
« E-Maj » PostgreSQL extension

-

User's Guide

Version: 1.3.1

Last update: 15 September 2016

Summary

1 - Introduction...6

1.1 - Document content..6

1.2 - License...6

1.3 - E-Maj's objectives...6

2 - How E-Maj works..8

2.1 - Concepts...8

2.1.1 - Tables Group..8

2.1.2 - Mark..8

2.1.3 - Rollback..8

2.2 - Architecture...9

2.2.1 - Logged SQL statements..9

2.2.2 - Created objects..9

2.2.3 - Norm for E-Maj objects naming...10

2.2.4 - Schemas..11

2.2.5 - Tablespaces...11

3 - How to install E-Maj..12

3.1 - extension download and decompression...12

3.1.1 - Download...12

3.1.2 - Decompression..12

3.2 - E-Maj extension setup..13

3.2.1 - Preliminary operations...13

3.2.2 - E-Maj components installation...15

3.2.3 - Changes in postgresql.conf configuration file..15

3.2.4 - E-Maj parameters...16

3.2.5 - Test and demonstration...16

3.3 - Update an existing E-Maj version...17

3.3.1 - General approach..17

3.3.2 - Un-registering an old E-Maj extension...17

3.3.3 - Migration by deletion and re-installation..18

3.3.4 - Migration from E-Maj 0.10.0 to 0.10.1...19

3.3.5 - Migration from E-Maj 0.10.1 to 0.11.0...19

3.3.6 - Migration from E-Maj 0.11.0 to 0.11.1...21

3.3.7 - Migration from E-Maj 0.11.1 to 1.0.0...22

3.3.8 - Migration from E-Maj 1.0.0 to 1.0.1...22

3.3.9 - Migration from E-Maj 1.0.1 to 1.0.2...23

E-Maj User's Guide – version 1.3.1 Page 2 / 94

3.3.10 - Migration from E-Maj 1.0.2 to 1.1.0...23

3.3.11 - Migration from E-Maj 1.1.0 to 1.2.0...24

3.4 - E-Maj uninstall..25

4 - How to use E-Maj..26

4.1 - Set-up the E-Maj access policy ...26

4.1.1 - E-Maj roles...26

4.1.2 - Giving E-Maj rights...26

4.1.3 - Giving rights on application tables and objects...26

4.1.4 - Synthesis..27

4.2 - Main functions..28

4.2.1 - Operations chain..28

4.2.2 - Define tables groups..29

4.2.3 - Create a tables group...31

4.2.4 - Start a tables group..32

4.2.5 - Set an intermediate mark...33

4.2.6 - Rollback a tables group..34

4.2.7 - Perform a logged rollback of a tables group..35

4.2.8 - Stop a tables group..37

4.2.9 - Alter a tables group..38

4.2.10 - Drop a tables group..39

4.3 - Multi-groups functions..40

4.3.1 - General information..40

4.3.2 - Functions list..40

4.3.3 - Syntax for groups array..40

4.3.4 - Other considerations..41

4.4 - Other groups management functions...42

4.4.1 - Reset log tables of a group..42

4.4.2 - Comments on groups...42

4.4.3 - Protection of a tables group against rollbacks...42

4.4.4 - Forced stop of a tables group..43

4.4.5 - Forced suppression of a tables group...44

4.5 - Marks management functions..45

4.5.1 - Comments on marks..45

4.5.2 - Search a mark..45

4.5.3 - Rename a mark..46

4.5.4 - Delete a mark...46

4.5.5 - Delete oldest marks...47

4.5.6 - Protection of a mark against rollbacks...47

4.6 - Statistics functions..49

4.6.1 - Global statistics about logs..49

4.6.2 - Detailed statistics about logs...50

E-Maj User's Guide – version 1.3.1 Page 3 / 94

4.6.3 - Estimate the rollback duration..51

4.7 - Data extraction functions..53

4.7.1 - Snap tables of a group...53

4.7.2 - Snap log tables of a group...54

4.7.3 - SQL script generation to replay logged updates...55

4.8 - Other functions...58

4.8.1 - Reset log tables of a group..58

4.8.2 - Comments on groups...58

4.8.3 - Check the consistency of the E-Maj environment.......................................58

4.8.4 - Forced stop of a tables group..59

4.8.5 - Forced suppression of a tables group...60

4.8.6 - Monitoring rollback operations...60

4.8.7 - Updating rollback operations state..61

4.9 - Parallel Rollback client...63

4.9.1 - Sessions...63

4.9.2 - Prerequisites..63

4.9.3 - Syntax...63

4.9.4 - Examples..64

4.10 - Rollback monitoring client..66

4.10.1 - Prerequisite..66

4.10.2 - Syntax..66

4.10.3 - Exemples..67

5 - Miscellaneous...68

5.1 - Parameters...68

5.2 - Internal checks...69

5.3 - Traces of operations...70

5.4 - Impacts on cluster and database administration...71

5.4.1 - Stopping and restarting the cluster..71

5.4.2 - Saving and restoring the database..72

5.4.3 - Data load..73

5.4.4 - Tables reorganisation...73

5.4.5 - Using E-Maj with replication...74

5.4.6 - PostgreSQL version upgrade...74

5.5 - Sensitivity to system time change..75

5.6 - Performance...76

5.6.1 - Updates recording overhead..76

5.6.2 - E-Maj rollback duration..76

5.6.3 - Optimizing E-Maj operations..76

5.7 - Usage limits..77

5.8 - User's responsibility..78

5.8.1 - Defining tables groups content..78

E-Maj User's Guide – version 1.3.1 Page 4 / 94

5.8.2 - Appropriate call of main functions..78

5.8.3 - Management of application triggers...78

5.8.4 - Internal E-Maj table or sequence change..79

6 - phpPgAdmin plug-in...80

6.1 - Overview...80

6.2 - Installation...80

6.2.1 - Prerequisite..80

6.2.2 - Plug-in download..80

6.2.3 - Plug-in activation..80

6.2.4 - Plug-in parametrization..81

6.3 - Using phpPgAdmin plug-in...81

6.3.1 - Accessing E-Maj from the phpPgAdmin interface.......................................81

6.3.2 - Tables groups list...82

6.3.3 - Some details about the user interface...83

6.3.4 - E-Maj environment state..84

6.3.5 - Tables groups content...84

6.3.6 - Tables group details...86

6.3.7 - Statistics...87

6.3.8 - Tables group content...88

6.3.9 - Monitoring rollback operations...89

7 - Appendix..90

7.1 - E-Maj functions list...90

E-Maj User's Guide – version 1.3.1 Page 5 / 94

1 INTRODUCTION

1.1 DOCUMENT CONTENT

This document is a user's guide for the E-Maj PostgreSQL extension.

Chapter 2 presents the concepts used by E-Maj and the general architecture of the
extension.

Chapter 3 describes E-Maj installation, update and uninstall procedures.

Chapter 4 details how to use E-Maj. It contains a description of each function.

Chapter 5 gives some additional information needed for a good understanding of how the
extension works.

Then, chapter 6 presents the E-Maj extension of the administration tool phpPgAdmin.

1.2 LICENSE

This extension and its documentation are distributed under GPL license (GNU - General
Public License).

1.3 E-MAJ'S OBJECTIVES

E-Maj is the French acronym for « Enregistrement des Mises A Jour », which means
« updates recording ».

It meets two main goals:
➢ E-Maj can be used to trace updates performed by application programs on the

table's content. Viewing these recorded updates offers an answer to the need for
“updates-auditing”,

➢ By using these recorded updates, E-Maj is able to logically restore sets of tables
into predefined states, without being obliged to either restore all files of the
PostgreSQL instance (cluster) or reload the entire content of the concerned tables.

E-Maj provides a good solution to :
➢ define save points at precise time on a set of tables,
➢ restore, if needed, this table set into a stable state, without stopping the cluster,
➢ manage several save points, each of them being usable at any time as a restore

point.

E-Maj User's Guide – version 1.3.1 Page 6 / 94

So, in a production environment, E-Maj may simplify the technical architecture, by
offering a smooth and efficient alternative to time and/or disk consuming intermediate
saves (pg_dump, mirror disks,...). E-Maj may also bring a help to the debugging by giving a
way to precisely analyse how suspicious programs update application tables.

In a test environment, E-Maj also brings smoothness into operations. It is possible to very
easily restore databases into predefined stable states, so that tests can be replayed as
many times as needed.

E-Maj User's Guide – version 1.3.1 Page 7 / 94

2 HOW E-MAJ WORKS

2.1 CONCEPTS

E-Maj is built on three main concepts.

2.1.1 Tables Group

The « tables group » represents a set of application tables that live at the same rhythm,
meaning that their content can be restored as a whole if needed. Typically, it deals with all
tables of a database that are updated by one or more sets of programs. Each tables
group is defined by a name which must be unique inside its database. By extent, a tables
group can also contain application sequences (in the RDBMS sense). Tables and
sequences that constitute a tables group can belong to different schemas of the database.

At a given time, a tables group is either in a « logging » state or in a « idle » state. The
logging state means that all updates applied on the tables of the group are recorded.

A tables group can be either “rollback-able”, which is the standard case, or “audit_only”. In
this latter case, it is not possible to rollback the group. But with this type of group, it is
possible to record tables updates for auditing purposes, even with tables that do not have
primary key known in PostgreSQL catalogue.

2.1.2 Mark

A « mark » is a particular point in the life of a tables group, corresponding to a stable point
for all tables and sequences of the group. A mark is explicitly set by a user operation. It is
defined by a name that must be unique for the tables group.

2.1.3 Rollback

The « rollback » operation consists of resetting all tables and sequences of a group in the
state they had when a mark was set.

There are two rollback types:
➢ with a « unlogged rollback », no trace of updates that are cancelled by the rollback

operation are kept,
➢ with « logged rollback », update cancellations are recorded in log tables, so that

they can be later cancelled: the rollback operation can be … rolled back.

E-Maj User's Guide – version 1.3.1 Page 8 / 94

2.2 ARCHITECTURE

In order to be able to perform a rollback operation without having previously kept a
physical image of the PostgreSQL cluster's files, all updates applied on application tables
must be recorded, so that they can be cancelled.

With E-Maj, this updates recording takes the following form.

2.2.1 Logged SQL statements

The recorded update operations concerns the following SQL verbs:
➢ rows insertions:

• INSERT, either elementary (INSERT … VALUES) or set oriented (INSERT … SELECT)
• COPY … FROM

➢ rows updates:
• UPDATE

➢ rows deletions:
• DELETE

➢ tables truncations
• TRUNCATE (starting from PostgreSQL 8.4)

For statements that process several rows, each creation, update or deletion is individually
recorded. For instance, if a “DELETE FROM <table>” is performed against a table having 1
million rows, 1 million row deletion events are recorded.

The case of TRUNCATE SQL verbs is specific. As no “FOR EACH ROW” trigger can be fired
for this verb, the consequences of a TRUNCATE cannot be cancelled by E-Maj. Therefore,
its execution is forbidden for “rollbackable” tables groups in “logging” state. In contrast,
TRUNCATE is always permitted for “audit_only” tables groups. In such a case, only its
execution is recorded.

2.2.2 Created objects

For each application table, the following objects are created:
➢ a dedicated log table, containing data corresponding to the updates applied on the

application table,
➢ a trigger and a specific function, that, for each row creation (INSERT, COPY), change

(UPDATE) or suppression (DELETE), record into the log table all data needed to
potentially cancel later this elementary action,

➢ starting from PostgreSQL 8.4, an additional trigger that either blocks any execution
of a TRUNCATE SQL verb for “rollbackable” tables groups or records the execution
of a TRUNCATE SQL verb for “audit_only” tables groups,

➢ a sequence used to quickly count the number of updates recorded in log tables
between 2 marks.

E-Maj User's Guide – version 1.3.1 Page 9 / 94

A log table has the same structure as its corresponding application table. However, it
contains some additional technical columns:

➢ a unique identifier, as an integer associated to a global sequence,
➢ the precise date and time of the update,
➢ the type of the executed SQL operation: INS for INSERT, UPD for UPDATE et DEL for

DELETE,
➢ an attribute taking either 'OLD' or 'NEW' value, allowing to distinguish old and new

values of updated rows,
➢ the internal transaction identifier (PostgreSQL txid) that performed the update,
➢ the connection role who performed the update,
➢ the ip address of the user who performed the update,
➢ the ip port of the user who performed the update.

To let E-Maj work, some other technical objects are also created at extension installation
time:

➢ 12 tables,
➢ 4 composite types,
➢ 1 view,
➢ 93 functions, 45 of them being directly callable by users,
➢ 1 sequence named emaj_global_seq used to assign to every update recorded in any

log table of the database a unique identifier with an increasing value over time,
➢ 1 specific schema, named emaj, that contains all these relational objects,
➢ 2 roles acting as groups (NOLOGIN): emaj_adm to manage E-Maj components, and

emaj_viewer to only look at E-Maj components.

Technical tables, whose structure is interesting to know, are described in the coming
chapters (emaj_group_def is described in §4.2.2, emaj_param is described in §5.1 and
emaj_hist is described in §5.3).

2.2.3 Norm for E-Maj objects naming

All objects associated to application tables have names built by default with the name of
their related table and schema. More precisely, for an application table in a given schema:

E-Maj User's Guide – version 1.3.1 Page 10 / 94

Log
table

Application
table

SQL Log trigger and
function

Insert / Update / Delete Insert

➢ the name of the log table is:
<schema.name>_<table.name>_log

➢ the name of the log function is:
<schema.name>_<table.name>_log_fnct

➢ the name of the sequence associated to the log table is:
<schema.name>_<table.name>_log_seq

It is also possible to define for each application table the prefix of the associated E-Maj
objects name. This allows to manage tables with very long names.

Other E-Maj function names are also normalised:
➢ function names that begin with 'emaj_' are functions that are callable by users,
➢ function names that begin with '_' are internal functions that should not be called

directly.

Triggers created on application tables have the same name:
➢ emaj_log_trg for the log triggers,
➢ emaj_trunc_trg for the triggers that manage TRUNCATE verbs.

2.2.4 Schemas

All technical objects created at E-Maj installation are located into the schema named emaj.

By default, all objects linked to a tables group are created in the main schema emaj. But it
is possible to locate these objects in one or several secondary schemas. Secondary
schemas' names start with “emaj”, only their suffix being parametrized in tables groups
definition. (Refer to §4.2.2)

2.2.5 Tablespaces

E-Maj provides three potential ways to handle tablespaces.

When the extension is installed and when log tables are created, E-Maj can use the
default tablespace.

But it is also possible to create a dedicated tablespace named tspemaj. If it exists when
the extension is installed or when a tables group is created, it will be used to hold new
tables.

Using tables group parameters, it is also possible to store log tables and/or their index into
specific tablespaces. (Refer to §4.2.2)

E-Maj User's Guide – version 1.3.1 Page 11 / 94

3 HOW TO INSTALL E-MAJ

In this chapter, we will describe how to download and install the E-Maj extension.
Uninstallation is also discussed in this chapter.

3.1 EXTENSION DOWNLOAD AND DECOMPRESSION

3.1.1 Download

E-Maj is available for download on two Internet sites:
➢ PGXN, the PostgreSQL Extension Network (http://pgxn.org),
➢ pgFoundry.org (http://pgfoundry.org/projects/emaj/).

E-Maj is also available on the github.org Internet site:
– source components (https://github.com/beaud76/emaj)
– documentation (https://github.com/beaud76/emaj_doc)
– plug-in for phpPgAdmin (https://github.com/beaud76/emaj_ppa_plugin)

3.1.2 Decompression

The extension is delivered as a single compressed file. To be usable, this file must be
decompressed.

Under Windows, you can use your favourite decompression utility (Winzip, 7zip,...). Under
Unix/Linux, a command like :

tar -xvzf emaj-<version>.tar.gz

can be used for .tar.gz file or

unzip e-maj-<version>.zip

for a .zip file.

A new emaj-<version> directory is now available, containing the following files tree:
➢ sql/emaj.sql psql script to install the E-Maj components
➢ sql/emaj-1.2.0-to-1.3.0.sql psql script to migrate E-Maj from version 1.2.0

to 1.3.0
➢ sql/emaj-1.1.0-to-1.2.0.sql psql script to migrate E-Maj from version 1.1.0

to 1.2.0

E-Maj User's Guide – version 1.3.1 Page 12 / 94

https://github.com/beaud76/emaj_ppa_plugin
https://github.com/beaud76/emaj_doc
https://github.com/beaud76/emaj
http://pgfoundry.org/projects/emaj/
http://pgxn.org/

➢ sql/emaj-1.0.2-to-1.1.0.sql psql script to migrate E-Maj from version 1.0.2
to 1.1.0

➢ sql/emaj-1.0.1-to-1.0.2.sql psql script to migrate E-Maj from version 1.0.1
to 1.0.2

➢ sql/emaj-1.0.0-to-1.0.1.sql psql script to migrate E-Maj from version 1.0.0
to 1.0.1

➢ sql/emaj-0.11.1-to-1.0.0.sql psql script to migrate E-Maj from version 0.11.1
to 1.0.0

➢ sql/emaj-0.11.0-to-0.11.1.sql psql script to migrate E-Maj from version 0.11.0
to 0.11.1

➢ sql/check-0.10.1-to-0.11.0-conditions.sql psql script that verifies that conditions to
migrate from 0.10.1 to 0.11.0 are met

➢ sql/emaj-0.10.1-to-0.11.0.sql psql script to migrate E-Maj from version 0.10.1
to 0.11.0

➢ sql/emaj-0.10.0-to-0.10.1.sql psql script to migrate E-Maj from version 0.10.0
to 0.10.1

➢ sql/emaj--0.10.1--unpackaged.sql script to “deconstruct” an installed 0.10.1 E-Maj
extension

➢ sql/emaj--0.10.0--unpackaged.sql script to “deconstruct” an installed 0.10.0 E-Maj
extension

➢ sql/demo.sql psql E-Maj demonstration script
➢ sql/prep-pr.sql psql test script for parallel rollbacks
➢ sql/uninstall.sql psql script to uninstall the E-Maj components
➢ README reduced extension's documentation
➢ CHANGES release notes
➢ LICENSE information about E-Maj license
➢ AUTHORS who are the authors
➢ META.json technical data for PGXN
➢ doc/Emaj.<version>_doc_en.pdf English version of the full E-Maj documentation
➢ doc/Emaj.<version>_doc_fr.pdf French version of the full E-Maj documentation
➢ doc/Emaj.<version>_pres.en.pdf English version of the E-Maj presentation
➢ doc/Emaj.<version>_pres.fr.pdf French version of the E-Maj presentation
➢ php/emajParallelRollback.php php tool for parallel rollback

3.2 E-MAJ EXTENSION SETUP

If E-Maj is already installed in the database, please go on with §3.3.

Note that PostgreSQL versions 9.1+ include an integrated extensions management
feature to simplify the installation of additional components into the RDBMS. It will be used
in a future E-Maj version, when PostgreSQL versions prior 9.1 will not be supported
anymore.

Some preliminary operations are required.

E-Maj User's Guide – version 1.3.1 Page 13 / 94

3.2.1 Preliminary operations

For these operations, the user must log on the concerned database as a superuser, using
for instance psql.

3.2.1.1 PL/pgSQL language

If the PL/pgSQL language is not activated (it is not activated by default with PostgreSQL
versions prior 9.0), it must be activated by the following SQL command:

CREATE LANGUAGE plpgsql;

3.2.1.2 Tablespace

Optionally, a tablespace named tspemaj can be created. If it exists, and except if specific
parameters are set at tables groups definition level (see §4.2.2), tables and indexes
created by E-Maj will be stored in it. Once created, this tablespace is shared among all
databases of the PostgreSQL cluster.

To create a tspemaj tablespace, the associated storage space (a directory for Unix/Linux,
or a folder for Windows) must first be created, this storage space being left empty. Then
the following SQL command must be executed:

CREATE TABLESPACE tspemaj LOCATION '<tablespace.directory/folder>';

For performance reasons, it is recommended, on a production environment, to put the
tspemaj tablespace and the application tables on separate disk spaces.

3.2.1.3 DBLINK extension

If the dblink extension is not yet installed into the database, it is recommended to install it
before E-Maj. Indeed, dblink is used during E-Maj rollback operations to help in
monitoring those operations. If the dblink extension is not installed, the rollback operations
monitoring would just be inoperative.

Dblink is supplied with PostgreSQL. With PostgreSQL versions 9.1 and higher, just issue
the following command:

CREATE EXTENSION dblink;

E-Maj User's Guide – version 1.3.1 Page 14 / 94

With older PostgreSQL versions, the dblink installation procedure is described in the
dblink chapter of the official PostgreSQL documentation.

If the dblink extension is installed after E-Maj, the following command must be executed
after dblink's installation:

GRANT EXECUTE ON dblink_connect_u(text,text) TO emaj_adm;

3.2.2 E-Maj components installation

The E-Maj components can now be installed into the database, by executing under psql
the supplied emaj.sql script.

\i <emaj_directory>/sql/emaj.sql

To start with, the script verifies that the PostgreSQL version is at least 8.3, and that the
current user has the superuser attribute.

Then the script creates the emaj schema with its technical tables, types and functions.

emaj schema must only contain E-Maj related objects.

If they are not already present, both emaj_adm and emaj_viewer roles are created.

Finally, the installation script looks at the cluster configuration and may display a warning
message regarding the -max-prepared-statements parameter (see §4.9.2).

At the end of its execution, the script displays the following message:

>>> E-Maj objects successfully created

3.2.3 Changes in postgresql.conf configuration file

Main E-Maj functions set a lock on each table of a processed tables group. If some groups
contains a large number of tables, it may be necessary to increase the value of the
max_locks_per_transaction parameter in the postgresql.conf configuration file. This
parameter is used by PostgreSQL to compute the size of the “shared lock table” that tracks
locks for the whole cluster. Its default value equals 64. It can be increased if an E-Maj

E-Maj User's Guide – version 1.3.1 Page 15 / 94

operation fails with a message indicating that all entries of the “shared lock table” have
been used.

Furthermore, if the parallel rollback tool may be used (see § 4.9), it will be probably
necessary to adjust the max_prepared_transaction parameter.

3.2.4 E-Maj parameters

Several parameters have an influence on the E-Maj behaviour. They are presented in
details in chapter §5.1.

The parameters setting step is optional. With the default parameter values, E-Maj works
well.

However, if the E-Maj administrator wishes to take benefit from the rollback operations
monitoring capabilities, it is necessary to insert a row into the emaj_param table to setup
the value of the “dblink_user_password” parameter (see §4.8.2.1)

3.2.5 Test and demonstration

It is possible to check whether the E-Maj installation works fine, and discover its main
features by executing a demonstration script. Under psql, just execute the demo.sql script
that is supplied with the extension.

\i <emaj_directory>/sql/demo.sql

If no error is encountered, the script displays this final message:

This ends the E-Maj demo. Thank You for using E-Maj and have fun!

Once the script execution is completed, the demonstration environment is left as is, so
that it remains possible to examine it or to play with it. To suppress it, execute the cleaning
function that the script has created.

SELECT emaj.emaj_demo_cleanup();

This drops the emaj_demo_app_schema schema and both 'emaj demo group 1' and 'emaj
demo group 2' tables groups.

E-Maj User's Guide – version 1.3.1 Page 16 / 94

3.3 UPDATE AN EXISTING E-MAJ VERSION

3.3.1 General approach

The process to update E-Maj version depends on the already installed E-Maj version and
the installation method that has been used.

For E-Maj versions prior 0.10.0, there is no particular update procedure. A simple E-Maj
deletion and then re-installation has to be done, as described in §3.3.3. This approach can
also be used for any E-Maj version, even though it has a drawback: all log contents are
deleted, resulting in no further way to rollback or look at the recorded updates.

For installed E-Maj version 0.10.0 and later, it is possible to perform a migration without E-
Maj deletion. Depending on cases, this can be achieved in one or several steps:

➢ the migration from 0.10.0 to 0.10.1 is described in §3.3.4
➢ the migration from 0.10.1 to 0.11.0 is described in §3.3.5
➢ the migration from 0.11.0 to 0.11.1 is described in §3.3.6
➢ the migration from 0.11.1 to 1.0.0 is described in §3.3.7
➢ the migration from 1.0.0 to 1.0.1 is described in §3.3.8
➢ the migration from 1.0.1 to 1.0.2 is described in §3.3.9
➢ the migration from 1.0.2 to 1.1.0 is described in §3.3.10
➢ the migration from 1.1.0 to 1.2.0 is described in §3.3.11
➢ the migration from 1.2.0 to 1.3.0 is described in §3.3.12
➢ the migration from 1.3.0 to 1.3.1 is described in §3.3.13

But if E-Maj has been created with the integrated extensions manager (with a CREATE
EXTENSION statement), it will be necessary to first de-register the extension, as described
in §3.3.2.

Starting from version 1.1.0, E-Maj no longer supports PostgreSQL versions
prior 8.3. If an older PostgreSQL version is used, it must be updated before
migrating E-Maj to a higher version.

3.3.2 Un-registering an old E-Maj extension

If E-Maj has been installed using a CREATE EXTENSION statement, it is necessary to un-
register E-Maj from the integrated extensions management system.

To do this, just chain both following commands:

\i <emaj_directory>/sql/emaj--<emaj_version>--unpackaged.sql

DROP EXTENSION emaj;

E-Maj User's Guide – version 1.3.1 Page 17 / 94

where <emaj_version> takes either 0.10.0 or 0.10.1 value, depending on the installed E-
Maj version.

After this operation, emaj extension doesn't exist any more but all components it contained
(tables, functions, types) still exist.

3.3.3 Migration by deletion and re-installation

For this migration path, it is not necessary to use the full un-installation procedure
described in §3.4. In particular, the tablespace and both roles can remain as is. However,
it may be judicious to save some useful pieces of information. Here is a suggested
procedure.

3.3.3.1 Stop tables groups

If some tables groups are in ACTIVE state, they must be stopped, using the
emaj_stop_group() function (see §4.2.8), or the emaj_force_stop_group() function if
emaj_stop_group() (see §4.4.4) returns an error.

3.3.3.2 Save user data

It may be useful to save the content of the emaj_group_def table in order to be able to
easily reload it after the version update, by copying it outside the cluster with a \copy
command, or by duplicating the table outside the emaj schema with a SQL statement like:

CREATE TABLE public.sav_group_def AS SELECT * FROM emaj.emaj_group_def;

The same way, if the E-Maj administrator had changed parameters value into emaj_param
table, it may also be useful to keep a trace of these changes, for instance with:

CREATE TABLE public.sav_param AS SELECT * FROM emaj.emaj_param WHERE
param_key <> 'emaj_version';

3.3.3.3 E-Maj deletion and re-installation

Once connected as super-user, just chain the execution of the uninstall script,
uninstall.sql, of the current version and then the execution of the emaj.sql script.

\i <old_emaj_directory>/sql/uninstall.sql

\i <new_emaj_directory>/sql/emaj.sql

E-Maj User's Guide – version 1.3.1 Page 18 / 94

3.3.3.4 Restore user data

Data previously saved can now be restored into E-Maj tables, for instance with INSERT …
SELECT statements.

INSERT INTO emaj.emaj_group_def SELECT * FROM public.sav_group_def;

INSERT INTO emaj.emaj_param SELECT * FROM public.sav_param;

Once data are copied, temporary tables or files can be deleted.

3.3.4 Migration from E-Maj 0.10.0 to 0.10.1

If a 0.10.0 E-Maj version is already installed, it is possible to perform a simple E-Maj
update to migrate into 0.10.1.

This update can be done without dropping existing tables groups, and even without
stopping them if they are in active state. This means that:

➢ updates on application tables can continue to be recorded during and after this
version change,

➢ a « rollback » on a mark set before the version change can also be performed after
the migration.

This migration is very quick. It only consists in adding or modifying a few functions.

To update E-Maj from 0.10.0 to 0.10.1, the emaj-0.10.0-to-0.10.1.sql delivered psql script
must be executed.

\i <emaj_directory>/sql/emaj-0.10.0-to-0.10.1.sql

The script reports the list of tables groups that will need to be recreated after the
installation to take benefit of all enhancements brought by the 0.10.1 version. But the next
migration towards 0.11.0 will implicitly perform the requested changes.

At the end of its execution, the script displays the following message :

>>> E-Maj successfully migrated to 0.10.1

E-Maj User's Guide – version 1.3.1 Page 19 / 94

3.3.5 Migration from E-Maj 0.10.1 to 0.11.0

If a 0.10.1 E-Maj version is already installed, it is possible, under some conditions (see
§3.3.5.1), to perform an E-Maj update to migrate into 0.11.0.

In this case, this update can be done without dropping existing tables groups, and even
without stopping them if they are in active state. This means that:

➢ updates on application tables can continue to be recorded during and after this
version change,

➢ a « rollback » on a mark set before the version change can also be performed after
the migration.

But this operation can take a long time. Indeed, with this version, some functions are
created or updated, the emaj_mark table changes, and overall the log tables structure
evolves. So the migration script must recreate all log tables. The duration of this step
obviously depends on the existing log volume. To limit this migration duration, if this is
acceptable, it may be preferable to delete the oldest marks or even to stop tables groups
and purge log tables (emaj_stop_group() and emaj_reset_group() functions), or even to drop
tables groups before the migration and recreate them after.

To be sure that log tables are not updated by other processes during the migration, an
exclusive lock is set on all tables of all tables groups in LOGGING state. This means that
this migration can only be achieved when there is no activity on tables protected by E-Maj.

3.3.5.1 Validating migration conditions

The migration reassign a new sequence number to each log row. This number is now
unique inside the database. To guarantee the integrity of data stored by E-Maj, it is
essential that no server time change in the past prevents to reliably serialize all log rows
for all log tables.

A script, named check-0.10.1-to-0.11.0-conditions.sql, is supplied with the version. It
analyses the E-Maj environment state and indicates whether the migration can be simply
done.

\i <emaj_directory>/sql/check-0.10.1-to-0.11.0-conditions.sql

“warning” or “notice” messages may be generated by this script.

“notice” messages simply report de-synchronisation of two consecutive log rows but that is
not blocking for a migration. On the contrary, “warning” messages report cases that the
migration process cannot safely handle.

The executed function returns a text message representing the analysis result. If the
migration is possible, the following message is returned:

E-Maj User's Guide – version 1.3.1 Page 20 / 94

This E-Maj environment can be migrated into 0.11.0.

In the other case, one gets this message:

This E-Maj environment can NOT be migrated into 0.11.0.

In this latest case, there are two solutions:
➢ either delete old marks to suppress periods of time that generates the issue,
➢ or drop and then recreate tables groups.

The migration script contains the same checks.

3.3.5.2 Updating E-Maj components

If the test presented in the previous chapter reports that the migration from 0.10.1 to
0.11.0 is possible, the emaj-0.11.1-to-0.11.0.sql delivered psql script can be executed.

\i <emaj_directory>/sql/emaj-0.10.1-to-0.11.0.sql

At the end of its execution, the script displays the following message :

>>> E-Maj successfully migrated to 0.11.0

3.3.6 Migration from E-Maj 0.11.0 to 0.11.1

If a 0.11.0 E-Maj version is already installed, it is possible to perform a simple E-Maj
update to migrate to 0.11.1.

This update can be done without dropping existing tables groups, and even without
stopping them if they are in active state. This means that:

➢ updates on application tables can continue to be recorded during and after this
version change,

➢ a « rollback » on a mark set before the version change can also be performed after
the migration.

This migration is very quick.

To update E-Maj from 0.11.0 to 0.11.1, the emaj-0.11.0-to-0.11.1.sql delivered psql script
must be executed.

\i <emaj_directory>/sql/emaj-0.11.0-to-0.11.1.sql

E-Maj User's Guide – version 1.3.1 Page 21 / 94

At the end of its execution, the script displays the following message :

>>> E-Maj successfully migrated to 0.11.1

3.3.7 Migration from E-Maj 0.11.1 to 1.0.0

If a 0.11.1 E-Maj version is already installed, it is possible to perform a simple E-Maj
update to migrate to 1.0.0.

This update can be done without dropping existing tables groups, and even without
stopping them if they are in active state. This means that:

➢ updates on application tables can continue to be recorded during and after this
version change,

➢ a « rollback » on a mark set before the version change can also be performed after
the migration.

This migration is very quick.

To update E-Maj from 0.11.1 to 1.0.0, the emaj-0.11.1-to-1.0.0.sql delivered psql script
must be executed.

\i <emaj_directory>/sql/emaj-0.11.1-to-1.0.0.sql

At the end of its execution, the script displays the following message :

>>> E-Maj successfully migrated to 1.0.0

3.3.8 Migration from E-Maj 1.0.0 to 1.0.1

If a 1.0.0 E-Maj version is already installed, it is possible to perform a simple E-Maj update
to migrate to 1.0.1.

This update can be done without dropping existing tables groups, and even without
stopping them if they are in active state. This means that:

➢ updates on application tables can continue to be recorded during and after this
version change,

➢ a « rollback » on a mark set before the version change can also be performed after
the migration.

This migration is very quick.

To update E-Maj from 1.0.0 to 1.0.1, the emaj-1.0.0-to-1.0.1.sql delivered psql script must
be executed.

E-Maj User's Guide – version 1.3.1 Page 22 / 94

\i <emaj_directory>/sql/emaj-1.0.0-to-1.0.1.sql

At the end of its execution, the script displays the following message :

>>> E-Maj successfully migrated to 1.0.1

3.3.9 Migration from E-Maj 1.0.1 to 1.0.2

If a 1.0.1 E-Maj version is already installed, it is possible to perform a simple E-Maj update
to migrate to 1.0.2.

This update can be done without dropping existing tables groups, and even without
stopping them if they are in active state. This means that:

➢ updates on application tables can continue to be recorded during and after this
version change,

➢ a « rollback » on a mark set before the version change can also be performed after
the migration.

This migration is very quick.

To update E-Maj from 1.0.1 to 1.0.2, the emaj-1.0.1-to-1.0.2.sql delivered psql script must
be executed.

\i <emaj_directory>/sql/emaj-1.0.1-to-1.0.2.sql

At the end of its execution, the script displays the following message :

>>> E-Maj successfully migrated to 1.0.2

3.3.10 Migration from E-Maj 1.0.2 to 1.1.0

If a 1.0.2 E-Maj version is already installed, it is possible to perform a simple E-Maj update
to migrate to 1.1.0.

This update can be done without dropping existing tables groups, and even without
stopping them if they are in active state. This means that:

➢ updates on application tables can continue to be recorded during and after this
version change,

➢ a « rollback » on a mark set before the version change can also be performed after
the migration.

E-Maj User's Guide – version 1.3.1 Page 23 / 94

However, this migration transforms all log tables (to add a new column). As a
consequence:

➢ even though tables groups may remain in logging state, the migration can only be
performed during a period when no processing updates the related tables

➢ the migration duration is very variable, mainly depending on the volume of log
tables content.

It must also be noted that the statistics that E-Maj has collected during the previously
executed rollback operations are not migrated (as the rollback operation mechanism has
been too widely changed, those statistics are no longer pertinent).

To update E-Maj from 1.0.2 to 1.1.0, the emaj-1.0.2-to-1.1.0.sql delivered psql script must
be executed.

\i <emaj_directory>/sql/emaj-1.0.2-to-1.1.0.sql

At the end of its execution, the script displays the following message :

>>> E-Maj successfully migrated to 1.1.0

3.3.11 Migration from E-Maj 1.1.0 to 1.2.0

If a 1.1.0 E-Maj version is already installed, it is possible to perform a simple E-Maj update
to migrate to 1.2.0.

This update can be done without dropping existing tables groups, and even without
stopping them if they are in active state. This means that:

➢ updates on application tables can continue to be recorded during and after this
version change,

➢ a « rollback » on a mark set before the version change can also be performed after
the migration.

This migration is very quick.

To update E-Maj from 1.1.0 to 1.2.0, the emaj-1.1.0-to-1.2.0.sql delivered psql script must
be executed.

\i <emaj_directory>/sql/emaj-1.1.0-to-1.2.0.sql

At the end of its execution, the script displays the following message :

>>> E-Maj successfully migrated to 1.2.0

E-Maj User's Guide – version 1.3.1 Page 24 / 94

3.3.12 Migration from E-Maj 1.2.0 to 1.3.0

If a 1.2.0 E-Maj version is already installed, it is possible to perform a simple E-Maj update
to migrate to 1.3.0.

This update can be done without dropping existing tables groups, and even without
stopping them if they are in active state. This means that:

➢ updates on application tables can continue to be recorded during and after this
version change,

➢ a « rollback » on a mark set before the version change can also be performed after
the migration.

This migration is quick. But it is recommended to perform it when the database has few
activity. As E-Maj triggers set on all application tables are renamed, Access Exclusive locks
are set. They may be in conflict with other accesses.

To update E-Maj from 1.2.0 to 1.3.0, the emaj-1.2.0-to-1.3.0.sql delivered psql script must
be executed.

\i <emaj_directory>/sql/emaj-1.2.0-to-1.3.0.sql

At the end of its execution, the script displays the following message :

>>> E-Maj successfully migrated to 1.3.0

3.3.13 Migration from E-Maj 1.3.0 to 1.3.1

If a 1.3.0 E-Maj version is already installed, it is possible to perform a simple E-Maj update
to migrate to 1.3.1.

This update can be done without dropping existing tables groups, and even without
stopping them if they are in active state. This means that:

➢ updates on application tables can continue to be recorded during and after this
version change,

➢ a « rollback » on a mark set before the version change can also be performed after
the migration.

This migration is very quick.

To update E-Maj from 1.3.0 to 1.3.1, the emaj-1.3.0-to-1.3.1.sql delivered psql script must
be executed.

E-Maj User's Guide – version 1.3.1 Page 25 / 94

\i <emaj_directory>/sql/emaj-1.3.0-to-1.3.1.sql

At the end of its execution, the script displays the following message :

>>> E-Maj successfully migrated to 1.3.1

E-Maj User's Guide – version 1.3.1 Page 26 / 94

3.4 E-MAJ UNINSTALL

If some tables groups in logging state remain, they must be stopped with the
emaj_stop_group() function (see § 4.2.8) or the emaj_force_stop_group() function (see
§4.4.4) if the emaj_stop_group() function returns an error.

To uninstall E-Maj from a database, the user must log on this database with psql, as a
superuser.

If the drop of the emaj_adm and emaj_viewer roles is desirable, rights on them given to
other roles must be previously deleted, using REVOKE SQL verbs.

REVOKE emaj_adm FROM <role.or.roles.list>;
REVOKE emaj_viewer FROM <role.or.roles.list>;

If these emaj_adm and emaj_viewer roles own access rights on other application objects,
these rights must be suppressed too, before starting the uninstall operation.

Then, the uninstall.sql script delivered with the installed E-Maj version has to be executed.

\i <emaj_directory>/uninstall.sql

This script drops all schemas of the extension (the emaj main schema and the secondary
schemas that may exist), with all contained objects. It also drops objects created by the
demo.sql script and that would not have been previously suppressed.

If emaj_adm and emaj_viewer roles are not associated to other roles or other databases in
the cluster, and do not own rights on other tables, they are dropped.

However, the tspemaj tablespace, if it exists, or any other tablespaces containing log
tables and indexes are NOT dropped by the script.

E-Maj User's Guide – version 1.3.1 Page 27 / 94

4 HOW TO USE E-MAJ

4.1 SET-UP THE E-MAJ ACCESS POLICY

A bad usage of E-Maj can break database integrity. So it is advisable to only authorise its
use to specific skilled users.

4.1.1 E-Maj roles

To use E-Maj, it is possible to log on as superuser. But for safety reasons, it is preferable
to take advantage of both roles created by the installation script:

➢ emaj_adm is used as the administration role ; it can execute all functions and
access to all E-Maj tables, with reading and writing rights,

➢ emaj_viewer is used for read only purpose ; it can only execute statistics functions
and can only read E-Maj tables.

All rights given to emaj_viewer are also given to emaj_adm.

When created, these roles have no connection capability (no defined password and
NOLOGIN option). It is recommended NOT to give them any connection capability. Instead,
it is sufficient to give the rights they own to other roles, with GRANT SQL verbs.

4.1.2 Giving E-Maj rights

Once logged on as superuser in order to have the sufficient rights, execute one of the
following commands to give a role all rights associated to one of both emaj_adm or
emaj_viewer roles:

GRANT emaj_adm TO <my.emaj.administrator.role>;
GRANT emaj_viewer TO <my.emaj.viewer.role>;

Of course, emaj_adm or emaj_viewer rights can be given to several roles.

4.1.3 Giving rights on application tables and objects

To let an E-Maj administrator also access application tables or other application objects
(schemas, sequences, views, functions,...), it is possible to give rights on these objects to
emaj_adm or emaj_viewer roles. But it is preferable to only give these rights to the roles

E-Maj User's Guide – version 1.3.1 Page 28 / 94

which are also given emaj_adm or emaj_viewer rights, so that the E-Maj roles only directly
own rights on E-Maj tables and objects.

4.1.4 Synthesis

The following schema represents the recommended rights organisation for an E-Maj
administrator.

Of course the schema also applies to emaj_viewer role.

Except when explicitly noticed, the operations presented later can be indifferently
executed by a superuser or by a role belonging to the emaj_adm group.

E-Maj User's Guide – version 1.3.1 Page 29 / 94

 my_administrator
role

emaj_adm role E-Maj objects

Application
objects

rights

rights

Rights
inheritance

login

X
nologin

4.2 MAIN FUNCTIONS

Before describing each main E-Maj function, it is interesting to have a global view on the
typical operations chain.

4.2.1 Operations chain

The possible chaining of operations for a tables group can be materialised by this schema.

E-Maj User's Guide – version 1.3.1 Page 30 / 94

« Unknown » state

Create group

« Idle » state

Drop group

« Logging » state

Start groupStop group

Rollback group Set a mark

4.2.2 Define tables groups

4.2.2.1 The emaj_group_def table

The content of tables groups E-Maj will manage has to be defined by populating the
emaj.emaj_group_def table. One row has to be inserted into this table for each application
table or sequence to include into a tables group. This emaj.emaj_group_def table has the
following structure:

Column Type Description

grpdef_group TEXT tables group name

grpdef_schema TEXT name of the schema containing the application
table or sequence

grpdef_tblseq TEXT application table or sequence name

grpdef_priority INT priority level for the table or sequence in E-Maj
processing (optional)

grpdef_log_schema_suffix TEXT suffix used to build the name of the schema
containing the E-Maj objects for the table
(optional)

grpdef_emaj_names_prefix TEXT prefix of E-Maj objects names generated for the
table (optional)

grpdef_log_dat_tsp TEXT name of the tablespace containing the log table
(optional)

grpdef_log_idx_tsp TEXT name of the tablespace containing the index of
the log table (optional)

The administrator can populate this table by any usual mean: INSERT SQL verb, COPY SQL
verb, \copy psql command, graphic tool, etc.

The content of the emaj_group_def table is case sensitive. Schema names, table names
and sequence names must reflect the way PostgreSQL registers them in its catalogue.
These names are mostly in lower case. But if a name is encapsulated by double quotes in
SQL statements because it contains any upper case characters or spaces, then it must be
registered into the emaj_group_def table with the same upper case characters or spaces.

To guarantee the integrity of tables managed by E-Maj, it is essential to take a
particular attention to this tables groups content definition step. If a table were
missing, its content would be out of synchronisation with other tables it is
related to, after a rollback operation. In particular, when application tables are
created or suppressed, it is important to always maintain an up-to-date content
of this emaj_group_def table.

E-Maj User's Guide – version 1.3.1 Page 31 / 94

4.2.2.2 Main columns

A tables group name (grpdef_group column) contains at least 1 character. It may contain
spaces and/or any punctuation characters. But it is advisable to avoid commas, single or
double quotes.

A table or a sequence of a given schema (grpdef_schema and grpdef_tblseq columns)
cannot be assigned to more than one tables groups. All tables of a schema are not
necessarily member of the same group. Some of them can belong to another group.
Some others can belong to any group.

All tables assigned to a group not created in “audit_only” mode must have an explicit
primary key (PRIMARY KEY clause in CREATE TABLE or ALTER TABLE).

By their nature, neither TEMPORARY TABLE nor UNLOGGED TABLE are supported by E-Maj.

If a sequence is associated to an application table, it must be explicitly declared as
member of the same group as its table, so that, in case of rollback, the sequence can be
reset to its state at the set mark time.

On the contrary, log tables and their sequences should NOT be referenced in a tables
group!

4.2.2.3 Optional columns

The type of the grpdef_priority column is INTEGER and may be NULL. It defines a priority
order in E-Maj tables processing. This can be useful at table lock time. Indeed, by locking
tables in the same order as what is typically done by applications, it may reduce the risk of
deadlock. E-Maj functions process tables in grpdef_priority ascending order, NULL being
processed last. For a same priority level, tables are processed in alphabetic order of
schema name and table name.

For E-Maj installations having a large number of tables, it may be useful to spread all E-
Maj objects on several schemas, instead of concentrating them in the unique emaj
schema. The grpdef_log_schema_suffix column allow to specify the schema that will hold
the log table, the log sequence, and the log and rollback functions for a particular
application table.

It this grpdef_log_schema_suffix column contains a NULL or an empty chain, the emaj main
schema will be used. Otherwise, a secondary schema will be used. Its name is then built
as the concatenation of 'emaj' and the column's content.

The creation and the suppression of secondary schemas are only managed by E-Maj
functions. They should NOT contain any other objects than those created by the
extension.

For sequences, the grpdef_log_schema_suffix column must be NULL.

E-Maj User's Guide – version 1.3.1 Page 32 / 94

For tables having long names, the default prefix for E-Maj objects names may be too long
to fit the PostgreSQL limits. But another prefix may be defined for each table, by setting
the grpdef_emaj_names_prefix column.

If this grpdef_emaj_names_prefix column contains a NULL value, the default prefix
<nom_schéma>_<nom_table> is used.

Two different tables cannot have the same prefix, explicitely or implicitely.

For sequences, the grpdef_emaj_names_prefix column must be NULL.

To optimize performances of E-Maj installations having a large number of tables, it may be
useful to spread log tables and their index on several tablespaces. The
grpdef_log_dat_tsp column specifies the name of the tablespace to use for the log table
of an application table. Similarly, the grpdef_log_idx_tsp column specifies the name of the
tablespace to use for the index of the log table.

If a column grpdef_log_dat_tsp or grpdef_log_idx_tsp is NULL (default value), the tablespace
that is used at tables group creation is either tspemaj if it exists or the default tablespace of
the current session.

If a column grpdef_log_dat_tsp or grpdef_log_idx_tsp is not NULL, its value is used to define
the tablespace to use at tables group creation.

For sequences, both grpdef_log_dat_tsp and grpdef_log_idx_tsp columns must be NULL.

4.2.3 Create a tables group

Once the content of a tables group is defined, E-Maj can create the group. To do this,
there is only one SQL statement to execute:

SELECT emaj.emaj_create_group('<group.name>',<is_rollbackable>);

or in an abbreviated form:

SELECT emaj.emaj_create_group('<group.name>');

The second parameter, boolean, indicates whether the group is a “rollbackable” (with value
true) or an “audit_only” (with value false) group. If this second parameter is not supplied,
the group is considered “rollbackable”.

The function returns the number of tables and sequences contained by the group.

E-Maj User's Guide – version 1.3.1 Page 33 / 94

For each table of the group, this function creates the associated log table, the log function
and trigger, as well as the trigger that blocks the execution of TRUNCATE SQL statements
(starting PostgreSQL 8.4).

The function also creates the secondary E-Maj schemas if needed.

On the contrary, if specific tablespaces are referenced for any log table or log index, these
tablespaces must exist before the function's execution.

The emaj_create_group() function also checks the existence of application triggers on any
tables of the group. If a trigger exists on a table of the group, a message is returned,
suggesting the user to verify that this trigger does not update any tables that would not
belong to the group.

If a sequence of the group is associated to a SERIAL or BIGSERIAL column and the table
that owns this column does not belong to the same tables group, the function also issues
a WARNING message.

All actions that are chained by the emaj_create_group() function are executed on behalf of
a unique transaction. As a consequence, if an error occurs during the operation, all tables,
functions and triggers already created by the function are cancelled.

By registering the group composition in the emaj_relation internal table, the
emaj_create_group() function freezes its definition for the other E-Maj functions, even if the
content of the emaj_group_def table is modified later.

A tables group can be altered by the emaj_alter_group() function (see §4.2.9) or
suppressed by the emaj_drop_group() function (see §4.2.10).

4.2.4 Start a tables group

Starting a tables group consists in activating the recording of updates for all tables of the
group. To achieve this, the following command must be executed:

SELECT emaj.emaj_start_group('<group.name>', '<mark.name>',
[<delete.old.logs?>]);

or in an abbreviated form:

SELECT emaj.emaj_start_group('<group.name>', '<mark.name>');

The group must be first in IDLE state.

E-Maj User's Guide – version 1.3.1 Page 34 / 94

A mark name must be specified. It will be the first mark on which a rollback will be later
possible.

The mark name may contain a generic '%' character. Then this character is replaced by
the current transaction start time, with the pattern « hh.mn.ss.mmm »,

If the parameter representing the mark is empty or NULL, a name is automatically
generated: « MARK_% », where the '%' character represents the current transaction start
time.

The <are.old.logs.to.be.deleted?> parameter is an optional boolean. By default, its value
is true, meaning that all log tables of the tables group are purged before the trigger
activation. If the value is explicitly set to false, all rows from log tables are kept as is. The
old marks are also preserved, even-though they are not usable for a rollback any more,
(unlogged updates may have occurred while the tables group was stopped).

The function returns the number of tables and sequences contained by the group.

To be sure that no transaction implying any table of the group is currently running, the
emaj_start_group() function explicitly sets on each table of the group an ACCESS EXCLUSIVE
lock if the PostgreSQL version is prior 9.5, or SHARE ROW EXCLUSIVE lock in other cases. If
transactions accessing these tables are running, this can lead to deadlock. If the deadlock
processing impacts the execution of the E-Maj function, the error is trapped and the lock
operation is repeated, with a maximum of 5 attempts.

The function also performs a purge of the oldest events in the emaj_hist technical table
(see §5.3).

When a group is started, its state becomes « LOGGING ».

4.2.5 Set an intermediate mark

When all tables and sequences of a group are considered as being in a stable state that
can be used for a potential rollback, a mark can be set. This is done with the following
SQL statement:

SELECT emaj.emaj_set_mark_group('<group.name>', '<mark.name>');

The tables group must be in LOGGING state.

A mark having the same name can not already exist for this tables group.

The mark name may contain a generic '%' character. Then this character is replaced by
the current transaction start time, with the pattern « hh.mn.ss.mmm »,

E-Maj User's Guide – version 1.3.1 Page 35 / 94

If the parameter representing the mark is empty or NULL, a name is automatically
generated: « MARK_% », where the '%' character represents the current transaction start
time.

The function returns the number of tables and sequences contained in the group.

The emaj_set_mark_group() function records the identity of the new mark, with the state of
the application sequences belonging to the group, as well as the state of the log
sequences associated to each table of the group. The application sequences are
processed first, to record their state as earlier as possible after the beginning of the
transaction, these sequences not being protected against updates from concurrent
transactions by any locking mechanism.

It is possible to set two consecutive marks without any update on any table between these
marks.

The emaj_set_mark_group() function sets ROW EXCLUSIVE locks on each table of the group
in order to be sure that no transaction having already performed updates on any table of
the group is running. However, this does not guarantee that a transaction having already
read one or several tables before the mark set, updates tables after the mark set. In such
a case, these updates would be candidate for a potential rollback to this mark.

4.2.6 Rollback a tables group

If it is necessary to reset tables and sequences of a group in the state they were when a
mark was set, a rollback must be performed. To perform a simple (“unlogged”) rollback,
the following SQL statement can be executed:

SELECT emaj.emaj_rollback_group('<group.name>', '<mark.name>');

The tables group must be in LOGGING state and the supplied mark must be usable for a
rollback, i.e. it cannot be logically deleted.

The 'EMAJ_LAST_MARK' keyword can be used as mark name, meaning the last set mark.

The function returns the number of tables and sequences that have been effectively
modified by the rollback operation.

To be sure that no concurrent transaction updates any table of the group during the
rollback operation, the emaj_rollback_group() function explicitly sets an EXCLUSIVE lock on
each table of the group. If the PostgreSQL version is prior 9.5, the lock mode is even
ACCESS EXCLUSIVE for tables having updates to cancel and whose log trigger must
consequently be disabled during the operation. If transactions updating these tables are
running, this can lead to deadlock. If the deadlock processing impacts the execution of the
E-Maj function, the error is trapped and the lock operation is repeated, with a maximum of

E-Maj User's Guide – version 1.3.1 Page 36 / 94

5 attempts. But tables of the group remain accessible for read only transactions during the
operation.

If tables belonging to the group to rollback have triggers, it may be necessary to de-
activate them before the rollback and re-activate them after (see §5.8.3).

If a table impacted by the rollback owns a foreign key or is referenced by a foreign key from
another table, then this foreign key is taken into account by the rollback operation. If the
check of the keys created or modified by the rollback cannot be deferred at the end of the
operation (constraint not declared as DEFERRABLE), then this foreign key is dropped at the
beginning of the rollback and recreated at the end.

When the volume of updates to cancel is high and the rollback operation is therefore long,
it is possible to monitor the operation using the emaj_rollback_activity() function (§4.8.2.2)
or the emajRollbackMonitor.php client (§4.10).

When the rollback operation is completed, the following are deleted:
➢ all log tables rows corresponding to the rolled back updates,
➢ all marks later than the mark referenced in the rollback operation.

The history of executed rollback operations is maintained into the emaj_rlbk table. The final
state of the operation is accessible from the rlbk_status and rlbk_msg columns of this
emaj_rlbk table.

Then, it is possible to continue updating processes, to set other marks, and if needed, to
perform another rollback at any mark.

By their nature, the reset of sequences is not “cancellable” in case of abort and
rollback of the transaction that executes the emaj_rollback_group() function. That
is the reason why the processing of application sequences is always performed
after the processing of application tables. However, even-though the time
needed to rollback a sequence is very short, a problem may occur during this
last phase. Rerunning immediately the emaj_rollback_group() function would not
break database integrity. But any other database access before the second
execution may lead to wrong values for some sequences.

4.2.7 Perform a logged rollback of a tables group

Another function executes a “logged” rollback. In this case, log triggers on application
tables are not disabled during the rollback operation. As a consequence, the updates on
application tables are also recorded into log tables, so that it is possible to cancel a
rollback. In other words, it is possible to rollback … a rollback.

To execute a “logged” rollback, the following SQL statement can be executed:

SELECT emaj.emaj_logged_rollback_group('<group.name>', '<mark.name>');

E-Maj User's Guide – version 1.3.1 Page 37 / 94

The usage rules are the same as with emaj_rollback_group() function.

The tables group must be in LOGGING state and the supplied mark must be usable for a
rollback, i.e. it cannot be logically deleted.

The 'EMAJ_LAST_MARK' keyword can be used as mark name, meaning the last set mark.

The function returns the number of tables and sequences that have been effectively
modified by the rollback operation.

To be sure that no concurrent transaction updates any table of the group during the
rollback operation, the emaj_rollback_group() function explicitly sets an EXCLUSIVE lock on
each table of the group. If transactions updating these tables are running, this can lead to
deadlock. If the deadlock processing impacts the execution of the E-Maj function, the error
is trapped and the lock operation is repeated, with a maximum of 5 attempts. But tables of
the group remain accessible for read only transactions during the operation.

If tables belonging to the group to rollback have triggers, it may be necessary to de-
activate them before the rollback and re-activate them after (see §5.8.3).

If a table impacted the rollback owns a foreign key or is referenced by a foreign key from
another table, then this foreign key is taken into account by the rollback operation. If the
check of the keys created or modified by the rollback cannot be deferred at the end of the
operation (constraint not declared as DEFERRABLE), then this foreign key is dropped at the
beginning of the rollback and recreated at the end.

Unlike with emaj_rollback_group() function, at the end of the operation, the log tables
content as well as the marks following the rollback mark remain.
At the beginning and at the end of the operation, the function automatically sets on the
group two marks named:

– 'RLBK_<rollback.mark>_<rollback.time>_START'
– 'RLBK_<rollback.mark>_<rollback.time>_DONE'

where rollback.time represents the start time of the transaction performing the rollback,
expressed as “hours.minutes.seconds.milliseconds”.

When the volume of updates to cancel is high and the rollback operation is therefore long,
it is possible to monitor the operation using the emaj_rollback_activity() function (§4.8.2.2)
or the emajRollbackMonitor.php client (§4.10).

The history of executed rollback operations is maintained into the emaj_rlbk table. The final
state of the operation is accessible from the rlbk_status and rlbk_msg columns of this
emaj_rlbk table.

Following the rollback operation, it is possible to resume updating the database, to set
other marks, and if needed to perform another rollback at any mark, including the mark set
at the beginning of the rollback, to cancel it, or even delete an old mark that was set after
the mark used for the rollback.

E-Maj User's Guide – version 1.3.1 Page 38 / 94

Rollback from different types (logged/unlogged) may be executed in sequence. For
instance, it is possible to chain the following steps:

Set Mark M1
…

Set Mark M2
…

Logged Rollback to M1,
generating RLBK_M1_<time>_STRT,

and RLBK_M1_<time>_DONE
…

Rollback to RLBK_M1_<time>_DONE
(to cancel the updates performed after the first rollback)

…
Rollback to RLBK_M1_<time>_STRT

(to finally cancel the first rollback)

4.2.8 Stop a tables group

When one wishes to stop the updates recording for tables of a group, it is possible to
deactivate the logging mechanism, using the command:

SELECT emaj.emaj_stop_group('<group.name>', '<mark.name>');

or, in its abbreviated form:

SELECT emaj.emaj_stop_group('<group.name>');

The function returns the number of tables and sequences contained in the group.

The function automatically sets a mark corresponding to the end of the recording. If a
mark name is supplied in parameters, this name is used. Otherwise, the mark is named:

STOP_<stop_time>
where <stop_time> is expressed as “hours.minutes.seconds.milliseconds”.

If the supplied mark name is NULL or equals an empty string, the mark is named:
MARK_<stop_time>

Stopping a tables group simply deactivates log triggers of application tables of the group.
The setting of ACCESS EXCLUSIVE locks for PostgreSQL versions prior 9.5, or SHARE ROW
EXCLUSIVE locks in other cases, can lead to deadlock. If the deadlock processing impacts the
execution of the E-Maj function, the error is trapped and the lock operation is repeated,
with a maximum of 5 attempts.

E-Maj User's Guide – version 1.3.1 Page 39 / 94

Additionally, the emaj_stop_group() function changes the status of all marks set for the
group into a DELETED state. Then, it is not possible to execute a rollback command any
more, even though no updates have been applied on tables between the execution of
both emaj_stop_group() and emaj_rollback_group() functions.

But the content of log tables and E-Maj technical tables can be examined.

When a group is stopped, its state becomes « IDLE » again.

Executing the emaj_stop_group() function for a tables group already stopped does not
generate an error. Only a warning message is returned.

4.2.9 Alter a tables group

Two types of events may lead to alter a tables group:
➢ the tables group definition may change, some tables or sequences may have been

added or suppressed, or one of the parameters linked to a table (priority, schema,
or tablespaces) may have been modified,

➢ the structure of one or several application tables of the tables group may have
changed, such as an added or dropped column or a change in a column type
having an impact in the log table structure.

In both cases, the following steps must be performed:
➢ stop the group, if it is in LOGGING state, using the emaj_stop_group() function,
➢ update the emaj_group_def table and/or modify the application schema,
➢ drop and recreate the tables group, using emaj_drop_group() and

emaj_create_group() functions.

But this last step can be also performed with the emaj_alter_group() function, with a
statement like:

SELECT emaj.emaj_alter_group('<group.name>');

The function returns the number of tables and sequences that now belong to the tables
group.

The emaj_alter_group() function also recreates E-Maj objects that may be missing (log
tables, functions, …).

The function creates and drops the secondary schemas when needed.

Once altered, a tables group remains in IDLE state, but its log tables become empty.

The “rollbackable” or “audit_only” characteristic of the tables group cannot be changed
using the emaj_alter_group() function. To change it, the tables group must be dropped and
re-created using emaj_drop_group() and emaj_create_group() functions.

E-Maj User's Guide – version 1.3.1 Page 40 / 94

All actions that are chained by the emaj_alter_group() function are executed on behalf of a
unique transaction. As a consequence, if an error occurs during the operation, the tables
group remains in its previous state.

In most cases, executing the emaj_alter_group() function is much more efficient than
chaining both emaj_drop_group() and emaj_create_group().

It is possible to update the emaj_group_def table, when the tables group is in logging state,
however it will not have an effect until the group is altered (or dropped and re-created).

In case of discrepancy between the structure of both application and related log tables, E-
Maj generates an error at start group time, or set mark time or rollback time.

4.2.10 Drop a tables group

To drop a tables group previously created by the emaj_create_group() function, this group
must be already in idle state. If it is not the case, the emaj_stop_group() function has to be
used (see § 4.2.8).

Then, just execute the SQL command:

SELECT emaj.emaj_drop_group('<group.name>');

The function returns the number of tables and sequences contained in the group.

For this tables group, the emaj_drop_group() function drops all the objects that have been
created by the emaj_create_group() function: log tables, log and rollback functions, log
triggers.

The function also drops all secondary schemas that have become empty.
The locks set by this operation can lead to deadlock. If the deadlock processing impacts
the execution of the E-Maj function, the error is trapped and the lock operation is
repeated, with a maximum of 5 attempts.

E-Maj User's Guide – version 1.3.1 Page 41 / 94

4.3 MULTI-GROUPS FUNCTIONS

4.3.1 General information

To be able to synchronize current operations like group start or stop, set mark or rollback,
usual functions dedicated to these tasks have twin-functions that process several tables
groups in a single call.

The resulting advantages are:
➢ to process all tables group in a single transaction,
➢ to lock tables belonging to all groups at the beginning of the operation to minimize

the risk of deadlock.

4.3.2 Functions list

The following table lists the multi-groups functions, with their relative mono-group
functions, some of them being discussed later.

Multi-groups functions Relative mono-group function §

emaj.emaj_start_groups() emaj.emaj_start_group() 4.2.4

emaj.emaj_stop_groups() emaj.emaj_stop_group() 4.2.8

emaj.emaj_set_mark_groups() emaj.emaj_set_mark_group() 4.2.5

emaj.emaj_rollback_groups() emaj.emaj_rollback_group() 4.2.6

emaj.emaj_logged_rollback_groups() emaj.emaj_logged_rollback_group() 4.2.7

emaj.emaj_estimate_rollback_groups() emaj.emaj_estimate_rollback_group() 4.6.3

emaj.emaj_gen_sql_groups() emaj.emaj_gen_sql_group() 4.7.3

4.3.3 Syntax for groups array

The SQL type of the <groups.array> parameter passed to the multi-groups functions is
TEXT[], i.e. an array of text data.

According to SQL standard, there are 2 possible syntaxes to specify a groups array, using
either braces { }, or the ARRAY function.

When using { and }, the full list is written between single quotes, then braces frame the
comma separated elements list, each element been placed between double quotes. For
instance, in our case, we can write :

E-Maj User's Guide – version 1.3.1 Page 42 / 94

' { "group 1" , "group 2" , "group 3" } '

The SQL function ARRAY builds an array of data. The list of values is placed between
brackets [], and values are separated by comma. For instance, in our case, we can write :

ARRAY ['group 1' , 'group 2' , 'group 3']

Both syntax are equivalent.

4.3.4 Other considerations

The order of the groups in the groups list is not meaningful. During the E-Maj operation,
the processing order of tables only depends on the priority level defined for each table,
and, for tables having the same priority level, from the alphabetic order of their schema
and table names.

It is possible to call a multi-groups function to process a list of … one group, or even an
empty list. So a set oriented build of this list is possible (using for instance the array_agg()
function that is available from PostgreSQL version 8.4).

A tables groups list may contain duplicate values, NULL values or empty strings. These
NULL values or empty strings are simply ignored. If a tables group name is listed several
times, only one occurrence is kept. In all these cases, and when the tables groups list is
empty, a warning message is generated.

Format and usage of these functions are strictly equivalent to those of their twin-functions.

However, an additional condition exists for rollback functions: the supplied mark must
correspond to the same point in time for all groups. In other words, this mark must have
been set by the same emaj_set_mark_group() function call.

E-Maj User's Guide – version 1.3.1 Page 43 / 94

4.4 OTHER GROUPS MANAGEMENT FUNCTIONS

4.4.1 Reset log tables of a group

In standard use, all log tables of a tables group are purged at emaj_start_group() time. But,
if needed, it is possible to reset log tables, using the following SQL statement:

SELECT emaj.emaj_reset_group('<group.name>');

The function returns the number of tables and sequences contained by the group.

Of course, in order to reset log tables, the tables group must be in IDLE state.

4.4.2 Comments on groups

In order to set a comment on any group, the following statement can be executed:

SELECT emaj.emaj_comment_group('<group.name>', '<comment>');

The function doesn't return any data.

To modify an existing comment, just call the function again for the same tables group, with
the new comment.

To delete a comment, just call the function, supplying a NULL value as comment.

Comments are stored into the group_comment column from the emaj_group table, which
describes … groups.

4.4.3 Protection of a tables group against rollbacks

It may be useful at certain time to protect tables groups against accidental rollbacks, in
particular with production databases. Two functions fit this need.

The emaj_protect_group() function set a protection on a tables group.

SELECT emaj.emaj_protect_group('<group.name>');

E-Maj User's Guide – version 1.3.1 Page 44 / 94

The function returns the integer 1 if the tables group was not already protected, or 0 if it
was already protected.

Once the group is protected, any logged or unlogged rollback attempt will be refused.

An “audit_only” or “idle” tables group cannot be protected.

When a tables group is started, it is not protected. When a tables group that is protected
against rollbacks is stopped, it looses its protection.

The emaj_unprotect_group() function remove an existing protection on a tables group.

SELECT emaj.emaj_unprotect_group('<group.name>');

The function returns the integer 1 if the tables group was previously protected, or 0 if it
was not already protected.

An “audit_only” tables group cannot be unprotected.

Once the protection of a tables group is removed, it becomes possible to execute any type
of rollback operation on the group.

A protection mechanism at mark level complements this scheme (Cf §4.5.6).

4.4.4 Forced stop of a tables group

It may occur that a corrupted tables group cannot be stopped. This may be the case for
instance if an application table belonging to a tables group has been inadvertently
dropped while the group was in LOGGING state. If usual emaj_stop_group() or
emaj_stop_groups() functions return an error, it is possible to force a group stop using the
emaj_force_stop_group() function.

SELECT emaj.emaj_force_stop_group('<group.name>');

The function returns the number of tables and sequences contained by the group.

The emaj_force_stop_group() function performs the same actions as the emaj_stop_group()
function, except that:

– it supports the lack of table or trigger to deactivate, generating a “warning” message
in such a case,

– it does NOT set a stop mark.

E-Maj User's Guide – version 1.3.1 Page 45 / 94

Once the function is completed, the tables group is in IDLE state. It may then be altered or
dropped, using the emaj_alter_group() or emaj_drop_group() functions.

It is recommended to only use this function if it is really needed.

4.4.5 Forced suppression of a tables group

It may happen that a damaged tables group cannot be stopped. But not being stopped, it
cannot be dropped. To be able to drop a tables group while it is still in logging state, a
special function exists.

SELECT emaj.emaj_force_drop_group('<group.name>');

The function returns the number of tables and sequences contained by the group.

This emaj_force_drop_group() functions performs the same actions than the
emaj_drop_group() function, but without checking the state of the group. So, it is
recommended to only use this function if it is really needed.

Note: Since the actions performed by the emaj_force_stop_group() function can be
accomplished by other functions, this emaj_force_stop_group() function may be removed in a
future version.

E-Maj User's Guide – version 1.3.1 Page 46 / 94

4.5 MARKS MANAGEMENT FUNCTIONS

4.5.1 Comments on marks

In order to set a comment on any mark, the following statement can be executed:

SELECT emaj.emaj_comment_mark_group('<group.name>', '<mark>',
'<comment>');

The keyword 'EMAJ_LAST_MARK' can be used as mark name. It then represents the last set
mark.

The function doesn't return any data.

To modify an existing comment, just call the function again for the same tables group and
the same mark, with the new comment.

To delete a comment, just call the function, supplying a NULL value as comment.

Comments are stored into the mark_comment column from the emaj_mark table, which
describes … marks.

Comments are mostly interesting when using the E-Maj phpPgAdmin plug-in (See §6).
Indeed, the plug-in systematically displays the comments in the groups marks list.

4.5.2 Search a mark

The emaj_get_previous_mark_group() function provides the name of the latest mark before
either a given date and time or another mark for a tables group.

SELECT emaj.emaj_get_previous_mark_group('<group.name>', '<date.time>');

or

SELECT emaj.emaj_get_previous_mark_group('<group.name>', '<mark>');

In the first format, the date and time must be expressed as a TIMESTAMPTZ datum, for
instance the literal '2011/06/30 12:00:00 +02'.

E-Maj User's Guide – version 1.3.1 Page 47 / 94

In the second format, the keyword 'EMAJ_LAST_MARK' can be used as mark name. It then
represents the last set mark.

If the supplied time strictly equals the time of an existing mark, the returned mark would be
the preceding one.

4.5.3 Rename a mark

A mark that has been previously set by one of both emaj_create_group() or
emaj_set_mark_group() functions can be renamed, using the SQL statement:

SELECT emaj.emaj_rename_mark_group('<group.name>', '<mark.name>',
'<new.mark.name>');

The keyword 'EMAJ_LAST_MARK' can be used as mark name. It then represents the last set
mark.

The function does not return any data.

A mark having the same name as the requested new name should not already exist for
the tables group.

4.5.4 Delete a mark

A mark can also be deleted, using the SQL statement:

SELECT emaj.emaj_delete_mark_group('<group.name>', '<mark.name>');

The keyword 'EMAJ_LAST_MARK' can be used as mark name. It then represents the last set
mark.

The function returns 1, corresponding to the number of effectively deleted marks.

As at least one mark must remain after the function has been performed, a mark deletion
is only possible when there are at least two marks for the concerned tables group.

If the deleted mark is the first mark of the tables group, the useless rows of log tables are
deleted.

E-Maj User's Guide – version 1.3.1 Page 48 / 94

4.5.5 Delete oldest marks

To easily delete in a single operation all marks prior a given mark, the following statement
can be executed:

SELECT emaj.emaj_delete_before_mark_group('<group.name>',
'<mark.name>');

The keyword 'EMAJ_LAST_MARK' can be used as mark name. It then represents the last set
mark.

The function deletes all marks prior the supplied mark, this mark becoming the new first
available mark. It also suppresses from log tables all rows related to the deleted period of
time.

The function returns the number of deleted marks.

The function also performs a purge of the oldest events in the emaj_hist technical table
(see §5.3).

With this function, it is quite easy to use E-Maj for a long period of time, without stopping
and restarting groups, while limiting the disk space needed for accumulated log records.

However, as the log rows deletion cannot use any TRUNCATE command (as with the
emaj_start_group() or emaj_reset_group() functions), using emaj_delete_before_group()
function may take a longer time than simply stopping and restarting the group. In return,
no lock is set on the tables of the group. Its execution may continue while other processes
update the application tables. Nothing but other E-Maj operations on the same tables
group, like setting a new mark, would wait until the end of an
emaj_delete_before_mark_group() function execution.

When associated, the functions emaj_delete_before_mark_group() and
emaj_get_previous_mark_group() allow to delete marks older than a retention delay. For
example, to suppress all marks (and the associated log rows) set since more than 24
hours, the following statement can be executed:

SELECT emaj.emaj_delete_before_mark_group('<group>',
emaj.emaj_get_previous_mark_group('<group>', current_timestamp - '1
DAY'::INTERVAL));

4.5.6 Protection of a mark against rollbacks

To complement the mechanism of tables group protection against accidental rollbacks (Cf
§4.4.3), it is possible to set protection at mark level. Two functions fit this need.

E-Maj User's Guide – version 1.3.1 Page 49 / 94

The emaj_protect_mark_group() function sets a protection on a mark for a tables group.

SELECT emaj.emaj_protect_mark_group('<groupe.name>','<mark.name>');

The function returns the integer 1 if the mark was not previously protected, or 0 if it was
already protected.

Once a mark is protected, any logged or unlogged rollback attempt is refused if it reset the
tables group in a state prior this protected mark.

A mark of an « audit-only » or an « idle » tables group cannot be protected.

When a mark is set, it is not protected. Protected marks of a tables group automaticaly
loose their protection when the group is stopped. Deleting a mark do not move the
protection on an adjacent mark.

The emaj_unprotect_mark_group() function remove an existing protection on a tables group
mark.

SELECT emaj.emaj_unprotect_mark_group('<group.name>','<mark.name>');

The function returns the integer 1 if the mark was previously protected, or 0 if it was not
yet protected.

A mark of an « audit-only » tables group cannot be unprotected.

Once a mark protection is removed, it becomes possible to execute any type of rollback
on a previous mark.

E-Maj User's Guide – version 1.3.1 Page 50 / 94

4.6 STATISTICS FUNCTIONS

There are two functions that return statistics on log tables content:
➢ emaj_log_stat_group() quickly delivers, for each table of a group, the number of

updates that have been recorded in the related log tables, either between 2 marks
or since a particular mark,

➢ emaj_detailed_log_stat_group() provides more detailed information than
emaj_log_stat_group(), the number of updates been reported per table, SQL type
(INSERT/UPDATE/DELETE) and connection role.

Another E-Maj function, emaj_estimate_rollback_duration(), provides an estimate of how
long a rollback for a group to a given mark may last.

Finally, a function named emaj_get_previous_mark_group(), returns for a group the name of
the latest mark preceding a given date and time.

Both functions can be used by emaj_adm and emaj_viewer E-Maj roles.

4.6.1 Global statistics about logs

Full global statistics about logs content are available with this SQL statement:

SELECT * FROM emaj.emaj_log_stat_group('<group.name>', '<start.mark>',
'<end.mark>');

The function returns a set of rows, whose type is named emaj.emaj_log_stat_type, and
contains the following columns:

➢ stat_group : tables group name (type TEXT),
➢ stat_schema : schema name (type TEXT),
➢ stat_table : table name (type TEXT),
➢ stat_rows : number of updates recorded into the related log table (type BIGINT)

A NULL value or an empty string ('') supplied as start mark represents the oldest mark.

A NULL value supplied as end mark represents the current situation.

The keyword 'EMAJ_LAST_MARK' can be used as mark name. It then represents the last set
mark.

The function returns one row per table, even if there is no logged update for this table. In
this case, stat_rows columns value is 0.

E-Maj User's Guide – version 1.3.1 Page 51 / 94

It is possible to easily execute more precise requests on these statistics. For instance,
once the test-emaj-2.sql test script has been executed, it is possible to get the number of
database updates by application schema, with a statement like:

postgres=# SELECT stat_schema, sum(stat_rows)
FROM emaj.emaj_log_stat_group('myAppl1', NULL, NULL)
GROUP BY stat_schema;
 stat_schema | sum
-------------+-----
 myschema | 41
(1 row)

There is no need for log table scans to get these statistics. For this reason, they are
delivered quickly.

But returned values may be approximative (in fact over-estimated). This occurs in
particular when transactions executed between both requested marks have performed
table updates before being cancelled.

4.6.2 Detailed statistics about logs

Scanning log tables brings a more detailed information, at a higher response time cost. So
can we get fully detailed statistics with the following SQL statement:

SELECT * FROM emaj.emaj_detailed_log_stat_group('<group.name>',
'<start.mark>', '<end.mark>');

The function returns a set of rows, whose type is named emaj.emaj_detailed_log_stat_type,
and contains the following columns:

➢ stat_group : tables group name (type TEXT),
➢ stat_schema : schema name (type TEXT),
➢ stat_table : table name (type TEXT),
➢ stat_role : connection role (type VARCHAR(32)),
➢ stat_verb : type of the SQL verb that has performed the update (type

VARCHAR(6), with values: INSERT / UPDATE / DELETE),
➢ stat_rows : number of updates recorded into the related log table (type BIGINT)

A NULL value or an empty string ('') supplied as start mark represents the oldest mark.

A NULL value supplied as end mark represents the current situation.

The keyword 'EMAJ_LAST_MARK' can be used as mark name. It then represents the last set
mark.

E-Maj User's Guide – version 1.3.1 Page 52 / 94

Unlike emaj_log_stat_group, emaj_detailed_log_stat_group function doesn't return any rows
for tables having no logged updates inside the requested marks range. So stat_rows
column never contains 0.

It is possible to easily execute more precise requests on these statistics. For instance,
once the test-emaj-2.sql test script has been executed, it is possible to get the number of
updates for a given table, here mytbl1, per SQL verb, using a statement like:

postgres=# SELECT stat_table, stat_verb, stat_rows
FROM emaj.emaj_detailed_log_stat_group('myAppl1', NULL, NULL)
WHERE stat_table='mytbl1';
 stat_table | stat_verb | stat_rows
------------+-----------+-----------
 mytbl1 | DELETE | 1
 mytbl1 | INSERT | 6
 mytbl1 | UPDATE | 2
(3 rows)

4.6.3 Estimate the rollback duration

The emaj_estimate_rollback_group() function returns an idea of the time needed to rollback
a tables group to a given mark. It can be called with a statement like:

SELECT emaj.emaj_estimate_rollback_group('<group.name>', '<mark.name>',
<is.logged>);

The keyword 'EMAJ_LAST_MARK' can be used as mark name. It then represents the last set
mark.

The third parameter indicates whether the E-Maj rollback to simulate is a logged rollback
or not.

The function returns an INTERVAL value.

The tables group must be in LOGGING state and the supplied mark must be usable for a
rollback, i.e. it cannot be logically deleted.

This duration estimate is approximative. It takes into account:
➢ the number of updates in log tables to process, as returned by the

emaj_log_stat_group() function,
➢ recorded duration of already performed rollbacks for the same tables,
➢ 6 generic parameters (see § 5.1) that are used as default values when no statistics

have been already recorded for the tables to process.

E-Maj User's Guide – version 1.3.1 Page 53 / 94

The precision of the result cannot be high. The first reason is that, INSERT, UPDATE and
DELETE having not the same cost, the part of each SQL type may vary. The second
reason is that the load of the server at rollback time can be very different from one run to
another. However, if there is a time constraint, the order of magnitude delivered by the
function can be helpful to determine of the rollback operation can be performed in the
available time interval.

If no statistics on previous rollbacks are available and if the results quality is poor, it is
possible to adjust parameters listed in chapter 5.1. It is also possible to manually change
the emaj.emaj_rlbk_stat table's content that keep a trace of the previous rollback durations,
for instance by deleting rows corresponding to rollback operations performed in unusual
load conditions.

E-Maj User's Guide – version 1.3.1 Page 54 / 94

4.7 DATA EXTRACTION FUNCTIONS

Three functions extract data from E-Maj infrastructure and store them into external files.

4.7.1 Snap tables of a group

It may be useful to take images of all tables and sequences belonging to a group to be
able to analyse their content or compare them. It is possible to dump to files all tables and
sequences of a group with:

SELECT emaj.emaj_snap_group('<group.name>', '<storage.directory>',
'<COPY.options>');

The directory/folder name must be supplied as an absolute pathname and must have
been previously created. This directory/folder must have the appropriate permission so
that the PostgreSQL cluster can write in it.

The third parameter defines the output files format. It is a character string that matches
the precise syntax available for the COPY TO SQL statement.

The function returns the number of tables and sequences contained by the group.

This emaj_snap_group() function generates one file per table and sequence belonging to
the supplied tables group. These files are stored in the directory or folder corresponding to
the second parameter.

New files will overwrite existing files of the same name.

Created files are named with the following pattern:
<schema.name>_<table/sequence.name>.snap

Each file corresponding to a sequence has only one row, containing all characteristics of
the sequence.

Files corresponding to tables contain one record per row, in the format corresponding to
the supplied parameter. These records are sorted in ascending order of the primary key.

At the end of the operation, a file named _INFO is created in this same directory/folder. It
contains a message including the tables group name and the date and time of the snap
operation.

It is not necessary that the tables group be in idle state to snap tables.

E-Maj User's Guide – version 1.3.1 Page 55 / 94

As this function may generate large or very large files (of course depending on tables
sizes), it is user's responsibility to provide a sufficient disk space.

Thanks to this function, a simple test of the E-Maj behaviour could chain:
➢ emaj_create_group(),
➢ emaj_start_group(),
➢ emaj_snap_group(<directory_1>),
➢ updates of application tables,
➢ emaj_rollback_group(),
➢ emaj_snap_group(<directory_2>),
➢ comparison of both directories content, using a diff command for instance.

4.7.2 Snap log tables of a group

It is also possible to record a full or a partial image of all log tables related to a group. This
provides a way to archive updates performed by one or more previous operations. It is
possible to dump on files all tables and sequences of a group with:

SELECT emaj.emaj_snap_log_group('<group.name>', '<start.mark>',
'<end.mark>', '<storage.directory>', '<COPY.options>');

A NULL value or an empty string may be used as start mark, representing the first known
mark.
A NULL value or an empty string may be used as end mark, representing the current
situation.

The keyword 'EMAJ_LAST_MARK' can be used as mark name, representing the last set
mark.

The directory/folder name must be supplied as an absolute pathname and must have
been previously created. This directory/folder must have the appropriate permission so
that the PostgreSQL cluster can write in it.

The fifth parameter defines the output files format. It is a character string that matches the
precise syntax available for the COPY TO SQL statement.

The function returns the number of tables and sequences contained by the group.

This emaj_snap_log_group() function generates one file per log table, containing the part of
this table that correspond to the updates performed between both supplied marks.
Created files name has the following pattern:

<schema.name>_<table/sequence.name>_log.snap

The function also generates two files, containing the application sequences state at the
time of the respective supplied marks, and named:

<group.name>_sequences_at_<mark.name>

E-Maj User's Guide – version 1.3.1 Page 56 / 94

These files are stored in the directory or folder corresponding to the fourth parameter.
New files will overwrite existing files of the same name..

At the end of the operation, a file named _INFO is created in this same directory/folder. It
contains a message including the table's group name, the mark's name that defined the
mark range and the date and time of the snap operation.

It is not necessary that the tables group be in idle state to snap log tables.

As this function may generate large or very large files (of course depending on tables
sizes), it is user's responsibility to provide a sufficient disk space.

The structure of log tables is directly derived from the structure of the related application
table. The log tables contain the same columns with the same type. But they also have
some additional technical columns:

– emaj_verb type of the SQL verb that generated the update (INS, UPD, DEL)
– emaj_tuple row version (OLD for DEL and UPD, NEW for INS and UPD)
– emaj_gid log row identifier
– emaj_changed log row insertion timestamp
– emaj_txid transaction id that performed the update
– emaj_user connection role that performed the update
– emaj_user_ip ip address of the client that performed the update (if the client was

connected with ip protocol)

4.7.3 SQL script generation to replay logged updates

Log tables contain all needed information to replay updates. Therefore, it is possible to
generate SQL statements corresponding to all updates that occurred between two marks
or between a mark and the current situation, and record them into a file. This is the
purpose of the emaj_gen_sql_group() function.

So these updates can be replayed after the corresponding tables have been restored in
their state at the initial mark, without being obliged to rerun application programs.

To generate this SQL script, just execute the following statement:

SELECT emaj.emaj_gen_sql_group('<group.name>', '<start.mark>',
'<end.mark>', '<file>' [, <tables/sequences.array>);

A NULL value or an empty string may be used as start mark, representing the first known
mark.
A NULL value or an empty string may be used as end mark, representing the current
situation.

E-Maj User's Guide – version 1.3.1 Page 57 / 94

The keyword 'EMAJ_LAST_MARK' can be used as mark name, representing the last set
mark.

The output file name must be supplied as an absolute pathname. It must have the
appropriate permission so that the PostgreSQL cluster can write to it. If the file already
exists, its content is overwritten.

The last parameter is optional. It allows filtering of the tables and sequences to process. If
the parameter is omitted, all tables and sequences of the tables group are processed. If
specified, the parameter must be expressed as an array of text elements, each of them
representing a schema qualified table or sequence name. For instance, one can use a
syntax like:
ARRAY('sch1.tbl1','sch1.tbl2')
or
'{ "sch1.tbl1" , "sch1.tbl2" }'

The function returns the number of generated statements (not including comments and
transaction management statements).

The tables group may be in IDLE state while the function is called.

In order to generate the script, all tables must have an explicit PRIMARY KEY.

If a tables and sequences list is specified to limit the emaj_gen_sql_group()
function's work, it is the user's responsibility to take into account the possible
presence of foreign keys, in order to let the function produce a viable SQL
script.

All statements, INSERT, UPDATE, DELETE and TRUNCATE (for audit_only tables groups), are
generated in the order of their initial execution.

The statements are inserted into a single transaction. They are surrounded by a BEGIN
TRANSACTION; statement and a COMMIT; statement. An initial comment specifies the
characteristics of the script generation: generation date and time, related tables group and
used marks.

TRUNCATE statements recorded for audit_only tables groups are also included into the
script.

At the end of the script, sequences belonging to the tables group are set to their final
state.

Then, the generated file may be executed as is by psql tool, using a connection role that
has enough rights on accessed tables and sequences.

The used technology may result to doubled backslashes in the output file. These doubled
characters must be suppressed before executing the script, for instance, in Unix/Linux
environment, using a command like:
sed 's/\\\\/\\/g' <file.name> | psql ...

E-Maj User's Guide – version 1.3.1 Page 58 / 94

As the function can generate a large or even very large file (depending on the log volume),
it is the user's responsibility to provide a sufficient disk space.

It is also the user's responsibility to deactivate triggers, if any exist, before executing the
generated script.

E-Maj User's Guide – version 1.3.1 Page 59 / 94

4.8 OTHER FUNCTIONS

4.8.1 Check the consistency of the E-Maj environment

A function is also available to check the consistency of the E-Maj environment.
It consists in checking the integrity of all E-Maj schemas and all created tables groups.
This function can be called with the following SQL statement:

SELECT * FROM emaj.emaj_verify_all();

For each E-Maj schema (emaj schema and each secondary schema if any) the function
verifies that:

➢ all tables, functions, sequences and types contained in the schema are either
objects of the extension, or linked to created tables groups,

➢ they don't contain any view, foreign table, domain, conversion, operator or operator
class.

Then, for each created tables group, the function performs the same checks as those
performed when a group is started, a mark is set, or a rollback is executed (see §5.2).

The function returns a set of rows describing the detected discrepancies. If no error is
detected, the function returns a single row containing the following messages:

'No error detected'

The emaj_verify_all() function can be executed by any role belonging to emaj_adm or
emaj_viewer roles.

If errors are detected, for instance after an application table referenced in a tables group
has been dropped, appropriate measures must be taken. Typically, the potential orphan
log tables or functions must be manually dropped.

4.8.2 Monitoring rollback operations

When the volume of recorded updates to cancel leads to a long rollback, it may be
interesting to monitor the operation to appreciate how it progresses. A function, named
emaj_rollback_activity(), and a client, emajRollbackMonitor.php (see §4.10), fit this need.

4.8.2.1 Prerequisite

To allow E-Maj administrators to monitor the progress of a rollback operation, the
activated functions update several technical tables as the process progresses. To ensure
that these updates are visible while the transaction managing the rollback is in progress,
they are performed through a dblink connection.

E-Maj User's Guide – version 1.3.1 Page 60 / 94

As a result, monitoring rollback operations requires the installation of the dblink extension
(§3.2.1.3) as well as the insertion of a connection identifier usable by dblink into the
emaj_param table.

Recording the connection identifier can be performed with a statement like:

INSERT INTO emaj.emaj_param (param_key, param_value_text)
VALUES ('dblink_user_password','user=<user> password=<password>');

The declared connection role must have been granted the emaj_adm rights (or be a
superuser).

Lastly, the main transaction managing the rollback operation must be in a “read
committed” concurrency mode (the default value).

4.8.2.2 Monitoring function

The emaj_rollback_activity() function allows one to see the progress of rollback operations.

Invoke it with the following statement:

SELECT * FROM emaj.emaj_rollback_activity();

The function does not require any input parameter.

It returns a set of rows of type emaj.emaj_rollback_activity_type. Each row represents an in
progress rollback operation, with the following columns:

➢ rlbk_id rollback identifier
➢ rlbk_groups tables groups array associated to the rollback
➢ rlbk_mark mark to rollback to
➢ rlbk_mark_datetime date and time when the mark to rollback to has been set
➢ rlbk_is_logged boolean taking the “true” value for logged rollbacks
➢ rlbk_nb_session number of parallel sessions
➢ rlbk_nb_table number of tables contained in the processed tables groups
➢ rlbk_nb_sequence number of sequences contained in the processed tables groups
➢ rlbk_eff_nb_table number of tables having updates to cancel
➢ rlbk_status rollback operation state
➢ rlbk_start_datetime rollback operation start timestamp
➢ rlbk_elapse elapse time spent since the rollback operation start
➢ rlbk_remaining estimated remaining duration
➢ rlbk_completion_pct estimated percentage of the completed work

An in progress rollback operation is in one of the following state:

E-Maj User's Guide – version 1.3.1 Page 61 / 94

➢ PLANNING the operation is in its initial planning phase,
➢ LOCKING the operation is setting locks,
➢ EXECUTING the operation is currently executing one of the planned steps.

If the functions executing rollback operations cannot use a dblink connection (extension
not installed, missing or incorrect connection parameters,...), the emaj_rollback_activity()
does not return any rows.

The remaining duration estimate is approximate. Its precision is similar to the precision of
the emaj_estimate_rollback_group() function (§4.6.3).

4.8.3 Updating rollback operations state

The emaj_rlbk technical table and its derived tables contain the history of E-Maj rollback
operations.

When rollback functions cannot use dblink connection (see the conditions at §4.8.2.1), all
updates of these technical tables are all performed inside a single transaction. Therefore:

– any rollback operation that has not been completed is invisible in these technical
tables,

– any rollback operation that has been validated is visible in these technical tables
with a “COMMITTED” state.

When rollback functions can use dblink connections, all updates of emaj_rlbk and its
related tables are performed in autonomous transactions. In this working mode, rollback
functions leave the operation in a “COMPLETED” state when finished. A dedicated internal
function is in charge of transforming the “COMPLETED” operations either into a “COMMITTED”
state or into an “ABORTED” state, depending on how the main rollback transaction has
ended. This function is automatically called when a new mark is set and when the rollback
monitoring function is used.

If the E-Maj administrator wishes to check the status of recently executed rollback
operations, he can use the emaj_cleanup_rollback_state() function at any time:

SELECT emaj.emaj_cleanup_rollback_state();

The function returns the number of modified rollback operations.

E-Maj User's Guide – version 1.3.1 Page 62 / 94

4.9 PARALLEL ROLLBACK CLIENT

On servers having several processors or processor cores, it may be possible to reduce
rollback elapse time by paralleling the operation on multiple threads of execution. For this
purpose, E-Maj delivers a specific client to run as a command. It activates E-Maj rollback
functions though several parallel connections to the database.

4.9.1 Sessions

To run a rollback in parallel, E-Maj spreads tables and sequences to process for one or
several tables groups into « sessions ». Each session is then processed in its own thread.

However, in order to guarantee the integrity of the global operation, the rollback of all
sessions is executed inside a single transaction.

To build the most balanced sessions as possible, E-Maj takes into account:
➢ the number of sessions specified by the user in its command,
➢ statistics about rows to rollback, as reported by the emaj_log_stat_group() function,
➢ foreign key constraints that link several tables between them, 2 updated tables

linked by a foreign key constraint being affected into the same session.

4.9.2 Prerequisites

The command to run parallel rollbacks is written in php. As a consequence, php software
and its PostgreSQL interface has to be installed on the server that executes the command
(which is not necessarily the same as the one that hosts the PostgreSQL cluster).

Rolling back each session on behalf of a unique transaction implies the use of two phase
commit. As a consequence, the max_prepared_transaction parameter of the postgresql.conf
file must be adjusted. As the default value of this parameter equals 0, it must be modified
by specifying a value at least equal to the maximum number of sessions that will be used.

4.9.3 Syntax

The command that performs a parallel rollback has the following syntax:

emajParallelRollback.php -g <group(s).name> -m <mark> -s <number.of.sessions>
[OPTIONS]...

General options:
 -l specifies that the requested rollback is a “logged rollback” (see §4.2.7)
 -v displays more information about the execution of the processing
 --help only displays a command help

E-Maj User's Guide – version 1.3.1 Page 63 / 94

 --version only displays the software version

Connection options:
 -d database to connect to
 -h host to connect to
 -p ip-port to connect to
 -U connection role to use
 -W password associated to the role, if needed

To replace some or all these parameters, the usual PGDATABASE, PGPORT, PGHOST and/or
PGUSER environment variables can be used.

To specify a list of tables groups in the -g parameter, separate the name of each group by
a comma.

The supplied connection role must be either a superuser or a role having emaj_adm rights.

For safety reasons, it is not recommended to use the -W option to supply a password. It is
rather advisable to use the .pgpass file (see PostgreSQL documentation).

To allow the rollback operation to work, the tables group or groups must be in logging
state. The supplied mark must also correspond to the same point in time for all groups. In
other words, this mark must have been set by the same emaj_set_mark_group() function
call.

The 'EMAJ_LAST_MARK' keyword can be used as mark name, meaning the last set mark.

It is possible to monitor the multi-session rollback operations with the same tools as for
mono-session rollbacks.

In order to test the emajParallelRollback.php command, the E-Maj extension supplies a test
script, prep-pr.sql. It prepares an environment with two tables groups containing some
tables and sequences, on which some updates have been performed, with intermediate
marks. Once this script has been executed under psql, the command displayed at the end
of the script can be simply run.

4.9.4 Examples

The command:

./php/emajParallelRollback.php -d mydb -g myGroup1 -m Mark1 -s 3

logs on database mydb and executes a rollback of group myGroup1 to mark Mark1, using
3 parallel sessions.

E-Maj User's Guide – version 1.3.1 Page 64 / 94

The command:

./php/emajParallelRollback.php -d mydb -g "myGroup1,myGroup2" -m Mark1 -s 3 -l

logs on database mydb and executes a logged rollback of both groups myGroup1 and
myGroup2 to mark Mark1, using 3 parallel sessions.

E-Maj User's Guide – version 1.3.1 Page 65 / 94

4.10ROLLBACK MONITORING CLIENT

E-Maj delivers an external client to run as a command that monitors the progress of
rollback operations in execution.

4.10.1 Prerequisite

The command to monitor rollback operations is written in php. As a consequence, php
software and its PostgreSQL interface has to be installed on the server that executes the
command (which is not necessarily the same as the one that hosts the PostgreSQL
cluster).

4.10.2 Syntax

The command that monitors rollback operations has the following syntax:

emajRollbackMonitor.php [OPTIONS]...

General options:
 -i time interval between 2 displays (in seconds, default = 5s)
 -n number of displays (default = 1)
 -a maximum time interval for rollback operations to display (in hours, default =

24h)
 -l maximum number of completed rollback operations to display (default = 3)
 --help only displays a command help
 --version only displays the software version

Connection options:
 -d database to connect to
 -h host to connect to
 -p ip-port to connect to
 -U connection role to use
 -W password associated to the role, if needed

To replace some or all these parameters, the usual PGDATABASE, PGPORT, PGHOST and/or
PGUSER environment variables can be used.

The supplied connection role must either be a super-user or have emaj_adm or
emaj_viewer rights.

For security reasons, it is not recommended to use the -W option to supply a password.
Rather, it is advisable to use the .pgpass file (see PostgreSQL documentation).

E-Maj User's Guide – version 1.3.1 Page 66 / 94

4.10.3 Exemples

The command:

./php/emajRollbackMonitor.php -i 3 -n 10

displays 10 times and every 3 seconds, the list of in progress rollback operations and the
list of the at most 3 latest rollback operations completed in the latest 24 hours.

The command:

./php/emajRollbackMonitor.php -a 12 -l 10

displays only once the list of in progress rollback operations and the list of at most 10
operations completed in the latest 12 hours.

Example of display:

 E-Maj (version 1.1.0) - Monitoring rollbacks activity

04/07/2013 - 12:07:17
** rollback 34 started at 2013-07-04 12:06:20.350962+02 for groups {myGroup1,myGroup2}
 status: COMMITTED ; ended at 2013-07-04 12:06:21.149111+02
** rollback 35 started at 2013-07-04 12:06:21.474217+02 for groups {myGroup1}
 status: COMMITTED ; ended at 2013-07-04 12:06:21.787615+02
-> rollback 36 started at 2013-07-04 12:04:31.769992+02 for groups {group1232}
 status: EXECUTING ; completion 89 % ; 00:00:20 remaining
-> rollback 37 started at 2013-07-04 12:04:21.894546+02 for groups {group1233}
 status: LOCKING ; completion 0 % ; 00:22:20 remaining
-> rollback 38 started at 2013-07-04 12:05:21.900311+02 for groups {group1234}
 status: PLANNING ; completion 0 %

E-Maj User's Guide – version 1.3.1 Page 67 / 94

5 MISCELLANEOUS

5.1 PARAMETERS

The E-Maj extension works with some parameters. Those are stored into the emaj_param
internal table.

emaj_param table structure is the following:

Column Type Description

param_key TEXT keyword identifying the parameter

param_value_text TEXT parameter value, if its type is text (otherwise
NULL)

param_value_int INT parameter value, if its type is integer (otherwise
NULL)

param_value_boolean BOOLEAN parameter value, if its type is boolean
(otherwise NULL)

param_value_interval INTERVAL parameter value, if its type is time interval
(otherwise NULL)

The E-Maj extension installation procedure inserts a single row into emaj_param table. This
row, that should not be modified, describes parameter:

➢ version (text) current E-Maj version.

But the E-Maj administrator may insert other rows into emaj_param table to change the
default value of some parameters.

Presented in alphabetic order, the existing key values are:
➢ avg_fkey_check_duration (interval) default value = 20 µs ; defines the

average duration of a foreign key value check ; can be modified to better represent
the performance of the server that hosts the database (see § 4.6.3).

➢ avg_row_delete_log_duration (interval) default value = 10 µs ; defines the
average duration of a log row deletion ; can be modified to better represent the
performance of the server that hosts the database (see § 4.6.3).

➢ avg_row_rollback_duration (interval) default value = 100 µs ; defines the
average duration of a row rollback ; can be modified to better represent the
performance of the server that hosts the database (see § 4.6.3).

➢ fixed_dblink_rollback_duration (interval) default value = 4 ms ; defines an
additional cost for each rollback step when a dblink connection is used ; can be modified
to better represent the performance of the server that hosts the database (see § 4.6.3).

E-Maj User's Guide – version 1.3.1 Page 68 / 94

➢ fixed_table_rollback_duration (interval) default value = 1 ms ; defines a fixed
rollback cost for any table belonging to a group ; can be modified to better
represent the performance of the server that hosts the database (see § 4.6.3).

➢ fixed_step_rollback_duration (interval) default value = 2,5 ms ; defines a fixed
cost for each rollback step ; can be modified to better represent the performance of
the server that hosts the database (see § 4.6.3).

➢ history_retention (interval) default value = 1 year ; it can be
adjusted to change the retention delay of rows in the emaj_hist history table (see §
5.3),

Below is an example of a SQL statement that defines a retention delay of history table's
rows equal to 3 months:

INSERT INTO emaj.emaj_param (param_key, param_value_interval) VALUES
('history_retention','3 months'::interval);

It is also possible to manage parameter values using any graphic tool such as PgAdmin or
phpPgAdmin.

Only super-user and roles having emaj_adm rights can access the emaj_param table.

Roles having emaj_viewer rights can only access a part of the emaj_param table, through
the emaj.emaj_visible_param view. This view just masks the real value of the
param_value_text column for the 'dblink_user_password' key.

5.2 INTERNAL CHECKS

When a function is executed to start a tables group, to set a mark or to rollback a tables
group, E-Maj performs some checks in order to verify the integrity of the tables groups to
process.

These tables group integrity verifications include:

➢ a check that the PostgreSQL version at tables group creation time is compatible
with the current version,

➢ a check that each application sequence or table of the group always exists,
➢ a check that each table of the group has its log table, its log function and its

triggers,
➢ a check that the log tables structure always reflects the related application tables

structure.

E-Maj User's Guide – version 1.3.1 Page 69 / 94

5.3 TRACES OF OPERATIONS

All operations performed by E-Maj, and that impact in any way a tables group, are traced
into a table named emaj_hist.

emaj_hist table structure is the following:

Column Type Description

hist_id BIGSERIAL serial number identifying a row in this history
table

hist_datetime TIMESTAMPTZ recording date and time of the row

hist_function TEXT function associated to the traced event

hist_event TEXT kind of event

hist_object TEXT object related to the event (group, table or
sequence)

hist_wording TEXT additional comments

hist_user TEXT role whose action has generated the event

hist_txid BIGINT identifier of the transaction that has generated
the event

The hist_function column can take the following values:
➢ ALTER_GROUP tables group change
➢ CLEANUP_RLBK_STATE cleanup the state of recently completed rollback

operations
➢ COMMENT_GROUP comment set on a group
➢ COMMENT_MARK_GROUP comment set on a mark for a tables group
➢ CREATE_GROUP tables group creation
➢ DBLINK_OPEN_CNX open a dblink connection for a rollback operation
➢ DBLINK_CLOSE_CNX close a dblink connection for a rollback operation
➢ DELETE_MARK_GROUP mark deletion for a tables group
➢ DROP_GROUP tables group suppression
➢ EMAJ_INSTALL E-Maj installation or version update
➢ FORCE_DROP_GROUP tables group forced suppression
➢ FORCE_STOP_GROUP tables group forced stop
➢ GEN_SQL_GROUP generation of a psql script to replay updates for a tables

group
➢ GEN_SQL_GROUPS generation of a psql script to replay updates for several

tables group
➢ LOCK_GROUP lock set on tables of a group
➢ LOCK_GROUPS lock set on tables of several groups
➢ LOCK_SESSION lock set on tables for a rollback session
➢ PROTECT_GROUP set a protection against rollbacks on a group
➢ PROTECT_MARK_GROUP set a protection against rollbacks on a mark for a group

E-Maj User's Guide – version 1.3.1 Page 70 / 94

➢ PURGE_HISTORY delete from the emaj_hist table the events prior the
retention delay

➢ RENAME_MARK_GROUP mark rename for a tables group
➢ RESET_GROUP log tables content reset for a group
➢ ROLLBACK_GROUP rollback updates for a tables group
➢ ROLLBACK_GROUPS rollback updates for several tables groups
➢ ROLLBACK_TABLE rollback updates for one table
➢ ROLLBACK_SEQUENCE rollback one sequence
➢ SET_MARK_GROUP mark set on a tables group
➢ SET_MARK_GROUPS mark set on several tables groups
➢ SNAP_GROUP snap all tables and sequences for a group
➢ SNAP_LOG_GROUP snap all log tables for a group
➢ START_GROUP tables group start
➢ START_GROUPS tables groups start
➢ STOP_GROUP tables group stop
➢ STOP_GROUPS tables groups stop
➢ UNPROTECT_GROUP remove a protection against rollbacks on a group
➢ UNPROTECT_MARK_GROUP remove a protection against rollbacks on a mark for a

group

the hist_event column can take the following values:
➢ BEGIN
➢ END
➢ MARK DELETED
➢ SCHEMA CREATED secondary schema created
➢ SCHEMA DROPPED secondary schema dropped

emaj_hist content can be viewed by anyone who has the proper access rights on this table
(superuser, emaj_adm or emaj_viewer roles).

When a tables group is started, using the emaj_start_group() function, or when old marks
are deleted, using the emaj_delete_before_mark_group() function, the oldest events are
deleted from emaj_hist tables. The events kept are those not older than a parametrised
retention delay and not older than the oldest active mark. By default, the retention delay
for events equals 1 year. But this value can be modified at any time by inserting the
history_retention parameter into emaj_param table with a SQL statement (see § 5.1).

5.4 IMPACTS ON CLUSTER AND DATABASE ADMINISTRATION

5.4.1 Stopping and restarting the cluster

Using E-Maj doesn't bring any particular constraint regarding stopping and restarting a
PostgreSQL cluster.

E-Maj User's Guide – version 1.3.1 Page 71 / 94

5.4.1.1 General rule

At cluster restart, all E-Maj objects are in the same state as at cluster stop: log triggers of
active tables groups remains enabled and log tables contain cancel-able updates already
recorded.

If a transaction with table updates were not committed at cluster stop, it would be rolled
back during the recovery phase of the cluster start, the application tables updates and the
log tables updates being cancelled at the same time.

This rule also applies of course to transactions that execute E-Maj functions, like a tables
group start or stop, a rollback, a mark deletion,...

5.4.1.2 Sequences rollback

Due to a PostgreSQL constraint, the rollback of application sequences assigned to a
tables group is the only operation that is not protected by transactions. That is the reason
why application sequences are processed at the very end of the rollback operations (See
§4.2.6). (For the same reason, at set mark time, application sequences are processed at
the beginning of the operation.)

In case of a cluster stop during an E-Maj rollback execution, it is recommended to rerun
this rollback just after the cluster restart, to ensure that application sequences and tables
remain properly synchronised.

5.4.2 Saving and restoring the database

Using E-Maj allow a reduction in the database saves frequency. But E-Maj
cannot be considered as a substitute to regular database saves that remain
indispensable to keep a full image of databases on an external support.

5.4.2.1 File level saves and restores

When saving or restoring clusters at file level, it is essential to save or restore ALL cluster
files. This includes of course all files from the tspemaj tablespace, if it exists.

After a file level restore, tables groups are in the very same state as at the save time, and
the database activity can be restarted without any particular E-Maj operation.

5.4.2.2 Logical saves and restores of entire database

Regarding stopped tables groups (in IDLE state), as log triggers are disabled and the
content of related log tables is meaningless, there is no action required to find them in the
same state as at save time.

E-Maj User's Guide – version 1.3.1 Page 72 / 94

Concerning tables groups in LOGGING state at save time, it is important to be sure that log
triggers will only be activated after the application tables rebuild. Otherwise, during the
tables rebuild, tables updates would also be recorded in log tables!

When using pg_dump command for saves and psql or pg_restore commands for restores,
and processing full databases (schema + data), these tools recreate triggers, E-Maj log
triggers among them, after tables have been rebuilt. So there is no specific precaution to
take.

On the other hand, in case of data only save or restore (i.e. without schema, using -a or
--data-only options), the --disable-triggers must be supplied:

➢ with pg_dump (or pg_dumpall) with save in plain format (and psql is used to restore),
➢ with pg_restore command with save in tar or custom format.

5.4.2.3 Logical save and restore of partial database

With pg_dump and pg_restore tools, database administrators can perform on a subset of
database schemas or tables.

Restoring a subset of application tables and/or log tables generates a heavy risk of data
corruption in case of later E-Maj rollback of concerned tables. Indeed, it is impossible to
guarantee in this case that application tables, log tables and internal E-Maj tables that
contain essential data for rollback, remain coherent.

If it is necessary to perform partial application tables restores, a drop and recreation of all
tables groups concerned by the operation must be performed just after.

The same way, it is strongly recommended to NOT restore a partial emaj schema content.

The only case of safe partial restore concerns a full restore of the emaj schema content as
well as all tables belonging to all groups that are created in the database.

5.4.3 Data load

Beside using pg_restore or psql with files produced by pg_dump, it is possible to efficiently
load large amounts of data with the COPY SQL verb or the \copy psql meta-command. In
both cases, this data loading fires INSERT triggers, among them the E-Maj log trigger.
Therefore, there is no constraint to use COPY or \copy in E-Maj environment.

With other loading tools, it is important to check that triggers are effectively fired for each
row insertion.

5.4.4 Tables reorganisation

E-Maj User's Guide – version 1.3.1 Page 73 / 94

5.4.4.1 Reorganisation of application table

Application tables protected by E-Maj can be reorganised using the SQL CLUSTER
command. Whether or not log triggers are enabled, the organisation process has no
impact on log tables content.

5.4.4.2 Reorganisation of E-Maj tables

The index corresponding to the primary key of each table from E-Maj schemas (neither log
tables nor technical tables) is declared “cluster”.

So using E-Maj may have an operational impact regarding the execution of
CLUSTER SQL commands at database level.

When E-Maj is used in continuous mode (with deletion of oldest marks instead of regular
tables groups stop and restart), it is recommended to regularly reorganize E-Maj log
tables. This reclaims unused disk space following mark deletions.

5.4.5 Using E-Maj with replication

5.4.5.1 Integrated replication

E-Maj is totally compatible with the use of the different PostgreSQL integrated replication
modes (WAL archiving and PITR, asynchronous and synchronous Streaming Replication).
Indeed, all E-Maj objects hosted in the cluster are replicated like all other objects of the
cluster.

However, because of the way PostgreSQL manages sequences, the sequences' current
values may be a little forward on slave clusters than on the master cluster. For E-Maj, this
may lightly overestimate the number of log rows in general statistics. But there is no
consequence on the data integrity.

5.4.5.2 Other replication solutions

Using E-Maj with external replication solutions based on triggers like Slony or Londiste,
requires some attention... It is probably advisable to avoid replicating log tables and E-Maj
technical tables.

5.4.6 PostgreSQL version upgrade

5.4.6.1 PostgreSQL versions 8.3

E-Maj User's Guide – version 1.3.1 Page 74 / 94

Tables groups that are created in PostgreSQL version 8.3 can only be managed in that
creation version. Indeed, in this PostgreSQL version, the E-Maj functions do not behave
identically to other versions.

For this reason, when upgrading from 8.3 to a higher version, it is necessary to uninstall
and then reinstall E-Maj (see §3.4 and §3.2). As a consequence, it is not possible to keep
tables groups in logging state while migrating the PostgreSQL version.

5.4.6.2 PostgreSQL versions 8.4 and later

For all PostgreSQL version greater or equal to 8.4, E-Maj objects and functions are
identical.

So it is possible to upgrade the PostgreSQL version without E-Maj re-installation. Tables
groups may remain in logging state at PostgreSQL upgrade.

However, it is recommended to stop tables groups before the PostgreSQL upgrade, tables
being normally in a stable state at that time. Moreover, if the PostgreSQL version upgrade
is performed using a database dump and restore, the execution of an emaj_reset_group()
function may reduce the volume of data to manipulate, thus reducing the time needed for
the operation.

5.5 SENSITIVITY TO SYSTEM TIME CHANGE

To ensure the integrity of tables managed by E-Maj, it is important that the rollback
mechanism be insensitive to potential date or time change of the server that hosts the
PostgreSQL cluster.

The date and time of each update or each mark is recorded. But nothing other than
sequence values recorded when marks are set, are used to frame operation in time. So
rollbacks and mark deletions are insensitive to potential system date or time change.
However, two minor actions may be influenced by a system date or time change:

➢ the deletion of oldest events in the emaj_hist table (the retention delay is a time
interval),

➢ finding the name of the mark immediately preceding a given date and time as
delivered by the emaj_get_previous_mark_group() function.

E-Maj User's Guide – version 1.3.1 Page 75 / 94

5.6 PERFORMANCE

5.6.1 Updates recording overhead

Recording updates in E-Maj log tables has necessarily an impact on the duration of these
updates. The global impact of this log on a given processing depends on numerous
factors. Among them:

➢ the part that the update activity represents on the global processing,
➢ the intrinsic performance characteristics of the storage subsystem that supports log

tables.

However, the E-Maj updates recording overhead is generally limited to a few per-cent.

5.6.2 E-Maj rollback duration

The duration of an E-Maj rollback depends on several factors, like:
➢ the number of updates to cancel,
➢ the intrinsic characteristics of the server and its storage material and the load

generated by other activities hosted on the server,
➢ triggers or foreign keys on tables processed by the rollback operation,
➢ contentions on tables at lock set time.

To get an order of magnitude of an E-Maj rollback duration, it is possible to use the
emaj_estimate_rollback_group() and emaj_estimate_rollback_groups() functions (See §4.6.3).

5.6.3 Optimizing E-Maj operations

Here are some advice to optimize E-Maj operations:

5.6.3.1 Use tablespaces

Creating tables into tablespaces located in dedicated disks or file systems is a way to
more efficiently spread the access to these tables. To minimize the disturbance of
application tables access by log tables access, the E-Maj administrator has two ways to
use tablespaces for log tables and indexes location.

By creating a tablespace named tspemaj before the tables groups creation, log tables are
created by default into this tablespace, without any additional action.

But through parameters set into the emaj_group_def table, it is also possible to specify a
tablespace to use for any log table or log index. (See §4.2.2.3)

E-Maj User's Guide – version 1.3.1 Page 76 / 94

5.6.3.2 Declare foreign keys as DEFERRABLE

Foreign keys can be explicitly declared as DEFERRABLE at creation time. If a foreign key is
declared DEFERRABLE and no ON DELETE or ON UPDATE clause is used, this foreign key is
not dropped at the beginning and recreated at the end of an E-Maj rollback operation. The
foreign key checks of updated rows are just deferred to the end of the rollback function
execution, once all log tables are processed. This generally greatly speeds up the rollback
operation.

5.7 USAGE LIMITS

The E-Maj extension usage has some limits.

➢ The minimum required PostgreSQL version is 8.3.
➢ All tables belonging to a “rollbackable” tables group must have an explicit PRIMARY

KEY.
➢ The schema named "emaj" is created at E-Maj initialisation. If its name should be

changed, the emaj.sql scripts, as well as test scripts and the
emajParallelRollback.php command should be adapted consequently.

➢ If a TRUNCATE SQL verb is executed on an application table belonging to a group,
E-Maj is not able to reset this table in a previous state. Indeed, when a TRUNCATE is
executed, no trigger is executed at each row deletion. Starting from 8.4
PostgreSQL version, a trigger, created by E-Maj, blocks any TRUNCATE statement
on any table belonging to a tables group in logging state. For older PostgreSQL
versions, this detection is not possible.

➢ Using a global sequence for a database leads to a limit in the number of updates
that E-Maj can manage throughout its life. This limit equals 2^63, about 10^19 (but
only 10^10 on oldest platforms), which still allow to record 10 million updates per
second (100 times the best performance benchmarks results in 2012) during …
30,000 years (or at worst 100 updates per second during 5 years). Would it be
necessary to reset the global sequence, the E-Maj extension would just have to be
un-installed and re-installed.

➢ If a DDL operation is executed on an application table belonging to a tables group,
E-Maj is not able to reset the table in its previous state.

To understand this last point, it may be interesting to understand the consequences of a
DDL statement execution on the way E-Maj works, depending on the kind of executed
operation.

➢ If a new table were created, it would be unable to enter into a group's definition until
this group is stopped, dropped and then recreated.

➢ If a table belonging to a group in logging state were dropped, there would be no
way for E-Maj to recover it's structure and its content.

➢ For a table belonging to a tables group in logging state, adding or deleting a column
would generate an error at the next INSERT/UPDATE/DELETE SQL verb execution.

➢ For a table belonging to a tables group in logging state, renaming a column would
not necessarily generate any error during further log recording. But the checks that

E-Maj User's Guide – version 1.3.1 Page 77 / 94

E-Maj performs would block any attempt to set a new mark or rollback the related
group.

➢ For a table belonging to a tables group in logging state, changing the type of a
column would lead to an inconsistency between the application table and the log
table. But, depending on the change of data type applied, updates logging could
either work or not. Furthermore, data could be corrupted, for instance in case of
increased data length not propagated in log tables. Anyway, due to the checks
performed by E-Maj, any attempt to set a new mark or rollback the related group
would then fail.

➢ However, it is possible to create, modify or drop indexes, rights or constraints for a
table belonging to a tables group in logging state. But or course, cancelling these
changes could not be done by E-Maj.

5.8 USER'S RESPONSIBILITY

5.8.1 Defining tables groups content

Defining the content of tables group is essential to guarantee the database integrity. It is
the E-Maj administrator's responsibility to ensure that all tables updated by a given
operation are really included in a single tables group.

5.8.2 Appropriate call of main functions

emaj_start_group(), emaj_set_mark_group(), emaj_rollback_group() and
emaj_rollback_and_stop_group() functions set explicit locks on tables of the group to be sure
that no transactions updating these tables are running at the same time. But it is the user's
responsibility to execute these operations “at the right time”, i.e. at moments that really
correspond to stable point in the life of these tables.

5.8.3 Management of application triggers

Triggers may have been created on application tables. It is not rare that these triggers
perform one or more updates on other tables. In such a case, it is the E-Maj
administrator's responsibility to understand the impact of rollback operations on tables
concerned by triggers, and if needed, to take the appropriate measures.

If the trigger simply adjusts the content of the row to insert or update, the logged data will
contain the final value of columns. So the rollback would reset the old values without any
problem. But may be it would be necessary to deactivate such a trigger during a rollback
operation.

If the trigger updates another table, two cases must be considered:

E-Maj User's Guide – version 1.3.1 Page 78 / 94

➢ if the updated table belong to the same tables group, it would be necessary to
deactivate the trigger during a rollback operation, so that E-Maj and only E-Maj
performs the updates required by the rollback operation,

➢ if the updated table does not belong to the same tables group, it is essential to
analyse the consequences of a rollback operation, in order to avoid a de-
synchronisation between both tables. In such a case, merely deactivating the
trigger may not be sufficient.

5.8.4 Internal E-Maj table or sequence change

With the rights they have been granted, emaj_adm roles and super-users can update any
E-Maj internal table.

But in practice, only two tables may be updated by these users: emaj_group_def
and emaj_param. Any other internal table or sequence update my lead to data
corruption during rollback operations.

E-Maj User's Guide – version 1.3.1 Page 79 / 94

6 PHPPGADMIN PLUG-IN

To make E-Maj use easier, a plug-in for the phpPgAdmin administration tool in its versions
5.1 and higher is also available.

6.1 OVERVIEW

For databases into which the E-Maj extension has been installed, and if the user is
connected with a role that owns the required rights, all E-Maj objects are accessible.

It is then possible to:
➢ define or modify groups content,
➢ see the list of tables groups and perform any possible action, depending on groups

state (create, drop, start, stop, set or remove a mark, rollback, add or modify a
comment),

➢ see the list of the marks that have been set for a group, and perform any possible
action on them (delete, rename, rollback, add or modify a comment),

➢ get statistics about log tables content and see their content,
➢ monitor in progress rollback operations.

6.2 INSTALLATION

6.2.1 Prerequisite

A version 5.1 or higher of phpPgAdmin must be installed and operational in a web server.

6.2.2 Plug-in download

The E-Maj plug-in for phpPgAdmin can be downloaded from the following git repository:
https://github.com/beaud76/emaj_ppa_plugin

The downloaded Emaj directory must be copied into the plugin directory of the installed
phpPgAdmin root directory.

6.2.3 Plug-in activation

To activate the plug-in, just open the conf/config.inc.php file from the phpPgAdmin root
directory, and add the character string 'Emaj' to the variable $conf['plugins'].

For instance, one may have:

E-Maj User's Guide – version 1.3.1 Page 80 / 94

https://github.com/beaud76/emaj_ppa_plugin

$conf['plugins'] = array('Emaj');

or, if another plug-in is already activated:
$conf['plugins'] = array('Report','Emaj');

6.2.4 Plug-in parametrization

In order to submit batch rollback (i.e. without blocking the use of the browser while the
rollback operation is in progress), it is necessary to specify a value for two configuration
parameters contained in the Emaj/conf/config.inc.php file:

➢ $plugin_conf['psql_path'] defines the access path of the psql executable file,
➢ $plugin_conf['temp_dir'] defines a temporary directory that rollback functions

can use.

The distributed config.inc.php-dist file can be used as a configuration file model.

6.3 USING PHPPGADMIN PLUG-IN

6.3.1 Accessing E-Maj from the phpPgAdmin interface

Once connected to a database where the E-Maj extension has been installed, and using a
role having sufficient privileges (super-user, emaj_adm or emaj_viewer), a new red icon is
appears on the right in the horizontal database icons tab. Obviously, the emaj schema
appears in schemas list.

In the browser tree on the left, a new E-Maj object also appears. By opening it, the list of
created tables groups becomes directly accessible.

Figure 1 – Connection to a database where E-Maj is installed.

E-Maj User's Guide – version 1.3.1 Page 81 / 94

6.3.2 Tables groups list

By clicking on one of the E-Maj icons, the user reaches a page that lists all tables groups
created in this database.

E-Maj User's Guide – version 1.3.1 Page 82 / 94

Figure 2 – List of the tables groups created in the database.

In fact, this page displays two lists: one for groups in LOGGING state and the other for
groups in IDLE state.

For each tables group, the following attributes are displayed:
➢ its creation date and time,
➢ the number of application tables and sequences it contains,
➢ its type (« ROLLBACKABLE » or « AUDIT_ONLY », protected against rollback or not),
➢ the number of marks it owns,
➢ its associated comment, if any.

Several buttons are available so that the user can perform any possible action, depending
on the group state.

Under both lists, a combo box and a button are dedicated to multi-group actions.

At the bottom of the page, a list box presents the table groups that may be created (those
known in the emaj_group_def table but not yet created).

E-Maj User's Guide – version 1.3.1 Page 83 / 94

6.3.3 Some details about the user interface

The user can navigate in E-Maj functions using two icon bars: one for the general purpose
functions and the other for the functions concerning a single tables group.

Figure 3 – Main icons bar.

Figure 4 – Tables groups icons bar.

For emaj_viewer roles, some icons are not visible.

All pages displayed by the E-Maj plug-in have a header that contains:
➢ a button to refresh the current page,
➢ the time of current page display,
➢ the E-Maj version installed on the database,
➢ the page title,
➢ a bottom link, located at the extreme right of the header, to reach the bottom of the

page.

On some tables, it is possible to dynamically sort displayed rows, using small vertical
arrows on the right of column titles. On some tables too, hovering the mouse over the grey
bar located just below the header row displays input fields that can be used to filter rows
to display.

Figure 3 – Filtering the tables groups in logging state.
Here, only tables groups whose name contains “my” and having more than 2 marks are

displayed, sorted in descending order by number of tables.

6.3.4 E-Maj environment state

E-Maj User's Guide – version 1.3.1 Page 84 / 94

By clicking on the “E-Maj env.” icon of the main bar, the user reaches an overview of the E-
Maj environment state.

Items displayed first:
➢ the installed E-Maj version,
➢ the disk space used by E-Maj (log tables, technical tables and their indexes), and

the part of the global database space it represents.

Then, the environment integrity is checked; the result of the emaj_verify_all() function
execution is displayed.

Figure 6 – E-Maj environment state.

6.3.5 Tables groups content

With a click on the “Groups conf.” icon of the main bar, the user reaches the function that
manages the tables groups content.

The upper part of the page lists the existing schemas (except schemas dedicated to E-
Maj). By selecting a schema, the list of its tables and sequences appears.

E-Maj User's Guide – version 1.3.1 Page 85 / 94

Figure 7 – Tables groups content.

The user can then view or modify the content of the emaj_group_def table used for the
tables groups creation (emaj_create_group() function).

The following are listed for each table or sequence:
➢ its type
➢ the tables group it belongs to, if any,
➢ the following attributes of the table or sequence in the emaj_group_def table, if

assigned: (see §4.2.2):
• the priority level in the group,
• the suffix that defines log schema
• the optional tablespace name for the log table,
• the optional tablespace name for the log table's index,

➢ its owner,
➢ the tablespace it belongs to, if any
➢ the associated comment in the database.

The schemas list and the tables and sequences list also display the objects that are
known in the emaj_group_def table but don't exist in the database. These objects are
identified with a “!” icon in the first column of each list.

With buttons, it is possible to:

E-Maj User's Guide – version 1.3.1 Page 86 / 94

➢ assign a table or a sequence to a new or an already known tables group,
➢ modify the properties of a table or a sequence inside its tables group,
➢ remove a table or a sequence from its tables group.

Note that any change applied in the emaj_group_def table's content will only be effective
when the concerned tables groups are altered or dropped and re-created.

6.3.6 Tables group details

From the tables groups list page, it is possible to get more information about a particular
tables group by clicking on its name or on its « Detail » button. This page is also
accessible with the “Properties” icon of the groups bar and through the left browsing tree.

Figure 8 – Details of a tables group

A first line repeats information already displayed on the groups list (number of tables and
sequences, type, state and number of marks). It also shows the disk space used by its log
tables.

This line is followed by the group's comment, if any has been recorded for this group.

Next is a list of links enabling execution of actions applicable to the group's state.

Then, the user can see the list of all marks that have been set on the group. For each of
them, the following is displayed:

➢ its name,

E-Maj User's Guide – version 1.3.1 Page 87 / 94

➢ the date and time it has been set,
➢ its state (active or not, protected against rollback or not),
➢ the number of recorded log rows between this mark and the next one (or the

current situation if this is the last set mark),
➢ the total number of recorded log rows from when the mark was set,
➢ the comment associated to the mark, if it exists.

Several buttons are available to perform the actions permitted by the mark's state.

6.3.7 Statistics

Using the “Log statistics” icon of the groups bar, one gets statistics about updates recorded
into the log tables for the selected tables group.

Two types of statistics can be produced:
➢ some estimates about the number of updates per table, recorded between two

marks or between one mark and the current situation,
➢ a precise numbering of updates per tables, per statement type

(INSERT/UPDATE/DELETE/TRUNCATE) and role.

If the end of the range corresponds to the current situation, a check box allows one to
request a rollback simulation to the selected mark in order to quickly get an approximate
duration of this operation.

The figure below shows an example of detailed statistics.

Figure 9 – Detailed statistics about updates recorded between two marks

E-Maj User's Guide – version 1.3.1 Page 88 / 94

The displayed page contains a first line returning global counters.

On each line of the statistics table, the user can click on a “SQL” button to easily look at the
log tables content. A click on this button opens the SQL editor window and proposes the
statement displaying the content of the log table that corresponds to the selection (table,
time frame, role, statement type). The user can modify this suggested statement before
executing it to better fit his needs.

E-Maj User's Guide – version 1.3.1 Page 89 / 94

Figure 10 – Result of the rollback simulation, with the estimated number of updates for
each table.

The displayed page contains a first part indicating the number of tables and sequences
concerned by the rollback operation to this mark, and an estimate of the operation
duration.

6.3.8 Tables group content

Using the “Content” icon of the groups icon bar, it is possible to get a summary of a tables
group content.

For each table and sequence belonging to the group, the displayed table shows the
characteristics configured into the emaj_group_def table, as well as the disk space used by
the log table and its index.

E-Maj User's Guide – version 1.3.1 Page 90 / 94

Figure 11 – Content of a tables group.

6.3.9 Monitoring rollback operations

Using the “Rollback op.” icon of the main bar, users can monitor the rollback operations.
Two different lists are displayed:

➢ in progress rollback operations, with the characteristics of the rollback operations
and estimates of the percentage of the operation already done and of the
remaining duration,

➢ the latest completed operations.

For the latter, the user can filter on a more or less deep history.

Figure 12 – Rollback operation monitoring.

E-Maj User's Guide – version 1.3.1 Page 91 / 94

7 APPENDIX

7.1 E-MAJ FUNCTIONS LIST

E-Maj functions that are available to users are listed in alphabetic order below. They are
all callable by roles having emaj_adm privileges. The chart also specifies those callable by
emaj_viewer roles.

Functions Parameters Return type
Callable by

emaj_viewer
Ref.

emaj_alter_group group TEXT # tables.and.seq INT § 4.2.9

emaj_cleanup_rollback_state - # rollback INT § 14.8.3

emaj_comment_group group TEXT
comment TEXT

- § 4.4.2

emaj_comment_mark_group group TEXT
mark TEXT
comment TEXT

- § 4.5.1

emaj_create_group group TEXT
[is.rollbackable
BOOLEAN]

#.tables.and.seq INT § 4.2.3

emaj_delete_before_mark_group group TEXT
mark TEXT

#.deleted.marks INT § 4.5.5

emaj_delete_mark_group group TEXT
mark TEXT

1 INT § 4.5.4

emaj_detailed_log_stat_group group TEXT
start.mark TEXT
end.markTEXT

SETOF
emaj_detailed_log_stat
_type

Yes § 4.6.2

emaj_drop_group group TEXT #.tables.and.seq INT § 4.2.10

emaj_estimate_rollback_group group TEXT
mark TEXT

duration INTERVAL Yes § 4.6.3

emaj_estimate_rollback_groups groups.array TEXT[]
mark TEXT

duration INTERVAL Yes § 4.3.2

emaj_force_drop_group group TEXT #.tables.and.seq INT §4.4.5

emaj_force_stop_group group TEXT #.tables.and.seq INT § 4.4.4

emaj_gen_sql_group group TEXT
start.mark TEXT
end.mark TEXT
output.file.path TEXT
[tables.seq.array
TEXT[]]

#.gen.statements INT § 4.7.3

emaj_gen_sql_groups Groups.array TEXT[]
start.mark TEXT
end.mark TEXT
output.file.path TEXT

#.gen.statements INT § 4.3.2

E-Maj User's Guide – version 1.3.1 Page 92 / 94

Functions Parameters Return type
Callable by

emaj_viewer
Ref.

[tables.seq.array
TEXT[]]

emaj_get_previous_mark_group group TEXT
date.time
TIMESTAMPTZ

mark TEXT Yes § 4.5.2

emaj_get_previous_mark_group group TEXT
mark TEXT

mark TEXT Yes § 4.5.2

emaj_log_stat_group group TEXT
start.mark TEXT
end.mark TEXT

SETOF
emaj_log_stat_type

Yes § 4.6.1

emaj_logged_rollback_group group TEXT
mark TEXT

#.proc.tables.and.seq
INT

§ 4.2.7

emaj_logged_rollback_groups groups.array TEXT[]
mark TEXT

#.proc.tables.and.seq
INT

§ 4.3.2

emaj_protect_group group TEXT 0/1 INT § 4.4.3

emaj_protect_mark_group group TEXT
mark TEXT

0/1 INT § 4.5.6

emaj_rename_mark_group group TEXT
mark TEXT
new.name TEXT

- § 4.5.3

emaj_reset_group group TEXT #.tables.and.seq INT § 4.4.1

emaj_rollback_activity - SETOF
emaj_rollback_activity
_type

Yes §4.8.2

emaj_rollback_group group TEXT
mark TEXT

#.proc.tables.and.seq
INT

§ 4.2.6

emaj_rollback_groups groups.array TEXT[]
mark TEXT

#.proc.tables.and.seq
INT

§ 4.3.2

emaj_set_mark_group group TEXT
mark TEXT

#.tables.and.seq INT § 4.2.5

emaj_set_mark_groups groups.array TEXT[]
mark TEXT

#.tables.and.seq INT § 4.3.2

emaj_snap_group group TEXT
directory TEXT
copy.options TEXT

#.tables.and.seq INT § 4.7.1

emaj_snap_log_group group TEXT
start.mark TEXT
end.mark TEXT
directory TEXT
copy.options TEXT

#.tables.and.seq INT § 4.7.2

emaj_start_group group TEXT
mark TEXT
[reset.loge BOOLEAN]

#.tables.and.seq INT § 4.2.4

emaj_start_groups groups.array TEXT[]
mark TEXT
[reset.loge BOOLEAN]

#.tables.and.seq INT § 4.3.2

E-Maj User's Guide – version 1.3.1 Page 93 / 94

Functions Parameters Return type
Callable by

emaj_viewer
Ref.

emaj_stop_group group TEXT
[mark TEXT]

#.tables.and.seq INT § 4.2.8

emaj_stop_groups groups.array TEXT[]
[mark TEXT]

#.tables.and.seq INT § 4.3.2

emaj_unprotect_group group TEXT 0/1 INT § 4.4.3

emaj_unprotect_mark_group group TEXT
mark TEXT

0/1 INT § 4.5.6

emaj_verify_all - Setof TEXT Yes § 4.8.1

E-Maj User's Guide – version 1.3.1 Page 94 / 94

	1 Introduction
	1.1 Document content
	1.2 License
	1.3 E-Maj's objectives

	2 How E-Maj works
	2.1 Concepts
	2.1.1 Tables Group
	2.1.2 Mark
	2.1.3 Rollback

	2.2 Architecture
	2.2.1 Logged SQL statements
	2.2.2 Created objects
	2.2.3 Norm for E-Maj objects naming
	2.2.4 Schemas
	2.2.5 Tablespaces

	3 How to install E-Maj
	3.1 extension download and decompression
	3.1.1 Download
	3.1.2 Decompression

	3.2 E-Maj extension setup
	3.2.1 Preliminary operations
	3.2.1.1 PL/pgSQL language
	3.2.1.2 Tablespace
	3.2.1.3 DBLINK extension

	3.2.2 E-Maj components installation
	3.2.3 Changes in postgresql.conf configuration file
	3.2.4 E-Maj parameters
	3.2.5 Test and demonstration

	3.3 Update an existing E-Maj version
	3.3.1 General approach
	3.3.2 Un-registering an old E-Maj extension
	3.3.3 Migration by deletion and re-installation
	3.3.3.1 Stop tables groups
	3.3.3.2 Save user data
	3.3.3.3 E-Maj deletion and re-installation
	3.3.3.4 Restore user data

	3.3.4 Migration from E-Maj 0.10.0 to 0.10.1
	3.3.5 Migration from E-Maj 0.10.1 to 0.11.0
	3.3.5.1 Validating migration conditions
	3.3.5.2 Updating E-Maj components

	3.3.6 Migration from E-Maj 0.11.0 to 0.11.1
	3.3.7 Migration from E-Maj 0.11.1 to 1.0.0
	3.3.8 Migration from E-Maj 1.0.0 to 1.0.1
	3.3.9 Migration from E-Maj 1.0.1 to 1.0.2
	3.3.10 Migration from E-Maj 1.0.2 to 1.1.0
	3.3.11 Migration from E-Maj 1.1.0 to 1.2.0
	3.3.12 Migration from E-Maj 1.2.0 to 1.3.0
	3.3.13 Migration from E-Maj 1.3.0 to 1.3.1

	3.4 E-Maj uninstall

	4 How to use E-Maj
	4.1 Set-up the E-Maj access policy
	4.1.1 E-Maj roles
	4.1.2 Giving E-Maj rights
	4.1.3 Giving rights on application tables and objects
	4.1.4 Synthesis

	4.2 Main functions
	4.2.1 Operations chain
	4.2.2 Define tables groups
	4.2.2.1 The emaj_group_def table
	4.2.2.2 Main columns
	4.2.2.3 Optional columns

	4.2.3 Create a tables group
	4.2.4 Start a tables group
	4.2.5 Set an intermediate mark
	4.2.6 Rollback a tables group
	4.2.7 Perform a logged rollback of a tables group
	4.2.8 Stop a tables group
	4.2.9 Alter a tables group
	4.2.10 Drop a tables group

	4.3 Multi-groups functions
	4.3.1 General information
	4.3.2 Functions list
	4.3.3 Syntax for groups array
	4.3.4 Other considerations

	4.4 Other groups management functions
	4.4.1 Reset log tables of a group
	4.4.2 Comments on groups
	4.4.3 Protection of a tables group against rollbacks
	4.4.4 Forced stop of a tables group
	4.4.5 Forced suppression of a tables group

	4.5 Marks management functions
	4.5.1 Comments on marks
	4.5.2 Search a mark
	4.5.3 Rename a mark
	4.5.4 Delete a mark
	4.5.5 Delete oldest marks
	4.5.6 Protection of a mark against rollbacks

	4.6 Statistics functions
	4.6.1 Global statistics about logs
	4.6.2 Detailed statistics about logs
	4.6.3 Estimate the rollback duration

	4.7 Data extraction functions
	4.7.1 Snap tables of a group
	4.7.2 Snap log tables of a group
	4.7.3 SQL script generation to replay logged updates

	4.8 Other functions
	4.8.1 Check the consistency of the E-Maj environment
	4.8.2 Monitoring rollback operations
	4.8.2.1 Prerequisite
	4.8.2.2 Monitoring function

	4.8.3 Updating rollback operations state

	4.9 Parallel Rollback client
	4.9.1 Sessions
	4.9.2 Prerequisites
	4.9.3 Syntax
	4.9.4 Examples

	4.10 Rollback monitoring client
	4.10.1 Prerequisite
	4.10.2 Syntax
	4.10.3 Exemples

	5 Miscellaneous
	5.1 Parameters
	5.2 Internal checks
	5.3 Traces of operations
	5.4 Impacts on cluster and database administration
	5.4.1 Stopping and restarting the cluster
	5.4.1.1 General rule
	5.4.1.2 Sequences rollback

	5.4.2 Saving and restoring the database
	5.4.2.1 File level saves and restores
	5.4.2.2 Logical saves and restores of entire database
	5.4.2.3 Logical save and restore of partial database

	5.4.3 Data load
	5.4.4 Tables reorganisation
	5.4.4.1 Reorganisation of application table
	5.4.4.2 Reorganisation of E-Maj tables

	5.4.5 Using E-Maj with replication
	5.4.5.1 Integrated replication
	5.4.5.2 Other replication solutions

	5.4.6 PostgreSQL version upgrade
	5.4.6.1 PostgreSQL versions 8.3
	5.4.6.2 PostgreSQL versions 8.4 and later

	5.5 Sensitivity to system time change
	5.6 Performance
	5.6.1 Updates recording overhead
	5.6.2 E-Maj rollback duration
	5.6.3 Optimizing E-Maj operations
	5.6.3.1 Use tablespaces
	5.6.3.2 Declare foreign keys as DEFERRABLE

	5.7 Usage limits
	5.8 User's responsibility
	5.8.1 Defining tables groups content
	5.8.2 Appropriate call of main functions
	5.8.3 Management of application triggers
	5.8.4 Internal E-Maj table or sequence change

	6 phpPgAdmin plug-in
	6.1 Overview
	6.2 Installation
	6.2.1 Prerequisite
	6.2.2 Plug-in download
	6.2.3 Plug-in activation
	6.2.4 Plug-in parametrization

	6.3 Using phpPgAdmin plug-in
	6.3.1 Accessing E-Maj from the phpPgAdmin interface
	6.3.2 Tables groups list
	6.3.3 Some details about the user interface
	6.3.4 E-Maj environment state
	6.3.5 Tables groups content
	6.3.6 Tables group details
	6.3.7 Statistics
	6.3.8 Tables group content
	6.3.9 Monitoring rollback operations

	7 Appendix
	7.1 E-Maj functions list

