiiiiiiiiiiicce e 1411
CREATE TABLE AS ..ot 1426
CREATE TABLESPACE.........coociiiiiiiiiieieteeet ettt 1429
CREATE TEXT SEARCH CONFIGURATION.........ccccocviiiiiiiiinieieneeeeieeeeeeeee 1431
CREATE TEXT SEARCH DICTIONARYccooiiiiiiiieiieeeeeeeeeeeeeee e 1433
CREATE TEXT SEARCH PARSERccccoiiiiiiiiicceeeeee e 1435
CREATE TEXT SEARCH TEMPLATE..........cccooiiiiiiiiceeeeeee e 1437
CREATE TRIGGER........ccccoiiiiiiiiiie e e 1439
CREATE TYPE ...t 1445
CREATE USERo 1454
CREATE USER MAPPING........cocoiiiiiiiiiiiiiiceceee e 1455
CREATE VIEW ..ot 1457
DEALLOCATEoooiiiii et 1462
DECLARE ... e s 1463
DELETE ...t e s 1467
DISCARD ...ttt sttt et s 1470
DO ettt s 1472
DROP AGGREGATE.......ccoooiiiiiiiiiicicieieeeteeetee sttt 1474
DROP CAST ..ttt sttt s 1476
DROP COLLATTIONcoiiiiiiiiitiieieieteteteseteeeeeie sttt ettt s 1478
DROP CONVERSIONc.ooiiiiiiiiiiiieiieeeeeese ettt 1479
DROP DATABASEc.oiiiiiiiiiieeeet ettt 1480
DROP DOMAINocoiiiiiiiiiiiiietcc ettt 1481
DROP EVENT TRIGGERccoociiiiiiiiiiiiiiiiiiciciisccceeeeeeeeeeee e 1482
DROP EXTENSIONooiiiiiiiiiiiciciccieeeete sttt 1483
DROP FOREIGN DATA WRAPPERccoccoiiiiiiiiiiiiiciciccccececc s 1485
DROP FOREIGN TABLE.........ccooiiiiiiiiiiiiiccisceeee e 1486
DROP FUNCTIONcooiiiiiiiiiiiiiiiciciccieeeec sttt 1487
DROP GROUP ..ottt 1489
DROP INDEXoouiiiiiiiiiiiiiiiietcine ettt 1490
DROP LANGUAGE........cootiiiteteeteeeeete ettt sne s 1492
DROP MATERIALIZED VIEWccciiiiiiiiiiiiinieiene ettt 1494
DROP OPERATORcocooiiiiiiiiiiteeeet ettt sttt e 1496
DROP OPERATOR CLASSottt 1498
DROP OPERATOR FAMILYoooiiiiiiiiiiiiiicieieet et 1500
DROP OWNEDooiiiiiiiiiiiiee ettt s s 1502
DROP ROLE ..ottt s 1504
DROP RULE ..ottt e 1506
DROP SCHEMA ... 1508
DROP SEQUENCE........cociiiiiiiiiiii e 1510
DROP SERVER.......oociiiiiiiii e 1511
DROP TABLE ...ttt 1512
DROP TABLESPACEcoiiiiiiiiiiciic e 1514
DROP TEXT SEARCH CONFIGURATIONccccciviiiiniiniiieieiniinieneieeeeeeee s 1516
DROP TEXT SEARCH DICTIONARYocoiiiriiriiiiiiiniinieicieteeeteseseeeeieeese s 1518
DROP TEXT SEARCH PARSERccocciiiiiiiiiiiiiitsecceteeeeeeeeeeeee s 1519
DROP TEXT SEARCH TEMPLATEccoccooiiiiiiiiiiiniiicicicteeeeieeeeeeeee s 1520
DROP TRIGGERcoiiiiiiiiiiniiiiicictceteeeeeese sttt 1521

XXVii

DROP TYPE.......ooiiiiiiiiiiieccete ettt 1523

DROP USER ...ttt sttt 1524
DROP USER MAPPINGccooueiiiiiiiinieieniecieetetet sttt 1525
DROP VIEW ..ottt sttt s 1527
END .ttt 1528
EXECUTE ...ttt ettt sttt ettt sttt naen 1529
EXPLAIN ..ottt ettt ettt sttt et sbe et e et ebe e naen 1531
FETCH ...ttt ettt sttt ettt ettt e 1536
GRANT .ttt ettt et ettt b et b b e et eae b sae e 1540
INSERT ..ottt ettt sttt et ettt e et eae b naen 1547
LISTEN L.ttt ettt sttt ettt b b st ae b e 1551
LOAD ..ttt ettt 1553
LOCK .ttt ettt 1554
IMOVE. ..ottt ettt ettt st sttt sttt 1557
INOTIFY wtteeeeetee ettt ettt st bttt bbb e et eaesbesaens 1559
PREPARE ..ottt ettt 1562
PREPARE TRANSACTIONc.ooiiriiiniieninieenieenietste sttt 1565
REASSIGN OWNED......ccoiitiiiniiinieinieentrieentetstet ettt 1567
REFRESH MATERIALIZED VIEWccociniiiiiniiniiniineentneneeeesieestee e 1569
REINDEX ...ttt ettt sttt sttt sttt s 1571
RELEASE SAVEPOINTccortiiiniiirinieentnctnctntetste sttt 1574
RESET ..ottt ettt ettt sttt s 1576
REVOKE ..ottt ettt sttt st 1578
ROLLBACK ..ottt ettt sttt sttt 1582
ROLLBACK PREPAREDcociiiiiiiiiiiistesietetete ettt ettt 1583
ROLLBACK TO SAVEPOINToottiiiiiiinenerteteeteee ettt 1585
SAVEPOINT ..ottt ettt ettt 1587
SECURITY LABEL.....c.ooiiiiiiiineineineenteeeeeeeeeiete ettt 1589
SELECT ...ttt ettt 1592
SELECT INTO ...c.viieiiieiiiricertctrieenets ettt ettt 1612
SET ettt 1614
SET CONSTRAINTS ..ottt 1617
SET ROLE ...ttt 1619
SET SESSION AUTHORIZATION........cociviiieieininienienenteteteieeieetesieneeeeeeieeie e 1621
SET TRANSACTION ..ottt sttt et ettt se e ene e 1623
SHOW .ttt sttt ettt et ettt eb et b et et eue b sbenaen 1626
START TRANSACTION ...c.ooiuiiiiiieirtintinteteteteee ettt sttt ene e naen 1628
TRUNCATE ...ttt sttt ettt ettt e 1629
UNLISTENttt sttt ettt sttt et ettt ebe et be et enesbenaens 1632
UPDATE ..ottt sttt ettt 1634
VACUUM ..ottt sttt sttt b ettt sttt be e 1638
VALUES ...ttt ettt sttt ettt st 1641
I1. PostgreSQL Client APPIICALIONScc.eeruiruieiiriieienie ettt ettt sttt 1644
CLUSTETAD ...ttt ettt b et et esae st e naesbens 1645
CIEALEAD ..ottt ettt st et b et et et nae st aenbeen 1648
CIEALELAIIZ ...ttt ettt ettt bt ettt et e s b st e b e sb e e st e s bt eatenbesbeenaenbeens 1652
CTEALEUSETvenetitete et eue et sttt et esteae et be s e e e st ebe e b sa et et e s enteue et e besseneeneeuesuesaens 1655
ATOPAD ..ttt ettt st h ettt et nae st sbeea 1660
ATOPLANEZ ..ottt b et bt ettt et s bt ettt ebtenaesbeenaenbeens 1663
ATOPUSET ...ttt ettt ettt b et sttt ae s bt et sbeeat e bt eaeenaesbeebenbeens 1666
BCPE +eeneeeeemteteett et e et e et e st e e st e bt eb et e bt ea e bt e a e bt e bttt h e a e bt e bt ae e bt et eh e ea s e bt ebeenaeebeebesbeea 1669
PE_DASEDACKUP ...t 1672

XXVili

PE_QUINIP ittt ettt ettt et st e bt et e st e et e e beesabeenbeebeesnbeenbeebee e 1681
PE_AUMPALL...iiiiiiiiiiieii ettt st sttt e b e 1693
PEASTEAAY ...ttt ettt sttt ettt b e st et ebe e st e enbeebee e 1699
PETECEIVEXIOZ ¢ ueeiutiiiiieieeteeite ettt ettt ettt sttt et st e bt e bt e st e sabeebeesbbeenbeebee e 1702
PE_TECVIOZICAL ...ttt s 1705
PE_TESTOTE ...ttt ettt st s et s e et ne e 1709
PSGL ettt ettt et ettt e e bt shteebeebee e 1717
e 10T (55 € Lo T USSP 1748
VACUUINADeiiiiiieeiie ettt ettt e e et e e ste e et e e e st e e ssseeensaeeensseeenssaesnseeens 1751
1. PostgreSQL Server APpliCationscccoecuiruirieriiiieiieniiieieeceee et 1755
INEAD ..ttt e et e et e e e be e tee et e ebe e baeerbeenbeebeesrbaenbeeraenn 1756
PE_CONLIOLAALA ...ttt ettt ae et sb et e et et esaeemeennesaens 1760
POt ettt et b et b ettt et esbe et e tesreen 1761
PE_TESEEXIOZ .ttt sttt sttt e ne e 1767
POSEZLES ettt ettt ettt ettt be e st e bt e b et st e et e e beesat e et e e b e e sbbeeabeebeesbeeenneereenae 1769
POSTIMASTET ...ttt ettt ettt ettt et e b st e bt e bt st e e bt ebeesaneembeebeesbneenseeneenne 1777
VII. Internals 1778
47. Overview of PostgreSQL INternalsccoceierieriniiniiniiienenieeeeeseeeene st 1780
47.1. The Path of @ QUETY ...c..coviiiiriiiiiiieetces ettt 1780
47.2. How Connections are Establishedccccoevuievieniiiiiieniieieiieciceee e 1780
47.3. The Parser STAZEcoeeeeriirieiiiniiienieniteieeitete sttt sttt sae e saesieeas 1781
7. 3.1, PaTSET c.utieeieeiieeieeiteete ettt ettt et s e sttt e st esate e be e st e sabe e beesaaeeaaeeares 1781
47.3.2. Transformation ProCESS........cccveecieerierieriieriienieeieesiee et 1782

47.4. The PostgreSQL Rule SYSEM ...cc.eivvvieriieriiiiieiieniie sttt eiee e 1782
47.5. Planner/OpPtmiZeTcooviiiieeriienieeieeritenitesieesieesttesteeseesteessesseesseesasesseesseenns 1782
47.5.1. Generating Possible Plans...........ccooceeviiriiinienieniiiieieeeeeeeeeeee 1783

4776, EXECULOT ..c..viiuiieiiieieeiteeite ettt ettt ettt sttt e bt st et e et e ssteenbeebeesatesnseebeenes 1784
48. SYSEM CALAlOZSveeuvieiiiriieiieeite ettt ettt s e st be e st e st e e beesbaesaneeats 1786
A8. 1. OVETVIEW ettt ettt ettt et ettt st et et e st e et e ebeesabeenbeebeesateenseebeenee 1786
VIS SN Yo H-Yo fo b ot =Ye 1= X ol = SRS U SO N USROS U OO PPRTN 1787
T I T oY HE=Y | PRSP 1789
VI i oY BN 111 < USSR 1792
ZE IR o¥e BN 11V e Yiate Yo SRS 1793
ZE TS o ¥ HE= X ol ot L= PSSR 1793
VAR RIS o¥e HE= X ol ok o Y ot =SOSR 1794
VTR T 0T B oL ulo B e DU 1797
VR I I 0¥ B DLl o T 1T=Y 1 o 1= af = USSR 1798
I L oo oY= PRSI 1799
8.1 1. PG CLaASS ieiietriieeeeiittieeeeectte e e e ee ettt e e e e et e e e e e e a e e e e etreeeeeaataeaeeeaataeaeeeaarraaaaans 1800
48.12. PG _COLLAT 10N tiriiiiitriieeeeiiteeeeeeeire e e e eette e e e eeetaeeeeeeatreeeeesaseeeeeeasrasaeeennsreeeeans 1804
48.13. PG_CONSEIAINT tiitiitriieiieiitiieeeeeiireeeeeete e e e eestreeeeeeatreeeeesareeeeeessraeeeeeanrreseaaes 1805
48.14. PG CONVETSION tiititiiieeieiirieeeeeiireeeeestteeeeeestreeeeeeaareeeeesesraeeeeesnsraseeeeensresaenns 1808
48.15. PG _AATADASE tiettieieiiee ettt ett ettt e e ettt e e et e e et e e eetaaeeraaaas 1809
48.16. pg_Ab_ 101 SEETANG ttiiiiiieeitiieeitieeeiteeeeteeeeteeeeteeeereeeeteeeeeteeeeeteeeeeseaeenreeens 1811
48.17. PG_AFAULE_ACL ciiiiieeiieeeiiee ettt e et e et e et e e ettt e e e te e e tte e eetaeeeetaeeeeteeeeteaeenraeaas 1811
48.18. PG _AOPENG it ittt ettt ettt ettt et e e et e et e et e e tt e e e tt e e etaaeeraaeas 1812
Vit 0 LS I oYe Mo [=Y-Toh ok oY ok KoY o WUUNNNNNU RSP PPPRN 1814
) O oY B =3 o N0 DRSO PP PN 1814
V% 30 B oY B =RVA =3 SR ot o e £ [= 5 o OO PPN 1815
VS B oY B = S oL =3 o R T K o) s TSROSO PPN 1816

XXIX

48.23.
48.24.
48.25.
48.26.
48.27.
48.28.
48.29.
48.30.
48.31.
48.32.
48.33.
48.34.
48.35.
48.36.
48.37.
48.38.
48.39.
48.40.
48.41.
48.42.
48.43.
48.44.
48.45.
48.46.
48.47.
48.48.
48.49.
48.50.
48.51.
48.52.
48.53.
48.54.
48.55.
48.56.
48.57.
48.58.
48.59.
48.60.
48.61.
48.62.
48.63.
48.64.
48.65.
48.66.
48.67.
48.68.
48.69.
48.70.
48.71.
48.72.
48.73.
48.74.

PY_foreign_data _WIAPDET cireeieeierrreeeeerirereeeeeiireeeeeeeitrreeeeessereeeeessreeeeenns 1816
PO _FOTCIGN_SEIVET wiiiiiecteieeeeeeteeeeeeetteeeeeeeteeeeeeeeaeeeeeeetaeeeeeestseeeeeeeareeeeeans 1817
Yo MR e R =5 Kot oM ul=0 o B I =Y U U USSR UURR OSSR 1818
oY B oL 1= 5 ST SRR USROS U USSR 1818
Yo M o) oY= ok K oif= SO U OO USSP SURR OSSR 1822
PO LANGUAGE ttrtieeeeitrreeeeeeitrreeeeeeitrreeeeettaeeeeeeetaeeeeeetsseeesaesssreeeseaseseeeeessreeeeaans 1822
Jo1e R R B ale 1=Yo) o By 1= Yo wiBU PSRRI 1824
PY_largeobject_MEtAadAta .uceieerecieeeeeeiieeeeeeiieeee e sttt e e e e ebeeeeeseneeeeeenas 1824
PO_NAMESPEACE tetteerauurrreeesarereessaasstteeeaaseteessaassateessamsteeessamssteesssaseeeessmsseeesannn 1825
PO O C LA S Suuttttttaauitteeeeaitteeeseietteeeeateteeesantbteeesabeteeeeanbbteeesabtbeeeesanbeeeeeeanrae 1825
o1 o) o 1R o= N ol o X NN UU USSR PRPPPRRRIRt 1826
PO OPEAMI LY tereiieiiiieeieeitieeeeeectte e e e eettreeeeeettreeeeeetareeeeeesrareeeeesaaeeeeeenbaeeaeeanees 1827
PO P LEEMP LA E ciiiiiieiieeiiiee ettt e e ettt e e e ettt e e e e etar e e e e e rae e e e eetaee e e e eenbaeeaeeanees 1828
PO DT OC ettt eeitteeeeeeitteeeeeeteeeeeetaaeeeeeetaseeeeeasbaseaesasareeaeaasbasaeeeabaaeeeeaanbaeaaeeanres 1828
PO L ANIGE ciietttieeeeeitreeeeeetteeeeeeetareeeeeettaseaeeeastaeeeeaassseeaeaassaseeeeabaaeseeaanbasaaeeasres 1833
S e =Y ok I o = RO TS PSSRSO PUUPUURPPPPURRRRRIOt 1833
PO_TePliCation_SLOES coriiiiiiiiirieeieiiieeeeiieeeeeeereeeeeeetreeeeeeerbaeeeeeearreeeeenns 1834
PO_SECLADEL utiiieiiciiiieeeeeitreeeeeette e e e eettee e e e e ttae e e e e e taaeeeeebbreeeearaaaeeeeaarraaeaans 1835
PO_SHACPENIA cutiiieiiiie ettt ettt et e e et e et e e et e e eeta e e e eta e e etr e e eaaeeeraaans 1836
PO ShAe S Cr APt Omaiiiiiiiiiiiiceiie et e ettt et e et e et e etae e etteeeteeeeaeeeeareeeas 1837
PO_ShSECLADEL tiiitiiiiiiee ettt et ete e ettt eee e et eeeetr e e etaeeetaeeeteeeeaaeeaareaans 1838
PO St AT A ST AT ttiiiiiiiiiiee ettt eeee et e e et e eet e e tae e et e e e b e e etaeeetreeete e e eataeeaareaans 1839
1S R o=t SR =Y =] o F- Y= SRRSO 1841
1o MR ok ok R e (e 1 =3 BN TREURORSSTTN 1841
joYe MR R =T cle Yo b sk e HNUUU USROS 1843
joYe MR uR-TiNcle Yok ik Ko il 1=Y < YOUUUUUUN OO SO UEURROSSTRN 1844
oY MR o =T e & K o) TSROSO 1844
PO LS PAT SO tttieiieirreeeeeeiereeeeetiteeeeeeettrreeeeeetareeeeesreeeeeeetaseeeeensseseesensareeeeeans 1845
PO LS LMD LAt ciiiitiiiieiieieeieeeeeie et e e eetre e e e e et e e e eertreeeeeeetrreeeeeetbaeeeeeeareeeeeans 1846
oY MR w74 o 1= DU U ST 1846
PO USE T AP IIIG cetrrieeiieitrreeeeeiirereeeeeirreeeeerrereeeeeireeeeeeessrreeeeseseseesesssreeeeesns 1854
SYSIEIM VIEBWS ..uviiiiiiiiiiieiteeite ettt et ettt sttt ettt e b et st sabeesaeesaee s 1855
PY_available_eXLEeNSIiONS . iiiieeeiiiieeeeeeireeeeeeeitreeeeeeereeeeeeeiareeeeeens 1856
pg_available_extension_vVerSions . iierereenereesneeens 1856
PO CU T SOT Suuuurieeeaauereeeeaantereessassreeessassseessssnsaeeessasssseesssanssseesssssseeeesssssseeeennnn 1857
PO gL OUD ttteeeauuurreeesauereeeesanssreessaassseeessasseeesssnnsaseessasssaeeessassseesssassaeeessamsseeeeannn 1858
Jo1 T B oL L= LY = DU PRSPPI 1858
o1 N e o) 4= TSRO PPPPPRRRRIRt 1859
PO _MAT VI EWS tittiieiiiietieiiitteeeeiittee e ettt e e e ettt e e e sebeteeeessbateeesabteeeessanbateeeennres 1862
PO_prepared_StatemMeNT S . iieeeeeeireeeeeeitrreeeeeerereeeeeetreeeeeeebaeeeeeennes 1863
PO _PTrePATrEa_XACES tiriiiiiieeieiiiiieeeeeitrreeeeeitreeeeeeitrreeeesetareeeeesteeeeesensaseseeansnes 1864
PO O LS ciiitiiie ettt e ettt e e eeet e e e e et e e e e e ta e e e e e e ttr e e e e eartaaeeeeetaaaaeeeaabaeaaeeanntes 1864
PO UL S ciiiitiieeeeeiteeeeeete e e e eeette e e e e ettar e e e eettaeaeeeeabareeeeaastasaeeeabaaeeeeeanbaeeeeeannres 1866
PO SECLADELS tiieecuiiieeeeiiteeeeeeite e e e eetr e e e e etee e e e e etar e e e e atbaeeeeeetaaaeeeaentaeaaeeanres 1866
joYe H=T= Y sk ol o Lo 1< RSO U SO UUURR ORI 1867
S Yo =) s LYo [) O S UTRUPSTRRTSTRPPR 1869
PO ST AT S teiitiieeittieeitteeeetee e ettt e eeeteeeeteeeeteeeeteeeetaeeeettaeeataeeeetaeeetteeetreeetaaeateaans 1870
PO a0 @S tutiiiiiiie et ettt ettt et e e e et et e et e e e ta e eetaeeetteeeteeeetaeeareaans 1873
Pt iMEZONE_abDI@VS ciiiiiiiciiieeeiieeetieeeeteeeetteeeetreeeetreeeetaeeeetreeetreeeaaeesareeens 1874
PY_tiMEZONE_NAMES ciriieieiiieetieeeiieeeteeeeteeeeteeeetreeeetreeeetaeeeteeeeteeesseeesareeans 1874
PO USET attrieeieitereeeeesaeeeeeeesareeseessrreeseattarseesestareeseesasssesaetareeesansseseesensaaeeeeeins 1875
IS RCE-T= ol 1Y o) o i o Ve £ TR 1875

XXX

T o Ye BV K= = BRSSP URUPPPRTN 1876

49. Frontend/Backend ProtoCOL...........coeevieririeniinirieniinieientetesecteeetete e 1877
49.1. OVEIVIBW ...ceiiiiiiiiiiiii et s 1877
49.1.1. Messaging OVETIVIEW.......cccueereeriiieniienienieeniienite st enieestesaresieesaeesnesanes 1877
49.1.2. Extended QUETY OVEIVIEWcocuieriierieriieniienieeieenieestesiteeieesieeeee e 1878
49.1.3. Formats and Format Codescc.eceruirienininiienineenienceeeneeeerennens 1878

49.2. MeSSAZE FLOWo.viiiiiiiiiiiiieceeee ettt et s 1879
4.2, 1. STATT-UP. ..ottt sttt e 1879
49.2.2. SIMPIE QUETY ...ttt 1881
49.2.3. Extended QUETYccccoirieiiiiiiiiiiieieie et 1882
49.2.4. FUNCtion Call..........ccoouiiiiiiiiiniiiiieieteeeeteteee ettt 1885
49.2.5. COPY OPEIationsc..ccceeiuiruiiiiiiiieieiiceiesie et 1886
49.2.6. Asynchronous OPErations.......c..ccceceeeererrerierrenueeeeeenresressenseeeesienensens 1887
49.2.7. Canceling Requests in Progress.........cococcvevvecveieenineneneneeceeenenennens 1888
49.2.8. TerMINAtION ..c..eeiieieiieitieieieet ettt et sbe st seeene 1888
49.2.9. SSL Session EnCryption..........ccccveceeirenenenienieieenenineseneeeeeeenie s 1889

49.3. Streaming Replication Protocol...........ccoevieiieiiinininicnicieiiiseseeeceeenenaens 1889
49.4. Message Data TYPES «...coouviruerrieniiiieeiterite ettt sttt ne e 1895
49.5. MeSSaZE FOIMALSccueruiiiiiiieiiriiiieseetee ettt st 1895
49.6. Error and Notice Message Fieldsc.ccooeviriiiininieniiniecnieienceeeneeeeeiene 1911
49.7. Summary of Changes since Protocol 2.0.........ccccecevvieririeneninniniiiencnienenene 1913
50. PostgreSQL Coding CONVENTIONScouerueeiiriirienieniienienieeienieeetentesieestesieesteniesieeseseeene 1915
50.1. FOIMANG ..c.veevveiiiiiiniieiieie ettt sttt et ettt ettt sb et nbeene 1915
50.2. Reporting Errors Within the Server..........ccccevinerieninienininninenienenceenene 1915
50.3. Error Message Style GUIAC..........cevvirviieriiinienieeieerite ettt 1918
50.3.1. What Goes WhETeccoiviiriiiiiiiiiiieiceccec e 1918
50.3.2. FOIMAtNGccouviiiieniieeieeieeriteste ettt et e st ebee st e seteebeesseesateenbeenaeesanen 1919
50.3.3. QUOtation IMATKScceiiiieiiiieeiieeeiie ettt et e e e b eraeeevae e 1919
50.3.4. USE Of QUOLES......eeeiiiiieeiiieiieeeiieeeiteeeieeesvee e reeesereeesebeeesebeessaeessveeennns 1919
50.3.5. Grammar and Punctuationcccceceeivinieniciininnninieceeee 1920
50.3.6. Upper Case vs. LOWET CaSEcccevveeriieniiriiiiieniienieesieesiee st eveesiee s 1920
50.3.7. Avoid Passive VOICEccccoiviiiiiiiiiiiiiiicicicc e 1920
50.3.8. Present vs. Past TENSEcccooveiiiiiiiiiiiiiiicicicccc 1920
50.3.9. Type Of the ODJECE.....ccvviriiiiiiriiiiieiterte ettt 1921
50.3.10. BIACKELS..ccuveeruiiiiiiiieeiieeieeiteete ettt ettt e 1921
50.3.11. Assembling Error MesSagesccccoeveeieniieieniineeneneeneieneeeeeneenee 1921
50.3.12. Reasons fOr EITOrsS........coceivieriiriiinieniceieeeeeese et 1921
50.3.13. FUNCION NAMES ..ccuveeruiiiiieiieniienieeiteeite ettt st 1921
50.3.14. Tricky Words to AVOid...........cccoviiiiiiiiiiiiiic e 1922
50.3.15. Proper Spelling.........ccccooveiiiiiiiiiiiieiiicieee e 1922
50.3.16. LOCAHZAtION.evieiiiiieiieieeteeie sttt st 1923

51. Native Language SUPPOIT......c.ceceririirierierieirinerenteteereteresresseseseeseeseeressesaesesseneenesseenes 1924
51.1. For the Translatorcoccoiierieiieieieeee ettt 1924
ST.1.1. REQUITEIMENLS ..cuveviiiieiieiieiieteeie sttt ettt et sae st e e eae 1924
ST1.1.2. CONCOPLS. ..ottt ettt sttt ettt eate st st ae bt et e b e b e e e eae 1924
51.1.3. Creating and Maintaining Message Catalogsccoceveruenieneenuennennes 1925
51.1.4. Editing the PO Filescccocoiiiiiiiniiiiiiicietecceee e 1926

51.2. FOr the PrOramimer.........c.ccoceerieriirieniinieienieete ettt st 1926
51.2.1. MECRANICS ...ttt e 1927
51.2.2. Message-writing GUIidelinescocceoereevieninienineenenenieneneeeeene 1928

52. Writing A Procedural Language Handlerccococeevininiininiiinincnnieneicncnceience 1930
53. Writing A Foreign Data WIaPPercoccoeeiiriirieninienienieeieniceitete ettt 1933

XXXI

53.1. Foreign Data Wrapper FUNCHONSccocviiiiirieiiieniieeieciceee et 1933

53.2. Foreign Data Wrapper Callback ROUHINES.........ccceeviiirieriiiiniienienicciceeeeeee 1933
53.2.1. FDW Routines For Scanning Foreign Tablescccceevveeviiienieneennnen. 1933

53.2.2. FDW Routines For Updating Foreign Tablesccccceevveeriiininnennnnen. 1935

53.2.3. FDW Routines for EXPLATIN ...ccccoctrcierierierenrieeeteneenenneennenesieenenneenee 1938

53.2.4. FDW Routines for ANALYZEccccoceevuerrereerrenrineeneneennenieenesreseenesneenne 1939

53.3. Foreign Data Wrapper Helper Functions...........c..cccceceeievininiencnienenecennenes 1940

53.4. Foreign Data Wrapper Query Planning............c.ccoceeieiiiinieiiniineneneciene 1941

54. Genetic QUETY OPHIMUZETcc.eecveriieieieniieieeteeeeie ettt ettt eesne e 1943
54.1. Query Handling as a Complex Optimization Problem..............c..c..cccocecinnne 1943

54.2. Genetic AIZOTItRMSc..coiiiiiiiiiiiiie e 1943

54.3. Genetic Query Optimization (GEQO) in PostgreSQLcccoverieienieiennnne. 1944
54.3.1. Generating Possible Plans with GEQO.........c.ccccccvevirininenenenenenennenn 1945

54.3.2. Future Implementation Tasks for PostgreSQL GEQOcccccceueuee. 1945

54.4. Further Readingc.cccevuerieiiiiiiiniiieicieeeteene ettt 1946

55. Index Access Method Interface Definitionccccoeeeeverieiieninieniineee e 1947
55.1. Catalog Entries for INAEXESccceoueririeniiniiieieeieriee e 1947

55.2. Index Access Method FUNCLONS..........coceeriiiirieninieieeteeeetee e 1948

55.3. INAEX SCANMIINEevveniiiieiiiiieiesteeiteeeeete sttt ettt sttt st 1952

55.4. Index Locking Considerations.............ceceeruereerienerienieneenieneeeenieseeniesseeeeneeenes 1953

55.5. Index Uniqueness CheCKS..........couerieriirieniineeienenieieeieeeeseet et 1955

55.6. Index Cost Estimation FUNCHONS.........cccceciriiininiiniiiiiiiiiciiecreeeeece e 1956

56. GIST INAEXES.....cueiuiiiiiiiiiieieiee ettt sttt st 1959
56.1. INrOAUCEHIONviiiiiiiiicicieiet ettt s 1959

56.2. BUilt-in Operator ClaSSESceevveerverrieerieenieniieerieentessesreesieesressesnseesssessnesnnes 1959

56.3. EXIENSIDIIILY ...oouviiiiiiiiiiiiicicicee e 1960

56.4. TMPIEMENTALION......eeitieiiiiieeieeiee ettt ete et e st eesbeebeebeesabesabeenbeesasesanesnses 1967
56.4.1. GiST buffering build.........cc.coceeveniniiininiiiineceecceeeeeee 1967

56.5. EXAMPIES ...eouviiiiiiiiiiiieiie sttt sttt ettt sttt sbe st e be e st e st e be e st e saneeats 1967

57. SP-GIST INAEXESoeomiiiniiiiiiiiiiiciiietece e 1969
571, INrOAUCHION ..ottt 1969

57.2. Built-in Operator ClaSSesc.eevueerieirierriieniienieeieenitesteeteesiee st sresbeesieesanesaees 1969

573 EXENSIDIIILY ...coviiiiiiiiiiiienieee ettt ettt et 1969

57.4. IMPIeMENtAION.....co.eiiiieiiiiiriieieieeiete ettt ettt sne e 1976
57.4.1. SP-GIST LIMILS..c.uerieiiirininiinieieieteeeteseste ettt 1976

57.4.2. SP-GiST Without Node Labels.......c.cccceevenenienieiininienineeececeenen 1976

57.4.3. “All-the-same” Inner Tuples..........cccccoerieiiiniiiininieneeceeeeeeee 1976

57.5. EXAMPIES ..ottt 1977

58 GIN INAEXES .uveenvieeiieeieeiteeiteete ettt ettt ettt s e st e sbe e st esat e e bt e sbtesae e e beebeenaee s 1978
58.1. INOAUCHIONeutiiiiiieiieie ettt ettt ettt ae et es e e e ens 1978

58.2. Built-in Operator ClaSSEsccceveruerrerrerreteinenierienteteteieeseesessessenseneeneenessensens 1978

58.3. EXIENSIDIIILY ...eoueuiiiiitiienieecicietei ettt ettt e 1979

58.4. IMPIEMENTAtION.......eovirririeieieiieiirteet ettt st ettt ettt et e et saesaens 1982
58.4.1. GIN Fast Update Technique..........ccecceverieiieniinieniieee e 1982

58.4.2. Partial Match Algorithmcccooceviiiiiiiiiiniiie e 1982

58.5. GIN Tips and TTICKSeeueeiiriiiieiieiieieeiete ettt 1983

58.6. LIMITALIONS ...cuveuriiiiiiienieteieiiee ettt sttt eve et e s ene s b saen 1983

58.7. EXAMPIES ..ttt sttt ettt sttt b et s ettt et nbe e 1984

59. Database Physical StOTageccccoerieriirieiiiniinienieeitetesicetesteeetete et 1985
59.1. Database File LayOut.......c.cccceveririiriniiniineeieneeteieeiceeesieete et 1985

59.2. TOAST .ottt s 1987

59.3. FIee SPACE MAP ..c.uvieiiiiiiiiieieeiee ettt ettt ettt st e s besabeebeesanesanesnns 1989

XXXIT

59,4 VASIDIIEY VAP oo vvveeeeeeerreeeeee e eeeeeeeeeeessesseseeeseesssseeeeeseesssseseesssesseeeseeeeessssee 1989

59.5. The Initialization FOrK........c.cccoveiiriiiniiniiniiiiiicnericceececcecceeeeeeee e 1990

59.6. Database Page LayOutcoceevieriiiiiiiiiienieeieeieesite ettt 1990

60. BKI Backend INterface..........coccecueruiiieniinieiiiieieienteeseeecetete st 1993
60.1. BKI File FOMALccccocieiiiiiiiiiieieiieieeeccteneereteeeeeereee e 1993

60.2. BKT COmMMANASc.coouieiiiiiiieieniieieieeeeteeicerene ettt 1993

60.3. Structure of the Bootstrap BKI File.........ccccccceoeniiiiiiiniiiiniiiieeneciee 1994

60.4. EXAMPIE ..ottt 1995

61. How the Planner UsSes StatiStCS.....cevueruirriierierierieeniterte ettt e e st ieeseeesaee s 1996
61.1. Row Estimation EXamples.........c..ccccooiiiiiiiiiiiiniiiieeeeceeeeeeeee 1996

61.2. Planner Statistics and SECUIILYcccccceeririiiiiniiiieieeieeeeceee e 2001

VIII. Appendixes 2003
A. PostgreSQL Error COAES......couueiiiiiiiiiiiiiiniieeteeeete ettt ettt 2004
B. Date/Time SUPPOLT ...c..eeiuiiuieiietieienie ettt ettt ettt ettt ettt et e e sbeetesbe et enbesbee e neeene 2012
B.1. Date/Time Input INterpretationooeeeerierierieneeieneeeeesicete et 2012

B.2. Handling of Invalid or Ambiguous Timestamps........ccccceceerereerienerieeneneenenens 2013

B.3. Date/Time Key WOIdS........ccovieriiriiienieiieieniteestcetese sttt 2014

B.4. Date/Time Configuration Filesccccocveiiniiiiniiiiniiiecnicecceene e 2015

B.5. HiStOry Of UNIES ..coveeuiiiiiiiiiiniietesieetestesitet ettt ettt sttt st sbe e 2016

C. SQL KEY WOIAS.c..eeiiiiiiiiriieieeieetesteeteestt ettt st ettt ettt et sttt et ebe bt e e e eae 2018
D. SQL CONOIMANCEccuvviiiuiiiiiiieeiiie ettt ettt e tee e ve e e eeb e e etaeeeetseeetseesasseesareaens 2041
D.1. SUPPOTtEd FEATUIES ...ccvveiiiiiieiieiie ettt ettt st reetteseteebeesaeesareenseesee e 2042

D.2. Unsupported FEAtUIESccceeruieriiiiieiieriieeieeiterite sttt sre e sieesieeeseeneee e 2057

E. REIEASE INOLES ...ttt ettt ettt ettt sttt ettt sae et saesieennesbeens 2072
E.1.REIASE 9.4.22 ..ottt sttt s 2072
E.1.1. Migration to Version 9.4.22........ccccccuerieriiiriieenienienieenieeneeseeenieesieesine s 2072

B 1.2, CRANEES .ouvieiieeiiteieeteete ettt sttt st ettt et st esaeesaee s 2072
E.2.REIEASE 9.4.21 ..ottt s s 2074
E.2.1. Migration to Version 9.4.21ccccoeviirieniiniiienieneesieeieesee st 2074

E.2.2. CRANEES .ouveeiieeiiteieeiteee ettt ettt sttt st st n 2075

E.3. ReIEaSE 9.4.20 ..ottt s 2077
E.3.1. Migration to Version 9.4.20.......c..ccccecueririeiieninienineeneneeresieseeeeeeeeee 2077

E.3.2. Changescoovieuieiiiieieieeecteeeeste ettt st 2078

E.4. ReIEASE 9.4.19 ..ottt st st 2080
E.4.1. Migration to Version 9.4.19ccooiiiiiiiiiniiiiccecceeeeee 2081

E.4.2. Changescoooieiiiiiieieeeee et 2081
E.5.REIEASE 9.4.18 ..ttt ettt ettt 2083
E.5.1. Migration to Version 9.4.18........cccccevririninenenieieenenesrerereeeneeeniene 2083

E.5.2. CRANEES ...ueeeeieeiiieieeetee ettt sttt 2083

E.0. RElEaSE 9.4, 17 ..ottt ettt ettt et st saen 2086
E.6.1. Migration to Version 9.4.17........cccccevrinimineneneieenenesrerereeeneenennee 2086

E.0.2. CRANZES ..c.ueeiieiieieiieeeteee ettt sttt st 2086
E.7.REICASE 9.4, 16 ..ottt sttt s st 2087
E.7.1. Migration to Version 9.4.16.........ccccevueriiiiniininienineee e 2087

E.7.2. CRANZES ..ceveniieiieieiieetet ettt sttt 2087

E.8. REIEASE 9.4.15 ..ottt sttt st 2090
E.8.1. Migration to Version 9.4.15......ccccoceviiniiiiniiniiienieeeneeeeeee e 2090

E.8.2. CRANZES ..cvvetiiieniiiieeieieeiteeet ettt sttt 2090

E.9. ReIEASE 9.4 14 ..ottt ettt 2092
E.9.1. Migration to Version 9.4.14cccocvevieriirciienieniesieeieesee et eveesaee s 2092

ELO.2. CRANZES .ovveeeieeiiieieesiteete ettt ettt ettt ettt e sete et e e e sabeebaenseesnee s 2092

XXXiT1

E.10. Release 9.4.13 ..ottt ettt sttt et s s 2093
E.10.1. Migration to Version 9.4.13.......cccceiriiriiiniiiienieeiteiteeeeee e 2093
E.10.2. Changescc.ceeuiiiieniienieeieesitesie ettt sttt ettt ettt e st sbeesaeesaee s 2093

E. 11 Release 9.4.12 ..ottt sttt et 2098
E.11.1. Migration to Version 9.4.12.......ccccceeviiriiniiiniinienieeiteeeeeeeieeee s 2098
E.11.2. Changescc.oeeeiiriieieieeieiieeeteste ettt 2098

E.12.RelEaSE 9.4, 11 ittt sttt ettt et 2101
E.12.1. Migration to Version 9.4.11........c.ccoceiiiiiiiiniiiiiccececeeeee 2102
E.12.2. Changesc.cocveouiiieieiieieiieeceereeeee ettt 2102

E.13. Release 9.4.10 c..cueiiuieiiiiiiiiieicte ettt ettt et 2105
E.13.1. Migration to Version 9.4.10........c.cccccooiiiiiiiiiiiniiiciceceeeeeeeeee 2105
E.13.2. Chang@es ...ccc.eeeueeiienieniieieeiteete ettt sttt sttt ettt 2105

E. 14 Release 9.4.9 ..co.uoiiiiieeeet ettt st 2108
E.14.1. Migration to Version 9.4.9........cccccevvvnininenenninne e 2108
E.14.2. Changescc.eeeuieiienienieeieeteeite ettt ettt ettt e 2108

E.15.ReIEASE 9.4.8 ...ttt ettt st 2111
E.15.1. Migration to Version 9.4.8........cccccevrinininenienieinenenesterereeeeenesnee 2112
E 152, ChaNEES ..ottt st sttt 2112

E.16. REICASE 9.4.7 ..ottt s 2113
E.16.1. Migration to Version 9.4.7......cc.ccocevvieriiiiieninieneneene et 2113
E.16.2. ChanEESovevvieiiiieiieieeiteeet ettt st sttt 2113

E.17.RElEASE 9.4.6 ..ottt 2115
E.17.1. Migration to Version 9.4.6......cc.ccoccevueririeniininienineenenentenieseeee e 2115
E.17.2. CHANZES ...eevveeeiieiieriieeie ettt ete ettt ste e tae st esateebeessaessseenbaenseesnnen 2115

E.18. ReICASE 0.4.5 ..ottt 2119
E.18.1. Migration to Version 9.4.5.......ccccocieriiriiiniiienienienieeieesee st 2119
E.18.2. CHANZES ...eevieiiieiieiieeit ettt ettt st ettt sate et et sabesbeenaeesaee s 2119

E.19. RIS 0.4.4 ...ttt ettt st 2124
E.19.1. Migration to Version 9.4.4........cccocveviiriiiniiiniinienieeieesee st 2124
E.19.2. ChanGEs ...cccueeeiieiiiniienieeieesiteste ettt sttt ettt e be et st s beesaeesaee s 2124

E.20. Release 9.4.3ouiiiiiiiieiieeeteeeeteseetet ettt sttt et 2125
E.20.1. Migration to Version 9.4.3......cccccociiriiriiniiieientesieeieeree st 2125
E.20.2. Chan@ES ...cccveeeuiieiieiieeieeieeiteete ettt sttt sttt e b et e e saee s 2125

E.21. ReleaSE 9.4.2 ..ottt e 2126
E.21.1. Migration to Version 9.4.2.......c..ccccoceririeiininenineeneneeeereeeeeeeneeee 2126
E.21.2. Changesc.ooceevuiiiieiiiieieieeeceesteetee ettt 2126

E.22. RelEaSE 9.4, 1 ..ottt ettt st 2130
E.22.1. Migration to Version 9.4.1.......c.cccociiiiiiiiiiiiinceececeeeeeee 2131
E.22.2. Chan@ES ...coouveeuiiiiieiieeieeeeeteete ettt ettt ettt et 2131

E.23. ReIEASE 9.4 ...ttt et 2134
E.23.1. OVEIVIEW ..outiiieieiiieiecteee ettt st sttt et eae s 2134
E.23.2. Migration to Version 9.4cccceeuevirinininenenieieenenesrereeeeeneenennene 2134
E.23.3. ChanEes ..coouieuieieiiieieieei ettt st sttt 2136

E.23.3.0. SEIVET .ottt 2136
E.23.3.1.1. INAEXES....ueeueeieieieieniieienieete ettt 2137
E.23.3.1.2. General Performance...........c.ccocevevieiiencnnencnieniencnne 2137
E.23.3.1.3. MONIOTING...c.vertiimiiniieienierienieniieiesteeee et 2138
E.23.3.1.4. SSL oo e 2138
E.23.3.1.5. Server SettiNgs.......cccevuererreerenienienieeienieeeeneseenienieens 2138

E.23.3.2. Replication and RECOVETYccccevererieniinieniiniiicnicnecieneee 2139
E.23.3.2.1. Logical Decodingccccecuerereenueneeueneneeneneenieniens 2140

E.23.3.3. QUETICS ..oeiiuviieiiieeiiee ettt ettt et e re e e eear e e etae e ereeeeans 2140

XXXIV

E.23.3.4. Utility COmMMANAS........cocuerierrieeniierieeiieenieesieeieesieeseeeieesieenns 2140

E.23.3.4.1. EXPLAIN....cociiiiiiiiriiiiieeeteeeeeeeie e 2141

E.23.3.4.2. VIBWS ..ottt 2141

E.23.3.5. Object Manipulationcceceereerieerieinieenienieeseenieeieeieene 2141

E.23.3.6. Data TYPES ..eocveeirierieiiieiieeieeieeiee ettt sttt 2142

E.23.3.6.1. JSON ..ottt 2142

E.23.3.7. FUNCHONSceiitiiiieeiieeieeite ettt st s 2143

E.23.3.7.1. System Information Functionsc.cccccoeervienenncnne 2143

E.23.3.7.2. AEIEEALES......erueiiiiieiiieeeeeeeeeee et 2144

E.23.3.8. Server-Side Languagesccccocceeeririieiiinincinieicnenecienee 2144

E.23.3.8.1. PL/pgSQL Server-Side Language.............ccccoceeeeeuenne 2144

E.23.3.9. TIDPQ weveeneeteenienie ettt sttt 2144

E.23.3.10. Client Applicationscccceeereeriererienienieieeeeeee e e 2144
E.23.3.10. 1. PSAL i 2145

E.23.3.10.1.1. Backslash Commands...........ccccceeererieruenncne 2145

E.23.3.10.2. pg_dump....ccccoiiiiiiiieiineeierieeeee e 2146

E.23.3.10.3. pg_basebackupccccecerreererienieniieieneeieneseeesieane 2146

E.23.3.11. SoUrce Code.......ccoeruerieniinieiinieeieneeiteeeitee et 2146

E.23.3.12. Additional Modulesc..ccccereereninieninieniineeeneneeeneee 2147
E.23.3.12.1. pEbenchcccoiiiiniiiiiiiiieneteeeeeee e 2148

E.23.3.12.2. pg_stat_Statementsc..ccoereeruerreerueneneeneneenieniens 2148

E.24. Prior REIEASES.cueeuiiiiiiiiiiriieieeicetestesitetest ettt sttt st 2149
F. Additional Supplied MOdUIESccceeiiririerieniinienieeteterceteseete sttt 2150
Fol. adminpack.....cooveiiioiieiecieeeetece ettt sttt sttt sttt st e aee e 2151
F.2. QUth_delay.....coouiiiiieiieiecie ettt sttt sttt 2152
F.2.1. Configuration Parameters..........ceceevvierierieriiieniienienieeieeseesveeveenieesenens 2152
F2.20 AULNOT .ottt 2152

F.3. QU0 _@XPlaINceuiiiiiiiiieiiecie ettt sttt sttt sttt st b e b e e 2152
F.3.1. Configuration Parameters.........ccecueevveenienieniieniienienieeieesee st eveesiee s 2153
FL3.2 EXAMPIE ..ttt sttt st ettt st s n 2154
F3.30 AULNOT ccniiiiiiec ettt 2154

Fid DO _IN .ottt sttt et sttt et 2154
F4.1. EXamPle USAZEccveevieiiiiiieiienieeieeiteste ettt st ettt s 2155
Fid. 2. AUNOTS ..ottt ettt et 2155

FLS. DIEE_ISE .ottt ettt sttt sttt st e 2155
F.5.1. EXample USAgec..cooveiiiriiiiiieieniieeeeneeeteeeee e 2156
FL5.20 AUNOTS .ottt 2156

FL6. ChKPASS....ceeiiiiiiiee et s 2156
FiO. 1. AUENOT c.niiiee ettt 2157

BT, CEEXE ettt et st ettt sttt b e st re e 2157
F7.1. RAtiONAle ..o 2157
F7.2. HOW t0 USE Lttt 2158
F.7.3. String Comparison Behavior............coccoiiiieiiniiieniieeeeeeeeeee 2158
F.7.4. LIMITAIONS ..cuvitieiiiiieiieitieiteieetce ettt 2159
FU7.5. AUNOT oot 2159

8L CUDE .ttt ettt ettt sbe 2160
FL8.1. SYNEAX ..ottt e ettt 2160

FL8.2. PrECISION. ...ttt sttt 2160

8.3, USAZR ettt st st 2160

F.8.4. DEfaUlS ...c.eovuiiiiiiiiiiieieeiteceeseetee ettt 2162

8.5 INOES ..ottt s et 2163

FL8.0. CIedits ..cueouiiiiiiiiieiieieieeitet ettt sttt 2163

XXXV

FLOUdDINK .o 2163

F.10.

F11.

F.12.

F.13.

F.14.
F.15.

F.16.

F.17.

F.18.

ADINK_CONMMECTcciiiiieiiieiiieeeiee ettt tee et e e be e eeb e e esebeeeebeesasaeesssaeenns 2164
ADINK_CONMMECT_U.cuuiiiiiiiieiiieeciieeiee et et iee et e et eeereeesebeeeebeesssaeaearaeenns 2167
AbINK_dISCONMECEeiieiiieiiieeiiieeiee ettt et e e e e eveeeseb e e e b e e sasaeesssaaennns 2168
16 0] 1331 SRS RUUUPRIPRINE 2169
ADINK_EXEC ..vvieiriieeiii ettt eciee et ettt e et e e et e e tee e st e e s sbeeeeseeesseeesseesnssessssenennes 2172
ADIINK_OPCI. ...ttt ettt sttt ettt n 2174
ADINK_FEICI ... et 2176
ADIINK _CLOSE vttt e e e e e e e e e e e s e s s easaasraaneees 2178
dblink_GEt_CONNECHIONSeevvieiiieiiieiieniie ettt ettt ettt ettt et seee e s 2180
ABIINK_EITOT_MESSAZE ...cuveenvieieiriiieiieniie ettt ettt ettt st b et e e e saee s 2181
ADINK_SENA_QUETY ...evieiiiieieieeiee ettt 2182
ADINK_IS_DUSY ..ttt sttt 2183
ADINK_GEt_NOTITY ..o 2184
ADINK_ @Ot TESUIL...c.eiieiiiiiieiieteee et 2185
dblinK_CaNCEl_qUETY ...ccoueiuiiiiiieiieieeieee ettt 2188
ABINK_ZEE_PKEY ..eeeviriitiieieiciieitee sttt ettt 2189
dblink_build_SQI_INSeIT......ccoueiuiriieiiniieierieeteeiee et 2191
dblink_build_sql_delete.........cceeieiiiriiiiininieeteeee e 2193
dblink_build_sql_update........cccceoveriirieiiininieneiteeeete e 2195
AICT AT ettt ettt et e e e e e e e e e e s s e s e aaaaaeaeeeeeesessesessesensnssasanaaens 2197
F.10.1. CONfIGUIALION ..eovviiiiiiiiiniieiiniceiesieetee ettt 2197
FiL0.2. USAZE..cuiieitiiieiieiesieeteteetetee sttt st sttt 2197
QIO XSYThe i utteutieieeeiieeteete e st e e bt ete e bt e seteesbeesbeessbesebesnbaessaenssesnseenseenseesssesnseenseenns 2197
FoIT.1. CONfIUIATION ...tiiiiiiiieeiiieiieiteste ettt ettt et e st e enaeesaee s 2197
Fo L2, USAZE. utiiiieiieeiteiteste ettt ettt st ettt ettt e st esabesbeenaeesaee s 2198
AUMMY_SECIADELviiiiieiieiieeeeeee ettt 2199
Fo12.1. RAUONALEviieeiieeiieeeee ettt et et e et eeeb e e eataeesavaeenes 2199
Fil2.2, USAZE...iiiiieiieeit ettt sttt ettt et et st s beenaeesaee s 2199
Fo12.3. AULNOT ..ttt et e et e e e eb e e s bae e sbaeenns 2199
CATTNAISTANCE ...ecvvvieeiiieciiie ettt ee e tee s tee e beeeereeetaeeestseeesseesasaeassseeennes 2200
F.13.1. Cube-based Earth DiStancesccceeeuveeriireriiieeniieesieeeseee e e eiee e 2200
F.13.2. Point-based Earth DiStancescccceccueeriireriiireniieesiie e evee e 2201
L _fAW .ttt et et e e te e stbeebeeree e 2201
fUZZYSIMALCH. ..o e 2203
FoI5.1. SOUNAEX...iiiiiiiiiiee et eeeraaee e 2204
F.15.2. LeVenShEINociiiiiiiiiiceciiee e et 2204
F.I5.3. MEtaphone.ccoooiiiiiiiiciiieciene et 2205
F.15.4. Double Metaphone............cccoocoeiininiiiiiiiiiicccece e 2205
RISTOTE <.ttt e e et e e e e e et e e et e e eeaaeeereeean 2206
F.16.1. hstore External Representationccecceeeeienincenenenieseeceeeeene 2206
F.16.2. hstore Operators and FUNCHONSc..cceerieriieienirieieneeeeeeeeee 2207
Fo16.3. INAEXES ..ottt ettt e et e e et e e eeaeeeeveaeeans 2210
Fo160.4. EXAMPIES ...cuiiuiiiiiiiiieieeiteieecee sttt sttt 2210
FL16.5. StAtISTICS .ueeeeuviiieiiie e ettt ettt ete et e et e et e e et e e eeaae e eteeeeaeeeenes 2211
F.16.6. COmMPAtIDILIL ..ccvervieieiiiiieiieieeeseeee et 2212
FL16.7. AULNOTSooiiiiiiiiie et et e et et e e e veeeeaes 2212
TIEAZE c.veevteee ettt ettt et b ettt s b e e b et b et bt et b e e bt et eb et naeeae 2213
Fo17.1. FUNCHONS ...ttt ettt ettt et e e eareeeeaneeetaeeeaveaeeens 2213
Fo17.2. SampPle USES....ccueiueiiiniiniieiinieeienieeiteniesiteteteeete et 2213
IIEATTAY .ottt sttt ettt st st eb et e bt et s b et e bt sbe et e sbeeatenaeene 2214
F.18.1. intarray Functions and Operatorscccceeeeereieerieeneesveesreeneenenens 2214

XXXVI

Fo18.2. INAEX SUPPOTL...eiiitiiiiiiiiiiieiiesie ettt ettt ettt st st esaee s 2216

F18.3. EXAMPIE ..ottt ettt st s 2216
F.18.4. Benchmarkc..coccevieiiiiieiiiniiiininiecnecciee e 2216
FoI8.5. AUNOTIS......oiiiiiiiiiiieieieeecre ettt 2217

FiLOU ASM ittt ettt st 2217
FL19.1. Data TYPES....ceeuiieiieriieeiteeieesiteste ettt sttt ettt et ettt n 2217

| L G T £ 2218
F.19.3. Functions and OPEratorsc.ccoceeeeruerieieniieienieneenne e ereieseeeesneenee 2218
F19.4, EXAMPIESoooiiiiiiiiiiiieieieeeereeeee e 2219
F.19.5. Bibliography........c.ccccciiiiiiiiiiiiniccciccee e 2220
Fi19.6. AUNOT ...ttt 2220

FL20. 10 ottt ettt et b et e et sae et erens 2220
F20.1. RAtIONALE «...eieieieieeieieei ettt sttt 2221
F.20.2. HOW t0 USE It ...eeiiiiiiiiiiiieeieeeteteceeeeeee et 2221
F.20.3. LIMItAtIONS «..eveenieiieiteteeiieieet ettt st s 2221
F20.4. AUNOT ... et 2222

FL2T TEEEE .ttt ettt et b et bt et n bt st aesben 2222
F21.1. DefiNitiONSeueeniiiieiieieeiieieeteete ettt ettt 2222
F.21.2. Operators and FUNCHIONSccceviriinirieiiniiiiene e 2223
F21.3. TACXES ..ttt e sttt 2226
F21.4. EXAMPIE ..ottt sttt 2226
F21.5. AUNOTS ..ottt 2228

FL22. PAGEINSPECT ..ttt ettt et et s nae b 2228
F22.1. FUNCHOMS ..ottt st 2228

F.23. pasSWOTACRECKcueevuiiiiiiiieiiecie ettt sttt e aeebee e 2230
F.24. pg_DUffercache.........cooiiviiiiieiiiiii ettt 2231
F.24.1. The pg_buffercache VIEW. ... ioiiiieeeeeiieee e eeeiveee e eeaveeeeeens 2231
F.24.2. Sample OULPULoevuieriiiiieiienieeieeitest ettt sttt st e s s 2232
F.24.3. AUTNOTS....c..oiiiiiiiiiiieicieec ettt 2232

FL25. PECTYPLO ettt ettt sttt et st et et e st et e beesabesnbeebee e 2232
F.25.1. General Hashing FUNCHONS.........coceevieniiiiiiiiiiiecitcieeeeeeeeeee e 2233
F25.1.1. AigeSt () coeeveererieienieeieieeieete ettt 2233

F.25.1.2. MAC () teverieieiereeeneetetee ettt 2233

F.25.2. Password Hashing FUNCtionsc..cccccoceecieniinieniniencncnieneneceenene 2233
FL25.2.1. CTYPE () trerctieeeiieeee et erte et et e e e v e v e e eebeesnsaaesnseeennns 2234

F25.2.2. Gen_Sa11 () tooriieeeeceee ettt 2234

F.25.3. PGP Encryption FUNCHONS.......cccocieviiriiiiiiiiiice e 2235
F.25.3.1. DOP_SYM_ENCTYDE () treeerrreririeeniieenieeenreeesireessereesseeesseeennns 2236

F.25.3.2. pgp_sSyM_deCTYPE () eeeeercrreririeeriieesieeesieeesreeesereesnneesseeennns 2236

F.25.3.3. pgp_pub_enCryPLt () eeeeeceveeeeeeeieeee e ettt e e e 2237

F.25.3.4. pgp_pub_deCryP Lt () wieeeeceeeeeeeeieeee ettt et et 2237

F.25.3.5. DgP_KeY_ 1A () rieeeieeeeie et et 2237

F.25.3.6. armor (), AEATMOTL () teeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeereeeeeeeeeeeeeeeens 2237

F.25.3.7. Options for PGP Functions...........cccccoceeoeerinieneneeiencneeneene 2237

F.25.3.7.1. CIpher-al@oc..ccceeieiinirienenieeeeee e 2238

F.25.3.7.2. compress-algococeeveeriennieeneenienneeneeneeeiecseeenaeenn 2238

F.25.3.7.3. compress-1eVelcccceverieniniinenieieneeieneeeeeee 2238

F.25.3.7.4. convert-Crif.........ccooviiiininiiniiieeneeeeee e 2238

F.25.3.7.5. disable-mdC.....c..ccceveriiniriininieienieieeeeee e 2238

F.25.3.7.6. SESS-KEY ..uveouieniiiiiieniieiereeteesteeseeee e 2239

F.25.3.7.7. S2K-MOdE......coueriiiiniiiiiniinienieneeeeeeeeetene e 2239

F.25.3.7.8. s2k-digest-algo.......cccevuemeriinenieiinieienecienceeeee 2239

XXXVii

F.25.3.7.9. 82K-Cipher-algocccevveeruieniienieniieeeeesieeieeeee 2239

F.25.3.7.10. unicode-mode...........ccccoeviviriniiiiinininiiiciciecccne 2239

F.25.3.8. Generating PGP Keys with GnuPG............ccocceeviiiiiniinnennens 2240

F.25.3.9. Limitations of PGP Codec.ccocceniriieiininninieicncnicienees 2240

F.25.4. Raw Encryption FUNCHONSccceiviiiriiiriiniieiteiesieeiceeeee e 2241
F.25.5. Random-Data FUNCHONSccccocuiririiniinieiiiiiieiceceenecrereee e 2242
FL25.6. INOLES ..ttt ettt ettt sttt et 2242
F.25.6.1. Configuration............ccccecueviieieciinienieninieieneeeeee e 2242

F.25.6.2. NULL Handlingc.ccoccoveceeeimiminenenieieeneneneeneeeeeeeeicenenes 2243

F.25.6.3. Security LIMitationsc.cceceeeuerieiienineenienieieneeeesieeeeieneene 2243

F.25.6.4. Useful Reading............cccooiiiiiiniiiiniiiiiiiccccccceeieeee 2243

F.25.6.5. Technical References............ccooceveerienieieninieeeeeeeeeeeee 2243

F25.7. ATNOT ..ottt e 2244

F.20. pg_freeSpacemapccueeuieiieiieieeiieierteeete et ettt sttt sttt et et saens 2244
F.26.1. FUNCHONS ...ttt sttt e 2244
F.26.2. Sample OULPULc..oeiiiiiiieiiiieeseeee ettt 2245
F26.3. AUNOT ...ttt e 2245

FL27. PEUPIEWAIIL ..ttt st st be e saee s e ne e 2245
F27.1. FUNCHONS ...ttt st 2246
F27.2. AUNOT ..ot e 2246

FL28. PEIOWIOCKS...c..eeutiiieiieieeiteeeeee ettt sttt ettt sbeea 2246
F28.1. OVEIVIEW ...ttt st 2246
F.28.2. Sample OULPUL ...c..eeviriiriieiiniceienieeteeseete et 2247
F28.3. AUNOT ..o 2247

F.29. Pg_Stat_ STALEIMENTS ...cevuieriieiieerieeriieeteeritesiteeteesteesteesbeeseesseesssesnseeseesssesnsessseenes 2248
F.29.1. The pg_stat_statements VIEWcocccvveeeeiureeeeeiiieeeeeeeireeeeeeeiveeeeeens 2248
F.29.2. FUNCHONS ...cveiiiiiiiciiiciicrcccce e e 2250
F.29.3. Configuration Parameters..........ccoecueeruierieriienieenienieenieesee s eveesiee s 2251
F.20.4. Sample OULPULoovuieriiiiieiienieeieeteet ettt st ettt s saee s 2251
F29.5. AUNOTS ..o 2252

FL30. PEStAtTUPIE....coutieiiiiiieiteeie ettt ettt ettt sttt et st st et e st e b e bee e 2252
F30.1. FUNCHONS ...ttt 2252
F30.2. AUthOrS ..o 2255

F31. PG @Mttt sttt e e 2255
F.31.1. Trigram (or Trigraph) CONCepLs.......cccoeveeieriirieriineeieneerereneeeeeeeeee 2255
F.31.2. Functions and OPEratorsc.ccoceeceeruerieieniinienieeeenneneeeesreseeeesneenee 2255
F.31.3. INdeX SUPPOIT ..ottt 2256
F.31.4. Text Search INteZrationccccoceeieriiiieiiiniiiii e 2257
F31.5. REfeIenCescoouviiiieiieiieeee ettt 2258
FL31.6. AUTNOTSeiiiiiiiiieetee ettt ettt 2258

FL32. POSEEIES_fAW ..ottt ettt st 2258
F.32.1. FDW Options of postgres_fdwccccevevverenerierinienicnenienereeeeeennenne 2259
F.32.1.1. Connection OPtioNScccccveureerinrenrenieieeeinenienseeereeeneenenes 2259

F.32.1.2. Object Name OPtiONSccceceeeririenrenieneeieinenienieeeneeeneenenes 2259

F.32.1.3. Cost Estimation Options...........cceccevuererienienienieneeienieneenienieans 2260

F.32.1.4. Updatability OPtionsceceevuereerienerienienieienieeeenieseenienieens 2260

F.32.2. Connection Managementc.coeeeeruerieienienienieneenienieeteniesieeee e 2261
F.32.3. Transaction Management...........ccoeeeeruereenienienieneneenenieeeenieseeeeseeenee 2261
F.32.4. Remote Query OptimiZationceceevereerienierieneneenienentenieneeeeseeenes 2261
F.32.5. Remote Query Execution Environmentcc.ccoccoceevenennicnenennenenne. 2261
F.32.6. Cross-Version Compatibility.......c.ccecevereenienienienineenenenienicneeenene 2262
Fo32.7. EXAMPIES ..ceuiieiiiiiieiieeie ettt ettt ettt st et e st esabesbeenseesnee s 2262

XXXVIil

B33 S ittt sttt sttt et st et eaeesabeebeebee e 2263
F.33.1. RAONALE ..ttt e 2263
FL33.2. SYNLAX weiiitieiieeiieettesteee ettt sttt st ettt e saee s 2264
FL33.3. PrECISION ...ceuiiiiiietieiteete ettt ettt et ettt e e s 2265
F33.4, USAZE..c.uioieiieeeiereeteeeetee ettt s 2265
G 1 e T A\ 0 1P 2265
I T T | PR 2266

FL34. SEPZSAL - e 2266
FL34.1. OVEIVIBW ..ottt ettt ettt et e et e et e e eataesnsaaesnsaeennes 2266
F.34.2. INStallation.......cccueiiiiieeiiieeciee et site et e eeseteeeser e e sneeesnneeeenes 2267
F.34.3. Regression TeStS.....ccciiieierieieiesieeieste ettt 2268
F.34.4. GUC Parametersccccueeeeieeeiiieeeiieeeieeesiieeeieeeseteeeseteeesateessneesnseeennes 2269
FL34.5. FRALUIES ...eeeitiiiiiie ettt ettt ettt e ettt e et e e et e e sneeesnbeeeenee 2269

F.34.5.1. Controlled Object Classescceerverreeeerenierenuenuereenennenes 2269
F.34.5.2. DML PermiSSiONS.......cceeiuveeieerieerteesieesseesseesseesseesseessseesseesseenes 2269
F.34.5.3. DDL PermiSSIONScceecveeieerieenieesieesieesieesreesseesseesssessseenseenns 2270
F.34.5.4. Trusted ProCeduresccecveevueeriieiieeiieniiesieesieesiee e esaeenieees 2271
F.34.5.5. Dynamic Domain Transitions...........c.cceeveruerienieneerieneneenenenns 2272
F.34.5.6. MASCEIAN@OUSeeeuvierieiieeieeieeiee e eieeieesereeveeseeeseeeeaeenaee e 2273
F.34.6. Sepgsql FUNCLONScc.coieiiiriiiiniinieienteeeetec et 2273
F.34.7. LIMIEAIONS «..veivieiieiieeieeieesiteeieeteesieesieesteesseesaeesaseeseesseesssesnsasnseesseens 2273
F.34.8. EXternal RESOUICES.c.cecvierierieeiieiieeite ettt sttt n 2274
FL34.9. AUTNOT ..ottt ettt st ettt et e s e sene s 2274

L3S Sttt st ettt st ae b ea 2274
F.35.1. refint — Functions for Implementing Referential Integrity................... 2274
F.35.2. timetravel — Functions for Implementing Time Travel 2275
F.35.3. autoinc — Functions for Autoincrementing Fieldscccccceeeeneennen. 2276
F.35.4. insert_username — Functions for Tracking Who Changed a Table...... 2276
F.35.5. moddatetime — Functions for Tracking Last Modification Time.......... 2276

FL36. SSINTO. .. .eiiitieiieeieeee ettt sttt 2276
F.36.1. Functions Providedccooieviiiiiinieniiniietetcse et 2276
Fi36.2. AULNOT ..ottt ettt st 2278

F.37.tablefUnCooueiiiiie e st 2278
F.37.1. Functions Providedcccoeeiiiieiiiiciiecie st 2278

F.37.1.1. NOTMAl_TANA titiiiiiiiiiiieeeeeeeeeeeeee e e e e e e e 2279
F 3.1, 2. CroSStal (£) eeeeeeeee et e et e e e e eeaeees 2279
F.37.1.3. CroSStablN (£EXE) aoreeeeeieieiiiiiieeeeeee e e e e e e eeee e eeeeeaaaees 2281
F37.1.4. crosstab (£eXt, TeXE) wieeeeeeeeeeeeeeeeeeeeereeeee e e eeaaees 2283
F.37.1.5. CONNE DY ittt 2285
F37.2. AUNOT ..o e e 2288

B8 £0I ettt ettt b ettt et sbe et enen 2288

F.39. teSt_d@COMING ...ttt ettt sttt ettt st 2289

FLd0. 1S PATSET ..eeuveeiiieieeieeeite ettt ettt sttt sttt re e 2289
FiA0.1. USAZE....oiiiiiiiice e 2289

Fi4T. teSt_SM_IMNQ .ueouiiiiiieieeiieeee ettt st 2290
FiAT. 1. FUNCHONS ..cottieiiieiieeieeie ettt ettt et esete e e saeensesnsaenseesnne s 2290

Fid2. tSCAICRH2Z ...ttt ettt st e et st e ae e sabeebeebee e 2291
F.42.1. PoOrtability ISSUEScccueiuiruieiiriiiierieeieiesiteteeetee et 2291
F.42.2. Converting a pre-8.3 Installation........c..ccceevverierienineencnenniencneeenee 2292
Fid42.3. REEIENCESeeouvieiieiieeie ettt ettt sttt st esaee s 2292

Fid 3. UNACCENE ..cutiiiiieiiieieeiie ettt ettt sttt et st e et e e baessbeesbeebeesabeenseenseenns 2292

XXXIX

Fi43.1. CONfIGUIATION ...eiviviiiieiiiiiieiieete ettt ettt st ettt st e e e n 2293

Fid3.2. USAZE. . eiitieiieeit ettt st ettt st ettt s e b e saee s 2293
Fi43.3. FUNCHONS ...ttt 2294

Fid4. U 0SSP ettt ettt sttt et sttt be e st st et e st e enbeebee e 2294
F44.1. uuid-0ssp FUNCHIONS ...ccccvveiiiieiieee e 2294
F44.2. Building uuid—0SSD .eoceecieriirieiiniieieieneeteteeeeee st 2296
S TN 11 4 Lo PR 2296

FLAS5. XIMI2 .ottt ettt ettt ettt a e e e sse et e neeneens 2296
F.45.1. Deprecation NOLICEcccoecuieiieiiinirieieniciciceeee e 2296
F.45.2. Description of FUNCHIONScccooiiiiiiiiiiiiiie e 2296

| TG TG o To N ol o T = o 1 I =SS USUPSPRINE 2298
F.45.3.1. Multivalued Results.........cccoeoieririeienieieeeeeeeeee e 2299

F45.4. XSLT FUNCHONSeiuiiiiiieiieiceie sttt 2300
FAS5.4.1. X851t _PrOCESS ittt e 2300

FiA5.5. AUNOT ..ot 2300

G. Additional Supplied Programsccccoeeeiiririeniiieneeeee e 2302
G.1. Client APPLICALIONS ...c.eeuieiiriieieiteeiteie ettt ettt ettt st sbe et see e 2302
OIA2NAME ...ttt ettt ettt st bt et e bbb e 2302
PEDENCH ...t 2307
VACUUIMIO ...ttt sttt ettt s e st e b bt et e b eaie 2318

G.2. Server APPLICATIONS ...c..eoeeruirieieitieieieeitete ettt ettt ettt 2320
PE_archivVeClEanUDcoeiueeiiiiiiiiiices et 2320
PE_STANADY ..ottt e et 2323
PE_LESE_TSYIIC cutieniieiieeiii ettt ettt ettt ettt et s e e bt e et e beeaeenaae s 2327
PE_LESE_LIMING 1eovvieiieeiiieiierieete et erteete ettt e st e eebe e beesaeesateebeesseesssesnsaenseesseens 2329
PE_UPETAUC. ... eieitieiieeiiieieente et ettt e site et et e st e sabe e beesatesaseebeesseesasesasaenseesaeenn 2333
PE_XIOZAUIMP .eveeniieiieeitete ettt ettt et e st e beesaaesaneeaes 2340

H. EXtEINal PrOJECES .veeeutiiiiiiieiieeieettesteee ettt ettt sttt st e beesate st e ebeeaaesane s 2342
H.1. Clent INtErfaces........ccueverieiineeiinieienectctestetesr ettt sttt s 2342
H.2. Administration TOOIScccccouirieriiniriienenieienieesceeereeeereseete et 2342
H.3. Procedural Languages............ccecuereirieeniieniieiieenitenite sttt st eieesieesieesseesiee e 2343
H.4. EXEENSIONS. . ..euieiiriieieieeiieteeieete ettt ettt ettt et ne st eenesaeeaeesaesaeenesuens 2343
I. The Source Code REPOSILOTYcc.eeevieruieriiiiieniieeie ettt ettt ettt be et sit e e esaeesaee s 2344
L.1. Getting The Source via Gitccccoeeveererieiinieienieeeeeeeese et 2344
J. DOCUMENTALION ...ttt sttt ettt eat e bt e st e et e bt e s it e eabe e beesbaesaneeates 2345
J1. DOCBOOK ..ttt ettt st 2345
J.2. TOOL SELS...eineeeiieeieeee ettt ettt sttt et st et e bt st e e be e e 2345
J.2.1. Linux RPM Installationcocceevueeniinienieenienienieeeenteeeeeieeseeeee e 2346
J.2.2. FreeBSD Installationcoccceeiiriieiniinienieeiieeceeeeenteeeeeesee e 2346
J.2.3. Debian Packages.ccccoveeieiiiiiieiieiieiese e 2347
T2, OF X ettt ettt 2347
J.2.5. Manual Installation from SOUICEcccereereririienieiere e 2347
J.2.5.1. Installing OpenJadecccoeeevirieneneeieeeeeeeeee e 2348

J.2.5.2. Installing the DocBook DTD Kit.......ccccceoveiiinieninieiincnieiees 2348

J.2.5.3. Installing the DocBook DSSSL Style Sheetsc.ccceevrerennnne. 2349

J.2.5.4. Installing JadeTeXccccoevieirininininieieeeieeenieeceeeee e 2349

J.2.6. Detection DY CONEIGUIE .iiiiriiieiiriieieste ettt ettt 2350

J.3. Building The DOCUMENtAtioN........ccerierierieiiniieieniceiere ettt 2350
J31 HTML ettt st 2350
J.3.2. MIANPAZES. ..ottt sttt ettt sttt sttt 2350
J.3.3. Print Output via JadeTeXccoceeviiririiininiiieiinieneeeeiesceeese e 2351

J.3.4. OVErTIOW TEXE..cveeuiiiieiiiiiiiieierieeteeetet ettt 2351

xl

J.3.5. Print Output via RTFcociiiiiiiiieeeteeee e 2352

J.3.6. Plain Text FIlescc.coieiiniiiiiinieiiieeeeic ettt 2353

J.3.7. SyNtax CheCK....oouiiiieiieiiieiieeteee ettt 2353

J.4. Documentation AULNOTINGc.coeeeriiriiiinieniieiieeeeiee ettt e st sere e sbe e 2353

JA4.1. EmMacs/PSGML......ooiiiiiiiiieieiecteteet ettt 2354

J.4.2. Other EMAacs MOAEScocueeruiiriiriieiieniteeieeiteeteee ettt 2355

J.5. StY1E GUIAE. ..ottt ettt ettt esse e e neeneens 2355

J.5.1. Reference Pagescccooiiieiiiiiiiiiiecceeceeee e 2355

KL ACTOMIYMIS ...ttt ettt et e s e 2357
Bibliography 2363
Index 2365

xli

Preface

This book is the official documentation of PostgreSQL. It has been written by the PostgreSQL devel-
opers and other volunteers in parallel to the development of the PostgreSQL software. It describes all
the functionality that the current version of PostgreSQL officially supports.

To make the large amount of information about PostgreSQL manageable, this book has been orga-
nized in several parts. Each part is targeted at a different class of users, or at users in different stages
of their PostgreSQL experience:

« Part I is an informal introduction for new users.

« Part II documents the SQL query language environment, including data types and functions, as well
as user-level performance tuning. Every PostgreSQL user should read this.

« Part III describes the installation and administration of the server. Everyone who runs a PostgreSQL
server, be it for private use or for others, should read this part.

« Part IV describes the programming interfaces for PostgreSQL client programs.

+ Part V contains information for advanced users about the extensibility capabilities of the server.
Topics include user-defined data types and functions.

« Part VI contains reference information about SQL commands, client and server programs. This part
supports the other parts with structured information sorted by command or program.

« Part VII contains assorted information that might be of use to PostgreSQL developers.

1. What is PostgreSQL?

PostgreSQL is an object-relational database management system (ORDBMS) based on POSTGRES,
Version 4.2', developed at the University of California at Berkeley Computer Science Department.
POSTGRES pioneered many concepts that only became available in some commercial database sys-
tems much later.

PostgreSQL is an open-source descendant of this original Berkeley code. It supports a large part of
the SQL standard and offers many modern features:

« complex queries

- foreign keys

. triggers

« updatable views

« transactional integrity

« multiversion concurrency control

Also, PostgreSQL can be extended by the user in many ways, for example by adding new

« data types

« functions

+ operators

« aggregate functions
« index methods

1. http://db.cs.berkeley.edu/postgres.html

xlii

Preface

« procedural languages

And because of the liberal license, PostgreSQL can be used, modified, and distributed by anyone free
of charge for any purpose, be it private, commercial, or academic.

2. A Brief History of PostgreSQL

The object-relational database management system now known as PostgreSQL is derived from the
POSTGRES package written at the University of California at Berkeley. With over two decades of
development behind it, PostgreSQL is now the most advanced open-source database available any-
where.

2.1. The Berkeley POSTGRES Project

The POSTGRES project, led by Professor Michael Stonebraker, was sponsored by the Defense Ad-
vanced Research Projects Agency (DARPA), the Army Research Office (ARO), the National Science
Foundation (NSF), and ESL, Inc. The implementation of POSTGRES began in 1986. The initial con-
cepts for the system were presented in The design of POSTGRES , and the definition of the initial
data model appeared in The POSTGRES data model . The design of the rule system at that time was
described in The design of the POSTGRES rules system. The rationale and architecture of the storage
manager were detailed in The design of the POSTGRES storage system .

POSTGRES has undergone several major releases since then. The first “demoware” system became
operational in 1987 and was shown at the 1988 ACM-SIGMOD Conference. Version 1, described in
The implementation of POSTGRES , was released to a few external users in June 1989. In response to
a critique of the first rule system (A commentary on the POSTGRES rules system), the rule system
was redesigned (On Rules, Procedures, Caching and Views in Database Systems), and Version 2
was released in June 1990 with the new rule system. Version 3 appeared in 1991 and added support
for multiple storage managers, an improved query executor, and a rewritten rule system. For the most
part, subsequent releases until Postgres95 (see below) focused on portability and reliability.

POSTGRES has been used to implement many different research and production applications. These
include: a financial data analysis system, a jet engine performance monitoring package, an aster-
oid tracking database, a medical information database, and several geographic information systems.
POSTGRES has also been used as an educational tool at several universities. Finally, Illustra Infor-
mation Technologies (later merged into Informix?, which is now owned by IBM?) picked up the code
and commercialized it. In late 1992, POSTGRES became the primary data manager for the Sequoia
2000 scientific computing project®.

The size of the external user community nearly doubled during 1993. It became increasingly obvious
that maintenance of the prototype code and support was taking up large amounts of time that should
have been devoted to database research. In an effort to reduce this support burden, the Berkeley
POSTGRES project officially ended with Version 4.2.

2. http://www.informix.com/

3.

http://www.ibm.com/

4. http://meteora.ucsd.edu/s2k/s2k_home.html

xliii

Preface

2.2. Postgres95

In 1994, Andrew Yu and Jolly Chen added an SQL language interpreter to POSTGRES. Under a
new name, Postgres95 was subsequently released to the web to find its own way in the world as an
open-source descendant of the original POSTGRES Berkeley code.

Postgres95 code was completely ANSI C and trimmed in size by 25%. Many internal changes im-
proved performance and maintainability. Postgres95 release 1.0.x ran about 30-50% faster on the
Wisconsin Benchmark compared to POSTGRES, Version 4.2. Apart from bug fixes, the following
were the major enhancements:

+ The query language PostQUEL was replaced with SQL (implemented in the server). (Interface
library libpq was named after PostQUEL.) Subqueries were not supported until PostgreSQL (see
below), but they could be imitated in Postgres95 with user-defined SQL functions. Aggregate func-
tions were re-implemented. Support for the GROUP BY query clause was also added.

+ A new program (psql) was provided for interactive SQL queries, which used GNU Readline. This
largely superseded the old monitor program.

« A new front-end library, 1ibpgtcl, supported Tcl-based clients. A sample shell, pgtclsh, pro-
vided new Tcl commands to interface Tcl programs with the Postgres95 server.

« The large-object interface was overhauled. The inversion large objects were the only mechanism
for storing large objects. (The inversion file system was removed.)

+ The instance-level rule system was removed. Rules were still available as rewrite rules.

« A short tutorial introducing regular SQL features as well as those of Postgres95 was distributed
with the source code

+ GNU make (instead of BSD make) was used for the build. Also, Postgres95 could be compiled
with an unpatched GCC (data alignment of doubles was fixed).

2.3. PostgreSQL

By 1996, it became clear that the name “Postgres95” would not stand the test of time. We chose a new
name, PostgreSQL, to reflect the relationship between the original POSTGRES and the more recent
versions with SQL capability. At the same time, we set the version numbering to start at 6.0, putting
the numbers back into the sequence originally begun by the Berkeley POSTGRES project.

Many people continue to refer to PostgreSQL as “Postgres” (now rarely in all capital letters) because
of tradition or because it is easier to pronounce. This usage is widely accepted as a nickname or alias.

The emphasis during development of Postgres95 was on identifying and understanding existing prob-
lems in the server code. With PostgreSQL, the emphasis has shifted to augmenting features and capa-
bilities, although work continues in all areas.

Details about what has happened in PostgreSQL since then can be found in Appendix E.

3. Conventions

The following conventions are used in the synopsis of a command: brackets ([and 1) indicate optional
parts. (In the synopsis of a Tcl command, question marks (?) are used instead, as is usual in Tcl.)

xliv

Preface

Braces ({ and }) and vertical lines (|) indicate that you must choose one alternative. Dots (. . .) mean
that the preceding element can be repeated.

Where it enhances the clarity, SQL commands are preceded by the prompt =>, and shell commands
are preceded by the prompt $. Normally, prompts are not shown, though.

An administrator is generally a person who is in charge of installing and running the server. A user
could be anyone who is using, or wants to use, any part of the PostgreSQL system. These terms
should not be interpreted too narrowly; this book does not have fixed presumptions about system
administration procedures.

4. Further Information

Besides the documentation, that is, this book, there are other resources about PostgreSQL:

Wiki
The PostgreSQL wiki’ contains the project’s FAQ® (Frequently Asked Questions) list, TODO’
list, and detailed information about many more topics.

Web Site

The PostgreSQL web site® carries details on the latest release and other information to make your
work or play with PostgreSQL more productive.

Mailing Lists

The mailing lists are a good place to have your questions answered, to share experiences with
other users, and to contact the developers. Consult the PostgreSQL web site for details.

Yourself!

PostgreSQL is an open-source project. As such, it depends on the user community for ongoing
support. As you begin to use PostgreSQL, you will rely on others for help, either through the
documentation or through the mailing lists. Consider contributing your knowledge back. Read
the mailing lists and answer questions. If you learn something which is not in the documentation,
write it up and contribute it. If you add features to the code, contribute them.

5. Bug Reporting Guidelines

When you find a bug in PostgreSQL we want to hear about it. Your bug reports play an important part
in making PostgreSQL more reliable because even the utmost care cannot guarantee that every part
of PostgreSQL will work on every platform under every circumstance.

The following suggestions are intended to assist you in forming bug reports that can be handled in an
effective fashion. No one is required to follow them but doing so tends to be to everyone’s advantage.

We cannot promise to fix every bug right away. If the bug is obvious, critical, or affects a lot of users,
chances are good that someone will look into it. It could also happen that we tell you to update to a
newer version to see if the bug happens there. Or we might decide that the bug cannot be fixed before

PN

https://wiki.postgresql.org
https://wiki.postgresql.org/wiki/Frequently _Asked_Questions
https://wiki.postgresql.org/wiki/Todo
https://www.postgresql.org

xly

Preface

some major rewrite we might be planning is done. Or perhaps it is simply too hard and there are
more important things on the agenda. If you need help immediately, consider obtaining a commercial
support contract.

5.1. Identifying Bugs

Before you report a bug, please read and re-read the documentation to verify that you can really do
whatever it is you are trying. If it is not clear from the documentation whether you can do something
or not, please report that too; it is a bug in the documentation. If it turns out that a program does
something different from what the documentation says, that is a bug. That might include, but is not
limited to, the following circumstances:

« A program terminates with a fatal signal or an operating system error message that would point to
a problem in the program. (A counterexample might be a “disk full” message, since you have to fix
that yourself.)

« A program produces the wrong output for any given input.
« A program refuses to accept valid input (as defined in the documentation).

« A program accepts invalid input without a notice or error message. But keep in mind that your idea
of invalid input might be our idea of an extension or compatibility with traditional practice.

» PostgreSQL fails to compile, build, or install according to the instructions on supported platforms.
Here “program” refers to any executable, not only the backend process.

Being slow or resource-hogging is not necessarily a bug. Read the documentation or ask on one of
the mailing lists for help in tuning your applications. Failing to comply to the SQL standard is not
necessarily a bug either, unless compliance for the specific feature is explicitly claimed.

Before you continue, check on the TODO list and in the FAQ to see if your bug is already known.
If you cannot decode the information on the TODO list, report your problem. The least we can do is
make the TODO list clearer.

5.2. What to Report

The most important thing to remember about bug reporting is to state all the facts and only facts. Do
not speculate what you think went wrong, what “it seemed to do”, or which part of the program has a
fault. If you are not familiar with the implementation you would probably guess wrong and not help
us a bit. And even if you are, educated explanations are a great supplement to but no substitute for
facts. If we are going to fix the bug we still have to see it happen for ourselves first. Reporting the bare
facts is relatively straightforward (you can probably copy and paste them from the screen) but all too
often important details are left out because someone thought it does not matter or the report would be
understood anyway.

The following items should be contained in every bug report:

« The exact sequence of steps from program start-up necessary to reproduce the problem. This should
be self-contained; it is not enough to send in a bare SELECT statement without the preceding
CREATE TABLE and INSERT statements, if the output should depend on the data in the tables.
We do not have the time to reverse-engineer your database schema, and if we are supposed to make
up our own data we would probably miss the problem.

xlvi

Preface

The best format for a test case for SQL-related problems is a file that can be run through the psql
frontend that shows the problem. (Be sure to not have anything in your ~/.psqglrc start-up file.)
An easy way to create this file is to use pg_dump to dump out the table declarations and data
needed to set the scene, then add the problem query. You are encouraged to minimize the size of
your example, but this is not absolutely necessary. If the bug is reproducible, we will find it either
way.

If your application uses some other client interface, such as PHP, then please try to isolate the
offending queries. We will probably not set up a web server to reproduce your problem. In any case
remember to provide the exact input files; do not guess that the problem happens for “large files”
or “midsize databases”, etc. since this information is too inexact to be of use.

+ The output you got. Please do not say that it “didn’t work™ or “crashed”. If there is an error message,
show it, even if you do not understand it. If the program terminates with an operating system error,
say which. If nothing at all happens, say so. Even if the result of your test case is a program crash
or otherwise obvious it might not happen on our platform. The easiest thing is to copy the output
from the terminal, if possible.

Note: If you are reporting an error message, please obtain the most verbose form of the mes-
sage. In psql, say \set VERBOSITY verbose beforehand. If you are extracting the message
from the server log, set the run-time parameter log_error_verbosity to verbose so that all de-
tails are logged.

Note: In case of fatal errors, the error message reported by the client might not contain all the
information available. Please also look at the log output of the database server. If you do not
keep your server’s log output, this would be a good time to start doing so.

« The output you expected is very important to state. If you just write “This command gives me that
output.” or “This is not what I expected.”, we might run it ourselves, scan the output, and think it
looks OK and is exactly what we expected. We should not have to spend the time to decode the
exact semantics behind your commands. Especially refrain from merely saying that “This is not
what SQL says/Oracle does.” Digging out the correct behavior from SQL is not a fun undertaking,
nor do we all know how all the other relational databases out there behave. (If your problem is a
program crash, you can obviously omit this item.)

» Any command line options and other start-up options, including any relevant environment variables
or configuration files that you changed from the default. Again, please provide exact information.
If you are using a prepackaged distribution that starts the database server at boot time, you should
try to find out how that is done.

+ Anything you did at all differently from the installation instructions.

+ The PostgreSQL version. You can run the command SELECT version (); to find out the version
of the server you are connected to. Most executable programs also support a -—version option; at
least postgres —--versionandpsgl --version should work. If the function or the options do
not exist then your version is more than old enough to warrant an upgrade. If you run a prepackaged
version, such as RPMs, say so, including any subversion the package might have. If you are talking
about a Git snapshot, mention that, including the commit hash.

If your version is older than 9.4.22 we will almost certainly tell you to upgrade. There are many bug
fixes and improvements in each new release, so it is quite possible that a bug you have encountered

xlvii

Preface

in an older release of PostgreSQL has already been fixed. We can only provide limited support
for sites using older releases of PostgreSQL; if you require more than we can provide, consider
acquiring a commercial support contract.

 Platform information. This includes the kernel name and version, C library, processor, memory
information, and so on. In most cases it is sufficient to report the vendor and version, but do not
assume everyone knows what exactly “Debian” contains or that everyone runs on i386s. If you have
installation problems then information about the toolchain on your machine (compiler, make, and
so on) is also necessary.

Do not be afraid if your bug report becomes rather lengthy. That is a fact of life. It is better to report
everything the first time than us having to squeeze the facts out of you. On the other hand, if your
input files are huge, it is fair to ask first whether somebody is interested in looking into it. Here is an
article’ that outlines some more tips on reporting bugs.

Do not spend all your time to figure out which changes in the input make the problem go away. This
will probably not help solving it. If it turns out that the bug cannot be fixed right away, you will still
have time to find and share your work-around. Also, once again, do not waste your time guessing why
the bug exists. We will find that out soon enough.

When writing a bug report, please avoid confusing terminology. The software package in total is
called “PostgreSQL”, sometimes “Postgres” for short. If you are specifically talking about the back-
end process, mention that, do not just say ‘“PostgreSQL crashes”. A crash of a single backend process
is quite different from crash of the parent “postgres” process; please don’t say “the server crashed”
when you mean a single backend process went down, nor vice versa. Also, client programs such as the
interactive frontend “psql” are completely separate from the backend. Please try to be specific about
whether the problem is on the client or server side.

5.3. Where to Report Bugs

In general, send bug reports to the bug report mailing list at
<pgsgl-bugs@lists.postgresgl.org>. You are requested to use a
descriptive subject for your email message, perhaps parts of the error message.

Another method is to fill in the bug report web-form available at the project’s web site'®. Entering a
bug report this way causes it to be mailed to the <pgsgl-bugs@lists.postgresgl.org> mailing
list.

If your bug report has security implications and you’d prefer that it not become immediately vis-
ible in public archives, don’t send it to pgsgl-bugs. Security issues can be reported privately to
<security@postgresqgl.org>.

Do not send bug reports to any of the wuser mailing lists, such as
<pgsqgl-sgl@lists.postgresqgl.org> oOr <pgsgl-general@lists.postgresqgl.org>.
These mailing lists are for answering user questions, and their subscribers normally do not wish to
receive bug reports. More importantly, they are unlikely to fix them.

Also, please do not send reports to the developers’ mailing list
<pgsgl-hackers@lists.postgresqgl.org> This list is for discussing the development of
PostgreSQL, and it would be nice if we could keep the bug reports separate. We might choose to take
up a discussion about your bug report on pgsgl-hackers, if the problem needs more review.

9. http://www.chiark.greenend.org.uk/~sgtatham/bugs.html
10. https://www.postgresql.org/

xIviii

Preface

If you have a problem with the documentation, the best place to report it is the documentation mailing
list <pgsgl-docs@lists.postgresgl.org>. Please be specific about what part of the documen-
tation you are unhappy with.

If your bug is a portability problem on a non-supported platform, send mail to
<pgsgl-hackers@lists.postgresql.org>, so we (and you) can work on porting PostgreSQL
to your platform.

Note: Due to the unfortunate amount of spam going around, all of the above lists will be moder-
ated unless you are subscribed. That means there will be some delay before the email is deliv-
ered. If you wish to subscribe to the lists, please visit https://lists.postgresql.org/ for instructions.

xlix

l. Tutorial

Welcome to the PostgreSQL Tutorial. The following few chapters are intended to give a simple in-
troduction to PostgreSQL, relational database concepts, and the SQL language to those who are new
to any one of these aspects. We only assume some general knowledge about how to use computers.
No particular Unix or programming experience is required. This part is mainly intended to give you
some hands-on experience with important aspects of the PostgreSQL system. It makes no attempt to
be a complete or thorough treatment of the topics it covers.

After you have worked through this tutorial you might want to move on to reading Part II to gain a
more formal knowledge of the SQL language, or Part IV for information about developing applica-
tions for PostgreSQL. Those who set up and manage their own server should also read Part III.

Chapter 1. Getting Started

1.1. Installation

Before you can use PostgreSQL you need to install it, of course. It is possible that PostgreSQL is
already installed at your site, either because it was included in your operating system distribution
or because the system administrator already installed it. If that is the case, you should obtain infor-
mation from the operating system documentation or your system administrator about how to access
PostgreSQL.

If you are not sure whether PostgreSQL is already available or whether you can use it for your ex-
perimentation then you can install it yourself. Doing so is not hard and it can be a good exercise.
PostgreSQL can be installed by any unprivileged user; no superuser (root) access is required.

If you are installing PostgreSQL yourself, then refer to Chapter 15 for instructions on installation,
and return to this guide when the installation is complete. Be sure to follow closely the section about
setting up the appropriate environment variables.

If your site administrator has not set things up in the default way, you might have some more work to
do. For example, if the database server machine is a remote machine, you will need to set the PGHOST
environment variable to the name of the database server machine. The environment variable PGPORT
might also have to be set. The bottom line is this: if you try to start an application program and it
complains that it cannot connect to the database, you should consult your site administrator or, if
that is you, the documentation to make sure that your environment is properly set up. If you did not
understand the preceding paragraph then read the next section.

1.2. Architectural Fundamentals

Before we proceed, you should understand the basic PostgreSQL system architecture. Understanding
how the parts of PostgreSQL interact will make this chapter somewhat clearer.

In database jargon, PostgreSQL uses a client/server model. A PostgreSQL session consists of the
following cooperating processes (programs):

+ A server process, which manages the database files, accepts connections to the database from client
applications, and performs database actions on behalf of the clients. The database server program
is called postgres.

« The user’s client (frontend) application that wants to perform database operations. Client applica-
tions can be very diverse in nature: a client could be a text-oriented tool, a graphical application, a
web server that accesses the database to display web pages, or a specialized database maintenance
tool. Some client applications are supplied with the PostgreSQL distribution; most are developed
by users.

As is typical of client/server applications, the client and the server can be on different hosts. In that
case they communicate over a TCP/IP network connection. You should keep this in mind, because
the files that can be accessed on a client machine might not be accessible (or might only be accessible
using a different file name) on the database server machine.

The PostgreSQL server can handle multiple concurrent connections from clients. To achieve this
it starts (“forks™) a new process for each connection. From that point on, the client and the new

Chapter 1. Getting Started

server process communicate without intervention by the original postgres process. Thus, the master
server process is always running, waiting for client connections, whereas client and associated server
processes come and go. (All of this is of course invisible to the user. We only mention it here for
completeness.)

1.3. Creating a Database

The first test to see whether you can access the database server is to try to create a database. A running
PostgreSQL server can manage many databases. Typically, a separate database is used for each project
or for each user.

Possibly, your site administrator has already created a database for your use. He should have told you
what the name of your database is. In that case you can omit this step and skip ahead to the next
section.

To create a new database, in this example named mydb, you use the following command:

$ createdb mydb

If this produces no response then this step was successful and you can skip over the remainder of this
section.

If you see a message similar to:
createdb: command not found

then PostgreSQL was not installed properly. Either it was not installed at all or your shell’s search
path was not set to include it. Try calling the command with an absolute path instead:

$ /usr/local/pgsql/bin/createdb mydb

The path at your site might be different. Contact your site administrator or check the installation
instructions to correct the situation.

Another response could be this:

createdb: could not connect to database postgres: could not connect to server: No such f
Is the server running locally and accepting
connections on Unix domain socket "/tmp/.s.PGSQL.5432"?

This means that the server was not started, or it was not started where createdb expected it. Again,
check the installation instructions or consult the administrator.

Another response could be this:

createdb: could not connect to database postgres: FATAL: role "Jjoe" does not exist

where your own login name is mentioned. This will happen if the administrator has not created a
PostgreSQL user account for you. (PostgreSQL user accounts are distinct from operating system user
accounts.) If you are the administrator, see Chapter 20 for help creating accounts. You will need to
become the operating system user under which PostgreSQL was installed (usually postgres) to
create the first user account. It could also be that you were assigned a PostgreSQL user name that is
different from your operating system user name; in that case you need to use the —U switch or set the
PGUSER environment variable to specify your PostgreSQL user name.

If you have a user account but it does not have the privileges required to create a database, you will
see the following:

Chapter 1. Getting Started

createdb: database creation failed: ERROR: permission denied to create database

Not every user has authorization to create new databases. If PostgreSQL refuses to create databases
for you then the site administrator needs to grant you permission to create databases. Consult your
site administrator if this occurs. If you installed PostgreSQL yourself then you should log in for the
purposes of this tutorial under the user account that you started the server as. '

You can also create databases with other names. PostgreSQL allows you to create any number of
databases at a given site. Database names must have an alphabetic first character and are limited to 63
bytes in length. A convenient choice is to create a database with the same name as your current user
name. Many tools assume that database name as the default, so it can save you some typing. To create
that database, simply type:

$ createdb

If you do not want to use your database anymore you can remove it. For example, if you are the owner
(creator) of the database mydb, you can destroy it using the following command:

$ dropdb mydb

(For this command, the database name does not default to the user account name. You always need to
specify it.) This action physically removes all files associated with the database and cannot be undone,
so this should only be done with a great deal of forethought.

More about createdb and dropdb can be found in createdb and dropdb respectively.

1.4. Accessing a Database

Once you have created a database, you can access it by:

» Running the PostgreSQL interactive terminal program, called psqgl, which allows you to interac-
tively enter, edit, and execute SQL commands.

» Using an existing graphical frontend tool like pgAdmin or an office suite with ODBC or JDBC
support to create and manipulate a database. These possibilities are not covered in this tutorial.

« Writing a custom application, using one of the several available language bindings. These possibil-
ities are discussed further in Part IV.

You probably want to start up psql to try the examples in this tutorial. It can be activated for the mydb
database by typing the command:

$ psql mydb

If you do not supply the database name then it will default to your user account name. You already
discovered this scheme in the previous section using createdb.

In psql, you will be greeted with the following message:

1. As an explanation for why this works: PostgreSQL user names are separate from operating system user accounts. When
you connect to a database, you can choose what PostgreSQL user name to connect as; if you don’t, it will default to the same
name as your current operating system account. As it happens, there will always be a PostgreSQL user account that has the
same name as the operating system user that started the server, and it also happens that that user always has permission to
create databases. Instead of logging in as that user you can also specify the —U option everywhere to select a PostgreSQL user
name to connect as.

Chapter 1. Getting Started

psql (9.4.22)
Type "help" for help.

mydb=>
The last line could also be:
mydb=+#

That would mean you are a database superuser, which is most likely the case if you installed the
PostgreSQL instance yourself. Being a superuser means that you are not subject to access controls.
For the purposes of this tutorial that is not important.

If you encounter problems starting psqgl then go back to the previous section. The diagnostics of
createdb and psql are similar, and if the former worked the latter should work as well.

The last line printed out by psql is the prompt, and it indicates that psql is listening to you and that
you can type SQL queries into a work space maintained by psgl. Try out these commands:

mydb=> SELECT version();
version

PostgreSQL 9.4.22 on i586-pc-linux—-gnu, compiled by GCC 2.96, 32-bit
(1 row)

mydb=> SELECT current_date;
date

2002-08-31
(1 row)

mydb=> SELECT 2 + 2;

?column?

The psgl program has a number of internal commands that are not SQL commands. They begin with
the backslash character, “\”. For example, you can get help on the syntax of various PostgreSQL SQL
commands by typing:

mydb=> \h

To get out of psql, type:
mydb=> \q

and psgl will quit and return you to your command shell. (For more internal commands, type \ 2 at
the psgl prompt.) The full capabilities of psql are documented in psql. In this tutorial we will not
use these features explicitly, but you can use them yourself when it is helpful.

Chapter 2. The SQL Language

2.1. Introduction

This chapter provides an overview of how to use SQL to perform simple operations. This tutorial
is only intended to give you an introduction and is in no way a complete tutorial on SQL. Numer-
ous books have been written on SQL, including Understanding the New SQL and A Guide to the
SQL Standard. You should be aware that some PostgreSQL language features are extensions to the
standard.

In the examples that follow, we assume that you have created a database named mydb, as described in
the previous chapter, and have been able to start psql.

Examples in this manual can also be found in the PostgreSQL source distribution in the directory
src/tutorial/. (Binary distributions of PostgreSQL might not compile these files.) To use those
files, first change to that directory and run make:

$ ed/src/tutorial
S make

This creates the scripts and compiles the C files containing user-defined functions and types. Then, to
start the tutorial, do the following:

S ed/tutorial
$ psql -s mydb

mydb=> \i basics.sql

The \ i command reads in commands from the specified file. psql’s —s option puts you in single step
mode which pauses before sending each statement to the server. The commands used in this section
are in the file basics.sql.

2.2. Concepts

PostgreSQL is a relational database management system (RDBMS). That means it is a system for
managing data stored in relations. Relation is essentially a mathematical term for zable. The notion
of storing data in tables is so commonplace today that it might seem inherently obvious, but there
are a number of other ways of organizing databases. Files and directories on Unix-like operating
systems form an example of a hierarchical database. A more modern development is the object-
oriented database.

Each table is a named collection of rows. Each row of a given table has the same set of named
columns, and each column is of a specific data type. Whereas columns have a fixed order in each row,
it is important to remember that SQL does not guarantee the order of the rows within the table in any
way (although they can be explicitly sorted for display).

Tables are grouped into databases, and a collection of databases managed by a single PostgreSQL
server instance constitutes a database cluster.

Chapter 2. The SQL Language

2.3. Creating a New Table

You can create a new table by specifying the table name, along with all column names and their types:

CREATE TABLE weather (

city varchar (80),

temp_lo int, -— low temperature
temp_hi int, —— high temperature
prcp real, —-— precipitation
date date

)

You can enter this into psgl with the line breaks. psgl will recognize that the command is not
terminated until the semicolon.

White space (i.e., spaces, tabs, and newlines) can be used freely in SQL commands. That means you
can type the command aligned differently than above, or even all on one line. Two dashes (“--") in-
troduce comments. Whatever follows them is ignored up to the end of the line. SQL is case insensitive
about key words and identifiers, except when identifiers are double-quoted to preserve the case (not
done above).

varchar (80) specifies a data type that can store arbitrary character strings up to 80 characters in
length. int is the normal integer type. real is a type for storing single precision floating-point num-
bers. date should be self-explanatory. (Yes, the column of type date is also named date. This might
be convenient or confusing — you choose.)

PostgreSQL supports the standard SQL types int, smallint, real, double precision,
char (N), varchar (N), date, time, timestamp, and interval, as well as other types of general
utility and a rich set of geometric types. PostgreSQL can be customized with an arbitrary number of
user-defined data types. Consequently, type names are not key words in the syntax, except where
required to support special cases in the SQL standard.

The second example will store cities and their associated geographical location:

CREATE TABLE cities (
name varchar (80),
location point

)i

The point type is an example of a PostgreSQL-specific data type.

Finally, it should be mentioned that if you don’t need a table any longer or want to recreate it differ-
ently you can remove it using the following command:

DROP TABLE tablename;

2.4. Populating a Table With Rows

The INSERT statement is used to populate a table with rows:

INSERT INTO weather VALUES (’San Francisco’, 46, 50, 0.25, 71994-11-27");

Chapter 2. The SQL Language

Note that all data types use rather obvious input formats. Constants that are not simple numeric values
usually must be surrounded by single quotes (), as in the example. The date type is actually quite
flexible in what it accepts, but for this tutorial we will stick to the unambiguous format shown here.

The point type requires a coordinate pair as input, as shown here:

INSERT INTO cities VALUES (’San Francisco’, ' (-194.0, 53.0)");

The syntax used so far requires you to remember the order of the columns. An alternative syntax
allows you to list the columns explicitly:

INSERT INTO weather (city, temp_lo, temp_hi, prcp, date)
VALUES (’San Francisco’, 43, 57, 0.0, 71994-11-29");

You can list the columns in a different order if you wish or even omit some columns, e.g., if the
precipitation is unknown:

INSERT INTO weather (date, city, temp_hi, temp_lo)
VALUES (’1994-11-29’, 'Hayward’, 54, 37);

Many developers consider explicitly listing the columns better style than relying on the order implic-
itly.
Please enter all the commands shown above so you have some data to work with in the following

sections.

You could also have used copy to load large amounts of data from flat-text files. This is usually
faster because the COPY command is optimized for this application while allowing less flexibility than
INSERT. An example would be:

COPY weather FROM ’ /home/user/weather.txt’;

where the file name for the source file must be available on the machine running the backend process,
not the client, since the backend process reads the file directly. You can read more about the copy
command in COPY.

2.5. Querying a Table

To retrieve data from a table, the table is queried. An SQL SELECT statement is used to do this. The
statement is divided into a select list (the part that lists the columns to be returned), a table list (the
part that lists the tables from which to retrieve the data), and an optional qualification (the part that
specifies any restrictions). For example, to retrieve all the rows of table weather, type:

SELECT * FROM weather;

Here = is a shorthand for “all columns”. ! So the same result would be had with:
SELECT city, temp_lo, temp_hi, prcp, date FROM weather;

The output should be:

city | temp_lo | temp_hi | prcp | date

1.

While SELECT =« is useful for off-the-cuff queries, it is widely considered bad style in production code, since adding a

column to the table would change the results.

Chapter 2. The SQL Language

——————————————— t———— - —————
San Francisco | 46 | 50 | 0.25 | 1994-11-27
San Francisco | 43 | 57 | 0 | 1994-11-29
Hayward | 37 | 54 | | 1994-11-29
(3 rows)

You can write expressions, not just simple column references, in the select list. For example, you can
do:

SELECT city, (temp_hi+temp_lo)/2 AS temp_avg, date FROM weather;

This should give:

city | temp_avg | date
,,,,,,,,,,,,,,, T
San Francisco | 48 | 1994-11-27
San Francisco | 50 | 1994-11-29
Hayward | 45 | 1994-11-29
(3 rows)

Notice how the AS clause is used to relabel the output column. (The As clause is optional.)

A query can be “qualified” by adding a WHERE clause that specifies which rows are wanted. The WHERE
clause contains a Boolean (truth value) expression, and only rows for which the Boolean expression
is true are returned. The usual Boolean operators (AND, OR, and NOT) are allowed in the qualification.
For example, the following retrieves the weather of San Francisco on rainy days:

SELECT % FROM weather
WHERE city = ’San Francisco’ AND prcp > 0.0;

Result:

San Francisco
(1 row)

You can request that the results of a query be returned in sorted order:

SELECT x FROM weather
ORDER BY city;

city | temp_lo | temp_hi | prcp | date
——————————————— B e e R T
Hayward | 37 | 54 | | 1994-11-29
San Francisco | 43 | 57 | 0 | 1994-11-29
San Francisco | 46 | 50 | 0.25 | 1994-11-27

In this example, the sort order isn’t fully specified, and so you might get the San Francisco rows in
either order. But you’d always get the results shown above if you do:

SELECT * FROM weather
ORDER BY city, temp_lo;

You can request that duplicate rows be removed from the result of a query:

SELECT DISTINCT city
FROM weather;

Hayward
San Francisco
(2 rows)

Chapter 2. The SQL Language

Here again, the result row ordering might vary. You can ensure consistent results by using DISTINCT

and ORDER BY together:

SELECT DISTINCT city
FROM weather
ORDER BY city;

2.6. Joins Between Tables

Thus far, our queries have only accessed one table at a time. Queries can access multiple tables at
once, or access the same table in such a way that multiple rows of the table are being processed at the
same time. A query that accesses multiple rows of the same or different tables at one time is called
a join query. As an example, say you wish to list all the weather records together with the location
of the associated city. To do that, we need to compare the city column of each row of the weather
table with the name column of all rows in the cities table, and select the pairs of rows where these

values match.

Note: This is only a conceptual model. The join is usually performed in a more efficient manner
than actually comparing each possible pair of rows, but this is invisible to the user.

This would be accomplished by the following query:

SELECT «
FROM weather, cities
WHERE city = name;
city | temp_lo
_______________ [P
San Francisco | 46
San Francisco | 43

(2 rows)

Observe two things about the result set:

1994-11-27
1994-11-29

San Francisco
San Francisco

(-194,53)
(-194,53)

+ There is no result row for the city of Hayward. This is because there is no matching entry in the
cities table for Hayward, so the join ignores the unmatched rows in the weather table. We will
see shortly how this can be fixed.

2.

In some database systems, including older versions of PostgreSQL, the implementation of DISTINCT automatically orders

the rows and so ORDER BY is unnecessary. But this is not required by the SQL standard, and current PostgreSQL does not
guarantee that DISTINCT causes the rows to be ordered.

Chapter 2. The SQL Language

« There are two columns containing the city name. This is correct because the lists of columns from
the weather and cities tables are concatenated. In practice this is undesirable, though, so you
will probably want to list the output columns explicitly rather than using »:

SELECT city, temp_lo, temp_hi, prcp, date, location
FROM weather, cities
WHERE city = name;

Exercise: Attempt to determine the semantics of this query when the WHERE clause is omitted.

Since the columns all had different names, the parser automatically found which table they belong to.
If there were duplicate column names in the two tables you’d need to gualify the column names to
show which one you meant, as in:

SELECT weather.city, weather.temp_lo, weather.temp_hi,
weather.prcp, weather.date, cities.location
FROM weather, cities
WHERE cities.name = weather.city;

It is widely considered good style to qualify all column names in a join query, so that the query won’t
fail if a duplicate column name is later added to one of the tables.

Join queries of the kind seen thus far can also be written in this alternative form:

SELECT «
FROM weather INNER JOIN cities ON (weather.city = cities.name);

This syntax is not as commonly used as the one above, but we show it here to help you understand the
following topics.

Now we will figure out how we can get the Hayward records back in. What we want the query to do
is to scan the weather table and for each row to find the matching cities row(s). If no matching
row is found we want some “empty values” to be substituted for the cities table’s columns. This
kind of query is called an outer join. (The joins we have seen so far are inner joins.) The command
looks like this:

SELECT «
FROM weather LEFT OUTER JOIN cities ON (weather.city = cities.name);

city | temp_lo | temp_hi | prcp | date | name | location
——————————————— B E e e bt Tt e
Hayward | 37 | 54 | | 1994-11-29 | |
San Francisco | 46 | 50 | 0.25 | 1994-11-27 | San Francisco | (-194,53)
San Francisco | 43 | 57 | 0 | 1994-11-29 | San Francisco | (-194,53)

(3 rows)

This query is called a left outer join because the table mentioned on the left of the join operator will
have each of its rows in the output at least once, whereas the table on the right will only have those
rows output that match some row of the left table. When outputting a left-table row for which there is
no right-table match, empty (null) values are substituted for the right-table columns.

Exercise: There are also right outer joins and full outer joins. Try to find out what those do.

We can also join a table against itself. This is called a self join. As an example, suppose we wish to
find all the weather records that are in the temperature range of other weather records. So we need to
compare the temp_lo and temp_hi columns of each weather row to the temp_lo and temp_hi
columns of all other weather rows. We can do this with the following query:

10

Chapter 2. The SQL Language

SELECT Wl.city, Wl.temp_lo AS low, Wl.temp_hi AS high,
W2.city, W2.temp_lo AS low, W2.temp_hi AS high
FROM weather Wl, weather W2
WHERE Wl.temp_lo < W2.temp_lo
AND Wl.temp_hi > W2.temp_hi;

city | low | high | city | low | high
——————————————— s et e e Atk
San Francisco | 43 | 57 | San Francisco | 46 | 50
Hayward | 37 | 54 | San Francisco | 46 | 50
(2 rows)

Here we have relabeled the weather table as w1 and w2 to be able to distinguish the left and right side
of the join. You can also use these kinds of aliases in other queries to save some typing, e.g.:

SELECT «
FROM weather w, cities c¢
WHERE w.city = c.name;

You will encounter this style of abbreviating quite frequently.

2.7. Aggregate Functions

Like most other relational database products, PostgreSQL supports aggregate functions. An aggregate
function computes a single result from multiple input rows. For example, there are aggregates to
compute the count, sum, avg (average), max (maximum) and min (minimum) over a set of rows.

As an example, we can find the highest low-temperature reading anywhere with:

SELECT max (temp_lo) FROM weather;

If we wanted to know what city (or cities) that reading occurred in, we might try:

SELECT city FROM weather WHERE temp_lo = max(temp_1lo); WRONG

but this will not work since the aggregate max cannot be used in the WHERE clause. (This restriction
exists because the WHERE clause determines which rows will be included in the aggregate calculation;
so obviously it has to be evaluated before aggregate functions are computed.) However, as is often the
case the query can be restated to accomplish the desired result, here by using a subquery:

SELECT city FROM weather
WHERE temp_lo = (SELECT max (temp_lo) FROM weather);

San Francisco
(1 row)

11

Chapter 2. The SQL Language

This is OK because the subquery is an independent computation that computes its own aggregate
separately from what is happening in the outer query.

Aggregates are also very useful in combination with GROUP BY clauses. For example, we can get the
maximum low temperature observed in each city with:

SELECT city, max(temp_1lo)
FROM weather
GROUP BY city;

city | max
,,,,,,,,,,,,,,, I
Hayward | 37

San Francisco | 46

(2 rows)

which gives us one output row per city. Each aggregate result is computed over the table rows match-
ing that city. We can filter these grouped rows using HAVING:

SELECT city, max(temp_1lo)
FROM weather
GROUP BY city
HAVING max (temp_lo) < 40;

city | max
_________ b
Hayward | 37
(1 row)

which gives us the same results for only the cities that have all temp_1lo values below 40. Finally, if
we only care about cities whose names begin with “S”, we might do:

SELECT city, max(temp_1lo)
FROM weather
WHERE city LIKE ’'S%'@®
GROUP BY city
HAVING max (temp_lo) < 40;

© The LIKE operator does pattern matching and is explained in Section 9.7.

It is important to understand the interaction between aggregates and SQL’s WHERE and HAVING
clauses. The fundamental difference between WHERE and HAVING is this: WHERE selects input rows
before groups and aggregates are computed (thus, it controls which rows go into the aggregate com-
putation), whereas HAVING selects group rows after groups and aggregates are computed. Thus, the
WHERE clause must not contain aggregate functions; it makes no sense to try to use an aggregate to
determine which rows will be inputs to the aggregates. On the other hand, the HAVING clause al-
ways contains aggregate functions. (Strictly speaking, you are allowed to write a HAVING clause that
doesn’t use aggregates, but it’s seldom useful. The same condition could be used more efficiently at
the WHERE stage.)

In the previous example, we can apply the city name restriction in WHERE, since it needs no aggregate.
This is more efficient than adding the restriction to HAVING, because we avoid doing the grouping and
aggregate calculations for all rows that fail the WHERE check.

12

Chapter 2. The SQL Language

2.8. Updates

You can update existing rows using the UPDATE command. Suppose you discover the temperature
readings are all off by 2 degrees after November 28. You can correct the data as follows:

UPDATE weather

SET temp_hi = temp_hi - 2, temp_lo = temp_lo - 2
WHERE date > 71994-11-28';

Look at the new state of the data:

SELECT = FROM weather;

city | temp_lo | temp_hi | prcp | date
——————————————— B et B et T T e
San Francisco | 46 | 50 | 0.25 | 1994-11-27
San Francisco | 41 | 55 | 0 | 1994-11-29
Hayward \ 35 | 52 | | 1994-11-29
(3 rows)

2.9. Deletions

Rows can be removed from a table using the DELETE command. Suppose you are no longer interested
in the weather of Hayward. Then you can do the following to delete those rows from the table:

DELETE FROM weather WHERE city = ’'Hayward’;
All weather records belonging to Hayward are removed.

SELECT * FROM weather;

city | temp_lo | temp_hi | prcp | date
——————————————— B i B e et T T
San Francisco | 46 | 50 | 0.25 | 1994-11-27
San Francisco | 41 | 55 | 0 | 1994-11-29

(2 rows)

One should be wary of statements of the form

DELETE FROM tablename;

Without a qualification, DELETE will remove all rows from the given table, leaving it empty. The
system will not request confirmation before doing this!

13

Chapter 3. Advanced Features

3.1. Introduction

In the previous chapter we have covered the basics of using SQL to store and access your data in
PostgreSQL. We will now discuss some more advanced features of SQL that simplify management
and prevent loss or corruption of your data. Finally, we will look at some PostgreSQL extensions.

This chapter will on occasion refer to examples found in Chapter 2 to change or improve them, so
it will be useful to have read that chapter. Some examples from this chapter can also be found in
advanced. sql in the tutorial directory. This file also contains some sample data to load, which is
not repeated here. (Refer to Section 2.1 for how to use the file.)

3.2. Views

Refer back to the queries in Section 2.6. Suppose the combined listing of weather records and city
location is of particular interest to your application, but you do not want to type the query each time
you need it. You can create a view over the query, which gives a name to the query that you can refer
to like an ordinary table:

CREATE VIEW myview AS
SELECT city, temp_lo, temp_hi, prcp, date, location
FROM weather, cities
WHERE city = name;

SELECT * FROM myview;

Making liberal use of views is a key aspect of good SQL database design. Views allow you to en-
capsulate the details of the structure of your tables, which might change as your application evolves,
behind consistent interfaces.

Views can be used in almost any place a real table can be used. Building views upon other views is
not uncommon.

3.3. Foreign Keys

Recall the weather and cities tables from Chapter 2. Consider the following problem: You want
to make sure that no one can insert rows in the weather table that do not have a matching entry
in the cities table. This is called maintaining the referential integrity of your data. In simplistic
database systems this would be implemented (if at all) by first looking at the cities table to check
if a matching record exists, and then inserting or rejecting the new weather records. This approach
has a number of problems and is very inconvenient, so PostgreSQL can do this for you.

The new declaration of the tables would look like this:

CREATE TABLE cities (
city varchar (80) primary key,
location point

14

Chapter 3. Advanced Features

CREATE TABLE weather (
city varchar (80) references cities(city),
temp_lo int,
temp_hi int,
prcp real,
date date
)i

Now try inserting an invalid record:
INSERT INTO weather VALUES (’'Berkeley’, 45, 53, 0.0, ’1994-11-28");

ERROR: insert or update on table "weather" violates foreign key constraint "weather_cit
DETAIL: Key (city)=(Berkeley) 1is not present in table "cities".

The behavior of foreign keys can be finely tuned to your application. We will not go beyond this simple
example in this tutorial, but just refer you to Chapter 5 for more information. Making correct use of
foreign keys will definitely improve the quality of your database applications, so you are strongly
encouraged to learn about them.

3.4. Transactions

Transactions are a fundamental concept of all database systems. The essential point of a transaction is
that it bundles multiple steps into a single, all-or-nothing operation. The intermediate states between
the steps are not visible to other concurrent transactions, and if some failure occurs that prevents the
transaction from completing, then none of the steps affect the database at all.

For example, consider a bank database that contains balances for various customer accounts, as well
as total deposit balances for branches. Suppose that we want to record a payment of $100.00 from
Alice’s account to Bob’s account. Simplifying outrageously, the SQL commands for this might look
like:

UPDATE accounts SET balance = balance - 100.00
WHERE name = ’Alice’;
UPDATE branches SET balance = balance - 100.00
WHERE name = (SELECT branch_name FROM accounts WHERE name = ’'Alice’);
UPDATE accounts SET balance = balance + 100.00
WHERE name = ’Bob’;
UPDATE branches SET balance = balance + 100.00
WHERE name = (SELECT branch_name FROM accounts WHERE name = ’'Bob’);

The details of these commands are not important here; the important point is that there are several
separate updates involved to accomplish this rather simple operation. Our bank’s officers will want to
be assured that either all these updates happen, or none of them happen. It would certainly not do for
a system failure to result in Bob receiving $100.00 that was not debited from Alice. Nor would Alice
long remain a happy customer if she was debited without Bob being credited. We need a guarantee
that if something goes wrong partway through the operation, none of the steps executed so far will
take effect. Grouping the updates into a transaction gives us this guarantee. A transaction is said to
be atomic: from the point of view of other transactions, it either happens completely or not at all.

15

Chapter 3. Advanced Features

We also want a guarantee that once a transaction is completed and acknowledged by the database
system, it has indeed been permanently recorded and won’t be lost even if a crash ensues shortly
thereafter. For example, if we are recording a cash withdrawal by Bob, we do not want any chance that
the debit to his account will disappear in a crash just after he walks out the bank door. A transactional
database guarantees that all the updates made by a transaction are logged in permanent storage (i.e.,
on disk) before the transaction is reported complete.

Another important property of transactional databases is closely related to the notion of atomic up-
dates: when multiple transactions are running concurrently, each one should not be able to see the
incomplete changes made by others. For example, if one transaction is busy totalling all the branch
balances, it would not do for it to include the debit from Alice’s branch but not the credit to Bob’s
branch, nor vice versa. So transactions must be all-or-nothing not only in terms of their permanent
effect on the database, but also in terms of their visibility as they happen. The updates made so far by
an open transaction are invisible to other transactions until the transaction completes, whereupon all
the updates become visible simultaneously.

In PostgreSQL, a transaction is set up by surrounding the SQL commands of the transaction with
BEGIN and COMMIT commands. So our banking transaction would actually look like:

BEGIN;

UPDATE accounts SET balance = balance - 100.00
WHERE name = 'Alice’;

-— etc etc

COMMIT;

If, partway through the transaction, we decide we do not want to commit (perhaps we just noticed that
Alice’s balance went negative), we can issue the command ROLLBACK instead of COMMIT, and all our
updates so far will be canceled.

PostgreSQL actually treats every SQL statement as being executed within a transaction. If you do not
issue a BEGIN command, then each individual statement has an implicit BEGIN and (if successful)
coMMIT wrapped around it. A group of statements surrounded by BEGIN and COMMIT is sometimes
called a transaction block.

Note: Some client libraries issue BEcTN and comutT commands automatically, so that you might
get the effect of transaction blocks without asking. Check the documentation for the interface you
are using.

It’s possible to control the statements in a transaction in a more granular fashion through the use of
savepoints. Savepoints allow you to selectively discard parts of the transaction, while committing the
rest. After defining a savepoint with SAVEPOINT, you can if needed roll back to the savepoint with
ROLLBACK TO. All the transaction’s database changes between defining the savepoint and rolling
back to it are discarded, but changes earlier than the savepoint are kept.

After rolling back to a savepoint, it continues to be defined, so you can roll back to it several times.
Conversely, if you are sure you won’t need to roll back to a particular savepoint again, it can be
released, so the system can free some resources. Keep in mind that either releasing or rolling back to
a savepoint will automatically release all savepoints that were defined after it.

All this is happening within the transaction block, so none of it is visible to other database sessions.
When and if you commit the transaction block, the committed actions become visible as a unit to
other sessions, while the rolled-back actions never become visible at all.

16

Chapter 3. Advanced Features

Remembering the bank database, suppose we debit $100.00 from Alice’s account, and credit Bob’s
account, only to find later that we should have credited Wally’s account. We could do it using save-
points like this:

BEGIN;

UPDATE accounts SET balance = balance - 100.00
WHERE name = ’'Alice’;

SAVEPOINT my_savepoint;

UPDATE accounts SET balance = balance + 100.00
WHERE name = ’'Bob’;

-— oops ... forget that and use Wally’s account

ROLLBACK TO my_savepoint;

UPDATE accounts SET balance = balance + 100.00
WHERE name = ’"Wally’;

COMMIT;

This example is, of course, oversimplified, but there’s a lot of control possible in a transaction block
through the use of savepoints. Moreover, ROLLBACK TO is the only way to regain control of a transac-
tion block that was put in aborted state by the system due to an error, short of rolling it back completely
and starting again.

3.5. Window Functions

A window function performs a calculation across a set of table rows that are somehow related to the
current row. This is comparable to the type of calculation that can be done with an aggregate function.
But unlike regular aggregate functions, use of a window function does not cause rows to become
grouped into a single output row — the rows retain their separate identities. Behind the scenes, the
window function is able to access more than just the current row of the query result.

Here is an example that shows how to compare each employee’s salary with the average salary in his
or her department:

SELECT depname, empno, salary, avg(salary) OVER (PARTITION BY depname) FROM empsalary;

depname | empno | salary | avg
——————————— -t
develop | 11 | 5200 | 5020.0000000000000000
develop | 7 4200 | 5020.0000000000000000
develop | 9 | 4500 | 5020.0000000000000000
develop | 8 | 6000 | 5020.0000000000000000
develop | 10 | 5200 | 5020.0000000000000000
personnel | 5 | 3500 | 3700.0000000000000000
personnel | 2 | 3900 | 3700.0000000000000000
sales | 3 4800 | 4866.6666666666666667
sales | 1] 5000 | 4866.6666666666666667
sales | 4 | 4800 | 4866.6666666666666667
(10 rows)

The first three output columns come directly from the table empsalary, and there is one output row
for each row in the table. The fourth column represents an average taken across all the table rows that
have the same depname value as the current row. (This actually is the same function as the regular avg
aggregate function, but the OVER clause causes it to be treated as a window function and computed
across an appropriate set of rows.)

17

Chapter 3. Advanced Features

A window function call always contains an OVER clause directly following the window function’s
name and argument(s). This is what syntactically distinguishes it from a regular function or aggregate
function. The OVER clause determines exactly how the rows of the query are split up for processing by
the window function. The PARTITION BY list within OVER specifies dividing the rows into groups, or
partitions, that share the same values of the PARTITION BY expression(s). For each row, the window
function is computed across the rows that fall into the same partition as the current row.

You can also control the order in which rows are processed by window functions using ORDER BY
within ovER. (The window ORDER BY does not even have to match the order in which the rows are
output.) Here is an example:

SELECT depname, empno, salary,
rank () OVER (PARTITION BY depname ORDER BY salary DESC)
FROM empsalary;

depname | empno | salary | rank
——————————— e e
develop | 8 | 6000 | 1
develop | 10 | 5200 | 2
develop | 11 | 5200 | 2
develop | 9 | 4500 | 4
develop | 7 4200 | 5
personnel | 2 | 3900 | 1
personnel | 5 3500 | 2
sales | 1] 5000 | 1
sales | 4 | 4800 | 2
sales | 3 4800 | 2
(10 rows)

As shown here, the rank function produces a numerical rank within the current row’s partition for
each distinct ORDER BY value, in the order defined by the ORDER BY clause. rank needs no explicit
parameter, because its behavior is entirely determined by the OVER clause.

The rows considered by a window function are those of the “virtual table” produced by the query’s
FROM clause as filtered by its WHERE, GROUP BY, and HAVING clauses if any. For example, a row
removed because it does not meet the WHERE condition is not seen by any window function. A query
can contain multiple window functions that slice up the data in different ways by means of different
OVER clauses, but they all act on the same collection of rows defined by this virtual table.

We already saw that ORDER BY can be omitted if the ordering of rows is not important. It is also
possible to omit PARTITION BY, in which case there is just one partition containing all the rows.

There is another important concept associated with window functions: for each row, there is a set of
rows within its partition called its window frame. Many (but not all) window functions act only on
the rows of the window frame, rather than of the whole partition. By default, if ORDER BY is supplied
then the frame consists of all rows from the start of the partition up through the current row, plus any
following rows that are equal to the current row according to the ORDER BY clause. When ORDER BY
is omitted the default frame consists of all rows in the partition. ' Here is an example using sum:

SELECT salary, sum(salary) OVER () FROM empsalary;

salary | sum
,,,,,,,, IS

5200 | 47100

5000 | 47100

1. There are options to define the window frame in other ways, but this tutorial does not cover them. See Section 4.2.8 for

details.

18

Chapter 3. Advanced Features

3500 | 47100
4800 | 47100
3900 | 47100
4200 | 47100
4500 | 47100
4800 | 47100
6000 | 47100
5200 | 47100
(10 rows)

Above, since there is no ORDER BY in the OVER clause, the window frame is the same as the partition,
which for lack of PARTITION BY is the whole table; in other words each sum is taken over the whole
table and so we get the same result for each output row. But if we add an ORDER BY clause, we get
very different results:

SELECT salary, sum(salary) OVER (ORDER BY salary) FROM empsalary;

salary | sum
,,,,,,,, IS
3500 | 3500
3900 | 7400
4200 | 11600
4500 | 16100
4800 | 25700
4800 | 25700
5000 | 30700
5200 | 41100
5200 | 41100
6000 | 47100
(10 rows)

Here the sum is taken from the first (lowest) salary up through the current one, including any dupli-
cates of the current one (notice the results for the duplicated salaries).

Window functions are permitted only in the SELECT list and the ORDER BY clause of the query. They
are forbidden elsewhere, such as in GROUP BY, HAVING and WHERE clauses. This is because they
logically execute after the processing of those clauses. Also, window functions execute after regular
aggregate functions. This means it is valid to include an aggregate function call in the arguments of a
window function, but not vice versa.

If there is a need to filter or group rows after the window calculations are performed, you can use a
sub-select. For example:

SELECT depname, empno, salary, enroll_date
FROM
(SELECT depname, empno, salary, enroll_date,
rank () OVER (PARTITION BY depname ORDER BY salary DESC, empno) AS pos
FROM empsalary
) AS ss
WHERE pos < 3;

The above query only shows the rows from the inner query having rank less than 3.

When a query involves multiple window functions, it is possible to write out each one with a separate
OVER clause, but this is duplicative and error-prone if the same windowing behavior is wanted for
several functions. Instead, each windowing behavior can be named in a WINDOW clause and then
referenced in OVER. For example:

19

Chapter 3. Advanced Features

SELECT sum(salary) OVER w, avg(salary) OVER w
FROM empsalary
WINDOW w AS (PARTITION BY depname ORDER BY salary DESC);

More details about window functions can be found in Section 4.2.8, Section 9.21, Section 7.2.4, and
the SELECT reference page.

3.6. Inheritance

Inheritance is a concept from object-oriented databases. It opens up interesting new possibilities of
database design.

Let’s create two tables: A table cities and a table capitals. Naturally, capitals are also cities, so
you want some way to show the capitals implicitly when you list all cities. If you’re really clever you
might invent some scheme like this:

CREATE TABLE capitals (

name text,

population real,

altitude int, -— (in ft)
state char (2)

)

CREATE TABLE non_capitals (

name text,
population real,
altitude int -— (in ft)

)i

CREATE VIEW cities AS
SELECT name, population, altitude FROM capitals
UNION
SELECT name, population, altitude FROM non_capitals;

This works OK as far as querying goes, but it gets ugly when you need to update several rows, for one
thing.

A better solution is this:

CREATE TABLE cities (

name text,

population real,

altitude int -—— (in ft)
)i

CREATE TABLE capitals (

state char (2)
) INHERITS (cities);

In this case, a row of capitals inherits all columns (name, population, and altitude) from its
parent, cities. The type of the column name is text, a native PostgreSQL type for variable length

20

Chapter 3. Advanced Features

character strings. State capitals have an extra column, state, that shows their state. In PostgreSQL,
a table can inherit from zero or more other tables.

For example, the following query finds the names of all cities, including state capitals, that are located

at an altitude over 500 feet:

SELECT name, altitude
FROM cities
WHERE altitude > 500;

which returns:

name | altitude
___________ b
Las Vegas | 2174
Mariposa | 1953
Madison | 845
(3 rows)

On the other hand, the following query finds all the cities that are not state capitals and are situated at
an altitude over 500 feet:

SELECT name, altitude
FROM ONLY cities
WHERE altitude > 500;

name | altitude
___________ b
Las Vegas | 2174
Mariposa | 1953
(2 rows)

Here the oNLY before cities indicates that the query should be run over only the cities table, and
not tables below cities in the inheritance hierarchy. Many of the commands that we have already
discussed — SELECT, UPDATE, and DELETE — support this ONLY notation.

Note: Although inheritance is frequently useful, it has not been integrated with unique constraints
or foreign keys, which limits its usefulness. See Section 5.8 for more detail.

3.7. Conclusion

PostgreSQL has many features not touched upon in this tutorial introduction, which has been oriented
toward newer users of SQL. These features are discussed in more detail in the remainder of this book.

If you feel you need more introductory material, please visit the PostgreSQL web site? for links to
more resources.

2. https://www.postgresql.org

21

Il. The SQL Language

This part describes the use of the SQL language in PostgreSQL. We start with describing the general
syntax of SQL, then explain how to create the structures to hold data, how to populate the database,
and how to query it. The middle part lists the available data types and functions for use in SQL
commands. The rest treats several aspects that are important for tuning a database for optimal perfor-
mance.

The information in this part is arranged so that a novice user can follow it start to end to gain a full
understanding of the topics without having to refer forward too many times. The chapters are intended
to be self-contained, so that advanced users can read the chapters individually as they choose. The
information in this part is presented in a narrative fashion in topical units. Readers looking for a
complete description of a particular command should see Part VI.

Readers of this part should know how to connect to a PostgreSQL database and issue SQL commands.
Readers that are unfamiliar with these issues are encouraged to read Part I first. SQL commands are
typically entered using the PostgreSQL interactive terminal psql, but other programs that have similar
functionality can be used as well.

Chapter 4. SQL Syntax

This chapter describes the syntax of SQL. It forms the foundation for understanding the following
chapters which will go into detail about how SQL commands are applied to define and modify data.

We also advise users who are already familiar with SQL to read this chapter carefully because it
contains several rules and concepts that are implemented inconsistently among SQL databases or that
are specific to PostgreSQL.

4.1. Lexical Structure

SQL input consists of a sequence of commands. A command is composed of a sequence of tokens,
6,9

terminated by a semicolon (“;”). The end of the input stream also terminates a command. Which
tokens are valid depends on the syntax of the particular command.

A token can be a key word, an identifier, a quoted identifier, a literal (or constant), or a special
character symbol. Tokens are normally separated by whitespace (space, tab, newline), but need not
be if there is no ambiguity (which is generally only the case if a special character is adjacent to some
other token type).

For example, the following is (syntactically) valid SQL input:

SELECT % FROM MY_TABLE;
UPDATE MY_TABLE SET A = 5;
INSERT INTO MY_TABLE VALUES (3, ’"hi there’);

This is a sequence of three commands, one per line (although this is not required; more than one
command can be on a line, and commands can usefully be split across lines).

Additionally, comments can occur in SQL input. They are not tokens, they are effectively equivalent
to whitespace.

The SQL syntax is not very consistent regarding what tokens identify commands and which are
operands or parameters. The first few tokens are generally the command name, so in the above ex-
ample we would usually speak of a “SELECT”, an “UPDATE”, and an “INSERT” command. But for
instance the UPDATE command always requires a SET token to appear in a certain position, and this
particular variation of INSERT also requires a VALUES in order to be complete. The precise syntax
rules for each command are described in Part VI.

4.1.1. Identifiers and Key Words

Tokens such as SELECT, UPDATE, or VALUES in the example above are examples of key words, that
is, words that have a fixed meaning in the SQL language. The tokens MY_TABLE and A are exam-
ples of identifiers. They identify names of tables, columns, or other database objects, depending on
the command they are used in. Therefore they are sometimes simply called “names”. Key words and
identifiers have the same lexical structure, meaning that one cannot know whether a token is an iden-
tifier or a key word without knowing the language. A complete list of key words can be found in
Appendix C.

SQL identifiers and key words must begin with a letter (a-z, but also letters with diacritical marks
and non-Latin letters) or an underscore (_). Subsequent characters in an identifier or key word can be
letters, underscores, digits (0-9), or dollar signs ($). Note that dollar signs are not allowed in identifiers
according to the letter of the SQL standard, so their use might render applications less portable. The

24

Chapter 4. SQL Syntax

SQL standard will not define a key word that contains digits or starts or ends with an underscore, so
identifiers of this form are safe against possible conflict with future extensions of the standard.

The system uses no more than NAMEDATALEN-1 bytes of an identifier; longer names can be written
in commands, but they will be truncated. By default, NAMEDATALEN is 64 so the maximum identifier
length is 63 bytes. If this limit is problematic, it can be raised by changing the NAMEDATALEN constant

in src/include/pg_config_manual.h.

Key words and unquoted identifiers are case insensitive. Therefore:

UPDATE MY_TABLE SET A = 5;

can equivalently be written as:

uPDaTE my_TabLE SeT a = 5;

A convention often used is to write key words in upper case and names in lower case, e.g.:

UPDATE my_table SET a = 5;

There is a second kind of identifier: the delimited identifier or quoted identifier. It is formed by en-
closing an arbitrary sequence of characters in double-quotes ("). A delimited identifier is always an
identifier, never a key word. So "select" could be used to refer to a column or table named “select”,
whereas an unquoted select would be taken as a key word and would therefore provoke a parse
error when used where a table or column name is expected. The example can be written with quoted
identifiers like this:

UPDATE "my_table" SET "a" = 5;

Quoted identifiers can contain any character, except the character with code zero. (To include a double
quote, write two double quotes.) This allows constructing table or column names that would otherwise
not be possible, such as ones containing spaces or ampersands. The length limitation still applies.

A variant of quoted identifiers allows including escaped Unicode characters identified by their code
points. This variant starts with Us (upper or lower case U followed by ampersand) immediately before
the opening double quote, without any spaces in between, for example Us"foo". (Note that this
creates an ambiguity with the operator &. Use spaces around the operator to avoid this problem.) Inside
the quotes, Unicode characters can be specified in escaped form by writing a backslash followed by
the four-digit hexadecimal code point number or alternatively a backslash followed by a plus sign
followed by a six-digit hexadecimal code point number. For example, the identifier "data" could be
written as

Us"d\0061t\+000061"
The following less trivial example writes the Russian word “slon” (elephant) in Cyrillic letters:

U&"\0441\043B\043E\043D"

If a different escape character than backslash is desired, it can be specified using the UESCAPE clause
after the string, for example:

U&"d!0061t!+000061" UESCAPE ' !’

25

Chapter 4. SQL Syntax

The escape character can be any single character other than a hexadecimal digit, the plus sign, a single
quote, a double quote, or a whitespace character. Note that the escape character is written in single
quotes, not double quotes.

To include the escape character in the identifier literally, write it twice.

The Unicode escape syntax works only when the server encoding is UTF8. When other server encod-
ings are used, only code points in the ASCII range (up to \007F) can be specified. Both the 4-digit
and the 6-digit form can be used to specify UTF-16 surrogate pairs to compose characters with code
points larger than U+FFFF, although the availability of the 6-digit form technically makes this un-
necessary. (Surrogate pairs are not stored directly, but combined into a single code point that is then
encoded in UTF-8.)

Quoting an identifier also makes it case-sensitive, whereas unquoted names are always folded to lower
case. For example, the identifiers FOO, foo, and "foo" are considered the same by PostgreSQL, but
"Foo" and "FOO" are different from these three and each other. (The folding of unquoted names to
lower case in PostgreSQL is incompatible with the SQL standard, which says that unquoted names
should be folded to upper case. Thus, foo should be equivalent to "FOO" not "foo" according to the
standard. If you want to write portable applications you are advised to always quote a particular name
or never quote it.)

4.1.2. Constants

There are three kinds of implicitly-typed constants in PostgreSQL: strings, bit strings, and numbers.
Constants can also be specified with explicit types, which can enable more accurate representation and
more efficient handling by the system. These alternatives are discussed in the following subsections.

4.1.2.1. String Constants

A string constant in SQL is an arbitrary sequence of characters bounded by single quotes (), for
example ' This is a string’. To include a single-quote character within a string constant, write
two adjacent single quotes, e.g., ' Dianne”s horse’. Note that this is not the same as a double-quote
character (").

Two string constants that are only separated by whitespace with at least one newline are concatenated
and effectively treated as if the string had been written as one constant. For example:

SELECT '’ foo’
"bar’;

is equivalent to:

SELECT ' foobar’;

but:

SELECT ' foo’ "bar’;

is not valid syntax. (This slightly bizarre behavior is specified by SQL; PostgreSQL is following the
standard.)

26

Chapter 4. SQL Syntax

4.1.2.2. String Constants with C-style Escapes

PostgreSQL also accepts “escape” string constants, which are an extension to the SQL standard.
An escape string constant is specified by writing the letter E (upper or lower case) just before the
opening single quote, e.g., E’ foo’. (When continuing an escape string constant across lines, write
E only before the first opening quote.) Within an escape string, a backslash character (\) begins a
C-like backslash escape sequence, in which the combination of backslash and following character(s)
represent a special byte value, as shown in Table 4-1.

Table 4-1. Backslash Escape Sequences

Backslash Escape Sequence Interpretation

\b backspace

\f form feed

\n newline

\r carriage return

\t tab

\o, \oo, \ooo (0c=0-7) octal byte value

\xh, \xhh (h=0-9,A-F) hexadecimal byte value

\uxxxx, \Uxxxxxxxx (x=0-9, A -F) 16 or 32-bit hexadecimal Unicode character
value

Any other character following a backslash is taken literally. Thus, to include a backslash character,
write two backslashes (\\). Also, a single quote can be included in an escape string by writing \’, in
addition to the normal way of ”.

It is your responsibility that the byte sequences you create, especially when using the octal or hex-
adecimal escapes, compose valid characters in the server character set encoding. When the server
encoding is UTF-8, then the Unicode escapes or the alternative Unicode escape syntax, explained in
Section 4.1.2.3, should be used instead. (The alternative would be doing the UTF-8 encoding by hand
and writing out the bytes, which would be very cumbersome.)

The Unicode escape syntax works fully only when the server encoding is UTF8. When other server
encodings are used, only code points in the ASCII range (up to \u007F) can be specified. Both the
4-digit and the 8-digit form can be used to specify UTF-16 surrogate pairs to compose characters
with code points larger than U+FFFF, although the availability of the 8-digit form technically makes
this unnecessary. (When surrogate pairs are used when the server encoding is UTF8, they are first
combined into a single code point that is then encoded in UTF-8.)

Caution

If the configuration parameter standard_conforming_strings is off, then Post-
greSQL recognizes backslash escapes in both regular and escape string con-
stants. However, as of PostgreSQL 9.1, the default is on, meaning that back-
slash escapes are recognized only in escape string constants. This behavior
is more standards-compliant, but might break applications which rely on the
historical behavior, where backslash escapes were always recognized. As a
workaround, you can set this parameter to of £, but it is better to migrate away
from using backslash escapes. If you need to use a backslash escape to rep-
resent a special character, write the string constant with an k.

In addition to standard_conforming_strings, the configuration parameters
escape_string_warning and backslash_quote govern treatment of backslashes
in string constants.

27

Chapter 4. SQL Syntax

The character with the code zero cannot be in a string constant.

4.1.2.3. String Constants with Unicode Escapes

PostgreSQL also supports another type of escape syntax for strings that allows specifying arbitrary
Unicode characters by code point. A Unicode escape string constant starts with Us (upper or lower
case letter U followed by ampersand) immediately before the opening quote, without any spaces in
between, for example Us’ foo’ . (Note that this creates an ambiguity with the operator &. Use spaces
around the operator to avoid this problem.) Inside the quotes, Unicode characters can be specified
in escaped form by writing a backslash followed by the four-digit hexadecimal code point number
or alternatively a backslash followed by a plus sign followed by a six-digit hexadecimal code point
number. For example, the string " data’ could be written as

Us’d\0061t\+000061"
The following less trivial example writes the Russian word “slon” (elephant) in Cyrillic letters:

Us&’\0441\043B\043E\043D’

If a different escape character than backslash is desired, it can be specified using the UESCAPE clause
after the string, for example:

U&’d!0061t!+000061" UESCAPE ’!’

The escape character can be any single character other than a hexadecimal digit, the plus sign, a single
quote, a double quote, or a whitespace character.

The Unicode escape syntax works only when the server encoding is UTF8. When other server encod-
ings are used, only code points in the ASCII range (up to \007F) can be specified. Both the 4-digit
and the 6-digit form can be used to specify UTF-16 surrogate pairs to compose characters with code
points larger than U+FFFF, although the availability of the 6-digit form technically makes this unnec-
essary. (When surrogate pairs are used when the server encoding is UTF 8, they are first combined into
a single code point that is then encoded in UTF-8.)

Also, the Unicode escape syntax for string constants only works when the configuration parameter
standard_conforming_strings is turned on. This is because otherwise this syntax could confuse clients
that parse the SQL statements to the point that it could lead to SQL injections and similar security
issues. If the parameter is set to off, this syntax will be rejected with an error message.

To include the escape character in the string literally, write it twice.

4.1.2.4. Dollar-quoted String Constants

While the standard syntax for specifying string constants is usually convenient, it can be difficult to
understand when the desired string contains many single quotes or backslashes, since each of those
must be doubled. To allow more readable queries in such situations, PostgreSQL provides another
way, called “dollar quoting”, to write string constants. A dollar-quoted string constant consists of a
dollar sign ($), an optional “tag” of zero or more characters, another dollar sign, an arbitrary sequence
of characters that makes up the string content, a dollar sign, the same tag that began this dollar quote,
and a dollar sign. For example, here are two different ways to specify the string “Dianne’s horse”
using dollar quoting:

$$Dianne’s horses

28

Chapter 4. SQL Syntax
$SomeTag$Dianne’s horse$SomeTag$

Notice that inside the dollar-quoted string, single quotes can be used without needing to be escaped.
Indeed, no characters inside a dollar-quoted string are ever escaped: the string content is always writ-
ten literally. Backslashes are not special, and neither are dollar signs, unless they are part of a sequence
matching the opening tag.

It is possible to nest dollar-quoted string constants by choosing different tags at each nesting level.
This is most commonly used in writing function definitions. For example:

Sfunction$
BEGIN
RETURN ($1 ~ g[\t\r\n\v\\1q);
END;
Sfunction$

Here, the sequence g [\t\r\n\v\\1s$gs represents a dollar-quoted literal string [\t\r\n\v\\],
which will be recognized when the function body is executed by PostgreSQL. But since the sequence
does not match the outer dollar quoting delimiter $functions$, it is just some more characters within
the constant so far as the outer string is concerned.

The tag, if any, of a dollar-quoted string follows the same rules as an unquoted identifier, except that
it cannot contain a dollar sign. Tags are case sensitive, S0 Stag$String contentS$tag$ is correct,
but $TAGSString content$tags$ is not.

A dollar-quoted string that follows a keyword or identifier must be separated from it by whitespace;
otherwise the dollar quoting delimiter would be taken as part of the preceding identifier.

Dollar quoting is not part of the SQL standard, but it is often a more convenient way to write com-
plicated string literals than the standard-compliant single quote syntax. It is particularly useful when
representing string constants inside other constants, as is often needed in procedural function defini-
tions. With single-quote syntax, each backslash in the above example would have to be written as four
backslashes, which would be reduced to two backslashes in parsing the original string constant, and
then to one when the inner string constant is re-parsed during function execution.

4.1.2.5. Bit-string Constants

Bit-string constants look like regular string constants with a B (upper or lower case) immediately
before the opening quote (no intervening whitespace), e.g., B’ 1001’ . The only characters allowed
within bit-string constants are 0 and 1.

Alternatively, bit-string constants can be specified in hexadecimal notation, using a leading x (upper
or lower case), e.g., X’ LFF’ . This notation is equivalent to a bit-string constant with four binary digits
for each hexadecimal digit.

Both forms of bit-string constant can be continued across lines in the same way as regular string
constants. Dollar quoting cannot be used in a bit-string constant.

4.1.2.6. Numeric Constants

Numeric constants are accepted in these general forms:

digits

digits. |[digits] [e[+-]digits]
[digits] .digits[e[+-]digits]
digitse[+-]digits

29

Chapter 4. SQL Syntax

where digits is one or more decimal digits (O through 9). At least one digit must be before or
after the decimal point, if one is used. At least one digit must follow the exponent marker (e), if one
is present. There cannot be any spaces or other characters embedded in the constant. Note that any
leading plus or minus sign is not actually considered part of the constant; it is an operator applied to
the constant.

These are some examples of valid numeric constants:

42

35

4.

.001

5e2
1.925¢-3

A numeric constant that contains neither a decimal point nor an exponent is initially presumed to be
type integer if its value fits in type integer (32 bits); otherwise it is presumed to be type bigint
if its value fits in type bigint (64 bits); otherwise it is taken to be type numeric. Constants that
contain decimal points and/or exponents are always initially presumed to be type numeric.

The initially assigned data type of a numeric constant is just a starting point for the type resolution
algorithms. In most cases the constant will be automatically coerced to the most appropriate type de-
pending on context. When necessary, you can force a numeric value to be interpreted as a specific data
type by casting it. For example, you can force a numeric value to be treated as type real (float4)
by writing:

REAL ’1.23" —-- string style
1.23::REAL —-— PostgreSQL (historical) style

These are actually just special cases of the general casting notations discussed next.

4.1.2.7. Constants of Other Types

A constant of an arbitrary type can be entered using any one of the following notations:

type ' string’
! string’ ::type
CAST ("string’ AS type)

The string constant’s text is passed to the input conversion routine for the type called ¢ ype. The result
is a constant of the indicated type. The explicit type cast can be omitted if there is no ambiguity as to
the type the constant must be (for example, when it is assigned directly to a table column), in which
case it is automatically coerced.

The string constant can be written using either regular SQL notation or dollar-quoting.

It is also possible to specify a type coercion using a function-like syntax:
typename (' string’)

but not all type names can be used in this way; see Section 4.2.9 for details.

The : :, CAST (), and function-call syntaxes can also be used to specify run-time type conversions of
arbitrary expressions, as discussed in Section 4.2.9. To avoid syntactic ambiguity, the type ’ string’
syntax can only be used to specify the type of a simple literal constant. Another restriction on the type

30

Chapter 4. SQL Syntax

" string’ syntax is that it does not work for array types; use : : or CAST () to specify the type of an
array constant.

The cAST () syntax conforms to SQL. The type ’string’ syntax is a generalization of the standard:
SQL specifies this syntax only for a few data types, but PostgreSQL allows it for all types. The syntax
with : : is historical PostgreSQL usage, as is the function-call syntax.

4.1.3. Operators

An operator name is a sequence of up to NAMEDATALEN-1 (63 by default) characters from the follow-
ing list:

+-F/<>=~1@# D &I ?

There are a few restrictions on operator names, however:

« —-and /=« cannot appear anywhere in an operator name, since they will be taken as the start of a
comment.

« A multiple-character operator name cannot end in + or —, unless the name also contains at least one
of these characters:

~l@#DP N&I?

For example, @- is an allowed operator name, but «- is not. This restriction allows PostgreSQL to
parse SQL-compliant queries without requiring spaces between tokens.

When working with non-SQL-standard operator names, you will usually need to separate adjacent
operators with spaces to avoid ambiguity. For example, if you have defined a left unary operator
named @, you cannot write X«@Y; you must write X~ @Y to ensure that PostgreSQL reads it as two
operator names not one.

4.1.4. Special Characters

Some characters that are not alphanumeric have a special meaning that is different from being an
operator. Details on the usage can be found at the location where the respective syntax element is
described. This section only exists to advise the existence and summarize the purposes of these char-
acters.

A dollar sign (s) followed by digits is used to represent a positional parameter in the body of
a function definition or a prepared statement. In other contexts the dollar sign can be part of an
identifier or a dollar-quoted string constant.

« Parentheses (()) have their usual meaning to group expressions and enforce precedence. In some
cases parentheses are required as part of the fixed syntax of a particular SQL command.

« Brackets ([1) are used to select the elements of an array. See Section 8.15 for more information on
arrays.

« Commas (,) are used in some syntactical constructs to separate the elements of a list.

31

Chapter 4. SQL Syntax
« The semicolon (;) terminates an SQL command. It cannot appear anywhere within a command,
except within a string constant or quoted identifier.

« The colon (:) is used to select “slices” from arrays. (See Section 8.15.) In certain SQL dialects
(such as Embedded SQL), the colon is used to prefix variable names.

+ The asterisk (x) is used in some contexts to denote all the fields of a table row or composite value.
It also has a special meaning when used as the argument of an aggregate function, namely that the
aggregate does not require any explicit parameter.

« The period (.) is used in numeric constants, and to separate schema, table, and column names.

4.1.5. Comments

A comment is a sequence of characters beginning with double dashes and extending to the end of the
line, e.g.:

—— This 1is a standard SQL comment

Alternatively, C-style block comments can be used:

/* multiline comment
* with nesting: /* nested block comment =/

*/

where the comment begins with /» and extends to the matching occurrence of » /. These block com-
ments nest, as specified in the SQL standard but unlike C, so that one can comment out larger blocks
of code that might contain existing block comments.

A comment is removed from the input stream before further syntax analysis and is effectively replaced
by whitespace.

4.1.6. Operator Precedence

Table 4-2 shows the precedence and associativity of the operators in PostgreSQL. Most operators have
the same precedence and are left-associative. The precedence and associativity of the operators is
hard-wired into the parser. This can lead to non-intuitive behavior; for example the Boolean operators
< and > have a different precedence than the Boolean operators <= and >=. Also, you will sometimes
need to add parentheses when using combinations of binary and unary operators. For instance:

SELECT 5 ! - 6;
will be parsed as:
SELECT 5 ! (- 6);

because the parser has no idea — until it is too late — that ! is defined as a postfix operator, not an
infix one. To get the desired behavior in this case, you must write:

SELECT (5 !) - 6;

This is the price one pays for extensibility.

32

Table 4-2. Operator Precedence (decreasing)

Chapter 4. SQL Syntax

Operator/Element Associativity Description
left table/column name separator
left PostgreSQL-style typecast

[] left array element selection

+ - right unary plus, unary minus

~ left exponentiation

x /% left multiplication, division,
modulo

+ - left addition, subtraction

IS IS TRUE, IS FALSE, IS
NULL, etc

ISNULL test for null

NOTNULL test for not null

(any other) left all other native and user-defined
operators

IN set membership

BETWEEN range containment

OVERLAPS time interval overlap

LIKE ILIKE SIMILAR string pattern matching

<> less than, greater than

= right equality, assignment

NOT right logical negation

AND left logical conjunction

OR left logical disjunction

Note that the operator precedence rules also apply to user-defined operators that have the same names
as the built-in operators mentioned above. For example, if you define a “+” operator for some custom
data type it will have the same precedence as the built-in “+” operator, no matter what yours does.

When a schema-qualified operator name is used in the OPERATOR syntax, as for example in:
SELECT 3 OPERATOR (pg_catalog.+) 4;

the OPERATOR construct is taken to have the default precedence shown in Table 4-2 for “any other”
operator. This is true no matter which specific operator appears inside OPERATOR () .

4.2. Value Expressions

Value expressions are used in a variety of contexts, such as in the target list of the SELECT command,
as new column values in INSERT or UPDATE, or in search conditions in a number of commands. The
result of a value expression is sometimes called a scalar, to distinguish it from the result of a table
expression (which is a table). Value expressions are therefore also called scalar expressions (or even
simply expressions). The expression syntax allows the calculation of values from primitive parts using
arithmetic, logical, set, and other operations.

33

Chapter 4. SQL Syntax

A value expression is one of the following:

A constant or literal value

+ A column reference

« A positional parameter reference, in the body of a function definition or prepared statement
+ A subscripted expression

» A field selection expression
+ An operator invocation
A function call

+ An aggregate expression

« A window function call

« A type cast

+ A collation expression

» A scalar subquery

« An array constructor

« A row constructor

+ Another value expression in parentheses (used to group subexpressions and override precedence)

In addition to this list, there are a number of constructs that can be classified as an expression but do
not follow any general syntax rules. These generally have the semantics of a function or operator and
are explained in the appropriate location in Chapter 9. An example is the IS NULL clause.

We have already discussed constants in Section 4.1.2. The following sections discuss the remaining
options.

4.2.1. Column References

A column can be referenced in the form:

correlation.columnname

correlation is the name of a table (possibly qualified with a schema name), or an alias for a table
defined by means of a FROM clause. The correlation name and separating dot can be omitted if the
column name is unique across all the tables being used in the current query. (See also Chapter 7.)

4.2.2. Positional Parameters

A positional parameter reference is used to indicate a value that is supplied externally to an SQL
statement. Parameters are used in SQL function definitions and in prepared queries. Some client
libraries also support specifying data values separately from the SQL command string, in which case
parameters are used to refer to the out-of-line data values. The form of a parameter reference is:

Snumber

34

Chapter 4. SQL Syntax

For example, consider the definition of a function, dept, as:

CREATE FUNCTION dept (text) RETURNS dept
AS $$ SELECT * FROM dept WHERE name = $1 $$
LANGUAGE SQL;

Here the $1 references the value of the first function argument whenever the function is invoked.

4.2.3. Subscripts

If an expression yields a value of an array type, then a specific element of the array value can be
extracted by writing

expression|subscript]
or multiple adjacent elements (an “array slice”) can be extracted by writing
expression|[lower_subscript:upper._subscript]

(Here, the brackets [] are meant to appear literally.) Each subscript is itself an expression, which
must yield an integer value.

In general the array expression must be parenthesized, but the parentheses can be omitted when
the expression to be subscripted is just a column reference or positional parameter. Also, multiple
subscripts can be concatenated when the original array is multidimensional. For example:

mytable.arraycolumn[4]
mytable.two_d_column[17] [34]
$1[10:42]
(arrayfunction(a,b)) [42]

The parentheses in the last example are required. See Section 8.15 for more about arrays.

4.2.4. Field Selection

If an expression yields a value of a composite type (row type), then a specific field of the row can be
extracted by writing

expression. fieldname

In general the row expression must be parenthesized, but the parentheses can be omitted when the
expression to be selected from is just a table reference or positional parameter. For example:

mytable.mycolumn
$1.somecolumn
(rowfunction(a,b)) .col3

(Thus, a qualified column reference is actually just a special case of the field selection syntax.) An
important special case is extracting a field from a table column that is of a composite type:

(compositecol) .somefield
(mytable.compositecol) .somefield

35

Chapter 4. SQL Syntax

The parentheses are required here to show that compositecol is a column name not a table name,
or that mytable is a table name not a schema name in the second case.

You can ask for all fields of a composite value by writing . »:
(compositecol) . *

This notation behaves differently depending on context; see Section 8.16.5 for details.

4.2.5. Operator Invocations

There are three possible syntaxes for an operator invocation:

expression operator expression (binary infix operator)
operator expression (unary prefix operator)
expression operator (unary postfix operator)

where the operator token follows the syntax rules of Section 4.1.3, or is one of the key words AND,
OR, and NOT, or is a qualified operator name in the form:

OPERATOR (schema.operatorname)

Which particular operators exist and whether they are unary or binary depends on what operators have
been defined by the system or the user. Chapter 9 describes the built-in operators.

4.2.6. Function Calls

The syntax for a function call is the name of a function (possibly qualified with a schema name),
followed by its argument list enclosed in parentheses:

function_name ([expression [, expression ...]])

For example, the following computes the square root of 2:

sqrt (2)

The list of built-in functions is in Chapter 9. Other functions can be added by the user.

When issuing queries in a database where some users mistrust other users, observe security precau-
tions from Section 10.3 when writing function calls.

The arguments can optionally have names attached. See Section 4.3 for details.

Note: A function that takes a single argument of composite type can optionally be called using
field-selection syntax, and conversely field selection can be written in functional style. That is, the
notations col (table) and table.col are interchangeable. This behavior is not SQL-standard
but is provided in PostgreSQL because it allows use of functions to emulate “computed fields”.
For more information see Section 8.16.5.

36

Chapter 4. SQL Syntax

4.2.7. Aggregate Expressions

An aggregate expression represents the application of an aggregate function across the rows selected
by a query. An aggregate function reduces multiple inputs to a single output value, such as the sum or
average of the inputs. The syntax of an aggregate expression is one of the following:

aggregate_name (expression [, ... 1 [order_by clause]) [FILTER (WHERE filter clause) |
aggregate_name (ALL expression [, ...] [order_by clause]) [FILTER (WHERE filter_clause
aggregate_name (DISTINCT expression [, ...] [order_by clause]) [FILTER (WHERE filter c
aggregate_name (%) [FILTER (WHERE filter_clause)]

aggregate_name ([expression [, ...]]) WITHIN GROUP (order_by clause) [FILTER (WHER

where aggregate_name is a previously defined aggregate (possibly qualified with a schema name)
and expression is any value expression that does not itself contain an aggregate expression or a
window function call. The optional order._by_clause and filter_clause are described below.

The first form of aggregate expression invokes the aggregate once for each input row. The second
form is the same as the first, since ALL is the default. The third form invokes the aggregate once for
each distinct value of the expression (or distinct set of values, for multiple expressions) found in the
input rows. The fourth form invokes the aggregate once for each input row; since no particular input
value is specified, it is generally only useful for the count (x) aggregate function. The last form is
used with ordered-set aggregate functions, which are described below.

Most aggregate functions ignore null inputs, so that rows in which one or more of the expression(s)
yield null are discarded. This can be assumed to be true, unless otherwise specified, for all built-in
aggregates.

For example, count (x) yields the total number of input rows; count (£1) yields the number of
input rows in which £1 is non-null, since count ignores nulls; and count (distinct £1) yields
the number of distinct non-null values of £1.

Ordinarily, the input rows are fed to the aggregate function in an unspecified order. In many cases
this does not matter; for example, min produces the same result no matter what order it receives
the inputs in. However, some aggregate functions (such as array_agg and string_agg) produce
results that depend on the ordering of the input rows. When using such an aggregate, the optional
order_by_clause can be used to specify the desired ordering. The order._by_clause has the
same syntax as for a query-level ORDER BY clause, as described in Section 7.5, except that its expres-
sions are always just expressions and cannot be output-column names or numbers. For example:

SELECT array_agg(a ORDER BY b DESC) FROM table;

When dealing with multiple-argument aggregate functions, note that the ORDER BY clause goes after
all the aggregate arguments. For example, write this:

SELECT string_agg(a, ’,’ ORDER BY a) FROM table;
not this:
SELECT string_agg(a ORDER BY a, ’,’) FROM table; —— incorrect

The latter is syntactically valid, but it represents a call of a single-argument aggregate function with
two ORDER BY keys (the second one being rather useless since it’s a constant).

If DISTINCT is specified in addition to an order._by_clause, then all the ORDER BY expressions
must match regular arguments of the aggregate; that is, you cannot sort on an expression that is not
included in the DISTINCT list.

37

Chapter 4. SQL Syntax

Note: The ability to specify both prsTINCT and orDER BY in an aggregate function is a Post-
greSQL extension.

Placing ORDER BY within the aggregate’s regular argument list, as described so far, is used when
ordering the input rows for a “normal” aggregate for which ordering is optional. There is a subclass
of aggregate functions called ordered-set aggregates for which an order_by_clause is required,
usually because the aggregate’s computation is only sensible in terms of a specific ordering of its
input rows. Typical examples of ordered-set aggregates include rank and percentile calculations. For
an ordered-set aggregate, the order_by_clause is written inside WITHIN GROUP (...), as shown
in the final syntax alternative above. The expressions in the order._by_clause are evaluated once
per input row just like normal aggregate arguments, sorted as per the order_by clause’s require-
ments, and fed to the aggregate function as input arguments. (This is unlike the case for a non-WITHIN
GROUP order._by_clause, which is not treated as argument(s) to the aggregate function.) The argu-
ment expressions preceding WITHIN GROUP, if any, are called direct arguments to distinguish them
from the aggregated arguments listed in the order_by_clause. Unlike normal aggregate arguments,
direct arguments are evaluated only once per aggregate call, not once per input row. This means that
they can contain variables only if those variables are grouped by GROUP BY; this restriction is the same
as if the direct arguments were not inside an aggregate expression at all. Direct arguments are typi-
cally used for things like percentile fractions, which only make sense as a single value per aggregation
calculation. The direct argument list can be empty; in this case, write just () not (x). (PostgreSQL
will actually accept either spelling, but only the first way conforms to the SQL standard.)

An example of an ordered-set aggregate call is:

SELECT percentile_cont (0.5) WITHIN GROUP (ORDER BY income) FROM households;
percentile_cont

which obtains the 50th percentile, or median, value of the income column from table households.
Here, 0. 5 is a direct argument; it would make no sense for the percentile fraction to be a value varying
across rows.

If FILTER is specified, then only the input rows for which the rfilter clause evaluates to true are
fed to the aggregate function; other rows are discarded. For example:

SELECT

count (#) AS unfiltered,

count (*) FILTER (WHERE i1 < 5) AS filtered
FROM generate_series(1,10) AS s(i);
unfiltered | filtered

The predefined aggregate functions are described in Section 9.20. Other aggregate functions can be
added by the user.

An aggregate expression can only appear in the result list or HAVING clause of a SELECT command.
It is forbidden in other clauses, such as WHERE, because those clauses are logically evaluated before
the results of aggregates are formed.

When an aggregate expression appears in a subquery (see Section 4.2.11 and Section 9.22), the aggre-
gate is normally evaluated over the rows of the subquery. But an exception occurs if the aggregate’s

38

Chapter 4. SQL Syntax

arguments (and filter_clause if any) contain only outer-level variables: the aggregate then be-
longs to the nearest such outer level, and is evaluated over the rows of that query. The aggregate
expression as a whole is then an outer reference for the subquery it appears in, and acts as a constant
over any one evaluation of that subquery. The restriction about appearing only in the result list or
HAVING clause applies with respect to the query level that the aggregate belongs to.

4.2.8. Window Function Calls

A window function call represents the application of an aggregate-like function over some portion of
the rows selected by a query. Unlike regular aggregate function calls, this is not tied to grouping of the
selected rows into a single output row — each row remains separate in the query output. However the
window function is able to scan all the rows that would be part of the current row’s group according to
the grouping specification (PARTITION BY list) of the window function call. The syntax of a window
function call is one of the following:

function_name (|[expression [, expression ...]]) [FILTER (WHERE filter_clause
function _name (|[expression [, expression ...]1]) [FILTER (WHERE filter clause
function name (*) [FILTER (WHERE filter clause)] OVER window_name

function _name (*) [FILTER (WHERE filter clause)] OVER (window _definition

where window_definition has the syntax

existing_window_name]
PARTITION BY expression [, ...]]

[
[
[
[frame_clause]

and the optional frame_clause can be one of

{ RANGE | ROWS } frame_ start
{ RANGE | ROWS } BETWEEN frame_ start AND frame_ end

where frame_start and frame_end can be one of

UNBOUNDED PRECEDING
value PRECEDING
CURRENT ROW

value FOLLOWING
UNBOUNDED FOLLOWING

Here, expression represents any value expression that does not itself contain window function calls.

window_name is a reference to a named window specification defined in the query’s WINDOW clause.
Alternatively, a full window_definition can be given within parentheses, using the same syntax
as for defining a named window in the WINDOW clause; see the SELECT reference page for details.
It’s worth pointing out that OVER wname is not exactly equivalent to OVER (wname) ; the latter im-
plies copying and modifying the window definition, and will be rejected if the referenced window
specification includes a frame clause.

The PARTITION BY option groups the rows of the query into partitions, which are processed sepa-
rately by the window function. PARTITION BY works similarly to a query-level GROUP BY clause,
except that its expressions are always just expressions and cannot be output-column names or num-
bers. Without PARTITION BY, all rows produced by the query are treated as a single partition. The
ORDER BY option determines the order in which the rows of a partition are processed by the window

39

)
)

ORDER BY expression [ASC | DESC | USING operator] [NULLS { FIRST | LAST }

)

]
]

]

OVER wina

OVER

[I

(

Wi

Chapter 4. SQL Syntax

function. It works similarly to a query-level ORDER BY clause, but likewise cannot use output-column
names or numbers. Without ORDER BY, rows are processed in an unspecified order.

The frame_clause specifies the set of rows constituting the window frame, which is a subset of the
current partition, for those window functions that act on the frame instead of the whole partition. The
frame can be specified in either RANGE or ROWS mode; in either case, it runs from the frame_start
to the frame_end. If frame end is omitted, it defaults to CURRENT ROW.

A frame_start of UNBOUNDED PRECEDING means that the frame starts with the first row of the
partition, and similarly a frame end of UNBOUNDED FOLLOWING means that the frame ends with
the last row of the partition.

In RANGE mode, a frame start of CURRENT ROW means the frame starts with the current row’s
first peer row (a row that ORDER BY considers equivalent to the current row), while a frame_end
of CURRENT ROW means the frame ends with the last equivalent ORDER BY peer. In ROWS mode,
CURRENT ROW simply means the current row.

The value PRECEDING and value FOLLOWING cases are currently only allowed in ROWS mode. They
indicate that the frame starts or ends the specified number of rows before or after the current row.
value must be an integer expression not containing any variables, aggregate functions, or window
functions. The value must not be null or negative; but it can be zero, which just selects the current
TOW.

The default framing option is RANGE UNBOUNDED PRECEDING, which is the same as RANGE
BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW. With ORDER BY, this sets the frame to be
all rows from the partition start up through the current row’s last ORDER BY peer. Without ORDER
BY, all rows of the partition are included in the window frame, since all rows become peers of the
current row.

Restrictions are that frame start cannot be UNBOUNDED FOLLOWING, frame_ end cannot be
UNBOUNDED PRECEDING, and the frame_end choice cannot appear earlier in the above list than the
frame_start choice — for example RANGE BETWEEN CURRENT ROW AND value PRECEDING is
not allowed.

If FILTER is specified, then only the input rows for which the filter clause evaluates to true
are fed to the window function; other rows are discarded. Only window functions that are aggregates
accept a FILTER clause.

The built-in window functions are described in Table 9-53. Other window functions can be added
by the user. Also, any built-in or user-defined normal aggregate function can be used as a window
function. Ordered-set aggregates presently cannot be used as window functions, however.

The syntaxes using » are used for calling parameter-less aggregate functions as window functions,
for example count () OVER (PARTITION BY x ORDER BY y). The asterisk (x) is customarily
not used for non-aggregate window functions. Aggregate window functions, unlike normal aggregate
functions, do not allow DISTINCT or ORDER BY to be used within the function argument list.

Window function calls are permitted only in the SELECT list and the ORDER BY clause of the query.

More information about window functions can be found in Section 3.5, Section 9.21, and Section
7.2.4.

4.2.9. Type Casts

A type cast specifies a conversion from one data type to another. PostgreSQL accepts two equivalent
syntaxes for type casts:

CAST (expression AS type)

40

Chapter 4. SQL Syntax
expression: :type

The cAST syntax conforms to SQL; the syntax with : : is historical PostgreSQL usage.

When a cast is applied to a value expression of a known type, it represents a run-time type conversion.
The cast will succeed only if a suitable type conversion operation has been defined. Notice that this is
subtly different from the use of casts with constants, as shown in Section 4.1.2.7. A cast applied to an
unadorned string literal represents the initial assignment of a type to a literal constant value, and so it
will succeed for any type (if the contents of the string literal are acceptable input syntax for the data
type).

An explicit type cast can usually be omitted if there is no ambiguity as to the type that a value expres-
sion must produce (for example, when it is assigned to a table column); the system will automatically
apply a type cast in such cases. However, automatic casting is only done for casts that are marked
“OK to apply implicitly” in the system catalogs. Other casts must be invoked with explicit casting
syntax. This restriction is intended to prevent surprising conversions from being applied silently.

It is also possible to specify a type cast using a function-like syntax:
typename (expression)

However, this only works for types whose names are also valid as function names. For example,
double precision cannot be used this way, but the equivalent float8 can. Also, the names
interval, time, and t imestamp can only be used in this fashion if they are double-quoted, because
of syntactic conflicts. Therefore, the use of the function-like cast syntax leads to inconsistencies and
should probably be avoided.

Note: The function-like syntax is in fact just a function call. When one of the two standard cast
syntaxes is used to do a run-time conversion, it will internally invoke a registered function to
perform the conversion. By convention, these conversion functions have the same name as their
output type, and thus the “function-like syntax” is nothing more than a direct invocation of the
underlying conversion function. Obviously, this is not something that a portable application should
rely on. For further details see CREATE CAST.

4.2.10. Collation Expressions

The COLLATE clause overrides the collation of an expression. It is appended to the expression it
applies to:

expr COLLATE collation
where collation is a possibly schema-qualified identifier. The COLLATE clause binds tighter than
operators; parentheses can be used when necessary.

If no collation is explicitly specified, the database system either derives a collation from the columns
involved in the expression, or it defaults to the default collation of the database if no column is
involved in the expression.

The two common uses of the COLLATE clause are overriding the sort order in an ORDER BY clause,
for example:

SELECT a, b, ¢ FROM tbl WHERE ... ORDER BY a COLLATE "C";

and overriding the collation of a function or operator call that has locale-sensitive results, for example:

41

Chapter 4. SQL Syntax
SELECT * FROM tbl WHERE a > ’foo’ COLLATE "C";

Note that in the latter case the COLLATE clause is attached to an input argument of the operator we
wish to affect. It doesn’t matter which argument of the operator or function call the COLLATE clause is
attached to, because the collation that is applied by the operator or function is derived by considering
all arguments, and an explicit COLLATE clause will override the collations of all other arguments.
(Attaching non-matching COLLATE clauses to more than one argument, however, is an error. For
more details see Section 22.2.) Thus, this gives the same result as the previous example:

SELECT * FROM tbl WHERE a COLLATE "C" > ’foo’;
But this is an error:
SELECT * FROM tbl WHERE (a > ’'foo’) COLLATE "C";

because it attempts to apply a collation to the result of the > operator, which is of the non-collatable
data type boolean.

4.2.11. Scalar Subqueries

A scalar subquery is an ordinary SELECT query in parentheses that returns exactly one row with one
column. (See Chapter 7 for information about writing queries.) The SELECT query is executed and
the single returned value is used in the surrounding value expression. It is an error to use a query that
returns more than one row or more than one column as a scalar subquery. (But if, during a particular
execution, the subquery returns no rows, there is no error; the scalar result is taken to be null.) The
subquery can refer to variables from the surrounding query, which will act as constants during any
one evaluation of the subquery. See also Section 9.22 for other expressions involving subqueries.

For example, the following finds the largest city population in each state:

SELECT name, (SELECT max (pop) FROM cities WHERE cities.state = states.name)
FROM states;

4.2.12. Array Constructors

An array constructor is an expression that builds an array value using values for its member elements.
A simple array constructor consists of the key word ARRAY, a left square bracket [, a list of expressions
(separated by commas) for the array element values, and finally a right square bracket 1. For example:

SELECT ARRAY([1,2,3+4];

By default, the array element type is the common type of the member expressions, determined using
the same rules as for UNION or CASE constructs (see Section 10.5). You can override this by explicitly
casting the array constructor to the desired type, for example:

SELECT ARRAY[1,2,22.7]::integer[];

42

Chapter 4. SQL Syntax

{1,2,23}
(1 row)

This has the same effect as casting each expression to the array element type individually. For more
on casting, see Section 4.2.9.

Multidimensional array values can be built by nesting array constructors. In the inner constructors,
the key word ARRAY can be omitted. For example, these produce the same result:

SELECT ARRAY[ARRAY[1,2], ARRAY[3,4]];

{{1,2},{3,4}}
(1 row)

SELECT ARRAY[[1,2]1,13,411;

{{1,2},{3,4}}
(1 row)

Since multidimensional arrays must be rectangular, inner constructors at the same level must pro-
duce sub-arrays of identical dimensions. Any cast applied to the outer ARRAY constructor propagates
automatically to all the inner constructors.

Multidimensional array constructor elements can be anything yielding an array of the proper kind, not
only a sub-ARRAY construct. For example:

CREATE TABLE arr(fl int[], £2 int[]);
INSERT INTO arr VALUES (ARRAY[[1,2],[3,4]1, ARRAY[[5,6]1,1[7,811);

SELECT ARRAY[fl, £2, "{{9,10},{11,12}}’::int[]] FROM arr;
array

{({{1,2},{3,4}},{{5,6},{7,8}},{{9,10},{11,12}}}
(1 row)

You can construct an empty array, but since it’s impossible to have an array with no type, you must
explicitly cast your empty array to the desired type. For example:

SELECT ARRAY[]::integer[];

It is also possible to construct an array from the results of a subquery. In this form, the array construc-
tor is written with the key word ARRAY followed by a parenthesized (not bracketed) subquery. For
example:

SELECT ARRAY (SELECT oid FROM pg_proc WHERE proname LIKE ’'bytea%’);
array

{2011,1954,1948,1952,1951,1244,1950,2005,1949,1953,2006,31,2412,2413}

43

Chapter 4. SQL Syntax
(1 row)

The subquery must return a single column. The resulting one-dimensional array will have an element
for each row in the subquery result, with an element type matching that of the subquery’s output
column.

The subscripts of an array value built with ARRAY always begin with one. For more information about
arrays, see Section 8.15.

4.2.13. Row Constructors

A row constructor is an expression that builds a row value (also called a composite value) using
values for its member fields. A row constructor consists of the key word Row, a left parenthesis, zero
or more expressions (separated by commas) for the row field values, and finally a right parenthesis.
For example:

SELECT ROW(1l,2.5,’this is a test’);

The key word ROW is optional when there is more than one expression in the list.

A row constructor can include the syntax rowvalue.*, which will be expanded to a list of the ele-
ments of the row value, just as occurs when the . « syntax is used at the top level of a SELECT list (see
Section 8.16.5). For example, if table t has columns £1 and £2, these are the same:

SELECT ROW(t.*, 42) FROM t;
SELECT ROW(t.fl, t.f2, 42) FROM t;

Note: Before PostgreSQL 8.2, the . « syntax was not expanded in row constructors, so that writing
ROW (t .+, 42) created a two-field row whose first field was another row value. The new behavior
is usually more useful. If you need the old behavior of nested row values, write the inner row value
without . «, for instance row (t, 42).

By default, the value created by a ROwW expression is of an anonymous record type. If necessary, it can
be cast to a named composite type — either the row type of a table, or a composite type created with
CREATE TYPE AS. An explicit cast might be needed to avoid ambiguity. For example:

CREATE TABLE mytable (fl int, f2 float, £3 text);

CREATE FUNCTION getfl (mytable) RETURNS int AS ’'SELECT $1.f1’ LANGUAGE SQL;

—-— No cast needed since only one getfl() exists
SELECT getfl (ROW(1,2.5,’this is a test’));
getfl

1
(1 row)

CREATE TYPE myrowtype AS (fl int, £f2 text, £3 numeric);

CREATE FUNCTION getfl (myrowtype) RETURNS int AS /SELECT $1.f1’ LANGUAGE SQL;

-— Now we need a cast to indicate which function to call:

44

Chapter 4. SQL Syntax

SELECT getfl (ROW(1,2.5,’this is a test’));
ERROR: function getfl (record) is not unique

SELECT getfl (ROW(1l,2.5,"this is a test’)::mytable);
getfl

getfl

Row constructors can be used to build composite values to be stored in a composite-type table column,
or to be passed to a function that accepts a composite parameter. Also, it is possible to compare two
row values or test a row with IS NULL or IS NOT NULL, for example:

SELECT ROW(1,2.5,"this is a test’) = ROW(1l, 3, ’'not the same’);
SELECT ROW (table.*) IS NULL FROM table; —-— detect all-null rows

For more detail see Section 9.23. Row constructors can also be used in connection with subqueries,
as discussed in Section 9.22.

4.2.14. Expression Evaluation Rules

The order of evaluation of subexpressions is not defined. In particular, the inputs of an operator or
function are not necessarily evaluated left-to-right or in any other fixed order.

Furthermore, if the result of an expression can be determined by evaluating only some parts of it, then
other subexpressions might not be evaluated at all. For instance, if one wrote:

SELECT true OR somefunc();

then somefunc () would (probably) not be called at all. The same would be the case if one wrote:
SELECT somefunc () OR true;

Note that this is not the same as the left-to-right “short-circuiting” of Boolean operators that is found
in some programming languages.

As a consequence, it is unwise to use functions with side effects as part of complex expressions. It is
particularly dangerous to rely on side effects or evaluation order in WHERE and HAVING clauses, since
those clauses are extensively reprocessed as part of developing an execution plan. Boolean expressions
(AND/OR/NOT combinations) in those clauses can be reorganized in any manner allowed by the laws
of Boolean algebra.

When it is essential to force evaluation order, a CASE construct (see Section 9.17) can be used. For
example, this is an untrustworthy way of trying to avoid division by zero in a WHERE clause:

SELECT ... WHERE x > 0 AND y/x > 1.5;

But this is safe:

45

Chapter 4. SQL Syntax
SELECT ... WHERE CASE WHEN x > 0 THEN y/x > 1.5 ELSE false END;

A CASE construct used in this fashion will defeat optimization attempts, so it should only be done
when necessary. (In this particular example, it would be better to sidestep the problem by writing y
> 1.5«x instead.)

CASE is not a cure-all for such issues, however. One limitation of the technique illustrated above is
that it does not prevent early evaluation of constant subexpressions. As described in Section 35.6,
functions and operators marked IMMUTABLE can be evaluated when the query is planned rather than
when it is executed. Thus for example

SELECT CASE WHEN x > 0 THEN x ELSE 1/0 END FROM tab;

is likely to result in a division-by-zero failure due to the planner trying to simplify the constant subex-
pression, even if every row in the table has x > 0 so that the ELSE arm would never be entered at
run time.

While that particular example might seem silly, related cases that don’t obviously involve constants
can occur in queries executed within functions, since the values of function arguments and local
variables can be inserted into queries as constants for planning purposes. Within PL/pgSQL functions,
for example, using an TF-THEN-ELSE statement to protect a risky computation is much safer than just
nesting it in a CASE expression.

Another limitation of the same kind is that a CASE cannot prevent evaluation of an aggregate ex-
pression contained within it, because aggregate expressions are computed before other expressions
in a SELECT list or HAVING clause are considered. For example, the following query can cause a
division-by-zero error despite seemingly having protected against it:

SELECT CASE WHEN min (employees) > 0
THEN avg (expenses / employees)
END
FROM departments;

The min () and avg () aggregates are computed concurrently over all the input rows, so if any row
has employees equal to zero, the division-by-zero error will occur before there is any opportunity
to test the result of min () . Instead, use a WHERE or FILTER clause to prevent problematic input rows
from reaching an aggregate function in the first place.

4.3. Calling Functions

PostgreSQL allows functions that have named parameters to be called using either positional or named
notation. Named notation is especially useful for functions that have a large number of parameters,
since it makes the associations between parameters and actual arguments more explicit and reliable.
In positional notation, a function call is written with its argument values in the same order as they
are defined in the function declaration. In named notation, the arguments are matched to the function
parameters by name and can be written in any order. For each notation, also consider the effect of
function argument types, documented in Section 10.3.

In either notation, parameters that have default values given in the function declaration need not be
written in the call at all. But this is particularly useful in named notation, since any combination of
parameters can be omitted; while in positional notation parameters can only be omitted from right to
left.

46

Chapter 4. SQL Syntax
PostgreSQL also supports mixed notation, which combines positional and named notation. In this
case, positional parameters are written first and named parameters appear after them.

The following examples will illustrate the usage of all three notations, using the following function
definition:

CREATE FUNCTION concat_lower_or_upper (a text, b text, uppercase boolean DEFAULT false)
RETURNS text

AS

$$

SELECT CASE
WHEN $3 THEN UPPER(S$S1 || ' 7 || $2)
ELSE LOWER(S$1 || ' 7 || $2)
END;

$$

LANGUAGE SQL IMMUTABLE STRICT;

Function concat_lower_or_upper has two mandatory parameters, a and b. Additionally there is
one optional parameter uppercase which defaults to false. The a and b inputs will be concatenated,
and forced to either upper or lower case depending on the uppercase parameter. The remaining
details of this function definition are not important here (see Chapter 35 for more information).

4.3.1. Using Positional Notation

Positional notation is the traditional mechanism for passing arguments to functions in PostgreSQL.
An example is:

SELECT concat_lower_or_upper ('Hello’, ’'World’, true);
concat_lower_or_upper

HELLO WORLD
(1 row)

All arguments are specified in order. The result is upper case since uppercase is specified as true.
Another example is:

SELECT concat_lower_or_upper ('Hello’, 'World’);
concat_lower_or_upper

hello world
(1 row)

Here, the uppercase parameter is omitted, so it receives its default value of false, resulting in
lower case output. In positional notation, arguments can be omitted from right to left so long as they
have defaults.

4.3.2. Using Named Notation

In named notation, each argument’s name is specified using := to separate it from the argument
expression. For example:

SELECT concat_lower_or_upper(a := "Hello’, b := "World’);
concat_lower_or_upper

hello world

47

Chapter 4. SQL Syntax
(1 row)

Again, the argument uppercase was omitted so it is set to false implicitly. One advantage of using
named notation is that the arguments may be specified in any order, for example:

SELECT concat_lower_or_upper(a := "Hello’, b := ’"World’, uppercase := true);
concat_lower_or_upper

HELLO WORLD
(1 row)

SELECT concat_lower_or_upper (a "Hello’, uppercase := true, b := ’"World’);

concat_lower_or_upper

HELLO WORLD
(1 row)

4.3.3. Using Mixed Notation

The mixed notation combines positional and named notation. However, as already mentioned, named
arguments cannot precede positional arguments. For example:

SELECT concat_lower_or_upper ('Hello’, ’"World’, uppercase := true);
concat_lower_or_upper

HELLO WORLD
(1 row)

In the above query, the arguments a and b are specified positionally, while uppercase is specified by
name. In this example, that adds little except documentation. With a more complex function having
numerous parameters that have default values, named or mixed notation can save a great deal of
writing and reduce chances for error.

Note: Named and mixed call notations currently cannot be used when calling an aggregate func-
tion (but they do work when an aggregate function is used as a window function).

48

Chapter 5. Data Definition

This chapter covers how one creates the database structures that will hold one’s data. In a relational
database, the raw data is stored in tables, so the majority of this chapter is devoted to explaining how
tables are created and modified and what features are available to control what data is stored in the
tables. Subsequently, we discuss how tables can be organized into schemas, and how privileges can
be assigned to tables. Finally, we will briefly look at other features that affect the data storage, such
as inheritance, views, functions, and triggers.

5.1. Table Basics

A table in a relational database is much like a table on paper: It consists of rows and columns. The
number and order of the columns is fixed, and each column has a name. The number of rows is
variable — it reflects how much data is stored at a given moment. SQL does not make any guarantees
about the order of the rows in a table. When a table is read, the rows will appear in an unspecified
order, unless sorting is explicitly requested. This is covered in Chapter 7. Furthermore, SQL does not
assign unique identifiers to rows, so it is possible to have several completely identical rows in a table.
This is a consequence of the mathematical model that underlies SQL but is usually not desirable.
Later in this chapter we will see how to deal with this issue.

Each column has a data type. The data type constrains the set of possible values that can be assigned
to a column and assigns semantics to the data stored in the column so that it can be used for com-
putations. For instance, a column declared to be of a numerical type will not accept arbitrary text
strings, and the data stored in such a column can be used for mathematical computations. By contrast,
a column declared to be of a character string type will accept almost any kind of data but it does not
lend itself to mathematical calculations, although other operations such as string concatenation are
available.

PostgreSQL includes a sizable set of built-in data types that fit many applications. Users can also
define their own data types. Most built-in data types have obvious names and semantics, so we defer
a detailed explanation to Chapter 8. Some of the frequently used data types are integer for whole
numbers, numeric for possibly fractional numbers, text for character strings, date for dates, t ime
for time-of-day values, and t imestamp for values containing both date and time.

To create a table, you use the aptly named CREATE TABLE command. In this command you specify
at least a name for the new table, the names of the columns and the data type of each column. For
example:

CREATE TABLE my_first_table (
first_column text,
second_column integer

)

This creates a table named my_first_table with two columns. The first column is named
first_column and has a data type of text; the second column has the name second_column and
the type integer. The table and column names follow the identifier syntax explained in Section
4.1.1. The type names are usually also identifiers, but there are some exceptions. Note that the
column list is comma-separated and surrounded by parentheses.

Of course, the previous example was heavily contrived. Normally, you would give names to your
tables and columns that convey what kind of data they store. So let’s look at a more realistic example:

CREATE TABLE products (

49

Chapter 5. Data Definition

product_no integer,
name text,
price numeric

)

(The numeric type can store fractional components, as would be typical of monetary amounts.)

Tip: When you create many interrelated tables it is wise to choose a consistent naming pattern
for the tables and columns. For instance, there is a choice of using singular or plural nouns for
table names, both of which are favored by some theorist or other.

There is a limit on how many columns a table can contain. Depending on the column types, it is
between 250 and 1600. However, defining a table with anywhere near this many columns is highly
unusual and often a questionable design.

If you no longer need a table, you can remove it using the DROP TABLE command. For example:

DROP TABLE my_first_table;
DROP TABLE products;

Attempting to drop a table that does not exist is an error. Nevertheless, it is common in SQL script files
to unconditionally try to drop each table before creating it, ignoring any error messages, so that the
script works whether or not the table exists. (If you like, you can use the DROP TABLE IF EXISTS
variant to avoid the error messages, but this is not standard SQL.)

If you need to modify a table that already exists, see Section 5.5 later in this chapter.

With the tools discussed so far you can create fully functional tables. The remainder of this chapter is
concerned with adding features to the table definition to ensure data integrity, security, or convenience.
If you are eager to fill your tables with data now you can skip ahead to Chapter 6 and read the rest of
this chapter later.

5.2. Default Values

A column can be assigned a default value. When a new row is created and no values are specified
for some of the columns, those columns will be filled with their respective default values. A data
manipulation command can also request explicitly that a column be set to its default value, without
having to know what that value is. (Details about data manipulation commands are in Chapter 6.)

If no default value is declared explicitly, the default value is the null value. This usually makes sense
because a null value can be considered to represent unknown data.

In a table definition, default values are listed after the column data type. For example:

CREATE TABLE products (
product_no integer,
name text,
price numeric DEFAULT 9.99
)i

The default value can be an expression, which will be evaluated whenever the default value is inserted
(not when the table is created). A common example is for a t imestamp column to have a default of

50

Chapter 5. Data Definition

CURRENT_TIMESTAMP, so that it gets set to the time of row insertion. Another common example is
generating a “serial number” for each row. In PostgreSQL this is typically done by something like:

CREATE TABLE products (
product_no integer DEFAULT nextval (' products_product_no_seq’),

)

where the nextval () function supplies successive values from a sequence object (see Section 9.16).
This arrangement is sufficiently common that there’s a special shorthand for it:

CREATE TABLE products (
product_no SERIAL,

)

The sERIAL shorthand is discussed further in Section 8.1.4.

5.3. Constraints

Data types are a way to limit the kind of data that can be stored in a table. For many applications,
however, the constraint they provide is too coarse. For example, a column containing a product price
should probably only accept positive values. But there is no standard data type that accepts only
positive numbers. Another issue is that you might want to constrain column data with respect to other
columns or rows. For example, in a table containing product information, there should be only one
row for each product number.

To that end, SQL allows you to define constraints on columns and tables. Constraints give you as
much control over the data in your tables as you wish. If a user attempts to store data in a column
that would violate a constraint, an error is raised. This applies even if the value came from the default
value definition.

5.3.1. Check Constraints

A check constraint is the most generic constraint type. It allows you to specify that the value in
a certain column must satisfy a Boolean (truth-value) expression. For instance, to require positive
product prices, you could use:

CREATE TABLE products (

product_no integer,

name text,

price numeric CHECK (price > 0)
)i

As you see, the constraint definition comes after the data type, just like default value definitions.
Default values and constraints can be listed in any order. A check constraint consists of the key word
CHECK followed by an expression in parentheses. The check constraint expression should involve the
column thus constrained, otherwise the constraint would not make too much sense.

You can also give the constraint a separate name. This clarifies error messages and allows you to refer
to the constraint when you need to change it. The syntax is:

51

Chapter 5. Data Definition

CREATE TABLE products (

product_no integer,

name text,

price numeric CONSTRAINT positive_price CHECK (price > 0)
)i

So, to specify a named constraint, use the key word CONSTRAINT followed by an identifier followed
by the constraint definition. (If you don’t specify a constraint name in this way, the system chooses a
name for you.)

A check constraint can also refer to several columns. Say you store a regular price and a discounted
price, and you want to ensure that the discounted price is lower than the regular price:

CREATE TABLE products (
product_no integer,
name text,
price numeric CHECK (price > 0),
discounted_price numeric CHECK (discounted_price > 0),
CHECK (price > discounted_price)

The first two constraints should look familiar. The third one uses a new syntax. It is not attached to a
particular column, instead it appears as a separate item in the comma-separated column list. Column
definitions and these constraint definitions can be listed in mixed order.

We say that the first two constraints are column constraints, whereas the third one is a table constraint
because it is written separately from any one column definition. Column constraints can also be writ-
ten as table constraints, while the reverse is not necessarily possible, since a column constraint is
supposed to refer to only the column it is attached to. (PostgreSQL doesn’t enforce that rule, but you
should follow it if you want your table definitions to work with other database systems.) The above
example could also be written as:

CREATE TABLE products (
product_no integer,
name text,
price numeric,
CHECK (price > 0),
discounted_price numeric,
CHECK (discounted_price > 0),
CHECK (price > discounted_price)
)i

or even:

CREATE TABLE products (

product_no integer,

name text,

price numeric CHECK (price > 0),

discounted_price numeric,

CHECK (discounted_price > 0 AND price > discounted_price)
)i

It’s a matter of taste.

Names can be assigned to table constraints in the same way as column constraints:

CREATE TABLE products (

52

Chapter 5. Data Definition

product_no integer,

name text,

price numeric,

CHECK (price > 0),

discounted_price numeric,

CHECK (discounted_price > 0),

CONSTRAINT valid_discount CHECK (price > discounted_price)

It should be noted that a check constraint is satisfied if the check expression evaluates to true or the
null value. Since most expressions will evaluate to the null value if any operand is null, they will not
prevent null values in the constrained columns. To ensure that a column does not contain null values,
the not-null constraint described in the next section can be used.

5.3.2. Not-Null Constraints

A not-null constraint simply specifies that a column must not assume the null value. A syntax example:

CREATE TABLE products (
product_no integer NOT NULL,
name text NOT NULL,
price numeric

)

A not-null constraint is always written as a column constraint. A not-null constraint is functionally
equivalent to creating a check constraint CHECK (column_name IS NOT NULL), but in PostgreSQL
creating an explicit not-null constraint is more efficient. The drawback is that you cannot give explicit
names to not-null constraints created this way.

Of course, a column can have more than one constraint. Just write the constraints one after another:

CREATE TABLE products (

product_no integer NOT NULL,

name text NOT NULL,

price numeric NOT NULL CHECK (price > 0)
)i

The order doesn’t matter. It does not necessarily determine in which order the constraints are checked.

The NOT NULL constraint has an inverse: the NULL constraint. This does not mean that the column
must be null, which would surely be useless. Instead, this simply selects the default behavior that the
column might be null. The NULL constraint is not present in the SQL standard and should not be used
in portable applications. (It was only added to PostgreSQL to be compatible with some other database
systems.) Some users, however, like it because it makes it easy to toggle the constraint in a script file.
For example, you could start with:

CREATE TABLE products (
product_no integer NULL,
name text NULL,
price numeric NULL

)i

and then insert the NOT key word where desired.

53

Chapter 5. Data Definition

Tip: In most database designs the majority of columns should be marked not null.

5.3.3. Unique Constraints

Unique constraints ensure that the data contained in a column, or a group of columns, is unique among
all the rows in the table. The syntax is:

CREATE TABLE products (
product_no integer UNIQUE,
name text,
price numeric

)i
when written as a column constraint, and:

CREATE TABLE products (
product_no integer,
name text,
price numeric,
UNIQUE (product_no)

)i

when written as a table constraint.

To define a unique constraint for a group of columns, write it as a table constraint with the column
names separated by commas:

CREATE TABLE example (
a integer,
b integer,
c integer,
UNIQUE (a, c)
)i

This specifies that the combination of values in the indicated columns is unique across the whole
table, though any one of the columns need not be (and ordinarily isn’t) unique.

You can assign your own name for a unique constraint, in the usual way:

CREATE TABLE products (
product_no integer CONSTRAINT must_be_different UNIQUE,
name text,
price numeric

)i

Adding a unique constraint will automatically create a unique B-tree index on the column or group of
columns listed in the constraint. A uniqueness restriction covering only some rows cannot be written
as a unique constraint, but it is possible to enforce such a restriction by creating a unique partial index.

In general, a unique constraint is violated if there is more than one row in the table where the values of
all of the columns included in the constraint are equal. However, two null values are never considered
equal in this comparison. That means even in the presence of a unique constraint it is possible to
store duplicate rows that contain a null value in at least one of the constrained columns. This behavior

54

Chapter 5. Data Definition

conforms to the SQL standard, but we have heard that other SQL databases might not follow this rule.
So be careful when developing applications that are intended to be portable.

5.3.4. Primary Keys

A primary key constraint indicates that a column, or group of columns, can be used as a unique
identifier for rows in the table. This requires that the values be both unique and not null. So, the
following two table definitions accept the same data:

CREATE TABLE products (
product_no integer UNIQUE NOT NULL,
name text,
price numeric

)i

CREATE TABLE products (
product_no integer PRIMARY KEY,
name text,
price numeric

)

Primary keys can span more than one column; the syntax is similar to unique constraints:

CREATE TABLE example (
a integer,
b integer,
c integer,
PRIMARY KEY (a, c)
)i

Adding a primary key will automatically create a unique B-tree index on the column or group of
columns listed in the primary key, and will force the column(s) to be marked NOT NULL.

A table can have at most one primary key. (There can be any number of unique and not-null con-
straints, which are functionally almost the same thing, but only one can be identified as the primary
key.) Relational database theory dictates that every table must have a primary key. This rule is not
enforced by PostgreSQL, but it is usually best to follow it.

Primary keys are useful both for documentation purposes and for client applications. For example, a
GUI application that allows modifying row values probably needs to know the primary key of a table
to be able to identify rows uniquely. There are also various ways in which the database system makes
use of a primary key if one has been declared; for example, the primary key defines the default target
column(s) for foreign keys referencing its table.

5.3.5. Foreign Keys

A foreign key constraint specifies that the values in a column (or a group of columns) must match the
values appearing in some row of another table. We say this maintains the referential integrity between
two related tables.

Say you have the product table that we have used several times already:

55

Chapter 5. Data Definition

CREATE TABLE products (
product_no integer PRIMARY KEY,
name text,
price numeric

)

Let’s also assume you have a table storing orders of those products. We want to ensure that the orders
table only contains orders of products that actually exist. So we define a foreign key constraint in the
orders table that references the products table:

CREATE TABLE orders (
order_id integer PRIMARY KEY,
product_no integer REFERENCES products (product_no),
quantity integer

)i

Now it is impossible to create orders with non-NULL product_no entries that do not appear in the
products table.

We say that in this situation the orders table is the referencing table and the products table is the
referenced table. Similarly, there are referencing and referenced columns.

You can also shorten the above command to:

CREATE TABLE orders (
order_id integer PRIMARY KEY,
product_no integer REFERENCES products,
quantity integer

)i

because in absence of a column list the primary key of the referenced table is used as the referenced
column(s).

A foreign key can also constrain and reference a group of columns. As usual, it then needs to be
written in table constraint form. Here is a contrived syntax example:

CREATE TABLE tl (

a integer PRIMARY KEY,

b integer,

c integer,

FOREIGN KEY (b, c) REFERENCES other_table (cl, c2)
)i

Of course, the number and type of the constrained columns need to match the number and type of the
referenced columns.

You can assign your own name for a foreign key constraint, in the usual way.

A table can have more than one foreign key constraint. This is used to implement many-to-many
relationships between tables. Say you have tables about products and orders, but now you want to
allow one order to contain possibly many products (which the structure above did not allow). You
could use this table structure:

CREATE TABLE products (
product_no integer PRIMARY KEY,
name text,
price numeric

)i

56

Chapter 5. Data Definition

CREATE TABLE orders (
order_id integer PRIMARY KEY,
shipping_address text,

)

CREATE TABLE order_items (
product_no integer REFERENCES products,
order_id integer REFERENCES orders,
quantity integer,
PRIMARY KEY (product_no, order_id)

)i

Notice that the primary key overlaps with the foreign keys in the last table.

We know that the foreign keys disallow creation of orders that do not relate to any products. But what
if a product is removed after an order is created that references it? SQL allows you to handle that as
well. Intuitively, we have a few options:

+ Disallow deleting a referenced product
 Delete the orders as well
+ Something else?

To illustrate this, let’s implement the following policy on the many-to-many relationship example
above: when someone wants to remove a product that is still referenced by an order (via
order_items), we disallow it. If someone removes an order, the order items are removed as well:

CREATE TABLE products (
product_no integer PRIMARY KEY,
name text,
price numeric

)i

CREATE TABLE orders (
order_id integer PRIMARY KEY,
shipping_address text,

)

CREATE TABLE order_items (
product_no integer REFERENCES products ON DELETE RESTRICT,
order_id integer REFERENCES orders ON DELETE CASCADE,
quantity integer,
PRIMARY KEY (product_no, order_id)

Restricting and cascading deletes are the two most common options. RESTRICT prevents deletion of
a referenced row. NO ACTION means that if any referencing rows still exist when the constraint is
checked, an error is raised; this is the default behavior if you do not specify anything. (The essential
difference between these two choices is that NO ACTION allows the check to be deferred until later
in the transaction, whereas RESTRICT does not.) CASCADE specifies that when a referenced row is
deleted, row(s) referencing it should be automatically deleted as well. There are two other options:
SET NULL and SET DEFAULT. These cause the referencing column(s) in the referencing row(s) to be

57

Chapter 5. Data Definition

set to nulls or their default values, respectively, when the referenced row is deleted. Note that these
do not excuse you from observing any constraints. For example, if an action specifies SET DEFAULT
but the default value would not satisfy the foreign key constraint, the operation will fail.

Analogous to ON DELETE there is also ON UPDATE which is invoked when a referenced column is
changed (updated). The possible actions are the same. In this case, CASCADE means that the updated
values of the referenced column(s) should be copied into the referencing row(s).

Normally, a referencing row need not satisfy the foreign key constraint if any of its referencing
columns are null. If MATCH FULL is added to the foreign key declaration, a referencing row escapes
satisfying the constraint only if all its referencing columns are null (so a mix of null and non-null
values is guaranteed to fail a MATCH FULL constraint). If you don’t want referencing rows to be able
to avoid satisfying the foreign key constraint, declare the referencing column(s) as NOT NULL.

A foreign key must reference columns that either are a primary key or form a unique constraint.
This means that the referenced columns always have an index (the one underlying the primary key
or unique constraint); so checks on whether a referencing row has a match will be efficient. Since
a DELETE of a row from the referenced table or an UPDATE of a referenced column will require a
scan of the referencing table for rows matching the old value, it is often a good idea to index the
referencing columns too. Because this is not always needed, and there are many choices available on
how to index, declaration of a foreign key constraint does not automatically create an index on the
referencing columns.

More information about updating and deleting data is in Chapter 6. Also see the description of foreign
key constraint syntax in the reference documentation for CREATE TABLE.

5.3.6. Exclusion Constraints

Exclusion constraints ensure that if any two rows are compared on the specified columns or expres-
sions using the specified operators, at least one of these operator comparisons will return false or null.
The syntax is:

CREATE TABLE circles (

c circle,

EXCLUDE USING gist (c WITH &&)
)i

See also CREATE TABLE ... CONSTRAINT ... EXCLUDE for details.

Adding an exclusion constraint will automatically create an index of the type specified in the con-
straint declaration.

5.4. System Columns

Every table has several system columns that are implicitly defined by the system. Therefore, these
names cannot be used as names of user-defined columns. (Note that these restrictions are separate
from whether the name is a key word or not; quoting a name will not allow you to escape these
restrictions.) You do not really need to be concerned about these columns; just know they exist.

58

Chapter 5. Data Definition

oid
The object identifier (object ID) of a row. This column is only present if the table was created
using WITH 0OIDS, or if the default_with_oids configuration variable was set at the time. This

column is of type oid (same name as the column); see Section 8.18 for more information about
the type.

tableoid

The OID of the table containing this row. This column is particularly handy for queries that
select from inheritance hierarchies (see Section 5.8), since without it, it’s difficult to tell which
individual table a row came from. The tableoid can be joined against the oid column of
pg_class to obtain the table name.

xmin

The identity (transaction ID) of the inserting transaction for this row version. (A row version is
an individual state of a row; each update of a row creates a new row version for the same logical
row.)

cmin
The command identifier (starting at zero) within the inserting transaction.
Xmax

The identity (transaction ID) of the deleting transaction, or zero for an undeleted row version. It
is possible for this column to be nonzero in a visible row version. That usually indicates that the
deleting transaction hasn’t committed yet, or that an attempted deletion was rolled back.

cmax
The command identifier within the deleting transaction, or zero.
ctid

The physical location of the row version within its table. Note that although the ctid can be
used to locate the row version very quickly, a row’s ctid will change if it is updated or moved
by vacuuM FULL. Therefore ctid is useless as a long-term row identifier. The OID, or even
better a user-defined serial number, should be used to identify logical rows.

OIDs are 32-bit quantities and are assigned from a single cluster-wide counter. In a large or long-lived
database, it is possible for the counter to wrap around. Hence, it is bad practice to assume that OIDs
are unique, unless you take steps to ensure that this is the case. If you need to identify the rows in
a table, using a sequence generator is strongly recommended. However, OIDs can be used as well,
provided that a few additional precautions are taken:

« A unique constraint should be created on the OID column of each table for which the OID will
be used to identify rows. When such a unique constraint (or unique index) exists, the system takes
care not to generate an OID matching an already-existing row. (Of course, this is only possible if
the table contains fewer than 2** (4 billion) rows, and in practice the table size had better be much
less than that, or performance might suffer.)

+ OIDs should never be assumed to be unique across tables; use the combination of tableoid and
row OID if you need a database-wide identifier.

« Of course, the tables in question must be created WITH 0IDS. As of PostgreSQL 8.1, WITHOUT
01DS is the default.

59

Chapter 5. Data Definition

Transaction identifiers are also 32-bit quantities. In a long-lived database it is possible for transaction
IDs to wrap around. This is not a fatal problem given appropriate maintenance procedures; see Chapter
23 for details. It is unwise, however, to depend on the uniqueness of transaction IDs over the long term
(more than one billion transactions).

Command identifiers are also 32-bit quantities. This creates a hard limit of 2*? (4 billion) SQL com-
mands within a single transaction. In practice this limit is not a problem — note that the limit is on
the number of SQL commands, not the number of rows processed. Also, only commands that actually
modify the database contents will consume a command identifier.

5.5. Modifying Tables

When you create a table and you realize that you made a mistake, or the requirements of the appli-
cation change, you can drop the table and create it again. But this is not a convenient option if the
table is already filled with data, or if the table is referenced by other database objects (for instance a
foreign key constraint). Therefore PostgreSQL provides a family of commands to make modifications
to existing tables. Note that this is conceptually distinct from altering the data contained in the table:
here we are interested in altering the definition, or structure, of the table.

You can:

« Add columns

« Remove columns

« Add constraints

« Remove constraints

+ Change default values

+ Change column data types
« Rename columns

« Rename tables

All these actions are performed using the ALTER TABLE command, whose reference page contains
details beyond those given here.

5.5.1. Adding a Column

To add a column, use a command like:

ALTER TABLE products ADD COLUMN description text;

The new column is initially filled with whatever default value is given (null if you don’t specify a
DEFAULT clause).

You can also define constraints on the column at the same time, using the usual syntax:
ALTER TABLE products ADD COLUMN description text CHECK (description <> ");

In fact all the options that can be applied to a column description in CREATE TABLE can be used here.
Keep in mind however that the default value must satisfy the given constraints, or the AbD will fail.
Alternatively, you can add constraints later (see below) after you’ve filled in the new column correctly.

Tip: Adding a column with a default requires updating each row of the table (to store the new
column value). However, if no default is specified, PostgreSQL is able to avoid the physical update.
So if you intend to fill the column with mostly nondefault values, it's best to add the column with

60

Chapter 5. Data Definition

no default, insert the correct values using uppATE, and then add any desired default as described
below.

5.5.2. Removing a Column

To remove a column, use a command like:

ALTER TABLE products DROP COLUMN description;

Whatever data was in the column disappears. Table constraints involving the column are dropped, too.
However, if the column is referenced by a foreign key constraint of another table, PostgreSQL will
not silently drop that constraint. You can authorize dropping everything that depends on the column
by adding CASCADE:

ALTER TABLE products DROP COLUMN description CASCADE;

See Section 5.12 for a description of the general mechanism behind this.

5.5.3. Adding a Constraint

To add a constraint, the table constraint syntax is used. For example:

ALTER TABLE products ADD CHECK (name <> ");
ALTER TABLE products ADD CONSTRAINT some_name UNIQUE (product_no);
ALTER TABLE products ADD FOREIGN KEY (product_group_id) REFERENCES product_groups;

To add a not-null constraint, which cannot be written as a table constraint, use this syntax:

ALTER TABLE products ALTER COLUMN product_no SET NOT NULL;

The constraint will be checked immediately, so the table data must satisfy the constraint before it can
be added.

5.5.4. Removing a Constraint

To remove a constraint you need to know its name. If you gave it a name then that’s easy. Otherwise the
system assigned a generated name, which you need to find out. The psql command \d tablename can
be helpful here; other interfaces might also provide a way to inspect table details. Then the command
is:

ALTER TABLE products DROP CONSTRAINT some_name;
(If you are dealing with a generated constraint name like $2, don’t forget that you’ll need to double-
quote it to make it a valid identifier.)

As with dropping a column, you need to add CASCADE if you want to drop a constraint that something
else depends on. An example is that a foreign key constraint depends on a unique or primary key
constraint on the referenced column(s).

61

Chapter 5. Data Definition

This works the same for all constraint types except not-null constraints. To drop a not null constraint
use:

ALTER TABLE products ALTER COLUMN product_no DROP NOT NULL;

(Recall that not-null constraints do not have names.)

5.5.5. Changing a Column’s Default Value
To set a new default for a column, use a command like:

ALTER TABLE products ALTER COLUMN price SET DEFAULT 7.77;

Note that this doesn’t affect any existing rows in the table, it just changes the default for future INSERT
commands.

To remove any default value, use:
ALTER TABLE products ALTER COLUMN price DROP DEFAULT;

This is effectively the same as setting the default to null. As a consequence, it is not an error to drop
a default where one hadn’t been defined, because the default is implicitly the null value.

5.5.6. Changing a Column’s Data Type
To convert a column to a different data type, use a command like:

ALTER TABLE products ALTER COLUMN price TYPE numeric(10,2);

This will succeed only if each existing entry in the column can be converted to the new type by an
implicit cast. If a more complex conversion is needed, you can add a USING clause that specifies how
to compute the new values from the old.

PostgreSQL will attempt to convert the column’s default value (if any) to the new type, as well as
any constraints that involve the column. But these conversions might fail, or might produce surprising
results. It’s often best to drop any constraints on the column before altering its type, and then add back
suitably modified constraints afterwards.

5.5.7. Renaming a Column

To rename a column:

ALTER TABLE products RENAME COLUMN product_no TO product_number;

5.5.8. Renaming a Table

To rename a table:

ALTER TABLE products RENAME TO items;

62

Chapter 5. Data Definition

5.6. Privileges

When an object is created, it is assigned an owner. The owner is normally the role that executed the
creation statement. For most kinds of objects, the initial state is that only the owner (or a superuser)
can do anything with the object. To allow other roles to use it, privileges must be granted.

There are different kinds of privileges: SELECT, INSERT, UPDATE, DELETE, TRUNCATE,
REFERENCES, TRIGGER, CREATE, CONNECT, TEMPORARY, EXECUTE, and USAGE. The privileges
applicable to a particular object vary depending on the object’s type (table, function, etc). For
complete information on the different types of privileges supported by PostgreSQL, refer to the
GRANT reference page. The following sections and chapters will also show you how those
privileges are used.

The right to modify or destroy an object is always the privilege of the owner only.

An object can be assigned to a new owner with an ALTER command of the appropriate kind for the
object, e.g. ALTER TABLE. Superusers can always do this; ordinary roles can only do it if they are
both the current owner of the object (or a member of the owning role) and a member of the new
owning role.

To assign privileges, the GRANT command is used. For example, if joe is an existing user, and
accounts is an existing table, the privilege to update the table can be granted with:

GRANT UPDATE ON accounts TO joe;

Writing ALL in place of a specific privilege grants all privileges that are relevant for the object type.

The special “user” name PUBLIC can be used to grant a privilege to every user on the system. Also,
“group” roles can be set up to help manage privileges when there are many users of a database — for
details see Chapter 20.

To revoke a privilege, use the fittingly named REVOKE command:
REVOKE ALL ON accounts FROM PUBLIC;

The special privileges of the object owner (i.e., the right to do DROP, GRANT, REVOKE, etc.) are always
implicit in being the owner, and cannot be granted or revoked. But the object owner can choose to
revoke his own ordinary privileges, for example to make a table read-only for himself as well as
others.

Ordinarily, only the object’s owner (or a superuser) can grant or revoke privileges on an object. How-
ever, it is possible to grant a privilege “with grant option”, which gives the recipient the right to grant
it in turn to others. If the grant option is subsequently revoked then all who received the privilege
from that recipient (directly or through a chain of grants) will lose the privilege. For details see the
GRANT and REVOKE reference pages.

5.7. Schemas

A PostgreSQL database cluster contains one or more named databases. Users and groups of users are
shared across the entire cluster, but no other data is shared across databases. Any given client con-

63

Chapter 5. Data Definition

nection to the server can access only the data in a single database, the one specified in the connection
request.

Note: Users of a cluster do not necessarily have the privilege to access every database in the
cluster. Sharing of user names means that there cannot be different users named, say, joe in
two databases in the same cluster; but the system can be configured to allow joe access to only
some of the databases.

A database contains one or more named schemas, which in turn contain tables. Schemas also contain
other kinds of named objects, including data types, functions, and operators. The same object name
can be used in different schemas without conflict; for example, both schemal and myschema can
contain tables named mytable. Unlike databases, schemas are not rigidly separated: a user can access
objects in any of the schemas in the database he is connected to, if he has privileges to do so.

There are several reasons why one might want to use schemas:

« To allow many users to use one database without interfering with each other.
+ To organize database objects into logical groups to make them more manageable.

« Third-party applications can be put into separate schemas so they do not collide with the names of
other objects.

Schemas are analogous to directories at the operating system level, except that schemas cannot be
nested.

5.7.1. Creating a Schema

To create a schema, use the CREATE SCHEMA command. Give the schema a name of your choice.
For example:

CREATE SCHEMA myschema;

To create or access objects in a schema, write a qualified name consisting of the schema name and
table name separated by a dot:

schema.table

This works anywhere a table name is expected, including the table modification commands and the
data access commands discussed in the following chapters. (For brevity we will speak of tables only,
but the same ideas apply to other kinds of named objects, such as types and functions.)

Actually, the even more general syntax
database.schema.table

can be used too, but at present this is just for pro forma compliance with the SQL standard. If you
write a database name, it must be the same as the database you are connected to.

So to create a table in the new schema, use:

CREATE TABLE myschema.mytable (

)i

64

Chapter 5. Data Definition

To drop a schema if it’s empty (all objects in it have been dropped), use:

DROP SCHEMA myschema;

To drop a schema including all contained objects, use:
DROP SCHEMA myschema CASCADE;

See Section 5.12 for a description of the general mechanism behind this.

Often you will want to create a schema owned by someone else (since this is one of the ways to
restrict the activities of your users to well-defined namespaces). The syntax for that is:

CREATE SCHEMA schemaname AUTHORIZATION username;

You can even omit the schema name, in which case the schema name will be the same as the user
name. See Section 5.7.6 for how this can be useful.

Schema names beginning with pg_ are reserved for system purposes and cannot be created by users.

5.7.2. The Public Schema

In the previous sections we created tables without specifying any schema names. By default such
tables (and other objects) are automatically put into a schema named “public”’. Every new database
contains such a schema. Thus, the following are equivalent:

CREATE TABLE products (...);
and:

CREATE TABLE public.products (...);

5.7.3. The Schema Search Path

Qualified names are tedious to write, and it’s often best not to wire a particular schema name into
applications anyway. Therefore tables are often referred to by unqualified names, which consist of
just the table name. The system determines which table is meant by following a search path, which is
a list of schemas to look in. The first matching table in the search path is taken to be the one wanted.
If there is no match in the search path, an error is reported, even if matching table names exist in other
schemas in the database.

The ability to create like-named objects in different schemas complicates writing a query that refer-
ences precisely the same objects every time. It also opens up the potential for users to change the
behavior of other users’ queries, maliciously or accidentally. Due to the prevalence of unqualified
names in queries and their use in PostgreSQL internals, adding a schema to search_path effec-
tively trusts all users having CREATE privilege on that schema. When you run an ordinary query, a
malicious user able to create objects in a schema of your search path can take control and execute
arbitrary SQL functions as though you executed them.

65

Chapter 5. Data Definition

The first schema named in the search path is called the current schema. Aside from being the first
schema searched, it is also the schema in which new tables will be created if the CREATE TABLE
command does not specify a schema name.

To show the current search path, use the following command:
SHOW search_path;
In the default setup this returns:

search_path

"Suser",public

The first element specifies that a schema with the same name as the current user is to be searched. If
no such schema exists, the entry is ignored. The second element refers to the public schema that we
have seen already.

The first schema in the search path that exists is the default location for creating new objects. That
is the reason that by default objects are created in the public schema. When objects are referenced
in any other context without schema qualification (table modification, data modification, or query
commands) the search path is traversed until a matching object is found. Therefore, in the default
configuration, any unqualified access again can only refer to the public schema.

To put our new schema in the path, we use:
SET search_path TO myschema,public;

(We omit the Suser here because we have no immediate need for it.) And then we can access the
table without schema qualification:

DROP TABLE mytable;

Also, since myschema is the first element in the path, new objects would by default be created in it.

We could also have written:
SET search_path TO myschema;

Then we no longer have access to the public schema without explicit qualification. There is nothing
special about the public schema except that it exists by default. It can be dropped, too.

See also Section 9.25 for other ways to manipulate the schema search path.

The search path works in the same way for data type names, function names, and operator names as it
does for table names. Data type and function names can be qualified in exactly the same way as table
names. If you need to write a qualified operator name in an expression, there is a special provision:
you must write

OPERATOR (schema.operator)
This is needed to avoid syntactic ambiguity. An example is:
SELECT 3 OPERATOR (pg_catalog.+) 4;

In practice one usually relies on the search path for operators, so as not to have to write anything so
ugly as that.

66

Chapter 5. Data Definition

5.7.4. Schemas and Privileges

By default, users cannot access any objects in schemas they do not own. To allow that, the owner of
the schema must grant the USAGE privilege on the schema. To allow users to make use of the objects
in the schema, additional privileges might need to be granted, as appropriate for the object.

A user can also be allowed to create objects in someone else’s schema. To allow that, the CREATE
privilege on the schema needs to be granted. Note that by default, everyone has CREATE and USAGE
privileges on the schema public. This allows all users that are able to connect to a given database to
create objects in its public schema. Some usage patterns call for revoking that privilege:

REVOKE CREATE ON SCHEMA public FROM PUBLIC;

(The first “public” is the schema, the second “public” means “every user”. In the first sense it is an
identifier, in the second sense it is a key word, hence the different capitalization; recall the guidelines
from Section 4.1.1.)

5.7.5. The System Catalog Schema

In addition to public and user-created schemas, each database contains a pg_catalog schema,
which contains the system tables and all the built-in data types, functions, and operators. pg_catalog
is always effectively part of the search path. If it is not named explicitly in the path then it is implicitly
searched before searching the path’s schemas. This ensures that built-in names will always be findable.
However, you can explicitly place pg_catalog at the end of your search path if you prefer to have
user-defined names override built-in names.

Since system table names begin with pg_, it is best to avoid such names to ensure that you won’t
suffer a conflict if some future version defines a system table named the same as your table. (With the
default search path, an unqualified reference to your table name would then be resolved as the system
table instead.) System tables will continue to follow the convention of having names beginning with
pg_, so that they will not conflict with unqualified user-table names so long as users avoid the pg_
prefix.

5.7.6. Usage Patterns

Schemas can be used to organize your data in many ways. There are a few usage patterns easily
supported by the default configuration, only one of which suffices when database users mistrust other
database users:

+ Constrain ordinary users to user-private schemas. To implement this, issue REVOKE CREATE ON
SCHEMA public FROM PUBLIC, and create a schema for each user with the same name as that
user. If affected users had logged in before this, consider auditing the public schema for objects
named like objects in schema pg_catalog. Recall that the default search path starts with suser,
which resolves to the user name. Therefore, if each user has a separate schema, they access their
own schemas by default.

« Remove the public schema from each user’s default search path using ALTER ROLE user SET
search_path = "$user". Everyone retains the ability to create objects in the public schema,
but only qualified names will choose those objects. While qualified table references are fine, calls
to functions in the public schema will be unsafe or unreliable. Also, a user holding the CREATEROLE
privilege can undo this setting and issue arbitrary queries under the identity of users relying on the

67

Chapter 5. Data Definition

setting. If you create functions or extensions in the public schema or grant CREATEROLE to users
not warranting this almost-superuser ability, use the first pattern instead.

« Remove the public schema from search_path in postgresgl.conf. The ensuing user expe-
rience matches the previous pattern. In addition to that pattern’s implications for functions and
CREATEROLE, this trusts database owners like CREATEROLE. If you create functions or extensions in
the public schema or assign the CREATEROLE privilege, CREATEDB privilege or individual database
ownership to users not warranting almost-superuser access, use the first pattern instead.

« Keep the default. All users access the public schema implicitly. This simulates the situation where
schemas are not available at all, giving a smooth transition from the non-schema-aware world.
However, any user can issue arbitrary queries under the identity of any user not electing to protect
itself individually. This pattern is acceptable only when the database has a single user or a few
mutually-trusting users.

For any pattern, to install shared applications (tables to be used by everyone, additional functions pro-
vided by third parties, etc.), put them into separate schemas. Remember to grant appropriate privileges
to allow the other users to access them. Users can then refer to these additional objects by qualifying
the names with a schema name, or they can put the additional schemas into their search path, as they
choose.

5.7.7. Portability

In the SQL standard, the notion of objects in the same schema being owned by different users does
not exist. Moreover, some implementations do not allow you to create schemas that have a different
name than their owner. In fact, the concepts of schema and user are nearly equivalent in a database
system that implements only the basic schema support specified in the standard. Therefore, many
users consider qualified names to really consist of username.tablename. This is how PostgreSQL
will effectively behave if you create a per-user schema for every user.

Also, there is no concept of a public schema in the SQL standard. For maximum conformance to
the standard, you should not use the public schema.

Of course, some SQL database systems might not implement schemas at all, or provide namespace
support by allowing (possibly limited) cross-database access. If you need to work with those systems,
then maximum portability would be achieved by not using schemas at all.

5.8. Inheritance

PostgreSQL implements table inheritance, which can be a useful tool for database designers.
(SQL:1999 and later define a type inheritance feature, which differs in many respects from the
features described here.)

Let’s start with an example: suppose we are trying to build a data model for cities. Each state has many
cities, but only one capital. We want to be able to quickly retrieve the capital city for any particular
state. This can be done by creating two tables, one for state capitals and one for cities that are not
capitals. However, what happens when we want to ask for data about a city, regardless of whether it
is a capital or not? The inheritance feature can help to resolve this problem. We define the capitals
table so that it inherits from cities:

CREATE TABLE cities (

68

Chapter 5. Data Definition

name text,
population float,
altitude int -— in feet

)

CREATE TABLE capitals (
state char (2)
) INHERITS (cities);

In this case, the capitals table inherits all the columns of its parent table, cities. State capitals
also have an extra column, state, that shows their state.

In PostgreSQL, a table can inherit from zero or more other tables, and a query can reference either all
rows of a table or all rows of a table plus all of its descendant tables. The latter behavior is the default.
For example, the following query finds the names of all cities, including state capitals, that are located
at an altitude over 500 feet:

SELECT name, altitude
FROM cities
WHERE altitude > 500;

Given the sample data from the PostgreSQL tutorial (see Section 2.1), this returns:

name | altitude
___________ b
Las Vegas | 2174
Mariposa | 1953
Madison | 845

On the other hand, the following query finds all the cities that are not state capitals and are situated at
an altitude over 500 feet:

SELECT name, altitude
FROM ONLY cities
WHERE altitude > 500;

name | altitude
___________ b
Las Vegas | 2174

Mariposa | 1953

Here the oNLY keyword indicates that the query should apply only to cities, and not any tables
below cities in the inheritance hierarchy. Many of the commands that we have already discussed
— SELECT, UPDATE and DELETE — support the ONLY keyword.

You can also write the table name with a trailing to explicitly specify that descendant tables are
included:

SELECT name, altitude
FROM citiesx
WHERE altitude > 500;

Writing = is not necessary, since this behavior is the default (unless you have changed the setting
of the sql_inheritance configuration option). However writing = might be useful to emphasize that
additional tables will be searched.

69

Chapter 5. Data Definition

In some cases you might wish to know which table a particular row originated from. There is a system
column called tableoid in each table which can tell you the originating table:

SELECT c.tableoid, c.name, c.altitude
FROM cities c
WHERE c.altitude > 500;

which returns:

tableoid | name | altitude

__________ e
139793 | Las Vegas | 2174
139793 | Mariposa | 1953
139798 | Madison | 845

(If you try to reproduce this example, you will probably get different numeric OIDs.) By doing a join
with pg_class you can see the actual table names:

SELECT p.relname, c.name, c.altitude
FROM cities ¢, pg_class p
WHERE c.altitude > 500 AND c.tableoid = p.oid;

which returns:

relname | name | altitude
,,,,,,,,,, e
cities | Las Vegas | 2174
cities | Mariposa | 1953
capitals | Madison | 845

Inheritance does not automatically propagate data from INSERT or COPY commands to other tables in
the inheritance hierarchy. In our example, the following INSERT statement will fail:

INSERT INTO cities (name, population, altitude, state)
VALUES (’New York’, NULL, NULL, ’'NY’);

We might hope that the data would somehow be routed to the capitals table, but this does not
happen: INSERT always inserts into exactly the table specified. In some cases it is possible to redirect
the insertion using a rule (see Chapter 38). However that does not help for the above case because the
cities table does not contain the column state, and so the command will be rejected before the
rule can be applied.

All check constraints and not-null constraints on a parent table are automatically inherited by its chil-
dren. Other types of constraints (unique, primary key, and foreign key constraints) are not inherited.

A table can inherit from more than one parent table, in which case it has the union of the columns
defined by the parent tables. Any columns declared in the child table’s definition are added to these.
If the same column name appears in multiple parent tables, or in both a parent table and the child’s
definition, then these columns are “merged” so that there is only one such column in the child table.
To be merged, columns must have the same data types, else an error is raised. The merged column
will have copies of all the check constraints coming from any one of the column definitions it came
from, and will be marked not-null if any of them are.

Table inheritance is typically established when the child table is created, using the INHERITS clause
of the CREATE TABLE statement. Alternatively, a table which is already defined in a compatible
way can have a new parent relationship added, using the INHERIT variant of ALTER TABLE. To do

70

Chapter 5. Data Definition

this the new child table must already include columns with the same names and types as the columns
of the parent. It must also include check constraints with the same names and check expressions as
those of the parent. Similarly an inheritance link can be removed from a child using the NO INHERIT
variant of ALTER TABLE. Dynamically adding and removing inheritance links like this can be useful
when the inheritance relationship is being used for table partitioning (see Section 5.9).

One convenient way to create a compatible table that will later be made a new child is to use the
LIKE clause in CREATE TABLE. This creates a new table with the same columns as the source table. If
there are any CHECK constraints defined on the source table, the INCLUDING CONSTRAINTS option to
LIKE should be specified, as the new child must have constraints matching the parent to be considered
compatible.

A parent table cannot be dropped while any of its children remain. Neither can columns or check
constraints of child tables be dropped or altered if they are inherited from any parent tables. If you
wish to remove a table and all of its descendants, one easy way is to drop the parent table with the
CASCADE option.

ALTER TABLE will propagate any changes in column data definitions and check constraints down the
inheritance hierarchy. Again, dropping columns that are depended on by other tables is only possible
when using the CASCADE option. ALTER TABLE follows the same rules for duplicate column merging
and rejection that apply during CREATE TABLE.

Note how table access permissions are handled. Querying a parent table can automatically access data
in child tables without further access privilege checking. This preserves the appearance that the data
is (also) in the parent table. Accessing the child tables directly is, however, not automatically allowed
and would require further privileges to be granted.

5.8.1. Caveats

Note that not all SQL commands are able to work on inheritance hierarchies. Commands that are
used for data querying, data modification, or schema modification (e.g., SELECT, UPDATE, DELETE,
most variants of ALTER TABLE, but not INSERT or ALTER TABLE ... RENAME) typically default
to including child tables and support the ONLY notation to exclude them. Commands that do database
maintenance and tuning (e.g., REINDEX, VACUUM) typically only work on individual, physical tables
and do not support recursing over inheritance hierarchies. The respective behavior of each individual
command is documented in its reference page (Reference I, SQL Commands).

A serious limitation of the inheritance feature is that indexes (including unique constraints) and for-
eign key constraints only apply to single tables, not to their inheritance children. This is true on both
the referencing and referenced sides of a foreign key constraint. Thus, in the terms of the above ex-
ample:

+ If we declared cities.name to be UNIQUE or a PRIMARY KEY, this would not stop the capitals
table from having rows with names duplicating rows in cities. And those duplicate rows would
by default show up in queries from cities. In fact, by default capitals would have no unique
constraint at all, and so could contain multiple rows with the same name. You could add a unique
constraint to capitals, but this would not prevent duplication compared to cities.

« Similarly, if we were to specify that cities.name REFERENCES some other table, this constraint
would not automatically propagate to capitals. In this case you could work around it by manually
adding the same REFERENCES constraint to capitals.

« Specifying that another table’s column REFERENCES cities (name) would allow the other table
to contain city names, but not capital names. There is no good workaround for this case.

71

Chapter 5. Data Definition

These deficiencies will probably be fixed in some future release, but in the meantime considerable
care is needed in deciding whether inheritance is useful for your application.

5.9. Partitioning

PostgreSQL supports basic table partitioning. This section describes why and how to implement par-
titioning as part of your database design.

5.9.1. Overview

Partitioning refers to splitting what is logically one large table into smaller physical pieces. Partition-
ing can provide several benefits:

» Query performance can be improved dramatically in certain situations, particularly when most of
the heavily accessed rows of the table are in a single partition or a small number of partitions. The
partitioning substitutes for leading columns of indexes, reducing index size and making it more
likely that the heavily-used parts of the indexes fit in memory.

« When queries or updates access a large percentage of a single partition, performance can be im-
proved by taking advantage of sequential scan of that partition instead of using an index and random
access reads scattered across the whole table.

+ Bulk loads and deletes can be accomplished by adding or removing partitions, if that requirement
is planned into the partitioning design. ALTER TABLE NO INHERIT and DROP TABLE are both far
faster than a bulk operation. These commands also entirely avoid the vAcUUM overhead caused by
a bulk DELETE.

« Seldom-used data can be migrated to cheaper and slower storage media.

The benefits will normally be worthwhile only when a table would otherwise be very large. The exact
point at which a table will benefit from partitioning depends on the application, although a rule of
thumb is that the size of the table should exceed the physical memory of the database server.

Currently, PostgreSQL supports partitioning via table inheritance. Each partition must be created as a
child table of a single parent table. The parent table itself is normally empty; it exists just to represent
the entire data set. You should be familiar with inheritance (see Section 5.8) before attempting to set
up partitioning.

The following forms of partitioning can be implemented in PostgreSQL.:

Range Partitioning

The table is partitioned into “ranges” defined by a key column or set of columns, with no overlap
between the ranges of values assigned to different partitions. For example one might partition by
date ranges, or by ranges of identifiers for particular business objects.

List Partitioning

The table is partitioned by explicitly listing which key values appear in each partition.

72

Chapter 5. Data Definition

5.9.2. Implementing Partitioning

To set up a partitioned table, do the following:

1. Create the “master” table, from which all of the partitions will inherit.

This table will contain no data. Do not define any check constraints on this table, unless you
intend them to be applied equally to all partitions. There is no point in defining any indexes or
unique constraints on it, either.

2. Create several “child” tables that each inherit from the master table. Normally, these tables will

not add any columns to the set inherited from the master.

We will refer to the child tables as partitions, though they are in every way normal PostgreSQL
tables.

3. Add table constraints to the partition tables to define the allowed key values in each partition.

Typical examples would be:

CHECK (x = 1)

CHECK (county IN ('Oxfordshire’, ’Buckinghamshire’, ’'Warwickshire’))
CHECK (outletID >= 100 AND outletID < 200)

Ensure that the constraints guarantee that there is no overlap between the key values permitted in
different partitions. A common mistake is to set up range constraints like:

CHECK (outletID BETWEEN 100 AND 200)
CHECK (outletID BETWEEN 200 AND 300)

This is wrong since it is not clear which partition the key value 200 belongs in.

Note that there is no difference in syntax between range and list partitioning; those terms are
descriptive only.

4. For each partition, create an index on the key column(s), as well as any other indexes you might

want. (The key index is not strictly necessary, but in most scenarios it is helpful. If you intend
the key values to be unique then you should always create a unique or primary-key constraint for
each partition.)

5. Optionally, define a trigger or rule to redirect data inserted into the master table to the appropriate

partition.

6. Ensure that the constraint_exclusion configuration parameter is not disabled in

postgresql.conf. If it is, queries will not be optimized as desired.

For example, suppose we are constructing a database for a large ice cream company. The company
measures peak temperatures every day as well as ice cream sales in each region. Conceptually, we
want a table like:

CREATE TABLE measurement (

)i

city_id int not null,
logdate date not null,
peaktemp int,
unitsales int

We know that most queries will access just the last week’s, month’s or quarter’s data, since the main

us

e of this table will be to prepare online reports for management. To reduce the amount of old data

that needs to be stored, we decide to only keep the most recent 3 years worth of data. At the beginning
of each month we will remove the oldest month’s data.

73

Chapter 5. Data Definition

In this situation we can use partitioning to help us meet all of our different requirements for the

measurements table. Following the steps outlined above, partitioning can be set up as follows:

1. The master table is the measurement table, declared exactly as above.

2. Next we create one partition for each active month:

CREATE TABLE measurement_y2006m02 () INHERITS (measurement);
CREATE TABLE measurement_y2006m03 () INHERITS (measurement);
CREATE TABLE measurement_y2007mll () INHERITS (measurement);
CREATE TABLE measurement_y2007ml2 () INHERITS (measurement);
CREATE TABLE measurement_y2008m0l1 () INHERITS (measurement);

Each of the partitions are complete tables in their own right, but they inherit their definitions from
the measurement table.

This solves one of our problems: deleting old data. Each month, all we will need to do is perform
a DROP TABLE on the oldest child table and create a new child table for the new month’s data.

. We must provide non-overlapping table constraints. Rather than just creating the partition tables
as above, the table creation script should really be:

CREATE TABLE measurement_y2006m02 (
CHECK (logdate >= DATE '2006-02-01"

) INHERITS (measurement);

CREATE TABLE measurement_y2006m03 (
CHECK (logdate >= DATE ’2006-03-01"

) INHERITS (measurement);

AND logdate DATE "2006-03-01"

AND logdate DATE '2006-04-01"

CREATE TABLE measurement_y2007mll (
CHECK (logdate >= DATE ’'2007-11-01"

) INHERITS (measurement);

CREATE TABLE measurement_y2007ml2 (
CHECK (logdate >= DATE ’2007-12-01"

) INHERITS (measurement);

CREATE TABLE measurement_y2008m01 (
CHECK (logdate >= DATE ’2008-01-01"

) INHERITS (measurement);

. We probably need indexes on the key columns too:

AND logdate DATE "2007-12-01"

AND logdate DATE "2008-01-01"

AND logdate DATE "2008-02-01"

CREATE INDEX measurement_y2006m02_logdate ON measurement_y2006m02 (logdate);
CREATE INDEX measurement_y2006m03_logdate ON measurement_y2006m03 (logdate);
CREATE INDEX measurement_y2007mll_logdate ON measurement_y2007mll (logdate);
CREATE INDEX measurement_y2007ml2_logdate ON measurement_y2007ml2 (logdate);
CREATE INDEX measurement_y2008m0l_logdate ON measurement_y2008m0l (logdate);

We choose not to add further indexes at this time.

. We want our application to be able to say INSERT INTO measurement . and have the data
be redirected into the appropriate partition table. We can arrange that by attaching a suitable
trigger function to the master table. If data will be added only to the latest partition, we can use a
very simple trigger function:

CREATE OR REPLACE FUNCTION measurement_insert_trigger ()

RETURNS TRIGGER AS $$

BEGIN
INSERT INTO measurement_y2008m0l1 VALUES
RETURN NULL;

END;

$S

LANGUAGE plpgsgl;

(NEW. *) ;

74

Chapter 5. Data Definition

After creating the function, we create a trigger which calls the trigger function:

CREATE TRIGGER insert_measurement_trigger

BEFORE INSERT ON measurement

FOR EACH ROW EXECUTE PROCEDURE measurement_insert_trigger();
We must redefine the trigger function each month so that it always points to the current partition.
The trigger definition does not need to be updated, however.

We might want to insert data and have the server automatically locate the partition into which the
row should be added. We could do this with a more complex trigger function, for example:

CREATE OR REPLACE FUNCTION measurement_insert_trigger ()
RETURNS TRIGGER AS $$
BEGIN
IF (NEW.logdate >= DATE ’'2006-02-01" AND
NEW.logdate < DATE ’2006-03-01") THEN
INSERT INTO measurement_y2006m02 VALUES (NEW.x);
ELSIF (NEW.logdate >= DATE '2006-03-01’ AND
NEW.logdate < DATE ’'2006-04-01") THEN
INSERT INTO measurement_y2006m03 VALUES (NEW.x);

ELSIF (NEW.logdate >= DATE ’2008-01-01" AND
NEW.logdate < DATE ’2008-02-01") THEN
INSERT INTO measurement_y2008m01 VALUES (NEW.x);

ELSE
RAISE EXCEPTION ’'Date out of range. Fix the measurement_insert_trigger ()
END IF;
RETURN NULL;
END;
$$

LANGUAGE plpgsql;
The trigger definition is the same as before. Note that each IF test must exactly match the CHECK
constraint for its partition.

While this function is more complex than the single-month case, it doesn’t need to be updated as
often, since branches can be added in advance of being needed.

Note: In practice it might be best to check the newest partition first, if most inserts go into
that partition. For simplicity we have shown the trigger’s tests in the same order as in other
parts of this example.

As we can see, a complex partitioning scheme could require a substantial amount of DDL. In the
above example we would be creating a new partition each month, so it might be wise to write a script
that generates the required DDL automatically.

5.9.3. Managing Partitions

Normally the set of partitions established when initially defining the table are not intended to remain
static. It is common to want to remove old partitions of data and periodically add new partitions
for new data. One of the most important advantages of partitioning is precisely that it allows this
otherwise painful task to be executed nearly instantaneously by manipulating the partition structure,
rather than physically moving large amounts of data around.

75

fur

Chapter 5. Data Definition

The simplest option for removing old data is simply to drop the partition that is no longer necessary:
DROP TABLE measurement_y2006m02;

This can very quickly delete millions of records because it doesn’t have to individually delete every
record.

Another option that is often preferable is to remove the partition from the partitioned table but retain
access to it as a table in its own right:

ALTER TABLE measurement_y2006m02 NO INHERIT measurement;

This allows further operations to be performed on the data before it is dropped. For example, this is
often a useful time to back up the data using copY, pg_dump, or similar tools. It might also be a useful
time to aggregate data into smaller formats, perform other data manipulations, or run reports.

Similarly we can add a new partition to handle new data. We can create an empty partition in the
partitioned table just as the original partitions were created above:

CREATE TABLE measurement_y2008m02 (
CHECK (logdate >= DATE ’2008-02-01" AND logdate < DATE ’2008-03-01")
) INHERITS (measurement);

As an alternative, it is sometimes more convenient to create the new table outside the partition struc-
ture, and make it a proper partition later. This allows the data to be loaded, checked, and transformed
prior to it appearing in the partitioned table:

CREATE TABLE measurement_y2008m02
(LIKE measurement INCLUDING DEFAULTS INCLUDING CONSTRAINTS) ;
ALTER TABLE measurement_y2008m02 ADD CONSTRAINT y2008m02
CHECK (logdate >= DATE ’2008-02-01" AND logdate < DATE ’2008-03-01");
\copy measurement_y2008m02 from ’'measurement_y2008m02’
—— possibly some other data preparation work
ALTER TABLE measurement_y2008m02 INHERIT measurement;

5.9.4. Partitioning and Constraint Exclusion

Constraint exclusion is a query optimization technique that improves performance for partitioned
tables defined in the fashion described above. As an example:

SET constraint_exclusion = on;
SELECT count () FROM measurement WHERE logdate >= DATE ’2008-01-01';

Without constraint exclusion, the above query would scan each of the partitions of the measurement
table. With constraint exclusion enabled, the planner will examine the constraints of each partition
and try to prove that the partition need not be scanned because it could not contain any rows meeting
the query’s WHERE clause. When the planner can prove this, it excludes the partition from the query
plan.

You can use the EXPLAIN command to show the difference between a plan with
constraint_exclusion on and a plan with it off. A typical unoptimized plan for this type of table
setup is:

SET constraint_exclusion = off;
EXPLAIN SELECT count (x) FROM measurement WHERE logdate >= DATE ’2008-01-01’;

76

Chapter 5. Data Definition

QUERY PLAN
Aggregate (cost=158.66..158.68 rows=1 width=0)
-> Append (cost=0.00..151.88 rows=2715 width=0)
-> Seq Scan on measurement (cost=0.00..30.38 rows=543 width=0)
Filter: (logdate >= ’2008-01-01’::date)

-> Seq Scan on measurement_y2006m02 measurement (cost=0.00..30.38 rows=543 wi
Filter: (logdate >= ’2008-01-01’::date)
-> Seq Scan on measurement_y2006m03 measurement (cost=0.00..30.38 rows=543 wi

Filter: (logdate >= ’2008-01-01’::date)

-> Seq Scan on measurement_y2007ml2 measurement (cost=0.00..30.38 rows=543 wi
Filter: (logdate >= "2008-01-01'::date)
-> Seq Scan on measurement_y2008m0l1 measurement (cost=0.00..30.38 rows=543 wi

Filter: (logdate >= ’2008-01-01’::date)

Some or all of the partitions might use index scans instead of full-table sequential scans, but the point
here is that there is no need to scan the older partitions at all to answer this query. When we enable
constraint exclusion, we get a significantly cheaper plan that will deliver the same answer:

SET constraint_exclusion = on;
EXPLAIN SELECT count (x) FROM measurement WHERE logdate >= DATE ’2008-01-01’";
QUERY PLAN

Aggregate (cost=63.47..63.48 rows=1 width=0)
-> Append (cost=0.00..60.75 rows=1086 width=0)
-> Seqg Scan on measurement (cost=0.00..30.38 rows=543 width=0)
Filter: (logdate >= ’2008-01-01’::date)
-> Seq Scan on measurement_y2008m0l measurement (cost=0.00..30.38 rows=543 wi
Filter: (logdate >= ’2008-01-01’::date)

Note that constraint exclusion is driven only by CHECK constraints, not by the presence of indexes.
Therefore it isn’t necessary to define indexes on the key columns. Whether an index needs to be
created for a given partition depends on whether you expect that queries that scan the partition will
generally scan a large part of the partition or just a small part. An index will be helpful in the latter
case but not the former.

The default (and recommended) setting of constraint_exclusion is actually neither on nor of £, but an
intermediate setting called partition, which causes the technique to be applied only to queries that
are likely to be working on partitioned tables. The on setting causes the planner to examine CHECK
constraints in all queries, even simple ones that are unlikely to benefit.

5.9.5. Alternative Partitioning Methods

A different approach to redirecting inserts into the appropriate partition table is to set up rules, instead
of a trigger, on the master table. For example:

CREATE RULE measurement_insert_y2006m02 AS
ON INSERT TO measurement WHERE

(logdate >= DATE '2006-02-01" AND logdate < DATE '2006-03-01")
DO INSTEAD

INSERT INTO measurement_y2006m02 VALUES (NEW.x);

77

Chapter 5. Data Definition

CREATE RULE measurement_insert_y2008m01 AS
ON INSERT TO measurement WHERE

(logdate >= DATE ’'2008-01-01’ AND logdate < DATE ’'2008-02-01")
DO INSTEAD

INSERT INTO measurement_y2008m01 VALUES (NEW.x);

A rule has significantly more overhead than a trigger, but the overhead is paid once per query rather
than once per row, so this method might be advantageous for bulk-insert situations. In most cases,
however, the trigger method will offer better performance.

Be aware that COPY ignores rules. If you want to use COPY to insert data, you’ll need to copy into the
correct partition table rather than into the master. cCopy does fire triggers, so you can use it normally
if you use the trigger approach.

Another disadvantage of the rule approach is that there is no simple way to force an error if the set of
rules doesn’t cover the insertion date; the data will silently go into the master table instead.

Partitioning can also be arranged using a UNION ALL view, instead of table inheritance. For example,

CREATE VIEW measurement AS
SELECT * FROM measurement_y2006m02
UNION ALL SELECT % FROM measurement_y2006m03

UNION ALL SELECT % FROM measurement_y2007mll
UNION ALL SELECT % FROM measurement_y2007ml2
UNION ALL SELECT % FROM measurement_y2008m01;

However, the need to recreate the view adds an extra step to adding and dropping individual partitions
of the data set. In practice this method has little to recommend it compared to using inheritance.

5.9.6. Caveats

The following caveats apply to partitioned tables:

« There is no automatic way to verify that all of the CHECK constraints are mutually exclusive. It is
safer to create code that generates partitions and creates and/or modifies associated objects than to
write each by hand.

» The schemes shown here assume that the partition key column(s) of a row never change, or at
least do not change enough to require it to move to another partition. An UPDATE that attempts
to do that will fail because of the CHECK constraints. If you need to handle such cases, you can
put suitable update triggers on the partition tables, but it makes management of the structure much
more complicated.

 If you are using manual VACUUM or ANALYZE commands, don’t forget that you need to run them on
each partition individually. A command like:

ANALYZE measurement;
will only process the master table.

The following caveats apply to constraint exclusion:

« Constraint exclusion only works when the query’s WHERE clause contains constants (or exter-
nally supplied parameters). For example, a comparison against a non-immutable function such

78

Chapter 5. Data Definition

as CURRENT_TIMESTAMP cannot be optimized, since the planner cannot know which partition the
function value might fall into at run time.

« Keep the partitioning constraints simple, else the planner may not be able to prove that partitions
don’t need to be visited. Use simple equality conditions for list partitioning, or simple range tests for
range partitioning, as illustrated in the preceding examples. A good rule of thumb is that partitioning
constraints should contain only comparisons of the partitioning column(s) to constants using B-
tree-indexable operators.

« All constraints on all partitions of the master table are examined during constraint exclusion, so
large numbers of partitions are likely to increase query planning time considerably. Partitioning
using these techniques will work well with up to perhaps a hundred partitions; don’t try to use
many thousands of partitions.

5.10. Foreign Data

PostgreSQL implements portions of the SQL/MED specification, allowing you to access data that
resides outside PostgreSQL using regular SQL queries. Such data is referred to as foreign data. (Note
that this usage is not to be confused with foreign keys, which are a type of constraint within the
database.)

Foreign data is accessed with help from a foreign data wrapper. A foreign data wrapper is a library
that can communicate with an external data source, hiding the details of connecting to the data source
and obtaining data from it. There are some foreign data wrappers available as cont rib modules; see
Appendix F. Other kinds of foreign data wrappers might be found as third party products. If none of
the existing foreign data wrappers suit your needs, you can write your own; see Chapter 53.

To access foreign data, you need to create a foreign server object, which defines how to connect to
a particular external data source according to the set of options used by its supporting foreign data
wrapper. Then you need to create one or more foreign tables, which define the structure of the remote
data. A foreign table can be used in queries just like a normal table, but a foreign table has no storage
in the PostgreSQL server. Whenever it is used, PostgreSQL asks the foreign data wrapper to fetch
data from the external source, or transmit data to the external source in the case of update commands.

Accessing remote data may require authenticating to the external data source. This information can
be provided by a user mapping, which can provide additional data such as user names and passwords
based on the current PostgreSQL role.

For additional information, see CREATE FOREIGN DATA WRAPPER, CREATE SERVER, CRE-
ATE USER MAPPING, and CREATE FOREIGN TABLE.

5.11. Other Database Objects

Tables are the central objects in a relational database structure, because they hold your data. But they
are not the only objects that exist in a database. Many other kinds of objects can be created to make the
use and management of the data more efficient or convenient. They are not discussed in this chapter,
but we give you a list here so that you are aware of what is possible:

« Views

79

Chapter 5. Data Definition

« Functions and operators
« Data types and domains
» Triggers and rewrite rules

Detailed information on these topics appears in Part V.

5.12. Dependency Tracking

When you create complex database structures involving many tables with foreign key constraints,
views, triggers, functions, etc. you implicitly create a net of dependencies between the objects. For
instance, a table with a foreign key constraint depends on the table it references.

To ensure the integrity of the entire database structure, PostgreSQL makes sure that you cannot drop
objects that other objects still depend on. For example, attempting to drop the products table we
considered in Section 5.3.5, with the orders table depending on it, would result in an error message
like this:

DROP TABLE products;

ERROR: cannot drop table products because other objects depend on it
DETAIL: constraint orders_product_no_fkey on table orders depends on table products
HINT: ©Use DROP ... CASCADE to drop the dependent objects too.

The error message contains a useful hint: if you do not want to bother deleting all the dependent
objects individually, you can run:

DROP TABLE products CASCADE;

and all the dependent objects will be removed. In this case, it doesn’t remove the orders table, it only
removes the foreign key constraint. (If you want to check what bDrROP ... CASCADE will do, run
DROP without CASCADE and read the DETATL output.)

All DrROP commands in PostgreSQL support specifying CASCADE. Of course, the nature of the possible
dependencies varies with the type of the object. You can also write RESTRICT instead of CASCADE to
get the default behavior, which is to prevent the dropping of objects that other objects depend on.

Note: According to the SQL standard, specifying either RESTRICT or CASCADE is required in a
prop command. No database system actually enforces that rule, but whether the default behavior
iS RESTRICT Of CASCADE varies across systems.

For user-defined functions, PostgreSQL tracks dependencies associated with a function’s externally-
visible properties, such as its argument and result types, but not dependencies that could only be
known by examining the function body. As an example, consider this situation:

CREATE TYPE rainbow AS ENUM (’red’, ’'orange’, ’'yellow’,
"green’, ’'blue’, ’'purple’);

CREATE TABLE my_colors (color rainbow, note text);
CREATE FUNCTION get_color_note (rainbow) RETURNS text AS

"SELECT note FROM my_colors WHERE color = $1’/
LANGUAGE SQL;

80

Chapter 5. Data Definition

(See Section 35.4 for an explanation of SQL-language functions.) PostgreSQL will be aware that the
get_color_note function depends on the rainbow type: dropping the type would force dropping
the function, because its argument type would no longer be defined. But PostgreSQL will not consider
get_color_note to depend on the my_colors table, and so will not drop the function if the table is
dropped. While there are disadvantages to this approach, there are also benefits. The function is still
valid in some sense if the table is missing, though executing it would cause an error; creating a new
table of the same name would allow the function to work again.

81

Chapter 6. Data Manipulation

The previous chapter discussed how to create tables and other structures to hold your data. Now it is
time to fill the tables with data. This chapter covers how to insert, update, and delete table data. The
chapter after this will finally explain how to extract your long-lost data from the database.

6.1. Inserting Data

When a table is created, it contains no data. The first thing to do before a database can be of much use
is to insert data. Data is conceptually inserted one row at a time. Of course you can also insert more
than one row, but there is no way to insert less than one row. Even if you know only some column
values, a complete row must be created.

To create a new row, use the INSERT command. The command requires the table name and column
values. For example, consider the products table from Chapter 5:

CREATE TABLE products (
product_no integer,
name text,
price numeric

)i
An example command to insert a row would be:

INSERT INTO products VALUES (1, ’Cheese’, 9.99);
The data values are listed in the order in which the columns appear in the table, separated by commas.
Usually, the data values will be literals (constants), but scalar expressions are also allowed.

The above syntax has the drawback that you need to know the order of the columns in the table. To
avoid this you can also list the columns explicitly. For example, both of the following commands have
the same effect as the one above:

INSERT INTO products (product_no, name, price) VALUES (1, ’Cheese’, 9.99);
INSERT INTO products (name, price, product_no) VALUES (’'Cheese’, 9.99, 1);

Many users consider it good practice to always list the column names.

If you don’t have values for all the columns, you can omit some of them. In that case, the columns
will be filled with their default values. For example:

INSERT INTO products (product_no, name) VALUES (1, ’Cheese’);
INSERT INTO products VALUES (1, ’Cheese’);

The second form is a PostgreSQL extension. It fills the columns from the left with as many values as
are given, and the rest will be defaulted.

For clarity, you can also request default values explicitly, for individual columns or for the entire row:

INSERT INTO products (product_no, name, price) VALUES (1, ’'Cheese’, DEFAULT);
INSERT INTO products DEFAULT VALUES;

You can insert multiple rows in a single command:

INSERT INTO products (product_no, name, price) VALUES

82

Chapter 6. Data Manipulation

(1, ’"Cheese’, 9.99),
(2, '"Bread’, 1.99),
(3, 'Milk’, 2.99);

It is also possible to insert the result of a query (which might be no rows, one row, or many rows):

INSERT INTO products (product_no, name, price)
SELECT product_no, name, price FROM new_products
WHERE release_date = 'today’;

This provides the full power of the SQL query mechanism (Chapter 7) for computing the rows to be
inserted.

Tip: When inserting a lot of data at the same time, consider using the COPY command. ltis not as
flexible as the INSERT command, but is more efficient. Refer to Section 14.4 for more information
on improving bulk loading performance.

6.2. Updating Data

The modification of data that is already in the database is referred to as updating. You can update
individual rows, all the rows in a table, or a subset of all rows. Each column can be updated separately;
the other columns are not affected.

To update existing rows, use the UPDATE command. This requires three pieces of information:

1. The name of the table and column to update
2. The new value of the column
3. Which row(s) to update

Recall from Chapter 5 that SQL does not, in general, provide a unique identifier for rows. Therefore it
is not always possible to directly specify which row to update. Instead, you specify which conditions
a row must meet in order to be updated. Only if you have a primary key in the table (independent of
whether you declared it or not) can you reliably address individual rows by choosing a condition that
matches the primary key. Graphical database access tools rely on this fact to allow you to update rows
individually.

For example, this command updates all products that have a price of 5 to have a price of 10:

UPDATE products SET price = 10 WHERE price = 5;

This might cause zero, one, or many rows to be updated. It is not an error to attempt an update that
does not match any rows.

Let’s look at that command in detail. First is the key word UPDATE followed by the table name. As
usual, the table name can be schema-qualified, otherwise it is looked up in the path. Next is the key
word SET followed by the column name, an equal sign, and the new column value. The new column
value can be any scalar expression, not just a constant. For example, if you want to raise the price of
all products by 10% you could use:

UPDATE products SET price = price » 1.10;

83

Chapter 6. Data Manipulation

As you see, the expression for the new value can refer to the existing value(s) in the row. We also
left out the WHERE clause. If it is omitted, it means that all rows in the table are updated. If it is
present, only those rows that match the WHERE condition are updated. Note that the equals sign in
the SET clause is an assignment while the one in the WHERE clause is a comparison, but this does not
create any ambiguity. Of course, the WHERE condition does not have to be an equality test. Many other
operators are available (see Chapter 9). But the expression needs to evaluate to a Boolean result.

You can update more than one column in an UPDATE command by listing more than one assignment
in the SET clause. For example:

UPDATE mytable SET a = 5, b = 3, ¢ = 1 WHERE a > 0;

6.3. Deleting Data

So far we have explained how to add data to tables and how to change data. What remains is to
discuss how to remove data that is no longer needed. Just as adding data is only possible in whole
rows, you can only remove entire rows from a table. In the previous section we explained that SQL
does not provide a way to directly address individual rows. Therefore, removing rows can only be
done by specifying conditions that the rows to be removed have to match. If you have a primary key
in the table then you can specify the exact row. But you can also remove groups of rows matching a
condition, or you can remove all rows in the table at once.

You use the DELETE command to remove rows; the syntax is very similar to the UPDATE command.

For instance, to remove all rows from the products table that have a price of 10, use:

DELETE FROM products WHERE price = 10;

If you simply write:
DELETE FROM products;

then all rows in the table will be deleted! Caveat programmer.

6.4. Returning Data From Modified Rows

Sometimes it is useful to obtain data from modified rows while they are being manipulated. The
INSERT, UPDATE, and DELETE commands all have an optional RETURNING clause that supports this.
Use of RETURNING avoids performing an extra database query to collect the data, and is especially
valuable when it would otherwise be difficult to identify the modified rows reliably.

The allowed contents of a RETURNING clause are the same as a SELECT command’s output list (see
Section 7.3). It can contain column names of the command’s target table, or value expressions using
those columns. A common shorthand is RETURNING *, which selects all columns of the target table
in order.

In an INSERT, the data available to RETURNING is the row as it was inserted. This is not so useful in
trivial inserts, since it would just repeat the data provided by the client. But it can be very handy when
relying on computed default values. For example, when using a serial column to provide unique
identifiers, RETURNING can return the ID assigned to a new row:

84

Chapter 6. Data Manipulation
CREATE TABLE users (firstname text, lastname text, id serial primary key);
INSERT INTO users (firstname, lastname) VALUES (’Joe’, ’'Cool’) RETURNING id;

The RETURNING clause is also very useful with INSERT ... SELECT.

In an UPDATE, the data available to RETURNING is the new content of the modified row. For example:

UPDATE products SET price = price * 1.10
WHERE price <= 99.99
RETURNING name, price AS new_price;

In a DELETE, the data available to RETURNING is the content of the deleted row. For example:

DELETE FROM products
WHERE obsoletion_date = ’'today’
RETURNING *;

If there are triggers (Chapter 36) on the target table, the data available to RETURNING is the row as
modified by the triggers. Thus, inspecting columns computed by triggers is another common use-case
for RETURNING.

85

Chapter 7. Queries

The previous chapters explained how to create tables, how to fill them with data, and how to manipu-
late that data. Now we finally discuss how to retrieve the data from the database.

7.1. Overview

The process of retrieving or the command to retrieve data from a database is called a query. In SQL
the SELECT command is used to specify queries. The general syntax of the SELECT command is

[WITH with_queries] SELECT select_list FROM table_expression [sort_specification]
The following sections describe the details of the select list, the table expression, and the sort specifi-
cation. WITH queries are treated last since they are an advanced feature.

A simple kind of query has the form:
SELECT » FROM tablel;

Assuming that there is a table called tablel, this command would retrieve all rows and all user-
defined columns from tablel. (The method of retrieval depends on the client application. For exam-
ple, the psql program will display an ASCII-art table on the screen, while client libraries will offer
functions to extract individual values from the query result.) The select list specification » means all
columns that the table expression happens to provide. A select list can also select a subset of the avail-
able columns or make calculations using the columns. For example, if tablel has columns named a,
b, and c (and perhaps others) you can make the following query:

SELECT a, b + ¢ FROM tablel;

(assuming that b and c are of a numerical data type). See Section 7.3 for more details.

FROM tablel isasimple kind of table expression: it reads just one table. In general, table expressions
can be complex constructs of base tables, joins, and subqueries. But you can also omit the table
expression entirely and use the SELECT command as a calculator:

SELECT 3 * 4;

This is more useful if the expressions in the select list return varying results. For example, you could
call a function this way:

SELECT random() ;

7.2. Table Expressions

A table expression computes a table. The table expression contains a FROM clause that is optionally
followed by WHERE, GROUP BY, and HAVING clauses. Trivial table expressions simply refer to a table
on disk, a so-called base table, but more complex expressions can be used to modify or combine base
tables in various ways.

The optional WHERE, GROUP BY, and HAVING clauses in the table expression specify a pipeline of
successive transformations performed on the table derived in the FrROM clause. All these transforma-

86

Chapter 7. Queries

tions produce a virtual table that provides the rows that are passed to the select list to compute the
output rows of the query.

7.2.1. The rroM Clause

The FROM Clause derives a table from one or more other tables given in a comma-separated table
reference list.

FROM table_reference [, table_reference [, ...]]

A table reference can be a table name (possibly schema-qualified), or a derived table such as a sub-
query, a JOIN construct, or complex combinations of these. If more than one table reference is listed
in the FROM clause, the tables are cross-joined (that is, the Cartesian product of their rows is formed;
see below). The result of the FrROM list is an intermediate virtual table that can then be subject to
transformations by the WHERE, GROUP BY, and HAVING clauses and is finally the result of the overall
table expression.

When a table reference names a table that is the parent of a table inheritance hierarchy, the table
reference produces rows of not only that table but all of its descendant tables, unless the key word
ONLY precedes the table name. However, the reference produces only the columns that appear in the
named table — any columns added in subtables are ignored.

Instead of writing ONLY before the table name, you can write x after the table name to explicitly
specify that descendant tables are included. Writing » is not necessary since that behavior is the
default (unless you have changed the setting of the sql_inheritance configuration option). However
writing » might be useful to emphasize that additional tables will be searched.

7.2.1.1. Joined Tables

A joined table is a table derived from two other (real or derived) tables according to the rules of the
particular join type. Inner, outer, and cross-joins are available. The general syntax of a joined table is

Tl join type T2 [join condition]

Joins of all types can be chained together, or nested: either or both 71 and 72 can be joined tables.
Parentheses can be used around JOIN clauses to control the join order. In the absence of parentheses,
JOIN clauses nest left-to-right.

Join Types
Cross join
Tl CROSS JOIN T2

For every possible combination of rows from 71 and 72 (i.e., a Cartesian product), the joined
table will contain a row consisting of all columns in 71 followed by all columns in T2. If the
tables have N and M rows respectively, the joined table will have N * M rows.

FROM T1 CROSS JOIN T2 isequivalent to FROM T1 INNER JOIN T2 ON TRUE (see below).
It is also equivalent to FROM T1, T2.

Note: This latter equivalence does not hold exactly when more than two tables appear, be-
cause JoIN binds more tightly than comma. For example FrRoM 71 CROSS JOIN T2 INNER
JOIN T3 ON condition iS NOtthe same as FROM 71, T2 INNER JOIN T3 ON condition be-
cause the condition can reference 11 in the first case but not the second.

87

Chapter 7. Queries

Qualified joins

71 { [INNER] | { LEFT | RIGHT | FULL } [OUTER] } JOIN T2 ON boolean_expression
Tl { [INNER] | { LEFT | RIGHT | FULL } [OUTER] } JOIN T2 USING (join column list)
T1 NATURAL { [INNER] | { LEFT | RIGHT | FULL } [OUTER] } JOIN T2

The words INNER and OUTER are optional in all forms. INNER is the default; LEFT, RIGHT, and
FULL imply an outer join.

The join condition is specified in the ON or USING clause, or implicitly by the word NATURAL.
The join condition determines which rows from the two source tables are considered to “match”,
as explained in detail below.

The possible types of qualified join are:

INNER JOIN

For each row R1 of T1, the joined table has a row for each row in T2 that satisfies the join
condition with R1.

LEFT OUTER JOIN

First, an inner join is performed. Then, for each row in T1 that does not satisfy the join
condition with any row in T2, a joined row is added with null values in columns of T2.
Thus, the joined table always has at least one row for each row in T1.

RIGHT OUTER JOIN

First, an inner join is performed. Then, for each row in T2 that does not satisfy the join
condition with any row in T1, a joined row is added with null values in columns of T1. This
is the converse of a left join: the result table will always have a row for each row in T2.

FULL OUTER JOIN

First, an inner join is performed. Then, for each row in T1 that does not satisfy the join
condition with any row in T2, a joined row is added with null values in columns of T2.
Also, for each row of T2 that does not satisfy the join condition with any row in T1, a
joined row with null values in the columns of T1 is added.

The on clause is the most general kind of join condition: it takes a Boolean value expression
of the same kind as is used in a WHERE clause. A pair of rows from 71 and 72 match if the on
expression evaluates to true.

The USING clause is a shorthand that allows you to take advantage of the specific situation where
both sides of the join use the same name for the joining column(s). It takes a comma-separated
list of the shared column names and forms a join condition that includes an equality comparison
for each one. For example, joining T1 and T2 with USING (a, b) produces the join condition
ON Tl.a = T2.a AND Tl1.b = T2.b.

Furthermore, the output of JOIN USING suppresses redundant columns: there is no need to print
both of the matched columns, since they must have equal values. While JOIN ON produces all
columns from 71 followed by all columns from 72, JOIN USING produces one output column
for each of the listed column pairs (in the listed order), followed by any remaining columns from
71, followed by any remaining columns from T2.

Finally, NATURAL is a shorthand form of USING: it forms a USING list consisting of all column
names that appear in both input tables. As with USING, these columns appear only once in the

88

Chapter 7. Queries

output table. If there are no common column names, NATURAL JOIN behaves like JOIN
ON TRUE, producing a cross-product join.

Note: usING is reasonably safe from column changes in the joined relations since only the
listed columns are combined. NATURAL is considerably more risky since any schema changes
to either relation that cause a new matching column name to be present will cause the join
to combine that new column as well.

To put this together, assume we have tables t 1:

num | name
_____ b
11 a
2 | b
3] ¢
and t2
num | value
_____ +_______
1 | xxx
3 | yyy
5 | zzz

then we get the following results for the various joins:

=> SELECT x FROM tl CROSS JOIN t2;

num | name | num | value
————— Bt ettt
1] a | 1 | xxx
1] a \ 31 yyy
11 a | 5 | zzz
2 1 Db \ 1 | xxx
21D \ 3 1 yyy
2 | b | 5| zzz
3 1 c \ 1 | xxx
3| c \ 3 1 yyy
3 1 c \ 5 | zzz
(9 rows)

=> SELECT x FROM tl INNER JOIN t2 ON tl.num = t2.num;

num | name | num | value
————— o
1] a | 1 | xxx
31 c | 31 yyy
(2 rows)

=> SELECT x FROM tl INNER JOIN t2 USING (num);

num | name | value
_____ o
1] a | xxx
31 c | yyy
(2 rows)

89

=> SELECT x FROM tl NATURAL INNER JOIN t2;

num | name | value
_____ o
1] a | XXX
3 1 c | yyy
(2 rows)

=> SELECT x FROM tl LEFT JOIN t2 ON tl.num = t2.num;

num | name | num | value
————— o ——
11 a \ 1 | xxx
2 1 Db \ |
3| c \ 3 1 yyy
(3 rows)

=> SELECT * FROM tl LEFT JOIN t2 USING (num);

num name value
,,,,, e

1] a | xxxX

2 | b \

31 c | yyy
(3 rows)

=> SELECT x FROM tl RIGHT JOIN t2 ON tl.num = t2.num;

num | name | num | value
————— o —
1] a \ 1 | xxx
31 c | 3 1 yyy
| | 5 | zzz
(3 rows)

=> SELECT » FROM tl FULL JOIN t2 ON tl.num = t2.num;

num | name | num | value
77777 e S Rttt
1] a \ 1 | xxx
2 |1 Db \ |
3 1 ¢ \ 31 yyy
\ \ 5 | zzz
(4 rows)

Chapter 7. Queries

The join condition specified with ON can also contain conditions that do not relate directly to the join.
This can prove useful for some queries but needs to be thought out carefully. For example:

=> SELECT * FROM tl LEFT JOIN t2 ON tl.num = t2.num AND t2.value

num | name | num | value
————— o
1] a | 1 | xxx
2 1 Db \ |
3 1 c \ |
(3 rows)

= "xxx';

Notice that placing the restriction in the WHERE clause produces a different result:

=> SELECT * FROM tl LEFT JOIN t2 ON tl.num = t2.num WHERE t2.value = ’'xxx’;

num | name | num | value

90

Chapter 7. Queries

11 a 1 | xxx
(1 row)

This is because a restriction placed in the ON clause is processed before the join, while a restriction
placed in the WHERE clause is processed after the join. That does not matter with inner joins, but it
matters a lot with outer joins.

7.2.1.2. Table and Column Aliases

A temporary name can be given to tables and complex table references to be used for references to
the derived table in the rest of the query. This is called a table alias.

To create a table alias, write

FROM table_reference AS alias
or

FROM table_reference alias

The As key word is optional noise. alias can be any identifier.

A typical application of table aliases is to assign short identifiers to long table names to keep the join
clauses readable. For example:

SELECT x= FROM some_very_long_table_name s JOIN another_fairly long_name a ON s.id = a.nu

The alias becomes the new name of the table reference so far as the current query is concerned — it
is not allowed to refer to the table by the original name elsewhere in the query. Thus, this is not valid:

SELECT x FROM my_table AS m WHERE my_table.a > 5; —— wrong

Table aliases are mainly for notational convenience, but it is necessary to use them when joining a
table to itself, e.g.:

SELECT * FROM people AS mother JOIN people AS child ON mother.id = child.mother_id;

Additionally, an alias is required if the table reference is a subquery (see Section 7.2.1.3).

Parentheses are used to resolve ambiguities. In the following example, the first statement assigns the
alias b to the second instance of my_table, but the second statement assigns the alias to the result of
the join:

SELECT x FROM my_table AS a CROSS JOIN my_table AS b
SELECT % FROM (my_table AS a CROSS JOIN my_table) AS b

Another form of table aliasing gives temporary names to the columns of the table, as well as the table
itself:

FROM table_reference [AS] alias (columnl [, column2 [, ...]])

If fewer column aliases are specified than the actual table has columns, the remaining columns are not
renamed. This syntax is especially useful for self-joins or subqueries.

91

Chapter 7. Queries

When an alias is applied to the output of a JOIN clause, the alias hides the original name(s) within the
JO1IN. For example:

SELECT a.x FROM my_table AS a JOIN your_table AS b ON
is valid SQL, but:
SELECT a.* FROM (my_table AS a JOIN your_table AS b ON ...) AS c

is not valid; the table alias a is not visible outside the alias c.

7.2.1.3. Subqueries

Subqueries specifying a derived table must be enclosed in parentheses and must be assigned a table
alias name (as in Section 7.2.1.2). For example:

FROM (SELECT * FROM tablel) AS alias_name

This example is equivalent to FROM tablel AS alias_name. More interesting cases, which cannot
be reduced to a plain join, arise when the subquery involves grouping or aggregation.

A subquery can also be a VALUES list:

FROM (VALUES (’anne’, ’'smith’), (’bob’, ’Jjones’), (’joe’, ’"blow’))
AS names (first, last)

Again, a table alias is required. Assigning alias names to the columns of the VALUES list is optional,
but is good practice. For more information see Section 7.7.

7.2.1.4. Table Functions

Table functions are functions that produce a set of rows, made up of either base data types (scalar
types) or composite data types (table rows). They are used like a table, view, or subquery in the FROM
clause of a query. Columns returned by table functions can be included in SELECT, JOIN, or WHERE
clauses in the same manner as columns of a table, view, or subquery.

Table functions may also be combined using the ROWS FROM syntax, with the results returned in
parallel columns; the number of result rows in this case is that of the largest function result, with
smaller results padded with null values to match.

function_call [WITH ORDINALITY] [[AS] table alias [(column_alias [, ...])]]
ROWS FROM(function_call [, ...]) [WITH ORDINALITY] [[AS] table alias [(column_alias [,

If the WITH ORDINALITY clause is specified, an additional column of type bigint will be added to
the function result columns. This column numbers the rows of the function result set, starting from
1. (This is a generalization of the SQL-standard syntax for UNNEST ... WITH ORDINALITY.) By
default, the ordinal column is called ordinality, but a different column name can be assigned to it
using an AS clause.

The special table function UNNEST may be called with any number of array parameters, and it returns
a corresponding number of columns, as if UNNEST (Section 9.18) had been called on each parameter
separately and combined using the ROWS FROM construct.

UNNEST (array_expression [, ...]) [WITH ORDINALITY] [[AS] table alias [(column_alias [,

92

Chapter 7. Queries

If no table_alias is specified, the function name is used as the table name; in the case of a ROWS
FROM () construct, the first function’s name is used.

If column aliases are not supplied, then for a function returning a base data type, the column name is
also the same as the function name. For a function returning a composite type, the result columns get
the names of the individual attributes of the type.

Some examples:

CREATE TABLE foo (fooid int, foosubid int, fooname text);

CREATE FUNCTION getfoo (int) RETURNS SETOF foo AS $$
SELECT % FROM foo WHERE fooid = $1;
$$ LANGUAGE SQL;

SELECT = FROM getfoo(l) AS t1;

SELECT x FROM foo
WHERE foosubid IN (
SELECT foosubid
FROM getfoo (foo.fooid) z
WHERE z.fooid = foo.fooid
)i

CREATE VIEW vw_getfoo AS SELECT » FROM getfoo(l);

SELECT * FROM vw_getfoo;

In some cases it is useful to define table functions that can return different column sets depending on
how they are invoked. To support this, the table function can be declared as returning the pseudotype
record. When such a function is used in a query, the expected row structure must be specified in the
query itself, so that the system can know how to parse and plan the query. This syntax looks like:

function_call [AS] alias (column _definition [, ...])
function_call AS [alias] (column _definition [, ...])
ROWS FROM(... function_call AS (column_definition [, ... 1) [, ... 1)

When not using the ROWS FROM () syntax, the column_definition list replaces the column alias
list that could otherwise be attached to the FROM item; the names in the column definitions serve as
column aliases. When using the ROWS FROM () syntax, a column_definition listcan be attached to
each member function separately; or if there is only one member function and no WITH ORDINALITY
clause, a column_definition list can be written in place of a column alias list following ROWS
FROM () .

Consider this example:

SELECT =
FROM dblink (’ dbname=mydb’, ’'SELECT proname, prosrc FROM pg_proc’)
AS tl (proname name, prosrc text)
WHERE proname LIKE ’'bytea$%’;

The dblink function (part of the dblink module) executes a remote query. It is declared to return
record since it might be used for any kind of query. The actual column set must be specified in the
calling query so that the parser knows, for example, what « should expand to.

93

Chapter 7. Queries

7.2.1.5. LATERAL Subqueries

Subqueries appearing in FROM can be preceded by the key word LATERAL. This allows them to ref-
erence columns provided by preceding FROM items. (Without LATERAL, each subquery is evaluated
independently and so cannot cross-reference any other FROM item.)

Table functions appearing in FROM can also be preceded by the key word LATERAL, but for functions
the key word is optional; the function’s arguments can contain references to columns provided by
preceding FROM items in any case.

A LATERAL item can appear at top level in the FROM list, or within a JOIN tree. In the latter case it
can also refer to any items that are on the left-hand side of a JOIN that it is on the right-hand side of.

When a FROM item contains LATERAL cross-references, evaluation proceeds as follows: for each row
of the FrROM item providing the cross-referenced column(s), or set of rows of multiple FROM items pro-
viding the columns, the LATERAL item is evaluated using that row or row set’s values of the columns.
The resulting row(s) are joined as usual with the rows they were computed from. This is repeated for
each row or set of rows from the column source table(s).

A trivial example of LATERAL is
SELECT * FROM foo, LATERAL (SELECT x= FROM bar WHERE bar.id = foo.bar_id) ss;
This is not especially useful since it has exactly the same result as the more conventional

SELECT * FROM foo, bar WHERE bar.id = foo.bar_id;

LATERAL is primarily useful when the cross-referenced column is necessary for computing the row(s)
to be joined. A common application is providing an argument value for a set-returning function. For
example, supposing that vertices (polygon) returns the set of vertices of a polygon, we could
identify close-together vertices of polygons stored in a table with:

SELECT pl.id, p2.id, vl, v2
FROM polygons pl, polygons p2,
LATERAL vertices (pl.poly) vl1,
LATERAL vertices (p2.poly) v2
WHERE (vl <-> v2) < 10 AND pl.id != p2.id;

This query could also be written

SELECT pl.id, p2.id, v1, v2

FROM polygons pl CROSS JOIN LATERAL vertices(pl.poly) vl,
polygons p2 CROSS JOIN LATERAL vertices (p2.poly) v2

WHERE (vl <-> v2) < 10 AND pl.id != p2.id;

or in several other equivalent formulations. (As already mentioned, the LATERAL key word is unnec-
essary in this example, but we use it for clarity.)

It is often particularly handy to LEFT JOIN to a LATERAL subquery, so that source rows will
appear in the result even if the LATERAL subquery produces no rows for them. For example, if
get_product_names () returns the names of products made by a manufacturer, but some
manufacturers in our table currently produce no products, we could find out which ones those are
like this:

SELECT m.name

FROM manufacturers m LEFT JOIN LATERAL get_product_names (m.id) pname ON true
WHERE pname IS NULL;

94

Chapter 7. Queries

7.2.2. The wHERE Clause

The syntax of the WHERE Clause is
WHERE search condition

where search condition is any value expression (see Section 4.2) that returns a value of type

boolean.

After the processing of the FROM clause is done, each row of the derived virtual table is checked
against the search condition. If the result of the condition is true, the row is kept in the output table,
otherwise (i.e., if the result is false or null) it is discarded. The search condition typically references
at least one column of the table generated in the FROM clause; this is not required, but otherwise the
WHERE clause will be fairly useless.

Note: The join condition of an inner join can be written either in the wrERE clause or in the JoIn
clause. For example, these table expressions are equivalent:

FROM a, b WHERE a.id = b.id AND b.val > 5

and:

FROM a INNER JOIN b ON (a.id = b.id) WHERE b.val > 5
or perhaps even:

FROM a NATURAL JOIN b WHERE b.val > 5

Which one of these you use is mainly a matter of style. The Jo1n syntax in the Frou clause is
probably not as portable to other SQL database management systems, even though it is in the
SQL standard. For outer joins there is no choice: they must be done in the From clause. The ox
or UsING clause of an outer join is not equivalent to a wHERE condition, because it results in the
addition of rows (for unmatched input rows) as well as the removal of rows in the final result.

Here are some examples of WHERE clauses:

SELECT ... FROM fdt WHERE cl > 5

SELECT ... FROM fdt WHERE cl IN (1, 2, 3)

SELECT ... FROM fdt WHERE cl IN (SELECT cl FROM t2)

SELECT ... FROM fdt WHERE cl IN (SELECT c3 FROM t2 WHERE c2 = fdt.cl + 10)
SELECT ... FROM fdt WHERE cl BETWEEN (SELECT c3 FROM t2 WHERE c2 = fdt.cl +
SELECT ... FROM fdt WHERE EXISTS (SELECT cl FROM t2 WHERE c2 > fdt.cl)

fdt is the table derived in the FROM clause. Rows that do not meet the search condition of the WHERE
clause are eliminated from fdt. Notice the use of scalar subqueries as value expressions. Just like any
other query, the subqueries can employ complex table expressions. Notice also how fdt is referenced
in the subqueries. Qualifying c1 as £dt . c1 is only necessary if c1 is also the name of a column in the
derived input table of the subquery. But qualifying the column name adds clarity even when it is not
needed. This example shows how the column naming scope of an outer query extends into its inner
queries.

95

10)

AND 100

Chapter 7. Queries

7.2.3. The crourP BY and HAVING Clauses

After passing the WHERE filter, the derived input table might be subject to grouping, using the GROUP
BY clause, and elimination of group rows using the HAVING clause.

SELECT select_list
FROM
[WHERE ...]
GROUP BY grouping_column_reference [, grouping_column_reference] ...

The GROUP BY Clause is used to group together those rows in a table that have the same values in all
the columns listed. The order in which the columns are listed does not matter. The effect is to combine
each set of rows having common values into one group row that represents all rows in the group. This
is done to eliminate redundancy in the output and/or compute aggregates that apply to these groups.
For instance:

=> SELECT * FROM testl;
X

a
c
b
a
4

(

(3 rows)

In the second query, we could not have written SELECT » FROM testl GROUP BY x, because
there is no single value for the column y that could be associated with each group. The grouped-
by columns can be referenced in the select list since they have a single value in each group.

In general, if a table is grouped, columns that are not listed in GROUP BY cannot be referenced except
in aggregate expressions. An example with aggregate expressions is:

=> SELECT x, sum(y) FROM testl GROUP BY x;

X | sum

Here sum is an aggregate function that computes a single value over the entire group. More informa-
tion about the available aggregate functions can be found in Section 9.20.

Tip: Grouping without aggregate expressions effectively calculates the set of distinct values in a
column. This can also be achieved using the prsTINCT clause (see Section 7.3.3).

96

Chapter 7. Queries

Here is another example: it calculates the total sales for each product (rather than the total sales of all
products):

SELECT product_id, p.name, (sum(s.units) * p.price) AS sales
FROM products p LEFT JOIN sales s USING (product_id)
GROUP BY product_id, p.name, p.price;

In this example, the columns product_id, p.name, and p.price must be in the GROUP BY clause
since they are referenced in the query select list (but see below). The column s.units does not
have to be in the GROUP BY list since it is only used in an aggregate expression (sum (. . .)), which
represents the sales of a product. For each product, the query returns a summary row about all sales
of the product.

If the products table is set up so that, say, product_id is the primary key, then it would be enough to
group by product_id in the above example, since name and price would be functionally dependent
on the product ID, and so there would be no ambiguity about which name and price value to return
for each product ID group.

In strict SQL, GROUP BY can only group by columns of the source table but PostgreSQL extends this
to also allow GROUP BY to group by columns in the select list. Grouping by value expressions instead
of simple column names is also allowed.

If a table has been grouped using GROUP BY, but only certain groups are of interest, the HAVING
clause can be used, much like a WHERE clause, to eliminate groups from the result. The syntax is:

SELECT select_list FROM ... [WHERE ...] GROUP BY ... HAVING boolean_expression
Expressions in the HAVING clause can refer both to grouped expressions and to ungrouped expressions
(which necessarily involve an aggregate function).

Example:

=> SELECT x, sum(y) FROM testl GROUP BY x HAVING sum(y) > 3;
X | sum

=> SELECT x, sum(y) FROM testl GROUP BY x HAVING x < 'c’;
X | sum

Again, a more realistic example:

SELECT product_id, p.name, (sum(s.units) * (p.price - p.cost)) AS profit
FROM products p LEFT JOIN sales s USING (product_id)
WHERE s.date > CURRENT_DATE - INTERVAL ’'4 weeks’
GROUP BY product_id, p.name, p.price, p.cost
HAVING sum(p.price x s.units) > 5000;

In the example above, the WHERE clause is selecting rows by a column that is not grouped (the expres-
sion is only true for sales during the last four weeks), while the HAVING clause restricts the output to

97

Chapter 7. Queries

groups with total gross sales over 5000. Note that the aggregate expressions do not necessarily need
to be the same in all parts of the query.

If a query contains aggregate function calls, but no GROUP BY clause, grouping still occurs: the result
is a single group row (or perhaps no rows at all, if the single row is then eliminated by HAVING). The
same is true if it contains a HAVING clause, even without any aggregate function calls or GROUP BY
clause.

7.2.4. Window Function Processing

If the query contains any window functions (see Section 3.5, Section 9.21 and Section 4.2.8), these
functions are evaluated after any grouping, aggregation, and HAVING filtering is performed. That is,
if the query uses any aggregates, GROUP BY, or HAVING, then the rows seen by the window functions
are the group rows instead of the original table rows from FROM/WHERE.

When multiple window functions are used, all the window functions having syntactically equivalent
PARTITION BY and ORDER BY clauses in their window definitions are guaranteed to be evaluated
in a single pass over the data. Therefore they will see the same sort ordering, even if the ORDER BY
does not uniquely determine an ordering. However, no guarantees are made about the evaluation of
functions having different PARTITION BY or ORDER BY specifications. (In such cases a sort step is
typically required between the passes of window function evaluations, and the sort is not guaranteed
to preserve ordering of rows that its ORDER BY sees as equivalent.)

Currently, window functions always require presorted data, and so the query output will be ordered
according to one or another of the window functions’ PARTITION BY/ORDER BY clauses. It is not
recommended to rely on this, however. Use an explicit top-level ORDER BY clause if you want to be
sure the results are sorted in a particular way.

7.3. Select Lists

As shown in the previous section, the table expression in the SELECT command constructs an inter-
mediate virtual table by possibly combining tables, views, eliminating rows, grouping, etc. This table
is finally passed on to processing by the select list. The select list determines which columns of the
intermediate table are actually output.

7.3.1. Select-List ltems

The simplest kind of select list is » which emits all columns that the table expression produces.
Otherwise, a select list is a comma-separated list of value expressions (as defined in Section 4.2). For
instance, it could be a list of column names:

SELECT a, b, c¢ FROM

The columns names a, b, and c are either the actual names of the columns of tables referenced in the
FROM clause, or the aliases given to them as explained in Section 7.2.1.2. The name space available in
the select list is the same as in the WHERE clause, unless grouping is used, in which case it is the same
as in the HAVING clause.

If more than one table has a column of the same name, the table name must also be given, as in:

SELECT tbll.a, tbl2.a, tbll.b FROM

98

Chapter 7. Queries

When working with multiple tables, it can also be useful to ask for all the columns of a particular
table:

SELECT tbll.x, tbl2.a FROM

See Section 8.16.5 for more about the table name. notation.

If an arbitrary value expression is used in the select list, it conceptually adds a new virtual column to
the returned table. The value expression is evaluated once for each result row, with the row’s values
substituted for any column references. But the expressions in the select list do not have to reference
any columns in the table expression of the FROM clause; they can be constant arithmetic expressions,
for instance.

7.3.2. Column Labels

The entries in the select list can be assigned names for subsequent processing, such as for use in an
ORDER BY clause or for display by the client application. For example:

SELECT a AS value, b + ¢ AS sum FROM

If no output column name is specified using As, the system assigns a default column name. For simple
column references, this is the name of the referenced column. For function calls, this is the name of
the function. For complex expressions, the system will generate a generic name.

The As keyword is optional, but only if the new column name does not match any PostgreSQL key-
word (see Appendix C). To avoid an accidental match to a keyword, you can double-quote the column
name. For example, VALUE is a keyword, so this does not work:

SELECT a value, b + ¢ AS sum FROM
but this does:
SELECT a "value", b + ¢ AS sum FROM

For protection against possible future keyword additions, it is recommended that you always either
write AS or double-quote the output column name.

Note: The naming of output columns here is different from that done in the Frowm clause (see
Section 7.2.1.2). It is possible to rename the same column twice, but the name assigned in the
select list is the one that will be passed on.

7.3.3. DISTINCT

After the select list has been processed, the result table can optionally be subject to the elimination of
duplicate rows. The DISTINCT key word is written directly after SELECT to specify this:

SELECT DISTINCT select_list

(Instead of DISTINCT the key word ALL can be used to specify the default behavior of retaining all
rows.)

99

Chapter 7. Queries

Obviously, two rows are considered distinct if they differ in at least one column value. Null values are
considered equal in this comparison.

Alternatively, an arbitrary expression can determine what rows are to be considered distinct:
SELECT DISTINCT ON (expression [, expression ...]) select_list

Here expression is an arbitrary value expression that is evaluated for all rows. A set of rows for
which all the expressions are equal are considered duplicates, and only the first row of the set is kept
in the output. Note that the “first row” of a set is unpredictable unless the query is sorted on enough
columns to guarantee a unique ordering of the rows arriving at the DISTINCT filter. (DISTINCT ON
processing occurs after ORDER BY sorting.)

The DISTINCT ON clause is not part of the SQL standard and is sometimes considered bad style
because of the potentially indeterminate nature of its results. With judicious use of GROUP BY and
subqueries in FROM, this construct can be avoided, but it is often the most convenient alternative.

7.4. Combining Queries

The results of two queries can be combined using the set operations union, intersection, and differ-
ence. The syntax is

queryl UNION [ALL] gquery2
queryl INTERSECT [ALL] query?2
queryl EXCEPT [ALL] query2

queryl and query2 are queries that can use any of the features discussed up to this point. Set
operations can also be nested and chained, for example

queryl UNION query2 UNION query3
which is executed as:

(queryl UNION gquery2) UNION query3

UNION effectively appends the result of query2 to the result of query1 (although there is no guaran-
tee that this is the order in which the rows are actually returned). Furthermore, it eliminates duplicate
rows from its result, in the same way as DISTINCT, unless UNION ALL is used.

INTERSECT returns all rows that are both in the result of guery1 and in the result of query2. Dupli-
cate rows are eliminated unless INTERSECT ALL is used.

EXCEPT returns all rows that are in the result of query1 but not in the result of query2. (This is some-
times called the difference between two queries.) Again, duplicates are eliminated unless EXCEPT
ALL is used.

In order to calculate the union, intersection, or difference of two queries, the two queries must be
“union compatible”, which means that they return the same number of columns and the corresponding
columns have compatible data types, as described in Section 10.5.

100

Chapter 7. Queries

7.5. Sorting Rows

After a query has produced an output table (after the select list has been processed) it can optionally
be sorted. If sorting is not chosen, the rows will be returned in an unspecified order. The actual order
in that case will depend on the scan and join plan types and the order on disk, but it must not be relied
on. A particular output ordering can only be guaranteed if the sort step is explicitly chosen.

The ORDER BY clause specifies the sort order:

SELECT select_list
FROM table _expression
ORDER BY sort_expressionl [ASC | DESC] [NULLS { FIRST | LAST }]
[, sort_expression2z [ASC | DESC] [NULLS { FIRST | LAST }] ...]

The sort expression(s) can be any expression that would be valid in the query’s select list. An example
is:

SELECT a, b FROM tablel ORDER BY a + b, c;

When more than one expression is specified, the later values are used to sort rows that are equal
according to the earlier values. Each expression can be followed by an optional ASC or DESC keyword
to set the sort direction to ascending or descending. ASC order is the default. Ascending order puts
smaller values first, where “smaller” is defined in terms of the < operator. Similarly, descending order
is determined with the > operator. '

The NULLS FIRST and NULLS LAST options can be used to determine whether nulls appear before
or after non-null values in the sort ordering. By default, null values sort as if larger than any non-null
value; that is, NULLS FIRST is the default for DESC order, and NULLS LAST otherwise.

Note that the ordering options are considered independently for each sort column. For example ORDER
BY x, y DESC means ORDER BY x ASC, y DESC, which is not the same as ORDER BY x DESC,
y DESC.

A sort_expression can also be the column label or number of an output column, as in:

SELECT a + b AS sum, c FROM tablel ORDER BY sum;
SELECT a, max(b) FROM tablel GROUP BY a ORDER BY 1;

both of which sort by the first output column. Note that an output column name has to stand alone,
that is, it cannot be used in an expression — for example, this is not correct:

SELECT a + b AS sum, c FROM tablel ORDER BY sum + c; —-— wrong

This restriction is made to reduce ambiguity. There is still ambiguity if an ORDER BY item is a simple
name that could match either an output column name or a column from the table expression. The
output column is used in such cases. This would only cause confusion if you use As to rename an
output column to match some other table column’s name.

ORDER BY can be applied to the result of a UNION, INTERSECT, or EXCEPT combination, but in this
case it is only permitted to sort by output column names or numbers, not by expressions.

1. Actually, PostgreSQL uses the default B-tree operator class for the expression’s data type to determine the sort ordering
for asc and DEsc. Conventionally, data types will be set up so that the < and > operators correspond to this sort ordering, but
a user-defined data type’s designer could choose to do something different.

101

Chapter 7. Queries

7.6. LIMIT and OFFSET

LIMIT and OFFSET allow you to retrieve just a portion of the rows that are generated by the rest of
the query:

SELECT select_1list
FROM table_expression
[ORDER BY ...]
[LIMIT { number | ALL }] [OFFSET number]

If a limit count is given, no more than that many rows will be returned (but possibly less, if the query
itself yields less rows). LIMIT ALL is the same as omitting the LIMIT clause.

OFFSET says to skip that many rows before beginning to return rows. OFFSET 0 is the same as
omitting the OFFSET clause, and LIMIT NULL is the same as omitting the LIMIT clause. If both
OFFSET and LIMIT appear, then OFFSET rows are skipped before starting to count the LIMIT rows
that are returned.

When using LIMIT, it is important to use an ORDER BY clause that constrains the result rows into a
unique order. Otherwise you will get an unpredictable subset of the query’s rows. You might be asking
for the tenth through twentieth rows, but tenth through twentieth in what ordering? The ordering is
unknown, unless you specified ORDER BY.

The query optimizer takes LIMIT into account when generating query plans, so you are very likely
to get different plans (yielding different row orders) depending on what you give for LIMIT and
OFFSET. Thus, using different LIMIT/OFFSET values to select different subsets of a query result will
give inconsistent results unless you enforce a predictable result ordering with ORDER BY. This is not
a bug; it is an inherent consequence of the fact that SQL does not promise to deliver the results of a
query in any particular order unless ORDER BY is used to constrain the order.

The rows skipped by an OFFSET clause still have to be computed inside the server; therefore a large
OFFSET might be inefficient.

7.7. vALUES Lists

VALUES provides a way to generate a “constant table” that can be used in a query without having to
actually create and populate a table on-disk. The syntax is

VALUES (expression [, ...]1) [, ...]

Each parenthesized list of expressions generates a row in the table. The lists must all have the same
number of elements (i.e., the number of columns in the table), and corresponding entries in each
list must have compatible data types. The actual data type assigned to each column of the result is
determined using the same rules as for UNION (see Section 10.5).

As an example:
VALUES (1, ’'one’), (2, 'two’), (3, "three’);
will return a table of two columns and three rows. It’s effectively equivalent to:

SELECT 1 AS columnl, ’'one’ AS column2
UNION ALL
SELECT 2, ’"two’

102

Chapter 7. Queries

UNION ALL
SELECT 3, ’'three’;

By default, PostgreSQL assigns the names columnl, column2, etc. to the columns of a VALUES
table. The column names are not specified by the SQL standard and different database systems do it
differently, so it’s usually better to override the default names with a table alias list, like this:

=> SELECT = FROM (VALUES (1, ’'one’), (2, "two’), (3, ’'three’)) AS t (num,letter);
num | letter
_____ b
1 | one
2 | two
3 | three
(3 rows)

Syntactically, VALUES followed by expression lists is treated as equivalent to:

SELECT select_list FROM table_expression

and can appear anywhere a SELECT can. For example, you can use it as part of a UNION, or attach a
sort_specification (ORDER BY, LIMIT, and/or OFFSET) to it. VALUES is most commonly used
as the data source in an INSERT command, and next most commonly as a subquery.

For more information see VALUES.

7.8. wiTH Queries (Common Table Expressions)

WITH provides a way to write auxiliary statements for use in a larger query. These statements, which
are often referred to as Common Table Expressions or CTEs, can be thought of as defining temporary
tables that exist just for one query. Each auxiliary statement in a WITH clause can be a SELECT,
INSERT, UPDATE, or DELETE; and the WITH clause itself is attached to a primary statement that can
also be a SELECT, INSERT, UPDATE, or DELETE.

7.8.1. SELECT in WITH

The basic value of SELECT in WITH is to break down complicated queries into simpler parts. An
example is:

WITH regional_sales AS (
SELECT region, SUM(amount) AS total_sales
FROM orders
GROUP BY region
), top_regions AS (
SELECT region
FROM regional_sales
WHERE total_sales > (SELECT SUM(total_sales)/10 FROM regional_sales)
)
SELECT region,
product,
SUM (quantity) AS product_units,
SUM (amount) AS product_sales
FROM orders

103

Chapter 7. Queries

WHERE region IN (SELECT region FROM top_regions)
GROUP BY region, product;

which displays per-product sales totals in only the top sales regions. The WITH clause defines
two auxiliary statements named regional_sales and top_regions, where the output of
regional_sales is used in top_regions and the output of top_regions is used in the primary
SELECT query. This example could have been written without wITH, but we’d have needed two
levels of nested sub-SELECTS. It’s a bit easier to follow this way.

The optional RECURSIVE modifier changes WITH from a mere syntactic convenience into a feature
that accomplishes things not otherwise possible in standard SQL. Using RECURSIVE, a WITH query
can refer to its own output. A very simple example is this query to sum the integers from 1 through
100:

WITH RECURSIVE t (n) AS (
VALUES (1)
UNION ALL
SELECT n+l1 FROM t WHERE n < 100

)
SELECT sum(n) FROM t;

The general form of a recursive WITH query is always a non-recursive term, then UNION (or UNION
ALL), then a recursive term, where only the recursive term can contain a reference to the query’s own
output. Such a query is executed as follows:

Recursive Query Evaluation

1. Evaluate the non-recursive term. For UNION (but not UNION ALL), discard duplicate rows. In-
clude all remaining rows in the result of the recursive query, and also place them in a temporary
working table.

2. So long as the working table is not empty, repeat these steps:

a. Evaluate the recursive term, substituting the current contents of the working table for
the recursive self-reference. For UNION (but not UNION ALL), discard duplicate rows
and rows that duplicate any previous result row. Include all remaining rows in the result
of the recursive query, and also place them in a temporary intermediate table.

b. Replace the contents of the working table with the contents of the intermediate table,
then empty the intermediate table.

Note: Strictly speaking, this process is iteration not recursion, but RECURSIVE is the terminology
chosen by the SQL standards committee.

In the example above, the working table has just a single row in each step, and it takes on the values
from 1 through 100 in successive steps. In the 100th step, there is no output because of the WHERE
clause, and so the query terminates.

Recursive queries are typically used to deal with hierarchical or tree-structured data. A useful example
is this query to find all the direct and indirect sub-parts of a product, given only a table that shows
immediate inclusions:

WITH RECURSIVE included_parts (sub_part, part, quantity) AS (
SELECT sub_part, part, quantity FROM parts WHERE part = ’'our_product’

104

Chapter 7. Queries

UNION ALL
SELECT p.sub_part, p.part, p.quantity
FROM included_parts pr, parts p
WHERE p.part = pr.sub_part
)
SELECT sub_part, SUM(quantity) as total_quantity
FROM included_parts
GROUP BY sub_part

When working with recursive queries it is important to be sure that the recursive part of the query will
eventually return no tuples, or else the query will loop indefinitely. Sometimes, using UNTON instead
of UNION ALL can accomplish this by discarding rows that duplicate previous output rows. However,
often a cycle does not involve output rows that are completely duplicate: it may be necessary to check
just one or a few fields to see if the same point has been reached before. The standard method for
handling such situations is to compute an array of the already-visited values. For example, consider
the following query that searches a table graph using a 1ink field:

WITH RECURSIVE search_graph(id, link, data, depth) AS (
SELECT g.id, g.link, g.data, 1
FROM graph g
UNION ALL
SELECT g.id, g.link, g.data, sg.depth + 1
FROM graph g, search_graph sg
WHERE g.id = sg.link
)
SELECT = FROM search_graph;

This query will loop if the 1ink relationships contain cycles. Because we require a “depth” output,
just changing UNION ALL to UNION would not eliminate the looping. Instead we need to recognize
whether we have reached the same row again while following a particular path of links. We add two
columns path and cycle to the loop-prone query:

WITH RECURSIVE search_graph(id, link, data, depth, path, cycle) AS (
SELECT g.id, g.link, g.data, 1,
ARRAY [g.1d],
false
FROM graph g
UNION ALL
SELECT g.id, g.link, g.data, sg.depth + 1,
path || g.id,
g.id = ANY (path)
FROM graph g, search_graph sg
WHERE g.id = sg.link AND NOT cycle
)
SELECT » FROM search_graph;

Aside from preventing cycles, the array value is often useful in its own right as representing the “path”
taken to reach any particular row.
In the general case where more than one field needs to be checked to recognize a cycle, use an array

of rows. For example, if we needed to compare fields £1 and £2:

WITH RECURSIVE search_graph(id, link, data, depth, path, cycle) AS (
SELECT g.id, g.link, g.data, 1,
ARRAY [ROW (g.f1l, g.f2)]1,

105

Chapter 7. Queries

false
FROM graph g
UNION ALL
SELECT g.id, g.link, g.data, sg.depth + 1,
path || ROW(g.fl, g.f2),
ROW(g.fl, g.f2) = ANY (path)

FROM graph g, search_graph sg
WHERE g.id = sg.link AND NOT cycle

)
SELECT x FROM search_graph;

Tip: Omit the row () syntax in the common case where only one field needs to be checked to
recognize a cycle. This allows a simple array rather than a composite-type array to be used,
gaining efficiency.

Tip: The recursive query evaluation algorithm produces its output in breadth-first search order.
You can display the results in depth-first search order by making the outer query orDER BY a
“path” column constructed in this way.

A helpful trick for testing queries when you are not certain if they might loop is to place a LIMIT in
the parent query. For example, this query would loop forever without the LIMIT:

WITH RECURSIVE t (n) AS (
SELECT 1
UNION ALL
SELECT n+l FROM t

)
SELECT n FROM t LIMIT 100;

This works because PostgreSQL’s implementation evaluates only as many rows of a WITH query as
are actually fetched by the parent query. Using this trick in production is not recommended, because
other systems might work differently. Also, it usually won’t work if you make the outer query sort the
recursive query’s results or join them to some other table, because in such cases the outer query will
usually try to fetch all of the WITH query’s output anyway.

A useful property of WITH queries is that they are evaluated only once per execution of the parent
query, even if they are referred to more than once by the parent query or sibling WITH queries. Thus,
expensive calculations that are needed in multiple places can be placed within a WITH query to avoid
redundant work. Another possible application is to prevent unwanted multiple evaluations of func-
tions with side-effects. However, the other side of this coin is that the optimizer is less able to push
restrictions from the parent query down into a WITH query than an ordinary sub-query. The WITH
query will generally be evaluated as written, without suppression of rows that the parent query might
discard afterwards. (But, as mentioned above, evaluation might stop early if the reference(s) to the
query demand only a limited number of rows.)

The examples above only show WITH being used with SELECT, but it can be attached in the same way
to INSERT, UPDATE, or DELETE. In each case it effectively provides temporary table(s) that can be
referred to in the main command.

106

Chapter 7. Queries

7.8.2. Data-Modifying Statements in wiTH

You can use data-modifying statements (INSERT, UPDATE, or DELETE) in WITH. This allows you to
perform several different operations in the same query. An example is:

WITH moved_rows AS (
DELETE FROM products
WHERE
"date" >= ’2010-10-01" AND
"date" < "2010-11-01"
RETURNING =

)
INSERT INTO products_log
SELECT + FROM moved_rows;

This query effectively moves rows from products to products_log. The DELETE in WITH deletes
the specified rows from products, returning their contents by means of its RETURNING clause; and
then the primary query reads that output and inserts it into products_log.

A fine point of the above example is that the WITH clause is attached to the INSERT, not the sub-
SELECT within the INSERT. This is necessary because data-modifying statements are only allowed
in WITH clauses that are attached to the top-level statement. However, normal wITH visibility rules
apply, so it is possible to refer to the WITH statement’s output from the sub-SELECT.

Data-modifying statements in WITH usually have RETURNING clauses (see Section 6.4), as shown
in the example above. It is the output of the RETURNING clause, not the target table of the data-
modifying statement, that forms the temporary table that can be referred to by the rest of the query.
If a data-modifying statement in WITH lacks a RETURNING clause, then it forms no temporary table
and cannot be referred to in the rest of the query. Such a statement will be executed nonetheless. A
not-particularly-useful example is:

WITH t AS (
DELETE FROM foo

)
DELETE FROM bar;

This example would remove all rows from tables foo and bar. The number of affected rows reported
to the client would only include rows removed from bar.

Recursive self-references in data-modifying statements are not allowed. In some cases it is possible
to work around this limitation by referring to the output of a recursive WITH, for example:

WITH RECURSIVE included_parts (sub_part, part) AS (
SELECT sub_part, part FROM parts WHERE part = 'our_product’
UNION ALL
SELECT p.sub_part, p.part
FROM included_parts pr, parts p
WHERE p.part = pr.sub_part

)
DELETE FROM parts
WHERE part IN (SELECT part FROM included_parts);

This query would remove all direct and indirect subparts of a product.

Data-modifying statements in WITH are executed exactly once, and always to completion, indepen-
dently of whether the primary query reads all (or indeed any) of their output. Notice that this is
different from the rule for SELECT in WITH: as stated in the previous section, execution of a SELECT
is carried only as far as the primary query demands its output.

107

Chapter 7. Queries

The sub-statements in WITH are executed concurrently with each other and with the main query.
Therefore, when using data-modifying statements in WITH, the order in which the specified updates
actually happen is unpredictable. All the statements are executed with the same snapshot (see Chapter
13), so they cannot “see” one another’s effects on the target tables. This alleviates the effects of the
unpredictability of the actual order of row updates, and means that RETURNING data is the only way
to communicate changes between different wITH sub-statements and the main query. An example of
this is that in

WITH t AS (
UPDATE products SET price = price = 1.05
RETURNING =*

)
SELECT % FROM products;

the outer SELECT would return the original prices before the action of the UPDATE, while in

WITH t AS (
UPDATE products SET price = price » 1.05
RETURNING =

)
SELECT * FROM t;

the outer SELECT would return the updated data.

Trying to update the same row twice in a single statement is not supported. Only one of the modi-
fications takes place, but it is not easy (and sometimes not possible) to reliably predict which one.
This also applies to deleting a row that was already updated in the same statement: only the update
is performed. Therefore you should generally avoid trying to modify a single row twice in a single
statement. In particular avoid writing WITH sub-statements that could affect the same rows changed by
the main statement or a sibling sub-statement. The effects of such a statement will not be predictable.

At present, any table used as the target of a data-modifying statement in WITH must not have a condi-
tional rule, nor an ALSO rule, nor an INSTEAD rule that expands to multiple statements.

108

Chapter 8. Data Types

PostgreSQL has a rich set of native data types available to users. Users can add new types to Post-
greSQL using the CREATE TYPE command.

Table 8-1 shows all the built-in general-purpose data types. Most of the alternative names listed in
the “Aliases” column are the names used internally by PostgreSQL for historical reasons. In addition,
some internally used or deprecated types are available, but are not listed here.

Table 8-1. Data Types

Name Aliases Description

bigint int8 signed eight-byte integer

bigserial serial8 autoincrementing eight-byte
integer

bit [(n)] fixed-length bit string

bit varying [(n)] varbit [(n)] variable-length bit string

boolean bool logical Boolean (true/false)

box rectangular box on a plane

bytea binary data (“byte array”)

character [(n)] char [(n)] fixed-length character string

character varying [(n) |varchar [(n)] variable-length character string

]

cidr IPv4 or IPv6 network address

circle circle on a plane

date calendar date (year, month,
day)

double precision float8 double precision floating-point
number (8 bytes)

inet IPv4 or IPv6 host address

integer int, int4 signed four-byte integer

interval [fields] [time span

(p)]

json textual JSON data

jsonb binary JSON data, decomposed

line infinite line on a plane

lseg line segment on a plane

macaddr MAC (Media Access Control)
address

money currency amount

numeric [(p, s)] decimal [(p, s)] exact numeric of selectable
precision

path geometric path on a plane

pg_lsn PostgreSQL Log Sequence
Number

point geometric point on a plane

109

Chapter 8. Data Types

Name Aliases Description

polygon closed geometric path on a
plane

real float4 single precision floating-point
number (4 bytes)

smallint int2 signed two-byte integer

smallserial serial? autoincrementing two-byte
integer

serial seriald autoincrementing four-byte
integer

text variable-length character string

time [(p) 1 [without time of day (no time zone)

time zone]

time [(p)] with time |timetz time of day, including time

zone zone

timestamp [(p) 1 I date and time (no time zone)

without time zone]

timestamp [(p)] with timestamptz date and time, including time

time zone

zone

tsquery

text search query

tsvector

text search document

txid_snapshot

user-level transaction ID

snapshot
uuid universally unique identifier
xml XML data

Compatibility: The following types (or spellings thereof) are specified by SQL: bigint, bit, bit
varying, boolean, char, character varying, character, varchar, date, double precision,
integer, interval, numeric, decimal, real, smallint, time (with or without time zone),
timestamp (with or without time zone), xm1.

Each data type has an external representation determined by its input and output functions. Many of
the built-in types have obvious external formats. However, several types are either unique to Post-
greSQL, such as geometric paths, or have several possible formats, such as the date and time types.
Some of the input and output functions are not invertible, i.e., the result of an output function might

lose accuracy when compared to the original input.

8.1. Numeric Types

Numeric types consist of two-, four-, and eight-byte integers, four- and eight-byte floating-point num-
bers, and selectable-precision decimals. Table 8-2 lists the available types.

Table 8-2. Numeric Types

Name \ Storage Size

Description

Range

110

Chapter 8. Data Types

Name Storage Size Description Range
smallint 2 bytes small-range integer -32768 to +32767
integer 4 bytes typical choice for -2147483648 to
integer +2147483647
bigint 8 bytes large-range integer -
9223372036854775808
to
+9223372036854775807
decimal variable user-specified up to 131072 digits
precision, exact before the decimal

point; up to 16383
digits after the decimal

point
numeric variable user-specified up to 131072 digits
precision, exact before the decimal

point; up to 16383
digits after the decimal

point
real 4 bytes variable-precision, 6 decimal digits
inexact precision
double precision |8 bytes variable-precision, 15 decimal digits
inexact precision
smallserial 2 bytes small autoincrementing | 1 to 32767
integer
serial 4 bytes autoincrementing 1 to 2147483647
integer
bigserial 8 bytes large autoincrementing | 1 to
integer 9223372036854775807

The syntax of constants for the numeric types is described in Section 4.1.2. The numeric types have a
full set of corresponding arithmetic operators and functions. Refer to Chapter 9 for more information.
The following sections describe the types in detail.

8.1.1. Integer Types

The types smallint, integer, and bigint store whole numbers, that is, numbers without fractional
components, of various ranges. Attempts to store values outside of the allowed range will result in an
error.

The type integer is the common choice, as it offers the best balance between range, storage size, and
performance. The smallint type is generally only used if disk space is at a premium. The bigint
type is designed to be used when the range of the integer type is insufficient.

SQL only specifies the integer types integer (or int), smallint, and bigint. The type names
int2, int4, and int8 are extensions, which are also used by some other SQL database systems.

111

Chapter 8. Data Types

8.1.2. Arbitrary Precision Numbers

The type numeric can store numbers with a very large number of digits and perform calculations
exactly. It is especially recommended for storing monetary amounts and other quantities where exact-
ness is required. However, arithmetic on numeric values is very slow compared to the integer types,
or to the floating-point types described in the next section.

We use the following terms below: the precision of a numeric is the total count of significant digits
in the whole number, that is, the number of digits to both sides of the decimal point. The scale of a
numeric is the count of decimal digits in the fractional part, to the right of the decimal point. So the
number 23.5141 has a precision of 6 and a scale of 4. Integers can be considered to have a scale of
Zero.

Both the maximum precision and the maximum scale of a numeric column can be configured. To
declare a column of type numeric use the syntax:

NUMERIC (precision, scale)
The precision must be positive, the scale zero or positive. Alternatively:
NUMERIC (precision)

selects a scale of 0. Specifying:

NUMERIC

without any precision or scale creates a column in which numeric values of any precision and scale
can be stored, up to the implementation limit on precision. A column of this kind will not coerce
input values to any particular scale, whereas numeric columns with a declared scale will coerce input
values to that scale. (The SQL standard requires a default scale of 0, i.e., coercion to integer precision.
We find this a bit useless. If you’re concerned about portability, always specify the precision and scale
explicitly.)

Note: The maximum allowed precision when explicitly specified in the type declaration is 1000;
NUMERIC without a specified precision is subject to the limits described in Table 8-2.

If the scale of a value to be stored is greater than the declared scale of the column, the system will
round the value to the specified number of fractional digits. Then, if the number of digits to the left of
the decimal point exceeds the declared precision minus the declared scale, an error is raised.

Numeric values are physically stored without any extra leading or trailing zeroes. Thus, the declared
precision and scale of a column are maximums, not fixed allocations. (In this sense the numeric type
is more akin to varchar (n) than to char (n).) The actual storage requirement is two bytes for each
group of four decimal digits, plus three to eight bytes overhead.

In addition to ordinary numeric values, the numeric type allows the special value NaN, meaning
“not-a-number”’. Any operation on NaN yields another NaN. When writing this value as a constant in
an SQ