
1

Generated on Fri Sep 30 15:18:28 2016 by Doxygen] Generated on Fri Sep
30 15:18:28 2016 by Doxygen

2

Reference Manual

Contents

Chapter 1

Deprecated List

Member OGRLayer::GetInfo(const char ∗)

2 Deprecated List

Chapter 2

Class Index

2.1 Class List

Here are the classes, structs, unions and interfaces with brief descriptions:

OGRAttrIndex . ??
OGRDataSource . ??
OGRLayer . ??
OGRLayerAttrIndex . ??
OGRSFDriver . ??
OGRSFDriverRegistrar . ??

4 Class Index

Chapter 3

File Index

3.1 File List

Here is a list of all documented files with brief descriptions:

ogr_attrind.h . ??
ogrsf_frmts.h . ??

6 File Index

Chapter 4

Class Documentation

4.1 OGRAttrIndex Class Reference

Public Member Functions

• virtual long GetFirstMatch (OGRField ∗psKey)=0
• virtual long ∗ GetAllMatches (OGRField ∗psKey)=0
• virtual long ∗ GetAllMatches (OGRField ∗psKey, long ∗panFIDList, int ∗nFIDCount, int
∗nLength)=0

• virtual OGRErr AddEntry (OGRField ∗psKey, long nFID)=0
• virtual OGRErr RemoveEntry (OGRField ∗psKey, long nFID)=0
• virtual OGRErr Clear ()=0

The documentation for this class was generated from the following file:

• ogr_attrind.h

8 Class Documentation

4.2 OGRDataSource Class Reference

#include <ogrsf_frmts.h>

Public Member Functions

• virtual const char ∗ GetName ()=0
Returns the name of the data source.

• virtual int GetLayerCount ()=0
Get the number of layers in this data source.

• virtual OGRLayer ∗ GetLayer (int)=0
Fetch a layer by index.

• virtual OGRLayer ∗ GetLayerByName (const char ∗)
Fetch a layer by name.

• virtual OGRErr DeleteLayer (int)
Delete the indicated layer from the datasource.

• virtual int TestCapability (const char ∗)=0
Test if capability is available.

• virtual OGRLayer ∗ CreateLayer (const char ∗pszName, OGRSpatialRefer-
ence ∗poSpatialRef=NULL, OGRwkbGeometryType eGType=wkbUnknown, char
∗∗papszOptions=NULL)

This method attempts to create a new layer on the data source with the indicated name, coordinate system,
geometry type.

• virtual OGRLayer ∗ CopyLayer (OGRLayer ∗poSrcLayer, const char ∗pszNewName, char
∗∗papszOptions=NULL)

Duplicate an existing layer.

• virtual OGRStyleTable ∗ GetStyleTable ()
Returns data source style table.

• virtual void SetStyleTableDirectly (OGRStyleTable ∗poStyleTable)
Set data source style table.

• virtual void SetStyleTable (OGRStyleTable ∗poStyleTable)
Set data source style table.

• virtual OGRLayer ∗ ExecuteSQL (const char ∗pszStatement, OGRGeometry ∗poSpatialFilter, const
char ∗pszDialect)

Execute an SQL statement against the data store.

• virtual void ReleaseResultSet (OGRLayer ∗poResultsSet)
Release results of ExecuteSQL().

4.2 OGRDataSource Class Reference 9

• virtual OGRErr SyncToDisk ()

Flush pending changes to disk.

• int Reference ()

Increment datasource reference count.

• int Dereference ()

Decrement datasource reference count.

• int GetRefCount () const

Fetch reference count.

• int GetSummaryRefCount () const

Fetch reference count of datasource and all owned layers.

• OGRErr Release ()

Drop a reference to this datasource, and if the reference count drops to zero close (destroy) the datasource.

• OGRSFDriver ∗ GetDriver () const

Returns the driver that the dataset was opened with.

• void SetDriver (OGRSFDriver ∗poDriver)

Sets the driver that the dataset was created or opened with.

Static Public Member Functions

• static void DestroyDataSource (OGRDataSource ∗)

Closes opened datasource and releases allocated resources.

Protected Member Functions

• OGRErr ProcessSQLCreateIndex (const char ∗)
• OGRErr ProcessSQLDropIndex (const char ∗)
• OGRErr ProcessSQLDropTable (const char ∗)
• OGRErr ProcessSQLAlterTableAddColumn (const char ∗)
• OGRErr ProcessSQLAlterTableDropColumn (const char ∗)
• OGRErr ProcessSQLAlterTableAlterColumn (const char ∗)
• OGRErr ProcessSQLAlterTableRenameColumn (const char ∗)

Protected Attributes

• OGRStyleTable ∗ m_poStyleTable
• int m_nRefCount
• OGRSFDriver ∗ m_poDriver

10 Class Documentation

Friends

• class OGRSFDriverRegistrar

4.2.1 Detailed Description

This class represents a data source. A data source potentially consists of many layers (OGRLayer). A data
source normally consists of one, or a related set of files, though the name doesn’t have to be a real item in
the file system.

When an OGRDataSource is destroyed, all it’s associated OGRLayers objects are also destroyed.

4.2.2 Member Function Documentation

4.2.2.1 OGRLayer ∗ OGRDataSource::CopyLayer (OGRLayer ∗ poSrcLayer, const char ∗
pszNewName, char ∗∗ papszOptions = NULL) [virtual]

Duplicate an existing layer. This method creates a new layer, duplicate the field definitions of the source
layer and then duplicate each features of the source layer. The papszOptions argument can be used to
control driver specific creation options. These options are normally documented in the format specific
documentation. The source layer may come from another dataset.

This method is the same as the C function OGR_DS_CopyLayer().

Parameters:

poSrcLayer source layer.

pszNewName the name of the layer to create.

papszOptions a StringList of name=value options. Options are driver specific.

Returns:

an handle to the layer, or NULL if an error occurs.

4.2.2.2 OGRLayer ∗ OGRDataSource::CreateLayer (const char ∗ pszName,
OGRSpatialReference ∗ poSpatialRef = NULL, OGRwkbGeometryType eGType =
wkbUnknown, char ∗∗ papszOptions = NULL) [virtual]

This method attempts to create a new layer on the data source with the indicated name, coordinate system,
geometry type. The papszOptions argument can be used to control driver specific creation options. These
options are normally documented in the format specific documentation.

Parameters:

pszName the name for the new layer. This should ideally not match any existing layer on the data-
source.

poSpatialRef the coordinate system to use for the new layer, or NULL if no coordinate system is
available.

eGType the geometry type for the layer. Use wkbUnknown if there are no constraints on the types
geometry to be written.

papszOptions a StringList of name=value options. Options are driver specific.

4.2 OGRDataSource Class Reference 11

Returns:

NULL is returned on failure, or a new OGRLayer handle on success.

Example:

#include "ogrsf_frmts.h"
#include "cpl_string.h"

...

OGRLayer *poLayer;
char *papszOptions;

if(!poDS->TestCapability(ODsCCreateLayer))
{

...
}

papszOptions = CSLSetNameValue(papszOptions, "DIM", "2");
poLayer = poDS->CreateLayer("NewLayer", NULL, wkbUnknown,

papszOptions);
CSLDestroy(papszOptions);

if(poLayer == NULL)
{

...
}

4.2.2.3 OGRErr OGRDataSource::DeleteLayer (int iLayer) [virtual]

Delete the indicated layer from the datasource. If this method is supported the ODsCDeleteLayer capability
will test TRUE on the OGRDataSource.

This method is the same as the C function OGR_DS_DeleteLayer().

Parameters:

iLayer the index of the layer to delete.

Returns:

OGRERR_NONE on success, or OGRERR_UNSUPPORTED_OPERATION if deleting layers is not
supported for this datasource.

4.2.2.4 int OGRDataSource::Dereference ()

Decrement datasource reference count. This method is the same as the C function OGR_DS_Dereference().

Returns:

the reference count after decrementing.

12 Class Documentation

4.2.2.5 void OGRDataSource::DestroyDataSource (OGRDataSource ∗ poDS) [static]

Closes opened datasource and releases allocated resources. This static method will close and destroy a
datasource. It is equivelent to calling delete on the object, but it ensures that the deallocation is properly
executed within the GDAL libraries heap on platforms where this can matter (win32).

This method is the same as the C function OGR_DS_Destroy().

Parameters:

poDS pointer to allocated datasource object.

4.2.2.6 OGRLayer ∗ OGRDataSource::ExecuteSQL (const char ∗ pszStatement, OGRGeometry ∗
poSpatialFilter, const char ∗ pszDialect) [virtual]

Execute an SQL statement against the data store. The result of an SQL query is either NULL for statements
that are in error, or that have no results set, or an OGRLayer pointer representing a results set from the
query. Note that this OGRLayer is in addition to the layers in the data store and must be destroyed with
OGRDataSource::ReleaseResultSet() before the data source is closed (destroyed).

This method is the same as the C function OGR_DS_ExecuteSQL().

For more information on the SQL dialect supported internally by OGR review the OGR SQL document.
Some drivers (ie. Oracle and PostGIS) pass the SQL directly through to the underlying RDBMS.

Parameters:

pszStatement the SQL statement to execute.

poSpatialFilter geometry which represents a spatial filter. Can be NULL.

pszDialect allows control of the statement dialect. If set to NULL, the OGR SQL engine will be
used, except for RDBMS drivers that will use their dedicated SQL engine, unless OGRSQL is
explicitely passed as the dialect.

Returns:

an OGRLayer containing the results of the query. Deallocate with ReleaseResultSet().

4.2.2.7 OGRSFDriver ∗ OGRDataSource::GetDriver () const

Returns the driver that the dataset was opened with. This method is the same as the C function OGR_DS_-
GetDriver().

Returns:

NULL if driver info is not available, or pointer to a driver owned by the OGRSFDriverManager.

4.2.2.8 OGRLayer ∗ OGRDataSource::GetLayer (int iLayer) [pure virtual]

Fetch a layer by index. The returned layer remains owned by the OGRDataSource and should not be
deleted by the application.

This method is the same as the C function OGR_DS_GetLayer().

file:ogr_sql.html

4.2 OGRDataSource Class Reference 13

Parameters:

iLayer a layer number between 0 and GetLayerCount()-1.

Returns:

the layer, or NULL if iLayer is out of range or an error occurs.

4.2.2.9 OGRLayer ∗ OGRDataSource::GetLayerByName (const char ∗ pszLayerName)
[virtual]

Fetch a layer by name. The returned layer remains owned by the OGRDataSource and should not be
deleted by the application.

This method is the same as the C function OGR_DS_GetLayerByName().

Parameters:

pszLayerName the layer name of the layer to fetch.

Returns:

the layer, or NULL if Layer is not found or an error occurs.

4.2.2.10 int OGRDataSource::GetLayerCount () [pure virtual]

Get the number of layers in this data source. This method is the same as the C function OGR_DS_-
GetLayerCount().

Returns:

layer count.

4.2.2.11 const char ∗ OGRDataSource::GetName () [pure virtual]

Returns the name of the data source. This string should be sufficient to open the data source if passed to
the same OGRSFDriver that this data source was opened with, but it need not be exactly the same string
that was used to open the data source. Normally this is a filename.

This method is the same as the C function OGR_DS_GetName().

Returns:

pointer to an internal name string which should not be modified or freed by the caller.

4.2.2.12 int OGRDataSource::GetRefCount () const

Fetch reference count. This method is the same as the C function OGR_DS_GetRefCount().

Returns:

the current reference count for the datasource object itself.

14 Class Documentation

4.2.2.13 void OGRDataSource::GetStyleTable () [virtual]

Returns data source style table. This method is the same as the C function OGR_DS_GetStyleTable().

Returns:

pointer to a style table which should not be modified or freed by the caller.

4.2.2.14 int OGRDataSource::GetSummaryRefCount () const

Fetch reference count of datasource and all owned layers. This method is the same as the C function
OGR_DS_GetSummaryRefCount().

Returns:

the current summary reference count for the datasource and its layers.

4.2.2.15 int OGRDataSource::Reference ()

Increment datasource reference count. This method is the same as the C function OGR_DS_Reference().

Returns:

the reference count after incrementing.

4.2.2.16 OGRErr OGRDataSource::Release ()

Drop a reference to this datasource, and if the reference count drops to zero close (destroy) the datasource.
Internally this actually calls the OGRSFDriverRegistrar::ReleaseDataSource() method. This method is
essentially a convenient alias.

This method is the same as the C function OGRReleaseDataSource().

Returns:

OGRERR_NONE on success or an error code.

4.2.2.17 void OGRDataSource::ReleaseResultSet (OGRLayer ∗ poResultsSet) [virtual]

Release results of ExecuteSQL(). This method should only be used to deallocate OGRLayers resulting from
an ExecuteSQL() call on the same OGRDataSource. Failure to deallocate a results set before destroying
the OGRDataSource may cause errors.

This method is the same as the C function OGR_L_ReleaseResultSet().

Parameters:

poResultsSet the result of a previous ExecuteSQL() call.

4.2 OGRDataSource Class Reference 15

4.2.2.18 void OGRDataSource::SetDriver (OGRSFDriver ∗ poDriver)

Sets the driver that the dataset was created or opened with.

Note:

This method is not exposed as the OGR C API function.

Parameters:

poDriver pointer to driver instance associated with the data source.

4.2.2.19 void OGRDataSource::SetStyleTable (OGRStyleTable ∗ poStyleTable) [virtual]

Set data source style table. This method operate exactly as OGRDataSource::SetStyleTableDirectly() ex-
cept that it does not assume ownership of the passed table.

This method is the same as the C function OGR_DS_SetStyleTable().

Parameters:

poStyleTable pointer to style table to set

4.2.2.20 void OGRDataSource::SetStyleTableDirectly (OGRStyleTable ∗ poStyleTable)
[virtual]

Set data source style table. This method operate exactly as OGRDataSource::SetStyleTable() except that it
assumes ownership of the passed table.

This method is the same as the C function OGR_DS_SetStyleTableDirectly().

Parameters:

poStyleTable pointer to style table to set

4.2.2.21 OGRErr OGRDataSource::SyncToDisk () [virtual]

Flush pending changes to disk. This call is intended to force the datasource to flush any pending writes
to disk, and leave the disk file in a consistent state. It would not normally have any effect on read-only
datasources.

Some data sources do not implement this method, and will still return OGRERR_NONE. An error is only
returned if an error occurs while attempting to flush to disk.

The default implementation of this method just calls the SyncToDisk() method on each of the layers.
Conceptionally, calling SyncToDisk() on a datasource should include any work that might be accomplished
by calling SyncToDisk() on layers in that data source.

In any event, you should always close any opened datasource with OGRDataSource::DestroyDataSource()
that will ensure all data is correctly flushed.

This method is the same as the C function OGR_DS_SyncToDisk().

Returns:

OGRERR_NONE if no error occurs (even if nothing is done) or an error code.

16 Class Documentation

4.2.2.22 int OGRDataSource::TestCapability (const char ∗ pszCapability) [pure virtual]

Test if capability is available. One of the following data source capability names can be passed into this
method, and a TRUE or FALSE value will be returned indicating whether or not the capability is available
for this object.

• ODsCCreateLayer: True if this datasource can create new layers.

The #define macro forms of the capability names should be used in preference to the strings themselves to
avoid mispelling.

This method is the same as the C function OGR_DS_TestCapability().

Parameters:

pszCapability the capability to test.

Returns:

TRUE if capability available otherwise FALSE.

The documentation for this class was generated from the following files:

• ogrsf_frmts.h
• ogrsf_frmts.dox

4.3 OGRLayer Class Reference 17

4.3 OGRLayer Class Reference

#include <ogrsf_frmts.h>

Public Member Functions

• virtual OGRGeometry ∗ GetSpatialFilter ()

This method returns the current spatial filter for this layer.

• virtual void SetSpatialFilter (OGRGeometry ∗)

Set a new spatial filter.

• virtual void SetSpatialFilterRect (double dfMinX, double dfMinY, double dfMaxX, double df-
MaxY)

Set a new rectangular spatial filter.

• virtual OGRErr SetAttributeFilter (const char ∗)

Set a new attribute query.

• virtual void ResetReading ()=0

Reset feature reading to start on the first feature.

• virtual OGRFeature ∗ GetNextFeature ()=0

Fetch the next available feature from this layer.

• virtual OGRErr SetNextByIndex (long nIndex)

Move read cursor to the nIndex’th feature in the current resultset.

• virtual OGRFeature ∗ GetFeature (long nFID)

Fetch a feature by its identifier.

• virtual OGRErr SetFeature (OGRFeature ∗poFeature)

Rewrite an existing feature.

• virtual OGRErr CreateFeature (OGRFeature ∗poFeature)

Create and write a new feature within a layer.

• virtual OGRErr DeleteFeature (long nFID)

Delete feature from layer.

• virtual const char ∗ GetName ()

Return the layer name.

• virtual OGRwkbGeometryType GetGeomType ()

Return the layer geometry type.

• virtual OGRFeatureDefn ∗ GetLayerDefn ()=0

Fetch the schema information for this layer.

18 Class Documentation

• virtual OGRSpatialReference ∗ GetSpatialRef ()

Fetch the spatial reference system for this layer.

• virtual int GetFeatureCount (int bForce=TRUE)

Fetch the feature count in this layer.

• virtual OGRErr GetExtent (OGREnvelope ∗psExtent, int bForce=TRUE)

Fetch the extent of this layer.

• virtual int TestCapability (const char ∗)=0

Test if this layer supported the named capability.

• virtual const char ∗ GetInfo (const char ∗)

Fetch metadata from layer.

• virtual OGRErr CreateField (OGRFieldDefn ∗poField, int bApproxOK=TRUE)

Create a new field on a layer.

• virtual OGRErr DeleteField (int iField)

Delete an existing field on a layer.

• virtual OGRErr ReorderFields (int ∗panMap)

Reorder all the fields of a layer.

• virtual OGRErr AlterFieldDefn (int iField, OGRFieldDefn ∗poNewFieldDefn, int nFlags)

Alter the definition of an existing field on a layer.

• virtual OGRErr SyncToDisk ()

Flush pending changes to disk.

• virtual OGRStyleTable ∗ GetStyleTable ()

Returns layer style table.

• virtual void SetStyleTableDirectly (OGRStyleTable ∗poStyleTable)

Set layer style table.

• virtual void SetStyleTable (OGRStyleTable ∗poStyleTable)

Set layer style table.

• virtual OGRErr StartTransaction ()
• virtual OGRErr CommitTransaction ()
• virtual OGRErr RollbackTransaction ()
• virtual const char ∗ GetFIDColumn ()

This method returns the name of the underlying database column being used as the FID column, or "" if not
supported.

• virtual const char ∗ GetGeometryColumn ()

This method returns the name of the underlying database column being used as the geometry column, or ""
if not supported.

4.3 OGRLayer Class Reference 19

• virtual OGRErr SetIgnoredFields (const char ∗∗papszFields)

Set which fields can be omitted when retrieving features from the layer.

• int Reference ()

Increment layer reference count.

• int Dereference ()

Decrement layer reference count.

• int GetRefCount () const

Fetch reference count.

• GIntBig GetFeaturesRead ()
• OGRErr ReorderField (int iOldFieldPos, int iNewFieldPos)

Reorder an existing field on a layer.

• int AttributeFilterEvaluationNeedsGeometry ()
• OGRErr InitializeIndexSupport (const char ∗)
• OGRLayerAttrIndex ∗ GetIndex ()

Protected Member Functions

• int FilterGeometry (OGRGeometry ∗)
• int InstallFilter (OGRGeometry ∗)

Protected Attributes

• int m_bFilterIsEnvelope
• OGRGeometry ∗ m_poFilterGeom
• OGREnvelope m_sFilterEnvelope
• OGRStyleTable ∗ m_poStyleTable
• OGRFeatureQuery ∗ m_poAttrQuery
• OGRLayerAttrIndex ∗ m_poAttrIndex
• int m_nRefCount
• GIntBig m_nFeaturesRead

4.3.1 Detailed Description

This class represents a layer of simple features, with access methods.

4.3.2 Member Function Documentation

4.3.2.1 OGRErr OGRLayer::AlterFieldDefn (int iField, OGRFieldDefn ∗ poNewFieldDefn, int
nFlags) [virtual]

Alter the definition of an existing field on a layer. You must use this to alter the definition of an existing
field of a real layer. Internally the OGRFeatureDefn for the layer will be updated to reflect the altered field.
Applications should never modify the OGRFeatureDefn used by a layer directly.

20 Class Documentation

This method should not be called while there are feature objects in existance that were obtained or created
with the previous layer definition.

Not all drivers support this method. You can query a layer to check if it supports it with the OLCAlterField-
Defn capability. Some drivers may only support this method while there are still no features in the layer.
When it is supported, the existings features of the backing file/database should be updated accordingly.
Some drivers might also not support all update flags.

This function is the same as the C function OGR_L_AlterFieldDefn().

Parameters:

iField index of the field whose definition must be altered.
poNewFieldDefn new field definition
nFlags combination of ALTER_NAME_FLAG, ALTER_TYPE_FLAG and ALTER_WIDTH_-

PRECISION_FLAG to indicate which of the name and/or type and/or width and precision fields
from the new field definition must be taken into account.

Returns:

OGRERR_NONE on success.

Since:

OGR 1.9.0

4.3.2.2 OGRErr OGRLayer::CreateFeature (OGRFeature ∗ poFeature) [virtual]

Create and write a new feature within a layer. The passed feature is written to the layer as a new feature,
rather than overwriting an existing one. If the feature has a feature id other than OGRNullFID, then the
native implementation may use that as the feature id of the new feature, but not necessarily. Upon successful
return the passed feature will have been updated with the new feature id.

This method is the same as the C function OGR_L_CreateFeature().

Parameters:

poFeature the feature to write to disk.

Returns:

OGRERR_NONE on success.

4.3.2.3 OGRErr OGRLayer::CreateField (OGRFieldDefn ∗ poField, int bApproxOK = TRUE)
[virtual]

Create a new field on a layer. You must use this to create new fields on a real layer. Internally the OGR-
FeatureDefn for the layer will be updated to reflect the new field. Applications should never modify the
OGRFeatureDefn used by a layer directly.

This method should not be called while there are feature objects in existance that were obtained or created
with the previous layer definition.

Not all drivers support this method. You can query a layer to check if it supports it with the OLCCreateField
capability. Some drivers may only support this method while there are still no features in the layer. When
it is supported, the existings features of the backing file/database should be updated accordingly.

This function is the same as the C function OGR_L_CreateField().

4.3 OGRLayer Class Reference 21

Parameters:

poField field definition to write to disk.

bApproxOK If TRUE, the field may be created in a slightly different form depending on the limitations
of the format driver.

Returns:

OGRERR_NONE on success.

4.3.2.4 OGRErr OGRLayer::DeleteFeature (long nFID) [virtual]

Delete feature from layer. The feature with the indicated feature id is deleted from the layer if supported
by the driver. Most drivers do not support feature deletion, and will return OGRERR_UNSUPPORTED_-
OPERATION. The TestCapability() layer method may be called with OLCDeleteFeature to check if the
driver supports feature deletion.

This method is the same as the C function OGR_L_DeleteFeature().

Parameters:

nFID the feature id to be deleted from the layer

Returns:

OGRERR_NONE on success.

4.3.2.5 OGRErr OGRLayer::DeleteField (int iField) [virtual]

Delete an existing field on a layer. You must use this to delete existing fields on a real layer. Internally
the OGRFeatureDefn for the layer will be updated to reflect the deleted field. Applications should never
modify the OGRFeatureDefn used by a layer directly.

This method should not be called while there are feature objects in existance that were obtained or created
with the previous layer definition.

Not all drivers support this method. You can query a layer to check if it supports it with the OLCDeleteField
capability. Some drivers may only support this method while there are still no features in the layer. When
it is supported, the existings features of the backing file/database should be updated accordingly.

This function is the same as the C function OGR_L_DeleteField().

Parameters:

iField index of the field to delete.

Returns:

OGRERR_NONE on success.

Since:

OGR 1.9.0

22 Class Documentation

4.3.2.6 int OGRLayer::Dereference ()

Decrement layer reference count. This method is the same as the C function OGR_L_Dereference().

Returns:

the reference count after decrementing.

4.3.2.7 OGRErr OGRLayer::GetExtent (OGREnvelope ∗ psExtent, int bForce = TRUE)
[virtual]

Fetch the extent of this layer. Returns the extent (MBR) of the data in the layer. If bForce is FALSE, and
it would be expensive to establish the extent then OGRERR_FAILURE will be returned indicating that the
extent isn’t know. If bForce is TRUE then some implementations will actually scan the entire layer once to
compute the MBR of all the features in the layer.

Depending on the drivers, the returned extent may or may not take the spatial filter into account. So it is
safer to call GetExtent() without setting a spatial filter.

Layers without any geometry may return OGRERR_FAILURE just indicating that no meaningful extents
could be collected.

Note that some implementations of this method may alter the read cursor of the layer.

This method is the same as the C function OGR_L_GetExtent().

Parameters:

psExtent the structure in which the extent value will be returned.

bForce Flag indicating whether the extent should be computed even if it is expensive.

Returns:

OGRERR_NONE on success, OGRERR_FAILURE if extent not known.

4.3.2.8 OGRFeature ∗ OGRLayer::GetFeature (long nFID) [virtual]

Fetch a feature by its identifier. This function will attempt to read the identified feature. The nFID value
cannot be OGRNullFID. Success or failure of this operation is unaffected by the spatial or attribute filters.

If this method returns a non-NULL feature, it is guaranteed that its feature id (OGRFeature::GetFID()) will
be the same as nFID.

Use OGRLayer::TestCapability(OLCRandomRead) to establish if this layer supports efficient random ac-
cess reading via GetFeature(); however, the call should always work if the feature exists as a fallback
implementation just scans all the features in the layer looking for the desired feature.

Sequential reads are generally considered interrupted by a GetFeature() call.

The returned feature should be free with OGRFeature::DestroyFeature().

This method is the same as the C function OGR_L_GetFeature().

Parameters:

nFID the feature id of the feature to read.

4.3 OGRLayer Class Reference 23

Returns:

a feature now owned by the caller, or NULL on failure.

4.3.2.9 int OGRLayer::GetFeatureCount (int bForce = TRUE) [virtual]

Fetch the feature count in this layer. Returns the number of features in the layer. For dynamic databases
the count may not be exact. If bForce is FALSE, and it would be expensive to establish the feature count a
value of -1 may be returned indicating that the count isn’t know. If bForce is TRUE some implementations
will actually scan the entire layer once to count objects.

The returned count takes the spatial filter into account.

Note that some implementations of this method may alter the read cursor of the layer.

This method is the same as the C function OGR_L_GetFeatureCount().

Parameters:

bForce Flag indicating whether the count should be computed even if it is expensive.

Returns:

feature count, -1 if count not known.

4.3.2.10 const char ∗ OGRLayer::GetFIDColumn () [virtual]

This method returns the name of the underlying database column being used as the FID column, or "" if
not supported. This method is the same as the C function OGR_L_GetFIDColumn().

Returns:

fid column name.

4.3.2.11 const char ∗ OGRLayer::GetGeometryColumn () [virtual]

This method returns the name of the underlying database column being used as the geometry column, or
"" if not supported. This method is the same as the C function OGR_L_GetGeometryColumn().

Returns:

geometry column name.

4.3.2.12 OGRwkbGeometryType OGRLayer::GetGeomType () [virtual]

Return the layer geometry type. This returns the same result as GetLayerDefn()->GetGeomType(), but for
a few drivers, calling GetGeomType() directly can avoid lengthy layer definition initialization.

This method is the same as the C function OGR_L_GetGeomType().

If this method is derived in a driver, it must be done such that it returns the same content as GetLayerDefn()-
>GetGeomType().

24 Class Documentation

Returns:

the geometry type

Since:

OGR 1.8.0

4.3.2.13 const char ∗ OGRLayer::GetInfo (const char ∗ pszTag) [virtual]

Fetch metadata from layer. This method can be used to fetch various kinds of metadata or layer specific
information encoded as a string. It is anticipated that various tag values will be defined with well known
semantics, while other tags will be used for driver/application specific purposes.

This method is deprecated and will be replaced with a more general metadata model in the future. At this
time no drivers return information via the GetInfo() call.

Parameters:

pszTag the tag for which information is being requested.

Returns:

the value of the requested tag, or NULL if that tag does not have a value, or is unknown.

Deprecated

4.3.2.14 OGRFeatureDefn ∗ OGRLayer::GetLayerDefn () [pure virtual]

Fetch the schema information for this layer. The returned OGRFeatureDefn is owned by the OGRLayer,
and should not be modified or freed by the application. It encapsulates the attribute schema of the features
of the layer.

This method is the same as the C function OGR_L_GetLayerDefn().

Returns:

feature definition.

4.3.2.15 const char ∗ OGRLayer::GetName () [virtual]

Return the layer name. This returns the same content as GetLayerDefn()->GetName(), but for a few
drivers, calling GetName() directly can avoid lengthy layer definition initialization.

This method is the same as the C function OGR_L_GetName().

If this method is derived in a driver, it must be done such that it returns the same content as GetLayerDefn()-
>GetName().

Returns:

the layer name (must not been freed)

Since:

OGR 1.8.0

4.3 OGRLayer Class Reference 25

4.3.2.16 OGRFeature ∗ OGRLayer::GetNextFeature () [pure virtual]

Fetch the next available feature from this layer. The returned feature becomes the responsiblity of the caller
to delete with OGRFeature::DestroyFeature(). It is critical that all features associated with an OGRLayer
(more specifically an OGRFeatureDefn) be deleted before that layer/datasource is deleted.

Only features matching the current spatial filter (set with SetSpatialFilter()) will be returned.

This method implements sequential access to the features of a layer. The ResetReading() method can be
used to start at the beginning again.

This method is the same as the C function OGR_L_GetNextFeature().

Returns:

a feature, or NULL if no more features are available.

4.3.2.17 int OGRLayer::GetRefCount () const

Fetch reference count. This method is the same as the C function OGR_L_GetRefCount().

Returns:

the current reference count for the layer object itself.

4.3.2.18 OGRGeometry ∗ OGRLayer::GetSpatialFilter () [virtual]

This method returns the current spatial filter for this layer. The returned pointer is to an internally owned
object, and should not be altered or deleted by the caller.

This method is the same as the C function OGR_L_GetSpatialFilter().

Returns:

spatial filter geometry.

4.3.2.19 OGRSpatialReference ∗ OGRLayer::GetSpatialRef () [inline, virtual]

Fetch the spatial reference system for this layer. The returned object is owned by the OGRLayer and should
not be modified or freed by the application.

This method is the same as the C function OGR_L_GetSpatialRef().

Returns:

spatial reference, or NULL if there isn’t one.

4.3.2.20 void OGRLayer::GetStyleTable () [virtual]

Returns layer style table. This method is the same as the C function OGR_L_GetStyleTable().

Returns:

pointer to a style table which should not be modified or freed by the caller.

26 Class Documentation

4.3.2.21 int OGRLayer::Reference ()

Increment layer reference count. This method is the same as the C function OGR_L_Reference().

Returns:

the reference count after incrementing.

4.3.2.22 OGRErr OGRLayer::ReorderField (int iOldFieldPos, int iNewFieldPos)

Reorder an existing field on a layer. This method is a conveniency wrapper of ReorderFields() dedicated to
move a single field. It is a non-virtual method, so drivers should implement ReorderFields() instead.

You must use this to reorder existing fields on a real layer. Internally the OGRFeatureDefn for the layer will
be updated to reflect the reordering of the fields. Applications should never modify the OGRFeatureDefn
used by a layer directly.

This method should not be called while there are feature objects in existance that were obtained or created
with the previous layer definition.

The field definition that was at initial position iOldFieldPos will be moved at position iNewFieldPos, and
elements between will be shuffled accordingly.

For example, let suppose the fields were "0","1","2","3","4" initially. ReorderField(1, 3) will reorder them
as "0","2","3","1","4".

Not all drivers support this method. You can query a layer to check if it supports it with the OLCReorder-
Fields capability. Some drivers may only support this method while there are still no features in the layer.
When it is supported, the existings features of the backing file/database should be updated accordingly.

This function is the same as the C function OGR_L_ReorderField().

Parameters:

iOldFieldPos previous position of the field to move. Must be in the range [0,GetFieldCount()-1].

iNewFieldPos new position of the field to move. Must be in the range [0,GetFieldCount()-1].

Returns:

OGRERR_NONE on success.

Since:

OGR 1.9.0

4.3.2.23 OGRErr OGRLayer::ReorderFields (int ∗ panMap) [virtual]

Reorder all the fields of a layer. You must use this to reorder existing fields on a real layer. Internally the
OGRFeatureDefn for the layer will be updated to reflect the reordering of the fields. Applications should
never modify the OGRFeatureDefn used by a layer directly.

This method should not be called while there are feature objects in existance that were obtained or created
with the previous layer definition.

panMap is such that,for each field definition at position i after reordering, its position before reordering
was panMap[i].

4.3 OGRLayer Class Reference 27

For example, let suppose the fields were "0","1","2","3","4" initially. ReorderFields([0,2,3,1,4]) will re-
order them as "0","2","3","1","4".

Not all drivers support this method. You can query a layer to check if it supports it with the OLCReorder-
Fields capability. Some drivers may only support this method while there are still no features in the layer.
When it is supported, the existings features of the backing file/database should be updated accordingly.

This function is the same as the C function OGR_L_ReorderFields().

Parameters:

panMap an array of GetLayerDefn()->GetFieldCount() elements which is a permutation of [0, Get-
LayerDefn()->GetFieldCount()-1].

Returns:

OGRERR_NONE on success.

Since:

OGR 1.9.0

4.3.2.24 void OGRLayer::ResetReading () [pure virtual]

Reset feature reading to start on the first feature. This affects GetNextFeature().

This method is the same as the C function OGR_L_ResetReading().

4.3.2.25 void OGRLayer::SetAttributeFilter (const char ∗ pszQuery) [virtual]

Set a new attribute query. This method sets the attribute query string to be used when fetching features via
the GetNextFeature() method. Only features for which the query evaluates as true will be returned.

The query string should be in the format of an SQL WHERE clause. For instance "population > 1000000
and population < 5000000" where population is an attribute in the layer. The query format is normally a
restricted form of SQL WHERE clause as described in the "WHERE" section of the OGR SQL tutorial. In
some cases (RDBMS backed drivers) the native capabilities of the database may be used to interprete the
WHERE clause in which case the capabilities will be broader than those of OGR SQL.

Note that installing a query string will generally result in resetting the current reading position (ala Rese-
tReading()).

This method is the same as the C function OGR_L_SetAttributeFilter().

Parameters:

pszQuery query in restricted SQL WHERE format, or NULL to clear the current query.

Returns:

OGRERR_NONE if successfully installed, or an error code if the query expression is in error, or some
other failure occurs.

file:ogr_sql.html

28 Class Documentation

4.3.2.26 OGRErr OGRLayer::SetFeature (OGRFeature ∗ poFeature) [virtual]

Rewrite an existing feature. This method will write a feature to the layer, based on the feature id within the
OGRFeature.

Use OGRLayer::TestCapability(OLCRandomWrite) to establish if this layer supports random access writ-
ing via SetFeature().

This method is the same as the C function OGR_L_SetFeature().

Parameters:

poFeature the feature to write.

Returns:

OGRERR_NONE if the operation works, otherwise an appropriate error code.

4.3.2.27 OGRErr OGRLayer::SetIgnoredFields (const char ∗∗ papszFields) [virtual]

Set which fields can be omitted when retrieving features from the layer. If the driver supports this function-
ality (testable using OLCIgnoreFields capability), it will not fetch the specified fields in subsequent calls
to GetFeature() / GetNextFeature() and thus save some processing time and/or bandwidth.

Besides field names of the layers, the following special fields can be passed: "OGR_GEOMETRY" to
ignore geometry and "OGR_STYLE" to ignore layer style.

By default, no fields are ignored.

This method is the same as the C function OGR_L_SetIgnoredFields()

Parameters:

papszFields an array of field names terminated by NULL item. If NULL is passed, the ignored list is
cleared.

Returns:

OGRERR_NONE if all field names have been resolved (even if the driver does not support this
method)

4.3.2.28 OGRErr OGRLayer::SetNextByIndex (long nIndex) [virtual]

Move read cursor to the nIndex’th feature in the current resultset. This method allows positioning of a layer
such that the GetNextFeature() call will read the requested feature, where nIndex is an absolute index into
the current result set. So, setting it to 3 would mean the next feature read with GetNextFeature() would
have been the 4th feature to have been read if sequential reading took place from the beginning of the layer,
including accounting for spatial and attribute filters.

Only in rare circumstances is SetNextByIndex() efficiently implemented. In all other cases the default
implementation which calls ResetReading() and then calls GetNextFeature() nIndex times is used. To
determine if fast seeking is available on the current layer use the TestCapability() method with a value of
OLCFastSetNextByIndex.

This method is the same as the C function OGR_L_SetNextByIndex().

4.3 OGRLayer Class Reference 29

Parameters:

nIndex the index indicating how many steps into the result set to seek.

Returns:

OGRERR_NONE on success or an error code.

4.3.2.29 void OGRLayer::SetSpatialFilter (OGRGeometry ∗ poFilter) [virtual]

Set a new spatial filter. This method set the geometry to be used as a spatial filter when fetching features
via the GetNextFeature() method. Only features that geometrically intersect the filter geometry will be
returned.

Currently this test is may be inaccurately implemented, but it is guaranteed that all features who’s envelope
(as returned by OGRGeometry::getEnvelope()) overlaps the envelope of the spatial filter will be returned.
This can result in more shapes being returned that should strictly be the case.

This method makes an internal copy of the passed geometry. The passed geometry remains the responsi-
bility of the caller, and may be safely destroyed.

For the time being the passed filter geometry should be in the same SRS as the layer (as returned by
OGRLayer::GetSpatialRef()). In the future this may be generalized.

This method is the same as the C function OGR_L_SetSpatialFilter().

Parameters:

poFilter the geometry to use as a filtering region. NULL may be passed indicating that the current
spatial filter should be cleared, but no new one instituted.

4.3.2.30 void OGRLayer::SetSpatialFilterRect (double dfMinX, double dfMinY, double dfMaxX,
double dfMaxY) [virtual]

Set a new rectangular spatial filter. This method set rectangle to be used as a spatial filter when fetching
features via the GetNextFeature() method. Only features that geometrically intersect the given rectangle
will be returned.

The x/y values should be in the same coordinate system as the layer as a whole (as returned by OGR-
Layer::GetSpatialRef()). Internally this method is normally implemented as creating a 5 vertex closed
rectangular polygon and passing it to OGRLayer::SetSpatialFilter(). It exists as a convenience.

The only way to clear a spatial filter set with this method is to call OGRLayer::SetSpatialFilter(NULL).

This method is the same as the C function OGR_L_SetSpatialFilterRect().

Parameters:

dfMinX the minimum X coordinate for the rectangular region.

dfMinY the minimum Y coordinate for the rectangular region.

dfMaxX the maximum X coordinate for the rectangular region.

dfMaxY the maximum Y coordinate for the rectangular region.

30 Class Documentation

4.3.2.31 void OGRLayer::SetStyleTable (OGRStyleTable ∗ poStyleTable) [virtual]

Set layer style table. This method operate exactly as OGRLayer::SetStyleTableDirectly() except that it
does not assume ownership of the passed table.

This method is the same as the C function OGR_L_SetStyleTable().

Parameters:

poStyleTable pointer to style table to set

4.3.2.32 void OGRLayer::SetStyleTableDirectly (OGRStyleTable ∗ poStyleTable) [virtual]

Set layer style table. This method operate exactly as OGRLayer::SetStyleTable() except that it assumes
ownership of the passed table.

This method is the same as the C function OGR_L_SetStyleTableDirectly().

Parameters:

poStyleTable pointer to style table to set

4.3.2.33 OGRErr OGRLayer::SyncToDisk () [virtual]

Flush pending changes to disk. This call is intended to force the layer to flush any pending writes to disk,
and leave the disk file in a consistent state. It would not normally have any effect on read-only datasources.

Some layers do not implement this method, and will still return OGRERR_NONE. The default implemen-
tation just returns OGRERR_NONE. An error is only returned if an error occurs while attempting to flush
to disk.

In any event, you should always close any opened datasource with OGRDataSource::DestroyDataSource()
that will ensure all data is correctly flushed.

This method is the same as the C function OGR_L_SyncToDisk().

Returns:

OGRERR_NONE if no error occurs (even if nothing is done) or an error code.

4.3.2.34 int OGRLayer::TestCapability (const char ∗ pszCap) [pure virtual]

Test if this layer supported the named capability. The capability codes that can be tested are represented as
strings, but #defined constants exists to ensure correct spelling. Specific layer types may implement class
specific capabilities, but this can’t generally be discovered by the caller.

• OLCRandomRead / "RandomRead": TRUE if the GetFeature() method is implemented in an op-
timized way for this layer, as opposed to the default implementation using ResetReading() and Get-
NextFeature() to find the requested feature id.

• OLCSequentialWrite / "SequentialWrite": TRUE if the CreateFeature() method works for this
layer. Note this means that this particular layer is writable. The same OGRLayer class may returned
FALSE for other layer instances that are effectively read-only.

4.3 OGRLayer Class Reference 31

• OLCRandomWrite / "RandomWrite": TRUE if the SetFeature() method is operational on this layer.
Note this means that this particular layer is writable. The same OGRLayer class may returned FALSE
for other layer instances that are effectively read-only.

• OLCFastSpatialFilter / "FastSpatialFilter": TRUE if this layer implements spatial filtering effi-
ciently. Layers that effectively read all features, and test them with the OGRFeature intersection
methods should return FALSE. This can be used as a clue by the application whether it should build
and maintain its own spatial index for features in this layer.

• OLCFastFeatureCount / "FastFeatureCount": TRUE if this layer can return a feature count (via
GetFeatureCount()) efficiently ... ie. without counting the features. In some cases this will return
TRUE until a spatial filter is installed after which it will return FALSE.

• OLCFastGetExtent / "FastGetExtent": TRUE if this layer can return its data extent (via GetEx-
tent()) efficiently ... ie. without scanning all the features. In some cases this will return TRUE until
a spatial filter is installed after which it will return FALSE.

• OLCFastSetNextByIndex / "FastSetNextByIndex": TRUE if this layer can perform the Set-
NextByIndex() call efficiently, otherwise FALSE.

• OLCCreateField / "CreateField": TRUE if this layer can create new fields on the current layer using
CreateField(), otherwise FALSE.

• OLCDeleteField / "DeleteField": TRUE if this layer can delete existing fields on the current layer
using DeleteField(), otherwise FALSE.

• OLCReorderFields / "ReorderFields": TRUE if this layer can reorder existing fields on the current
layer using ReorderField() or ReorderFields(), otherwise FALSE.

• OLCAlterFieldDefn / "AlterFieldDefn": TRUE if this layer can alter the definition of an existing
field on the current layer using AlterFieldDefn(), otherwise FALSE.

• OLCDeleteFeature / "DeleteFeature": TRUE if the DeleteFeature() method is supported on this
layer, otherwise FALSE.

• OLCStringsAsUTF8 / "StringsAsUTF8": TRUE if values of OFTString fields are assured to be in
UTF-8 format. If FALSE the encoding of fields is uncertain, though it might still be UTF-8.

• OLCTransactions / "Transactions": TRUE if the StartTransaction(), CommitTransaction() and Roll-
backTransaction() methods work in a meaningful way, otherwise FALSE.

• OLCIgnoreFields / "IgnoreFields": TRUE if fields, geometry and style will be omitted when fetch-
ing features as set by SetIgnoredFields() method.

This method is the same as the C function OGR_L_TestCapability().

Parameters:

pszCap the name of the capability to test.

Returns:

TRUE if the layer has the requested capability, or FALSE otherwise. OGRLayers will return FALSE
for any unrecognised capabilities.

The documentation for this class was generated from the following files:

• ogrsf_frmts.h
• ogrsf_frmts.dox

32 Class Documentation

4.4 OGRLayerAttrIndex Class Reference

Public Member Functions

• virtual OGRErr Initialize (const char ∗pszIndexPath, OGRLayer ∗)=0
• virtual OGRErr CreateIndex (int iField)=0
• virtual OGRErr DropIndex (int iField)=0
• virtual OGRErr IndexAllFeatures (int iField=-1)=0
• virtual OGRErr AddToIndex (OGRFeature ∗poFeature, int iField=-1)=0
• virtual OGRErr RemoveFromIndex (OGRFeature ∗poFeature)=0
• virtual OGRAttrIndex ∗ GetFieldIndex (int iField)=0

Protected Attributes

• OGRLayer ∗ poLayer
• char ∗ pszIndexPath

The documentation for this class was generated from the following file:

• ogr_attrind.h

4.5 OGRSFDriver Class Reference 33

4.5 OGRSFDriver Class Reference

#include <ogrsf_frmts.h>

Public Member Functions

• virtual const char ∗ GetName ()=0

Fetch name of driver (file format). This name should be relatively short (10-40 characters), and should
reflect the underlying file format. For instance "ESRI Shapefile".

• virtual OGRDataSource ∗ Open (const char ∗pszName, int bUpdate=FALSE)=0

Attempt to open file with this driver.

• virtual int TestCapability (const char ∗)=0

Test if capability is available.

• virtual OGRDataSource ∗ CreateDataSource (const char ∗pszName, char ∗∗=NULL)

This method attempts to create a new data source based on the passed driver.

• virtual OGRErr DeleteDataSource (const char ∗pszName)

Delete a datasource.

• virtual OGRDataSource ∗ CopyDataSource (OGRDataSource ∗poSrcDS, const char ∗pszNewName,
char ∗∗papszOptions=NULL)

This method creates a new datasource by copying all the layers from the source datasource.

4.5.1 Detailed Description

Represents an operational format driver.

One OGRSFDriver derived class will normally exist for each file format registered for use, regardless of
whether a file has or will be opened. The list of available drivers is normally managed by the OGRSF-
DriverRegistrar.

4.5.2 Member Function Documentation

4.5.2.1 OGRDataSource ∗ OGRSFDriver::CopyDataSource (OGRDataSource ∗ poSrcDS, const
char ∗ pszNewName, char ∗∗ papszOptions = NULL) [virtual]

This method creates a new datasource by copying all the layers from the source datasource. It is important
to call OGRDataSource::DestroyDataSource() when the datasource is no longer used to ensure that all data
has been properly flushed to disk.

This method is the same as the C function OGR_Dr_CopyDataSource().

Parameters:

poSrcDS source datasource

pszNewName the name for the new data source. UTF-8 encoded.

34 Class Documentation

papszOptions a StringList of name=value options. Options are driver specific, and driver information
can be found at the following url: http://www.gdal.org/ogr/ogr_formats.html

Returns:

NULL is returned on failure, or a new OGRDataSource handle on success.

4.5.2.2 OGRDataSource ∗ OGRSFDriver::CreateDataSource (const char ∗ pszName, char ∗∗
papszOptions = NULL) [virtual]

This method attempts to create a new data source based on the passed driver. The papszOptions argument
can be used to control driver specific creation options. These options are normally documented in the
format specific documentation.

It is important to call OGRDataSource::DestroyDataSource() when the datasource is no longer used to
ensure that all data has been properly flushed to disk.

This method is the same as the C function OGR_Dr_CreateDataSource().

Note:

This method does NOT attach driver instance to the returned data source, so caller should expect that
OGRDataSource::GetDriver() will return NULL pointer. In order to attach driver to the returned data
source, it is required to use C function OGR_Dr_CreateDataSource. This behavior is related to fix of
issue reported in Ticket #1233.

Parameters:

pszName the name for the new data source. UTF-8 encoded.

papszOptions a StringList of name=value options. Options are driver specific, and driver information
can be found at the following url: http://www.gdal.org/ogr/ogr_formats.html

Returns:

NULL is returned on failure, or a new OGRDataSource on success.

4.5.2.3 OGRErr OGRSFDriver::DeleteDataSource (const char ∗ pszDataSource) [virtual]

Delete a datasource. Delete (from the disk, in the database, ...) the named datasource. Normally it would
be safest if the datasource was not open at the time.

Whether this is a supported operation on this driver case be tested using TestCapability() on ODrCDelete-
DataSource.

This method is the same as the C function OGR_Dr_DeleteDataSource().

Parameters:

pszDataSource the name of the datasource to delete.

Returns:

OGRERR_NONE on success, and OGRERR_UNSUPPORTED_OPERATION if this is not supported
by this driver.

http://www.gdal.org/ogr/ogr_formats.html
http://trac.osgeo.org/gdal/ticket/1223
http://www.gdal.org/ogr/ogr_formats.html

4.5 OGRSFDriver Class Reference 35

4.5.2.4 const char ∗ OGRSFDriver::GetName () [pure virtual]

Fetch name of driver (file format). This name should be relatively short (10-40 characters), and should
reflect the underlying file format. For instance "ESRI Shapefile". This method is the same as the C function
OGR_Dr_GetName().

Returns:

driver name. This is an internal string and should not be modified or freed.

4.5.2.5 OGRDataSource ∗ OGRSFDriver::Open (const char ∗ pszName, int bUpdate = FALSE)
[pure virtual]

Attempt to open file with this driver. This method is what OGRSFDriverRegistrar uses to implement its
Open() method. See it for more details.

Note, drivers do not normally set their own m_poDriver value, so a direct call to this method (instead of
indirectly via OGRSFDriverRegistrar) will usually result in a datasource that does not know what driver
it relates to if GetDriver() is called on the datasource. The application may directly call SetDriver() after
opening with this method to avoid this problem.

For drivers supporting the VSI virtual file API, it is possible to open a file in a .zip archive (see VSIInstal-
lZipFileHandler()), in a .tar/.tar.gz/.tgz archive (see VSIInstallTarFileHandler()) or on a HTTP / FTP server
(see VSIInstallCurlFileHandler())

This method is the same as the C function OGR_Dr_Open().

Parameters:

pszName the name of the file, or data source to try and open.

bUpdate TRUE if update access is required, otherwise FALSE (the default).

Returns:

NULL on error or if the pass name is not supported by this driver, otherwise a pointer to an OGRData-
Source. This OGRDataSource should be closed by deleting the object when it is no longer needed.

4.5.2.6 int OGRSFDriver::TestCapability (const char ∗ pszCapability) [pure virtual]

Test if capability is available. One of the following data source capability names can be passed into this
method, and a TRUE or FALSE value will be returned indicating whether or not the capability is available
for this object.

• ODrCCreateDataSource: True if this driver can support creating data sources.

• ODrCDeleteDataSource: True if this driver supports deleting data sources.

The #define macro forms of the capability names should be used in preference to the strings themselves to
avoid mispelling.

This method is the same as the C function OGR_Dr_TestCapability().

Parameters:

pszCapability the capability to test.

36 Class Documentation

Returns:

TRUE if capability available otherwise FALSE.

The documentation for this class was generated from the following files:

• ogrsf_frmts.h
• ogrsf_frmts.dox

4.6 OGRSFDriverRegistrar Class Reference 37

4.6 OGRSFDriverRegistrar Class Reference

#include <ogrsf_frmts.h>

Public Member Functions

• OGRDataSource ∗ OpenShared (const char ∗pszName, int bUpdate=FALSE, OGRSFDriver
∗∗ppoDriver=NULL)

• OGRErr ReleaseDataSource (OGRDataSource ∗)
• void RegisterDriver (OGRSFDriver ∗poDriver)

Add a driver to the list of registered drivers.

• void DeregisterDriver (OGRSFDriver ∗poDriver)

Remove the passed driver from the list of registered drivers.

• int GetDriverCount (void)

Fetch the number of registered drivers.

• OGRSFDriver ∗ GetDriver (int iDriver)

Fetch the indicated driver.

• OGRSFDriver ∗ GetDriverByName (const char ∗)

Fetch the indicated driver.

• int GetOpenDSCount ()

Return the number of opened datasources.

• OGRDataSource ∗ GetOpenDS (int)

Return the iDS th datasource opened.

• void AutoLoadDrivers ()

Static Public Member Functions

• static OGRSFDriverRegistrar ∗ GetRegistrar ()

Return the driver manager, creating one if none exist.

• static OGRDataSource ∗ Open (const char ∗pszName, int bUpdate=FALSE, OGRSFDriver
∗∗ppoDriver=NULL)

Open a file / data source with one of the registered drivers.

4.6.1 Detailed Description

Singleton manager for OGRSFDriver instances that will be used to try and open datasources. Normally
the registrar is populated with standard drivers using the OGRRegisterAll() function and does not need to
be directly accessed. The driver registrar and all registered drivers may be cleaned up on shutdown using
OGRCleanupAll().

38 Class Documentation

4.6.2 Member Function Documentation

4.6.2.1 void OGRSFDriverRegistrar::DeregisterDriver (OGRSFDriver ∗ poDriver)

Remove the passed driver from the list of registered drivers. This method is the same as the C function
OGRDeregisterDriver().

Parameters:

poDriver the driver to deregister.

Since:

GDAL 1.8.0

4.6.2.2 OGRSFDriver ∗ OGRSFDriverRegistrar::GetDriver (int iDriver)

Fetch the indicated driver. This method is the same as the C function OGRGetDriver().

Parameters:

iDriver the driver index, from 0 to GetDriverCount()-1.

Returns:

the driver, or NULL if iDriver is out of range.

4.6.2.3 OGRSFDriver ∗ OGRSFDriverRegistrar::GetDriverByName (const char ∗ pszName)

Fetch the indicated driver. This method is the same as the C function OGRGetDriverByName

Parameters:

pszName the driver name

Returns:

the driver, or NULL if no driver with that name is found

4.6.2.4 int OGRSFDriverRegistrar::GetDriverCount (void)

Fetch the number of registered drivers. This method is the same as the C function OGRGetDriverCount().

Returns:

the drivers count.

4.6.2.5 OGRDataSource ∗ OGRSFDriverRegistrar::GetOpenDS (int iDS)

Return the iDS th datasource opened. This method is the same as the C function OGRGetOpenDS().

Parameters:

iDS the index of the dataset to return (between 0 and GetOpenDSCount() - 1)

4.6 OGRSFDriverRegistrar Class Reference 39

4.6.2.6 int OGRSFDriverRegistrar::GetOpenDSCount () [inline]

Return the number of opened datasources. This method is the same as the C function OGRGetOpenD-
SCount()

Returns:

the number of opened datasources.

4.6.2.7 OGRSFDriverRegistrar ∗ OGRSFDriverRegistrar::GetRegistrar () [static]

Return the driver manager, creating one if none exist.

Returns:

the driver manager.

4.6.2.8 OGRDataSource ∗ OGRSFDriverRegistrar::Open (const char ∗ pszName, int bUpdate =
FALSE, OGRSFDriver ∗∗ ppoDriver = NULL) [static]

Open a file / data source with one of the registered drivers. This method loops through all the drivers
registered with the driver manager trying each until one succeeds with the given data source. This method
is static. Applications don’t normally need to use any other OGRSFDriverRegistrar methods directly, nor
do they normally need to have a pointer to an OGRSFDriverRegistrar instance.

If this method fails, CPLGetLastErrorMsg() can be used to check if there is an error message explaining
why.

For drivers supporting the VSI virtual file API, it is possible to open a file in a .zip archive (see VSIInstal-
lZipFileHandler()), in a .tar/.tar.gz/.tgz archive (see VSIInstallTarFileHandler()) or on a HTTP / FTP server
(see VSIInstallCurlFileHandler())

This method is the same as the C function OGROpen().

Parameters:

pszName the name of the file, or data source to open. UTF-8 encoded.
bUpdate FALSE for read-only access (the default) or TRUE for read-write access.
ppoDriver if non-NULL, this argument will be updated with a pointer to the driver which was used to

open the data source.

Returns:

NULL on error or if the pass name is not supported by this driver, otherwise a pointer to an OGRData-
Source. This OGRDataSource should be closed by deleting the object when it is no longer needed.

Example:

OGRDataSource *poDS;

poDS = OGRSFDriverRegistrar::Open("polygon.shp");
if(poDS == NULL)
{

return;
}

40 Class Documentation

... use the data source ...

OGRDataSource::DestroyDataSource(poDS);

4.6.2.9 void OGRSFDriverRegistrar::RegisterDriver (OGRSFDriver ∗ poDriver)

Add a driver to the list of registered drivers. If the passed driver is already registered (based on pointer
comparison) then the driver isn’t registered. New drivers are added at the end of the list of registered
drivers.

This method is the same as the C function OGRRegisterDriver().

Parameters:

poDriver the driver to add.

The documentation for this class was generated from the following files:

• ogrsf_frmts.h
• ogrsf_frmts.dox

Chapter 5

File Documentation

5.1 ogrsf_frmts.h File Reference

#include "ogr_feature.h"

#include "ogr_featurestyle.h"

Classes

• class OGRLayer
• class OGRDataSource
• class OGRSFDriver
• class OGRSFDriverRegistrar

Functions

• CPL_C_START void CPL_DLL OGRRegisterAll ()

Register all drivers.

• void CPL_DLL RegisterOGRFileGDB ()
• void CPL_DLL RegisterOGRShape ()
• void CPL_DLL RegisterOGRNTF ()
• void CPL_DLL RegisterOGRFME ()
• void CPL_DLL RegisterOGRSDTS ()
• void CPL_DLL RegisterOGRTiger ()
• void CPL_DLL RegisterOGRS57 ()
• void CPL_DLL RegisterOGRTAB ()
• void CPL_DLL RegisterOGRMIF ()
• void CPL_DLL RegisterOGROGDI ()
• void CPL_DLL RegisterOGRODBC ()
• void CPL_DLL RegisterOGRPG ()
• void CPL_DLL RegisterOGRMSSQLSpatial ()
• void CPL_DLL RegisterOGRMySQL ()
• void CPL_DLL RegisterOGROCI ()
• void CPL_DLL RegisterOGRDGN ()

42 File Documentation

• void CPL_DLL RegisterOGRGML ()
• void CPL_DLL RegisterOGRLIBKML ()
• void CPL_DLL RegisterOGRKML ()
• void CPL_DLL RegisterOGRGeoJSON ()
• void CPL_DLL RegisterOGRAVCBin ()
• void CPL_DLL RegisterOGRAVCE00 ()
• void CPL_DLL RegisterOGRREC ()
• void CPL_DLL RegisterOGRMEM ()
• void CPL_DLL RegisterOGRVRT ()
• void CPL_DLL RegisterOGRDODS ()
• void CPL_DLL RegisterOGRSQLite ()
• void CPL_DLL RegisterOGRCSV ()
• void CPL_DLL RegisterOGRILI1 ()
• void CPL_DLL RegisterOGRILI2 ()
• void CPL_DLL RegisterOGRGRASS ()
• void CPL_DLL RegisterOGRPGeo ()
• void CPL_DLL RegisterOGRDXFDWG ()
• void CPL_DLL RegisterOGRDXF ()
• void CPL_DLL RegisterOGRDWG ()
• void CPL_DLL RegisterOGRSDE ()
• void CPL_DLL RegisterOGRIDB ()
• void CPL_DLL RegisterOGRGMT ()
• void CPL_DLL RegisterOGRBNA ()
• void CPL_DLL RegisterOGRGPX ()
• void CPL_DLL RegisterOGRGeoconcept ()
• void CPL_DLL RegisterOGRIngres ()
• void CPL_DLL RegisterOGRPCIDSK ()
• void CPL_DLL RegisterOGRXPlane ()
• void CPL_DLL RegisterOGRNAS ()
• void CPL_DLL RegisterOGRGeoRSS ()
• void CPL_DLL RegisterOGRGTM ()
• void CPL_DLL RegisterOGRVFK ()
• void CPL_DLL RegisterOGRPGDump ()
• void CPL_DLL RegisterOGRGPSBabel ()
• void CPL_DLL RegisterOGRSUA ()
• void CPL_DLL RegisterOGROpenAir ()
• void CPL_DLL RegisterOGRPDS ()
• void CPL_DLL RegisterOGRWFS ()
• void CPL_DLL RegisterOGRSOSI ()
• void CPL_DLL RegisterOGRHTF ()
• void CPL_DLL RegisterOGRAeronavFAA ()
• void CPL_DLL RegisterOGRGeomedia ()
• void CPL_DLL RegisterOGRMDB ()
• void CPL_DLL RegisterOGREDIGEO ()
• void CPL_DLL RegisterOGRGFT ()
• void CPL_DLL RegisterOGRSVG ()
• void CPL_DLL RegisterOGRCouchDB ()
• void CPL_DLL RegisterOGRIdrisi ()
• void CPL_DLL RegisterOGRARCGEN ()
• void CPL_DLL RegisterOGRSEGUKOOA ()
• void CPL_DLL RegisterOGRSEGY ()
• void CPL_DLL RegisterOGRXLS ()

5.1 ogrsf_frmts.h File Reference 43

5.1.1 Detailed Description

Classes related to registration of format support, and opening datasets.

