PostgreSQL 9.1.6 Documentation

The PostgreSQL Global Development Group

PostgreSQL 9.1.6 Documentation
by The PostgreSQL Global Development Group
Copyright © 1996-2012 The PostgreSQL Global Development Group

Legal Notice

PostgreSQL is Copyright © 1996-2012 by the PostgreSQL Global Development Group and is distributed under the terms of the license of the
University of California below.

Postgres95 is Copyright © 1994-5 by the Regents of the University of California.

Permission to use, copy, modify, and distribute this software and its documentation for any purpose, without fee, and without a written
agreement is hereby granted, provided that the above copyright notice and this paragraph and the following two paragraphs appear in all
copies.

IN NO EVENT SHALL THE UNIVERSITY OF CALIFORNIA BE LIABLE TO ANY PARTY FOR DIRECT, INDIRECT, SPECIAL,
INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING LOST PROFITS, ARISING OUT OF THE USE OF THIS SOFTWARE
AND ITS DOCUMENTATION, EVEN IF THE UNIVERSITY OF CALIFORNIA HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

THE UNIVERSITY OF CALIFORNIA SPECIFICALLY DISCLAIMS ANY WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE SOFTWARE PRO-
VIDED HEREUNDER IS ON AN “AS-IS” BASIS, AND THE UNIVERSITY OF CALIFORNIA HAS NO OBLIGATIONS TO PROVIDE
MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR MODIFICATIONS.

Table of Contents

Preface Iv
1. What 1S POStZIESQLT ..ottt ettt Iv
2. A Brief History of POStreSQLu......c.coiiiiiiiiiiiiiieieeiteeteeteee ettt s sre e s lvi

2.1. The Berkeley POSTGRES Projectccccevveviiiiiienienieeieeieenite et s lvi
2.2, POSEEIESOS ..ottt sttt sttt sttt at e st e b e bt e saseebeebeeseee lvi
2.3, POSEEIESQLou ittt ettt ettt st ettt st e be e be e sabeebeeaee e lvii
3. COMNVEINTIONS ...ttt ettt ettt sttt ettt et et sb et esae et e beebe et e sbeestesbeeaeenbesbeennesneenee Ivii
4. Further INfOrmation........cccoeeviiririeiiinieiencetee sttt sttt st lviii
5. Bug Reporting GUIEIINES.ecoueeriiiriieiiiiie ittt ettt ettt st esatesane e lviii
5.1, Tdentifying BUgSoovuiiriiiiiiiieieet ettt et lix
5.2. What t0 REPOTT c...eeiiiiniiiiieiie ettt sttt sttt st e e lix
5.3. Where to RepOrt BUZS ...c.coviiiiiiiiiiiiiieeeee ettt Ixi
I. Tutorial 1
1. GEttING STATTEAeeeniiiieieieeiieeee ettt st e 1
1.1 INSEALIALION ..ottt et sttt st sttt et en 1
1.2. Architectural Fundamentals............ccoceriiriiriiiniiiieiieeceeceee e 1
1.3. Creating a Databasececueiuieieriieiieerie ettt ettt ettt et saeesaesbeeneens 2
1.4. Accessing @ Databasecooeeriiriiiriiiiiiieetee ettt 3
2. The SQL LaNGUAZEcovveiriiiiiieieenite ettt ettt st sa e st sttt e sbe e saneesbeenbee e 5
2.1, INEEOAUCTION 1ttt ettt et sttt e bttt et e e st e st e s be et e beeaeenes 5
2.2, COMCEPLS .uveeneeeiieeieeieeeite ettt e et st e b e bt e sat e e bt e sbtesate e bt e s bt esaeesabe e bt esbeesabeenbeesaeesaneen 5
2.3. Creating @ NeW Tablecccoviiiiiiiieieeee ettt 5
2.4. Populating a Table With ROWScccoeiiiiiiiiiiiiiiieeeecee e 6
2.5. QUErying @ TaDIEcc.coiiiiiiiiiiiiiee et st 7
2.6. Joins Between Tables........cocoviiiiiiiiiiiiieeeceereeesest et 9
2.7. Aggregate FUNCHIONS......ccccoviiiiiiieeteteeitete ettt sttt 11
2.8 UPAALES ..ottt sttt et sttt ettt b ettt et sa e bbbt ettt eae e 12
2.9, DCIETIONS ...conveeeenieieeiteteettete sttt ettt sttt sttt b ettt ebt et st sbe et et ebeenees 13
3. AdVANCEd FRATUIES ...c..eeiiiiiiiiiieiietceitctee ettt ettt ettt ettt s ennens 14
3.1 INTOAUCTION «.nveiiiiiiieiieitete ettt ettt ettt ettt eb s 14
3.2 VIBWS ittt ettt sttt ettt et sttt ettt na e sttt et eae e 14
3.3, FOTEIZN KEYS...uiiiiiiiiiiiieeie ettt ettt sttt ettt e bt e sbeeseneenbeenbeesene 14
3.4, TTANSACHIONS ..c.eevveniieiieteeitete sttt ettt ettt et sttt e st e e sbtebeesaesaeesbesbeeesemteeaeenees 15
3.5. WIndow FUNCHONSccuiiiiriiiiiiinieiececeteeceteste ettt st 17
3.6. INNETILANCE ...c.eeiiiiiiiciiecc ettt sttt 20
3.7 CONCIUSION ...ttt ettt ettt ettt sa et esae st e bt eneeaeemnes 21

I1. The SQL Language 22

4. SQL SYNEAX .eontiiieiieiieiete ettt ettt ettt ettt et e ae st h e n et ae e e nesreeanenee 24

4.1, LeXiCal SIUCLUTE.eivuiiiiiiiieteeitt ettt ettt ettt st sbe et e st e sbeesaee st ens 24
4.1.1. Identifiers and Key Words.........ccccceeveeriiiiniiniiniineeeeneeeieeeeiee e 24
1.2, CONSLANLS .e.uveeutieiteeieetee sttt ettt et st e bt e bt e st e e bt e bt e sbeesbe e bt enbeesanesaeeenbeas 26
4.1.2.1. String CONSLANESeeouervereietierieieeeeeeenteeeeete et eee et eesee s eeeseeeneenes 26

4.1.2.2. String Constants with C-style EScapes.........cccceccevirrenerieneneenne 26

4.1.2.3. String Constants with Unicode Escapes.......c..ccccoecvrreenereenenennnnne. 28

4.1.2.4. Dollar-quoted String CONStaNtscceeeeerierreerienieeieneneeee e 28

4.1.2.5. Bit-String CONSLANLSc..ccveueeurririinrerereeeieeestenteeeeeee e e seeaenenene 29

4.1.2.6. NUMEIIC CONSLANLSovereieniietieienieeieniesiteie ettt sttt sbe e 29

4.1.2.7. Constants of Other TYPEScccevereerererienenieieneeee e 30

iii

1.3, OPCTALOTSeeuvieiieeieeiiesite et et e sitesteeabte bt e satesabeesbeesasesateebeesseesssesnseeseenaees 31

4.1.4. SPecial CharaClers........cevueruersiieriieriestiesieeste st et esiteseesbeesbeesbeesaresnseenbeas 31
4.1.5. COMMENLS ...t 32
4.1.6. Operator PreCedeNCeoouiriiiriirieniieiieteee ettt 32

4.2, Value EXPIESSIONS......eiiuiiriiiiiieiienite ettt ettt ettt sttt et e st e bt e st e sateesbeesaeesaeeens 33
4.2.1. Column References..........coceoerieieriinieninieneneeieeeeeteeee et 34
4.2.2. Positional Parameters.........cceevueerierieriiiinienienieeieeitesee et 34
4.2.3. SUDSCIIPLS ..ottt ettt et 35
4.2.4. Field SEIECHONooueiiiiiiieiieiieeiteetee ettt st 35
4.2.5. Operator INVOCAtIONSc..coueevuiriiiiiiieiieie et 36
4.2.6. FUNCHON CallSeoiiiiiiiiiiieeiietete ettt s 36
4.2.77. Aggregate EXPreSSIONS.cccueiviiiiiirieriierieentenite ettt st 36
4.2.8. Window Function Calls...........cceeruiririeninierieieeeeeeee e 38
4.2.9. TYPE CaSS .. s 39
4.2.10. Collation EXPreSSionsccceeeeuertieienieneeniesieeiesieeieete st eee et 40
4.2.11. Scalar SUDQUETIES........covirieiirtieietieiieee ettt ettt 41
4.2.12. Array CONSLIUCTOTS .. .veenvienieriienieeniterteeieeeree st et esreesbeesreesseesbeesaresneeebees 41
4.2.13. ROW CONSLIUCLOTS....cuveeurenierrienieenitentteieesieesiteereesseesieeeteesseesreesmnesaneenbees 43
4.2.14. Expression Evaluation RuUlescccccocoviinininiininiiicccee 44

4.3. Calling FUNCHONS.ccuteiiriieiintieterieeterte sttt ettt sttt et sbe e b e 45
4.3.1. Using Positional NOtationcccueverierireenienenienienieeieneeeene e 45
4.3.2. Using Named NOtAtioNcccevueeieriirieniineeienentenienitetesieete et 46
4.3.3. Using Mixed NOtation......c..ccoeriieiiniirieniinienienenteeseeteseeee et 46

5. Data DefINItIONccoiiiiiiiiiiiicieieiccec et 47
5.1, Table BaSICScouiiuiiiiiiiiicieieireee e e 47
5.2. Default ValUEScccovuiiiiiiiiiiiiiiiiiiictcteeeee et 48
5.3 CONSLIANEScuiiiiiiiiieeiee ettt sttt s 49
5.3.1. Check CONSLIAINESo.ceuiiuiriiiiieiiiiiietiteeee e 49
5.3.2. Not-NUll CONSLIAINLSooviiiiiiiiiiiiiiiiiieieeeeeeese e 51
5.3.3. UnNiqUe CONSLIAINES. ..c.uveruiertieriienieeieenteeteeieesieesteeteesbeesteeteesbeesaresaseenseas 52
5.3.4. Primary KEYS.....cueoiieriirieiiiesieeieetest ettt st s 52
5.3.5. FOr@ign KEYS ...ccuviiiiiiiiiiiiiiesteeeetet ettt e 53
5.3.6. EXClusion CONSIIAINLScc.eecviruieiiniirieienieerenieeieere et enesneeaeennes 56

5.4, SyStem COIUMIS ...c..veitiiriieiiieieeite ettt ettt sttt e st st e bt et e sateebeebeesaee 56
5.5. Modifying TabIes........ccoociiriiriiiiiiiiiiieieeeceeeeeeee et 57
5.5.1. Adding @ COIUMN.....cccoeiiiiiiiiiieieic e 58
5.5.2. Removing @ COIUMINcccoeviiiiiiiiiiiiieieeecteeeee e 58
5.5.3. Adding @ COonStraintccuevuieiiiriiiienienieete et 59
5.5.4. Removing @ CONSIAINEccuevuiiiiiriiiieiiiieiceeeete e 59
5.5.5. Changing a Column’s Default Value.........c..ccccceververinenenenninincneieeenns 59
5.5.6. Changing a Column’s Data TYPEccceveruieiinieieieieereeeee e 60
5.5.7. Renaming @ COIUMN ...cc.eeuiiiiiiieiiiieieie e 60
5.5.8. Renaming @ Tablecccoeieiiiiiiiiiniiiiee e 60

5.6, PLIVIIEZES ..ttt ettt sttt et 60
5.7 SCREIMAS ...ttt ettt et sa e st b ettt 61
5.7.1. Creating @ SCheMAcceiiiiiiiiiiirieieeeeee e 62
5.7.2. The Public SChemaccccoivieiiiiiiiniiicicicieieereeeee e 63
5.7.3. The Schema Search Path..........cc.cccccoiniiiniiiiiiiccceee 63
5.7.4. Schemas and Privileges..........coceevuereriineniniiiniinieicsceeneetee e 64
5.7.5. The System Catalog SChemac.ccoceveririiiniiniiininieieneceeeeeeceee 64
5.7.6. USAZE PALEINIS ...ccuveveiuiiiiriieieeieetente ettt sttt 65
577 POTtabIlitycvoviiiicieiieiiirecece e 65

v

5.8, INNETILANCE ...t et e et e et e e e eeaar e e e eeetaeeeeeenanreeeeen 65

581 CAVEALS ...t 68

5.9, PartitIONING ..cc.veevuieiiiieiienite ettt sttt ettt ettt e st sttt e sbt e sabe e be e bt e saneebeebeesane 69
5.9 10 OVEIVIEW ..uiiiiiiiicic e 69

5.9.2. Implementing Partitioningc.cceevveerieriieiiienienieeieesieeeeeee et 70
5.9.3. Managing Partitionsccoeeeveenirienenieieniieeetesceeese e 73
5.9.4. Partitioning and Constraint EXCIUSIONcc.ccceeveeviniiiininienenicicceeenne. 73
5.9.5. Alternative Partitioning Methods.........c..coceeceeiiiiiiniiiiniicncceeeene, 75
5.9.6. CAVEALS ...eouviiieeiieeiteeteete ettt ettt et et st b e st e b s 75

5.10. FOreign Datac..cocoeiiiiiiiiiiieiieeceecee et e 76
5.11. Other Database ObBJECLSccceriiiiiiiriiiiiieieeeeeeee et 77
5.12. Dependency Trackingccoeereiieierieieieeieee ettt 77
6. Data Manipulation..........coccoeeuerieieinieinenenieeet ettt ere et s et sae st et se e e eneen 79
6.1. INSEItiNG DAtacoueeviiiiiiiiieieireretctet ettt 79
6.2. UPdating Datal......cc.eeeeiiieiieiieiieiesieeee ettt ettt sttt 80
6.3. DEleting DAata.......ccueeuieiieiieiieieeiesieeete ettt sttt sttt et 81
T QUBTIES .. et ettt e et et e e et e e ete e eeteeeetteeeeaaeeeeateeeaaeeeetaeeeaaaeeeateaeeteeeeaeeeeaeeeeteeeenteeeeanes 82
T 1. OVEIVIEBW ..ttt ettt ettt ettt st b et e bt sate bt sbeenaesbeesnenee 82
7.2. Table EXPIESSIONScuveuiiiieiintieienieeitente sttt ettt ettt et sb ettt st e e b ene b e 82
7.2.1. The FROM CIAUSE.....c.cevruiriiriinieieieitnitetitetetee ettt eenees 83
7.2.1.1. Joined Tablescccoeveiririniniiieicieeceeeeeeeeeeee e 83

7.2.1.2. Table and Column ALASES........cccecueiririninienieieieeeere e 86

7.2.1.3. SUDQUETIES «..cveeniiiieiiiiieiieie ettt 87

7.2.1.4. Table FUNCHONS ..c..cociiriiriiiiriiiienierteeseetceecetee st 88

7.2.2. The WHERE ClaUSE.......cceeriririiiiiiiiieieiietiteeeeeteeee sttt 88
7.2.3. The GROUP BY and HAVING ClauSes........cccouevueieirireniiieicieieieenieeenen 89
7.2.4. Window Function ProCeSSingcceecueevueenienieniiienienienieeieenee e esveeieens 92

7.3 SEIECE LSS ...eeiiiiiiiiiiiicicetc et 92
7.3.1. Select-List ILEMScc.ccceiiiiiniiiiiiiiiciccc e 92
7.3.2. Column Labelsccocoiiiiiiniiiiiiiiiiicccc 93
T.33.DISTINCT tuiuiiiieieieieitet sttt st 93

7.4, COMDINING QUETIESceveeruiieiieriteriieettertte sttt et esttesitesbeesbeesstesabeesbeesaeesaseenbeesseesaseens 94
7.5, SOTtING ROWS .ttt ettt sttt st e sbe e s e st 94
7.6. LIMIT ANd OFFSET.c.uiiiiiiiiiiiiiiiiiitiieieees sttt st 95
TTVALUES LSS 1ottt et st st s s 96
7.8. wiTH Queries (Common Table EXPIresSions)ceevervverrienierieeneeneenieenieeneeneeens 97
7.8.1. SELECT I WITH ceiiuieieiieieeieeiteeente ettt et e ne e 97
7.8.2. Data-Modifying Statements in WITHccceeieveeririenieniereieeeesee e 100

8. DALA TYPES ..ttt ettt ettt e sb ettt be et st e be e aee st 103
8.1 INUMEIIC THPES . ueeurieniaieeiieieeteete ettt ettt ettt ettt et sae et et e ae et esaeeneenaeene 104
8.1 1. INtEZET TYPES .ttt ettt st 105
8.1.2. Arbitrary Precision NUMDETSccceoirieriiiiiieieciieeeeee e 105
8.1.3. Floating-Point TYPESceoueruerieriieiieiieiieie sttt 107
814, SErTal TYPES . ..eueetieuieiieiieie ettt ettt ettt b e be et sa et sbe et e eae 108

8.2. MONEtary TYPESccoouiiiiiiiiiiii s 109
8.3. Character TYPESeeeuiruiriirieieieiieiiie sttt ettt ettt s sttt eae e snene 109
8.4. BINAry Data TYPEScevveruieieriiiiieieeieeteste ettt sttt sttt 111
8.4.1. bytea HEX FOrmMaL........cc.coooiiiiiiiiiiiiicciecee e e 112
8.4.2. bytea Escape FOrmat........ccceoueiinieiiiniiiiiniiiieniieieeeecc e 112

8.5. DAte/TIME TYPES....eoueeeiriiiniiiieiteieeitete ettt ettt sttt nae e 114
8.5.1. Date/Time INPUL ...cc.covuiriiiiiiiiieiecete ettt 115
8.5, 1.1 DALES .. 116

8.5. 1.2 TIMES ..t 116

8.5.1.3. TIME STAMPS...eeeuveeiieriiieieeiierte ettt ettt sttt esbesne e 117

8.5.1.4. Special VAlUEScccceeviiriiiiiiniiieiecitesiteeeee ettt 118

8.5.2. Date/Time OULPULeevuieriiiiiieiieeie ettt ettt ettt e 119
8.5.3. TIME ZONES ...ttt s 119
8.5.4. Interval INPUL......cocuiiiiiieiiiiete ettt 121

8.5.5. INterval OULPULcceeviiriieiirieeieeeeeeeee et 123
8.5.6. INtEINALS......coiiiiiiiiiii e 123

8.6. BOOLEAN TYPE....eeimiiiiiiiiiieieeeeeee e e 124
8.7. Enumerated TYPESccuerieiiiiiieiieicet e e 125
8.7.1. Declaration of Enumerated TYPes..........cccccoirviiiiniiiiniiiiniieceseciee 125

8. 7.2, OTAETING ..ottt ettt st ettt st e e e 125
8.7.3. TYPE SALCLY ...ttt 126
8.7.4. Implementation Details...........ccooieieiiniiiiiiiees e 126

8.8, GEOMELIIC TYPES ..uveetentiiieieiteeitete ettt ettt ettt ettt et be et et be et e b et e e e 127
881 POINLS ..ottt st 127
8.8.2. NG SEZMENLS.......eeuiiiiriieiiiieeiiesieet ettt sttt ettt et sbe e e e 127
883, BOXES ettt et st e 128
884 PathS ..o e 128
8.8.5. POLYZOMNS. ...ttt 128
8.8.0. CICIES ...t 129

8.9. Network Address TYPES.......coeeieriirieriiririenienitetenteeteie ettt ettt 129
8L0. 1L ANET totiiiteeetet ettt st 129
LIRS o e oSSR PRSPPI 130
8.0.3. ANEE V8. Co AT ttitiitieitierieeit ettt ettt te sttt e et e bt e satesabeebeesaaesanas 130
8.9.4. MACAAAT tutieitieriieeiietteete ettt ettt s e sttt e st e st e e beesabe et e enaeenaeesneas 130

810, Bit SINE TYPES convvierieiieriieiieeiterite sttt sete et et e st s teebeesbaessbesnbeesbeesanesnseenne 131
.11, TeXt SEATCH TYPES..ceveeriierieiiieiterite sttt ettt ettt st e s te et esbeesabesbeesbeessbesnneenne 132
Bl L. L. £ SVECEOT tottieieeiieiteete ettt ettt ettt st ettt st et e st st e be e i e saeas 132

Bl 1.2, £ SUETY tiieetreiee ettt eee e e eet e e eee e e e e e e e e e eetreeeeeeeareeeeeenanres 133

B12. UUID TYPE ceveenveeuteeieeitenite sttt ettt ettt ettt st e sitesbe st esbaesabesaseenbeesanesaneenne 134
BL3. XIML TYPE ettt ettt sttt st ettt ettt st e bt e st sabe e beesabesaneenne 135
8.13.1. Creating XIML ValUesccccevvueriiiriienienieiitenitente ettt 135
8.13.2. Encoding Handlingc.cceceviieieiiinieiiniiieienieietceecceeereseenenene 136
8.13.3. Accessing XML ValUues...........ccceeieviinieiiiniiieienieieeeeeee e 137

BLL4. ATITAYS ..ottt ettt e 137
8.14.1. Declaration of Array TYPES.....cccecvecuirieiieriiieienieieeeeeere e 137
8.14.2. Array Value INPUL..........cccooiiiiiiiiiiiiiicccece e 138
8.14.3. ACCESSING ATTAYS ...cuvimiiiiiiiieiieiieie ettt s 139
8.14.4. MOAIfYING ATTAYS...cuteueeieeiueeieiteetieteeiteee st etesteette et eneesaeeaeesaesbeeneeneeene 141
8.14.5. Searching in ALTAYS.......ccceveeierieieieeieie sttt ettt sbe e ene 143
8.14.6. Array Input and OUtPULt SYNTAXeevvivuieiierieierieeiieieeieeee e 144

8.15. COMPOSIE TYPES ...veeneeeienieieeiieieett ettt ettt et et see et et s be et sae et enee s 145
8.15.1. Declaration of COmMPOSIte TYPES....ccuerueeriiruerieriiniieienieetenee e 146
8.15.2. Composite Value INPuL........ccceiieieiiiiiiiiinieieeeeeeee e 146
8.15.3. Accessing Composite TYPESceverueruieriereiieieniieieneetenee e 147
8.15.4. Modifying CompoSite TYPES......cerveruiruierieriirienieniieienieetenee st erenieae 148
8.15.5. Composite Type Input and Output SYNtax........cceceevverereenereenenensrenenne 148

8.16. Object Identifier TYPES ...cvevueeieriiriieiinieeierie ettt ettt 149
817, PSCUAO-TYPES ...ttt ettt e 151
9. FUNCtions and OPETALOLSceceerueriierieriiriiniietenie sttt eite st eieeste st estesbeease bt ebeeneesaeenaesieas 153
0.1. LOZICAl OPETALOLSeeuvinveeuiiieniieienieetenteeitete ettt st eete st sttt et esteseesaeesaesbeesnenaeene 153

Vi

0.2, ComMPATISON OPETALOTS ..ccuvverurreiieriieriieerieentesiteesteesttesitesbeesseesstesseesseesseessesssessseens 153

9.3. Mathematical Functions and OPerators...........coceereerierrieenieeneensieenieenieeseeesieeneeens 155
9.4. String Functions and OPEratorscooeereerierrieenieniesieenieeseesreesieesieesseesseesseens 158
9.5. Binary String Functions and OPeratorscoceereereerieeneeneerieenieenieeseeesieeneeens 172
9.6. Bit String Functions and OpPeratorsceecvervueerieerieriieeneeneesieeieeniee e eieenieen 174
9.7. Pattern MatChingccooieiiiririiiiiieieeect ettt 175
0.7 1. LIKE ittt e st s st 175
9.7.2. SIMILAR TO Regular EXPressions.........ccccoieceererienieneecreneeeenie e 176
9.7.3. POSIX Regular EXpressionscoccceeiecieriieiienineenieneereneeeesee e 177
9.7.3.1. Regular Expression Detailsccceceeviiieiininiininicniicceee 180

9.7.3.2. Bracket EXPressionsc.ccceviiiiiiiiiiniiiicieneceeeceee e 182

9.7.3.3. Regular Expression ESCapes..........coccoevvecveirininenencncnencncnenen 183

9.7.3.4. Regular Expression Metasyntax..........ccceeeeeerrenrenvenveeeenenennennes 186

9.7.3.5. Regular Expression Matching Rulescccccoceveneneccninvcncnenne. 187

9.7.3.6. Limits and Compatibilityccccecervererieiiecinininenieneeeeneneneenee 188

9.7.3.7. Basic Regular EXPressionscccoceeevveeveiriniinenieneeeeeneneneennes 189

9.8. Data Type Formatting FUnCtionscccccceceririnenenieieininineseieeeeeese e 189
9.9. Date/Time Functions and OPErators...........ccceeverueruerueeeieenenenieneereeeeessesuesaennes 195
9.9.1. EXTRACT, AT E_PATE ttitiieririeeeeiiieeeeeeitreeeeeeraeeeeeesreeeeesnraneesssssaseessssnnes 200
0.0, 2 AT O £ T UILC et e e e et e e e e e e e e e e e e e e et eaaaaaaaaaas 203
9.9.3. AT TIME ZONE...iisiiseoieieririerientetetentestetessessessentestesesuesaessesnessenseneesessesuens 204
9.9.4. Current Date/TIimecoeevuirerrieririeieniteteneet ettt 205
9.9.5. Delaying EXECULION.......cc.cccuiririiiniiriieieniieteniceitee ettt 206

9.10. Enum Support FUNCHIONSccueeriiiiiiiieniieeieeieenitesiteeieesieesresve e esieesteenbeeeee s 207
9.11. Geometric Functions and OPeratorsS..........cccueevveerueerreriieeneeneessieenieeseesreesseenseens 208
9.12. Network Address Functions and OPerators...........ceeveevveereereernieeneeneesiveeseeenneens 211
9.13. Text Search Functions and OPeratorsc.eevueerreereerrieenieeneesireenieeseesseesseeneeens 214
0.14. XML FUNCHONSeouteiiiieiiniinitenientetenieeitete et sttt et st eaeesaesaeesaesbeesnenueene 217
9.14.1. Producing XML CONtENLt.........cecuerriierierieeiieniiesiesiieesieesseeseeesieessesneenne 218
9.14.1.1. XIMLCOMMENT weeeveeriiieieeieeriieeieeieeniteete et esbeesteebeenbeesaseeseenseens 218

9.14.1.2. XINLCONCAL teuveetieriiieieeieesite et eiee st ete et e sbeesteebeesbeesateeseesee s 218

9.14.1.3. XIMLELEMENT weerrvieriiieieeieeniteeteeie ettt ettt e ste bt e e esateebeeaee s 219

9.14.1.4. XINLEOTEST terveeteeriieeieeieesite ettt ettt et sttt e beesateebeeiee s 220

0. 14.1.5. XMLIPL cutrreriirtiieieteieet sttt ettt ettt ettt sttt e 221

0.14.1.6. XIMLT OO teetuveeeiiieeiiieereestieeetreesteeesseeesssaeesssaeessseaesseeensseeenssens 221

L 3 < N Y o SRR 221

9.14.2. XML PrediCatesccoveeueriienienieeieeniteeie ettt sttt ettt 222
9.14.2.1. IS DOCUMENT ..eouteutiiiererteeresteeeeeteereeeesreene s ee s e ene e ene e 222

9.14.2.2. XMLEXTISTS uvetieueeiieieeiesieeeesieeeeteeneeae st ene s see s e ene e enesaeas 222

9.14.2.3. xml_is_well fOIrMEQ .iiiiiiiiiiiiieieiirieeeeeeeeeeeeeeeeeeeeennaans 223

9.14.3. Processing XMLccccceciririnienienieteinisenteeeeeieee et saene 224
9.14.4. Mapping Tables to XML........ccccceeeirinineneieieinene et neens 225

9.15. Sequence Manipulation FUNCHONScc.ccceveruirirenenieieiiinineeeeeeeeeee e 228
9.16. Conditional EXPreSSIONSccceciririirieieieiriiniinienieieietee ettt seeeeneeveeae e saennes 230
0.10. 1. CRASE ittt ettt b ettt ettt sae et b 230
9.16.2. CORLESCE .utruitiieieieeieeienie sttt ent et besseseaesteaesaesaesse st et euesnesuesaens 232

0. 1603, NULLIF euiiuieuietiieteteneeieetesie e seesenestest et b s e ee st esesuesaeaesne st et eueenesnesaens 232
9.16.4. GREATEST ANd LEAST ..eeutruirieieieieiteiieteetesseeeneentene e saesseseseseenesnessesaens 232

9.17. Array Functions and OPEratorscoceeceeruereeriererienienteienieetesieseensesieesenienne 233
0.18. Aggregate FUNCHONSc..cocuiririeiiriieteniceitete ettt ettt s 235
0.19. WiIndowW FUNCHONSoouiiiiriiiiiiiiieteneetee ettt 238
9.20. SUDQUETY EXPIESSIONS ...vveeevieiieriieriiierieenitesiieeieenitesiresseesseesseesseeseesseesssessesnseens 240

Vii

.20, 1. EX T S TS uuuriieieeitrreeeeeiiureeeeeeireeeeeeeiareeeeeestrreeeeeebereeeeessreseeesetsseeeenssreeeeeenrres 241

9.20.2. TNttt e 241
9.20.3. NOT INuuiiiiuiiiiiiieieieieiiee sttt st 242
9.20.4. ANY/SOME ..viruiiiiiieiieiiitiie sttt st 242
9.20.5. ALL 1ttt e 243
9.20.6. ROW-WiS€ COMPATISONeouiruriiiriiereniierentieieereeieeresieeerenseeneesaeseeennenaees 243

9.21. Row and Array COMPATISOISc..ccueeueriireeniirieienieerenteeieeresteeeesaeeneesnesieenenneene 243
0. 211 TN ettt et s ettt 244
9.21. 2. NOT INueiiiioiieienieeieetee ettt ettt st ettt et s sne s 244
9.21.3. ANY/SOME (AITAY) -veervrerurerreeniienierieeniteeteeteesseesssesseesseesssessessseesssessseenne 244
0.21.4. ALL (AITAY) cvveruveeteeniteeteeteeeiteete et e st e sate st esbeesstesateesbeesasesteeabeesssesaneenne 245
9.21.5. ROW-Wise COMPATISOMNcoueruirerenrentrrietinienteneeteneeienieseessesenteneeuessensensens 245

9.22. Set Returning FUNCHIONSccceiruiriirieieieiniininenteteeetee st 246
9.23. System Information FUNCHIONScccoveieiiinininiicicieenenccceeeecee e 249
9.24. System Administration FUNCHONScc.cceciririrenenieieiiineneeeeeeeeee e 258
0.25. Triger FUNCHONS ...cc.eoviruiieiieiiiiiriintitetetet ettt ettt 267
10. TYPE CONVETSION......ccviiiiiniiiieiieiintietetetet ettt sttt sttt et be b sae e s eaesae s enenne 269
LO. 1. OVEIVIBW ..ttt sttt st b et e bt eaee b saeeaesbeas 269
1.2, OPETALOTS ...ttt ettt ettt et ettt st e sbe e b e saneebeenee e 270
10.3. FUNCHIOMS ...ttt sttt ettt st bbb s 273
10.4. ValUe SOTAZE.....ccvirueeieriieiteieeiieit ettt ettt ettt st ettt bt e e saeeae b 275
10.5. UNION, CASE, and Related CONSITUCTS.uuvvviiiieieeeeiieieeeeieeiieieeereeeeeeeeeeeeseeeeaans 276
L1 INAEXES ..ttt st st st 279
T1.1. INEPOAUCHION .ottt sttt ettt 279
11,2, TNACX TYPES e utietieiieeiieiterte sttt ettt et st et e bt estbeeabe e bt esatessbesabeenseenseesnseenseenseens 280
11.3. Multicolumn INAEXEScccuevirieriririiniiniiiiecetcse ettt 281
11.4. Indexes and ORDER BYccuccuiiiiruiniinieieieiieiieresieseeeeseeseene s ssesesseeeneeneesesuesaennes 282
11.5. Combining Multiple INAEXEScccverierrierieiieeiierie ettt 283
11.6. UNIQUE INAEXES -.eevveeniieiieriieeieeieesite ettt sttt ettt ettt st eaeesbeesabeebeenaee s 284
11.7. Indexes On EXPIeSSIONScevueeruieriiirieiriieniieeieeitenite ettt st eieesieeseteeaeeaee s 284
11.8. Partial INAEXES ...c..eoveiiriieiiiiiieieriteieieet ettt ettt 285
11.9. Operator Classes and Operator Familiesccceeeevierierrieeniiiienneeneeieeieeieene 287
11.10. Indexes and COIlAtionS...........cceoereerieniirieniinieieneereiesteteere et eeneneene 289
11.11. Examining Index USage........ccceeuirieriririenienieieniececreeeetese e e 289
12, FUIl TEXE SEATCH ...ttt ettt ettt st be e s 291
12,1, INEFOAUCTION ..ottt ettt ettt et et ettt e bt e saeesabeebeenaee s 291
12.1.1. What Is @ DOCUMENE?.....c.eoviiiiiiiiiiiieeiceeeteee ettt 292
12.1.2. Basic Text Matchingccccccoviiieiiiiiiiicce e 292
12.1.3. ConfigUrations.........cc.coueeiiriiiiiniiiieienieeee e e s 293

12.2. Tables and INAEXES.......cocueeveeriiiiiiiieniteeeee ettt s 294
12.2.1. Searching @ Tablec.cccviririiriiiiirininecceecre e 294
12.2.2. Creating INAEXES ...c..ccceueruiririnieieieeeiietesieteeee ettt 295

12.3. Controlling Text SEarch..........cccceeveirininenieiieinineneeietee ettt 296
12.3.1. Parsing DOCUMENLSccceriruiriiieieiniieiinenieeeeetee et 296
12.3.2. Parsing QUETIESc.ceceeuiruirueriinieieieiteitetesteseee ettt st eve b b snens 297
12.3.3. Ranking Search ReSUISccccueeiririniinienieieiiinciescceeeeeeeene 299
12.3.4. Highlighting REeSUILScccoiriiriniiiiniiiieeec e 301

12.4. Additional FEAturesc.ccovevueieieiniiiiinieicicieese ettt s 302
12.4.1. Manipulating DOCUMENTS.........cocereerieriiriiniinienie et 302
12.4.2. Manipulating QUETIES.couerteruirienieniieienieetenee sttt 303
12.4.2.1. QUery REWITHNG ..c..ccoveviieiiniiriieienieeieieeitcicsieete et 304

12.4.3. Triggers for Automatic Updatesccccevereenienienienenieneneeneneereniene 305

viii

12.4.4. Gathering Document StatiStiCsoocvervvierierrieerieeieeieerte et e esree e 306

L2.5. PaTSEIS ..ottt 307
12.6. DICHONALIES.couiiiiiiiiiiiiiinic et 309
12.6.1. StOP WOTAS ...eoutiiiieeiiiiiteteete ettt sttt 310
12.6.2. SIMPle DICHONATYoovieiieniiiiieeieete ettt et 310
12.6.3. Synonym DIiCHONATIYcc.coieveeririenieniieientieeenie et 312
12.6.4. Thesaurus DIiCIONATYcceecveririenierieieniieeee et 313
12.6.4.1. Thesaurus Configurationc.cceeeeueeiesieniereeneneeneneeennene 314

12.6.4.2. Thesaurus EXamplecccocooveniiiiiiiiniiiicceeieeneeiee 315

12.6.5. ISpell DICHONATY......cc.couiiiiiieiieiiiieiesieeee et s 316
12.6.6. Snowball DICONATYccueouiiiiiiiieieiieiee e e 317

12.7. Configuration EXample...........ccceeiirieiiiiieieieeiieieeeeee sttt 317
12.8. Testing and Debugging Text Searchcccccevevererinierieneinineneneeeeeeese e 319
12.8.1. Configuration TeStINg.......c.cceevueruereininiinenieieeeeee ettt neene 319
12.8.2. Parser TeSINE ...cueeueeierrieieniieienie ettt ettt sttt saeas 321
12.8.3. Dictionary TSNcc.eeueruieieniieiieieeteeete ettt s 322

12.9. GiST and GIN INdexX TYPES ...cccecveureuiruirrenieieieiiienesteteeeteie ettt 323
12.10. PSQL SUPPOLL.....eeiniiiieietieieteet ettt ettt st et sb ettt sbe e e b 324
12,11, LIMIEAEIONS . c..eveieieiieiieiirie sttt ettt sttt et saenen 327
12.12. Migration from Pre-8.3 Text Search..........cccoecveveriinininiininieieecceeee 327
13. ConcurrencCy CONIOL......ccueiiiriiriiiirieeteieeitet ettt sttt ettt sbe st eane b eae 328
13.1. INErOAUCLIONveiiniciieiieiiie ettt s 328
13.2. Transaction ISOIAtioNccceuecieiiiiiiiiieicicice e 328
13.2.1. Read Committed Isolation Levelccccocevuevieiiinininincciiiiinciee 329
13.2.2. Repeatable Read Isolation Level........cccccovciiiiiinieniiniieienieeieeeeee e 330
13.2.3. Serializable Isolation Level.........ccccccoovininiiiiiiiininiinicicicccee 331

13.3. EXPICIt LOCKINGveeiiiiiieiiieeieceece ettt sttt st st e 333
13.3.1. Table-1evel LOCKSccoviviriiiiiiiiiiiciiicicccccccece e 334
13.3.2. ROW-1EVEL LOCKSccueiiiiiiiiiiiciiiiiccccecc e 336
13.3.3. DeadloCks........ccuiviiiiiiiiiiiiiiiiiciciece e 337
13.3.4. AdVISOTY LOCKSeiiiiiiiiiiiiiit ettt 337

13.4. Data Consistency Checks at the Application Level........c..ccocvvviniiiniiniinncnneen. 338
13.4.1. Enforcing Consistency With Serializable Transactions...........c.cc.ccceueu... 339
13.4.2. Enforcing Consistency With Explicit Blocking Lockscccccoccenennen. 339

13.5. Locking and INA@XES........cccuevuieuieiiirieiiiniiiieieneeiese et 340
14, Performance TIPScccooeeieiirieiirieieeee ettt ettt ettt et 342
14.1. USING EXPLATN .eettiuieteieeteteeieete et eeesaeeenetesueesaesaeeseessesseessesseesseseeneesnesaeennesnens 342
14.2. Statistics Used by the Plannerccocoiiiiiiiniiiiniiccceeecc e 347
14.3. Controlling the Planner with Explicit JOIN Clauses..........cccccoceevuerieienineenucnnen. 348
14.4. Populating a Databasecocueeveeiiiniinienieeiteieeeeeeteee et 350
14.4.1. Disable AULOCOMIMIULecveruieierieeiieiesteeiesteeee et ee st et et e eseeseeeeeseeas 350
14.4.2. USE COPY.uutruirrireieieneeieeieniestesteteteat ettt be st et et et sae st s seseentebeenessensens 350
14.4.3. REMOVE INAEXEScevetieniiiieieieeieee et 351
14.4.4. Remove Foreign Key COonstraintsc.coeceeeienereenienensienieneenesceneennees 351
14.4.5. Increase maint enance. WOTK_ IMEIM ceee e e et et oo eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeas 351
14.4.6. Increase checkpoint_SEgMENTS ..iiiivieeiieeeeieeeiieeeieeeeereeeeveeeeveeeeaneas 351
14.4.77. Disable WAL Archival and Streaming Replicationcceceeercenennen. 351
14.4.8. Run ANALYZE Afterwards..........ccocooiviiiiiiiiiiiiiiiiicce 352
14.4.9. Some Notes About Pg_dUmpcoceevverieiienirieneiieeneeeeeeee e 352

14.5. NOn-DUurable SEttNEScccvevuerieriireenierieeieienitetesie ettt sttt sae e 353

ix

II1. Server Administration 354

15. Installation from SOUICE COARc..coeeueruiriiiiniieiitieeetereeteeeet ettt nne e 356
I5.1. ShOTt VEISIONceoviiiiiiiiiiiiiiiiniccceee et 356
15.2. REQUITEIMENLSeeveieeiieeieesiieeieeiee sttt et e stteste e et esbtesabe e bt esbeesabeebeesbeesaseenseeseens 356
15.3. Getting The SOUICE.....c..ooueiiiiieiieiiieeiecceeeetee ettt s 358
15.4. Installation ProCedure..........ceoviiieiiiiniieiieeieeiteeteee ettt 358
15.5. Post-Installation SEUP.........cceeeeeiirieiiniiieieeeeee e 368

15.5.1. Shared Librariescoceeveeriiiieeniienienieeieeieestee ettt 368
15.5.2. Environment Variables...........cocceeveeriiniiniieiiienieeieeieeseeeeeeeeiee e 368
15.6. Supported Platformscoooiiiiiiiiiiie e 369
15.7. Platform-specific NOLEScceeieriirieieeieeiete ettt 370
I5. 700 ALX ettt ettt 370
15.7.1.1. GCC ISSULS ..ttt ettt ettt ettt 370
15.7.1.2. Unix-Domain Sockets Broken............ccocceeeninieneniniencnieenen. 371
15.7.1.3. Internet Address ISSUES.......cc.eeeeririeneniiieeeieeeee e 371
15.7.1.4. Memory Managementccceeeeeeeeenieeneeneennieeneeneenreeseeenneens 371
References and RESOUICESccceevuirieiiininieniiiiciecceec e 372

15.7.2. CYZWIN ..ttt ettt ettt ettt et s sbe s 373
I5. 7.3 HP-UX ..ottt st 374
IS T4 TRIX ottt st 374
15.7.5. MInGW/Native WINAOWSccoccuiiiiriiiiiienieieieieene et 375
15.7.5.1. Collecting Crash Dumps on Windowsc..ccccevereenenennuenene 375
15.7.6. SCO OpenServer and SCO UnixWare..........ccceveerverciieneenieencieeneennennnes 376
15.7.6.1. SKUNKWATIEoovviiiiiiiiiicicieicccce e 376
15.7.6.2. GNU MAKE ..ottt enenie e 376
15.7.6.3. Readline........ccoccoeiruiniiniiiiiiiiiiiiicecccc e 376
15.7.6.4. Using the UDK on OpenServer..........ccoceeveereervieeneeneenvennieenne 376
15.7.6.5. Reading the PostgreSQL Man Pages........ccccccocvvvvieeniinienienenne 377
15.7.6.6. C99 Issues with the 7.1.1b Feature Supplementccceeueenne 377
15.7.6.7. Threading on UniXWarecocceeveieriiinieenieenienieenieenieesveeieenne 377
I5.7.77. SOLALIS ..ot 377
15.7.7.1. Required TOOIS ...ccceerriiiriieniiiiieitesieeiceeete et 377
15.7.7.2. Problems with OpenSSLcccccociiviiiniiiinienecenecieee 378
15.7.7.3. configure Complains About a Failed Test Program 378
15.7.7.4. 64-bit Build Sometimes Crashes..........c.ccceeveevierienneeneenniennennne 378
15.7.7.5. Compiling for Optimal Performance...............ccccoceeveninininnins 378
15.7.7.6. Using DTrace for Tracing PostgreSQLccccoceovinininiinin. 379

16. Installation from Source Code 0n WINAOWScoceerierieriiiinienienieenieneeeieesiee e eeeeane 380

16.1. Building with Visual C++ or the Platform SDKcocoooiiiiiiiiiiiecceeee 380
16.1.1. REQUITEIMENLS ...cuveeieiietieiieteeiieste ettt eaee st s ee b et et e e e naesaeeeesaeas 381
16.1.2. Special Considerations for 64-bit Windowscccceceeveereneencnccenennen. 382
16.1.3. BUIIAING «.veviviiiieieceieerescceet ettt sttt 382
16.1.4. Cleaning and InStallingccocerierierieiiinieiene e 383
16.1.5. Running the Regression Tests........cccceiieierieiieneiienienieieeecee e 383
16.1.6. Building the Documentationcoeeeuereeieneneeneneeieneeeene e 384

16.2. Building libpq with Visual C++ or Borland C++.....ooceeviiiiniiniiiiiiiecceeee 384
16.2.1. Generated FIlescccociviririiiiiiiieiciececeee e 385

17. Server Setup and OPErationc.ccoceevierierierienieienieetee ettt ettt seesbeesiesbeenenbeene 386
17.1. The PostgreSQL USEer ACCOUNLcc.cevuerierieriiriieiinieetenienieeiesieeresie et 386
17.2. Creating a Database CIUSLETcceeceeviirerienienieienieeteneeeeesttet et 386

17.2.1. Network File SYStemScovvierieriiiiieriieeie ettt ettt 387

17.3. Starting the Database SETVET.........cccuvevieirieriiriiieierie ettt 387

17.3.1. Server Start-up Failurescccoeveeriiiiiieniiinienieeieeeeseeeeeeeee e 389
17.3.2. Client Connection Problemsccccoceeveniriininiieneniniicnieeccnceeneee 390

17.4. Managing Kernel RESOUICES........ccouiiieiriiniiiiieiieniie ettt 390
17.4.1. Shared Memory and Semaphorescccceveerieriierniienienienieenieeseee 390
17.4.2. ResoUrce LIMILSccceieieniirieniiieieniieeeteeeeie e 396
17.4.3. Linux Memory OVErCOMMIL.......c.ceecveruieiieriieienieiieeeneerereeeeeee oo nneen 397

17.5. Shutting Down the SEIVET...........cccooiiiiriiiiiiinieeece e 398
17.6. Upgrading a PostgreSQL CIUSLETcccocveiiiriiiiiiiiieneeecieseeece e 399
17.6.1. Upgrading Data via pg_dump........ccceeieiiiriieieniiieieneeeeeeeeee e 400
17.6.2. Non-Dump Upgrade Methods............cccoeceeiiiiniiiininiiiiiccceceeee 401

17.7. Preventing Server SPOOTINGcccveieririeiereeiieie ettt 402
17.8. ENCIyPtion OPLONS. ...c.eeivieuieiieiieiieieete st eteste et tete st eteste et este st eteseeeseeseesaeenaesneas 402
17.9. Secure TCP/IP Connections With SSLcccooiiiiiiiiiiieeeeeeee e 403
17.9.1. Using Client Certificatescoeeveirirrinenieneeneeinenesreseereeeneeresressensens 404
17.9.2. SSL Server File USageccceoieririeiieniieienieeienee et 404
17.9.3. Creating a Self-signed Certificateccoeeveerereenenenienieeec e 405
17.10. Secure TCP/IP Connections with SSH Tunnelsccccecevenieneninciencncenennen. 405
18. Server CONfIGUIATIONeiuiiuieiiriieiesieetete ettt ettt ettt sttt e e st e e sbesbte b sbeenee b eae 407
18.1. Setting Parametersc..ceverierieriinieienieeteiest ettt s 407
18.2. File LOCAtIONS ...cuveniiiiiiiie ittt sttt s 408
18.3. Connections and Authentication.............cccceveeveiririniinieieieinieeieeeeeeee e 409
18.3.1. CoNNECHION SELHINES ...eveeureririeeniiriieienieeteteeitente sttt ettt seeeae i 409
18.3.2. Security and AuthentiCatioN...........ceceereerierrieeneenieeieeneeseesreesseesenennnes 411

18.4. Resource CONSUMPLION.cc.ueviierieeriierireeieerieesteestesteesteesisessressseesseesseessseesseenseens 413
I8.4. 1. IMIEIMOTY ..teutieiieeiiieieesite et et et e et e et esaeesetesnbeebeesatesebeenseesaeesaseenseensnenneas 413
18.4.2. Kernel ReSource USAZE.........cevueriiriieenienieiiieniieneeeieenieeseesteenseesenesnnes 415
18.4.3. Cost-based Vacuum Delaycccceeceeriieiiiniiiniinieeiienieeeeeieeeesee s 415
18.4.4. Background WIILeT........ccocueriiiieeniieniieniteieeiee ettt ettt 416
18.4.5. Asynchronous Behavior............ccccceeveiiiiiniiiniiniiniecieeneeeeeeeeee e 417

18.5. WIite AhEad LOZcoviiiieiiiiiiieitecie ettt st st et 417
18,5, 1. SEUNES ...eeiiietieiteete ettt sttt sttt e et st sab e e b e saeesaees 418
18.5.2. CRECKPOINLS. ..cutteiieeiiietieiieeite ettt sttt ettt ettt esbeesaee s 421
18.5.3. ATCHIVINZ vttt ettt et 421

18.6. REPLICALION.eoueiiiiiieiiiieieieeeeteee ettt st s 422
18.6.1. IMASIET SEIVET ...eeuvieiiieiiieiienite ettt sttt sttt et ettt esbeesaee e 422
18.6.2. Standby SETVETScc.ceuieiiriieiiriiiieierteeee et s 424

18.7. Query PIANNINGcc.cooiiiiiiiiiiiiiiecte e e 425
18.7.1. Planner Method Configuration..............cecueeeeeeenereeneneeieeeeene e 425
18.7.2. Planner Cost CONSLANLScc.uervueerueerieriieieiieeniteeieeieesieeeee st enieeseeesaees 426
18.7.3. Genetic QUErY OPtiMiZercevueeueeriertieienieeienieeiteee sttt eee e 427
18.7.4. Other Planner OPtions...........ccceeeeeeriertieiienieeieneeeeseesieeee e eeee e saeas 428

18.8. Error Reporting and LOZZINGccccceviririeniiiiiiiniencicieeeeetceesieeeeeeee e 429
18.8.1. Where T Locoveieieiiriiieriececeeteite ettt 429
18.8.2. WHen TO Lo ..coveiiiieiieieeeee ettt 432
18.8.3. What TO LOZ «..cveieieiieiieiiierieceeteitete ettt 434
18.8.4. Using CSV-Format Log Outputccceecueririieneiienenieienieecene e 437

18.9. RUN-tIME SEALISLICS.eevreuiruiriiieieieiieiieteiet ettt s s 438
18.9.1. Query and Index Statistics COIlECtOrcceecuerireereneniiniineeiereeieeee 438
18.9.2. Statistics MONIOIING ... ceververieiiriieienieeienieetenee sttt 439
18.10. Automatic VACUUIMINGeevveeuieiirieeienieriteienitete ettt et st et eiee e saeeae v 439
18.11. Client Connection Defaultsccooceveriininiiiiniiiininiecseeecceeee e 441

Xi

18.11.1. Statement BENAVIOLoooiiiiiiiiiiiiiieee e eeeanes 441

18.11.2. Locale and FOrmattingccceeceereeriienieeniienieeieeieesee et 444
18.11.3. Other Defaultscc.coieeiiniiiiniiieieniciceeeec et 445
18.12. LOCK MaANa@EemMENLeevuiiiiieiieniieeieeitesiteeieestte st sbeeteesteesateeseesbeesaaeeseensee s 446
18.13. Version and Platform Compatibilitycceveeveeniiniieniienieiieeiceneesieeieeeene 447
18.13.1. Previous PostgreSQL Versionsc..ccccceeeveenerieneneneennineeneeneennenneen 448
18.13.2. Platform and Client Compatibility..........c..cccceviriieneninieninicnirceenene 449
18.14. Error Handling.........ccccoiiiiiiiniiiiiieeeceeeeeee e 450
18.15. Preset OPLONS.......ooueeiiiiieieiieiieie ettt et 450
18.16. Customized OPLIONScccccuieuieiiiriieieniiereieee ettt s 451
18.17. DeVElOPEr OPLIONSouviiiiiiiiieiieiieie sttt s 452
18.18. SHOIt OPIONScueieieeeitieiieiteet ettt ettt ettt ettt et esae et et e st e et e teeneeseesaeeaeenean 454
19. Client AURENICALIONcueeuieiieeieie ettt ettt ettt te st es et eete et e sbeeseestesbeensenseene 456
19.1. The pg_hba.conf File ..ottt s 456
19.2. User Name MapSccooiiiiiiiiiiicieicesee e e e 462
19.3. Authentication Methodscccooiiiiiiiiiiieneee e 464
19.3.1. Trust AUthENtiCALIONcceevvierieesiienieeiieteeieesreesteeteesreeaeebeesseesseeennas 464
19.3.2. Password AUthentiCationccceeeeeeevienieeniienieesieesieeseeeeeeseesseessnesnnes 464
19.3.3. GSSAPI Authenticationcoceeeeverieeienieiene et 464
19.3.4. SSPI AUthentiCation.......ccueeueeieririenieniieienieetenee ettt 465
19.3.5. Kerberos AuthentiCationc..coceevereeienieniienenieneneerenieeicenee e 465
19.3.6. Ident AUthentiCation..........coceveeruirienieniieieneetene et 467
19.3.7. Peer AUthentiCation...........cocecuerereenieniieienieeienie sttt 468
19.3.8. LDAP AUthentiCationccccoereerieneenienenienienieeieneeeeniesieeniesieerenieene 468
19.3.9. RADIUS AUthentication.........c..cocuecueeueerienuenienieneeienieeeeniesieeneeseenenienne 469
19.3.10. Certificate AuthentiCationcceeeevuereriereneenieneeeeneneeseneereniene 470
19.3.11. PAM AUthentiCationceccoueeeeiinernienenienienieerenieeeentesieeeesieenenieene 471

19.4. Authentication Problemscoccoeevieriiriinineeiinenieneneeenceeese et 471
20. Database ROIESccuerieiiriiiieieiieientetete ettt st sttt et s 473
20.1. Database ROIESc...ccerieiimirieiiiieienietete ettt ettt sneeae 473
20.2. ROIE AITDULES.....c..eouveiiiiieiieriieiieierieetesteeeete ettt ettt ene b nneeae 474
20.3. ROIE MEMDETSHIP ...couvieiiiiiiiiiieiiesie ettt st 475
20.4. Function and Trig@er SECUTILYcocvtrruirrieriiiieeitesite ettt ettt 477
21. Managing Databasescoeeceererieiinieiiiieeeie ettt sttt et 478
211 OVEIVIBW ..ottt ettt sttt ettt sttt e sbt e st ae e s bt e st e ebeesbeesabeenbeebeens 478
21.2. Creating a Database.........cc.coeeveriirieieniieicie ettt 478
21.3. Template Databasescccoceecieriiiieiiiniinieiece e 479
21.4. Database Configurationcccceceecueriieieniieienieneeieieee et 480
21.5. Destroying a Databaseccccoiiieieiiiiiiiiiiiceieeeeeeeee e 481
21.6. TADIESPACES ...eenueiutieiieite ettt ettt et sttt sttt st e 481
22, LLOCAZALIONveeeiieiiestieciieete et esteeeteeteesteesebeesseesbeessbeessaesseesssassseesseesseassasnseesseesssensseenes 484
22.1. LOCALE SUPPOIL....coutiiiiiniiiriiieieerite ettt ettt ettt sit e sttt et beesbeesateebeennee s 484
22. 1.1, OVEIVIEW .eeuereeiiieiieeireeteeteesteeteeteestaeeaeeseessaesssessseesssessseesseeseesssassseenns 484
22.1.2. BERAVIOT c..eiiiieiieiieceete ettt ettt e aeete et esae e b e e baeesbeenaaenee 485
22.1.3. PTODICINIS ...ueveiiieiieeiieeie ettt ettt e teeve st eeeaeebeesbeessaeenseebeessseensaenne 486

22.2. COllAtiON SUPPOIT..c..eeuiirtieiertiriierieittetenteeitente et este e etesteebtebesbeestestesaeenbesbeessenaeeae 486
22.2. 1. CONCOPLS...eveemeenteritenientteie ettt ettt ettt eate et s et e besbeeste st saeentesaeeneenbeas 486
22.2.2. Managing Collationscceeuererienienieienieetene ettt 488

22.3. Character SEt SUPPOIT......ccuevuerieriirieienieeitente ettt ete ettt st ete st sbeestesbeesnenieeae 489
22.3.1. Supported Character SELS........ccoceruererierienerieniereenienieereneeeeneeseeeenaea 489
22.3.2. Setting the Character Set.........ccoccevuererierienirienenienienieereneeiee e 492
22.3.3. Automatic Character Set Conversion Between Server and Client........... 493

Xii

22.3.4. Further Readingcccceeviieriiriiiiieniieeieeitesiteste ettt 495

23. Routine Database Maintenance Tasks..........c.cocoiviiiiiiiininiiiiiiiicccce 496
23.1. ROUINEG VACUUIMIINGeoviiiiieiieiieniieeieesite sttt eieeite st steesaeesieesbeeseesbeesaseenseenseens 496
23.1.1. Vacuuming BasiCS......cccuirriierieriiiiiieniienieeieesiteste sttt ettt 496
23.1.2. Recovering DisK SPacecccceevuerriienienieiiiiiniieeieceeiteeteee et 497
23.1.3. Updating Planner StatiStiCsc..cocuerreriecuenieieenenieieneerenieeeenee e nneen 498
23.1.4. Preventing Transaction ID Wraparound Failures.............cccecevenienennen. 499
23.1.5. The Autovacuum DaEmOmncecveerierieriiienienienieerieeeeeeie et 501

23.2. Routing ReINAEXINGcc.eecuiruiruiiiiiieieiieiete ettt s 502
23.3. Log File Maintenance............cccueeuerieieniieieniieieie e eeesteeeeee e eee s e sne s nesneene 503
24. Backup and RESTOTEcc.couiiiiiiiiiiiiieici e e 504
24.1. SQL DUIMIP ...ttt sttt sttt s e 504
24.1.1. Restoring the DUmpccooceeiiiiiiiiinieeeeee e 505
24.1.2. Using pg_dumpall.........cccoeieiiirinieiinieereee e 505
24.1.3. Handling Large Databasescccceeerierienieiienenieiesieeeseeee e 506

24.2. File System Level Backupcccoceiiiiiiiiiiiiiiee et 507
24.3. Continuous Archiving and Point-in-Time Recovery (PITR).........ccccceveniiiencnne 508
24.3.1. Setting Up WAL Archiving.......ccccoceeivininenenienieinine e 509
24.3.2. Making a Base Backupccccoveriiiiniiiiiniiiicieeceeeeee e 511
24.3.3. Recovering Using a Continuous Archive Backupcccccocevcveninenennn. 513
24.3.4. TIMEINES....cveoviiiieicieiieiiee ettt st 515
24.3.5. Tips and EXamplesccceverviininiineniiieneetenerceiesieeee et 515
24.3.5.1. Standalone Hot Backupsc..cccevereeniriineninicninicncnceenene 515

24.3.5.2. Compressed Archive LOgsccceveveeniniencnenicninicncnceienene 516

24.3.5.3. archive_command SCIPLS ..cceeveerierrieerieeniiesieenieeneesveesieenaeens 516

24.3.6. CAVEALS ...c.oviiiiiiicieicteeee et 517

25. High Availability, Load Balancing, and Replication.............ccecueveueevieeniieniiensieenienieeieenne 518
25.1. Comparison of Different SOIUtIONS.ccccueviirrieerienieiieereerte et 518
25.2. Log-Shipping Standby SETVETS.........cccceeviiriiriieenienie ettt eieeniee 521
25.2.1. PIANNING «.ttiiieeiitiiteteete ettt ettt ettt sttt st e be e st e aae e 522
25.2.2. Standby Server OPerationcccceereerierrieerieriieeiieenieesieeseeesieessessseenne 522
25.2.3. Preparing the Master for Standby SErverscoccecveevieriierieeneeniienieennne 523
25.2.4. Setting Up a Standby Server..........ccovveeieiiiienienienieenieeeieeie et 523
25.2.5. Streaming Replication...........ccccoereerienieiiinieienineeieneeresieeeeee e 524
25.2.5.1. AUthentiCatiONcc.eeeuersieeniieiieeieenite ettt st 525

25.2.5.2. MONILOTING.....cuvieuieiieiieterieeresieeeete ettt ene s 525

25.2.6. Synchronous Replicationcocccevieiienieiieninienieneeeeeeeee e 526
25.2.6.1. Basic Configuration...........cccccueeueeiieeeniiiienieneeieie e 526

25.2.6.2. Planning for Performance...............ccccooiiiiiininiininncniiieee 527

25.2.6.3. Planning for High Availabilityccccoooiiininiinieececeeee 527

25.3. FATOVET ..ttt sttt sttt et st 528
25.4. Alternative Method for Log Shippingcccoeeeeverieieninieieceeeseeee e 528
25.4.1. IMPlemMENtAtiONeuveueeuiruiriirieteieieitet ettt sae sttt ere e saesaene 529
25.4.2. Record-based Log Shipping........ccceceeieieniieienenieiesceieseeeesee e 530

25.5. HOt StandDY ...c.eeiuiiiieiieiieiesiee ettt sttt 530
25.5.1. USEI’S OVEIVIEWeeuiiiieuiitieiienieeiteiesttete st eite et sitetesbeestestesaeeneeseeenaenneas 531
25.5.2. Handling Query COnflictsccocevuerierieiiininienienieiesieeeeeee e 532
25.5.3. Administrator’s OVEIVIEWccuecveuiruiriirienienieieiieienie oot eneenesne s 534
25.5.4. Hot Standby Parameter Reference...........ccoccecveverienininiinicncncnceenen. 537
25.5.5. CAVEALS ...eviiiieieiceceeee ettt et 537

26. RecovVery CONFIGUIATIONooueruteriiriieiiniieitente ettt ettt et sttt e e saeeae i 539
26.1. Archive ReCOVETry SEttNESccccevuerierieniiriiiinienienieeiestesitete sttt 539

xiii

26.2. ReCOVETY Target SEIUNZSeevveeriieriiieiieniieniieeieeitesitesteesitesitesbeeaeesbeesateebeeseens 540

26.3. Standby SerVer SEHNZSeevvierieriierieenienieeieete sttt et e st e sbeeteesbeesbeebeenseens 540

27. Monitoring Database ACHVILYccceevuerrueeniieriieeieette e eteeieesitesteeteesbeestesseesbeesasesseenne 542
27.1. Standard UnixX TOOISc.cocueririiniiiieiiniieiciteeenccreeee et 542

27.2. The StatistiCS COLIECLOT........co.eeveriiriereniieiete ettt 542
27.2.1. Statistics Collection CONfigUIrationcoceeceeruereenieneecreneereenieneenennee. 543

27.2.2. Viewing Collected StatiStiCscccevrerircuerieiienerienieneereneeeesie e 543

27.3. VIEWINZ LOCKS ...ttt 555

27.4. DynamicC TTaCINGccueeuiiiiiriieieieiieieteeeete ettt s 555
27.4.1. Compiling for Dynamic Tracing..........cccceeieveeniriiineniniinicicie e 555

27.4.2. BUIlt-iN PIODES ..cuviiiiieiiiiiieiieececetce ettt 555

27.4.3. USING PrODES ..ottt 564

27.4.4. Defining New Probesccoccovieiiiinieiisieere e 565

28. Monitoring DiSk USAZEccueeiiriiiieiieiieieie ettt 567
28.1. Determining Disk USAZececvevuirieiiiniiiieieiee et 567

28.2. Disk Full FailUre.......cc.coueeiiiiiieieiieesee ettt 568

29. Reliability and the Write-Ahead LOg........ccecevviririeiiiiiiniiniicicieieseeeeeee e 569
29.1. REHADIIILY ..evevveiieniiiietiierieiceee sttt s e 569

29.2. Write-Ahead Log@ing (WAL)cocooiiiiiiiieeneeeeeeete et 570

29.3. ASynchronous COMIMIUL..........cecueruerieienierienieetente ettt steesteseesiee e sbeesnenaeeae 571

29.4. WAL CONfIGUIALIONteuvieiiiiiriieieiitetenieeitete ettt sttt ettt st esee e st esaesbeesnenaeeae 572

29.5. WAL INtEINALSooviiiiiiiiieiiiiiiiieicteeeeteteese ettt s 574

30. REZIESSION TS ..c.veeuviiieiiiieiiieieetteteste ettt ettt ettt s e et ebt et bt eae s eanenaeene 576
30.1. RUNNING the TESESeeuviiiiiiniiriieieriietenieeitee ettt ettt st s 576
30.1.1. Running the Tests Against a Temporary Installation............cccccevvvenueenee. 576

30.1.2. Running the Tests Against an Existing Installationcccceceevueeneenee. 577

30.1.3. Testing Hot Standby........c.cocverieiiiiiienienieeeeeee et 577

30.1.4. Locale and ENCOding..........cccuevveriieriienienienieeniiesie et 578

30.1.5. EXIIa TESTS ..eeuvetieiiiiirieeienieeteicettetceicet ettt ettt nne e 578

30.2. Test EVAlUALION ..c..couveiiriiiiiniieieieneciestceeete ettt ettt s sne e 578
30.2.1. Error Message Differences........oocueeveerieniieiiiienienieeieeiteseeeeeeeee e 579

30.2.2. Locale Differencescoccevverieeieriinienienieienieneeiesieeeesee e 579

30.2.3. Date and Time Differencescccccceveeveneiiieninieciinieienceeeesecreiene 579

30.2.4. Floating-Point Differences.........cccceveevieriiiiiiinienienieieeeeeeeeee, 580

30.2.5. Row Ordering Differencescccecvevievenericniinieciinieecnceeeeseereene 580

30.2.6. Insufficient Stack Depth..........cc.coceviiiiiiiniiiiiiniceeeeee 580

30.2.7. The “random’ TeSt........cocueiriirieriiiiieieeie ettt 580

30.3. Variant Comparison FIlesccccocoiiiiiiiiiiiiiiiceeeece e 581

30.4. Test Coverage EXamination..........c.ccoceeuiiiiniiiienieniiieniieeeieee e 582

IV. Client Interfaces 583
31 1DPQ = C LIDIATY ettt ettt et b et et nee st ae s e te e ene 585
31.1. Database Connection Control FUnctionsc.ccoccevuerinieiinennienenienenceienene 585

31.2. Connection Status FUNCHONScoeeiiiiiiiiiniiiieie e 594

31.3. Command Execution FUNCHONSc..cceroiiriiiieniniiienienieeceese et 598
31.3.1. Main FUNCLIONScc.ccueieiiiiiiienicecieie et 598

31.3.2. Retrieving Query Result Informationcccceeeevieneniencnenenenencne 605

31.3.3. Retrieving Other Result Informationc.cccceveevenenvincnencnenienene 608

31.3.4. Escaping Strings for Inclusion in SQL Commands.........c..cecceverercuennenne 609

31.4. Asynchronous Command Processing.........c..ceccevererruenienierienennieneneeneneerenenne 611

31.5. Canceling QUeries in PrOgress.........ccoeveriiriirieninenienienieieseetesee st 615

31.6. The Fast-Path INterface..........cccccoerieiiininiiiniiienicncciceectecetesee et 616

Xiv

31.7. Asynchronous NOtHICAIONceruieriiiriierienie ettt s 617

31.8. Functions Associated with the COPY Commandc..ceceeeverervuenerieeneneecnennene 618
31.8.1. Functions for Sending COPY Data.......cccceecuerviienieniinieeniienienieeieeseeee 619
31.8.2. Functions for Receiving COPY Data........cccevvveenienieriiienienienieeieeeeene, 619
31.8.3. Obsolete Functions fOr COPYcccecuirieviniiiienienieienieeenieeeereneereieae 620

31.9. Control FUNCHONSc.oouiiiiriirieiinietenieecte ettt s 622

31.10. Miscellaneous FUNCHONScooeiriiiriiirieniiiieetesite ettt 623

31.11. NOtICE PrOCESSINGovieuiiiieiieiiiiieienieeeete ettt ettt 625

3112, EVENE SYSIBIM c.ouiiiiiiiieierieeteieeeetet ettt 626
31121 EVENE TYPES ..ottt 627
31.12.2. Event Callback Procedure............ccccevieriiiiiiiiniiniieniiiniceceeeeceeeee 629
31.12.3. Event Support FUNCHONSc..covevveieiririiniiiciceeieecneneeeeeee e 629
31.12.4. Event EXamPIec.cccoeiiiieieiieiieieeee et 630

31.13. Environment Variablesccocoeieriiririenieiene ettt 633

31.14. The PassWord Filecccooiriiiiiiiiiieee ettt 634

31.15. The Connection Service Fileccccoiiiiiriiiininieieeeeeeese e 634

31.16. LDAP Lookup of Connection Parameters..........c.ccecuevereeieneenienenienenceienene 635

3117, SSL SUPPOIT...niiiiitieiietieterteete ettt st ettt et ettt et e st st e besbeeseenaeeae 636
31.17.1. Client Verification of Server Certificatesc..cecceveeveenerveenenencienenne 636
31.17.2. Client CertifiCates.......ccouererierierieiinieeienieeiteteste ettt sbe e neeeae 637
31.17.3. Protection Provided in Different Modescccceceveriincneencnencencnne 637
31.17.4. SSL Client File USage.......ccccoerieriirieiinieiieieniteiesieeeenie e 639
31.17.5. SSL Library InitialiZationc.ccccevveevienenienenienieneneeneseeneseereniene 639

31.18. Behavior in Threaded Programs............ccoecveevieenienieeiieenienieeieeeesee e 640

31.19. Building libpq Programs............cccceeriierieniiiiiieiienie et sve e 641

31.20. EXamPle PrOZrams.........cocvevierieniieniienienieeieeitesitesieesieesiee e esaeesseesaseenseenseens 642

32, LarZ8 ODJECLS ..eeuvieiieiieeieeiie et et ertte st ettt e st e et e e bt e ssbesabesnbeesatesabesabeesbaenseesaseenseenaeesasas 651

32,1, TEOAUCHION «...viniiiieiiiieeitestceiteest ettt sttt et sae s b b eenenaeeae 651

32.2. Implementation FEAtUIeSccccueviiiriieriieniieieeiteste ettt st 651

32.3. CHEnt INTEIaCES. ...cc.veiieiieiiniieiieiereetetcetete ettt ettt 651
32.3.1. Creating a Large ODJECt......c.cevueriiiriiinienieiiteitesite ettt 651
32.3.2. Importing a Large ObJECT......ccccuevvirriierieniiiieeiteete ettt 652
32.3.3. Exporting a Large ObJECt.......cccuevuirriiinieniiiiieiienieeieesitesite et 652
32.3.4. Opening an Existing Large ODJect........ccccoceeverierieciininceeninecienecreneene 653
32.3.5. Writing Data to a Large Object.........ccccecereriiiiininiiinineeneeeeienecrenene 653
32.3.6. Reading Data from a Large Objectcocceceeviinieiiinincicniiicenecieee 653
32.3.7. Seeking in a Large ObJect..........cccuevuirieiiniiiieiiinieieececreeeeeseeeene 654
32.3.8. Obtaining the Seek Position of a Large Object.........cccccevuirieniniiccnncnne 654
32.3.9. Truncating a Large ObJectccceciriiiiniiiciinicieiceeceece e 654
32.3.10. Closing a Large Object DeSCIiptOrcceeveruereierieriieieneecee e 654
32.3.11. Removing a Large ODJECtceveriirieriirieieieeiieieeee e 654

32.4. Server-side FUNCHONSc.coiriiiiiieiesieeee ettt 655

32.5. EXamPle Programccccoviiiiiiiiiiieniieee ettt 655

33. ECPG - Embedded SQL N C.....ocoeiiiiiriiiiieicieietnesesteteeetee ettt 661

33.1. THE CONCEPL...c.ueiiieieniiiieiesteete ettt ettt ettt ettt et ettt e sbe st e besbeessenaeeae 661

33.2. Managing Database CONNECTIONSc..coueruieruirieniererienieniietenteeteneesieeneesbeeseenieeae 661
33.2.1. Connecting to the Database Server..........cccoceveriereneniienenieneneeenee 661
33.2.2. ChooSing @ CONNECLIONeeuvetertieiiriieienieeitententeeteste et siee e sbeeanenieene 662
33.2.3. CloSing @ CONNECHION.......erueruieiirtieienieetenieeitentesteete st eate st e sbeearenieene 664

33.3. Running SQL Commands..........c.ccecuevuerierieniinienenenienientetesieete s seesiesieerenieene 664
33.3.1. Executing SQL Statementsccccecueeeeruererienieneerieneneeneneenieseenenienne 664
33.3.2. USING CUISOTS.....eoutemririeeiinieeiteteniteteeieentesteeitetesbt ettt estesaesbeenaesbeeaneneene 665

XV

33.3.3. Managing TranSactionscecueeveerieerieniiensieeniesieeieesieeseesreenseesseesnnas 665

33.3.4. Prepared StatemENtS.cecueerueerierieeiienitenieeieesitesteeieesitesitesateenaeesaeesaees 666

33.4. USING HOSt Variablescceevuiiriiriiiiieniienieeieeite ettt st e 667
33.4.1. OVEIVIBW ..oueiiiniiiiiiieieeee ettt ettt sae st sae st eae s eanenne e 667
33.4.2. DeClare SECHIONS.cc.ereervererrenriniietiniteeenteetere st eresteeeeesaesaeesnesueeanereene 667
33.4.3. Retrieving Query ReSultS.......ccceeuiiriiinieniiiiiiiieieeeeteeeee e 668
33.4.4. TYPE MAPPINGoovviririieierieeieteeeete ettt sttt 669
33.4.4.1. Handling Character Stringsccceceevuereeveeneerenieereeneencennennens 670

33.4.4.2. Accessing Special Data Types........ccccevereeveniniiinieieniieerenen. 671

33.4.4.2.1. timestamp, datecccouerieieriirieriinieiene e 671

334422, 1NLETVAL ettt 671

33.4.4.2.3. numeric, deCimal.......ccoooueeeeeeeeeeeeeeeee e 672

33.4.4.3. Host Variables with Nonprimitive Typesccceeeevveerereerieninnne 673

33.4.4.3. 1. ALTAYS -eoieeieieiiiieee ettt st s 673

33.4.4.3.2. SHUCKIUIES ...couvevienieieeeieeeeteeienteeetete et eeeseeeeeesaesbeeeenaeene 674

33.4.4.3.3. TYPedefsS....couieuieiiiiiee e 676

33.4.4.3.4. POINLETS ...c.veeuiiiieiieiieiteie sttt st 676

33.4.5. Handling Nonprimitive SQL Data TYPes.......cccceveerienerienenieneneeienene 676
33145, 1. ALTAYS .ottt ettt sttt st 676

33.4.5.2. COMPOSILE TYPES ..cuveveeneiriienieieriieieeitenie sttt 678

33.4.5.3. User-defined Base TYPESccceeveviereenenienieniinienieeeenc e 680

33.4.6. INICALOTS......coueruiiiiiieieieiieee et s 681

33.5. Dynamic SQL....c.coiiiiriiiinirieieriteecetete ettt sttt 681
33.5.1. Executing Statements without a Result Setc..cccccecevviinininenencenene 681
33.5.2. Executing a Statement with Input Parametersccooceevevevciveneennennne. 682
33.5.3. Executing a Statement with a Result Setcccccoeceviiiniiniiniiiienieen, 682

33.6. PELYPES LIDTATY ...ccuiiiiiiiiieiieieete ettt sttt st st bee s 683
33.6.1. The NUMETIC TYPE ...veeveeeeiiiiieiieeieetet ettt ettt 683
33.6.2. The date TYPE...cccveeruierieeiieiieriieeie ettt ettt ettt ettt et e e e e e 686
33.6.3. The timestamp TYPE.....ceevieriierieriieiienteeie ettt ettt et 689
33.6.4. The INterval TYPE ..cveevueeriiiiieieeieeeeteete ettt 693
33.6.5. The decimal TYPE.....eeveeriiiriieieeieeieeteeee ettt 694
33.6.6. errno Values of pEtypeslibcccueeveiiiiiriiniiiiiieieieeeetee e 694
33.6.7. Special Constants of pgtypeslib.........ccoceeviriiiniiniiniiiinieneeeeeeee, 695

33.7. USING DESCIIPLOT ATEASeervirueenieniieireiiniietieiterenieeeresreeueesesteeseesaesneessesaeesnenneens 695
33.7.1. Named SQL DeScriptor ATeascccecereeienienienieniineeneneenneseenennene 696
33.7.2. SQLDA DeSCIiPtOr ATEAScecveeureiiruieienieeierenieeeesreeeeesae oo sreenennene 698
33.7.2.1. SQLDA Data StruCtUure..........ccceeveeeercrieeniieeereeeereeesreeenseeeneeens 698

33.7.2.1.1. sqlda_t StruCtUrecccceeveiriienienierieeeeeeeeee e 699

33.7.2.1.2. 8qQIvar_t StrUCTUTE......ccceeriirieeeeiie et 699

33.7.2.1.3. struct sqlname StruCtureccceeeerueeneeneereennieeneenane. 700

33.7.2.2. Retrieving a Result Set Using an SQLDAcccccoceiiiiniiennnne 701

33.7.2.3. Passing Query Parameters Using an SQLDA..........cccccocerieennen. 702

33.7.2.4. A Sample Application Using SQLDAcccceevininieninenenen. 703

33.8. Error Handlingcccueeuieiiiieieeiieest ettt 708
33.8.1. Setting Callbackscccccueiriririeriiiiiiiriinieicceeeeese e 709
3382 SQLCA ettt sttt 710
33.8.3. SQLSTATE VS. SQLCODE .cutruiriiiereireiieientestetennenteneeressesaesaesneneenessessenenne 712

33.9. PreprocesSor DIT@CLIVESevuerieriirieieniieiieie ettt sttt 715
33.9.1. Including FIlesccooieviiiiiiniinieietceteteeeete e 715
33.9.2. The define and undef DireCtivesccocevvevuecieieininencnicieiecreeeene 716
33.9.3. ifdef, ifndef, else, elif, and endif Directives.......c..cccceeverveerereenenencrencne 717

xvi

33.10. Processing Embedded SQL Programs............ccceceevverieenieenieiieenieeneesieeieeieens 717

33.11. Library FUNCHONScoviiiiiiiieiieiieeieesiteste ettt sttt sttt siee st e eiee e 718
33,12, Large ODJECLS...ceeuvieiieiieeiieeieeite sttt ettt ettt e st st e bt e s bt e sabeebeenbeesateenbeebeens 719
33.13. CA4 APPLICALIONS .uvieniieiiiiiieiie sttt sttt ettt st ettt e bt esbeesabeebeebee s 721
33.13.1. Scope for Host Variables..........cocueevieerieriieiiiieniienieeieesiteseeeieee e 721
33.13.2. C++ Application Development with External C Module....................... 722
33.14. Embedded SQL COmMmandscc.ceeeuirereiereriieeeniieeereeeieeeeireessneesseeesssesssnnens 724
ALLOCATE DESCRIPTORcooiiiiieeeee e 724
CONNECT ...t e e e e e e e e e eneeeenneas 726
DEALLOCATE DESCRIPTORoooootiiieieeeee e 729
DECLARE ... e 730
DESCRIBEot e e e 732
DISCONNECT ...ttt eeaneas 733
EXECUTE IMMEDIATEooi oo 735

GET DESCRIPTORooootiieeeeeee e et 736
OPEN ..ottt et e e et e et e et e e e te e e e ae e eeaneas 739
PREPARE ...t ettt et e et eeaaeas 741

SET AUTOCOMMIT ...ttt ettt e 742

SET CONNECTION ..ottt et e 743

SET DESCRIPTORoooiiiiieeeeeee ettt et e 744
TYPE. ... oottt et ettt e e e e e re e e e ateeeaaeas 746

VAR ..ot et ettt e e et e e e ta e e e re e e eareeeaneas 748
WHENEVER ..ottt et veeeens 749
33.15. Informix Compatibility MOEccceevieriiiiieiierie et 751
33.15.1. Additional TYPESceeveeierriierieeieeiterteeie ettt ettt sresbe e e saaeseeas 751
33.15.2. Additional/Missing Embedded SQL Statementscccceeeveerueeneennee. 751
33.15.3. Informix-compatible SQLDA Descriptor Areas........cc.ceeeveeveerveeneennnn. 752
33.15.4. Additional FUNCLIONS........cceerieriiiiienienie ettt 755
33.15.5. Additional CONSLANES........cc.eerierieeriieriienieeieentesteeie et e sresbe e esieesaees 763
33,16, INLETNALS ...ttt ettt sttt e st st sbee st e e b e b 764
34. The Information SChEMA........cc.eeiuiiriiirieiiieiieee ettt et et st be e e s 767
34.1. The SCHEMIA ...ccuueiiiiiiiieieeeeee ettt sttt sttt sbe e st ebe e b 767
34.2. DAta TYPES .eeuveeuieeniieitenite ettt ettt sttt ettt sbt e st e e bt sttt sbt e st e et ebee s 767
34.3. information_schema_catalog _NAME ..oeeeeeeeireeeeeeiireeeeeeireeeeeensreeeeenesreeens 768
34.4. administrable_role_authorizationsS . iiieeeeeeeeeeeeeesirareeeeeeees 768
R R Tt o NIk o ToY oY SN oo N I =Y SR 768
R =N ol o o o YUY =Y = T ST RS U SU USSP U PSSP RRROPPT 769
R Y BC) SN o Kk o= o= 1=) o= RO USSR 772
34.8. check_constraint_roULine_USAGE .cviiieeiiiiiiieeeeciieeeeeecreee e et e ereee s 773
34.9. CheCk _CONSETAINES tiiiiiiiiiiiieiecieeee et ee e e e e e eee s e e e e eeeeeeeeseessassannnreeees 774
34,10, COL LAt 10N utiiiiiiiiiiiieeeeiiteeeeeette e e e eeetre e e e eetreeeeeetbeeeeeeeataeeeeeantaseeeeansreeeeeanraaaeas 774
34.11. collation_character_set_applicability .ccoieoiiiiiieieiiieeeeeeieenn. 775
34.12. coOlUmMN_dOMAIN_USAGTE wurriieeiuirreeeeitrieeeeeeireeeeeeitteeeeesetreeeeesesraseeeesnsreseeeasnseeeens 775
34.13. COLUMN_PTivVilEges cirviieeieciiiieeieiiieeeeeeiteeeeeeitteeeeesetreeeessearaseeeesssreeeeesnsreeeas 775
34.14. COLUMN _UAL _USAGC.ciiiittiieeeeitiirieeeeittreeeesetteeeeeaitreeeeeaestreeeessassaseseasssseseesssssseeens 776
34,15, COLUIMIIS tiieutieeeitieeeeteeeete e eett e eette e et e e eteeeeaeeeeaaeeeeaseeeeaseeeteseesseeensaeeesseseesseeeesneas 777
34.16. constraint_COLUMN_USATE wiiiiireeirireeireeeereeeereeeeeeeeeteeeesseeeessseesseseesseseesnens 781
34.17. COnStraint_tabl e USATE.iiiieeirieeeiieeeeiteeeeteeeeeeeeetereesseeeeesseesseseereseesnens 782
34.18. data_tyPe PrivVileges e iieeeiieeeiteeeereeeeteeeeteeeestreeeesseesreeeeareseeaneas 783
34.19. OMAIN. CONSETAINTES tteteeteititeeeeeeeee e e e e e e e e e e e eeee e eeeaaeeeeeeeeeeeeteeaaaeraaaaaaaaaees 783
34.20. AOMain_ UL _USATE . ciiiiurieeierrireeeeeitreeeeeeitereeeeesreeeeeeestreeeeeseraeeeeesareeeeeanreeeees 784
34,21, AOMAIIIS tieetieeeitieeeiieeeteeeetteeeetreeeteeeeteeesaaeeestseeessseseaseeensseasasseeansseesssesanssesenrens 784

xVii

34,22, @l emMENT LY PES totrrieieeirrieeieeitteeeeeetreeeeeee e e e e e e e eetr— e e e e e a— e e e eearaaeeeenrraaeas 787

3.2, 1A L A, T O LS e eee et e e e e e ettt ———————aeateeaee ettt —————————————as 790
34.24. foreign_data_WrapPer_ OPtiONS . iiiriieeieiireeeeeeeitreeeeeeereeeeeesiareeeeenerreeees 790
34,25, fOreign_data WIaPPEILS iertureeeeeeirreeeeeeitrreeeeeiireeeeeeeitreeeeeeerreeeeesisreeeeeeerreeeas 790
34.26. foreign._ServVer _OPLiONS i iiieeeeeireeeeeeereeeeeeectreeeeeeeraeeeeeetreeeeeeeraaeeas 791
RIS IS S b ar= Ko po M- 1= Y on 4= S of - DOU SO U U USRS PSRRI 791
34.28. foreign_table_OPLiONS i iiieeieeesireeesreeesereeestreeeereessseessseeensseesrsses 792
RT3 B oY al=h K oM ut=Y o Y K=Y TSP 792
34.30. Ky _COLUMN_USAGC tttteerurreererrerirreesisreeasseeesseeessseesssseesssssesssseesssseessssessssesssssens 793
R R o oot Lo =S o TSP 794
3432, referential CONSTTAINES wiiriiiiiiiieieeeeeeeeeeierrerree e e e e e e e e e e e seesasaaaeereeees 796
34.33. r0le_COLUMN__GIANTS trriieeieeiiieeeeeeireeeeeeeteeeeeeeitreeeeesesseeeeesasraseeeassreseeesasseeens 797
34.34. role_ roULiNe_GTanTS e e iciiieeeeeceeeeeeeeteeeeeeetreeeeeeentaeeeeeearreeeeeenreeeaas 798
34.35. r0le_Lable_gLrants wiiiieeeeeiieeeeeeeieeeeeeeiteeeeeeetreeeeeseataeeeeeanrreeeeeaenreaeeas 799
34.36. £O1E_USAGE_GTANES wureeeireeerieeeiteeeeiteeeeiteeeeiseeeeteeeeseeeeseseeeseeeeesseeeseeeeseseeaneas 799
3437, roULiNE_PIrivVileges tiiiiieeiiiiieeeeeeiteeeeeeiteeeeeeetreeeeesertaeeeeeeabreeeeeanraaeeas 800
R 7 1 T oYL N ok I o 1= Y= SO O SRS U SRR PRSPPSO 801
34,30, SCREMALT A ceuriiieitieeeitieeeteeeett e eett e et e e et e eete e e ete e e etteeeeateeeteeeeeteeeetaeeeteeeeaaeeeeaneas 806
3440, SO OUEIICES ueiieutieeeuiieeeteeeetteeeette e et e e eeteeeeeteeeeteeeetteseeaaeeeetaeeeteeeeaeeeeteeeeateeeaneas 807
3441, SOl _fEATUTES wiiietiiieiie ettt e et e eette e et e e et e e etee e et eeeeaaeeeetaeeeteeeesaeesateseeasesenneas 808
3442, sql_implementation_iNFO et eire et 809
3443, SAL_LANGUAGES ceetiieeieeeitreeeitreeeetteeeteeeeiteeesseeeesseseesseeesssseessseesssssessesanssesenssens 810
R Y Yo B oY=V =Y 1= Y- TS PSRRI 810
R T Yo B o Y- o o= TSSOSO 811
34,46, SOl S1ZANGuutiiiiiiittiieeeeiriee et eee et e et e e e et eeetaa e e e e enaraae s 811
34.47. Sl _S1zZing ProfileS ciiiiieieiieieeeeeieeee et e s 812
3448, LAl e COMSTTAIINES teetiteeeeetiteeeeeeee e e e e e e e e e e et eeeeeaeeeeeeeeeeeeereeeeaeraeaaaaaaaees 812
34,49, £aD e PrivVilEgES.iiiiiiieeiieiiieeeieiirreeeeeeiiereeeeeeiteeeeeeerreeeeeerrar e e eeraeeeeenrraaeas 813
34,50, LADLES utieeiiieiiieeeiie et e et e e e stteeetaeeeteeeebae e bae e tbeeeabeeebaeeetbeeabaeeatbaeaareeenreas 814
34.51. triggered_UpPdate_COLUMNS .iicouiireieeeiirreeeeeeitreeeeeeetreeeeeeenreeeeeensreeeeeeenrreeees 815
REBSY u'ak Ko o 1% of =S USRS TS PRSPPI 815
34,53, USAGE PIAVI LEGES iiiiiiiieeieeiteeeeeeeereee e e eeete e e eeete e e e eetre e e e e eerae e e e eetre e e e e eerraee s 817
34.54. User_MapPPing _OPLLONS iiiiiiiiieeeeiteeee e e ettt eeeetee e e et eeeeerae e e e eeareeeeeearreee s 818
34,55, VST MAPPITIGS cetrieeiieiriiee ettt e eectt e e e eeete e e e eeetre e e e e eetreeeeeeearaeeeeeetreeeeeenarraeeas 818
34.56. VieW_COLUMN_USAGE tiirreeeieeirreeeeeeitrreeeeeiitreeeeeeireeeeeeeisseeeeseessseeeesssreseesssssseeens 819
34.57. VieW _roULiNe_USAGE tiiiiieiiiiieeeeiieee e e et eeeeetee e e e eetreeeeeeeabaeeeeeerreeeeeeenraaeeas 820
34,58, VieW LAl e USAG e iiiiiiieeieetieeeeeeittee e e ettt eeeeete e e e e eetre e e e e e eabar e e e eebraeeeeenraaeeas 820
34,59, VAQWS trreieieeteiie ettt e e e e e et a e e e e etra e e e e aaataaeeeeabtaeaeeanrraeeas 821
V. Server Programming 823
35. EXtending SQL.......ooiiieeie ettt ettt naeeae 825
35.1. How ExXtensibility WOTKS.......cccccoiiiiiiiiiiieie ettt 825
35.2. The PostgreSQL TYPe SYSIEML.....cocuiiriiiriiriiiiiiitenie ettt 825
35.2.1. BASE TYPES weeuventienieiieiieie sttt ettt sttt sb ettt nae st sbe e e e 825
35.2.2. COMPOSILE TYPES ...eeuviruienierieriieniintieie ettt sttt sttt et sbe e e e 825
35.2.3. DOMAINS ..eeuvreeereeiieiieeeieeieeteeseteeteebeesssessesseesseessseesseesssesssessseenseesseensses 826
35.2.4. PSEUAO-TYPES ..cuveeieniiriieienieeiteieettete sttt ettt ettt 826
35.2.5. POlymOIrphic TYPES ...coveeverueriiiiniieienieetenieeitetestee ettt 826

35.3. User-defined FUNCHONS.........cceerieiiieriierieeie ettt ettt eae e e steeveeeee s 827
35.4. Query Language (SQL) FUNCHONSooveriiniiriiniinierieienictesicetenie st 827
35.4.1. SQL Functions on Base TYPeSccccuerieriierriierienieeiieneesee st enieeseee e 828
35.4.2. SQL Functions on Composite TYPESc.eecverrrierierieriiieniienienieenieeneenenes 830

XViii

35.4.3. SQL Functions with Parameter Names...........cccccecvveeeeveeerieeenrieeseree e 833

35.4.4. SQL Functions with Output Parameterscc.ccoeceervvenienieeniieeneeneennne. 833
35.4.5. SQL Functions with Variable Numbers of Arguments.............cccceevueeneee. 834
35.4.6. SQL Functions with Default Values for Arguments...........ccoceevueenueenee. 835
35.4.7. SQL Functions as Table SOUICESccccceevierciieeriiieeeiee e eree e 836
35.4.8. SQL Functions Returning Setsccoceevuerrieenienienieenienienieenieesieenaes 836
35.4.9. SQL Functions Returning TABLEc.cccceverienrenieieniieeenneneeneseenennene 838
35.4.10. Polymorphic SQL FUnctionsccccccceeeeieninieienieecneeeeeseerenene 838
35.4.11. SQL Functions with Collations............cccccuvereuieeriiieeeiee e esveeesvee e 840
35.5. Function OVerloading............ccccoeiieiiiniiiiniiiieeneeeeieeeeteeie e 840
35.6. Function Volatility CategOriesccueruiriiriiiienienieiienieeieieete e 841
35.7. Procedural Language FUNCHONScocceevieriiiiieinienieeieeeeeceeeceee e 843
35.8. Internal FUNCHONSoouiiiiiiieieieeee ettt 843
35.9. C-Language FUNCLONS.cccevrtriniiieieieteiieenieseeteetee st s 844
35.9.1. Dynamic Loading.......ccccceeeeririenieinininiinieicieeeeeeseseeeeeeee e 844
35.9.2. Base Types in C-Language Functions............cccceeeevenenienencenenceiencne 845
35.9.3. Version 0 Calling CONVENtIONScceeveeruerierieniienienieeienieseenieseeeeeneene 848
35.9.4. Version 1 Calling CONVENLIONScc.ceeeeeruerienieniieienieeienieseeniesieeeeniene 850
35.9.5. WIiting COde......eoueiiiiiieiiiiieieieeiteeetete ettt 852
35.9.6. Compiling and Linking Dynamically-loaded Functions............c..ccceeuee. 853
35.9.7. CompoSsite-type ATZUIMENLScceeeirueeierierienienieeienieeeentesieeneesieenensenne 855
35.9.8. Returning Rows (Composite TYPES)cccuerverierierierienenieneneenenieereniene 857
35.9.9. REtUINING SELS....eeutirtirieeiirieiienieeiteteecete ettt ettt st eae 859
35.9.10. Polymorphic Arguments and Return TYpesc..cccceeeevvenereenenennencne 863
35.9.11. Shared Memory and LWLOCKSccoceviiiiiiienienieeiieieeeeeieeeeee e 865
35.9.12. Using C++ for EXtensibility.......ccceovverieriiiriiienienieeieeniesiesieeieesee e 866
35.10. User-defined AZEIEZAteScevverieerieerierieeieenitestesieesieesiresreesseesseesseesseenseens 866
35.11. User-defined TYPES ..ccoeeruieriieriieriieieertesie ettt sttt st esbeesteebeesee s 868
35.12. User-defined OPerators.........cceeeerieerieerienieenieeniiestesieesieesieesreesseesseesseensesnseens 872
35.13. Operator Optimization Information..........cceeceerienieriieenienieeeeeeee e 872
35.13.1. COMMUTATOR c.vovirvirinierenietestetesc ettt 873
35.13.2. NEGATOR «veviiiniiereietcietest ettt ene s 873
35133 RESTRICT roviieeiiereieteietec et esc et 874
35134, JOIN ettt e s 875
35.13.5. HASHES ettt ettt ettt ettt sae et be s ne s e sae st ae s nene 875
35.13.6. MERGES ..eutetetieuieieeieere e eieestesie et saeeseesae e enesseessesneeneesaesaeenesueennennene 876
35.14. Interfacing Extensions To INdeXes.........ccccovvieviniiiiininiiiiniicneeeceseeiee 877
35.14.1. Index Methods and Operator CIassescccceveecuerieeenieneeneneeiennenne 877
35.14.2. Index Method Strategiesccecivieiiniiiiciiniieicecceece e 877
35.14.3. Index Method Support ROUINEScccocoeiiiiiiiiiiiiiiiiiicccciee 879
35.14.4. An EXAMPIE ...oouviiiiiiiiiiiiiieteete e 881
35.14.5. Operator Classes and Operator Families..........ccccccovereininienencnienene 883
35.14.6. System Dependencies on Operator Classesccoeeeveerereeneneesienene 886
35.14.7. Ordering OPETratorscccuerueeeerierierienieeientesteetesteeeeeseesaeeseesreeeeneeene 886
35.14.8. Special Features of Operator Classes...........ccoereeriereeienereeneneeieniene 887
35.15. Packaging Related Objects into an EXtensioncccceeceevuereenienenieneneeieniene 888
35.15.1. EXtension Files......cccccccoiiiiiiniiiiiiiiiiiiicicceeeeee e 888
35.15.2. Extension Relocatabilitycccevereevieninienenieieneeeeneeceeseeeeieae 890
35.15.3. Extension Configuration Tablescccccvevienenienienenniencnienenceienene 891
35.15.4. EXtension UPdatescoceevuererieriinieienenieienieeiesieeieesie e sieenenieene 891
35.15.5. Extension EXamplec.ccocererieriininnienenieenieeneeeeneeeee e 893
35.16. Extension Building InfrastrucCtureccoceeceevenerienenieiienenieneeeenenieevenene 894

Xix

30, TIIZEETS wvveuveenreeeeeriieeiteeett e st e et et et e st e et e e bt e s abe e st e eabeesstesabesnteesbbesabesabeebeenseesaseenseenseesnsas 897

36.1. Overview of Trigger Behavior.........ccooeeviiiiiiiiiinieniccecteec e 897
36.2. Visibility of Data Changes...........ccocueerierieniiniieeniienie ettt s 899
36.3. Writing Trigger FUnctions in Ccccevieiiiiiieenienieiieeeestc et 900
36.4. A Complete Trigger EXample.......c.c.oovieriiniiiiiiinienieeieeiteseceeeeeiee e 902
37. The RUIE SYSIEIMcouviiiiiiiiiieieeietee ettt sttt e sae e 906
37.1. The QUETY TIEC.....cc.eeiiiieiiriieeeieeectee ettt 906
37.2. Views and the Rule Systemc.ccceiiiiiiiiiiiiiiniiieecececre e 908
37.2.1. How SELECT Rules WOrKccccoiiiiiiiiniiniiiiiiieiceeceeeeeee, 908
37.2.2. View Rules in NON-SELECT Statementscccceeeceervieeneeneerseeenieeneennnes 913
37.2.3. The Power of Views in PostgreSQLcccccccoiiiiiiiniininiiiiiiene 914
37.2.4. UPdating @ VIEW......ccuerieieuiriinienieteieieeieste ettt ettt sne e 914

37.3. Rules on INSERT, UPDATE, aNd DELETE ...cciieeiiiieeeieiirreereeeeeeeeeeeeeeeeeenssnssseneeeeens 915
37.3.1. How Update Rules WOrk ..o 915
37.3.1.1. A First Rule Step by Step......ccceveverivievieininineneceeeeenenenee 916

37.3.2. Cooperation With VIEWS........cccceuevieiriririinieieieeeeeeneneseeeeeee e 919

37.4. Rules and PrivilEZescccooiriiriiiiieiieieieee ettt 925
37.5. Rules and Command StatUS..........cceeuerierieniirienenieetenieeitete sttt sbeeee e 926
37.6. Rules Versus TIIZZEIScccueruirierieriieieniieiieie ettt sttt sttt st sbe e nieeae 927
38. Procedural LangUagescccuevueeieiiniiienieiteieeiteese ettt st s 930
38.1. Installing Procedural Languagesc..ccceeereenenerienenieieneeteneeeeiesieerenieene 930
39. PL/pgSQL - SQL Procedural Languagec..coceecuereeienenienenieieneeeenie e sieereniene 933
39,1, OVEIVIBW ..ttt sttt sttt ettt ettt st b e bt et e sbeeatesbesbe e besbeesnenaeene 933
39.1.1. Advantages of Using PL/PZSQLcccooeniriininiiiininienceeeeneerenene 933
39.1.2. Supported Argument and Result Data Types.......cccceeevvereeneercieeneeneennnn. 933

39.2. Structure of PL/PESQL....ccviiiiiiieiieieeteee ettt sttt 934
39.3. DECIATAtIONS ..ottt ettt sttt et ettt st eaesbeeenenaeeae 935
39.3.1. Declaring Function Parameters..........ccoceecverviienieniensieenieniesieenieeseeeeees 936
30,32 ALTAS ciiiiiiieir et 938
39.3.3. COPYING TYPES weuveetieiieiiiiiteniteete ettt ettt sttt st e ae et e e 939
39.3.4. ROW TYPES...eeouieeiieiieiteeit ettt ettt ettt sttt ettt ettt st e sbeesaeesaees 939
39.3.5. RECOTA TYPES .eeeruvieiieiieiiteitesite ettt sttt 940
39.3.6. Collation of PL/pgSQL Variablescceccevvienienieniiienienienieeieeseeene. 940

39,4, EXPIESSIONSccuveniiriieutiniieitenteeitetesieeesenteeaeeteeueesnesaeeanesseeasessesseennesaesueennesseennennene 941
39.5. BASIC STALETNENLSeeveeiieriieeiieite sttt et e st e et e sttesbe e bt e sbtesabeebeesbeesabeenbeebeens 942
39.5.1. ASSIZIMENLooutiiiiiieiieieieeieteeeete ettt eae 942
39.5.2. Executing a Command With No Result.............cc.coccooiiiininnnnnnnn. 942
39.5.3. Executing a Query with a Single-row Result............c..cccooniinininn. 943
39.5.4. Executing Dynamic Commandsccccoceevieriiniriiiniinicniiienieneceenene 944
39.5.5. Obtaining the Result Status.........cccccueeririninienenieinineneneeeese e 947
39.5.6. Doing Nothing At Allccocevirieriiiiiinirineciceeeeeseseeeeeeee e 948

39.6. CONLIOL SIUCLULES........eetieiiertieiieieetiete ettt ettt sttt et sttt e ste st e besbeensenaeene 949
39.6.1. Returning From a FuncCtion.........c.cccecvirininicnicnninincncciceceeeenee 949
39.60.1.1. RETURN c..etetintententetteteetenteteneeneeresaeseesenest st sressesaeseeneeneeuesaesaennes 949

39.6.1.2. RETURN NEXT and RETURN QUERY ..c..cccecueirrinrenuenmeneerenensennenne 949

39.6.2. CoNAItIONALScveeuiiiiriieieiieeeeetee ettt 950
39.60.2.1. TF—THEN .eouirtiteuieitettetentestet ettt st ettt sae et ebesaesaenaen 951

39.6.2.2. IF—THEN=ELSE ..eteteuirieiereeeiieiesiesteeenentenessessessesseseeseesessesuennes 951

39.6.2.3. IF—THEN-ELSTIF cceetrtirreiereneeiieienieseetenentenesressesseseeneeseenesuesaennes 952

39.6.2.4. SIMPIE CASE .eeviriiiiiniieieieeerteeit ettt sttt s 953

39.6.2.5. Searched CASE....ccoireiririiierieeieieeteee sttt 953

39.6.3. SIMPIE LOOPS «.eerevieniieeiieeiieieeeite ettt ettt st e st eeaeesaneseees 954

XX

30.0.3. 1. LOOP uttveeee et eeetreee et e e eeeare e e e e e e e e eeare e e e e eeareeeeeearaaeeeenns 954

39.60.3.2. EXIT oottt st s 954

39.6.3.3. CONTINUE ...uirtiuiiuiriiitiieteteeeiierc st sr e s 955

39.6.3.4. WHILE cooovivuiiiiiiiieii ettt st s 955

39.6.3.5. FOR (Integer Variant)cccceevveevueenieniiennieenienieeieesiee e 956

39.6.4. Looping Through Query Resultsccccoeceriiiinieniiiniiinienienieeeeeeee, 956
39.6.5. Looping Through Arrayscccceceeviirieiinirienenieieeeeeneeeeeseerenene 957
39.6.6. Trapping EITOTSccooiiiiiiiiiiiieieieeeerecceeeetee e 959

30,77 CUTSOTS....uteeueieite ettt ettt et ettt sttt et et e s bt et e bt e sbt e s bt e bt e sbtesabe e bt ebeesabeenbeebeens 961
39.7.1. Declaring Cursor Variables............ccccocieveriiieiiinieiieniecceeceseeeeiene 961
39.7.2. Opening CUISOLSc.coceeiuiruirieiieiieieei ettt eae s e ene 961
39.7.2.1. OPEN FOR QUEI Y utteerreeesreeesereesarueeasseeeasseeessseessseessssesssssesssssesans 961

39.7.2.2. OPEN FOR EXECUTE .ccoosuieiiriieiieieiieeiesieeeeste e seeee s eanenneene 962

39.7.2.3. Opening a Bound CUISOT..........cccoveeveerinininenienieeeeeeneneseenen 962

39.7.3. USING CUISOIS...cvirerenreneeiinienienieteieeateiestessessesteseeneeressesaesaessensenessessesenne 963
39731 FETCH ittt e 963

39.7.3.2. MOVE ..ottt e s s 963

39.7.3.3. UPDATE/DELETE WHERE CURRENT OF ...cccccoeiiiiiiiiianiinceiennns 964

39.7.3.4. CLOSE ettt ettt sttt sttt s 964

39.7.3.5. Returning CUSOTScccereerierierieniiniienienieeiesieeirenieeieeneeseeeae e 964

39.7.4. Looping Through a Cursor’s Result.........c.ccoceverieiininiincniinineiienee 966

39.8. Errors and MESSAZESceverueruieriiniieienieeiteiesieentesieeite st sttt et saesieenaesbeesnenieene 966
39.9. Trigg@er ProCedUurescccooeeiiriiieiieniiiieieccee ettt 968
39.10. PL/pgSQL Under the HOOdcccccouiriiriiniiiiiiinenieieneciceeeteseeteesieeeieae 974
39.10.1. Variable SubStIULIONc..cecverierieriirieieneeteenteteseete et 975
39.10.2. Plan CaChingcccvevieriiiriienieeieeieesteete ettt ettt st e 977
39.11. Tips for Developing in PL/PESQL......coooiiiiiiiiiienieeieeieenee et 978
39.11.1. Handling of Quotation Marksccceercuerriienienieniiienienieeieenieeseee e 979
39.12. Porting from Oracle PL/SQL........ccooiiriiniiiiieienieeieetesec ettt 980
39.12.1. Porting EXamplescccueeriierieniiiiienienie ettt ettt 981
39.12.2. Other Things to Watch FOT.........c.cooviiviiniiiiiiieieeeeeceeeeeeee e 986
39.12.2.1. Implicit Rollback after EXCEeptions..........cccceervveevieeneeniennieenneene 986

39.12.2.2. EXECUTE oottt sttt s 987

39.12.2.3. Optimizing PL/pgSQL Functions........c..ccceceervieeneeneeniennennneen. 987

39.12.3. APPENAIX...ciiiiiiiiiiiiieieieeieteeeet e 987

40. PL/Tcl - Tcl Procedural Language..........c..cocevuereeieniinieniieieieneereieseereeie e 990
40. 1. OVETVIEW ..ttt ettt ettt st ettt sttt e bt e sat e st e bt e sbeesateenbeesseesaees 990
40.2. PL/Tcl Functions and ATZUMENTS.........c..cocueruirieiiinieieieeeeieseeeesie e seeene e 990
40.3. Data Values in PL/TCL..c...ooiiiiiiiiiiiiieeeetc ettt 9291
40.4. Global Data in PL/TCL ..c..ccouiiieiiieeee ettt 992
40.5. Database Access from PL/TClcocooiiiiiiiiiiieieee e 992
40.6. Trigger Procedures in PL/TCl......cccoeiiiviiiiiniiiicicieeeeseseecceee e 994
40.7. Modules and the unknown Command............cccceeereerinenienenieeneeeese e 996
40.8. Tcl Procedure NAIMESc.ccueeieriirieieiieeiesieettete sttt ettt e e seeeaesaeas 996
41. PL/Perl - Perl Procedural Language...........cccocevuevueieieininenenieeeieenesesteteeeeeveenesie s 998
41.1. PL/Perl Functions and ATZUMENTS........c..cecueruerieriereerienienienieneeeieseeeneeneeseeeneennens 998
41.2. Data Values in PL/Perl.........ccccooiiiiiiiiiiiiiiniieceeeeteetee e 1002
41.3. BUilt-in FUNCHONS ..c..eeiiiiiiiiiieiesiceteeteet ettt 1002
41.3.1. Database Access from PL/Perl.........ccccccoooininiiiiniiniiiiniencnecee 1002
41.3.2. Utility Functions in PL/Perl.........cccoccoiiiiininiiininieineenececee 1005

41.4. Global Values in PL/Per]ccccooiiviiniiiiiiniiiiniieectccnteteseeeesee st 1006
41.5. Trusted and Untrusted PL/PEr]ccccoccvieiiiriiiiniiiineiieienecteneeeene e 1007

xxi

41.6. PL/PEIT TTIZETS ..eeveeiieriiieieeieesite ettt sttt sttt ettt ebeesbtesetesnbeenbeesasesnseeseenes 1008
41.7. PL/Perl Under the HOOdcocciiiiiiiiiiieiiiiieeitete ettt 1010
41.7.1. CONIGUIALION ...veeniieiieiiieiieeteeie ettt ettt st ettt s e e e 1010
41.7.2. Limitations and Missing Features.........c.cccoovevierviinienieniienneenieneeenne 1011

42. PL/Python - Python Procedural Language............ccevevieriiiniieniinieiieenieeeeeeeseeeee e 1012
42.1. Python 2 vs. Python 3.......cooiiiiiiiiceeeeeeeeeseeee e 1012
42.2. PL/Python FUNCHONScc.cooviiiiiiiiiieecicieeiteeeetc ettt s 1013
42.3. DAt VAIUESoeiiiiieeiie ettt ettt e et e e ste e e sve e et e e enaeeentaeeensaeeesaeesnreeens 1014
42.3.1. Data Type Mapping.........cccceceeeeieriieienieneeieneeeesieeeeee e 1014
42.3.2. NULL NODC....eeeieiieiieiesie ettt ettt et saesneens 1015
42.3.3. AITAYS, LISES cueiiuiiiiieiiieiieeiteetee ettt 1016
42.3.4. COMPOSILE TYPES..cvieuiereieieiieetieieeie ettt ettt e et ee e eneens 1016
42.3.5. Set-returning FUNCHONS.........cciiiiiiieieriiieecee e 1018

42.4. Sharing Datacccoucoieiriiiriinieicieteteeneseteee ettt ettt ettt e 1019
42.5. Anonymous Code BIOCKSc.cccoiiiiiiiiiiiiiiiiiiiccc e 1019
42.6. Trig@er FUNCHIONSeoiuiiiiiiiitieieeetetesteetee ettt sttt st seene 1020
42.77. DAtADASE ACCESS ..vveeeurieeureeeiiieeeiteeeiteestteeateeeaseeeaseeessteesasseesseeesssseessssessseeens 1020
42.7.1. Database Access FUNCHONS.......cccieiieeieeciieiieeiecie et 1021
42.7.2. Trapping EITOTScc.coviiiiiiiiiiiiieiiieetec sttt 1022

42.8. EXpLiCit SUDIIANSACIONSeoueeutiriiiieieniieieettete sttt ettt st see st e sieens 1022
42.8.1. Subtransaction Context Managersccoereeuerieneenieneeneenesieeneneens 1023
42.8.2. Older Python VErsionsc.ccecueveeienineeneninienineenie et 1023
42.9. Utility FUNCHONSeoutiiiiiiiirieeierceteseeteest ettt sttt sttt 1024
42.10. Environment Variablescccccueeriierieniiiiieniieniiesieeieesieesreeieesieesnesseenseenns 1025
43. Server Programming INEEITaCEcccueviiiiriiriieiienieeiecccte e 1026
43.1. Interface FUNCHONS ...cc.eeviiiiieiieiie ettt sttt sttt st ebee e 1026
SPILCONNECT c.ceeviiiiiiiieeeeeeeeeeeeeee ettt e e e e e e e e e e e s s s s aaeareeeeeeeeeeas 1026
SPILAINISN .ot 1028
SPIPUSI .ttt st ettt et 1029

N o I 070 o T OO OO P USRI UTURRRPRRPRIRt 1030
SPI_EXECULE....c..eeiiiieiriiieiente ettt ettt ettt ettt sa et st st sneeae 1031
SPI_EXEC.c.ueiiieiiiiieiieteeteeteet ettt sttt et st 1034
SPI_execute_ With_args........cccceviiiiiienieniiiieetee ettt st 1035
SPI_PIEPATE.......eoiiiiiiiiieieieet ettt ettt et st 1037

S PIePATE_CUISOTeeiiiiitieiieeiieeieeite sttt sttt st ettt esitesareebee e 1039
SPI_PIrepare_Paramsc.ccecerueeueeieniiereenuieeenieseeresieene oo seene s ene e ene 1040
SPI_gEtargCOUNLcc.coiiiiiiieieiieeeeeee et s 1041
SPI_getargtypeid.......c.ccoevuiriiiieiiiieieeeee e e 1042
SPILiS_CUISOT_PLAN .uviiiiiiiieiieiiieeetet ettt st 1043
SPIL_eXECULE_PlaN....cecuiiiiiiiiiiiieiiieieeterte ettt 1044
SPI_execute_plan_with_paramlist...........cccoceeriererierenienieneeene e 1046

P EXECP ettt st sttt et 1047
SPI_CUISOT_OPEIL....eiuiiiiiiiiieiteeiieeteetesite ettt sttt sttt re e 1048
SPI_cursor_open_With_argscccceeieieririeniiieesiee e 1050
SPI_cursor_open_with_paramlist...........cccoceevierinieiinieniineeene e 1052
SPLCUISOT_fIN..cciiiiiieeeeeeeeeee ettt e e e e e e e e e e eeeeeeeaeeeeeas 1053

SPL CUISOT_fEUCR ..ot e e e e et e eaeaee s 1054

SPI CUISOT_INOVE .ttt ettt e e e e e e e e e e e e s e e s aaaeseeeeeaeeseeas 1055
SPI_SCIOll_CUISOT_TEECH ...t e e e e e e 1056
SPI_SCIOIl_CUISOI_INIOVE ...vvviviiiiiieieeeeeeeeeeeeeeeeeea ettt eeeee e e e e e e e e s e e aaaasesseeeeeeeeeeas 1057

SP L CUISOT_CLOSE....c ittt ettt e e e e e e e e e e e e s e e aaaaseareeeeaeeeeeas 1058
SPI_SAVEPIAN ...c.utiiiiiiieeieeieeee ettt ettt sttt aeenteesebeenbeeaae e 1059

XXii

43.2. Interface SUpPOTrt FUNCHIONSeovuiiiiieiieniiiiiieiteriie sttt st 1060

SPI_fNAME.....coiiiieiiieeiie ettt et e et e e be e e sab e e etbeeesbaeeenbaeenareas 1060
SPI_fNUMDET ...eviieiiieciieec ettt et e e e e eereesstaeeessaeeeaseas 1061
SPI_ZELVALUE ...c.viiiiiiieiie ettt sttt st 1062
SPI_getbinvaloocuiiiiiiiiiiiieiee et st 1063
SPI_GEILYPE ..ottt st 1064
SPL_EttyPeid....c..eouieiiiieiiiieieieeeeteeeee e e 1065
SPI_gEtrelNameeevuiiiiiiiieiieiieeeete ettt sttt st 1066
SPI_EtNSPNAME.......coiiiiiiiiieieieeieeteee ettt s 1067

43.3. Memory Managementccceeievuerenieienuieienieeeesie et eee e seesnesneens 1068
SPI_PAILOC ..ttt ettt st 1068
SPIL_IEPAIlOC ...ttt 1070

N o (5 (<SRRI 1071
SPIL_COPYLUPIE ...ttt ettt e 1072
SPIL_IEtUINTUPIEc.eeeineiiiiieiieieeeeeeter ettt s 1073
SPL_MOAIFYTUPLE ...ttt e 1074
SPL_ATEELUPIC. ...ttt st 1076
SPL_freetuptable.cc.oouieiiiiiieieeeeeeeee e e 1077
SPL_ATEEPIAN.....ceteiieiiitieee ettt 1078

43.4. Visibility of Data Changes..........c.cceoererierienieiiinieieneeteiestete et 1079
43.5. EXAMPIES ..ottt ettt sttt et st 1079
VI. Reference 1083
L. SQL COMMANGS.......viiiiiiiiiiieeiiie ettt eit et e e et e e ereeeebee e veeeseseeeeseeesseeasseesasseesareeans 1085
ABORT ...ttt et e et e e e s e e e tb e e etb e e e tbeeetbeeeaaeeearaeaas 1086
ALTER AGGREGATEooiiiiiieeeeeee ettt ettt et vaa e 1088
ALTER COLLATION ..ottt ettt et e ve e tv e eave s etveesaseessaeesavaeans 1090
ALTER CONVERSIONoiiiiiiiiieeteete ettt ettt e eave s e taeesaseesaaaesaveeens 1092
ALTER DATABASE ...ttt ettt e et e e s ab e e e aaeesareeeas 1094
ALTER DEFAULT PRIVILEGESoiooiiiiiieeee ettt 1096
ALTER DOMAINcottiieiiieeiie ettt ettt e e et eesvee e s bee e tbeesssaeessseesnsseesssseessseeens 1099
ALTER EXTENSION ..ottt ettt eevee e svee et eeeveeetaeesaseeessaaesnsaeens 1102
ALTER FOREIGN DATA WRAPPERccoooiiiiieieie ettt 1105
ALTER FOREIGN TABLEoooieiioeeeeee e 1107
ALTER FUNCTIONoooiiiiiiee e e enee s 1110
ALTER GROUP ... e eaee s 1113
ALTER INDEX ..ot e e e eneeean 1115
ALTER LANGUAGE ... 1117
ALTER LARGE OBJECT ... 1118
ALTER OPERATORooneeiee ettt 1119
ALTER OPERATOR CLASS ...ttt 1121
ALTER OPERATOR FAMILY ..ot 1122
ALTER ROLE ..o e et et eeaae e et 1126
ALTER SCHEMA ...t ettt e et e e e eaae e evee s 1130
ALTER SEQUENCE ...ttt et et e e aaa e evaeean 1131
ALTER SERVER ...ttt et et eaaa e e 1134
ALTER TABLE ...ttt et et e e ta e e e taa e eaveeaan 1136
ALTER TABLESPACEooooioeeeeeee ettt ettt aa e e 1146
ALTER TEXT SEARCH CONFIGURATIONcooooiiiiiiieeeiie e 1148
ALTER TEXT SEARCH DICTIONARYcooviiiiiiieeeeeceeeee e 1150
ALTER TEXT SEARCH PARSER ..ottt 1152
ALTER TEXT SEARCH TEMPLATEcooiiiiiiieeeeeeeee et 1153

XXiil

ALTER TRIGGERcocoiiiiiiiiiiiiiiiciiiiiccce et 1154

ALTER TYPE. ..ottt 1156
ALTER USERccoiiiiiiiiiiiiiiiicccee et 1159
ALTER USER MAPPINGcccocoiiiiiiiiiiiiiiiiiccinesee e 1160
ALTER VIEW Lottt 1162
ANALYZE ...t 1164
BEGIN ...ttt ettt et st st s 1166
CHECKPOINT ..ottt sttt 1168
CLOSE ...ttt e 1169
CLUSTER ...ttt s 1171
COMMENT ... et s 1174
COMMIT ...t s 1178
COMMIT PREPARED......cc.occiiiiiiiiiiiiiiiiec e 1179
COPY et 1180
CREATE AGGREGATEccoooiiiiiiiii e 1189
CREATE CAST ... e 1192
CREATE COLLATION........ooiiiiiiiiiiiiii e 1197
CREATE CONVERSIONooiiiiiiiiiiiii e 1199
CREATE DATABASE ..ottt ettt ettt s 1201
CREATE DOMAIN......cottiiitiieietnt sttt sttt ettt 1204
CREATE EXTENSION.......coiiiiiiiiiiiintieieteteteese ettt et 1207
CREATE FOREIGN DATA WRAPPER.........cccccoviiiiiiiiiiicicieeeceeeeieeee e 1209
CREATE FOREIGN TABLEcc.ccooiiiiiiiiiiieieie ettt 1211
CREATE FUNCTION.......coooiiiiiiiiiiiiitieeeteteeese ettt 1213
CREATE GROUP........coooiiiiiiiiiiiicisieeeteteee ettt 1221
CREATE INDEX.....coooiiiiiiiiiiieiiieit ettt 1222
CREATE LANGUAGEccooiiiiiiiiiiiicicci e 1228
CREATE OPERATORcooiiiiiiiiiiiiiniiiccte ettt 1231
CREATE OPERATOR CLASS ..ottt 1234
CREATE OPERATOR FAMILYcccoooiiiiiiiiiiiiiiiiiicictcicceeeeeeeceeee s 1237
CREATE ROLE.......ccoooiiiiiiiiiiiiiiiirnitceee et 1239
CREATE RULE.......ccociiiiiiiiiiiiiceec et 1244
CREATE SCHEMAcciiiiiiiiiiiiiiinticeeeei e 1247
CREATE SEQUENCEcccooiiiiiiiiiiiiiiiiciccc et 1249
CREATE SERVERc.ooiiiiiiiteeeeeee ettt 1253
CREATE TABLE ..ottt s 1255
CREATE TABLE AS ...ttt s 1269
CREATE TABLESPACEcooioiiiiiiiiieee et 1272
CREATE TEXT SEARCH CONFIGURATION.........cccccoiiiiiiiiiniiiencieceeeeee 1274
CREATE TEXT SEARCH DICTIONARYcccooiiiiiiiiiiieececeeeeeeeeee 1276
CREATE TEXT SEARCH PARSER ..o 1278
CREATE TEXT SEARCH TEMPLATE ..ot 1280
CREATE TRIGGER.......ccooiiiiiiiiiie e 1282
CREATE TYPE ... e 1288
CREATE USERo e 1296
CREATE USER MAPPING........cocoooiiiiiiiiiiiiic e 1297
CREATE VIEW ..ot s 1299
DEALLOCATEooiiiiiiiie ettt sttt s 1302
DECLARE ...ttt sttt s 1303
DELETE ..ottt 1307
DISCARD. ..ottt sttt s 1310
DO e 1311

XXV

DROP AGGREGATE.......c.cocoiiiiiiiiiiiiiiciiiecece st 1313

DROP CAST ..o 1315
DROP COLLATIONoiiiiiiiiiiiieicicciieeieee ettt 1317
DROP CONVERSIONociiiiiiiiiiiiiiiiiccee e 1318
DROP DATABASEooiiiiiiiiiiiieicccee e 1319
DROP DOMAIN ..ottt 1320
DROP EXTENSIONooiiiiiiiiieieeteteeeeete sttt sae e s s snesneas 1321
DROP FOREIGN DATA WRAPPERccccocoiiiiiiiieeeieeececece e 1323
DROP FOREIGN TABLE.........ccoiiiiiiiieeceeteeet ettt 1324
DROP FUNCTION ..ottt ettt s ne s 1325
DROP GROUP ..ottt e 1327
DROP INDEX ...ttt et e s 1328
DROP LANGUAGE ..ot 1329
DROP OPERATORocoiiiiiiiiiiii e 1331
DROP OPERATOR CLASSo 1333
DROP OPERATOR FAMILYooiiiiiiiiiiiiiiiiiict e 1335
DROP OWNEDcoiiiiiiiiiiii e s 1337
DROP ROLEcoiiiiiiiiiii et 1339
DROP RULEcooiiiiiiiiii e s 1341
DROP SCHEMA ...ttt sttt et 1343
DROP SEQUENCE.......ccocoiiiiiiitiieieicteiietesesteeeeee sttt s 1345
DROP SERVER.......cciiiiiiiiiiiiieictct ettt ettt s 1346
DROP TABLE ..ottt sttt s 1347
DROP TABLESPACEoooiiiiiiiiiieieieieecetee sttt 1349
DROP TEXT SEARCH CONFIGURATIONcccoveiiiiniiiiiiiiiiinieicieeeeeeeenns 1351
DROP TEXT SEARCH DICTIONARYcccoiiiiiiiiiiiiiniiiiicieteieieeeeeeceeee s 1353
DROP TEXT SEARCH PARSERcccciiiiiiiiiiiiiiiiiiicicceeeeeece s 1354
DROP TEXT SEARCH TEMPLATEccccooiiiiiiiiiiiiiicicicicieeecieee e 1355
DROP TRIGGERccciiiiiiiiiiiiiiiiicicicieee st 1356
DROP TYPE......ooiiiiiiiiiiiiiiccee ettt 1358
DROP USER ...ttt 1359
DROP USER MAPPINGcccoiiiiiiiiiiiiiiiieiccise e 1360
DROP VIEW ..ottt 1362
END oo 1363
EXECUTE ...ttt sttt sttt e ne s 1364
EXPLAIN ...ttt et sttt et s nesaeas 1366
FETCH ..ottt et s st et s 1371
GRANT .ttt et 1375
INSERT ..ottt sttt et s 1382
LISTEN ..ottt et st s et s 1386
LIOAD ..o e 1388
LOCK . e s 1389
MOVE. ... e e s 1392
INOTIFY ..o et s 1394
PREPARE ... 1397
PREPARE TRANSACTIONccooiiiiiiiiiiiici e 1399
REASSIGN OWNEDcciiiiiiiiiicieieteteteneneeeetet sttt s 1401
REINDEXo 1403
RELEASE SAVEPOINTccooiiiiiiiiieieieitereeeetee sttt 1406
RESET ..ottt sttt ettt s 1408
REVOKE ...ttt s 1410
ROLLBACK ...ttt sttt s 1414

XXV

ROLLBACK PREPAREDcccooiiiiiiiiiiiiiieicccisee e 1415

ROLLBACK TO SAVEPOINToootiiieierieeieieeetete sttt seeeete st eae s esaessesnensesseens 1416
SAVEPOINT ...ttt ettt ettt ettt ettt e bt e st e satesabeesatesanesates 1418
SECURITY LABEL....c.uititiiiieeeeete ettt sttt ettt sttt 1420
SELECT ...ttt ettt ettt e b e st et e be e s bt e st s beesbtesanesates 1423
SELECT INTO ...ttt sttt ettt essesnaesesseensenseenes 1441
R SRR 1443
SET CONSTRAINTS ..ottt sttt s e e e 1446
SET ROLEottt ettt et e et e e st et e sae e enseeseensenneenes 1448
SET SESSION AUTHORIZATION......cccotiieieiteiee sttt 1450
SET TRANSACTIONoiiieiit ittt sttt ettt sae e be s e e e enes 1452
Y 5 (0)OSR 1454
START TRANSACTION ..ottt ettt ettt st 1456
TRUNCATE ...ttt ettt st ettt e e et et esaesseenaesbens 1457
UNLISTEN ..ttt ettt b et b et s bt st e e s bt et e bt et e nbesseensenbens 1460
UPDATE ...ttt ettt ettt et bt et e s bt et e naesaeenaesbens 1462
VACTUUM ...ttt b et b ettt e b s bt et e st eatenbesaeenaenbens 1466
VALUES ...ttt ettt sttt ettt b et sttt e nbesbeennenbens 1469
II. PostgreSQL Client APPIICALIONScoeerueriieiiriieiienieniteiesiteteste ettt st 1472
CIUSEEIAD ..ttt ettt et ste et e st e et e e beessbeenbeenseesaseenseenseenes 1473
CIEALEAD ..ottt ettt ettt et e bt e bt e st e et e e taesabeenbeesteessbeenbeeseesnbeenbeebeees 1476
CIEALCLANZ ...ttt ettt bt ettt et be bt et sb et b e ebtenaesbeeaenbeeas 1479
CTEALEUSET 1.vvveeveeuveeneeesereeteenueessseesseenseessseasseenseessessseenseensaessseenseenseesssesnsessseesssesssesnseenns 1482
1610 16 Lo T OO UPRRRURRRIPRINt 1486
AIOPIANG ..ttt ettt st et este e st e et e e beesebeenbeeteesabeenbeebeens 1489
AIOPUSET ..ttt ettt ettt ettt stt e st e e bt e s bt e st e e bt ebeesabeesseenseesssesnbeenseesasesnseeseenns 1492
P e euveenreeueesuteeteestte s bt e bt e ttesut e et e e h e e bt et e e bt e bte st e e bt e bt sab e e b e e beesabeenbeebeesateenbeebeenns 1495
PE_DASEDACKUD ..eeveieiiiiieetee ettt st ettt st ettt ebee e 1498
PECONIIG ittt ettt et ettt st e bt e bt e st e et e ebeesabeenbeenbeesabesnseebeens 1502
PE_QUINID ittt ettt st e bt e bt st et e e bt e sa b e eabeebeesabeenbeebee e 1505
PE_AUMPALL...eiiiiiiiiiiiii et sttt st ettt e b e b e 1515
PE_TESLOTE .ottt ettt ettt e sbt e et e e bt e sbtesabe e bt e beesabeeabeenbeessbesnbeebeesntesnseenseenns 1520
PSGL ettt sttt e b e sttt e bt e st et e e bee st e ebeenbee e 1528
TEINAEXAD ..ttt sttt et st ettt e ebe e 1556
VACUUINAD......eiiiiiieeiiseeiee ettt e e et e e st e e et e e s eteeessbeeesbeeessseesssseeensseessssaesnseeens 1559
III. PostgreSQL Server APpliCAtionsc..coceecueriieieriinienieneeieteeeere e 1563
L0V Lo TSR SRURRRR 1564
PE_CONLIOIAALA ...ttt et s 1568
P CtL e e e st 1569
PE_TESEEXIOZ ettt ettt sttt et st ettt ne e 1574
POSEETES ettt ettt et ettt et et s bt st e bt e bt st e e bt e bt e sat e et e e bt e sabeenbeebeesbteenseebeenne 1576
POSTIMASIET ...ttt ettt ettt ettt et e bt e bt st e bt e bt sat e et ebeesbeeembeebeesbeeenseeneenne 1583
VIL. Internals 1584
44. Overview of PostgreSQL INternalsccoceierieriinieniniiieneeieeeeeeseee e 1586
44.1. The Path of @ QUETY ...c..eoiiiiiiieiirieieetee ettt 1586
44.2. How Connections are Establishedc..cccoooieeiiiiiiiieiiiiiecicceeeeeee e 1586
44.3. The Parser STAZEcoeeeeriirieiiinieeienieeiteiest ettt ettt ettt e e sbeens 1587
Q4.3 1. PaISCT...ei ittt ettt ettt et e e et e b e e e tr e e e aaeeeareaens 1587
44.3.2. Transformation PrOCESS........cc.eeecviieeiiiieiiieciee ettt 1588

44.4. The PostgreSQL Rule SyStemcccccoerieiiiririiiniiienienieieneetenieeeenie e 1588
44.5. Planner/OPUMIZETc..ceevierueeriereeeieenieenitesteesseesteesseesseesseesssesssessseesssesssessseenns 1588

XXVi

44.5.1. Generating Possible Plans............cocceeviiniiiniieniiiniiiiiienieeeeeeneeeee e 1589

44,6, EXECULOT c..cuivieiiiiieieieeit ettt ettt ettt sttt et et sae st s bt sa e e saesaeennenieas 1590
45, SYSEM CALAlOZSveeuiieiieiiiieieeite ettt ettt ettt e sttt e bt e st e st et esaaesaneeats 1592
A5.1. OVEIVIBW ..ttt ettt ettt ettt sttt et s sat s sae et e saesaeenesaeeas 1592
Vi ST Yo H-Yo fo b ot =Yo 1= o = NN NS U U U USROS UTURU OO PPN 1593
S 3 DO @M teietttiee e eetteee e eett e e ee et e e e e e —e e e e e e e—baeeeeat—aaeeeea——aaeeeaatrteeeeaaraeeeeeatraeaeaans 1594
VSR oY BN 1 1) < USRS 1596
/S TR T 0¥ BN 11V e Yiate Yo SR USRI 1597
/S T TS o ¥ H= Y ol ot L= PO USSP 1598
/S TS o¥e BE= Y ol vl ok oY o =SOSR 1598
VIR TR T 0¥ B oL ulo B e DSOS 1601
45.9. DG _AUL N _MOMDET S teitiieeiieeiiee ettt e eiteestteeeteeeeaeeesbeeessteesssseesnsseeasseessseesnseeeas 1603
5. 10, PG CASE tttreiieitiieeeeciteee e eeere e e e eeetre e e e eeette e e e eeatbaeeeeeataraeeeeaataaaeeeaataeaeeeanrraaaaans 1603
45 L. PG CLaASS ieiieitirieeeeeitiieeeeectt e e e e ettt e e e eetae e e e e e et aa e e e e eaataaeeeaataaaeeaartaaaeeearraaaaans 1604
45.12. PG_CONSEIAINT tiitiiiiieeieiiiieeeeecireeeeeete e e e eestreeeeeeatreeeeesaseeeeeessraeseeeansresaaens 1608
45,13, PG _COLLAT 10N tiiiieiittiieeieiiteeeeeeetre e e e eette e e e eeetreeeeeeabreeeeeaasaeeeeesnsraeeeeennsreeaanns 1610
45, 14, PG CONVETSIOMN tiiiittiieeeeiitieeeeecireeeeeettreeeeestreeeeeeatreeeeessrseeeeesnsrasseeesnsreseaaes 1611
45,15, PG _AATADASE ciittieeeiiee ettt ettt ettt e e e et e et e ettt e e eta e e eetaaeeraaeas 1612
45.16. pg_AD_ 101 SEETANG ttirieireeitiieeitieeeiteeeeiteeeeteeeeteeeetveeeeaeeeeetaeeestseeeeseeeeareeaas 1613
45.17. PG _AFAULE_ACL ciiiiiiieiieeeiee ettt e ettt e e et e e et e e te e et e e eeaae e eetaeeeteeeetaaeearaeans 1614
45,18, PG _ACPENG ittt et ettt et ettt e e et e e e tb e e e eab e e e taeeetaeeeaaaeearaaans 1614
45.19. PG _AeSCTriPt IO ciiiiiiiiie ettt ettt eeae e ettt e eta e e e tn e e e aaeeearaeens 1616
R O oY B =3 o N0 B PRRUOPPPRN 1617
V) B oY B = o =3 o R T K o) s USSR P PPN 1617
45.22. pg_foreign_data _WIAPDPET wreeeeeiiireeeeeeiireeeeeesireeeeeiiisreeeeessireeseeessseesessns 1618
Vi IR I oY B e T ar= Kot o M= T =¥ on 4 =5 U OO P UURR PPN 1619
ViV Yo B e T ar=5 Ko 1o M o1 o 1 I = OO TR URUR PPN 1620
Y I T o Yo B I oL L= ST U USSP ERRRR PPN 1620
45.26. PG _ANNETIES trriiiiiiiriiee ettt eerree e eere e eeee e e e e e et eeeeraa e e e e etrraeeeans 1623
45,27, PG _LANIGUAGE trreeeeeeitreeeeeeiirreeeeeeiireeeeeeisreeeeesireeeeeesisreseeessrseeseesirseseeesssrseeesans 1623
45,28, PG _ L AT GEOD JECE terturreeeeeiitrieeeeeiireeeeeeireeeeeeetreeeeeeeareeeeeeirreeeeesireeeeeeerreeeeeans 1625
45.29. pg_largeobject _Metadata eeeeeireeeeeeiiireeeeeeiirreeeeeeirreeeeeeireeeeeeerreeeeeeas 1625
45.30. PG _NAMESPACE werieeetrieeeeeiitreeeeeeiireeeeeeitrreeeeestreeeeeeaisreeeeesirseeeeesireeeeeeeirreeeeeans 1626
S 3. PG 0P C LA S tttrrieeeeeitrreeeeeiireeeeeeiireeeeeeireeeeeeetreeeeeeatraaeeeaarraeeeearaeaeeearrreaeaans 1626
/ST R oTe B o) o 1= 3 ar= X ol e X ol RN USSR 1627
/R TC I B oTe B o) oht=Y 111 0 USSR 1628
45.34. PG _ DI EEMP LA iieriiieeiieeiieeeitreeeiteestteeeteeesaeeesbeeestbeeennreeetaeeataeeenaeesnreeenn 1628
/ST Jo T o Yo B o o T USSR 1629
TS T [T oo R =8 ok I ot =Y PSSR 1633
5.3, PG _SECLADEL wrtieiieettieeeeectee e e eete e e e ettt e e e e e e e e e et e e e e e e ata e e e e e aataeaeeearraeaaaas 1634
45.38. PG_SNACDENA wrtiiiieiiriieeeeiiteee ettt e e eete e e e et e e e e et e e e e eaeata e e e e eaaraeaeeeerraeaaans 1635
I 1° B eTo J=Y o¥e [SF=Tohal o) kI o) s SUUUNN SRS 1636
45,40, PG ST AL ST AC tiriiiiiiiieeieiiriee e eeete e e e eere e e e e et e e e e et e e e eata e e e e earraeaeeenarraaaaanns 1637
45.4]. PG _LADLESPACE teeeruiieeetieeiiieeeitieeeiteestteeateeeetteeabee ettt e saateeebaeeetteeebaeeensaeenn 1639
AT R eTo J o ok e fo 1= oSN SRS PPRUUUSR 1639
4543, PG £ CONE LG tttriiiiieeetie et e ettt e et e e et e e eeteeeetee e e teeeetaeeeeaaeeeteeeeetseeeesaaeenreeeas 1641
45,44, PGt _CONT LG MAPtittttieiiiteeeitreeeitteeeiteeeeiteeeeeaeeeeaeeeetteseeaseeeeteeeeesseeeaseaeareeeas 1642
v R T oY B =T o & o) cHRU U RN U O U O TS U U TS U TS U RSP URUU USSR 1642
5. 46, PO £ S _PATSET treeeereeeereeeeeeeeetteeeetreeeeteeeeeteeeeseeeesseeatbeseaaseeetaeeentseeeraaeanraeans 1643
45,47, PGt LEMP LAt ciiiiiieiiiieiiee ettt eeite e et e e et eeetee e e be e e tbeeeetaeeetbeeetneeeaaeeearaeeas 1643
b T oY B o4 < = DTS U USROS 1644
ViR LS B oY BV o (1= o) o1 o Lo SN R RO PPN 1652

XXVii

45.50. SYSLEM VIBWS ...eiiuiiiiieriiiiieeitesiteeieeitestte st esteesttesteebeebeesstesnbeenseesasesnseenseenns 1653

45.51. pg_available_ _eXTENSIONS wiiriieeeeiireeeeeeiirreeeeesiirreeeeesireeeeeeeisreeeeeans 1654
45.52. pg_available_ eXtensSion_VEeISIiONS .cuirieeeiiiiieeeeeiiireeeeeeiireeeeenns 1654
Vi T 1 oY B oo bat=Yo b ot TN OSSR U RO PPRTN 1655
Vi TV N 'eYe fle 5 oo V) < JUUUUN O OO U USSP UEUUUUP PPN 1656
R T e T oTe B o Yo 1= =Y =TSRRI 1656
T T ST oTe B o Tl = SRS 1656
45.57. pg_prepared_StatemMENt S. i iieeeiieerreeerreeesreeesreeesreesssseessssesssseeens 1659
45.58. PG_PTEPATEA_XACES treeeerieeerireerireeritreeateeessseeesseeessseessssesssssesassseessssesssseeens 1660
T T 1 B oTe B o B =Y SRS 1661
T O oo R o = USSR 1662
45,601, PG _SECLADELS tieiieetrieeeeeiiteeeeeecte e e e eeett e e e e eere e e e e eeare e e e e aeata e e e e eaataeaeeeanrraaaaaas 1663
45.02. PG_SEELEANITS trrreeieiiriieeieiittieeeeeiireeeeeeiteeeeeeetreeeeeearreeeeeaertaeeeeearraeeeeeanrraaaaans 1663
4503, PG S NAAOW . cutiiietiieeeteee et ettt e et et e e et e e et e et e et eeeaae e et e e eetteeeeaaeeereeean 1666
S O, PO ST AT S ciietiiieiee et ettt e e et e et e e e et et e eete e e taeeeetaeeeeraaeereeean 1666
R T ot B o= o K=Y = O USRIt 1669
45.66. Pg_t iMEZONE_ADDIEVS tiiiiieeitiieeitieeeieeeeteeeetee e et e eeteeeeaaeeeeteeeeeaeeeeereeeereeeas 1669
45.67. PY_tiMEZONE_NAMES ceurieeeuereetiieeitreeeiteeeeiteeeeiteeeeiaeeeetaeseeseesestseeesssseeeseseeseeeas 1670
S B8, PO TS OT wtiiiiuiieeettie ettt e et e et e et e e et e et e e et e e eae e e eae e e et e e eeaaeeetaeeeteeeeaaaeearaeans 1670
45.69. PG _US T MADDINGS iiiiiieiiiieeitieeeitteeeiteeeeiteeeereeeeaeeeetreeeeaseeestseeeesseeessseeareeaas 1671
5. 70, DO VA OWS teietieeetieeeeeeeet e ettt e et e e et e e et e e e te e e e ae e e ebe e e tbeeeeaaeeetaeeeteeeeaaaearaeans 1671
46. Frontend/Backend ProtoCoL...........coieieriiienieniniiniiniteeseeteneeteesitee et 1673
40.1. OVEIVIEW ..ttt ettt ettt sttt b et sttt ae st e b sbe et e saeebeesaesbeennesbeeas 1673
46.1.1. MesSaging OVETIVIEW......cc.ccvuerueeiiniirieniinieenienieetenieeieetesieeeesiesieeniesieens 1673
46.1.2. Extended QUETY OVEIVIEWcccuveruierieriieiienieeieenieeseesveeieesnesnesnns 1674
46.1.3. Formats and Format Codescc.cecevireenenirieninienienceeenesrenenieens 1674

46.2. MESSAZE FIOW ...ttt sttt sttt st be e sitesbeebee e 1675
40.2. 1. STATT-UD..eevteeireeiieriieeie ettt e ettt e st esebe e bt e st e sate e beesatesabeenbeesasesasesases 1675
46.2.2. STMPLE QUETY ..eveeniieiieiiieiteeteete ettt ettt et e te st et esaaesaresnees 1677
46.2.3. Extended QUETYcccueriieniienieiiieieeeteeie ettt ettt 1678
46.2.4. FUNCtion Call........ccccoviiriiiiiiinieiiniieieic ettt 1681
46.2.5. COPY OPETALIONS .couvveruiieiieniieniieniieniiesiteenitesitesteesbeesitesareebeesanesanesanes 1682
46.2.6. Asynchronous OPErations........cec.eerveereerieeniieniienieenieesteseeeieeseeseesnnes 1683
46.2.7. Canceling Requests in Progressoocevvevvienienieinieenienienieeseeeeeene 1684
46.2.8. TerMINAIONveeeeevieeeieeeiieeeireestteeeteeesseeesreeeseseesssseeesseessseesssseessseenns 1684
46.2.9. SSL Session ENCryption........c..ccceeieceeriinienienieienieeeiesceeese e 1685

46.3. Streaming Replication Protocol............ccccceiiiiiniiiiniiieiniceececc e 1685
46.4. Message Data TYPEScoeeviriiiiiiiiienieiicieetceeee et 1689
46.5. Message FOIMALScocuiiiiiiiiiiiiieieiceeeec e 1689
46.6. Error and Notice Message Fieldsccoooiiriiiiniiieieieeseee e 1704
46.7. Summary of Changes since Protocol 2.0..........ccooeeriiirienienieiineeereeeeieeee 1705
47. PostgreSQL Coding CONVENLIONSccouerueerierieeieniietienteeieereesteeiteiesseeeeseeeeeseesneensesseens 1707
47.1. FOIMALTING ...evieniiitieieiteeiiete ettt ettt sttt st e e s b et e et et e sbesseentenbens 1707
47.2. Reporting Errors Within the Server..........ccccoceviiiiieiiieninieeneceseeeeieeeee 1707
47.3. Error Message Style GUIde.........coeeuereiieriinieiinieeiesieeteiesicete et 1710
47.3.1. What GOES WHETEecciieiieeiiieiieiieete ettt eve et e e saaeeae s 1710
47.3.2. FOIMALINZ ..c.evienieiieiienieeiteteet ettt sttt ettt e e st sbe e 1710
47.3.3. Quotation MArkscooviiiiiiiiiiiiceiie e 1711
47.3.4. USE Of QUOLES......uviiieiieeiiieeiie et ettt et e ettt e e e e eetaeeeareeeaaeeeaveeeas 1711
47.3.5. Grammar and Punctuationcc.cecevereenenenienenienenceeeneseenenene 1711
47.3.6. Upper Case VS. LOWET CaSEcceevuerieriireeienienienieeiterieneeeenie st 1711
47.3.7. Avoid Passive VOICEc..cocuerueriieiiniieiinienieeiesitcteceieete et 1712

XXVili

47.3.8. Present VS. Past TENSEccoevuriiiieiiiiiie ettt eeereee e e 1712

47.3.9. Type Of the ODJECL......cevviiiiieiiiiiieiteeeeee ettt 1712

47.3.10. BIaCKetS....c..eouieuiiiieiiiriieieetenieetett ettt st 1712

47.3.11. Assembling Error MESSAZEScevveerierieeniienienieeieenteeiieeiee st 1712

47.3.12. Reasons for BITors..........cccoeiieiinieiiniieciicieeeeere e 1713

47.3.13. FUnCtion NAMEScoeeiveriiriieiiniieienieieeienieeresteeeete e 1713

47.3.14. Tricky Words t0 AVOId........ccccecuiriieiiiniirieinicieeeeeeeceeseeeee e 1713

47.3.15. Proper SPelling........c.coceevieiiiiiiiiieienic ettt 1714

47.3.16. LOCAlIZAtION.eeuvieiieeiieeieeeiteeie ettt ettt et e 1714

48. Native Language SUPPOIT.......cc.cocuiiuiiiiiriiieieniteieteeeete ettt 1715
48.1. FOr the Translatorccocueeveriiiniiiieeiteie ettt st 1715
48.1.1. REQUITEIMENLSeivieiieieeiieieetceieete ettt sttt eaeeteeeeeeesaeeneenaesneens 1715

A8.1.2. COMCEPLS .ttt ettt ettt ettt sttt sttt e b e st sat e st e saeesaeesanes 1715

48.1.3. Creating and Maintaining Message Catalogscccceveveevienereenennenne 1716

48.1.4. Editing the PO Files.......cccooiviiieiiiininineniciciceeceeeeseeeeeeeesie e 1717

48.2. FOr the Programmer.............coceevuiiuiiiieienieieei ettt 1717
48.2.1. MECHAMNICSveuvieniiiieiiesiieteteet ettt sttt st sbe e 1718

48.2.2. Message-writing GUIdelinescccoceeeverieniecieiniininieneeecceeeese s 1719

49. Writing A Procedural Language Handlerccocoeieviiniinininiininieenceeneseeenieee 1721
50. Writing A Foreign Data WIaPPercooeeeviiririininienieniteteeeetee et 1724
50.1. Foreign Data Wrapper FUNCHONSccccooireeienenieniinieiencetenieeeeeeeeeee e 1724

50.2. Foreign Data Wrapper Callback Routines.........c..cccccoueveeviinenniencniencneeienene. 1724

51. Genetic QUETY OPHIMUIZET ...c..eeuerieriirieienieetenteetente sttt ettt et st eae st et e st eee e eae 1727
51.1. Query Handling as a Complex Optimization Problem..........c.ccoccoceereninienncnne. 1727

51.2. Genetic AIZOTIERIMScoviiiiiieiieiieiie ettt ettt ereebeesaaesaneenes 1727

51.3. Genetic Query Optimization (GEQO) in PostgreSQLcccocvevviiriienvennenne. 1728
51.3.1. Generating Possible Plans with GEQO............cccccovvuiiniinvieniiiinieiieenn 1729

51.3.2. Future Implementation Tasks for PostgreSQL GEQOcccceuenee. 1729

S51.4. Further REadingcceevuiiiiiiiieiieiieeieeiteie ettt et et 1730

52. Index Access Method Interface Definitionccoccoceevenircieninieniincenicnenieeneerceeeee 1731
52.1. Catalog Entries for INAEXESceovuirviiriiiiniinieiieeniteeteeeeee et 1731

52.2. Index Access Method FUNCHONS..........ccceeuirieieniniieniinieienccicsceeeeeie e 1732

52.3. INAEX SCANMINEZ ..ccvviieieiiiriieeieeiee ettt ettt ettt st e sbe e st sate s beesaaesanesates 1736

52.4. Index Locking Considerations..........c..ceceeeuereerienerirenieneerreneeneenneseesresseenenneens 1737

52.5. Index Uniqueness CheCKS..........coeeueriieieniinieienenreieeeeeecerese e 1738

52.6. Index Cost Estimation FUNCHONS..........coceeiiiriiiniiiiiinieeiceeceeeceeeeee e 1740

53, GIST INAEXES ...veeuvteieeeiieetieeiteete ettt ettt et ettt sttt et sat e bt e sbeesaeeebeenaeesaee s 1743
53,1, INETOAUCTION ..ottt et sttt ettt esatesaneeanes 1743

53.2. EXEENSIDIIILY ...veuveuiiiiitiitinietcicietr ettt ettt e 1743

53.3. IMPIeMENTAION.......eiitiiiiiiiieieeieenie ettt ettt ettt e e et e 1743

534 EXAMPIES ..ottt sttt et et 1750

5S4, GIN INAEXES ettt ettt ettt st sttt e s bt sat e bt esbeesaeeebeesbeennee s 1752
54.1. TNEOAUCTION ...ttt ettt ettt ettt sbe st sb et e e ene 1752

54.2. EXIENSIDIIIEY ...coueetieiieiieiieie ettt ettt 1752

54.3. TMPIEMENTALIONeeueiiieiieiieitete ettt ettt ettt et et st e e ebeenteneeene 1754
54.3.1. GIN Fast Update TecChnique...........cocevuerienieniinienineeneneeeeieeeee e 1755

54.3.2. Partial Match AlgOrithmcccooceviiniiiiiiniiieni e 1755

54.4. GIN Tips and TTICKSeeueeruiriiieitiiieieetee ettt 1755

54.5. LIMIEATIONS .c.veiutetieitetiettete sttt sttt et st este sttt e b et s b et e sbe s e e besbeense b enee 1756

54.6. EXAMPLES ..eoviiniiiiiiiiiieiteie sttt sttt ettt ettt ettt 1756

55. Database Physical StOTageccccoevierieriieiiiniinienieiteiesieeteteeetee ettt 1758
55.1. Database File LayOULl.........cceeciiriieriiiiieiieniecieeicesite ettt sre s e seeesane e 1758

XXIX

S55.2. TOAST .ot 1760

55.3. F1ee SPACE MAP ..c.uviiuiiiiiiiiieieeite ettt sttt ettt bt 1762

55.4. VISIDIIEY MAD ...eeiiiiiiiieieiiiiteiesicct ettt ettt 1762

55.5. The Initialization FOrK..........ccccceiiiiiiiiiniiiniiniiineciceeeeceeeeee e 1762

55.6. Database Page LayoOutcocceevieniiiiiiiiiieniieeieeeeitesteee ettt 1762

56. BKI Backend INtErface..........ccccocuevuiriiiiiniiiiiieiciccecerieeecetet e 1766
56.1. BKIFile FOIMALcc.coeriiiiiiiiiiiniitetetccece ettt ettt 1766

56.2. BKI COMMANGSeeeveiiiiriieiieeieenite ettt ettt sttt s be e et e s 1766

56.3. Structure of the Bootstrap BKI File.........cccccccciiiiiiiiiiiiieecee 1767

56.4. EXAMPIE ...ttt s 1768

57. How the Planner UsSes StatiStCS.....cceueruerriierierienieenitentesie ettt eieesiee st seeeseeesaee s 1769
57.1. Row Estimation EXamPpIes..........cccceivuirienieriniiniinenenicieieeeiceresereeeeeieeesie s 1769

VIII. Appendixes 1775
A. PoStgreSQL Err0r COAesouiiuiiiiiieienieeieee sttt st 1776
B. Date/Time SUPPOITcueiiiiiieieitieiieteeite ettt ettt sttt sttt e e st et esbeeaeesbesseenbesbens 1784
B.1. Date/Time Input INterpretationcooeeeerierierieneeieneneeesttete et 1784

B.2. Date/Time Key WOIdS........ccoiieiiiiiiienieiieiesitetesi ettt 1785

B.3. Date/Time Configuration Filesccoccooieiiiiiiiniiioninieencecceeneseeeee 1786

B.4. HiStOry Of UNIES ...ooueeuiiiiiiieiiniieiescetesieeitetest ettt ettt s st 1787

C. SQL KEY WOIAS.c..eeiiiiiiiiriieieeieetesteeteestt ettt st ettt ettt et sttt et ebe bt e e e eae 1789
D. SQL CONOIMANCEccuvviiiuiiiiiiieeiiie ettt ettt e tee e ve e e eeb e e etaeeeetseeetseesasseesareaens 1814
D.1. SUPPOTtEd FEATUIES ...ccvveiiiiiieiieiie ettt ettt st reetteseteebeesaeesareenseesee e 1815

D.2. Unsupported FEAtUIESccceeruieriiiiieiieriieeieeiterite sttt sre e sieesieeeseeneee e 1830

E. REIEASE INOLES ...ttt ettt ettt ettt sttt ettt sae et saesieennesbeens 1845
E. 1 REICASE 9. 1.0 ...ttt ettt et st 1845
E.1.1. Migration to Version 9.1.6........cccevviiiriiniiniiieieeniesie ettt 1845

B 1.2, CRANEES .ouvieiieeiiteieeteete ettt sttt st ettt et st esaeesaee s 1845
E.2.REIEASE 9. 1.5 .ottt s 1847
E.2.1. Migration to Version 9.1.5.......ccooiriiiiieniiniieieteeie et 1847

E.2.2. CRANEES .ouveeiieeiiteieeiteee ettt ettt sttt st st n 1847
E.3.REIASE 0.1.4 ..ottt e 1849
E.3.1. Migration to Version 9.1.4.........cccoccoviiiiniiiiininiieeeceeeeeeeeee 1849

E.3.2. Changescoovieuieiiiieieieeecteeeeste ettt st 1850

B4 RELEaSE 9.1.3 ..ottt sttt st 1852
E.4.1. Migration to Version 9.1.3 1853

E.4.2. Changescoooieiiiiiieieeeee et 1853
E.5.REIEASE 9.1.2 .ottt ettt st 1857
E.5.1. Migration to Version 9.1.2.......cccccceevirnininenenieinenenesrereeeeeneenennene 1857

E.5.2. CRANEES ...ueeeeieeiiieieeetee ettt sttt 1857

E.0. RElEase 9. 1.1 .ottt ettt et st 1861
E.6.1. Migration to Version 9.1.1......ccccoeveviniinininenieeeieeneneseereeenceenee 1861

E.0.2. CRANZES ..c.ueeiieiieieiieeeteee ettt sttt st 1861
E.7.REICASE 9.1 .ttt sttt et st 1862
E.7.1. OVEIVIEW ..ottt st et st 1862

E.7.2. Migration to Version 9.1ccccoceviiiiniiiiiiniiiienie e 1862

E.7.2. 1. SHANEZS c.veiiiiieieeeeeee ettt st st 1862

E.7.2.2. CaSHINEZ ..evviiieiieiiiieeesieeteteeet ettt st 1863

E.7.2.30 AITAYS 0ttt st 1863

E.7.2.4. Object ModifiCationcocceeeviereenienenienienieienceeenie e 1863

E.7.2.5. Server SEtNESc..cevveruerieriinieiineeieneeiteesieete sttt 1863

E.7.2.6. PL/pgSQL Server-Side Language..........cccocceervervverneenieenieenieenns 1864

XXX

E.7.2.7.Contrib ..o 1864

E.7.2.8. Other IncCompatibilitiesc.eevueerieerieriieiniienieeieeseesie e 1864
E.7.3. CRANEES .uveeiieeiiieieeeteee ettt ettt st ettt st st saee s 1865
E.7.31. SEIVET ...ttt 1865
E.7.3.1.1. Performanceccccoccecvereeceeneneenienieieneeeeneseeneniens 1865
E.7.3.1.2. OPtIMIZETcooviriieiiiieiiniieeeeeeeeeeeeere e 1865
E.7.3.1.3. Authenticationcccceeveeriernieenienieieeneeneeeieeeceee 1865
E.7.3.1.4. MONItOTING.....coeriiiiiieiiniieeenieeeeresieeeesne e 1866
E.7.3.1.5. Statistical VIEWScccceeviiriiiiiinieniceieeieeneeeieeeeeeee 1866
E.7.3.1.6. Server Settings.cccceceririeerinienienieiee e 1867
E.7.3.2. Replication and RECOVETYccccoceeviiiiiiiiiiiiiiccccecicee 1867
E.7.3.2.1. Streaming Replication and Continuous Archiving......... 1867
E.7.3.2.2. Replication MONItOringccceeeeruereerieneeieenesienienneane 1867
E.7.3.2.3. HOt Standbycoceeuereirininenieieineneereeeeeeeeresnene 1868
E.7.3.2.4. Recovery Controlcooceeceerenienenieieneeiene e 1868
E.7.3.3. QUETIES .eovveeiieeieeciieeieeie ettt ettt e eteeveete e ssbeeveesaeessaeenseensee e 1869
E.7.3.3. 1. SHINES..ciiieiiiiiiinieeeeeteeeeseeteeee st 1869
E.7.3.4. Object Manipulationccceceeverenenienienieininenieneeeeneeeeenene 1869
E.7.3.4.1. ALTER ODJECT c.eevveiuiiiieiiniieeenieniteesiceese et 1870
E.7.3.4.2. CREATE/ALTER TABLE ...ccceoiviiiiiiiiiiiiiieienicesieceieneas 1870
E.7.3.4.3. Object PermiSsions.........coccecueruerienieneesieneneeneneenieniens 1870
E.7.3.5. Utility OPerationscccceeeeeruereerienereenieneeneenieeeenieseenseneens 1870
E.7.3.5.1. COPY ittt e 1871
E.7.3.5.2. EXPLATIN ceiiiitiiitiiceeeeteree ettt 1871
E.7.3.5.3. VACUUM ..ottt e 1871
E.7.3.5.4. CLUSTER c.cectiiriiriiiceeecteeeesteeete st e 1871
E.7.3.5.5. INA@XES...ccoveruiiieniieiiniieieneeeeneesteesee et 1871
E.7.3.6. DAta TYPES .eveeuveeiieeiiieieeitiesieeieestee st ete et e siteeteesieeseaesaeenaee e 1872
E.7.3.6.1. CaStiNg....cccueeviieriiiiieeieenieesieeeeee sttt 1872
E.7.3.6.2. XML ...oouiiiiiiiiiiieieiteeeteeeteeseeeeeee et 1872
E.7.3.7. FUNCHONS ...ttt ettt ne e 1872
E.7.3.7.1. Object Information Functionsccccceeceevverveeneennnen. 1873
E.7.3.7.2. Function and Trigger Creationccccceveeevvervueeneennnenn 1873
E.7.3.8. Server-Side Languagesccceceevveerierrieinieenienieeseenieeieeieene 1873
E.7.3.8.1. PL/pgSQL Server-Side Languageccccceereeruennene 1874
E.7.3.8.2. PL/Perl Server-Side Languagecccccoceeveeneriennennene 1874
E.7.3.8.3. PL/Python Server-Side Languagec.cccccceeeeecuennene 1874
E.7.3.9. Client Applicationscccceeevierieiienenieieneeeeee e 1874
E.7.3.9.1. DSl et 1875
E.7.3.9.2. pg_dump.....ccooiiiiiiiiiiiicccee e 1875
E.7.3.9.3. PE_Ctlouiiiiiiiicc e 1875
E.7.3.10. Development TOOIScccceouervieiieinieniiiieenieeieeseenieeeeeeieee 1876
E.7.3.10.1. TIDPQ.aeeiiieiiiiiniicieeeeeeeereteeeeee et 1876
E.7.3.10.2. ECPGi....cciiiiiiiiiicccieeseceee et 1876
E.7.3.11. BUild Optionsccoceieeieriinieiineeie sttt 1876
E.7.3.11.1. MaKefllesccevieiiniiiiieieeceeeetceee e 1876
E.7.3.11.2. WINAOWS....couiiiiiiiiieiciieiieeneeceeee st 1876
E.7.3.12. S0Urce Code.......ccceviriiriiieiiiininiinieieeeeeeeiese e 1877
E.7.3.12.1. Server HOOKSccccueieinininiiiciciiccccicccceeeenee 1877
E.7.3.13. CONLIID ..o 1877
E.7.3.13.1. SECUIILY.cveiieiiriieieriieieeeeeesteeseeee et 1878
E.7.3.13.2. Performancec..coceevervuenenienienieieneeeeneseenieniens 1878

XXXI

E.7.3.13.3. FSYNC TeStING....ccooveerieriieriieieeiierie ettt 1879

E.7.3.14. DOCUMENtALION......cccueruirreiiniieiinieeienieeiretenieete et saeseeenenaeens 1879

E.8. Release 9.0.10 ...c..coioiiiiiiiiieiiteteecteteetetest ettt 1879
E.8.1. Migration to Version 9.0.10......cccccoceiriiniiniiiiniiienieeieeseeeee e 1880
E.8.2. CRANZES ...uveeiieiiieiteitee ettt sttt ettt ettt st 1880

E.9. ReIEase 9.0.9cooomiiiiieee ettt e s 1880
E.9.1. Migration to Version 9.0.9.........cc.coccoiiiiiiiiiiininiieeceeeeeee 1881
E.9.2. Changescouieieiiiiiieieeeecee ettt 1881

E.10. Release 9.0.8 ...ttt sttt st 1882
E.10.1. Migration to Version 9.0.8..........ccccooiiiiiiiiniii e 1883
E.10.2. Chan@escc.eeeueeieenienieeieeeteste ettt sttt ettt ettt st seee s n 1883

E. 11, ReleaSE 9.0.7 ettt sttt 1885
E.11.1. Migration to Version 9.0.7........cccccevrimiminenenieiinenenestereneeeneenennene 1885
E.11.2. Changes ...ccceeeiiriiiiieniieieeteeite ettt ettt ettt 1885

E.12. ReleaSE 9.0.0 ..ottt ettt sttt et st 1888
E.12.1. Migration to Version 9.0.6........ccccceeuririninenenieinineneseereeeeeresnene 1888
E.12.2. ChaNEES «..eeoviiiriieieiciieitee sttt ettt ettt 1889

E.13. Release 9.0.5 ..ottt 1891
E.13.1. Migration to Version 9.0.5.......cccccoceriiniiiiiininienceee e 1891
E.13.2. Chan@es ..cooueeueeienieeieieeiteeeteee sttt sttt 1891

E.14. Release 9.0.4c.oviiiiiiiiieccceteeeetee sttt 1895
E.14.1. Migration to Version 9.0.4.......c.ccocoviiriniiiininienineeneneeteseseeeseeee 1895
E.14.2. ChanEescoveeueeiiriiiiinieeiteteeieete sttt st 1895
E.15.Release 9.0.3 ..c.oiiiiiiiiiieieeeeecetese ettt 1897
E.15.1. Migration to Version 9.0.3.......ccccocveriiriiriiiiienienie et 1897
E.15.2. CHANES ...eovuveeiiiiiieiieeie ettt ettt ettt ettt e st et esatesntesbeenaeesane s 1897

E.16. Release 9.0.2ooiiiiiiiiiiiieienceteeeteeettete ettt sttt et s 1898
E.16.1. Migration to Version 9.0.2........cccoceevieriiriiinnienienieeieeneesie e 1898
E.16.2. ChAN@ES ...coovveeuiieiieiieeiieeieeiteste ettt st ettt sate et e s e st sbeesaeesaee s 1898
E.17.Release 9.0.1 ..ccoooiiiiiiiiiiiieieteteececesce ettt s 1901
E.17.1. Migration to Version 9.0.1......cccccoceiriiniiiniiiniiieniteieereeeee e 1901
E.17.2. ChAN@ES ...eoovveeiiiiiieiieeiie ettt ettt st ettt et st e i s 1901

E.18. RelEaSE 9.0eouiiiiiiiiiiiieiiiecteetceeeteteet ettt sttt 1902
E.18. 1. OVEIVIEW ..ottt 1902
E.18.2. Migration to Version 9.0..........ccccocevvieiiiiiniinininineeene e 1903
E.18.2.1. Server Settingsccccoceevieriirieriinieieneeeeeeeere e 1903

Eo18.2.2. QUETIES ..veieiiieeiiie et eeitteetteesite et e e e eenreesneeesaseeennne 1903

E.18.2.3. Data TYPESeoveiriieiiiiiieiieecieeeeeeseeeeeee et 1904

E.18.2.4. Object Renamingcccceceeviirieiiiniiiieiiinieeeneeicie e 1904

E.18.2.5. PL/PZSQL ..ottt 1905

E.18.2.6. Other Incompatibilitiesccccevevverrerienieeninienenieieeeeeeeeennen 1905

E.18.3. Changescocooiiiiiiiiiiiieiice e 1906

B I8.3. 1. SEIVET .ottt 1906

E.18.3.1.1. Continuous Archiving and Streaming Replication....... 1906

E.18.3.1.2. Performanceccceeereenenienienieieneeeeneeceiesieene 1906

E.18.3.1.3. OPtMUZET.....cueitiiieiieiinieeteniesteee et 1906

E.18.3.1.4. GEQOoouiiiiiiiiiieicieeeseceeee e 1907

E.18.3.1.5. Optimizer StatiStiCsccecverereeriereerieneeieneneenieniens 1907

E.18.3.1.6. AuthentiCationccccceeveveverieieenininieieeeeeeeeenne 1907

E.18.3.1.7. MONItOTING...c.veitiiiiniieiiniinienieniteienieetesie et 1908

E.18.3.1.8. Statistics COUNLETSc.ccceviruerveieieiiirieiereeeeeieenee 1908

E.18.3.1.9. Server Settings.......cccereereveereenienieenieeneenressieenieenanens 1908

XXXIT

E18.3.2. QUETIES ..veiiiiieeiiie ettt ettt et e et eeeiae e e ib e e eer e e evaeesaraeenens 1909

E.18.3.2.1. Unicode Strings........ccceceereueerieereenieenieeneeniesieesieennnenn 1909

E.18.3.3. Object Manipulationccceceereerieeiieenieenieeiieeseesieeieenieene 1909
E.18.3.3.1. ALTER TABLE ..ceouiiiiiiiiiriiienieieecece st 1909

E.18.3.3.2. CREATE TABLE ..ccevtiiiiiiiiriiieieieiee st 1910

E.18.3.3.3. CONSIAINS...c..eoueeriiieiiiieieieneereseeeere e 1910

E.18.3.3.4. Object Permissions..........cccccoceevvevueniecieninceeneneenienneene 1910

E.18.3.4. Utility OPErationscccceeveecuereeriererienieneeeeneeeesneseenenieens 1911
E.18.3.4.1. COPY ettt 1911

E.18.3.4.2. EXPLATIN .eociiiiiiieieeieeeeete ettt s 1911

E.18.3.4.3. VACUUM.c..iiiiiiiiieieciececeeeece e 1912

E.18.3.4.4. INAEXES..c.ueeeiuieiiiiiiiieeiieeeeeetee et 1912

E.18.3.5. Data TYPEScoouiiiiiiiiiiieiieeceeceeneeeeeeeee e 1912
E.18.3.5.1. Full Text Search..........cccoceereererienenieeneeeeneeceeeieane 1913

E.18.3.6. FUNCHONSocueiiiiieieiieeiee ettt 1913
E.18.3.6.1. AZEIEAteS...c.ueruieiiiieiiieeierieeiieie sttt 1913

E.18.3.6.2. Bit StIINES...cueovirviieieieinineneiceeeeeee e 1914

E.18.3.6.3. Object Information Functionsccccceceeveenerienennene 1914

E.18.3.6.4. Function and Trigger Creationccccceceerereenuennene 1914

E.18.3.7. Server-Side Languagescccccoceevererienienienieneeienieneeienieene 1915
E.18.3.7.1. PL/pgSQL Server-Side Language...........ccccevereenuennene 1915

E.18.3.7.2. PL/Perl Server-Side Languagecccccoceeveenervenuennene 1915

E.18.3.7.3. PL/Python Server-Side Languagec..cccccoceveeruennenne 1916

E.18.3.8. Client APPlICAIONSc.eevvverieerieerieerieeieenieesreerieesieesreesaeenseenns 1916
E.18.3.8.1. PSAL veeiiiiieeiieie ettt 1916
E.18.3.8.1.1. psql Displaycccceveereercieeniiinieeieeieereeeeeee 1917

E.18.3.8.1.2. psql \d Commandsc.ceeeuerverrreerrercuennne 1917

E.18.3.8.2. P dUmp ...cccuieriiiiiieiieiiecieeeeteee et 1917

E.18.3.8.3. PE_Ctl.uiiiiiiiiiiiiciciccc 1918

E.18.3.9. Development TOOLSccuerierrierrienienieeieenieeieesiee e 1918
E.18.3.9.1. IbPQ..ccvciiiiiiiiiiiicicicc 1918

E.18.3.9.2, €CPE weiovteriiieiteite ettt 1918
E.18.3.9.2.1. cpg CUISOTS ...eevveeeririieieenieenieeieeiee e 1919

E.18.3.10. Build Options......cc.coeecieriirieiinieieneeeeieneeresee e 1919
E.18.3.10.1. MaKefilescocevverueeeerininenieicinesecereeceeceesaene 1919
E.18.3.10.2. WINAOWServiriiiiieieiniinenientcteeee st 1919

E.18.3.11. SoUICE COdE....uueiruiiriiiiiiniienieeieeeteeeee ettt 1920
E.18.3.11.1. New Build Requirementscccccceeieiencnieencnncnne 1921
E.18.3.11.2. POrtabilityccccoveeueieerinenienieieeeescercreeeeeceveene 1921
E.18.3.11.3. Server Programmingccccccceeieiiiniiienciecnennenne 1921
E.18.3.11.4. Server HOOKSoovieniiriiiiiiicniceeeeeceeecee 1922
E.18.3.11.5. Binary Upgrade Support..........ccccecvrererrenrenveneeenrennenne 1922

E.18.3.12. CONLIID ..t 1922
E.19. ReleaSE 8.4.14 ..ottt st 1923
E.19.1. Migration to Version 8.4.14.......c.cccccvirimineneneinineneserereeeeeesee 1923
E.19.2. Changescouevuieierieieieiieiiniesiestetetetee ettt st 1923
E.20. Release 8.4.13 ...ttt 1924
E.20.1. Migration to Version 8.4.13.......cccceviiririiniininieneneee et 1924
E.20.2. ChanEeScoveeueeiiniiiienieeiteeetee ettt st sttt 1924
E.21. Release 8.4.12 ..ottt ettt st 1926
E.21.1. Migration to Version 8.4.12........cccovuevirieiiininienineeneneeeeneseeeeseeenee 1926
E.21.2. CHANZES ...eevveeiiieiieiieeie ettt ste ettt st tee st eseteebeesaaesnsesnbaenseesane s 1926

XXXi11

E.22. Relase 8.4.11 c.couiiiiiiiiiiieeteeeeeeeteeetete ettt sttt s s 1928
E.22.1. Migration to Version 8.4.11......cceccveviiriiiniiiinienienieeiteseeeie e 1928
E.22.2. ChanES ...coouveeuiiiiieiieeiteeieete sttt ettt sttt sttt ettt s esaeesaee s 1928

E.23. Release 8.4.10c.coiiiiiiiiiiieieeteeeeeectesteresrc ettt et 1930
E.23.1. Migration to Version 8.4.10.......ccccceevieriiniiiinienienieeieeseesieeeeee e 1930
E.23.2. Changescc.coceevieriieieiieieiieeeeesteeeete ettt st 1931

E.24. Release 8.4.9 ...ttt 1932
E.24.1. Migration to Version 8.4.9.......cc.coccoveiiiiiiininiineeneeeeeeeeee 1933
E.24.2. Changescccoeouiiiiiiiieieiieeeese ettt 1933

E.25. Release 8.4.8 ...ttt st 1935
E.25.1. Migration to Version 8.4.8........ccccccoviiiiiiiiiiiiii e 1936
E.25.2. Changescccoooiiiiiiiiiiiccese e 1936

E.26. REICASE 8.4.7 ..ottt ettt ettt ettt enen 1937
E.26.1. Migration to Version 8.4.7........cccccevririnienenienieieenenesrereeeeeneenennene 1937
E.260.2. ChaNEESeovirvireieieieiieiinie sttt ettt st 1937

E.27. ReICASE 8.4.0 ..ottt sttt et 1938
E.27.1. Migration to Version 8.4.6.......c.ccocevieririinieniiiienie et 1938
E.27.2. CHANEZES ..ottt st 1938

E.28. RelCASE 8.4.5 ..ottt ettt st 1940
E.28.1. Migration to Version 8.4.5......ccccveriiriririieninienieeeee et 1940
E.28.2. CHaNEES ..ottt sttt 1940

E.20. ReIASE 8.4.4 ...ttt ettt st 1944
E.29.1. Migration to Version 8.4.4......cc.ccoceevueririrnienenienineeneneetenieseeeeseenee 1944
E.29.2. CHANZES ...eevveeiiieiieeiieeie ettt ettt ettt te et eseteebeessaesaseenbeenseesnee s 1944

E.30. Release 8.4.3 ...ttt sttt st 1946
E.30.1. Migration to Version 8.4.3.......cccceceerieriiriiieiienienieeieeseeseeeveeniee s 1946
E.30.2. ChANES ...covuveeiiiiiieiieeie ettt ettt sttt e st et e st esabesbeenaeesaee s 1946

E.31.REICASE 8.4.2 ..ottt sttt s 1948
E.31.1. Migration to Version 8.4.2........cccecceerieriiriiienienienieeieeneesteesveesiee e 1949
E.31.2. ChanGes ...cocueeeuiiiiieniieeieeieesiteete ettt sttt st ettt et s saee i s 1949

E.32.Relase 8.4.1 ..coeoiiiiiiiiiciieieeeteeeeteteete ettt sttt s 1952
E.32.1. Migration to Version 8.4.1......ccccoevuiirieriiiniiiiienienieeieeseesee e 1952
E.32.2. Changescc.eeeuieiieniieeieeieeiteete ettt sttt ettt ettt et et esaee s 1952

E.33.REICASE 8.4 ...ttt e e 1954
E.33.1. OVEIVIEW oottt ettt ettt ettt et et e i s 1954
E.33.2. Migration to Version 8.4..........ccccoceevieriirieiieninienieeeeese e 1954

E.33.2.1. GeNETal...ccoueeiiiiiiiieeieeiteeeeeeec ettt 1955
E.33.2.2. Server Settingsccccoceeieriirieriinieieneeeeeeeeee e 1955
E.33.2.3. QUETIES ..eeeeiiieeiiieeiee ettt stte et e e ae e e e eere e saeeesneeennee 1955
E.33.2.4. Functions and OPEratorscceeeverreeeeereneruenseneeneeenennennes 1956
E.33.2.4.1. Temporal Functions and Operatorsc.cccceceevenene. 1956
E.33.3. Changesoocooiiiiiiiiiiieieece e 1957
E.33.3.1. Performanceccoeecuerinieniinieieseeeee e 1957
E.33.3.2. SEIVET .ottt 1958
E.33.3.2.1. SEttNES .ouveeuieieriieieeieeieseeetee ettt 1958
E.33.3.2.2. Authentication and SECUIILY........cccceveeruererreerereeniennenne 1958
E.33.3.2.3. pg_hba . CONT wiiimiiiiiieeeiii ettt et 1959
E.33.3.2.4. Continuous Archivingccccceceevereevienenieeneneenenens 1959
E.33.3.2.5. MONIOTING...c.vertiiiiniieiiniieienieniteiesieetesie et 1960
E.33.3.3. QUETICS ..oeiiiiiieeiiieciiee ettt ettt et et ear e eaaeeeree e 1960
E.33.3.3.1. TRUNCATE ..ottt ettt e 1961
E.33.3.3.2. EXPLATIN .ccititiiriiieeeeetetee ettt e 1961

XXXIV

E.34.

E.35.

E.36.

E.37.

E.38.

E.39.

E.40.

EA41.

E.33.3.3.3. LIMIT/OFESET ciitttuvieeeeeitrreeeeeereeeeeeesirreeeeeerereeeeennenees 1962

E.33.3.4. Object Manipulationccceceereerierrieeneenienieeseesieeieesieene 1962
E.33.3.4.1. ALTER tceeoiiiiiiiiicecee e 1962

E.33.3.4.2. Database Manipulation...........cceceerverrieeneeniennieeneennnenn 1963

E.33.3.5. Utility OPerationscccceeeueerueerieerieerieenieenieerieesieesieessieenieenns 1963
E.33.3.5.1. INAEXES.....eoeeiiriieiiiieiceeeeeeeceeeeere e 1963

E.33.3.5.2. Full Text INdeXesc.cevveeriirieenieniiiieeiieniceieeeeen 1963

E.33.3.5.3. VACUUM.c.ctiiiiiiieieeieeeeeeeee ettt 1964

E.33.3.6. Data TYPEScovviriieiiiiiieiieecieeeeeereeeeeee e 1964
E.33.3.6.1. Temporal Data Types.........ccccccevvevenircininiienciicieene 1964

E.33.3.0.2. AITAYS c.eeveiieiiriirietciceceeieee ettt e 1965

E.33.3.6.3. Wide-Value Storage (TOAST) ...cceoveeveveeienirieienene 1965

E.33.3.7. FUNCHONSeuiiitiiieiesieee ettt 1966
E.33.3.7.1. Object Information Functionsc.cceceeveeveeeeruennenn 1966

E.33.3.7.2. Function Creation............cecceeereenienienieneeienesceiesecane 1967

E.33.3.7.3. PL/pgSQL Server-Side Languagecccccceeveueeuennenn 1967

E.33.3.8. Client APPICALIONScc.veruiruieiiriieienieeieieeicete et nee e 1968
E.33.3.8.1. PSAL i 1968

E.33.3.8.2. psql \d* commands..........c.cccoerueruerenrienenienenienienneane 1968

E.33.3.8.3. PEdump..cc.ccoeiiiiiiiieiinieieeeeeeee e 1969

E.33.3.9. Programming TOOIS.........ccccecteviireenienenienienieiencetenie e 1970
E.33.3.9.1. IDPQ..eeieieiiiiiiiiccceeece e 1970

E.33.3.9.2. libpq SSL (Secure Sockets Layer) support 1970

E.33.3.0.3. BCPEZ veeuverteriteieniteienieetesteetee sttt 1971

E.33.3.9.4. Server Programming Interface (SPI).......ccccoccocenenncee. 1971

E.33.3.10. Build Options.......c.cccevueiiiiininiiiicicieieieesieeeeeeeeee e 1971
E.33.3.11. Source Code........cccoviriiiiiiiniiiiiicicicieeeieeeecee e 1972
E.33.3.12. Contrib ..c..ooeiiiiiiiiiiiicicicc e 1973
Release 8.3.21 ..o 1974
E.34.1. Migration to Version 8.3.21......cccecceeviiriiriiiiniienienieeieesee et 1974
E.34.2. ChanGEscc.eeeuiiiiiniieeiieitesiteste ettt sttt ettt ettt et st e e e saee s 1974
Release 8.3.20 ..o 1975
E.35.1. Migration to Version 8.3.20........cccceevieriiriiiiniinienieeieereeeee e 1975
E.35.2. Changesc.coceeuiriieieiieieieeeeteseetee sttt 1975
ReIASE 8.3.19 ...t 1976
E.36.1. Migration to Version 8.3.19........ccccoceiiiiiiininiiniiiceneceeeeeeeeeee 1976
E.36.2. Changescccooouiiiiiiiiieieiieeeese ettt 1977
ReIease 8.3.18 ...ttt 1978
E.37.1. Migration to Version 8.3.18........ccccceiiiiiiiiiiiiiiiceeeeceeeeee 1978
E.37.2. Changesc..cooooiiiiiiiiiiiieicer e 1978
REICASE 8.3.17 .ttt 1980
E.38.1. Migration to Version 8.3.17......cccccevririniinenienieieincnesrerereeeneerennene 1980
E.38.2. Changescccoouiiiiiiiiiiiciics e 1980
REIEASE 8.3.10 ..ttt 1982
E.39.1. Migration to Version 8.3.10......cc.cccccvirininenierieinincnesicrereeeieeeiene 1982
E.39.2. ChanEEScouevuieiiiiieieiieiiniesiestetetet ettt st 1982
ReElEaSE 8.3.15 .o 1984
E.40.1. Migration to Version 8.3.15.....ccccocviiriiiiiiniiienieeee et 1984
E.40.2. ChanEEScoveeueeiirieiieiieiteieeteete sttt sttt 1984
Release 8.3.14 ..o 1985
E.41.1. Migration to Version 8.3.14........cccooueriririiniinienineeeneeeeieeeeeeeeee 1985
E.41.2. CHANZES ...eeovveeiiieiieriieeie ettt ettt ettt ta et eseteebeesaaesateenbaenseennne s 1986

XXXV

E.42. Release 8.3.13 ..ottt ettt et 1986
E.42.1. Migration to Version 8.3.13........cccciiriiriiriieiieienieeiteseeeee e 1986
E.42.2. ChAn@ES ...covuveeuiiiiieiieeieeieete sttt ettt ettt st ettt st saeesaee s 1987

E.43.Release 8.3.12ouiiiiiiiiiiieieeteteeeteteetete ettt s 1988
E.43.1. Migration to Version 8.3.12.......ccccceeviiriiriiiinienienieeiteeeeee e 1988
E.43.2. Changescc.coceeruiriiieniieieiieeeeesteetete ettt 1988

E.44. Release 8.3.11 c..oouiiiiiiiiiiiietete ettt ettt et 1991
E.44.1. Migration to Version 8.3.11......c.ccccociiiiiiiiiniiiiieeecreeeeeeee 1991
E.44.2. Changesccceeouiiuiiiiiieieieeeeeereee ettt 1991

E.45. Release 8.3.10 ...ccucrieieiiiiiiiiieicieceitetestestetee ettt ettt 1992
E.45.1. Migration to Version 8.3.10........cccoceiiiiiiiiiiiiniiiceeceeeeeeeee 1992
E.45.2. Changesccooouiiiiiiiiiicecese e e 1993

E.46. Release 8.3.9 ..ottt st 1994
E.46.1. Migration to Version 8.3.9........cccccevririnineneieieenenetereeeeeceeiee 1995
E.40.2. ChaNEEScoueruieiiieieieiieiinesiestetet ettt ettt et 1995

E.47.Release 8.3.8oo ettt ettt sttt st 1997
E.47.1. Migration to Version 8.3.8......c.ccccevirinininenieieininenesrerereeeeeeiee 1997
E.47.2. ChaNEESooviiviiiieieieiieitee sttt sttt 1997

E.48. Relase 8.3.7 ..ottt sttt 1998
E.48.1. Migration to Version 8.3.7......ccccvceriinirieiieniiiieneeeee et 1998
E.48.2. CHANEES ..ottt sttt 1999

E.49. Relase 8.3.0coeiiiiiiiiiiiiiciceceteteeeee st 2000
E.49.1. Migration to Version 8.3.6......cc.ccoceviiririenienienieniineeienieetenieeieeee e 2000
E.49.2. CRANZES ...eeovveeiiieiieriieeit ettt ete sttt ste e bae st esebeebeessaesaseenbaenseesneen 2000

E.50. RelEaSE 8.3.5 ..ttt sttt e 2002
E.50.1. Migration to Version 8.3.5......cccceiirrieriiniiieiieniesieeieenee e 2002
E.50.2. ChANES ...coouveeuiiiiieiieeie ettt ettt ettt ettt sete et esaeesatesbeenaeesaee s 2002

E.51.REICASE 8.3.4 ..ottt sttt et 2004
E.51.1. Migration to Version 8.3.4.......cccceceirieriiiriiieniieniesieeieesee st 2004
E.51.2. ChanGEs ...ccouveeuiiiiieniieeieeieeiteste ettt sttt ettt ettt st esaee s 2004

E.52. Relase 8.3.3 ..cuiiiiiiiieictieeeet ettt ettt et 2006
E.52.1. Migration to Version 8.3.3......cccceiiiriiriiiniiieiieniesieeieesee st 2006
E.52.2. ChanGEs ...cccueevuiiiiieiieeieeieeiteete ettt st ettt et st e s s 2006

E.53.RelASE 8.3.2 ..ottt e s 2006
E.53.1. Migration to Version 8.3.2.......ccccoccevieiiriieiieninienineeeneeeereeeeeeee e 2007
E.53.2. Changesc..ooceeiiiiiiiiieieieeeeereeeeee ettt 2007

E.54. Release 8.3.1 ..ottt st 2009
E.54.1. Migration to Version 8.3.1.......ccccoccoviiiiiiiiiniiiiniieceneceeeeeeeee 2009
E.54.2. Changesccccouiiiiiiiiiieiieeere e 2009

E.55.REIASE 8.3 ...ttt 2011
E.55. 1. OVEIVIEW .utiiieiiiiieieeteee ettt st sttt et 2011
E.55.2. Migration to Version 8.3ccccoviriiiiiieienieienie e 2012

E.55.2.1. GeNETal...ccueiiiiiiiiiiieeiieieeeee ettt 2012
E.55.2.2. Configuration Parameters.............cecceveeierienienieneenieneneeienees 2014
E.55.2.3. Character Encodingscccceecereenienenienienienieneeiene e 2014
E.55.3. ChaNEES ..covieiieiiiiieieieei ettt sttt 2015
E.55.3.1. Performance..........cccoccvuevieieinininiinieeieeeeseseeeeee e 2015
E.55.3.2. SEIVET .ottt 2016
E.55.3.3. MONITOTINGeoutiiiinieiiniieieniteiesicete ettt st sieenenieens 2017
E.55.3.4. AUuthentiCation........c.cccevueueuieuiniriiniiiereieeeeeesieseeeenee e 2018
E.55.3.5. Write-Ahead Log (WAL) and Continuous Archiving 2018
E.55.3.6. QUETICS ...eeciuviieiiiieiiee et ettt et e eear e eaae e evee e 2019

XXXVI

E.55.3.7. Object Manipulationcceceereerierrieenieenieeiieenee e eieeieens 2019

E.55.3.8. Utility COmMMANAS........ccouerieriieiriienienieenieenieeieeniee e eieesieenns 2020

E.55.3.9. Data TYPES ..eeveeriieriieieeiieeieeieeite sttt sttt s 2021

E.55.3.10. FUNCHONS.....cccuiriiiiiieiiiieieienceeeneceeeseeee e 2021

E.55.3.11. PL/pgSQL Server-Side Language........c.ccceecvevveeeneeniensienneenne 2022

E.55.3.12. Other Server-Side Languagesccccceeveerierverseeneensieeneenns 2023

E.55.3.13. PSQLaciiiiiiiicieceee ettt 2023

E.55.3.14. pg dumpccooiiiiiiiiiiiiieicceceeeeeeee e 2023

E.55.3.15. Other Client AppliCationsccccceervecueriecueneeiienieneeneneens 2024

E.55.3.16. 1IDPQ c.veviieieieieienienereceee sttt 2024

B 553,17, @CPZ it 2024

E.55.3.18. Windows POrt.........ccoeiiiiiriiiiieeceeeee e 2025

E.55.3.19. Server Programming Interface (SPI)ccccocevevvccincninnene. 2025

E.55.3.20. Build OPtiONScocevuerieieieiiniriinieeeeeeeeieseseeseeeenee e 2025

E.55.3.21. SoUIce COde......eiriiriiiiiiiiiniieieeiieeceiecseee et 2025

E.55.3.22. CONLIID w.evenieiieiiiiieieccceteccceeeee s 2026

E.56. Release 8.2.23 ...ttt st 2027
E.56.1. Migration to Version 8.2.23........cccovieririiiininienieeeee et 2027
E.56.2. CHANEZES ..ottt st sttt st 2027
E.57.Release 8.2.22ouiiuiiiiiiieieeeeteeeete ettt st 2028
E.57.1. Migration to Version 8.2.22........ccccecueverierienenienineenieneeteniesieeee e 2029
E.57.2. CHANEES ..ottt st 2029

E.58. Release 8.2.21 oottt sttt st 2030
E.58.1. Migration to Version 8.2.21cccccevueriririienenienineenienenienieeeeeeeaenee 2030
E.58.2. CHANZES ...eevvveeeiieiieiieeie ettt ettt et sttt e sate et esaeesabeebeenseesnne s 2031

E.59. Release 8.2.20c..coouiriiriiiinieiieitetenieeteeettete sttt ettt et 2031
E.59.1. Migration to Version 8.2.20........cccceevierieriiienienienieeieeniesieesreesieesenens 2031
E.59.2. ChanGEs ...cccueeeiieiieniieiiieiteritesite ettt sttt et ettt e st sbeenaeesaee s 2032

E.60. Release 8.2.19oouiiiiiiiiiiiieieetcteee ettt sttt s 2032
E.60.1. Migration to Version 8.2.19.......ccccceeviiriiiriiiiniinienieeieereesee e 2032
E.60.2. Changesceecuteiiiiriienieeiieitesteeie ettt sttt ste bt et e st sbeesaeesaee s 2033

E.O01. Release 8.2.18c.eoiiiiiiiiieieieeceteeee ettt ettt et s 2034
E.61.1. Migration to Version 8.2.18.......cccceivieriiriiiinienienieeieeeeeee e 2034
E.01.2. Changesc.coceevuiruieieiieieieeieeeeste ettt st 2034

E.02. RelEaSE 8.2.17 c..eoueniiiiieiiiieriieteee ettt ettt et 2036
E.62.1. Migration to Version 8.2.17........ccccoceririeiiininiiniieeeneeeeeeeeeeeeeeee 2036
E.02.2. Changesccceeoiiiiiiiiieiieiieeeeese ettt 2036

E.03. RelEaSE 8.2.16 c..ccueuiiuiiiiiiiiitiecictecetteteneete ettt ettt et e 2037
E.63.1. Migration to Version 8.2.16......cc.cccecuviriniinenienieininenenreeeeeeeneerennene 2038
E.03.2. CHANEES ...eevieuieieeiieieeteee ettt et sttt et 2038

E.04. Release 8.2.15 ...couciiiiiiiiiititeiceeteiteteseeteet sttt e 2039
E.64.1. Migration to Version 8.2.15......cccccevrinininenieieieene et 2039
E.04.2. CHANEZES ..ottt ettt st sttt 2040

E.05. Release 8.2.14 ...ttt ettt 2041
E.65.1. Migration to Version 8.2.14........ccceeoiiriiiiriiniinieneeeee e 2041
E.05.2. CHANEES ...eovieiieniiiiieieieet ettt sttt 2041

E.06. Release 8.2.13 ...ttt sttt st 2042
E.66.1. Migration to Version 8.2.13ccocevieriiiiniiniinieneneee et 2043
E.06.2. CHANEES ...coviriieniiieiieieeiteeet ettt st sttt 2043

E.07. Release 8.2.12ooueiiiiiiiiiieieeieeeeteseeteest sttt ettt 2044
E.67.1. Migration to Version 8.2.12........cccovueririeiieninienineenieneeeenienieeeseeenee 2044
E.07.2. CHANZES ...eeovveeuiieiieniieeieeiteteste ettt e st sete e e et e sateebeessaesssesnbaenseesnnen 2044

XXXVii

E.68. Release 8.2.11 ...cccouiiiiiiiiiiiicicicite e 2045
E.68.1. Migration to Version 8.2.11.....ccccecvivieriiniiiiiienienieeiteseesee e 2045
E.68.2. ChaNES ...ccouveeuiiiiiiniieniteeiteiteste ettt sttt ettt ettt st b e e saee s 2045

E.69. Release 8.2.10cccoiiiiiiiiiiiiiiiiiiiiccccc e 2046
E.69.1. Migration to Version 8.2.10.......ccccceevieriiniiiiniiniinieeieeeesee e 2046
E.09.2. Changesc..coceeruiriiiiiiieieiieeeeeste ettt 2047

E.70. Release 8.2.9 ...c..ooiiiiiiiiieeeet ettt sttt 2048
E.70.1. Migration to Version 8.2.9.......ccccoccoviiiriiiininiiniieeeeceeeeeeeeeeee 2048
E.70.2. Changesc..cccoevuiiiiiiiieieieeeeeese ettt 2048

E.71. Release 8.2.8 ...ttt ettt sttt et 2048
E.71.1. Migration to Version 8.2.8........cccccooviiiiiiiiiiiiiiii e 2049
E.71.2. Changesc..ooveoiiiiiiiiiieicieecest e 2049

E.72. RELEASE 8.2.7 ..ttt ettt sttt st 2050
E.72.1. Migration to Version 8.2.7.......ccceceeieririenieniieienie et 2050
E.72.2. ChanES ...ceouveeuiiiiiiiieeit ettt sttt ettt 2050

E.73.REICASE 8.2.0 ..ottt et st 2052
E.73.1. Migration to Version 8.2.6.......ccccocevieririenieniinienie st 2052
E.73.2. CHANEES ..ottt st sttt 2052

E.74. Release 8.2.5 ..ottt sttt s 2054
E.74.1. Migration to Version 8.2.5......ccccveriinirienieniinienie et 2054
E.74.2. CHANEZES ..ottt st sttt 2054

E.75.Release 8.2.4ccuoviuiiiiiiiiiiicieecteeteee sttt 2055
E.75.1. Migration to Version 8.2.4......cc.ccocevvueririenieninienineeneneetenieseeee e 2055
E.75.2. CHANZES ...eevveeiiieiiesiieeie ettt ettt ettt tee st eseteebeesaaesabeenbaenseesnne s 2055

E.76. Release 8.2.3cooiiiiiiiiiieicccecee st 2056
E.76.1. Migration to Version 8.2.3.......cccceceerieniiriiieiienienieeieeseeseeeveesiee s 2056
E.76.2. CHANZES ...eovveeiiieiiieiieeie ettt ettt ettt ettt sete et e esateenbeenaeesane s 2056

E.77.RElease 8.2.2 ...oouiiiiiiiiiiiiiiciciccece e 2056
E.77.1. Migration to Version 8.2.2........cccecceerieriiriiieniienienieenieeneeseeeieenieesneen 2056
E.77.2. CHANZES ...eevieiiieiieiieee ettt st ettt st ettt st e saeesaee s 2056

E.78. Release 8.2.1 ..o 2057
E.78.1. Migration to Version 8.2.1......cccccecueirieriiriiiiniienienieeieeseeete e 2057
E.78.2. CHANZES ...cevveuiiiiieiieeie ettt sttt st ettt st e s s 2057

E.79. REICASE 8.2 ...ttt et 2058
E.79.1. OVEIVIBW .eouviiiiiiiieitieit ettt ettt ettt ettt s n 2058
E.79.2. Migration to Version 8.2..........ccccocervieriirieiieniinienineeiene e 2059
E.79.3. Changesc..cccoeoiiiieiiiieieiieeeeeseeeeee ettt 2061

E.79.3.1. Performance Improvementsc.ccocecerievienieciencneenennens 2061
E.79.3.2. Server Changesc..ccceoieieviinieiicniiiciceeeeeeeeeee e 2062
E.79.3.3. Query Changes.........c.ccccuevuieiiiiniiiiniiiciceeeeeee e 2063
E.79.3.4. Object Manipulation Changescccceeveeerverenenvereenennennen 2064
E.79.3.5. Utility Command Changes...........cccceeeveeevereniereneenueneeenennenen 2065
E.79.3.6. Date/Time Changes........c.ccccecurerinenienienieeninenieneeeereeeneenenes 2066
E.79.3.7. Other Data Type and Function Changesc.ccccccvecvevrennennee 2066
E.79.3.8. PL/pgSQL Server-Side Language Changes............ccccceceeruenene. 2067
E.79.3.9. PL/Perl Server-Side Language Changes..........cccccecevereenuenncens 2067
E.79.3.10. PL/Python Server-Side Language Changes..........cc.cceccevueneee. 2068
E.79.3.11. pSQl Changescccoeeieriirieniinieienieeteiesitee et 2068
E.79.3.12. pg_dump Changes.........c..ceceevuereerienerienienieieneeienieneenieniens 2069
E.79.3.13. libpq Changesc.ccecueverienieneenienenieieniteienieeeesiesieeniesieens 2069
E.79.3.14. €cpg Changesc..coceeveriemienieneeienenieesitetesie et 2069
E.79.3.15. WIndows POrt.......c.cccooueviiiiinininiiiiicicicecccccecen 2069

XXXVIil

E.79.3.16. Source Code Changescccceevveerieriieenieenieeiieenieeniessieenieenns 2070

E.79.3.17. Contrib Changesccceeevuerrueenieerieniieenieesieerieesiee e eieenieenns 2071

E.80. Release 8.1.23 ..o 2072
E.80.1. Migration to Version 8.1.23........cccoiviiriiiriiiiniinienieeieeseeeee e 2072
E.80.2. ChanES ...cccuvevutiiiiiiieeiie ettt ettt ettt st ettt et st esaee s 2072

E.81. Release 8.1.22c.ooiiiiiiiiiieieteeeeeeeteeett ettt s 2073
E.81.1. Migration to Version 8.1.22........cccccceviriiiiininiiniiieneneerereeeeeeeeeeee 2074
E.81.2. Changesc..coceeouiriiiiiiieieiieecesteeeee sttt 2074

E.82. Release 8.1.21 ...coueriiiiiiiriiriiicicee ettt ettt ettt 2075
E.82.1. Migration to Version 8.1.21........ccccociiiiiiiiiiiiiicceceeeeeee 2075
E.82.2. Changescccocoiiiiiiiiiiiieieecere e 2075

E.83. Release 8.1.20couieiiiiieiieiieiiee ettt ettt s 2076
E.83.1. Migration to Version 8.1.20........ccceeieririerieniieienie e 2077
E.83.2. Changescc.eeetiiiiiriieniieteeiteete ettt ettt ettt 2077

E.84. Release 8.1.19 ..ottt 2078
E.84.1. Migration to Version 8.1.19......ccccccecririninenienieininenescreeeeeeeenee 2078
E.84.2. CHANEES ...eovieuienieiiieeieei ettt sttt 2078

E.85. Release 8.1.18 ...ccuciiiiiiiiiiiiieiceeteeeeee sttt 2079
E.85.1. Migration to Version 8.1.18.......cccceevieviiiiiiininieniieeie et 2079
E.85.2. CHANEES ..ottt sttt 2079

E.86. Release 8.1.17 ...ccciiiiiiiiiiiicicecceeeeetee sttt 2080
E.86.1. Migration to Version 8.1.17.......ccccvvuevirieiiininienineeienienteseseeeseee 2080
E.86.2. CHANEESoveeiiiniiiiiieieeiteteeteete sttt 2080

E.87. Release 8.1.16ccocoueuiiiiiiiiiiieiciciiiecc et 2081
E.87.1. Migration to Version 8.1.16........cccceevieriiriiieniieieniieieenee e 2081
E.87.2. CHANZES ...eoouveeuiiiiieiieeie ettt ettt ettt ettt eseteebeesaeesabeebeenaeesaee s 2082

E.88. Release 8.1.15 ...coiiiiiiiiiiciccccc e 2082
E.88.1. Migration to Version 8.1.15....ccccceciiriiriiiiiiiieiesieeieeee et 2082
E.88.2. CHANZES ...coovteruiiiiieiieeite ettt ettt st ettt et ettt st et esaeesaee s 2082

E.89. Release 8.1.14c.ccociiiiiiiiiiiiiccicc e 2083
E.89.1. Migration to Version 8.1.14.......ccccceeriiriiniiiiiiienieeitereeeee e 2083
E.89.2. ChaNGES ...ccouveruiiiiieiieeie ettt ettt ettt st ettt et s e s e saee s 2083

E.90. Release 8.1.13 ..o 2084
E.90.1. Migration to Version 8.1.13c..ccccociiiriiiiininienineeenecreeeeeeeeeee 2085
E.90.2. Changesccccouirieieniieieiieieetesie ettt st 2085

E.OT. Release 8.1.12 ...ccuciiiiiiiiiititeieeeceitetese ettt sttt ettt et 2085
E.91.1. Migration to Version 8.1.12........cccoceiiiiiiiniiiiiieeenecreeeeeeeeeee 2085
E.9T.2. Changesc.ccceeoiiiiiiiiieieiieecese ettt 2085

E.92. Release 8.1.11 ...coueriiieiiiiiiriiicicieceiteteertetee ettt ettt 2087
E.92.1. Migration to Version 8.1.11ccccceviriinininenieieinincnesrceeeeeeeeenene 2087
E.92.2. Changesccocouiiiiiiiiiiieiiicese e e 2087

E.93. Release 8.1.10oouiiiiiiiiieiieieee ettt et st 2089
E.93.1. Migration to Version 8.1.10......ccccccecuririninenenieininenesierereeeeeeennene 2089
E.93.2. Changesccooouiiiiiiiiiiiiiicsc e 2089

E.94. Release 8.1.9 ...c.eoiiiiiiieee ettt s 2089
E.94.1. Migration to Version 8.1.9......ccccoeriiiiiiiiiniiieneeee e 2090
E.94.2. CHaNEES ...eovieiieniinieeieieeeeee ettt sttt 2090

E.95. Release 8.1.8cccoiiiiiiiiiiieicccteeeee ettt 2090
E.95.1. Migration to Version 8.1.8......cccoerieriiiniiiniinienineeieneeteeeeeeeeeee 2090
E.95.2. ChanEeScoueeueeiirieiieieeiteteeteee sttt et 2090

E.96. Release 8.1.7cccooieiiiiiiiiiiieicicceeeeeee sttt 2091
E.96.1. Migration to Version 8.1.7......cccccocerueririeiienenienineenieneereniesieeeesaeenee 2091

XXXIX

E.06.2. CHANZES ...coouveeiiiiiieiieeiie ettt ettt st ettt sate ettt st sbeesaeesaee s 2091

E.97. RelaSE 8.1.0 ..ccueiiiiiiiiiiiiiieeeeceteeeteeetet ettt ettt 2091
E.97.1. Migration to Version 8.1.0......c.ccceceevieriiiriiiiniiinienieeieesee st 2092
E.O7.2. CHANZES ...covteiiiiiieiieeie ettt ettt st ettt st ettt et st esaae s 2092

E.98. Release 8.1.5 ...c.oouiiiiiiieieeeeee ettt s 2092
E.98.1. Migration to Version 8.1.5......cccccoirvieniriiniininienineeeneereieeeeeeeeeee 2093
E.98.2. Changesccceeouirieieiieietieeeeeseeeeee ettt 2093

E.09. Relase 8.1.4 ...c..eiiiieiieeetet ettt sttt sttt st e 2094
E.99.1. Migration to Version 8.1.4........ccccccoiiiiiiiiiiiiiineceeceeeeeeeeeee 2094
E.99.2. Changesccoeouiiiiiiiieieiieeeeere ettt 2094

E.100. Release 8.1.3 ...c.ciiiiiiiiiiiiieieeecettetestestetet et sttt ettt et 2095
E.100.1. Migration to Version 8.1.3........c.ccocoiiiiiiiiiiiiiiccneceeeeeee 2095
E.100.2. Changesccooiiiiiiiiieiieicese et 2096

E. 10T, ReIEaSE 8.1.2 ..ottt sttt ettt e 2096
E.101.1. Migration to Version 8.1.2......cccccccceirininenenieiininenenreiereeeeeeennene 2097
E.101.2. CRanEESeoveeveienieiieiieiinereestcetet ettt sttt 2097

E.102. ReIEASE 8. 1.1 .ottt ettt sttt 2098
E.102.1. Migration to Version 8.1.1....cccccocvviiiiiiiiiniiienii e 2098
E.102.2. ChANGESeoveenieiieieieeiteeetcee sttt sttt 2098

E.103. REIEASE 8.1 ..ottt ettt st st 2099
E.103.1. OVEIVIEW ...ttt et 2099
E.103.2. Migration to Version 8.1ccccocervieririenieneniieniineeieneerenieseeeeneenee 2100
E.103.3. Additional Changesccccecererienenienienienienienceese et 2103

E.103.3.1. Performance IMProvementsccceceereerveesieeneenvessueenieenns 2103
E.103.3.2. Server CRangescccocvueeieerieerienieeieeniee e esieesieeseessneenseenes 2104
E.103.3.3. QUery CRanges.......cccceeruierieerieeieenieeieenieeseeeieesieeseesveenieenes 2105
E.103.3.4. Object Manipulation Changesccceeceevveevierneenvensieeneenns 2105
E.103.3.5. Utility Command Changes...........cccceevueerueerieerierneeneessieeneenns 2106
E.103.3.6. Data Type and Function Changesccoceevueeneeriensieenieenne 2106
E.103.3.7. Encoding and Locale Changes.........c..ccccceevverrierneeniennieeneenne 2108
E.103.3.8. General Server-Side Language Changes...........cccccevvervueenueenne 2109
E.103.3.9. PL/pgSQL Server-Side Language Changes..........cccceevueeueenne 2109
E.103.3.10. PL/Perl Server-Side Language Changes.........c.cccocvevvueenueenne 2109
E.103.3.11. psql Changesc..cocuevuieieriinienienenieieneereseeeeeie e 2110
E.103.3.12. pg_dump Changes..........cccccccereevererieenienieceenieeenreneenenneens 2111
E.103.3.13. libpq Changesccccceeveeeuirienieninieieneceeseeeeie e 2111
E.103.3.14. Source Code Changesc.cceccerereecienieceeneeiienieneeneneens 2111
E.103.3.15. Contrib Changesc..ccccecerievieninienienieieneeeesieeeeieneene 2112

E.104. Release 8.0.20c.coueiriririirieieieieeieeiesteneeteitete ettt ettt et e 2112
E.104.1. Migration to Version 8.0.20..........cccceeriiriiiinienieiniieiiereeneceieeseeenieen 2113
E.104.2. CRAnEeS ..c..eeeuiiiiiiiieeieeeeteete ettt ettt 2113

E.105. Release 8.0.25 ..ottt sttt ettt e 2114
E.105.1. Migration to Version 8.0.25......ccccooiiiiiiiinieiee e 2114
E.105.2. CRANGESveveeneeieeiieieee ettt sttt 2114

E.106. Release 8.0.24 ...ttt 2115
E.106.1. Migration to Version 8.0.24.........cccccoeiiriiininiieniieeeneeteieeeee e 2116
E.106.2. CRANGESeveenieiieiieieeieeetce ettt sttt 2116

E.107. Release 8.0.23 ..ottt ettt ettt s 2117
E.107.1. Migration to Version 8.0.23.........ccceviiiriininienineeieneetericseeeeeenee 2117
E.107.2. CRANZES ..coveveeniiieeiieieeiteeteee sttt sttt 2117

E.108. Release 8.0.22 ..ottt ettt st 2118
E.108.1. Migration to Version 8.0.22.........cccccvverieieniniienineeneneerenieneeeeneeenee 2118

xl

E.108.2. CRANEES ..cuvveeivieiiieiieeiie ettt ettt sttt sttt ettt s esaeesaee s 2118

E.109. Release 8.0.21 ..o 2119
E.109.1. Migration to Version 8.0.21......cccccovieriiniiiiniinieriieieeeeseeeieeee s 2119
E.109.2. CRANEES ..cuvveiiiiiieiieeiieeitet ettt ettt st ettt et st e i s 2119

E.110. Release 8.0.20ccciiiiiiiiiiiiiiiiiiiieicc e 2120
E.110.1. Migration to Version 8.0.20......c..cccccoerieiiininieninieneneereeneeeeeeee 2120
E.110.2. Changesccoouerieieniieieieeeeienieceeese ettt 2120

E. 111 Release 8.0.19 ..ottt sttt ettt ettt 2120
E.111.1. Migration to Version 8.0.19......c..cccccoiiiiiiiiiiiiiicceceee 2121
E.1T1.2. Changesccooviiiiiiiiiieiiecereeee et 2121

E.112. Release 8.0.18 ..ottt sttt ettt et s 2121
E.112.1. Migration to Version 8.0.18......c.ccoviiriiniiiniininieeeeeeceeeeee 2121
E.112.2. Changes ..c.cooueeiiiiieiiieieeteete ettt ettt ettt 2122

E.1T13. Release 8.0.17 .ottt sttt ettt e 2122
E.113.1. Migration to Version 8.0.17......cccoceiiiiiiiniiieni e 2122
E 1132, ChANGES «.c.veveenieieeiieieee ettt sttt 2123

E. 114, Release 8.0.160 ..c..couiiuiiuieiiiieieeecetesteei ettt ettt st 2123
E.114.1. Migration to Version 8.0.16.........ccccooeiieiininiieniiiieeneeeeeeeeeee 2123
E 1142, CRANGESveveenieieeiieieeiteeeee ettt sttt 2123

E.115. Release 8.0.15 ..ottt s 2124
E.115.1. Migration to Version 8.0.15......ccccoceiiiiiiiniiniinineeeneeeeceeeeee 2125
E 1152, Chan@EScoueeiiriieieieeiteieeicee sttt sttt 2125

E.116. Release 8.0.14 ...ttt 2126
E.116.1. Migration to Version 8.0.14......c..ccceviiiriiininnieninieneneneneneeeene 2126
E.116.2. CRANEES ..c.vveeiiieiieiieeie ettt sttt sete et e eesabe e enaeesane s 2126

E.117. Release 8.0.13 ... 2127
E.117.1. Migration to Version 8.0.13......ccccoviiriiriiiiiienienieeieenee st 2127
E.117.2. CRANEES .oouvveiiieiiieieeete ettt ettt ettt st naeesaee s 2127

E.118. Release 8.0.12 ... 2127
E.118.1. Migration to Version 8.0.12........ccevieriiriiiinienienieeieeneeeie e 2128
E.118.2. CRANEES .eouveeiiieiiieiteeit ettt ettt st ettt st n 2128

E.119. Release 8.0.11 ..o 2128
E.119.1. Migration to Version 8.0.11......ccceoviiriiniiiiiiiiiieeieeeeeeceeeee e 2128
E.119.2. Chanescccceoueriieiiiieieiieeeenteceeeee ettt 2128

E.120. Release 8.0.10 .c..coucoieiiiiiriiieieeeiteieniestesteteitet ettt ettt 2129
E.120.1. Migration to Version 8.0.10........cccccociiiiiiininiiniiieccceceecee 2129
E.120.2. Changesc.coouiiieiiiieieiieeceneeeeee et 2129

E.121. Release 8.0.9 ..ottt sttt ettt e 2129
E.121.1. Migration to Version 8.0.9........c.ccccccoiiiiiiiiiiiniiiicececeeeeeeee 2130
E.121.2. CRAnEeS .ccveeeuiieiiiiieiieeteeeteete ettt ettt ettt 2130

E.122. Release 8.0.8 ...cucieiiiiiiiitiieicieceteenerteteeet sttt 2130
E.122.1. Migration to Version 8.0.8........c.cceceiiiiriiinieiene e 2130
E.122.2. CRANGES -...viveenieeieeieieee ettt sttt 2131

E.123. Release 8.0.7 ...eouieieieeiieeeiee ettt ettt sttt et st st 2131
E.123.1. Migration to Version 8.0.7........cccceceririeiieninienineene et 2132
E.123.2. ChanGESooueeiiiiieieieeiteee ettt ettt 2132

E.124. Release 8.0.6 ...cc.coveieuiiiiiiiiiieicecteiteteseteeeet sttt 2133
E.124.1. Migration to Version 8.0.0........ccccocueviriiiieninienineeieneeeeneeeeee e 2133
E.124.2. Changescoueeviriiiieieeiteeeieete sttt sttt 2133

E.125. Release 8.0.5 ..ottt 2134
E.125.1. Migration to Version 8.0.5.......ccccceoeririniininiienineneneeteneeeeeeeene 2134
E.125.2. ChANGES ..c.veoveinieiieiieieeiteeeeetesteetee ettt sttt 2134

xli

E.126. REIEASE B.0.4 ..ottt e e et e e eare e e e e eetreeeeeas 2135

E.126.1. Migration to Version 8.0.4........cccceevieriiiriiiinienienieeieesee st 2135
E.126.2. CRANEES ..ouvveviiiiiieiieeieettete sttt sttt ettt ettt st e s s 2135
E.127. Release 8.0.3 ..o 2136
E.127.1. Migration to Version 8.0.3........ccceiviiriiriiiniiinienieeieeeeeee e 2136
E.127.2. ChANGES ..ottt 2137
E.128. Release 8.0.2 ...ccueiiieiiiiiiiiiicicecceitet ettt ettt et 2137
E.128.1. Migration to Version 8.0.2........c.cccceviriiiiininiininieneneeeeeeeeeeeeeee 2138
E.128.2. Chanesc.cooviiiiiiiiieieiieeceseeeee et 2138
E.129. Release 8.0.1 c..coueiiieieiiiiiiteieee ettt sttt eb sttt e 2139
E.129.1. Migration to Version 8.0.1........c.cocoiiiiiiiiiiiiiiiicceeecee 2140
E.129.2. Changescooiiiiiiiiiiieiieccseec e 2140
E.130. REIEASE 8.0 ...coniiiiiieiiiiieeeee ettt sttt 2140
E.130.1. OVEIVIEW ..ottt st sttt et 2140
E.130.2. Migration to Version 8.0..........ccocerieririeiienieiene e 2141
E.130.3. Deprecated FEaturesccceevieriienieniiniiiiienecnieeieceenee e 2143
E.130.4. CRanGEScoeeieiiieiieieeieeee ettt sttt et 2143
E.130.4.1. Performance Improvementsc.cceceeruereerieneeneeneneenenenns 2143

E.130.4.2. Server Changescccceveeeerieneenienenieienieeiesieete e 2145

E.130.4.3. Query Changes..........cccevuerieriereenienenieienteie et 2146

E.130.4.4. Object Manipulation Changescccccceeeevieneereeneneenenenns 2147

E.130.4.5. Utility Command Changes.........cc.ccoceeververeenieneerieneneenenens 2148

E.130.4.6. Data Type and Function Changescecceceveeveencneenennenns 2149

E.130.4.7. Server-Side Language Changescc.ccccceceevueneereeneneenennenns 2151

E.130.4.8. pSQl Changescccveeeveeiiierieeieeiiecieeieeieeste e esieesve e eniee e 2152

E.130.4.9. pg_dump Changes..........cceceevueerieerieesiieniienieenieenieeseeesaeesieenes 2152
E.130.4.10. ibpq Changesc.cocverieerieenieerieeieenieesieesieesieeseesaeenseenes 2153
E.130.4.11. Source Code Changescccceerueerueenieenieesieeneeneeeieenieenns 2153
E.130.4.12. Contrib Changesccocceevueerieerieeiieeniienieerieeseesieeieenieenns 2154

E.131. Release 7.4.30 ..o 2155
E.131.1. Migration to Version 7.4.30........ccceeieriiriiienienienieeieeseeste e 2155
E.131.2. CRANEES .eevveiiieiieiieete ettt sttt st ettt st e i s 2155
E.132. Release 7.4.29 ... 2156
E.132.1. Migration to Version 7.4.29......c..cccccovirieiininiininieneneceeeeeeeeeeeee 2156
E.132.2. Changescccooueiiiiiiiieieiieeceseceeeee et 2156
E.133. RelEaSE 7.4.28 ...ttt sttt ettt 2157
E.133.1. Migration to Version 7.4.28.........cccccoceriiriininienineeeneeeeeeeeeeeeeeee 2157
E.133.2. Changesccoouiiiiiiiiieieiieeceseeeeee et 2157
E.134. ReEICASE 7.4.27 .ottt ettt ettt e 2158
E.134.1. Migration to Version 7.4.27ccccovieeiimiieneeneenieeieeeeesee e 2158
E.134.2. Changes ..c.coouieiiiieiiieieeeteete ettt ettt ettt 2158
E.135. REIEASE 7.4.20 ...ocnviiiiiiierieiececeeiteteetetete ettt ettt s 2159
E.135.1. Migration to Version 7.4.20.......cccccceceriminenieneeienieneneneenreeeeeneenennene 2159
E.135.2. Chan@escoveevivieieieieiinieriestctetetet ettt sttt 2159
E.136. REIEASE T.4.25 ..ottt ettt sttt 2160
E.136.1. Migration to Version 7.4.25......ccccoceririiiiniiiene e 2160
E.136.2. ChanGESooveeiiiieieieeiteeeieee sttt sttt 2160
E.137. Release 7.4.24 ...ttt 2161
E.137.1. Migration to Version 7.4.24........ccocceviririinenienineeneneetenieeeeee e 2161
E.137.2. ChANGES ..cuveveeniiieeiieieeeteecee sttt st 2161
E.138. Release 7.4.23 ..ottt 2161
E.138.1. Migration to Version 7.4.23......ccccoceviririieninienineeneneereneneeee e 2162

xlii

E.138.2. CRANEES ..cuvveeiiieiieiieeteeieeteete ettt sttt st ettt st st esaeesaee s 2162

E.139. Release 7.4.22 ...t 2162
E.139.1. Migration to Version 7.4.22........cccoeeeriiriiienienienieenieeseeseeesreeniee e 2162
E.139.2. CRANEES ..euveeuiiiiieiieeie ettt sttt st ettt s saee s 2162

E.140. Release 7.4.21 ..o 2163
E.140.1. Migration to Version 7.4.21......c.ccccceoirieiininieninieneneeeeeneeeeeeeee 2163
E.140.2. Changesccccoeiieieniieieiieeeeeneceeeeeetet et 2163

E.141. ReIEASE 7.4.20 ..ttt sttt ettt ettt 2163
E.141.1. Migration to Version 7.4.20........cccccoviiiiriiriniininieneneceeeeeeeeeeeeee 2164
E.141.2. Changescccooviiiiiiiiiieieiieceeeeee et 2164

E.142. RelEASE 7419 .ottt sttt ettt sttt 2164
E.142.1. Migration to Version 7.4.19 ... 2165
E.142.2. CRANGES -.c.vevieieieeeciee ettt sttt 2165

E.143. Release 7.4.18 ..ottt sttt ettt et s 2166
E.143.1. Migration to Version 7.4.18........ccoceiiiiiiiiieene e 2166
E.143.2. CRANGES -...veoveeneeieeieieee ettt sttt 2166

E 144, ReICASE T4 17 .ottt sttt et st sben 2166
E.144.1. Migration to Version 7.4.17ccccoceriiiiiiniiienineee e 2166
E.144.2. CRANGESveoveenieieeiieieeeteeee ettt sttt 2167

E.145. ReIEASE 7410 .ottt sttt 2167
E.145.1. Migration to Version 7.4.16......c..cccceveiiriiininiienineineneeieniceeeeeee 2167
E.145.2. ChangEscoeeuiriiiieiieiteeeiteteseetee sttt 2167

E.146. Release 7.4.15 ..ottt 2168
E.146.1. Migration to Version 7.4.15.....cccccooerininiininienineencneerescseeeeeee 2168
E.146.2. CRANEES ..c.vveeiiieniieiieeie ettt ettt et e st et e saaesatesbeenseesnee s 2168

E.147. Release 7.4. 14 ..ottt 2168
E.147.1. Migration to Version 7.4. 14cccoovueriiriiienienieeieeieenee st eveesiee s 2168
E.147.2. CRANEES .oovveeeiiiiieiieeit ettt ettt sttt sttt ettt e st s beenaeesaee s 2169

E.148. Release 7.4.13 ..ot 2169
E.148.1. Migration to Version 7.4.13ccccverieriiniieieneesieeieesee st 2169
E.148.2. CRANEES ..cuvveviiieiiieiieett ettt sttt st ettt st e i s 2169

E.149. Release 7.4.12 ..ot 2170
E.149.1. Migration to Version 7.4.12......ccccevieriiniiiinienienieeieeseeeee e 2170
E.149.2. Changesccccouerieieniieieiieeeienieeeeeetetee et 2170

E.150. ReIEaSE 7.4 11 .oiiiiiiiiiiiriieteecetet ettt sttt ettt et 2171
E.150.1. Migration to Version 7.4. 11 ...t 2171
E.150.2. Changesc.coouiiieiiniiiieiieeceseeeeee et 2171

E 151 ReIEASE 7410 .ottt sttt ettt et 2172
E.151.1. Migration to Version 7.4.10......cccccovieriiriiiniiniiniieieeeeneeeeeeeneee 2172
E.151.2. CRANEES «ecuveeeiiiiiiieiieete ettt ettt ettt 2172

E.152. REICASE 7.4.9 .ottt sttt ettt 2172
E.152.1. Migration to Version 7.4.9.......cccccccevmiminenenieiinenenenierereeeneenennene 2172
E.152.2. CRANGES -...veveenieieeieieee ettt st e 2173

E.153. ReIEASE T.4.8 ..ottt ettt ettt 2173
E.153.1. Migration to Version 7.4.8........ccccoceririeiininiene et 2173
E.153.2. CRhANGESveoveeniiiieiieieeieee ettt sttt 2175

E.154. REICASE 747 .ottt sttt s 2176
E.154.1. Migration to Version 7.4.7ccoccevererieninienienineene et 2176
E.154.2. Changescocovuiiiiiieiiriieieeieete sttt 2176

E.155. REICASE 7.4.6 ..ottt 2176
E.155.1. Migration to Version 7.4.0.......ccoccecererienienennienineeneneeeenieseeeeneeenes 2177
E.155.2. Chanescoveeieriiiiiieeiieieeiceteseetee sttt sttt 2177

xliii

E.156. REIEASE T.4.5 ..ottt e e et e e e e e e eetaeeaeeens 2177

E.156.1. Migration to Version 7.4.5....ccccceciirieriieriiieiieniesie ettt 2178
E.156.2. CRANEES ..cuvvevuiieiieiieeieeteete sttt sttt ettt st e s s 2178
E.1S7.REIEASE T4 4 ..ottt s 2178
E.157.1. Migration to Version 7.4.4ccoceevieriiniiiinieneeeieeitesee et 2178
E.157.2. ChANGES ..ottt 2178
E.158. REICASE 7.4.3 ..ottt ettt sttt e 2179
E.158.1. Migration to Version 7.4.3........ccccoceririiiiininiinineeeneeeeeeeeeeeeeeeee 2179
E.158.2. Changesc.coouiiuieiiiiieieiieeceseeeeeeeee e 2179
E.159. REICASE 7.4.2 .ottt sttt ettt 2180
E.159.1. Migration to Version 7.4.2........cccccceoiiiiiiiiiiiniiieeieeeeeeeeeeeee 2180
E.159.2. Changesc.cooiiiiiiiiiiieiieecereee e 2181
E.160. ReIEASE 7.4 1 ..ottt ettt ettt sae st aesnens 2182
E.160.1. Migration to Version 7.4.1.......ccoceeiiiiiiiinieee e 2182
E.160.2. CRANGESeoveenieiieieieei ettt st 2182

E. 161, REICASE 7.4 ...ttt sttt et st sbens 2183
E 1611, OVEIVIEW ..ottt st sttt 2183
E.161.2. Migration to VErsion 7.4cccccoceevierinienieninienie et 2185
E.161.3. ChangEscceevuiiiiiieiieiieieetcee sttt st 2186
E.161.3.1. Server Operation Changescc.ccoceeveevienienieneenieneneeneneens 2186

E.161.3.2. Performance Improvementsc.cceceerueneenieneeeeneneenenenns 2187

E.161.3.3. Server Configuration Changescc.cccceveevueneeriencneenenenns 2188

E.161.3.4. Query Changes..........cocevuerierieneenienenienienieeienieeee e sieeienieens 2189

E.161.3.5. Object Manipulation Changescccccceeeevueneereeneneenenenns 2190

E.161.3.6. Utility Command Changes...........cccceevveerieerieereeneeneeesieeneenns 2191

E.161.3.7. Data Type and Function Changescceceevveereerieesieeneenne 2192

E.161.3.8. Server-Side Language Changescccceevvervveeneenvensieenieenns 2194

E.161.3.9. pSQl Changescc.eecveeiiierierieeiiesteeieeiee st eiee e 2194
E.161.3.10. pg_dump Changes...........cceeeueerieerieeiieenieenieerieenieeseeeieenieenns 2195
E.161.3.11. ibpq Changescccccvuereerrieenieerieeieeieesieeieesieesieeeeeeniee s 2195
E.161.3.12. JDBC Changes........c.ccceveuerueuiirueinieerieereeneeieseereseeseeenenens 2196
E.161.3.13. Miscellaneous Interface Changesccoceeveeveeriensienneenne 2196

E.161.3.14. Source Code Changescccceevueerueenieenieniienneenieeieenieene 2196
E.161.3.15. Contrib Changescocceeuerierenerieenieneeieneeeeneeeenenieens 2197

E.162. RelEaSE 7.3.21 .euieiiiiiiiiieitietee ettt sttt ettt et 2198
E.162.1. Migration to Version 7.3.21......c.cccccooiiiiiininiiniiieeneereeeeeeeeeee 2198
E.162.2. Changesccccoiiiiiiiiieieiieecereeeee ettt 2198
E.163. Release 7.3.20 .c..cueieiiiiiiiiieicieceitetentesteteiteie sttt ettt s 2198
E.163.1. Migration to Version 7.3.20........cccccciiiiiiiniiiiniiiceneceeceeeee 2199
E.163.2. ChaNEESeoveeveienieieiieiieieseestetetete ettt sttt 2199
E.164. Release 7.3.19 ..ottt sttt ettt 2199
E.164.1. Migration to Version 7.3.19.......ccccceviriminenerieininenenicrereeeneeennene 2199
E.164.2. CRANEESveoviveieieiieiieiinertestctetetee ettt st 2199
E.165. Release 7.3.18 ...ttt sttt et st 2200
E.165.1. Migration to Version 7.3.18ccccoceiiiiiiiniiieni e 2200
E.165.2. ChANGESooveeniiiieiieieeieee ettt st 2200
E.166. Release 7.3.17 .c..couciiiiiiiiiiieieeeteiteteseeeetee sttt 2200
E.166.1. Migration to Version 7.3.17ccccooeriiiiiininieniieeeneceeieeeeeeeee 2200
E.166.2. ChANGESooveeneiiieiieieeiteieetcee sttt sttt 2200
E.167. RelEaSE 7.3.10 ..ottt 2201
E.167.1. Migration to Version 7.3.16......c..cccceveririiininiieninineneniencneeeeeenee 2201
E.167.2. CRANZES ..c.veoveeniiiieiieieeiteeeiceesteetee ettt sttt 2201

xliv

E.168. REIEASE 7.3.15 oottt e et e e e e e eetreeeeens 2201

E.168.1. Migration to Version 7.3.15.....cccccveriiriiiniiiiiieiesieeieeee et 2201
E.168.2. CRANEES ..cuvveviiieiiieiieeie ettt ettt st ettt st e s s 2202
E.169. Release 7.3.14 ... 2202
E.169.1. Migration to Version 7.3. 14cccceeviiriiniiiniietenieeieeeeeee e 2203
E.169.2. Changesccccoueiuieieniieieiieeciesieceeeeee ettt 2203
E.170. Release 7.3.13 .ottt sttt ettt et e 2203
E.170.1. Migration to Version 7.3.13......c..ccccoiiiiiiinininineeeeeeeeeeeee 2203
E.170.2. ChangEsc.cooviiiiiiiiieieiieeeeseeeee ettt 2203

E. 171 REICASE 7.3.12 ittt sttt ettt et e 2204
E.171.1. Migration to Version 7.3.12......cccceeriiriiriinnienieniieieeeeenee e 2204
E.171.2. CRANEES .couveiiiiiiieiteeee ettt sttt st 2204

E 172, RelEaSE 7.3.11 ottt sttt ettt e 2204
E.172.1. Migration to Version 7.3.11.....ccccoiiiiiiiiiiiee e 2205
E.172.2. CRANGES -...veveeneeieeeieee ettt sttt 2205
E.173. Release 7.3.10 ..ottt sttt ettt e 2205
E.173.1. Migration to Version 7.3.10......cccceceiiiiiiininiiniiee e 2205
E.173.2. CRANGES ...uveveenieieeeeieeeee ettt e ettt 2206
E.174. ReEIEASE 7.3.9 .ottt 2207
E.174.1. Migration to Version 7.3.9.......ccccoveniiiiiininieniieeneneceeieeeeeeee 2207
E.174.2. CRANGES ...c.veveenieiieiieieeeeeee sttt sttt 2207
E.175.RElEASE 7.3.8 ..ottt 2207
E.175.1. Migration to Version 7.3.8........ccccocueririrnienenienineenieneerenieseeee e 2208
E.175.2. ChANGES ..coveoveeniiieeiieieeiteet sttt sttt 2208
E.176. RElEASE 7.3.7 ..ottt 2208
E.176.1. Migration to Version 7.3.7ccccecierieriiiniiieiieniesieeieeseesteeveesiee e 2208
E.176.2. CRANEES ..ouvveivieieeiieete ettt st ettt ettt s beenaeesaee s 2208
E.177. REIEASE 7.3.6 ..o 2209
E.177.1. Migration to Version 7.3.6....cccccecverieriiniiiniienienieeieesee st 2209

B 177.2. CRANEES .couveeiiieiieiieete ettt sttt ettt st e s s 2209
E.178. Release 7.3.5 ..ot 2209
E.178.1. Migration to Version 7.3.5....cccceiiiriiniiniieieetesie ettt 2210
E.178.2. CRANEES .ecuveeiiiiiieiteete ettt sttt st ettt st n 2210
E.179. ReIEASE T.3.4 ..ottt ettt e e 2210
E.179.1. Migration to Version 7.3.4........ccccoceniririeninienineeene et 2211
E.179.2. Chanesccooviiiiiiiiieiieieecereeeee et 2211
E.180. Release 7.3.3 ..ottt sttt ettt ettt e 2211
E.180.1. Migration to Version 7.3.3........ccccociiiiiiiininieniieciene e 2211
E.180.2. CRANEES ..uveeiiieiieiieeieeeeteee ettt sttt st 2211

E 181, ReICASE 7.3.2 .ottt sttt ettt ettt 2213
E.181.1. Migration to Version 7.3.2.......cccceriiiirieninieienie e 2213
E.181.2. CRANEES .cueeeiiiiiieiieeteeee ettt ettt 2213
E.182. ReIEASE 7.3.1 ittt ettt ettt s 2214
E.182.1. Migration to Version 7.3.1.....ccccoceriiiiiiiiiiiene e 2215
E.182.2. CRANGES ...ttt ettt 2215
E.183. REICASE 7.3 ..ottt sttt ettt s 2215
EL183.1. OVEIVIEW ..ottt sttt 2215
E.183.2. Migration to Version 7.3cccccocerieririeiieninienieneee et 2216
E.183.3. CRANGES ...veveeniiieeiieieeiteeeee ettt et 2217
E.183.3.1. Server Operationcocceceeveereenienenienienieieneeeeneseesienieens 2217

E.183.3.2. Performancecoccouevveirinininiinicieicieinesieeceeeeeee e 2217

E.183.3.3. PriVIlEZeS...cccueeruieeiieiieiie ettt ettt ve et 2218

xly

E.183.3.4. Server Configuration...........ceceerueerieenieenieenieenieeneeseessieenieenns 2218

E.183.3.5. QUETIES ..ccuvviieiiiieiiie ettt ettt ettt e eive e e eeeer e e svaeesaraeenns 2219

E.183.3.6. Object Manipulationcceceerueerieerieenieenienieesiee e eieesieene 2219

E.183.3.7. Utility Commands...........cocueevueerieerieniieiniienieeiieesieeseeeieenieenns 2220

E.183.3.8. Data Types and FUNCHONSccceevieriiiiniienienieeeenieeieeieene 2221

E.183.3.9. Internationalizationc.ccccereeviererienienieciencereneneerenieens 2222
E.183.3.10. Server-side Languagesc.cccccevervecreniecieneeceeneneeneneens 2223
Eo183.3. 11, PSQLutiiiiiieieit ettt 2223
E.183.3.12. 1IDPQ ceveteeeieie ettt 2223
E.183.3.13. JDBC ..ottt 2224
E.183.3.14. Miscellaneous Interfaces...........ccoeueeveervieenienienieeniensenneenns 2224
E.183.3.15. Source Code.........coceeniirierieiiiinieeeeieesteeie et 2224
E.183.3.16. CONLLID ...ttt 2226

E.184. ReEICASE 7.2.8 ..ottt ettt s b ettt s st eaen 2226
E.184.1. Migration to Version 7.2.8........ccceceririeiienieiene e 2226
E.184.2. CRANGESveoveeneeiieiieieee ettt sttt 2227
E.185. REICASE 7.2.7 .ottt sttt sttt saen 2227
E.185.1. Migration to Version 7.2.7cccceceririeienenienie et 2227
E.185.2. CRANGESveveeniiieeiieieeieeeee ettt et 2227
E.186. REICASE 7.2.0 ..ottt ettt ettt st 2228
E.186.1. Migration to Version 7.2.0........ccccecuererienienienienineeieneeeenieeeeee e 2228
E.186.2. CRANGESeveenieiieiieieeiteteetceeste ettt 2228
E.187. REILASE T.2.5 .ottt sttt ettt s 2228
E.187.1. Migration to Version 7.2.5.....c.ccocevererienienenienineeneneereneneeeeseeenee 2228
EL187.2. CRANEES ..cuveeeiiieiieiieeie ettt ettt sttt et e e e satesbaenaeesaee s 2229
E.188. REICASE T.2.4 ..ottt sttt st 2229
E.188.1. Migration to Version 7.2.4.......cccccuerieriiriiieniieniesieeieeseeseeeveesaeesenen 2229
E.188.2. CRANEES ..cuvveviieiiieiieeie ettt sttt ettt st st e e saee s 2229
E.189. REIEASE 7.2.3 ..ottt sttt sttt ettt st 2230
E.189.1. Migration to Version 7.2.3.......ccccveriiriiiniiieiieniesieeieesee st 2230
E.189.2. CRANEES ..cuveeiiieiiieiieetteteeteste ettt ettt ettt st n 2230
E.190. REIEASE T.2.2 ..ottt ettt et 2230
E.190.1. Migration to Version 7.2.2.......ccecceevieriiriieenienienieenieesiee st eveesiee s 2230
E.190.2. Changesccooerueeieniieieiineeeenieeeeeee ettt 2230
E.191. REICASE 7.2.1 ittt ettt et sttt e e e sseeneesesnens 2231
E.191.1. Migration to Version 7.2.1......c.cccoceviiiiiiininiiniieececeeeeeeeeee 2231
E.191.2. Changesccoouiiiiiiiieieiieeceeeee et 2231
E.192. REIEASE 7.2 ..ottt ettt sttt sttt 2232
E.192.1. OVEIVIEW ..ottt ettt ettt ettt sttt 2232
E.192.2. Migration to Version 7.2........cccceceiiiiiiiiiiiiiniieeeneeeeeee e 2232
E.192.3. Changesccooiiiiiiiiieiieceeece e 2233
E.192.3.1. Server Operationc.cceceeeririenienreneeenenierienseneeeeeeneenennes 2233

E.192.3.2. Performanceccceecuerueeienieneenie ettt 2233

E.192.3.3. PrIVIIEEES.....ocuveuiiiiieniericiciciet sttt 2234

E.192.3.4. Client Authenticationcceceevuererienienienienieeienieseenienieens 2234

E.192.3.5. Server Configuration........c..cecceveevenerienienienieneeienieseesienieens 2234

E.192.3.6. QUETIES ..c.eveeniiiieieieeiieieeitee sttt 2235

E.192.3.7. Schema Manipulationccoccevererienienienieneeienieneenieneens 2235

E.192.3.8. Utility COmMmAands.........cccceceevuererriererienienieieneeeenieneenienieens 2235

E.192.3.9. Data Types and FUnctions..........cc.ccocceeeevieneenieneenieneneenenenns 2236
E.192.3.10. InternationaliZationcccceceeveererienienienieneeienieneenieniens 2237

E.192.3.11. PL/PESQL ..ottt 2237

xlvi

E.192.3.12. PL/PEIT ... 2238

E.192.3.13. PLITCL ..o 2238
E.192.3.14. PL/PYthONcooviiiiiiiiiiiiiiiiiiccciccceec e 2238
E.192.3.15. PSqliueiiiiiiiiiiiiiiicc e 2238
E.192.3.16. lIDPQ c.vivviiiieiiiiiiiicci e 2238
E.192.3.17. JDBC ...ttt 2238
E.192.3.18. ODBC ...ttt 2239
E.192.3.19. ECPG ..ottt 2240
E.192.3.20. Misc. INterfaces........cccuerieriierniiinienieeieenieeeeeeeseeeie e 2240
E.192.3.21. Build and Install.........ccccccecerviminininennininnencceececeeenen 2240
E.192.3.22. SoUrce Code.........oevuieiiiiriinieiiiiinieeieeieesteeee et 2241
E.192.3.23. CONLIID .ouneiiiiieienicicieeceeeeteee e 2241

E.193. Release 7.1.3 .ottt sttt ettt 2241
E.193.1. Migration to Version 7.1.3......ccccccecrvimiminenenieinincnesrerereeeneerennene 2241
E.193.2. ChanEEscoveeveieieieiieiiniertestctetet ettt st 2242

E 194, ReIEASE 7. 1.2 ..ottt sttt et st 2242
E.194.1. Migration to Version 7.1.2......cccccccvviriminenenieiiniencnenierereeeneeennene 2242
E.194.2. ChANEESoovieviieieiieiieiinerestcctet ettt sttt 2242
E.195. ReIEASE 7. 1.1 oottt s 2242
E.195.1. Migration to Version 7.1.1....cccccoceviininiininiiieninieneeeeeeseeeee 2243
E.195.2. CRANGESeoveenieiieiieieeiteeeeee ettt ettt 2243
E.196. REICASE 7.1 ..ottt s 2243
E.196.1. Migration to Version 7.1cccvervienirienienenieniineenieneerenieseeeesieenee 2244
E.196.2. ChANGESooveeiiieeiiiieeiteeeicetesteet ettt sttt 2244
E.197. Release 7.0.3 ..ottt 2247
E.197.1. Migration to Version 7.0.3.......cccccverieriiniiieniienienieeieesee e 2247
E.197.2. CRANEES .eovveeiiieiiieiieeie ettt sttt et ettt e st s beenaeesaee s 2248
E.198. Release 7.0.2 ..ot 2248
E.198.1. Migration to Version 7.0.2.......ccccceevieriiniiienienienieeieesee et eieesiee s 2249
E.198.2. CRANEES ..cuveeiiiiiieiieeite ettt sttt st ettt st e s e saee s 2249
E.199. Release 7.0.1 ..o 2249
E.199.1. Migration to Version 7.0.1......cccoceeviiriiiniiiinienienieeiteeesee e 2249
E.199.2. CRANEES ..cuveeeiiiiiieiieete ettt ettt sttt ettt st n 2249
E.200. ReIEaSE 7.0 ...ccueoruiiiiiiiiieiieieeieecetere ettt ettt 2250
E.200.1. Migration to Version 7.0........ccccoceeceeririeiieninieninieneneerereeeeeeeneenee 2250
E.200.2. Changesccoeoeeieniieieiieieeienieeeeee ettt 2251
E.201. RelEaSE 6.5.3 ..ottt sttt ettt ettt e 2256
E.201.1. Migration to Version 6.5.3........cccccceoiriiiiiniiiiniiiceneeeeieeeeeeeeeee 2257
E.201.2. CRANEES .couvteiiiiiieiieeie ettt ettt ettt e 2257
E.202. RelEaSE 0.5.2 ..ottt ettt ettt et sren 2257
E.202.1. Migration to Version 6.5.2........ccceceiirieiinieiene e 2257
E.202.2. CRANEES ..cuveeeuiieiiiiieeieeieeeteete ettt ettt ettt e 2257
E.203. ReIEASE 0.5.1 ..ottt ettt s st 2258
E.203.1. Migration to Version 6.5.1........ccceciiiiiiiininieniee e 2258
E.203.2. CRANGESveveenieieeiieieei ettt sttt 2258
E.204. REILASE 0.5 ...ttt ettt sttt 2259
E.204.1. Migration to VErsion 6.5........ccccocevvieniriiiieniinienieneene et 2260
E.204.1.1. Multiversion Concurrency Controlcccceceveevienereenennenne 2260

E.204.2. Chan@ESccueeiiriiiieieeiteteeitete sttt sttt 2260
E.205. REIEASE 6.4.2 ..c.ooviiiiiiiiiiiiicecteeteeeeet et 2263
E.205.1. Migration to Version 6.4.2........c.ccocuevereevienennienineenenenrenieseeeeneeenes 2264
E.205.2. ChaNESooveeieiiiiiieeiteieeicete ettt sttt 2264

xlvii

E.200. REIEASE 0.4. 1 ..ottt e e e e e e earae e e e eetreeaeens 2264

E.206.1. Migration to Version 6.4.1........cccceevieriiniienienienieeieeneeeee e 2264
E.206.2. CRANEES ..cuvveeuiieiieiieeieeieeteste ettt ettt ettt s esaee s 2264
E.207. ReleaSe 6.4ccooiimiiiiiiiiiiciiccte e 2265
E.207.1. Migration to VErSion 6.4ccccoecueeviieriiniiieniienieenie ettt 2265
E.207.2. ChANGESooveeiiiieieieeecteeeetereeee ettt 2266
E.208. REIEaSE 6.3.2 ...c.eeniiiiiieiiiiiititetete ettt ettt ettt et 2269
E.208.1. Changescocoeeiiniiiieiieieieneeeeeeeetee et 2270
E.200. RelEase 6.3.1 ...ccuciiiiiiiiiiiiieicteiceitetestestetet et sttt ettt e 2270
E.200.1. Changesccoeiiiiiiiiiieiiicereeeee et 2270
E.210. REIEASE 6.3 ...ttt sttt ettt st 2271
E.210.1. Migration to VErsion 6.3.......ccccceverriiniiriiinieneenieeieeseeeee e 2272
E.210.2. CRANEES ..ueeeeuiiiieeiieeteeeeteete ettt ettt e 2272
E.211. ReIEASE 0.2.1 ..ottt ettt et saens 2275
E.211.1. Migration from version 6.2 to version 6.2.1........c.cccoceverieneneenenenne. 2276
E.211.2. CRANGES -..uveveeneeieeieieee ettt sttt 2276
E.212. REILASE 0.2 ...ttt sttt ettt st sben 2276
E.212.1. Migration from version 6.1 to Version 6.2..........ccccceverervenieneeneennenne. 22717
E.212.2. Migration from version 1.x to version 6.2cccceecevevveneneeneenenne. 22717
E.212.3. ChANGESveoveenieiieiieieeiteeetcee sttt sttt 22717
E.213. Release 6. 1.1 c..ouciiiiiiiiiiiiiciceceieteeceetee ettt 2279
E.213.1. Migration from version 6.1 to version 6.1.1.......ccccooceneriinininncncnne. 2279
E.213.2. ChANGES ..oveoveeniiieeiieieeiteetcete sttt ettt 2279
E.214. RElEASE 6.1 ...ttt 2280
E.214.1. Migration to Version 6.1cccoecverieriiriiienienienieenieeseesieeveesiee s 2280
E.214.2. CRANEES ..cueveeiiieiieiieeie ettt sttt ettt et et e st st enaeesaee s 2280
E.215. Release 6.0ccoviiiiiiiiiiiiiiiicicicciecce et 2282
E.215.1. Migration from version 1.09 to version 6.0.........c..cceccrereveneneeuenncnne. 2282
E.215.2. Migration from pre-1.09 to version 6.0cccccevvvevienieenieeneeneennnenn 2282
E.215.3. CRANEES .oouveeiiieiieiieett ettt sttt ettt et s saee s 2283
E.216. Release 1.0 ..o 2285
E.217. Release 1.02 ..o 2285
E.217.1. Migration from version 1.02 to version 1.02.1.......cccccoccevvevinincnnncnne. 2285
E.217.2. Dump/Reload Procedurecoceeevieiieninieninienenccreieneeeeeeee 2285
E.217.3. ChanEsccoouiiieieiieieieeeceeseeeeee ettt 2286
E.218. Release 1.071 .c.coueiiieiiiiiniiieictcceieeteretetete ettt et 2286
E.218.1. Migration from version 1.0 to version 1.01............ccccoiiiiiinnnnnnne 2286
E.218.2. Chanesccoouiiiiiiiiieiieiieeeesee e e 2288
E.210. ReIEASE 1.0 ...ciiiiiiiiiiiiiieeeeet ettt sttt st 2289
E.219.1. Changesc.coouiiiiiiiiiiiieiiiceseeee e 2289
E.220. Postgres95 Release 0.03 ..o 2290
E.220.1. Changescccoiiiiiiiiiieiiiccecce e 2290
E.221. Postgres95 Release 0.02........cc.ooiiiiiiiiiiiiiiiiiieicieceseee e 2292
E.221.1. CRANEES ..c.veoviiiieieicieeiiee ettt sttt e 2292
E.222. Postgres95 Release 0.01......cc.ocveiiiiininenieiiiiicnetcecreteeeeseseeeeeeeee s 2293
F. Additional Supplied MOdUIESccerieriiiiiieriieieieet ettt st 2294
FoL. adMinpackK......cc.ceviiiiiiiiiiiieieeee ettt ettt 2294
F.1.1. Functions Implemented..........c..ccccevirieninieiieninieneneee et 2295

Fo2. QUth_delay......ccooviiiiiiiiiiiieieeee ettt 2295
F.2.1. Configuration Parameters..........ccccevereererienienienienieneeieneetenieseeee e 2295
F2.20 AUNOT ..t e 2295

F.3. QUL0_@XPlAIN.tciiiiiiieiieiieiie ettt ettt sttt sttt et st et e et e sebeenbeebee e 2296

xIviii

F.3.1. Configuration Parameters.........ccoceeieerierieniieniienienieeieesee st eiee e 2296

FL3.20 EXAMPIE ..ottt ettt ettt ettt st s n 2297
FL3.3. AULNOT oottt et e e be e e tb e e e b e e sabaeeearaeenes 2297
Fid DUIEE_IN ettt sttt et st ettt be e 2297
F4.1. EXamPle USAZE ...cccveevieriiiiieiieniieeieeitesite ettt sttt st e 2298
Fid.2. AULNOTSoiieiiiieiie ettt et et e e e e e eaeeeebeeesbeesnsaaessseeenes 2298
FLS. BIEE_ISE .ottt ettt sttt st 2298
F.5.1. EXample USAgecc.cooviiiieiiiiiiiienieeeeeceeeeeee e 2299
F.5.2. AULROTS....oviiiieieeee e et e et e e e eeavaaeeeeas 2299
FL6. ChKPASS....cceiiiiiiiei ettt s 2299
FLO. 1. AULNOT ..o eee e e eaeeeenns 2300
B 7. CIEEXE oottt et e et e e e et e e e e e et b e e e e eenataeeeeennrreeaaens 2300
F7. 1. RAUONALE ...ttt eaee e 2300
F7.2. HOW tO USC It ..euviiiiieiieeeeeee e ettt 2301
F.7.3. String Comparison Behavior...........cocooiiieiininieniiee e 2301
F.7.4. LIMITATIONSoviiieiiie e ettt ettt et e e et e e e eeateeeeaaeeeveeeeveeeenes 2302
FL7.5. AULNOT .ottt et et e e e aeeeeaes 2302
FL8. CUDC ..o e e e e e et e e e et a e e e e e arraeaaeaas 2303
FL8.1. SYNEAX ..ottt st sttt 2303
FLB.2. PreCISIONccctiiieiiieiitiie ettt ettt ettt ettt e et e e et e e eeabeeetaeeeveaeeans 2303
8.3, USAZR ittt st et 2303
F.8.4. DefaultSccccuiiiiiiiiiiiieiee ettt ettt et 2305
FLB.5. INOLES ..eiiitieeetiee ettt ettt ettt e et e et e e eaaeeestbeeeeaseeearseeenreeennes 2306
FLB.6. CIEdilS .oocuviieeeiiieeiiie ettt ettt e e e e etb e e eeabeeetaeeeavaeennns 2306
FLO. dDIINK ...ttt et e et eab e et e e etn e e eaaeeearaeaas 2306
ADIINK _COMMECT ..vvviiiiiiiiiieeeeeeeeeeeeee ettt e ettt e e e e e e e e e eessssesnssasaneeees 2307
ADIINK _COMMECE_U.eiiiiiiiiiiiiiiiiieiieiieeeeeeee e e ettt et e e e e e e e s e e ssssssnasasaseeees 2310
ADINK_AISCOMMECT ...eeviiiiiiiiiiiieiieiteeeeeeee ettt et e e e e e e e s e e sessesnanaaaaeeees 2311
ADIINK Lottt e ettt e s bt e e b e e eab e e e tbeeeabeeeabaeeenbaeenes 2312
ADIINK_EXEC ..vviiiiiiieeiiieeiieeciee et ettt e et e e et e e tee e sb e e beeeebeeetbeaeeseesasseasssaeenns 2315
ADIINK_OPCI. ...ttt ettt st ettt et et esaee s 2317
ADINK_FELCH ..eiiiiieiie et eb e st e e rae e 2319
ADINK_CLOSE ..veeivieeeiiii ettt eciee ettt ettt e e s vt e e veeeebeeetbeeeebeesasaeesssaaenns 2321
dblink et _CONNECHIONScoveuiieiieiiiiieienieeieieet ettt 2323
ADIINK_EITOT_MESSAZE ...cuveenvieiiieiieeiieeite ettt ettt ettt st ettt sat e et esaeesaee s 2324
ABIINK_SENA_QUETY ...eeuiiiiiiiiieeiie ettt ettt s 2325
ADINK_IS_DUSY vttt ettt ettt s 2326
ABIINK_@Et_NOLILY .ottt 2327
ABINK_@EL_TESUIL..cneiiiiiiiieiieeicee ettt 2328
dblINK_CaNCEl_qUETY ...cooviiiiiiiieiieieeecee ettt 2330
ADINK_ GOt PKEY ...ttt e 2331
dblink_build_SQI_INSeIT......cooviiuieiieiieiieieseeee e 2333
dblink_build_sql_delete.........cceeieiiiriiiiniieieeeeeee e 2335
dblink_build_sql_update........cceeoieiiiriiiiiiieieeeteeee e 2337
FL1O. AICEINT Lottt ettt e e e e e et e e eeaa e e eetaeeeteeeeaaaeeareeean 2339
F.10.1. CONfIGUIALION ...vevviuieiieiieiiieiietcieietee ettt 2339
FiL0.2. USAZE..cutieuieiieiieie ettt st sttt 2339
FoL T It XSYIuuteutitieiieitietet ettt ettt ettt et sb et sb e et esae s e e nbeens 2339
FoI1.1. CONfIGUIALION ..eouviiiiiiiiiniieiinieetesieet ettt sttt 2339
FilT1.2. USAZE .ttt et st 2340
Fo12. dummy_SeClabel........cocoiiiiiriiiiiniiieieiicientees ettt 2341
F12.1. RAONALE ...ttt et e et et eeevee e e 2341

xlix

Fil2.2. USAZE. ..ttt ettt ettt sttt et st st enaeesaee s 2341

FoI12.30 AUTNOT ..ottt 2341
F 13, €arthdiStancecocevuirieiinieiinceieecectcetete ettt s 2342
F.13.1. Cube-based Earth DiStancesccccceeeeeveniirienineeneneerenreneeneneeenee 2342
F.13.2. Point-based Earth DiStancescccccoceeveevveniinieninceneneereneneeeeneene 2343
FoI4 118 _fAW .ttt ettt e 2343
F.15. fuzzystrmatCh.........cocooiiiiiiiiiiieeccec et 2344
FoIS5. 1. SOUNAEX.....coiiiiiiiiieitece ettt ettt s 2344
Fi15.2. LeVENSNEEIN ..ccueiiiiiiieiiieieetete ettt 2345
F.I5.3. MEtaphone.ccooouiiiiiieiieiieceseeeee et 2346
F.15.4. Double Metaphone............ccccccooiiniiiiiiiiiiiiiccececceeeeee e 2346
FL16. NSTOTE ..ottt ettt sttt e b 2347
F.16.1. hstore External Representationceceveeienincenenenieneeeeeeeene 2347
F.16.2. hstore Operators and FUNCHONSc..cceeriiniieieninieieieeieeeeee e 2347
FiI10.3. TNACKES ..ottt sttt et 2350
Fo16.4. EXAMPIES ...cueiiuiiiiiiiiieiieiteieecee sttt sttt 2351
FLI16.5. StAtISTICS c.eveutieuienieiieeieiteeitete ettt sttt 2351
F.16.6. COmMPAtiDILILY ..ccveivieiieiiiiieieciieeseetee et 2352
FoLO.7. AUTNOTS ..ottt et 2353
FoLT. ANEAZE ittt ettt sttt ettt nae st bea 2353
FoI7.1. FUNCHOMNS ..ottt sttt 2353
Fo17.2. SampPle USES....ccoueiueiiiriiniieiinieetenieeitesiesitetete ettt 2353
FoI8L AMEAITAY ..ottt ettt sttt et e sa et esae s eaesbeeas 2354
F.18.1. intarray Functions and Operatorscccceervereveerieereerveenreeneenenens 2354
Fo18.2. INAEX SUPPOIL...eiiiiiiiieeiiieiieiieeie ettt ettt st ee st ebeenaeesane s 2356
Fo18.3. EXAMPIE ..ottt ettt et st n 2356
F.I18.4. BenChmarkc.ccoceeieniiriiiiiniiieninteneseccetec et 2356
FoI8.5. AUNOTIS......iiiiiiiiiiiieicieeccc ettt 2357
FlLO ASM ittt sttt ettt 2357
FL1O.1. Data TYPES...ueeeuiieiieniieeieeieeriteeite sttt ettt ettt st e be et beesaeesaee s 2357
FlT1O.2. CaSES cueniieiieiieieeiereeteeetet ettt ettt st 2358
F.19.3. Functions and OPEratorsceceevveereerieriieenieenieenieenieesieeseeenseesseesneens 2358
Fi19.4. EXAMPIES ..couuiiriiiiiiiiieeieeieeteete ettt st ettt s 2359
F.19.5. BibliOraphy.....c..coccecveiieiiiinieiineeececeeeeeee st 2360
| TN 11 4 o) PR S 2360
FL20. 10 ottt ettt a et r ettt et e nneeneenenreen 2360
F.20.1. RAONALE ..cueeiiiiiiiiiieiceeetee ettt 2361
F.20.2. HOW t0 USE It ..eiiiiiiiiiiieieeeeeetetetet ettt 2361
F.20.3. LIMITALHONS «..ceutiiiiiiiieeiieeieesieeete ettt ettt st st sveesaee s 2361
F20.4. AUNOT ...ttt 2362
B2 TEEE ettt ettt ettt s b et e et et e sae st e nesrens 2362
F21.1. DefiNitiONS ...ceueenieiiieiieieeiteteete ettt ettt 2362
F.21.2. Operators and FUNCHONSc.cooeririeniiieiiieeiee e 2363
F21.3. TACXKES ..ottt sttt et 2366
F21.4. EXAMPIE ..ottt sttt 2366
F21.5. AUTNOTS...c..eiiiiieieieeee ettt 2368
F.22. 01d20AIME ..ottt st 2368
F22.1. OVEIVIBW ..ottt st sttt 2369
F.22.2. 01d2name OPLionsccceevuereeriererieneniieienieetenie ettt 2369
F.22.3. EXAMPLES ..ottt st 2370
F.22.4. LIMITAtIONS «..eveeniiiieiteieeiieieeieetesieeitente sttt st 2372
F22.5. AUTNOT ..ottt 2372

F.23.

F.24.
F.25.

F.26.

F27.

F.28.

PAZCINSPECT «.envienieeeiteeieenieesite et enteesite e bt e beesatesabeeabeesbeessbesateenbeesstesateenbeenseenseens 2372
F23.1. FUNCHONS ...ttt e 2372
PASSWOTACHECK ...ttt et st 2374
PE_ATCRIVECIEANUD ..ottt st n 2374
B2 1 USAZE. ..ttt ettt ettt e i s 2375
F.25.2. pg_archivecleanup OPtions.........c.cceceevueriecieniirienineenieneerereseenesneeees 2375
F.25.3. EXAMPIES ..ottt 2376
F.25.4. Supported Server VEISionscocceceereriecieniieienineeneneereieseeeesneenee 2376
F25.5. ATNOT ..ottt e 2376
PEDENCH. ... e 2376
FL26. 1. OVETVIEW ..cneiiiiiiiiiiteeie ettt ettt 2376
F.26.2. pgbench Initialization OPtions..........ccceeeeruerieeienenieneneeieseeeeee e 2377
F.26.3. pgbench Benchmarking Options...........cceecverieeienenieneneeieseeeeeeeeeene 2378
F.26.4. pgbench Common OPLioNSc..cceeeeerrirerieniereeieenenrenserereneeneerennenne 2379
F.26.5. What is the “Transaction” Actually Performed in pgbench?................. 2379
F.26.6. CUStOM SCIIPLS c..veveeiieiieiieieeieete sttt st sttt 2380
F.26.7. Per-Transaction LOg@INg.........ccccoverieniiienieniiiiene e 2381
F.26.8. Per-Statement LatencCies.cocererienienienieniiniene e 2382
F.26.9. GOOd PractiCescccccueuiruiruiriinieieieieiiitisiesteeeeeeee et 2383
PE_DULTEICACKE. ...t 2383
F.27.1. The pg_buffercache VIEW......cccoiieiuiiiiiieeeiie ettt 2383
F.27.2. Sample OULPULc.eeuiiiiiriieiiniceienieeiteesitetet et 2384
F27.30 AUNOTS ..o e 2384
PECTYPLO ottt ettt ettt ettt ettt sb et st s bt et s bt st e st estenae b be st eas 2385
F.28.1. General Hashing FUNCHiONS...........ccoevieriiiiiiiniieniecieeeeseeeee e 2385
F28.1.1. AigeSt () coeeveerereenienienienieeieete ettt ne s 2385
F.28.1.2. BMAC () tevveteeeeiirieeienieeteteeitete sttt ettt 2385
F.28.2. Password Hashing FUNCLIONSccocieviiiiiiniiiniinieeieeeeeiceeeiee e 2385
F.28.2.1. CIYDE () eerteeieieneeienieeteteetete sttt ettt 2386
F28.2.2. GeN_SA1E () terreeeeeiirieee et eeeteee e eere et e 2386
F.28.3. PGP Encryption FUNCHONS......ccceriiiiriiiniiriiiiteteeieeieeeese e 2388
F.28.3.1. pgp_SYM_€NCIYPEL () teeeerrrrrreeeeiireeeeeeeireeeeeeeirreeeeeeereeeeeeeaneeees 2388
F.28.3.2. pgp_syM_d@CIYPE () weeeeerrreeeeeeeirieeeeeecreeeeeeetreeeeeeereeeeeeeanee s 2388
F.28.3.3. DOP_PUD_ENCTYDE () erreerriererireririeesreeesreeesereeesereesssneessseeennns 2389
F.28.3.4. pgp_pub_deCTYPE () ereeerereereereririeesreeesreeesereeessreessseeessseeennns 2389
F.28.3.5. DP_KeV_ 1A () creeerrieeiieeeiiieeieeestteesreeeeree e e eereeseaeesnee e 2389
F.28.3.6. armor (), AECATMOT () eeeeeeeeeeeieeeeeeeeeeeeeeeeeeeeeeeeeeaaeeeeeeeseeaaees 2389
F.28.3.7. Options for PGP Functions...........cccccoccevveiiininiinieicncnicenens 2389
F.28.3.7.1. cipher-algoccccoieiiiniiiiiiiiiecciccecece e 2390

F.28.3.7.2. compress-algoccccecueririeiinieiiiiicieeceee e 2390

F.28.3.7.3. compress-1evelccccoooeiiiiiiiiiiiiiiiiccceceee 2390

F.28.3.7.4. convert-Crlf.........coooviiiiininieeeeee e 2390

F.28.3.7.5. disable-mdC.........cccccueieirininenieieineieseeceeeeeene 2390

F.28.3.7.6. enable-session-Keyc.ccccevererveieinenenienieieeeeeennenne 2391

F.28.3.7.7. SZK-MOME.....c.eoiriiriieiiiriinieneiceeeeeee e 2391

F.28.3.7.8. s2k-digest-algo.......coceevuimirrieninieenieeeeeee e 2391

F.28.3.7.9. s2k-cipher-algocecceveriieninieenieieneeieeeeeee 2391
F.28.3.7.10. unicode-mode..........ccccoevirirerrenirineninieiereeeneeneenne 2391

F.28.3.8. Generating PGP Keys with GnuPG............cccccceviivininnncnnnn. 2392
F.28.3.9. Limitations of PGP Codecccecevviviivieinininiincicieiecieee 2392
F.28.4. Raw Encryption FUNCtions..........c.cceceverieviininienineincnenicncseeeene 2393
F.28.5. Random-Data FUNCHONSccccevuirerieninieienienienieneeie et 2394

li

F.29.

F.30.

F31.

F.32.

F.33.

F.34.

F.35.

F.36.

E37.

FL28.0. INOLES ...ttt eeve e e et e e e eeetae e e e eearaeeeeeentreeeeens 2394

F.28.6.1. Configuration............ceceeruierieriieeniienieeieeiee e 2394

F.28.6.2. NULL Handlingc..ccceoeeieniimieneninieieneeienceeenie e 2394

F.28.6.3. Security Limitationscccceevueereirieniieinienieeieeseenie e 2395

F.28.6.4. Useful Readingcoceevierieriiiiiiinieeieeieeneeeieeee e 2395

F.28.6.5. Technical References..........ccccceveevenerieiiininciinieicnicnecienees 2395
F28.7. ATNOT ...ttt e 2396
PE_LTEESPACEMAD ...ttt 2396
FL20. 1. FUNCHONS ..ottt ettt ettt e 2396
F.29.2. Sample OULPULcocuiiiiiiiiiieieieeeeeee e 2397
F29.3. ATNOT ..ottt e 2397
PEIOWIOCKS ...t 2397
FL30. 1. OVETVIEW ..ttt ettt ettt 2397
F.30.2. Sample OUtPULcocviiiiiiiiiiiiiiceee e 2398
F.30.3. AUNOT ..ottt e 2398
P StANADY . e e 2399
F31.1. USAZE . 2399
F.31.2. pg_standby OPtionscccceeeerieririenieiieienieetenie et 2400
F31.3. EXAMPIES ...cviiiiiiiiciciieiieesetccetet et 2400
F.31.4. Supported Server VEISIONSccoceeeererierienienieniencenie et 2401
F 315, AUNOT ..ot e 2402
PE_STAL_STALEIMCIILS ...ttt ettt ettt ettt sae sttt et sb e esaesbeebenbeens 2402
F.32.1. The pg_stat_statements VIEWcoovviieieiveereeiireeeeeeeiieeeeeeenveeeeeens 2402
F.32.2. FUNCHONS ...ttt e 2403
F.32.3. Configuration Parameters..........cceecveereerieriienienienieeieeseeseeeieeseeesenens 2403
F.32.4. Sample OULPULoevuieriieiieiieeieeieetest ettt ettt see st st enieesane s 2404
F32.5. AUNOT ..ot 2405
PESTALLUPIE....eeneieiie ettt ettt ettt et sit e st e e e sbeesabesabeebeesatesateenbeesaaesanenn 2405
F.33.1. FUNCHONS ...t 2405
F33.2. AUNOTS ..o 2407
PELESE_ESYIIC coniiiii ittt st e n 2407
FL34. 1. USAZE. ..ttt ettt sttt ettt et e st e st st e b e saee s 2407
F34.2. AUthOr ..o 2408
PEIIEIM ittt eaeete e e e steeeesaee e saesaeebesa e a e ne s neeneeas 2408
F.35.1. Trigram (or Trigraph) CONCepts........covereeverrireeriireeeneerereseeeeeaeeee 2408
F.35.2. Functions and OPEratorsc.ccoceeceeruerieieniinienneneenene oo 2408
F.35.3. INAeX SUPPOIT ...ttt 2409
F.35.4. Text Search INteZrationcccccoceevieniiieiiininieni e 2410
F.35.5. REeIeNCESeouiiiiiiiieiteeee ettt 2410
FL35.6. AUTNOTSeiiiiiiiiiietee ettt 2411
PEUPEZTAAE ...ttt ettt sttt bt e sttt et 2411
F.36.1. Supported VEISIONScceeiuieuieiiiniieieieeiieieieeie et 2411
F.36.2. pg_upgrade OPtiONScceeruieuierierieeienieeiieiente ettt 2411
F.36.3. UPZrade SEPS ..c.veeueeuieiieiieiieieete sttt ettt 2412
F.36.4. Limitations in Upgrading from PostgreSQL 8.3cccccocevveiininnnnnnne. 2415
FL30.5. INOLES ..cuveiteniieieete ettt st sttt st 2416
S ¢ttt ettt et ettt et h e a e b bt a bt ea e et e h e e b bt e et e bt e bt et eh e et e ebe e bt et bt et e bt eatenaeeaean 2416
F37.1. RAtiONALEoviiiiiieiciiieccee e 2416
F37.20 SYNEAX coeeiiiiiieieeeeeete ettt 2417
F.37.3. PIECISION.....cuiiiiiiiiiciciieiine sttt e 2418
F37.4. USAZE..c.ueeutiiieieeeseetet ettt st st 2418
F37.5. NOLES ...ttt st e 2419

lii

F.38.

F.39.

F.40.

F41.

F42.

F43.

F44.

F45.

F.46.

F47.

F37.6. Creditsoovuiiiiiiiiiciiiciiicece e 2419

SEPEZSAL c-vteeuteette ettt sttt ettt e e st e e be e beesbbeebeebee e 2419
F38.1. OVEIVIBW ...cuiiiiniiiieiieiteicteecetesteetete ettt st 2420
F.38.2. INStallation.......coouerieiiniinieiieicieneeteeeeeree et 2420
F.38.3. RegIession TEeStS.....cccueeiirriieriienienieeitesit ettt ettt e 2421
F.38.4. GUC Parametersc.ccecueeueeierieninienieneeienteeeenteseeeee e seenesne e 2422
FL38.5. FEAUTEScouvieiiiiiieiieee ettt ettt et 2422

F.38.5.1. Controlled Object CIassescccceeverereeiereecuenieienieneerenieens 2423

F.38.5.2. DML PermiSSions.........cccueruerrieenieenienieenieeniieeieesieesieeseeenieenns 2423

F.38.5.3. DDL PErmiSSIONsccc.ceeeerierriernieenieeieenieesieesieesieesiteeeeenieenne 2424

F.38.5.4. Trusted Procedurescooueeveeriinienieiieenieeieeseeneeeieeieee 2424

F.38.5.5. MISCEIIAN@OUSeeueeiieiieiieiieieeieeie sttt 2424
F.38.0. LIMItAtIONSeeeveieeiieiieiieieeice ettt sttt e 2425
F.38.7. EXternal RESOUICES.c...covutiriieriiniiiiteeiccteeeeetcee et 2425
F38.8. AUNOT ... e 2425
] 1) OO OSSPSR 2425
F.39.1. refint — Functions for Implementing Referential Integrity 2426
F.39.2. timetravel — Functions for Implementing Time Travel 2426
F.39.3. autoinc — Functions for Autoincrementing Fieldsc..cccccoceerenncee 2427
F.39.4. insert_username — Functions for Tracking Who Changed a Table....... 2427
F.39.5. moddatetime — Functions for Tracking Last Modification Time.......... 2428
SSIINTO ettt ettt 2428
F.40.1. Functions Providedccccocceviniriinininiiinniencceeneeeeieseeeeeee 2428
FiA0.2. AUTNOT ..ot 2429
EADIETUNC ...ttt 2429
F.41.1. Functions Providedcccccoceeveninieninieiiininienencecnecresieseeeeeeeee 2430

FAl.1.]. NOTIMAL TANG ttttttteeeeeeee e ee e e e e e e e e e e e eeeereseeaaeaeaaaees 2430

Bl 1.2, CroSStal (EOKE) eeeeeeeeeeeeeeeeeeeeeeee e e e e e e e et eeereeeeaaeseaaaees 2431

Fid1.1.3. CroSStabN (£EXE) aoteeeeeieeeeeeeieeeeeeeeeeeeeeeeeeeeeeeeereeeeeeeseaaaees 2433

F41.1.4. crosstab (LeXt, £eXE) wiiiiiieeeieieeeeeeeeeiiiairieeeeeeeeaeeeas 2434

FAl.1.5. CONNECEDY ittt 2437
FiAT1.2. AUTNOT ..ot e 2439
LS PATSET ..eeuveenieeite ettt et e et e bt eb e e sate et e ea bt e s bt e sabesabeesbeesaeesateebeesbeesubeebeebeenes 2439
Fid2. 1. USAZE..cuuioiiiiieeeieeeeteteeetet ettt st s 2439
ESEATCRZ ..ttt ettt et et st ettt et ebeesbee e 2440
F.43.1. Portability ISSUESc.cceeieiiiriiiiiniieieiececreeeee e 2440
F.43.2. Converting a pre-8.3 Installation...........cccceceeuieiieniniencniniieneneceeene 2441
Fi43.3. REfeIeNCeS .. .ceuiiiiiiiieeie ettt 2442
UTLACCENE .ttt et ettt st et et e sat e et e et e sbtesabeeab e e bt e saeeeateesbeesstesabeenbeenseenseenn 2442
F44.1. CONfIGUIALION ..eouviiieiiiiieiieieeicee sttt 2442
Fid4.2. USAZE....iiiieiieeeeteeeetee ettt ettt et 2442
Fi44.3. FUNCLIONS ..ottt ettt sttt 2443
TUEA= 0SSP ettt ettt ettt et e e et et e st e bt et e e bt et e s bt e st esbe s st entesbeeneeneeeneenbesaeentenbens 2444
F45.1. uuid—0ssp FUNCHONSoooviiiiiiiiciii e 2444
FiA5.2. AUTNOT ..ot 2445
VACUUIMLO. ¢ttt ettt e b ettt e st e be s bt et sb e et e b ene 2445
FldB.1. USAZE..c..ieuieiieiieieeeeet ettt e sttt 2446
Fi46.2. MEthOd ...c..ooiiiiiiiiiiiieiee ettt 2446
Fi46.3. AUNOT ..ot 2447
KINUZ .ottt ettt sttt ettt et b et a e 2447
F.47.1. Deprecation NOLICEc..coveviireeiinerienieriteteieeiteee et 2447
F.47.2. Description of FUNCHONS.........occuiiiierienieeiieeeee sttt 2447

liii

| S T o Y=N ol s M o= 1 o 1 I = J USROS UPTN

F.47.3.1. Multivalued Results.........ccccoveeviimerneniniieniinieienceiencneeieneens

F.47.4. XSLT FUNCHONS ...c..eovviiiiiieiiniieienieeteieseeteteeteae st

FAT. 4.1, XS 1t T OCESS ittt ettt ettt e e earaee s

FiAT.5. AUNOT ...t

G. EXternal PrOJECES ...c.coviiiiiiiiiieieiccteeeeetee ettt
G.1. Client INtErfaCes.......eevveeriiiiieiieeieerite ettt ettt ettt et

G.2. Administration TOOILSccooueeiiiiriiiniiiieteeee e

G.3. Procedural Languages.............cccevueeieriieieniinieieneeeeieeeeee e

G EXEBINSIONS ...eutteniiiiiieeieette sttt ettt ettt sat e et e bt esate st e bt e sabesateeabeesaeesanesanes

H. The Source Code REPOSILOTYcouiiiiiiiiiiiiiiiiieie ettt
H.1. Getting The SoUrce via Git........ccoceeevieeiiiniiiieniieniie et

L DOCUMENEALION ...ttt ettt ettt ettt e st e e e s bt et e bt es et e saeetesae e st ebesseeneenaeenes
L1 DOCBOOK ..ottt ettt sttt st

L2 TOOL SEES ..ttt ettt et ettt ae st et s b et e s bt et e sbesseenbesbens

[.2.1. Linux RPM Installationccccooeririeninieienieeee e

1.2.2. FreeBSD Installationcccceceeviinerienenieiesieetee et

[.2.3. Debian Packages........cceveeieriiniiiiieniinienieiiteeteeete et

[.2.4. Manual Installation from SOUICEcccereevieniirienenieeneeieeeeeeeee

1.2.4.1. Installing OpenJade...........ccoceeievirirninenieninieeeeeeeeeeee

1.2.4.2. Installing the DocBook DTD Kit.......ccoccevueriinieniinenienenieienene

1.2.4.3. Installing the DocBook DSSSL Style Sheets.......c..cccccocerveruennenns

1.2.4.4. Installing JadeTeX..........cccevirieninennenenieeneeieseetene e

1.2.5. Detection Y CONFiguUTe iviiiirieeiienienieeieeieeniee sttt e seesereebeesaeesene s

1.3. Building The DOCUMENTAIONeeruiiiiieiieiieiieeieerite e eteeiee e eieesieesireeveeeee e

L3 10 HTML ittt s st

L.3.2. IMIANPAZES ...veeneieeerienieeniieeiteeteesitesite et et e sitesabe e beesaeesabeenbeenseesasesnbaenseesanenn

1.3.3. Print Output via JadeTeXccocevviiriiiierieciieteeeseeeeee e

L.3.4. OVErloW TEXEeoviriiiiiiieiieiieicetenceteeet ettt

1.3.5. Print Output via RTFcociiiiiiiiiieeeee et

1.3.6. Plain Text FIles ...c..cocceoviiiriiiiiniiiininieeecccec e

L.3.7. SyNtax CheCKcoiuiiiiiiiiiiieiieeieeeetest ettt e

L4. Documentation AUtROTING.......ccccceviiiiiiriiiniiiiieeieeite ettt

L4 1. EMACS/PSGML ...ttt ettt e

1.4.2. Other EMAcs MOAES......cceerviiiriieniiiiiiiteniteeieeieete sttt

L5, Style GUIAE.....c.eeeiiiiiieieceeeee et e
L.5.1. Reference Pages.........ccccoieiiiiiiiiiniiiiiccec e
JUACTONYIMIS. ... ettt st et saeenesaens

Bibliography

Index

liv

Preface

This book is the official documentation of PostgreSQL. It has been written by the PostgreSQL devel-
opers and other volunteers in parallel to the development of the PostgreSQL software. It describes all
the functionality that the current version of PostgreSQL officially supports.

To make the large amount of information about PostgreSQL manageable, this book has been orga-
nized in several parts. Each part is targeted at a different class of users, or at users in different stages
of their PostgreSQL experience:

« Part I is an informal introduction for new users.

« Part II documents the SQL query language environment, including data types and functions, as well
as user-level performance tuning. Every PostgreSQL user should read this.

« Part III describes the installation and administration of the server. Everyone who runs a PostgreSQL
server, be it for private use or for others, should read this part.

« Part IV describes the programming interfaces for PostgreSQL client programs.

+ Part V contains information for advanced users about the extensibility capabilities of the server.
Topics include user-defined data types and functions.

« Part VI contains reference information about SQL commands, client and server programs. This part
supports the other parts with structured information sorted by command or program.

« Part VII contains assorted information that might be of use to PostgreSQL developers.

1. What is PostgreSQL?

PostgreSQL is an object-relational database management system (ORDBMS) based on POSTGRES,
Version 4.2', developed at the University of California at Berkeley Computer Science Department.
POSTGRES pioneered many concepts that only became available in some commercial database sys-
tems much later.

PostgreSQL is an open-source descendant of this original Berkeley code. It supports a large part of
the SQL standard and offers many modern features:

« complex queries

- foreign keys

. triggers

. views

« transactional integrity

« multiversion concurrency control

Also, PostgreSQL can be extended by the user in many ways, for example by adding new

« data types

« functions

+ operators

« aggregate functions
« index methods

1. http://db.cs.berkeley.edu/postgres.html

lv

Preface

« procedural languages

And because of the liberal license, PostgreSQL can be used, modified, and distributed by anyone free
of charge for any purpose, be it private, commercial, or academic.

2. A Brief History of PostgreSQL

The object-relational database management system now known as PostgreSQL is derived from the
POSTGRES package written at the University of California at Berkeley. With over two decades of
development behind it, PostgreSQL is now the most advanced open-source database available any-
where.

2.1. The Berkeley POSTGRES Project

The POSTGRES project, led by Professor Michael Stonebraker, was sponsored by the Defense Ad-
vanced Research Projects Agency (DARPA), the Army Research Office (ARO), the National Science
Foundation (NSF), and ESL, Inc. The implementation of POSTGRES began in 1986. The initial con-
cepts for the system were presented in The design of POSTGRES , and the definition of the initial
data model appeared in The POSTGRES data model . The design of the rule system at that time was
described in The design of the POSTGRES rules system. The rationale and architecture of the storage
manager were detailed in The design of the POSTGRES storage system .

POSTGRES has undergone several major releases since then. The first “demoware” system became
operational in 1987 and was shown at the 1988 ACM-SIGMOD Conference. Version 1, described in
The implementation of POSTGRES , was released to a few external users in June 1989. In response to
a critique of the first rule system (A commentary on the POSTGRES rules system), the rule system
was redesigned (On Rules, Procedures, Caching and Views in Database Systems), and Version 2
was released in June 1990 with the new rule system. Version 3 appeared in 1991 and added support
for multiple storage managers, an improved query executor, and a rewritten rule system. For the most
part, subsequent releases until Postgres95 (see below) focused on portability and reliability.

POSTGRES has been used to implement many different research and production applications. These
include: a financial data analysis system, a jet engine performance monitoring package, an aster-
oid tracking database, a medical information database, and several geographic information systems.
POSTGRES has also been used as an educational tool at several universities. Finally, Illustra Infor-
mation Technologies (later merged into Informix?, which is now owned by IBM?) picked up the code
and commercialized it. In late 1992, POSTGRES became the primary data manager for the Sequoia
2000 scientific computing project®.

The size of the external user community nearly doubled during 1993. It became increasingly obvious
that maintenance of the prototype code and support was taking up large amounts of time that should
have been devoted to database research. In an effort to reduce this support burden, the Berkeley
POSTGRES project officially ended with Version 4.2.

2. http://www.informix.com/

3.

http://www.ibm.com/

4. http://meteora.ucsd.edu/s2k/s2k_home.html

i

Preface

2.2. Postgres95

In 1994, Andrew Yu and Jolly Chen added an SQL language interpreter to POSTGRES. Under a
new name, Postgres95 was subsequently released to the web to find its own way in the world as an
open-source descendant of the original POSTGRES Berkeley code.

Postgres95 code was completely ANSI C and trimmed in size by 25%. Many internal changes im-
proved performance and maintainability. Postgres95 release 1.0.x ran about 30-50% faster on the
Wisconsin Benchmark compared to POSTGRES, Version 4.2. Apart from bug fixes, the following
were the major enhancements:

+ The query language PostQUEL was replaced with SQL (implemented in the server). Subqueries
were not supported until PostgreSQL (see below), but they could be imitated in Postgres95 with
user-defined SQL functions. Aggregate functions were re-implemented. Support for the GROUP BY
query clause was also added.

+ A new program (psql) was provided for interactive SQL queries, which used GNU Readline. This
largely superseded the old monitor program.

« A new front-end library, 1ibpgtcl, supported Tcl-based clients. A sample shell, pgtclsh, pro-
vided new Tcl commands to interface Tcl programs with the Postgres95 server.

« The large-object interface was overhauled. The inversion large objects were the only mechanism
for storing large objects. (The inversion file system was removed.)

+ The instance-level rule system was removed. Rules were still available as rewrite rules.

« A short tutorial introducing regular SQL features as well as those of Postgres95 was distributed
with the source code

+ GNU make (instead of BSD make) was used for the build. Also, Postgres95 could be compiled
with an unpatched GCC (data alignment of doubles was fixed).

2.3. PostgreSQL

By 1996, it became clear that the name “Postgres95” would not stand the test of time. We chose a new
name, PostgreSQL, to reflect the relationship between the original POSTGRES and the more recent
versions with SQL capability. At the same time, we set the version numbering to start at 6.0, putting
the numbers back into the sequence originally begun by the Berkeley POSTGRES project.

Many people continue to refer to PostgreSQL as “Postgres” (now rarely in all capital letters) because
of tradition or because it is easier to pronounce. This usage is widely accepted as a nickname or alias.

The emphasis during development of Postgres95 was on identifying and understanding existing prob-
lems in the server code. With PostgreSQL, the emphasis has shifted to augmenting features and capa-
bilities, although work continues in all areas.

Details about what has happened in PostgreSQL since then can be found in Appendix E.

3. Conventions

This book uses the following typographical conventions to mark certain portions of text: new terms,
foreign phrases, and other important passages are emphasized in italics. Everything that represents

vii

Preface

input or output of the computer, in particular commands, program code, and screen output, is shown
in a monospaced font (example). Within such passages, italics (example) indicate placeholders;
you must insert an actual value instead of the placeholder. On occasion, parts of program code are
emphasized in bold face (example), if they have been added or changed since the preceding example.

The following conventions are used in the synopsis of a command: brackets ([and 1) indicate optional
parts. (In the synopsis of a Tcl command, question marks (?) are used instead, as is usual in Tcl.)
Braces ({ and }) and vertical lines (|) indicate that you must choose one alternative. Dots (. . .) mean
that the preceding element can be repeated.

Where it enhances the clarity, SQL commands are preceded by the prompt =>, and shell commands
are preceded by the prompt $. Normally, prompts are not shown, though.

An administrator is generally a person who is in charge of installing and running the server. A user
could be anyone who is using, or wants to use, any part of the PostgreSQL system. These terms
should not be interpreted too narrowly; this book does not have fixed presumptions about system
administration procedures.

4. Further Information

Besides the documentation, that is, this book, there are other resources about PostgreSQL.:

Wiki
The PostgreSQL wiki® contains the project’s FAQ® (Frequently Asked Questions) list, TODO’
list, and detailed information about many more topics.

Web Site

The PostgreSQL web site® carries details on the latest release and other information to make your
work or play with PostgreSQL more productive.

Mailing Lists
The mailing lists are a good place to have your questions answered, to share experiences with
other users, and to contact the developers. Consult the PostgreSQL web site for details.
Yourself!

PostgreSQL is an open-source project. As such, it depends on the user community for ongoing
support. As you begin to use PostgreSQL, you will rely on others for help, either through the
documentation or through the mailing lists. Consider contributing your knowledge back. Read
the mailing lists and answer questions. If you learn something which is not in the documentation,
write it up and contribute it. If you add features to the code, contribute them.

5. Bug Reporting Guidelines

When you find a bug in PostgreSQL we want to hear about it. Your bug reports play an important part
in making PostgreSQL more reliable because even the utmost care cannot guarantee that every part

PN

http://wiki.postgresql.org
http://wiki.postgresql.org/wiki/Frequently_Asked_Questions
http://wiki.postgresql.org/wiki/Todo
http://www.postgresql.org

lviii

Preface

of PostgreSQL will work on every platform under every circumstance.

The following suggestions are intended to assist you in forming bug reports that can be handled in an
effective fashion. No one is required to follow them but doing so tends to be to everyone’s advantage.

We cannot promise to fix every bug right away. If the bug is obvious, critical, or affects a lot of users,
chances are good that someone will look into it. It could also happen that we tell you to update to a
newer version to see if the bug happens there. Or we might decide that the bug cannot be fixed before
some major rewrite we might be planning is done. Or perhaps it is simply too hard and there are
more important things on the agenda. If you need help immediately, consider obtaining a commercial
support contract.

5.1. Identifying Bugs

Before you report a bug, please read and re-read the documentation to verify that you can really do
whatever it is you are trying. If it is not clear from the documentation whether you can do something
or not, please report that too; it is a bug in the documentation. If it turns out that a program does
something different from what the documentation says, that is a bug. That might include, but is not
limited to, the following circumstances:

« A program terminates with a fatal signal or an operating system error message that would point to
a problem in the program. (A counterexample might be a “disk full” message, since you have to fix
that yourself.)

+ A program produces the wrong output for any given input.
+ A program refuses to accept valid input (as defined in the documentation).

« A program accepts invalid input without a notice or error message. But keep in mind that your idea
of invalid input might be our idea of an extension or compatibility with traditional practice.

+ PostgreSQL fails to compile, build, or install according to the instructions on supported platforms.
Here “program” refers to any executable, not only the backend process.

Being slow or resource-hogging is not necessarily a bug. Read the documentation or ask on one of
the mailing lists for help in tuning your applications. Failing to comply to the SQL standard is not
necessarily a bug either, unless compliance for the specific feature is explicitly claimed.

Before you continue, check on the TODO list and in the FAQ to see if your bug is already known.
If you cannot decode the information on the TODO list, report your problem. The least we can do is
make the TODO list clearer.

5.2. What to Report

The most important thing to remember about bug reporting is to state all the facts and only facts. Do
not speculate what you think went wrong, what “it seemed to do”, or which part of the program has a
fault. If you are not familiar with the implementation you would probably guess wrong and not help
us a bit. And even if you are, educated explanations are a great supplement to but no substitute for
facts. If we are going to fix the bug we still have to see it happen for ourselves first. Reporting the bare
facts is relatively straightforward (you can probably copy and paste them from the screen) but all too
often important details are left out because someone thought it does not matter or the report would be
understood anyway.

The following items should be contained in every bug report:

lix

Preface

« The exact sequence of steps from program start-up necessary to reproduce the problem. This should
be self-contained; it is not enough to send in a bare SELECT statement without the preceding
CREATE TABLE and INSERT statements, if the output should depend on the data in the tables.
We do not have the time to reverse-engineer your database schema, and if we are supposed to make
up our own data we would probably miss the problem.

The best format for a test case for SQL-related problems is a file that can be run through the psql
frontend that shows the problem. (Be sure to not have anything in your ~/ .psqglrc start-up file.)
An easy way to create this file is to use pg_dump to dump out the table declarations and data
needed to set the scene, then add the problem query. You are encouraged to minimize the size of
your example, but this is not absolutely necessary. If the bug is reproducible, we will find it either
way.

If your application uses some other client interface, such as PHP, then please try to isolate the
offending queries. We will probably not set up a web server to reproduce your problem. In any case
remember to provide the exact input files; do not guess that the problem happens for “large files”
or “midsize databases”, etc. since this information is too inexact to be of use.

« The output you got. Please do not say that it “didn’t work” or “crashed”. If there is an error message,
show it, even if you do not understand it. If the program terminates with an operating system error,
say which. If nothing at all happens, say so. Even if the result of your test case is a program crash
or otherwise obvious it might not happen on our platform. The easiest thing is to copy the output
from the terminal, if possible.

Note: If you are reporting an error message, please obtain the most verbose form of the mes-
sage. In psql, say \set VERBOSITY verbose beforehand. If you are extracting the message
from the server log, set the run-time parameter log_error_verbosity to verbose so that all de-
tails are logged.

Note: In case of fatal errors, the error message reported by the client might not contain all the
information available. Please also look at the log output of the database server. If you do not
keep your server’s log output, this would be a good time to start doing so.

« The output you expected is very important to state. If you just write “This command gives me that
output.” or “This is not what I expected.”, we might run it ourselves, scan the output, and think it
looks OK and is exactly what we expected. We should not have to spend the time to decode the
exact semantics behind your commands. Especially refrain from merely saying that “This is not
what SQL says/Oracle does.” Digging out the correct behavior from SQL is not a fun undertaking,
nor do we all know how all the other relational databases out there behave. (If your problem is a
program crash, you can obviously omit this item.)

» Any command line options and other start-up options, including any relevant environment variables
or configuration files that you changed from the default. Again, please provide exact information.
If you are using a prepackaged distribution that starts the database server at boot time, you should
try to find out how that is done.

+ Anything you did at all differently from the installation instructions.

« The PostgreSQL version. You can run the command SELECT version () ; to find out the version
of the server you are connected to. Most executable programs also support a ——version option; at
least postgres —--versionand psql —--version should work. If the function or the options do

Ix

Preface

not exist then your version is more than old enough to warrant an upgrade. If you run a prepackaged
version, such as RPMs, say so, including any subversion the package might have. If you are talking
about a Git snapshot, mention that, including the commit hash.

If your version is older than 9.1.6 we will almost certainly tell you to upgrade. There are many bug
fixes and improvements in each new release, so it is quite possible that a bug you have encountered
in an older release of PostgreSQL has already been fixed. We can only provide limited support
for sites using older releases of PostgreSQL; if you require more than we can provide, consider
acquiring a commercial support contract.

« Platform information. This includes the kernel name and version, C library, processor, memory
information, and so on. In most cases it is sufficient to report the vendor and version, but do not
assume everyone knows what exactly “Debian” contains or that everyone runs on i386s. If you have
installation problems then information about the toolchain on your machine (compiler, make, and
so on) is also necessary.

Do not be afraid if your bug report becomes rather lengthy. That is a fact of life. It is better to report
everything the first time than us having to squeeze the facts out of you. On the other hand, if your
input files are huge, it is fair to ask first whether somebody is interested in looking into it. Here is an
article’ that outlines some more tips on reporting bugs.

Do not spend all your time to figure out which changes in the input make the problem go away. This
will probably not help solving it. If it turns out that the bug cannot be fixed right away, you will still
have time to find and share your work-around. Also, once again, do not waste your time guessing why
the bug exists. We will find that out soon enough.

When writing a bug report, please avoid confusing terminology. The software package in total is
called “PostgreSQL”, sometimes “Postgres” for short. If you are specifically talking about the back-
end process, mention that, do not just say “PostgreSQL crashes”. A crash of a single backend process
is quite different from crash of the parent “postgres” process; please don’t say “the server crashed”
when you mean a single backend process went down, nor vice versa. Also, client programs such as the
interactive frontend “psql” are completely separate from the backend. Please try to be specific about
whether the problem is on the client or server side.

5.3. Where to Report Bugs

In general, send bug reports to the bug report mailing list at <pgsgl-bugs@postgresqgl.org>. You
are requested to use a descriptive subject for your email message, perhaps parts of the error message.

Another method is to fill in the bug report web-form available at the project’s web site'’. Entering a
bug report this way causes it to be mailed to the <pgsgql-bugs@postgresqgl.org> mailing list.

If your bug report has security implications and you’d prefer that it not become immediately vis-
ible in public archives, don’t send it to pgsgl-bugs. Security issues can be reported privately to
<security@postgresqgl.org>.

Do not send bug reports to any of the user mailing lists, such as <pgsql-sgl@postgresql.org>
or <pgsgl-general@postgresqgl.org>. These mailing lists are for answering user questions, and
their subscribers normally do not wish to receive bug reports. More importantly, they are unlikely to
fix them.

Also, please do not send reports to the developers’ mailing list
<pgsgl-hackers@postgresqgl.org>. This list is for discussing the development of PostgreSQL,

9. http://www.chiark.greenend.org.uk/~sgtatham/bugs.html
10. http://www.postgresql.org/

Ixi

Preface

and it would be nice if we could keep the bug reports separate. We might choose to take up a
discussion about your bug report on pgsgl-hackers, if the problem needs more review.

If you have a problem with the documentation, the best place to report it is the documentation mailing
list <pgsgl-docs@postgresqgl . org>. Please be specific about what part of the documentation you
are unhappy with.

If your bug is a portability problem on a non-supported platform, send mail to
<pgsgl-hackers@postgresqgl.org>, so we (and you) can work on porting PostgreSQL to your
platform.

Note: Due to the unfortunate amount of spam going around, all of the above email addresses
are closed mailing lists. That is, you need to be subscribed to a list to be allowed to post on it.
(You need not be subscribed to use the bug-report web form, however.) If you would like to send
mail but do not want to receive list traffic, you can subscribe and set your subscription option to
nomail. For more information send mail to <majordomo@postgresql .org> with the single word
help in the body of the message.

Ixii

l. Tutorial

Welcome to the PostgreSQL Tutorial. The following few chapters are intended to give a simple in-
troduction to PostgreSQL, relational database concepts, and the SQL language to those who are new
to any one of these aspects. We only assume some general knowledge about how to use computers.
No particular Unix or programming experience is required. This part is mainly intended to give you
some hands-on experience with important aspects of the PostgreSQL system. It makes no attempt to
be a complete or thorough treatment of the topics it covers.

After you have worked through this tutorial you might want to move on to reading Part II to gain a
more formal knowledge of the SQL language, or Part IV for information about developing applica-
tions for PostgreSQL. Those who set up and manage their own server should also read Part III.

Chapter 1. Getting Started

1.1. Installation

Before you can use PostgreSQL you need to install it, of course. It is possible that PostgreSQL is
already installed at your site, either because it was included in your operating system distribution
or because the system administrator already installed it. If that is the case, you should obtain infor-
mation from the operating system documentation or your system administrator about how to access
PostgreSQL.

If you are not sure whether PostgreSQL is already available or whether you can use it for your ex-
perimentation then you can install it yourself. Doing so is not hard and it can be a good exercise.
PostgreSQL can be installed by any unprivileged user; no superuser (root) access is required.

If you are installing PostgreSQL yourself, then refer to Chapter 15 for instructions on installation,
and return to this guide when the installation is complete. Be sure to follow closely the section about
setting up the appropriate environment variables.

If your site administrator has not set things up in the default way, you might have some more work to
do. For example, if the database server machine is a remote machine, you will need to set the PGHOST
environment variable to the name of the database server machine. The environment variable PGPORT
might also have to be set. The bottom line is this: if you try to start an application program and it
complains that it cannot connect to the database, you should consult your site administrator or, if
that is you, the documentation to make sure that your environment is properly set up. If you did not
understand the preceding paragraph then read the next section.

1.2. Architectural Fundamentals

Before we proceed, you should understand the basic PostgreSQL system architecture. Understanding
how the parts of PostgreSQL interact will make this chapter somewhat clearer.

In database jargon, PostgreSQL uses a client/server model. A PostgreSQL session consists of the
following cooperating processes (programs):

+ A server process, which manages the database files, accepts connections to the database from client
applications, and performs database actions on behalf of the clients. The database server program
is called postgres.

« The user’s client (frontend) application that wants to perform database operations. Client applica-
tions can be very diverse in nature: a client could be a text-oriented tool, a graphical application, a
web server that accesses the database to display web pages, or a specialized database maintenance
tool. Some client applications are supplied with the PostgreSQL distribution; most are developed
by users.

As is typical of client/server applications, the client and the server can be on different hosts. In that
case they communicate over a TCP/IP network connection. You should keep this in mind, because
the files that can be accessed on a client machine might not be accessible (or might only be accessible
using a different file name) on the database server machine.

The PostgreSQL server can handle multiple concurrent connections from clients. To achieve this
it starts (“forks™) a new process for each connection. From that point on, the client and the new

Chapter 1. Getting Started

server process communicate without intervention by the original postgres process. Thus, the master
server process is always running, waiting for client connections, whereas client and associated server
processes come and go. (All of this is of course invisible to the user. We only mention it here for
completeness.)

1.3. Creating a Database

The first test to see whether you can access the database server is to try to create a database. A running
PostgreSQL server can manage many databases. Typically, a separate database is used for each project
or for each user.

Possibly, your site administrator has already created a database for your use. He should have told you
what the name of your database is. In that case you can omit this step and skip ahead to the next
section.

To create a new database, in this example named mydb, you use the following command:

$ createdb mydb

If this produces no response then this step was successful and you can skip over the remainder of this
section.

If you see a message similar to:
createdb: command not found

then PostgreSQL was not installed properly. Either it was not installed at all or your shell’s search
path was not set to include it. Try calling the command with an absolute path instead:

$ /usr/local/pgsql/bin/createdb mydb

The path at your site might be different. Contact your site administrator or check the installation
instructions to correct the situation.

Another response could be this:

createdb: could not connect to database postgres: could not connect to server: No such f
Is the server running locally and accepting
connections on Unix domain socket "/tmp/.s.PGSQL.5432"?

This means that the server was not started, or it was not started where createdb expected it. Again,
check the installation instructions or consult the administrator.

Another response could be this:

createdb: could not connect to database postgres: FATAL: role "Jjoe" does not exist

where your own login name is mentioned. This will happen if the administrator has not created a
PostgreSQL user account for you. (PostgreSQL user accounts are distinct from operating system user
accounts.) If you are the administrator, see Chapter 20 for help creating accounts. You will need to
become the operating system user under which PostgreSQL was installed (usually postgres) to
create the first user account. It could also be that you were assigned a PostgreSQL user name that is
different from your operating system user name; in that case you need to use the —U switch or set the
PGUSER environment variable to specify your PostgreSQL user name.

If you have a user account but it does not have the privileges required to create a database, you will
see the following:

Chapter 1. Getting Started

createdb: database creation failed: ERROR: permission denied to create database

Not every user has authorization to create new databases. If PostgreSQL refuses to create databases
for you then the site administrator needs to grant you permission to create databases. Consult your
site administrator if this occurs. If you installed PostgreSQL yourself then you should log in for the
purposes of this tutorial under the user account that you started the server as. '

You can also create databases with other names. PostgreSQL allows you to create any number of
databases at a given site. Database names must have an alphabetic first character and are limited to 63
bytes in length. A convenient choice is to create a database with the same name as your current user
name. Many tools assume that database name as the default, so it can save you some typing. To create
that database, simply type:

$ createdb

If you do not want to use your database anymore you can remove it. For example, if you are the owner
(creator) of the database mydb, you can destroy it using the following command:

$ dropdb mydb

(For this command, the database name does not default to the user account name. You always need to
specify it.) This action physically removes all files associated with the database and cannot be undone,
so this should only be done with a great deal of forethought.

More about createdb and dropdb can be found in createdb and dropdb respectively.

1.4. Accessing a Database

Once you have created a database, you can access it by:

» Running the PostgreSQL interactive terminal program, called psqgl, which allows you to interac-
tively enter, edit, and execute SQL commands.

» Using an existing graphical frontend tool like pgAdmin or an office suite with ODBC or JDBC
support to create and manipulate a database. These possibilities are not covered in this tutorial.

« Writing a custom application, using one of the several available language bindings. These possibil-
ities are discussed further in Part IV.

You probably want to start up psql to try the examples in this tutorial. It can be activated for the mydb
database by typing the command:

$ psql mydb

If you do not supply the database name then it will default to your user account name. You already
discovered this scheme in the previous section using createdb.

In psql, you will be greeted with the following message:

1. As an explanation for why this works: PostgreSQL user names are separate from operating system user accounts. When
you connect to a database, you can choose what PostgreSQL user name to connect as; if you don’t, it will default to the same
name as your current operating system account. As it happens, there will always be a PostgreSQL user account that has the
same name as the operating system user that started the server, and it also happens that that user always has permission to
create databases. Instead of logging in as that user you can also specify the —U option everywhere to select a PostgreSQL user
name to connect as.

Chapter 1. Getting Started

psgl (9.1.6)
Type "help" for help.

mydb=>
The last line could also be:
mydb=+#

That would mean you are a database superuser, which is most likely the case if you installed Post-
greSQL yourself. Being a superuser means that you are not subject to access controls. For the purposes
of this tutorial that is not important.

If you encounter problems starting psqgl then go back to the previous section. The diagnostics of
createdb and psql are similar, and if the former worked the latter should work as well.

The last line printed out by psql is the prompt, and it indicates that psql is listening to you and that
you can type SQL queries into a work space maintained by psgl. Try out these commands:

mydb=> SELECT version();
version

PostgreSQL 9.1.6 on i586-pc-linux-gnu, compiled by GCC 2.96, 32-bit
(1 row)

mydb=> SELECT current_date;
date

2002-08-31
(1 row)

mydb=> SELECT 2 + 2;

?column?

The psgl program has a number of internal commands that are not SQL commands. They begin with
the backslash character, “\”. For example, you can get help on the syntax of various PostgreSQL SQL
commands by typing:

mydb=> \h

To get out of psql, type:
mydb=> \q

and psgl will quit and return you to your command shell. (For more internal commands, type \ 2 at
the psgl prompt.) The full capabilities of psql are documented in psql. In this tutorial we will not
use these features explicitly, but you can use them yourself when it is helpful.

Chapter 2. The SQL Language

2.1. Introduction

This chapter provides an overview of how to use SQL to perform simple operations. This tutorial
is only intended to give you an introduction and is in no way a complete tutorial on SQL. Numer-
ous books have been written on SQL, including Understanding the New SQL and A Guide to the
SQL Standard. You should be aware that some PostgreSQL language features are extensions to the
standard.

In the examples that follow, we assume that you have created a database named mydb, as described in
the previous chapter, and have been able to start psql.

Examples in this manual can also be found in the PostgreSQL source distribution in the directory
src/tutorial/. (Binary distributions of PostgreSQL might not compile these files.) To use those
files, first change to that directory and run make:

$ ed/src/tutorial
S make

This creates the scripts and compiles the C files containing user-defined functions and types. Then, to
start the tutorial, do the following:

S ed/tutorial
$ psql -s mydb

mydb=> \i basics.sql

The \ i command reads in commands from the specified file. psql’s —s option puts you in single step
mode which pauses before sending each statement to the server. The commands used in this section
are in the file basics.sql.

2.2. Concepts

PostgreSQL is a relational database management system (RDBMS). That means it is a system for
managing data stored in relations. Relation is essentially a mathematical term for zable. The notion
of storing data in tables is so commonplace today that it might seem inherently obvious, but there
are a number of other ways of organizing databases. Files and directories on Unix-like operating
systems form an example of a hierarchical database. A more modern development is the object-
oriented database.

Each table is a named collection of rows. Each row of a given table has the same set of named
columns, and each column is of a specific data type. Whereas columns have a fixed order in each row,
it is important to remember that SQL does not guarantee the order of the rows within the table in any
way (although they can be explicitly sorted for display).

Tables are grouped into databases, and a collection of databases managed by a single PostgreSQL
server instance constitutes a database cluster.

Chapter 2. The SQL Language

2.3. Creating a New Table

You can create a new table by specifying the table name, along with all column names and their types:

CREATE TABLE weather (

city varchar (80),

temp_lo int, -— low temperature
temp_hi int, —— high temperature
prcp real, —-— precipitation
date date

)

You can enter this into psgl with the line breaks. psgl will recognize that the command is not
terminated until the semicolon.

White space (i.e., spaces, tabs, and newlines) can be used freely in SQL commands. That means you
can type the command aligned differently than above, or even all on one line. Two dashes (“--") in-
troduce comments. Whatever follows them is ignored up to the end of the line. SQL is case insensitive
about key words and identifiers, except when identifiers are double-quoted to preserve the case (not
done above).

varchar (80) specifies a data type that can store arbitrary character strings up to 80 characters in
length. int is the normal integer type. real is a type for storing single precision floating-point num-
bers. date should be self-explanatory. (Yes, the column of type date is also named date. This might
be convenient or confusing — you choose.)

PostgreSQL supports the standard SQL types int, smallint, real, double precision,
char (N), varchar (N), date, time, timestamp, and interval, as well as other types of general
utility and a rich set of geometric types. PostgreSQL can be customized with an arbitrary number of
user-defined data types. Consequently, type names are not key words in the syntax, except where
required to support special cases in the SQL standard.

The second example will store cities and their associated geographical location:

CREATE TABLE cities (
name varchar (80),
location point

)i

The point type is an example of a PostgreSQL-specific data type.

Finally, it should be mentioned that if you don’t need a table any longer or want to recreate it differ-
ently you can remove it using the following command:

DROP TABLE tablename;

2.4. Populating a Table With Rows

The INSERT statement is used to populate a table with rows:

INSERT INTO weather VALUES (’San Francisco’, 46, 50, 0.25, 71994-11-27");

Chapter 2. The SQL Language

Note that all data types use rather obvious input formats. Constants that are not simple numeric values
usually must be surrounded by single quotes (), as in the example. The date type is actually quite
flexible in what it accepts, but for this tutorial we will stick to the unambiguous format shown here.

The point type requires a coordinate pair as input, as shown here:

INSERT INTO cities VALUES (’San Francisco’, ' (-194.0, 53.0)");

The syntax used so far requires you to remember the order of the columns. An alternative syntax
allows you to list the columns explicitly:

INSERT INTO weather (city, temp_lo, temp_hi, prcp, date)
VALUES (’San Francisco’, 43, 57, 0.0, 71994-11-29");

You can list the columns in a different order if you wish or even omit some columns, e.g., if the
precipitation is unknown:

INSERT INTO weather (date, city, temp_hi, temp_lo)
VALUES (’1994-11-29’, 'Hayward’, 54, 37);

Many developers consider explicitly listing the columns better style than relying on the order implic-
itly.
Please enter all the commands shown above so you have some data to work with in the following

sections.

You could also have used copy to load large amounts of data from flat-text files. This is usually
faster because the COPY command is optimized for this application while allowing less flexibility than
INSERT. An example would be:

COPY weather FROM ’ /home/user/weather.txt’;

where the file name for the source file must be available on the machine running the backend process,
not the client, since the backend process reads the file directly. You can read more about the copy
command in COPY.

2.5. Querying a Table

To retrieve data from a table, the table is queried. An SQL SELECT statement is used to do this. The
statement is divided into a select list (the part that lists the columns to be returned), a table list (the
part that lists the tables from which to retrieve the data), and an optional qualification (the part that
specifies any restrictions). For example, to retrieve all the rows of table weather, type:

SELECT * FROM weather;

Here = is a shorthand for “all columns”. ! So the same result would be had with:
SELECT city, temp_lo, temp_hi, prcp, date FROM weather;

The output should be:

city | temp_lo | temp_hi | prcp | date

1.

While SELECT =« is useful for off-the-cuff queries, it is widely considered bad style in production code, since adding a

column to the table would change the results.

Chapter 2. The SQL Language

——————————————— t———— - —————
San Francisco | 46 | 50 | 0.25 | 1994-11-27
San Francisco | 43 | 57 | 0 | 1994-11-29
Hayward | 37 | 54 | | 1994-11-29
(3 rows)

You can write expressions, not just simple column references, in the select list. For example, you can
do:

SELECT city, (temp_hi+temp_lo)/2 AS temp_avg, date FROM weather;

This should give:

city | temp_avg | date
,,,,,,,,,,,,,,, T
San Francisco | 48 | 1994-11-27
San Francisco | 50 | 1994-11-29
Hayward | 45 | 1994-11-29
(3 rows)

Notice how the AS clause is used to relabel the output column. (The As clause is optional.)

A query can be “qualified” by adding a WHERE clause that specifies which rows are wanted. The WHERE
clause contains a Boolean (truth value) expression, and only rows for which the Boolean expression
is true are returned. The usual Boolean operators (AND, OR, and NOT) are allowed in the qualification.
For example, the following retrieves the weather of San Francisco on rainy days:

SELECT % FROM weather
WHERE city = ’San Francisco’ AND prcp > 0.0;

Result:

San Francisco
(1 row)

You can request that the results of a query be returned in sorted order:

SELECT x FROM weather
ORDER BY city;

city | temp_lo | temp_hi | prcp | date
——————————————— B e e R T
Hayward | 37 | 54 | | 1994-11-29
San Francisco | 43 | 57 | 0 | 1994-11-29
San Francisco | 46 | 50 | 0.25 | 1994-11-27

In this example, the sort order isn’t fully specified, and so you might get the San Francisco rows in
either order. But you’d always get the results shown above if you do:

SELECT * FROM weather
ORDER BY city, temp_lo;

You can request that duplicate rows be removed from the result of a query:

SELECT DISTINCT city
FROM weather;

Hayward
San Francisco
(2 rows)

Chapter 2. The SQL Language

Here again, the result row ordering might vary. You can ensure consistent results by using DISTINCT

and ORDER BY together:

SELECT DISTINCT city
FROM weather
ORDER BY city;

2.6. Joins Between Tables

Thus far, our queries have only accessed one table at a time. Queries can access multiple tables at
once, or access the same table in such a way that multiple rows of the table are being processed at the
same time. A query that accesses multiple rows of the same or different tables at one time is called
a join query. As an example, say you wish to list all the weather records together with the location
of the associated city. To do that, we need to compare the city column of each row of the weather
table with the name column of all rows in the cities table, and select the pairs of rows where these

values match.

Note: This is only a conceptual model. The join is usually performed in a more efficient manner
than actually comparing each possible pair of rows, but this is invisible to the user.

This would be accomplished by the following query:

SELECT «
FROM weather, cities
WHERE city = name;
city | temp_lo
_______________ [P
San Francisco | 46
San Francisco | 43

(2 rows)

Observe two things about the result set:

1994-11-27
1994-11-29

San Francisco
San Francisco

(-194,53)
(-194,53)

+ There is no result row for the city of Hayward. This is because there is no matching entry in the
cities table for Hayward, so the join ignores the unmatched rows in the weather table. We will
see shortly how this can be fixed.

2.

In some database systems, including older versions of PostgreSQL, the implementation of DISTINCT automatically orders

the rows and so ORDER BY is unnecessary. But this is not required by the SQL standard, and current PostgreSQL does not
guarantee that DISTINCT causes the rows to be ordered.

Chapter 2. The SQL Language

« There are two columns containing the city name. This is correct because the lists of columns from
the weather and cities tables are concatenated. In practice this is undesirable, though, so you
will probably want to list the output columns explicitly rather than using »:

SELECT city, temp_lo, temp_hi, prcp, date, location
FROM weather, cities
WHERE city = name;

Exercise: Attempt to determine the semantics of this query when the WHERE clause is omitted.

Since the columns all had different names, the parser automatically found which table they belong to.
If there were duplicate column names in the two tables you’d need to gualify the column names to
show which one you meant, as in:

SELECT weather.city, weather.temp_lo, weather.temp_hi,
weather.prcp, weather.date, cities.location
FROM weather, cities
WHERE cities.name = weather.city;

It is widely considered good style to qualify all column names in a join query, so that the query won’t
fail if a duplicate column name is later added to one of the tables.

Join queries of the kind seen thus far can also be written in this alternative form:

SELECT «
FROM weather INNER JOIN cities ON (weather.city = cities.name);

This syntax is not as commonly used as the one above, but we show it here to help you understand the
following topics.

Now we will figure out how we can get the Hayward records back in. What we want the query to do
is to scan the weather table and for each row to find the matching cities row(s). If no matching
row is found we want some “empty values” to be substituted for the cities table’s columns. This
kind of query is called an outer join. (The joins we have seen so far are inner joins.) The command
looks like this:

SELECT «
FROM weather LEFT OUTER JOIN cities ON (weather.city = cities.name);

city | temp_lo | temp_hi | prcp | date | name | location
——————————————— B E e e bt Tt e
Hayward | 37 | 54 | | 1994-11-29 | |
San Francisco | 46 | 50 | 0.25 | 1994-11-27 | San Francisco | (-194,53)
San Francisco | 43 | 57 | 0 | 1994-11-29 | San Francisco | (-194,53)

(3 rows)

This query is called a left outer join because the table mentioned on the left of the join operator will
have each of its rows in the output at least once, whereas the table on the right will only have those
rows output that match some row of the left table. When outputting a left-table row for which there is
no right-table match, empty (null) values are substituted for the right-table columns.

Exercise: There are also right outer joins and full outer joins. Try to find out what those do.

We can also join a table against itself. This is called a self join. As an example, suppose we wish to
find all the weather records that are in the temperature range of other weather records. So we need to
compare the temp_lo and temp_hi columns of each weather row to the temp_lo and temp_hi
columns of all other weather rows. We can do this with the following query:

10

Chapter 2. The SQL Language

SELECT Wl.city, Wl.temp_lo AS low, Wl.temp_hi AS high,
W2.city, W2.temp_lo AS low, W2.temp_hi AS high
FROM weather Wl, weather W2
WHERE Wl.temp_lo < W2.temp_lo
AND Wl.temp_hi > W2.temp_hi;

city | low | high | city | low | high
——————————————— s et e e Atk
San Francisco | 43 | 57 | San Francisco | 46 | 50
Hayward | 37 | 54 | San Francisco | 46 | 50
(2 rows)

Here we have relabeled the weather table as w1 and w2 to be able to distinguish the left and right side
of the join. You can also use these kinds of aliases in other queries to save some typing, e.g.:

SELECT «
FROM weather w, cities c¢
WHERE w.city = c.name;

You will encounter this style of abbreviating quite frequently.

2.7. Aggregate Functions

Like most other relational database products, PostgreSQL supports aggregate functions. An aggregate
function computes a single result from multiple input rows. For example, there are aggregates to
compute the count, sum, avg (average), max (maximum) and min (minimum) over a set of rows.

As an example, we can find the highest low-temperature reading anywhere with:

SELECT max (temp_lo) FROM weather;

If we wanted to know what city (or cities) that reading occurred in, we might try:

SELECT city FROM weather WHERE temp_lo = max(temp_1lo); WRONG

but this will not work since the aggregate max cannot be used in the WHERE clause. (This restriction
exists because the WHERE clause determines which rows will be included in the aggregate calculation;
so obviously it has to be evaluated before aggregate functions are computed.) However, as is often the
case the query can be restated to accomplish the desired result, here by using a subquery:

SELECT city FROM weather
WHERE temp_lo = (SELECT max (temp_lo) FROM weather);

San Francisco
(1 row)

11

Chapter 2. The SQL Language

This is OK because the subquery is an independent computation that computes its own aggregate
separately from what is happening in the outer query.

Aggregates are also very useful in combination with GROUP BY clauses. For example, we can get the
maximum low temperature observed in each city with:

SELECT city, max(temp_1lo)
FROM weather
GROUP BY city;

city | max
,,,,,,,,,,,,,,, I
Hayward | 37

San Francisco | 46

(2 rows)

which gives us one output row per city. Each aggregate result is computed over the table rows match-
ing that city. We can filter these grouped rows using HAVING:

SELECT city, max(temp_1lo)
FROM weather
GROUP BY city
HAVING max (temp_lo) < 40;

city | max
_________ b
Hayward | 37
(1 row)

which gives us the same results for only the cities that have all temp_1lo values below 40. Finally, if
we only care about cities whose names begin with “S”, we might do:

SELECT city, max(temp_1lo)
FROM weather
WHERE city LIKE ’'S%'@®
GROUP BY city
HAVING max (temp_lo) < 40;

© The LIKE operator does pattern matching and is explained in Section 9.7.

It is important to understand the interaction between aggregates and SQL’s WHERE and HAVING
clauses. The fundamental difference between WHERE and HAVING is this: WHERE selects input rows
before groups and aggregates are computed (thus, it controls which rows go into the aggregate com-
putation), whereas HAVING selects group rows after groups and aggregates are computed. Thus, the
WHERE clause must not contain aggregate functions; it makes no sense to try to use an aggregate to
determine which rows will be inputs to the aggregates. On the other hand, the HAVING clause al-
ways contains aggregate functions. (Strictly speaking, you are allowed to write a HAVING clause that
doesn’t use aggregates, but it’s seldom useful. The same condition could be used more efficiently at
the WHERE stage.)

In the previous example, we can apply the city name restriction in WHERE, since it needs no aggregate.
This is more efficient than adding the restriction to HAVING, because we avoid doing the grouping and
aggregate calculations for all rows that fail the WHERE check.

12

Chapter 2. The SQL Language

2.8. Updates

You can update existing rows using the UPDATE command. Suppose you discover the temperature
readings are all off by 2 degrees after November 28. You can correct the data as follows:

UPDATE weather

SET temp_hi = temp_hi - 2, temp_lo = temp_lo - 2
WHERE date > 71994-11-28';

Look at the new state of the data:

SELECT = FROM weather;

city | temp_lo | temp_hi | prcp | date
——————————————— B et B et T T e
San Francisco | 46 | 50 | 0.25 | 1994-11-27
San Francisco | 41 | 55 | 0 | 1994-11-29
Hayward \ 35 | 52 | | 1994-11-29
(3 rows)

2.9. Deletions

Rows can be removed from a table using the DELETE command. Suppose you are no longer interested
in the weather of Hayward. Then you can do the following to delete those rows from the table:

DELETE FROM weather WHERE city = ’'Hayward’;
All weather records belonging to Hayward are removed.

SELECT * FROM weather;

city | temp_lo | temp_hi | prcp | date
——————————————— B i B e et T T
San Francisco | 46 | 50 | 0.25 | 1994-11-27
San Francisco | 41 | 55 | 0 | 1994-11-29

(2 rows)

One should be wary of statements of the form

DELETE FROM tablename;

Without a qualification, DELETE will remove all rows from the given table, leaving it empty. The
system will not request confirmation before doing this!

13

Chapter 3. Advanced Features

3.1. Introduction

In the previous chapter we have covered the basics of using SQL to store and access your data in
PostgreSQL. We will now discuss some more advanced features of SQL that simplify management
and prevent loss or corruption of your data. Finally, we will look at some PostgreSQL extensions.

This chapter will on occasion refer to examples found in Chapter 2 to change or improve them, so
it will be useful to have read that chapter. Some examples from this chapter can also be found in
advanced. sql in the tutorial directory. This file also contains some sample data to load, which is
not repeated here. (Refer to Section 2.1 for how to use the file.)

3.2. Views

Refer back to the queries in Section 2.6. Suppose the combined listing of weather records and city
location is of particular interest to your application, but you do not want to type the query each time
you need it. You can create a view over the query, which gives a name to the query that you can refer
to like an ordinary table:

CREATE VIEW myview AS
SELECT city, temp_lo, temp_hi, prcp, date, location
FROM weather, cities
WHERE city = name;

SELECT * FROM myview;

Making liberal use of views is a key aspect of good SQL database design. Views allow you to en-
capsulate the details of the structure of your tables, which might change as your application evolves,
behind consistent interfaces.

Views can be used in almost any place a real table can be used. Building views upon other views is
not uncommon.

3.3. Foreign Keys

Recall the weather and cities tables from Chapter 2. Consider the following problem: You want
to make sure that no one can insert rows in the weather table that do not have a matching entry
in the cities table. This is called maintaining the referential integrity of your data. In simplistic
database systems this would be implemented (if at all) by first looking at the cities table to check
if a matching record exists, and then inserting or rejecting the new weather records. This approach
has a number of problems and is very inconvenient, so PostgreSQL can do this for you.

The new declaration of the tables would look like this:

CREATE TABLE cities (
city varchar (80) primary key,
location point

14

Chapter 3. Advanced Features

CREATE TABLE weather (
city varchar (80) references cities(city),
temp_lo int,
temp_hi int,
prcp real,
date date
)i

Now try inserting an invalid record:
INSERT INTO weather VALUES (’'Berkeley’, 45, 53, 0.0, ’1994-11-28");

ERROR: insert or update on table "weather" violates foreign key constraint "weather_cit
DETAIL: Key (city)=(Berkeley) 1is not present in table "cities".

The behavior of foreign keys can be finely tuned to your application. We will not go beyond this simple
example in this tutorial, but just refer you to Chapter 5 for more information. Making correct use of
foreign keys will definitely improve the quality of your database applications, so you are strongly
encouraged to learn about them.

3.4. Transactions

Transactions are a fundamental concept of all database systems. The essential point of a transaction is
that it bundles multiple steps into a single, all-or-nothing operation. The intermediate states between
the steps are not visible to other concurrent transactions, and if some failure occurs that prevents the
transaction from completing, then none of the steps affect the database at all.

For example, consider a bank database that contains balances for various customer accounts, as well
as total deposit balances for branches. Suppose that we want to record a payment of $100.00 from
Alice’s account to Bob’s account. Simplifying outrageously, the SQL commands for this might look
like:

UPDATE accounts SET balance = balance - 100.00
WHERE name = ’Alice’;
UPDATE branches SET balance = balance - 100.00
WHERE name = (SELECT branch_name FROM accounts WHERE name = ’'Alice’);
UPDATE accounts SET balance = balance + 100.00
WHERE name = ’Bob’;
UPDATE branches SET balance = balance + 100.00
WHERE name = (SELECT branch_name FROM accounts WHERE name = ’'Bob’);

The details of these commands are not important here; the important point is that there are several
separate updates involved to accomplish this rather simple operation. Our bank’s officers will want to
be assured that either all these updates happen, or none of them happen. It would certainly not do for
a system failure to result in Bob receiving $100.00 that was not debited from Alice. Nor would Alice
long remain a happy customer if she was debited without Bob being credited. We need a guarantee
that if something goes wrong partway through the operation, none of the steps executed so far will
take effect. Grouping the updates into a transaction gives us this guarantee. A transaction is said to
be atomic: from the point of view of other transactions, it either happens completely or not at all.

15

Chapter 3. Advanced Features

We also want a guarantee that once a transaction is completed and acknowledged by the database
system, it has indeed been permanently recorded and won’t be lost even if a crash ensues shortly
thereafter. For example, if we are recording a cash withdrawal by Bob, we do not want any chance that
the debit to his account will disappear in a crash just after he walks out the bank door. A transactional
database guarantees that all the updates made by a transaction are logged in permanent storage (i.e.,
on disk) before the transaction is reported complete.

Another important property of transactional databases is closely related to the notion of atomic up-
dates: when multiple transactions are running concurrently, each one should not be able to see the
incomplete changes made by others. For example, if one transaction is busy totalling all the branch
balances, it would not do for it to include the debit from Alice’s branch but not the credit to Bob’s
branch, nor vice versa. So transactions must be all-or-nothing not only in terms of their permanent
effect on the database, but also in terms of their visibility as they happen. The updates made so far by
an open transaction are invisible to other transactions until the transaction completes, whereupon all
the updates become visible simultaneously.

In PostgreSQL, a transaction is set up by surrounding the SQL commands of the transaction with
BEGIN and COMMIT commands. So our banking transaction would actually look like:

BEGIN;

UPDATE accounts SET balance = balance - 100.00
WHERE name = 'Alice’;

-— etc etc

COMMIT;

If, partway through the transaction, we decide we do not want to commit (perhaps we just noticed that
Alice’s balance went negative), we can issue the command ROLLBACK instead of COMMIT, and all our
updates so far will be canceled.

PostgreSQL actually treats every SQL statement as being executed within a transaction. If you do not
issue a BEGIN command, then each individual statement has an implicit BEGIN and (if successful)
coMMIT wrapped around it. A group of statements surrounded by BEGIN and COMMIT is sometimes
called a transaction block.

Note: Some client libraries issue BEcTN and comutT commands automatically, so that you might
get the effect of transaction blocks without asking. Check the documentation for the interface you
are using.

It’s possible to control the statements in a transaction in a more granular fashion through the use of
savepoints. Savepoints allow you to selectively discard parts of the transaction, while committing the
rest. After defining a savepoint with SAVEPOINT, you can if needed roll back to the savepoint with
ROLLBACK TO. All the transaction’s database changes between defining the savepoint and rolling
back to it are discarded, but changes earlier than the savepoint are kept.

After rolling back to a savepoint, it continues to be defined, so you can roll back to it several times.
Conversely, if you are sure you won’t need to roll back to a particular savepoint again, it can be
released, so the system can free some resources. Keep in mind that either releasing or rolling back to
a savepoint will automatically release all savepoints that were defined after it.

All this is happening within the transaction block, so none of it is visible to other database sessions.
When and if you commit the transaction block, the committed actions become visible as a unit to
other sessions, while the rolled-back actions never become visible at all.

16

Chapter 3. Advanced Features

Remembering the bank database, suppose we debit $100.00 from Alice’s account, and credit Bob’s
account, only to find later that we should have credited Wally’s account. We could do it using save-
points like this:

BEGIN;

UPDATE accounts SET balance = balance - 100.00
WHERE name = ’'Alice’;

SAVEPOINT my_savepoint;

UPDATE accounts SET balance = balance + 100.00
WHERE name = ’'Bob’;

-— oops ... forget that and use Wally’s account

ROLLBACK TO my_savepoint;

UPDATE accounts SET balance = balance + 100.00
WHERE name = ’"Wally’;

COMMIT;

This example is, of course, oversimplified, but there’s a lot of control possible in a transaction block
through the use of savepoints. Moreover, ROLLBACK TO is the only way to regain control of a transac-
tion block that was put in aborted state by the system due to an error, short of rolling it back completely
and starting again.

3.5. Window Functions

A window function performs a calculation across a set of table rows that are somehow related to the
current row. This is comparable to the type of calculation that can be done with an aggregate function.
But unlike regular aggregate functions, use of a window function does not cause rows to become
grouped into a single output row — the rows retain their separate identities. Behind the scenes, the
window function is able to access more than just the current row of the query result.

Here is an example that shows how to compare each employee’s salary with the average salary in his
or her department:

SELECT depname, empno, salary, avg(salary) OVER (PARTITION BY depname) FROM empsalary;

depname | empno | salary | avg
——————————— -t
develop | 11 | 5200 | 5020.0000000000000000
develop | 7 4200 | 5020.0000000000000000
develop | 9 | 4500 | 5020.0000000000000000
develop | 8 | 6000 | 5020.0000000000000000
develop | 10 | 5200 | 5020.0000000000000000
personnel | 5 | 3500 | 3700.0000000000000000
personnel | 2 | 3900 | 3700.0000000000000000
sales | 3 4800 | 4866.6666666666666667
sales | 1] 5000 | 4866.6666666666666667
sales | 4 | 4800 | 4866.6666666666666667
(10 rows)

The first three output columns come directly from the table empsalary, and there is one output row
for each row in the table. The fourth column represents an average taken across all the table rows that
have the same depname value as the current row. (This actually is the same function as the regular avg
aggregate function, but the OVER clause causes it to be treated as a window function and computed
across an appropriate set of rows.)

17

Chapter 3. Advanced Features

A window function call always contains an OVER clause directly following the window function’s
name and argument(s). This is what syntactically distinguishes it from a regular function or aggregate
function. The OVER clause determines exactly how the rows of the query are split up for processing by
the window function. The PARTITION BY list within OVER specifies dividing the rows into groups, or
partitions, that share the same values of the PARTITION BY expression(s). For each row, the window
function is computed across the rows that fall into the same partition as the current row.

You can also control the order in which rows are processed by window functions using ORDER BY
within ovER. (The window ORDER BY does not even have to match the order in which the rows are
output.) Here is an example:

SELECT depname, empno, salary, rank() OVER (PARTITION BY depname ORDER BY salary DESC) F

depname | empno | salary | rank
——————————— e
develop | 8 | 6000 | 1
develop | 10 | 5200 | 2
develop | 11 | 5200 | 2
develop | 9 | 4500 | 4
develop | 7 4200 | 5
personnel | 2 3900 | 1
personnel | 5 3500 | 2
sales | 1] 5000 | 1
sales | 4 | 4800 | 2
sales | 3 4800 | 2
(10 rows)

As shown here, the rank function produces a numerical rank within the current row’s partition for
each distinct ORDER BY value, in the order defined by the ORDER BY clause. rank needs no explicit
parameter, because its behavior is entirely determined by the OVER clause.

The rows considered by a window function are those of the “virtual table” produced by the query’s
FROM clause as filtered by its WHERE, GROUP BY, and HAVING clauses if any. For example, a row
removed because it does not meet the WHERE condition is not seen by any window function. A query
can contain multiple window functions that slice up the data in different ways by means of different
OVER clauses, but they all act on the same collection of rows defined by this virtual table.

We already saw that ORDER BY can be omitted if the ordering of rows is not important. It is also
possible to omit PARTITION BY, in which case there is just one partition containing all the rows.

There is another important concept associated with window functions: for each row, there is a set of
rows within its partition called its window frame. Many (but not all) window functions act only on
the rows of the window frame, rather than of the whole partition. By default, if ORDER BY is supplied
then the frame consists of all rows from the start of the partition up through the current row, plus any
following rows that are equal to the current row according to the ORDER BY clause. When ORDER BY
is omitted the default frame consists of all rows in the partition. ' Here is an example using sum:

SELECT salary, sum(salary) OVER () FROM empsalary;

salary | sum
________ b
5200 | 47100
5000 | 47100
3500 | 47100
4800 | 47100

1. There are options to define the window frame in other ways, but this tutorial does not cover them. See Section 4.2.8 for
details.

18

47100
47100
47100
47100
47100
47100

Chapter 3. Advanced Features

Above, since there is no ORDER BY in the OVER clause, the window frame is the same as the partition,
which for lack of PARTITION BY is the whole table; in other words each sum is taken over the whole
table and so we get the same result for each output row. But if we add an ORDER BY clause, we get
very different results:

SELECT sa

lary, sum(salary) OVER (ORDER BY salary) FROM empsalary;

Here the sum is taken from the first (lowest) salary up through the current one, including any dupli-
cates of the current one (notice the results for the duplicated salaries).

Window functions are permitted only in the SELECT list and the ORDER BY clause of the query. They
are forbidden elsewhere, such as in GROUP BY, HAVING and WHERE clauses. This is because they
logically execute after the processing of those clauses. Also, window functions execute after regular
aggregate functions. This means it is valid to include an aggregate function call in the arguments of a
window function, but not vice versa.

If there is a need to filter or group rows after the window calculations are performed, you can use a
sub-select. For example:

SELECT depname,

FROM
(SELECT

FROM
) AS ss
WHERE pos

empno,

salary, enroll_date

depname, empno, salary, enroll_date,

rank () OVER
empsalary
< 3;

(PARTITION BY depname ORDER BY salary DESC,

The above query only shows the rows from the inner query having rank less than 3.

empno)

AS pos

When a query involves multiple window functions, it is possible to write out each one with a separate
OVER clause, but this is duplicative and error-prone if the same windowing behavior is wanted for
several functions. Instead, each windowing behavior can be named in a WINDOW clause and then
referenced in OVER. For example:

SELECT sum(salary)

FROM empsalary

OVER w, avg(salary) OVER w

19

Chapter 3. Advanced Features

WINDOW w AS (PARTITION BY depname ORDER BY salary DESC);

More details about window functions can be found in Section 4.2.8, Section 9.19, Section 7.2.4, and
the SELECT reference page.

3.6. Inheritance

Inheritance is a concept from object-oriented databases. It opens up interesting new possibilities of
database design.

Let’s create two tables: A table cities and a table capitals. Naturally, capitals are also cities, so
you want some way to show the capitals implicitly when you list all cities. If you’re really clever you
might invent some scheme like this:

CREATE TABLE capitals (
name text,
population real,
altitude int, -— (in ft)
state char (2)
)

CREATE TABLE non_capitals (
name text,
population real,
altitude int -— (in ft)
)i

CREATE VIEW cities AS
SELECT name, population, altitude FROM capitals
UNION
SELECT name, population, altitude FROM non_capitals;

This works OK as far as querying goes, but it gets ugly when you need to update several rows, for one
thing.

A better solution is this:

CREATE TABLE cities (

name text,

population real,

altitude int —— (in ft)
)i

CREATE TABLE capitals (
state char (2)
) INHERITS (cities);

In this case, a row of capitals inherits all columns (name, population, and altitude) from its
parent, cities. The type of the column name is text, a native PostgreSQL type for variable length
character strings. State capitals have an extra column, state, that shows their state. In PostgreSQL,
a table can inherit from zero or more other tables.

20

Chapter 3. Advanced Features

For example, the following query finds the names of all cities, including state capitals, that are located
at an altitude over 500 feet:

SELECT name, altitude
FROM cities
WHERE altitude > 500;

which returns:

name | altitude
___________ b
Las Vegas | 2174
Mariposa | 1953
Madison | 845
(3 rows)

On the other hand, the following query finds all the cities that are not state capitals and are situated at
an altitude of 500 feet or higher:

SELECT name, altitude
FROM ONLY cities
WHERE altitude > 500;

name | altitude
,,,,,,,,,,, [P
Las Vegas | 2174
Mariposa | 1953
(2 rows)

Here the oNLY before cities indicates that the query should be run over only the cities table, and
not tables below cities in the inheritance hierarchy. Many of the commands that we have already
discussed — SELECT, UPDATE, and DELETE — support this ONLY notation.

Note: Although inheritance is frequently useful, it has not been integrated with unique constraints
or foreign keys, which limits its usefulness. See Section 5.8 for more detail.

3.7. Conclusion

PostgreSQL has many features not touched upon in this tutorial introduction, which has been oriented
toward newer users of SQL. These features are discussed in more detail in the remainder of this book.

If you feel you need more introductory material, please visit the PostgreSQL web site? for links to
more resources.

2. http://www.postgresql.org

21

Il. The SQL Language

This part describes the use of the SQL language in PostgreSQL. We start with describing the general
syntax of SQL, then explain how to create the structures to hold data, how to populate the database,
and how to query it. The middle part lists the available data types and functions for use in SQL
commands. The rest treats several aspects that are important for tuning a database for optimal perfor-
mance.

The information in this part is arranged so that a novice user can follow it start to end to gain a full
understanding of the topics without having to refer forward too many times. The chapters are intended
to be self-contained, so that advanced users can read the chapters individually as they choose. The
information in this part is presented in a narrative fashion in topical units. Readers looking for a
complete description of a particular command should see Part VI.

Readers of this part should know how to connect to a PostgreSQL database and issue SQL commands.
Readers that are unfamiliar with these issues are encouraged to read Part I first. SQL commands are
typically entered using the PostgreSQL interactive terminal psql, but other programs that have similar
functionality can be used as well.

Chapter 4. SQL Syntax

This chapter describes the syntax of SQL. It forms the foundation for understanding the following
chapters which will go into detail about how SQL commands are applied to define and modify data.

We also advise users who are already familiar with SQL to read this chapter carefully because it
contains several rules and concepts that are implemented inconsistently among SQL databases or that
are specific to PostgreSQL.

4.1. Lexical Structure

SQL input consists of a sequence of commands. A command is composed of a sequence of tokens,
6,9

terminated by a semicolon (“;”). The end of the input stream also terminates a command. Which
tokens are valid depends on the syntax of the particular command.

A token can be a key word, an identifier, a quoted identifier, a literal (or constant), or a special
character symbol. Tokens are normally separated by whitespace (space, tab, newline), but need not
be if there is no ambiguity (which is generally only the case if a special character is adjacent to some
other token type).

For example, the following is (syntactically) valid SQL input:

SELECT % FROM MY_TABLE;
UPDATE MY_TABLE SET A = 5;
INSERT INTO MY_TABLE VALUES (3, ’"hi there’);

This is a sequence of three commands, one per line (although this is not required; more than one
command can be on a line, and commands can usefully be split across lines).

Additionally, comments can occur in SQL input. They are not tokens, they are effectively equivalent
to whitespace.

The SQL syntax is not very consistent regarding what tokens identify commands and which are
operands or parameters. The first few tokens are generally the command name, so in the above ex-
ample we would usually speak of a “SELECT”, an “UPDATE”, and an “INSERT” command. But for
instance the UPDATE command always requires a SET token to appear in a certain position, and this
particular variation of INSERT also requires a VALUES in order to be complete. The precise syntax
rules for each command are described in Part VI.

4.1.1. Identifiers and Key Words

Tokens such as SELECT, UPDATE, or VALUES in the example above are examples of key words, that
is, words that have a fixed meaning in the SQL language. The tokens MY_TABLE and A are exam-
ples of identifiers. They identify names of tables, columns, or other database objects, depending on
the command they are used in. Therefore they are sometimes simply called “names”. Key words and
identifiers have the same lexical structure, meaning that one cannot know whether a token is an iden-
tifier or a key word without knowing the language. A complete list of key words can be found in
Appendix C.

SQL identifiers and key words must begin with a letter (a-z, but also letters with diacritical marks
and non-Latin letters) or an underscore (_). Subsequent characters in an identifier or key word can be
letters, underscores, digits (0-9), or dollar signs ($). Note that dollar signs are not allowed in identifiers
according to the letter of the SQL standard, so their use might render applications less portable. The

24

Chapter 4. SQL Syntax

SQL standard will not define a key word that contains digits or starts or ends with an underscore, so
identifiers of this form are safe against possible conflict with future extensions of the standard.

The system uses no more than NAMEDATALEN-1 bytes of an identifier; longer names can be written
in commands, but they will be truncated. By default, NAMEDATALEN is 64 so the maximum identifier
length is 63 bytes. If this limit is problematic, it can be raised by changing the NAMEDATALEN constant

in src/include/pg_config_manual.h.

Key words and unquoted identifiers are case insensitive. Therefore:

UPDATE MY_TABLE SET A = 5;

can equivalently be written as:

uPDaTE my_TabLE SeT a = 5;

A convention often used is to write key words in upper case and names in lower case, e.g.:

UPDATE my_table SET a = 5;

There is a second kind of identifier: the delimited identifier or quoted identifier. It is formed by en-
closing an arbitrary sequence of characters in double-quotes ("). A delimited identifier is always an
identifier, never a key word. So "select" could be used to refer to a column or table named “select”,
whereas an unquoted select would be taken as a key word and would therefore provoke a parse
error when used where a table or column name is expected. The example can be written with quoted
identifiers like this:

UPDATE "my_table" SET "a" = 5;

Quoted identifiers can contain any character, except the character with code zero. (To include a double
quote, write two double quotes.) This allows constructing table or column names that would otherwise
not be possible, such as ones containing spaces or ampersands. The length limitation still applies.

A variant of quoted identifiers allows including escaped Unicode characters identified by their code
points. This variant starts with Us (upper or lower case U followed by ampersand) immediately before
the opening double quote, without any spaces in between, for example Us"foo". (Note that this
creates an ambiguity with the operator &. Use spaces around the operator to avoid this problem.) Inside
the quotes, Unicode characters can be specified in escaped form by writing a backslash followed by
the four-digit hexadecimal code point number or alternatively a backslash followed by a plus sign
followed by a six-digit hexadecimal code point number. For example, the identifier "data" could be
written as

Us"d\0061t\+000061"
The following less trivial example writes the Russian word “slon” (elephant) in Cyrillic letters:

U&"\0441\043B\043E\043D"

If a different escape character than backslash is desired, it can be specified using the UESCAPE clause
after the string, for example:

U&"d!0061t!+000061" UESCAPE ' !’

25

Chapter 4. SQL Syntax

The escape character can be any single character other than a hexadecimal digit, the plus sign, a single
quote, a double quote, or a whitespace character. Note that the escape character is written in single
quotes, not double quotes.

To include the escape character in the identifier literally, write it twice.

The Unicode escape syntax works only when the server encoding is UTF8. When other server encod-
ings are used, only code points in the ASCII range (up to \007F) can be specified. Both the 4-digit
and the 6-digit form can be used to specify UTF-16 surrogate pairs to compose characters with code
points larger than U+FFFF, although the availability of the 6-digit form technically makes this un-
necessary. (Surrogate pairs are not stored directly, but combined into a single code point that is then
encoded in UTF-8.)

Quoting an identifier also makes it case-sensitive, whereas unquoted names are always folded to lower
case. For example, the identifiers FOO, foo, and "foo" are considered the same by PostgreSQL, but
"Foo" and "FOO" are different from these three and each other. (The folding of unquoted names to
lower case in PostgreSQL is incompatible with the SQL standard, which says that unquoted names
should be folded to upper case. Thus, foo should be equivalent to "FOO" not "foo" according to the
standard. If you want to write portable applications you are advised to always quote a particular name
or never quote it.)

4.1.2. Constants

There are three kinds of implicitly-typed constants in PostgreSQL: strings, bit strings, and numbers.
Constants can also be specified with explicit types, which can enable more accurate representation and
more efficient handling by the system. These alternatives are discussed in the following subsections.

4.1.2.1. String Constants

A string constant in SQL is an arbitrary sequence of characters bounded by single quotes (), for
example ' This is a string’. To include a single-quote character within a string constant, write
two adjacent single quotes, e.g., ' Dianne”s horse’. Note that this is not the same as a double-quote
character (").

Two string constants that are only separated by whitespace with at least one newline are concatenated
and effectively treated as if the string had been written as one constant. For example:

SELECT '’ foo’
"bar’;

is equivalent to:

SELECT ' foobar’;

but:

SELECT ' foo’ "bar’;

is not valid syntax. (This slightly bizarre behavior is specified by SQL; PostgreSQL is following the
standard.)

26

Chapter 4. SQL Syntax

4.1.2.2. String Constants with C-style Escapes

PostgreSQL also accepts “escape” string constants, which are an extension to the SQL standard.
An escape string constant is specified by writing the letter E (upper or lower case) just before the
opening single quote, e.g., E’ foo’. (When continuing an escape string constant across lines, write
E only before the first opening quote.) Within an escape string, a backslash character (\) begins a
C-like backslash escape sequence, in which the combination of backslash and following character(s)
represent a special byte value, as shown in Table 4-1.

Table 4-1. Backslash Escape Sequences

Backslash Escape Sequence Interpretation

\b backspace

\f form feed

\n newline

\r carriage return

\t tab

\o, \oo, \ooo (0c=0-7) octal byte value

\xh, \xhh (h=0-9,A-F) hexadecimal byte value

\uxxxx, \Uxxxxxxxx (x=0-9, A -F) 16 or 32-bit hexadecimal Unicode character
value

Any other character following a backslash is taken literally. Thus, to include a backslash character,
write two backslashes (\\). Also, a single quote can be included in an escape string by writing \’, in
addition to the normal way of ”.

It is your responsibility that the byte sequences you create, especially when using the octal or hex-
adecimal escapes, compose valid characters in the server character set encoding. When the server
encoding is UTF-8, then the Unicode escapes or the alternative Unicode escape syntax, explained in
Section 4.1.2.3, should be used instead. (The alternative would be doing the UTF-8 encoding by hand
and writing out the bytes, which would be very cumbersome.)

The Unicode escape syntax works fully only when the server encoding is UTF8. When other server
encodings are used, only code points in the ASCII range (up to \u007F) can be specified. Both the
4-digit and the 8-digit form can be used to specify UTF-16 surrogate pairs to compose characters
with code points larger than U+FFFF, although the availability of the 8-digit form technically makes
this unnecessary. (When surrogate pairs are used when the server encoding is UTF8, they are first
combined into a single code point that is then encoded in UTF-8.)

Caution

If the configuration parameter standard_conforming_strings is off, then Post-
greSQL recognizes backslash escapes in both regular and escape string con-
stants. However, as of PostgreSQL 9.1, the default is on, meaning that back-
slash escapes are recognized only in escape string constants. This behavior
is more standards-compliant, but might break applications which rely on the
historical behavior, where backslash escapes were always recognized. As a
workaround, you can set this parameter to of £, but it is better to migrate away
from using backslash escapes. If you need to use a backslash escape to rep-
resent a special character, write the string constant with an k.

In addition to standard_conforming_strings, the configuration parameters
escape_string_warning and backslash_quote govern treatment of backslashes
in string constants.

27

Chapter 4. SQL Syntax

The character with the code zero cannot be in a string constant.

4.1.2.3. String Constants with Unicode Escapes

PostgreSQL also supports another type of escape syntax for strings that allows specifying arbitrary
Unicode characters by code point. A Unicode escape string constant starts with Us (upper or lower
case letter U followed by ampersand) immediately before the opening quote, without any spaces in
between, for example Us’ foo’ . (Note that this creates an ambiguity with the operator &. Use spaces
around the operator to avoid this problem.) Inside the quotes, Unicode characters can be specified
in escaped form by writing a backslash followed by the four-digit hexadecimal code point number
or alternatively a backslash followed by a plus sign followed by a six-digit hexadecimal code point
number. For example, the string " data’ could be written as

Us’d\0061t\+000061"
The following less trivial example writes the Russian word “slon” (elephant) in Cyrillic letters:

Us&’\0441\043B\043E\043D’

If a different escape character than backslash is desired, it can be specified using the UESCAPE clause
after the string, for example:

U&’d!0061t!+000061" UESCAPE ’!’

The escape character can be any single character other than a hexadecimal digit, the plus sign, a single
quote, a double quote, or a whitespace character.

The Unicode escape syntax works only when the server encoding is UTF8. When other server encod-
ings are used, only code points in the ASCII range (up to \007F) can be specified. Both the 4-digit
and the 6-digit form can be used to specify UTF-16 surrogate pairs to compose characters with code
points larger than U+FFFF, although the availability of the 6-digit form technically makes this unnec-
essary. (When surrogate pairs are used when the server encoding is UTF 8, they are first combined into
a single code point that is then encoded in UTF-8.)

Also, the Unicode escape syntax for string constants only works when the configuration parameter
standard_conforming_strings is turned on. This is because otherwise this syntax could confuse clients
that parse the SQL statements to the point that it could lead to SQL injections and similar security
issues. If the parameter is set to off, this syntax will be rejected with an error message.

To include the escape character in the string literally, write it twice.

4.1.2.4. Dollar-quoted String Constants

While the standard syntax for specifying string constants is usually convenient, it can be difficult to
understand when the desired string contains many single quotes or backslashes, since each of those
must be doubled. To allow more readable queries in such situations, PostgreSQL provides another
way, called “dollar quoting”, to write string constants. A dollar-quoted string constant consists of a
dollar sign ($), an optional “tag” of zero or more characters, another dollar sign, an arbitrary sequence
of characters that makes up the string content, a dollar sign, the same tag that began this dollar quote,
and a dollar sign. For example, here are two different ways to specify the string “Dianne’s horse”
using dollar quoting:

$$Dianne’s horses

28

Chapter 4. SQL Syntax
$SomeTag$Dianne’s horse$SomeTag$

Notice that inside the dollar-quoted string, single quotes can be used without needing to be escaped.
Indeed, no characters inside a dollar-quoted string are ever escaped: the string content is always writ-
ten literally. Backslashes are not special, and neither are dollar signs, unless they are part of a sequence
matching the opening tag.

It is possible to nest dollar-quoted string constants by choosing different tags at each nesting level.
This is most commonly used in writing function definitions. For example:

Sfunction$
BEGIN
RETURN ($1 ~ g[\t\r\n\v\\1q);
END;
Sfunction$

Here, the sequence g [\t\r\n\v\\1s$gs represents a dollar-quoted literal string [\t\r\n\v\\],
which will be recognized when the function body is executed by PostgreSQL. But since the sequence
does not match the outer dollar quoting delimiter $functions$, it is just some more characters within
the constant so far as the outer string is concerned.

The tag, if any, of a dollar-quoted string follows the same rules as an unquoted identifier, except that
it cannot contain a dollar sign. Tags are case sensitive, S0 Stag$String contentS$tag$ is correct,
but $TAGSString content$tags$ is not.

A dollar-quoted string that follows a keyword or identifier must be separated from it by whitespace;
otherwise the dollar quoting delimiter would be taken as part of the preceding identifier.

Dollar quoting is not part of the SQL standard, but it is often a more convenient way to write com-
plicated string literals than the standard-compliant single quote syntax. It is particularly useful when
representing string constants inside other constants, as is often needed in procedural function defini-
tions. With single-quote syntax, each backslash in the above example would have to be written as four
backslashes, which would be reduced to two backslashes in parsing the original string constant, and
then to one when the inner string constant is re-parsed during function execution.

4.1.2.5. Bit-string Constants

Bit-string constants look like regular string constants with a B (upper or lower case) immediately
before the opening quote (no intervening whitespace), e.g., B’ 1001’ . The only characters allowed
within bit-string constants are 0 and 1.

Alternatively, bit-string constants can be specified in hexadecimal notation, using a leading x (upper
or lower case), e.g., X’ LFF’ . This notation is equivalent to a bit-string constant with four binary digits
for each hexadecimal digit.

Both forms of bit-string constant can be continued across lines in the same way as regular string
constants. Dollar quoting cannot be used in a bit-string constant.

4.1.2.6. Numeric Constants

Numeric constants are accepted in these general forms:

digits

digits. |[digits] [e[+-]digits]
[digits] .digits[e[+-]digits]
digitse[+-]digits

29

Chapter 4. SQL Syntax

where digits is one or more decimal digits (O through 9). At least one digit must be before or
after the decimal point, if one is used. At least one digit must follow the exponent marker (e), if one
is present. There cannot be any spaces or other characters embedded in the constant. Note that any
leading plus or minus sign is not actually considered part of the constant; it is an operator applied to
the constant.

These are some examples of valid numeric constants:

42

35

4.

.001

5e2
1.925¢-3

A numeric constant that contains neither a decimal point nor an exponent is initially presumed to be
type integer if its value fits in type integer (32 bits); otherwise it is presumed to be type bigint
if its value fits in type bigint (64 bits); otherwise it is taken to be type numeric. Constants that
contain decimal points and/or exponents are always initially presumed to be type numeric.

The initially assigned data type of a numeric constant is just a starting point for the type resolution
algorithms. In most cases the constant will be automatically coerced to the most appropriate type de-
pending on context. When necessary, you can force a numeric value to be interpreted as a specific data
type by casting it. For example, you can force a numeric value to be treated as type real (float4)
by writing:

REAL ’1.23" —-- string style
1.23::REAL —-— PostgreSQL (historical) style

These are actually just special cases of the general casting notations discussed next.

4.1.2.7. Constants of Other Types

A constant of an arbitrary type can be entered using any one of the following notations:

type ' string’
! string’ ::type
CAST ("string’ AS type)

The string constant’s text is passed to the input conversion routine for the type called ¢ ype. The result
is a constant of the indicated type. The explicit type cast can be omitted if there is no ambiguity as to
the type the constant must be (for example, when it is assigned directly to a table column), in which
case it is automatically coerced.

The string constant can be written using either regular SQL notation or dollar-quoting.

It is also possible to specify a type coercion using a function-like syntax:
typename (' string’)

but not all type names can be used in this way; see Section 4.2.9 for details.

The : :, CAST (), and function-call syntaxes can also be used to specify run-time type conversions of
arbitrary expressions, as discussed in Section 4.2.9. To avoid syntactic ambiguity, the type ’ string’
syntax can only be used to specify the type of a simple literal constant. Another restriction on the type

30

Chapter 4. SQL Syntax

" string’ syntax is that it does not work for array types; use : : or CAST () to specify the type of an
array constant.

The cAST () syntax conforms to SQL. The type ’string’ syntax is a generalization of the standard:
SQL specifies this syntax only for a few data types, but PostgreSQL allows it for all types. The syntax
with : : is historical PostgreSQL usage, as is the function-call syntax.

4.1.3. Operators

An operator name is a sequence of up to NAMEDATALEN-1 (63 by default) characters from the follow-
ing list:

+-F/<>=~1@# D &I ?

There are a few restrictions on operator names, however:

« —-and /=« cannot appear anywhere in an operator name, since they will be taken as the start of a
comment.

« A multiple-character operator name cannot end in + or —, unless the name also contains at least one
of these characters:

~l@#DP N&I?

For example, @- is an allowed operator name, but «- is not. This restriction allows PostgreSQL to
parse SQL-compliant queries without requiring spaces between tokens.

When working with non-SQL-standard operator names, you will usually need to separate adjacent
operators with spaces to avoid ambiguity. For example, if you have defined a left unary operator
named @, you cannot write X«@Y; you must write X~ @Y to ensure that PostgreSQL reads it as two
operator names not one.

4.1.4. Special Characters

Some characters that are not alphanumeric have a special meaning that is different from being an
operator. Details on the usage can be found at the location where the respective syntax element is
described. This section only exists to advise the existence and summarize the purposes of these char-
acters.

A dollar sign (s) followed by digits is used to represent a positional parameter in the body of
a function definition or a prepared statement. In other contexts the dollar sign can be part of an
identifier or a dollar-quoted string constant.

« Parentheses (()) have their usual meaning to group expressions and enforce precedence. In some
cases parentheses are required as part of the fixed syntax of a particular SQL command.

« Brackets ([1) are used to select the elements of an array. See Section 8.14 for more information on
arrays.

« Commas (,) are used in some syntactical constructs to separate the elements of a list.

31

Chapter 4. SQL Syntax
« The semicolon (;) terminates an SQL command. It cannot appear anywhere within a command,
except within a string constant or quoted identifier.

« The colon (:) is used to select “slices” from arrays. (See Section 8.14.) In certain SQL dialects
(such as Embedded SQL), the colon is used to prefix variable names.

+ The asterisk (x) is used in some contexts to denote all the fields of a table row or composite value.
It also has a special meaning when used as the argument of an aggregate function, namely that the
aggregate does not require any explicit parameter.

« The period (.) is used in numeric constants, and to separate schema, table, and column names.

4.1.5. Comments

A comment is a sequence of characters beginning with double dashes and extending to the end of the
line, e.g.:

—— This 1is a standard SQL comment

Alternatively, C-style block comments can be used:

/* multiline comment
* with nesting: /* nested block comment =/

*/

where the comment begins with /» and extends to the matching occurrence of » /. These block com-
ments nest, as specified in the SQL standard but unlike C, so that one can comment out larger blocks
of code that might contain existing block comments.

A comment is removed from the input stream before further syntax analysis and is effectively replaced
by whitespace.

4.1.6. Operator Precedence

Table 4-2 shows the precedence and associativity of the operators in PostgreSQL. Most operators have
the same precedence and are left-associative. The precedence and associativity of the operators is
hard-wired into the parser. This can lead to non-intuitive behavior; for example the Boolean operators
< and > have a different precedence than the Boolean operators <= and >=. Also, you will sometimes
need to add parentheses when using combinations of binary and unary operators. For instance:

SELECT 5 ! - 6;
will be parsed as:
SELECT 5 ! (- 6);

because the parser has no idea — until it is too late — that ! is defined as a postfix operator, not an
infix one. To get the desired behavior in this case, you must write:

SELECT (5 !) - 6;

This is the price one pays for extensibility.

32

Table 4-2. Operator Precedence (decreasing)

Chapter 4. SQL Syntax

Operator/Element Associativity Description
left table/column name separator
left PostgreSQL-style typecast

[] left array element selection

+ - right unary plus, unary minus

~ left exponentiation

x /% left multiplication, division,
modulo

+ - left addition, subtraction

IS IS TRUE, IS FALSE, IS
NULL, etc

ISNULL test for null

NOTNULL test for not null

(any other) left all other native and user-defined
operators

IN set membership

BETWEEN range containment

OVERLAPS time interval overlap

LIKE ILIKE SIMILAR string pattern matching

<> less than, greater than

= right equality, assignment

NOT right logical negation

AND left logical conjunction

OR left logical disjunction

Note that the operator precedence rules also apply to user-defined operators that have the same names
as the built-in operators mentioned above. For example, if you define a “+” operator for some custom
data type it will have the same precedence as the built-in “+” operator, no matter what yours does.

When a schema-qualified operator name is used in the OPERATOR syntax, as for example in:
SELECT 3 OPERATOR (pg_catalog.+) 4;

the OPERATOR construct is taken to have the default precedence shown in Table 4-2 for “any other”
operator. This is true no matter which specific operator appears inside OPERATOR () .

4.2. Value Expressions

Value expressions are used in a variety of contexts, such as in the target list of the SELECT command,
as new column values in INSERT or UPDATE, or in search conditions in a number of commands. The
result of a value expression is sometimes called a scalar, to distinguish it from the result of a table
expression (which is a table). Value expressions are therefore also called scalar expressions (or even
simply expressions). The expression syntax allows the calculation of values from primitive parts using
arithmetic, logical, set, and other operations.

33

Chapter 4. SQL Syntax

A value expression is one of the following:

A constant or literal value

+ A column reference

« A positional parameter reference, in the body of a function definition or prepared statement
+ A subscripted expression

» A field selection expression
+ An operator invocation
A function call

+ An aggregate expression

« A window function call

« A type cast

+ A collation expression

» A scalar subquery

« An array constructor

« A row constructor

+ Another value expression in parentheses (used to group subexpressions and override precedence)

In addition to this list, there are a number of constructs that can be classified as an expression but do
not follow any general syntax rules. These generally have the semantics of a function or operator and
are explained in the appropriate location in Chapter 9. An example is the IS NULL clause.

We have already discussed constants in Section 4.1.2. The following sections discuss the remaining
options.

4.2.1. Column References

A column can be referenced in the form:

correlation.columnname

correlation is the name of a table (possibly qualified with a schema name), or an alias for a table
defined by means of a FROM clause. The correlation name and separating dot can be omitted if the
column name is unique across all the tables being used in the current query. (See also Chapter 7.)

4.2.2. Positional Parameters

A positional parameter reference is used to indicate a value that is supplied externally to an SQL
statement. Parameters are used in SQL function definitions and in prepared queries. Some client
libraries also support specifying data values separately from the SQL command string, in which case
parameters are used to refer to the out-of-line data values. The form of a parameter reference is:

Snumber

34

Chapter 4. SQL Syntax

For example, consider the definition of a function, dept, as:

CREATE FUNCTION dept (text) RETURNS dept
AS $$ SELECT * FROM dept WHERE name = $1 $$
LANGUAGE SQL;

Here the $1 references the value of the first function argument whenever the function is invoked.

4.2.3. Subscripts

If an expression yields a value of an array type, then a specific element of the array value can be
extracted by writing

expression|subscript]
or multiple adjacent elements (an “array slice”) can be extracted by writing
expression|[lower_subscript:upper._subscript]

(Here, the brackets [] are meant to appear literally.) Each subscript is itself an expression, which
must yield an integer value.

In general the array expression must be parenthesized, but the parentheses can be omitted when
the expression to be subscripted is just a column reference or positional parameter. Also, multiple
subscripts can be concatenated when the original array is multidimensional. For example:

mytable.arraycolumn[4]
mytable.two_d_column[17] [34]
$1[10:42]
(arrayfunction(a,b)) [42]

The parentheses in the last example are required. See Section 8.14 for more about arrays.

4.2.4. Field Selection

If an expression yields a value of a composite type (row type), then a specific field of the row can be
extracted by writing

expression. fieldname

In general the row expression must be parenthesized, but the parentheses can be omitted when the
expression to be selected from is just a table reference or positional parameter. For example:

mytable.mycolumn
$1.somecolumn
(rowfunction(a,b)) .col3

(Thus, a qualified column reference is actually just a special case of the field selection syntax.) An
important special case is extracting a field from a table column that is of a composite type:

(compositecol) .somefield
(mytable.compositecol) .somefield

35

Chapter 4. SQL Syntax

The parentheses are required here to show that compositecol is a column name not a table name,
or that mytable is a table name not a schema name in the second case.

In a select list (see Section 7.3), you can ask for all fields of a composite value by writing . :

(compositecol) . *

4.2.5. Operator Invocations
There are three possible syntaxes for an operator invocation:
expression operator expression (binary infix operator)

operator expression (unary prefix operator)
expression operator (unary postfix operator)

where the operator token follows the syntax rules of Section 4.1.3, or is one of the key words AND,
OR, and NOT, or is a qualified operator name in the form:

OPERATOR (schema.operatorname)

Which particular operators exist and whether they are unary or binary depends on what operators have
been defined by the system or the user. Chapter 9 describes the built-in operators.

4.2.6. Function Calls

The syntax for a function call is the name of a function (possibly qualified with a schema name),
followed by its argument list enclosed in parentheses:

function_name ([expression [, expression ...]])

For example, the following computes the square root of 2:

sqrt (2)

The list of built-in functions is in Chapter 9. Other functions can be added by the user.

The arguments can optionally have names attached. See Section 4.3 for details.

Note: A function that takes a single argument of composite type can optionally be called using
field-selection syntax, and conversely field selection can be written in functional style. That is, the
notations col (table) and table.col are interchangeable. This behavior is not SQL-standard
but is provided in PostgreSQL because it allows use of functions to emulate “computed fields”.
For more information see Section 35.4.2.

36

Chapter 4. SQL Syntax

4.2.7. Aggregate Expressions

An aggregate expression represents the application of an aggregate function across the rows selected
by a query. An aggregate function reduces multiple inputs to a single output value, such as the sum or
average of the inputs. The syntax of an aggregate expression is one of the following:

aggregate_name (expression [, ...] [order_by clause])

aggregate_name (ALL expression [, ... 1 [order_by _clause])

aggregate_name (DISTINCT expression [, ...] [order_by clause])
(

aggregate_name *)

where aggregate_name is a previously defined aggregate (possibly qualified with a schema name),
expressionis any value expression that does not itself contain an aggregate expression or a window
function call, and order_by_clause is a optional ORDER BY clause as described below.

The first form of aggregate expression invokes the aggregate once for each input row. The second
form is the same as the first, since ALL is the default. The third form invokes the aggregate once for
each distinct value of the expression (or distinct set of values, for multiple expressions) found in the
input rows. The last form invokes the aggregate once for each input row; since no particular input
value is specified, it is generally only useful for the count () aggregate function.

Most aggregate functions ignore null inputs, so that rows in which one or more of the expression(s)
yield null are discarded. This can be assumed to be true, unless otherwise specified, for all built-in
aggregates.

For example, count () yields the total number of input rows; count (£1) yields the number of
input rows in which £1 is non-null, since count ignores nulls; and count (distinct f£1) yields
the number of distinct non-null values of £1.

Ordinarily, the input rows are fed to the aggregate function in an unspecified order. In many cases
this does not matter; for example, min produces the same result no matter what order it receives
the inputs in. However, some aggregate functions (such as array_agg and string_agg) produce
results that depend on the ordering of the input rows. When using such an aggregate, the optional
order_by_clause can be used to specify the desired ordering. The order_ by clause has the
same syntax as for a query-level ORDER BY clause, as described in Section 7.5, except that its expres-
sions are always just expressions and cannot be output-column names or numbers. For example:

SELECT array_agg(a ORDER BY b DESC) FROM table;

When dealing with multiple-argument aggregate functions, note that the ORDER BY clause goes after
all the aggregate arguments. For example, write this:

SELECT string_agg(a, ’,’ ORDER BY a) FROM table;
not this:
SELECT string_agg(a ORDER BY a, ’,’) FROM table; —— 1ilncorrect

The latter is syntactically valid, but it represents a call of a single-argument aggregate function with
two ORDER BY keys (the second one being rather useless since it’s a constant).

If DISTINCT is specified in addition to an order_by_clause, then all the ORDER BY expressions
must match regular arguments of the aggregate; that is, you cannot sort on an expression that is not
included in the DISTINCT list.

37

Chapter 4. SQL Syntax

Note: The ability to specify both prsTINCT and orDER BY in an aggregate function is a Post-
greSQL extension.

The predefined aggregate functions are described in Section 9.18. Other aggregate functions can be
added by the user.

An aggregate expression can only appear in the result list or HAVING clause of a SELECT command.
It is forbidden in other clauses, such as WHERE, because those clauses are logically evaluated before
the results of aggregates are formed.

When an aggregate expression appears in a subquery (see Section 4.2.11 and Section 9.20), the aggre-
gate is normally evaluated over the rows of the subquery. But an exception occurs if the aggregate’s
arguments contain only outer-level variables: the aggregate then belongs to the nearest such outer
level, and is evaluated over the rows of that query. The aggregate expression as a whole is then an
outer reference for the subquery it appears in, and acts as a constant over any one evaluation of that
subquery. The restriction about appearing only in the result list or HAVING clause applies with respect
to the query level that the aggregate belongs to.

4.2.8. Window Function Calls

A window function call represents the application of an aggregate-like function over some portion of
the rows selected by a query. Unlike regular aggregate function calls, this is not tied to grouping of the
selected rows into a single output row — each row remains separate in the query output. However the
window function is able to scan all the rows that would be part of the current row’s group according to
the grouping specification (PARTITION BY list) of the window function call. The syntax of a window
function call is one of the following:

function_name [expression [, expression ...]]) OVER (window_definition)

function_name [expression [, expression ...]]) OVER window_name
*) OVER (window definition)

*) OVER window_name

function_name

(
(
(
function_name (

where window_definition has the syntax

existing _window_name]

PARTITION BY expression [, ...]]

ORDER BY expression [ASC | DESC | USING operator] [NULLS { FIRST | LAST } 1 [,
frame_clause]

[
[
[
[

and the optional frame_clause can be one of

[RANGE | ROWS] frame_ start
[RANGE | ROWS] BETWEEN frame_ start AND frame_ end

where frame_start and frame_end can be one of

UNBOUNDED PRECEDING
value PRECEDING
CURRENT ROW

value FOLLOWING
UNBOUNDED FOLLOWING

38

Chapter 4. SQL Syntax

Here, expression represents any value expression that does not itself contain window function
calls. The PARTITION BY and ORDER BY lists have essentially the same syntax and semantics as
GROUP BY and ORDER BY clauses of the whole query, except that their expressions are always just
expressions and cannot be output-column names or numbers. window_name is a reference to a named
window specification defined in the query’s WINDOW clause. Named window specifications are usually
referenced with just OVER window_name, but it is also possible to write a window name inside the
parentheses and then optionally supply an ordering clause and/or frame clause (the referenced win-
dow must lack these clauses, if they are supplied here). This latter syntax follows the same rules as
modifying an existing window name within the wINDOW clause; see the SELECT reference page for
details.

The frame_clause specifies the set of rows constituting the window frame, for those window func-
tions that act on the frame instead of the whole partition. If frame_end is omitted it defaults to
CURRENT ROW. Restrictions are that frame_start cannot be UNBOUNDED FOLLOWING, frame_end
cannot be UNBOUNDED PRECEDING, and the frame_end choice cannot appear earlier in the above
list than the frame start choice — for example RANGE BETWEEN CURRENT ROW AND value
PRECEDING is not allowed. The default framing option is RANGE UNBOUNDED PRECEDING, which
is the same as RANGE BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW; it sets the frame to
be all rows from the partition start up through the current row’s last peer in the ORDER BY ordering
(which means all rows if there is no ORDER BY). In general, UNBOUNDED PRECEDING means that the
frame starts with the first row of the partition, and similarly UNBOUNDED FOLLOWING means that the
frame ends with the last row of the partition (regardless of RANGE or ROWS mode). In ROWS mode,
CURRENT ROW means that the frame starts or ends with the current row; but in RANGE mode it means
that the frame starts or ends with the current row’s first or last peer in the ORDER BY ordering. The
value PRECEDING and value FOLLOWING cases are currently only allowed in RowS mode. They
indicate that the frame starts or ends with the row that many rows before or after the current row.
value must be an integer expression not containing any variables, aggregate functions, or window
functions. The value must not be null or negative; but it can be zero, which selects the current row
itself.

The built-in window functions are described in Table 9-44. Other window functions can be added by
the user. Also, any built-in or user-defined aggregate function can be used as a window function.

The syntaxes using = are used for calling parameter-less aggregate functions as window functions, for
example count (x) OVER (PARTITION BY x ORDER BY y). * is customarily not used for non-
aggregate window functions. Aggregate window functions, unlike normal aggregate functions, do not
allow DISTINCT or ORDER BY to be used within the function argument list.

Window function calls are permitted only in the SELECT list and the ORDER BY clause of the query.

More information about window functions can be found in Section 3.5, Section 9.19, Section 7.2.4.

4.2.9. Type Casts

A type cast specifies a conversion from one data type to another. PostgreSQL accepts two equivalent
syntaxes for type casts:

CAST (expression AS type)
expression: :type
The caAST syntax conforms to SQL; the syntax with : : is historical PostgreSQL usage.

When a cast is applied to a value expression of a known type, it represents a run-time type conversion.
The cast will succeed only if a suitable type conversion operation has been defined. Notice that this is
subtly different from the use of casts with constants, as shown in Section 4.1.2.7. A cast applied to an

39

Chapter 4. SQL Syntax

unadorned string literal represents the initial assignment of a type to a literal constant value, and so it
will succeed for any type (if the contents of the string literal are acceptable input syntax for the data

type).

An explicit type cast can usually be omitted if there is no ambiguity as to the type that a value expres-
sion must produce (for example, when it is assigned to a table column); the system will automatically
apply a type cast in such cases. However, automatic casting is only done for casts that are marked
“OK to apply implicitly” in the system catalogs. Other casts must be invoked with explicit casting
syntax. This restriction is intended to prevent surprising conversions from being applied silently.

It is also possible to specify a type cast using a function-like syntax:
typename (expression)

However, this only works for types whose names are also valid as function names. For example,
double precision cannot be used this way, but the equivalent float8 can. Also, the names
interval, time, and t imestamp can only be used in this fashion if they are double-quoted, because
of syntactic conflicts. Therefore, the use of the function-like cast syntax leads to inconsistencies and
should probably be avoided.

Note: The function-like syntax is in fact just a function call. When one of the two standard cast
syntaxes is used to do a run-time conversion, it will internally invoke a registered function to
perform the conversion. By convention, these conversion functions have the same name as their
output type, and thus the “function-like syntax” is nothing more than a direct invocation of the
underlying conversion function. Obviously, this is not something that a portable application should
rely on. For further details see CREATE CAST.

4.2.10. Collation Expressions

The COLLATE clause overrides the collation of an expression. It is appended to the expression it
applies to:

expr COLLATE collation
where collation is a possibly schema-qualified identifier. The COLLATE clause binds tighter than
operators; parentheses can be used when necessary.

If no collation is explicitly specified, the database system either derives a collation from the columns
involved in the expression, or it defaults to the default collation of the database if no column is
involved in the expression.

The two common uses of the COLLATE clause are overriding the sort order in an ORDER BY clause,
for example:

SELECT a, b, ¢ FROM tbl WHERE ... ORDER BY a COLLATE "C";
and overriding the collation of a function or operator call that has locale-sensitive results, for example:
SELECT » FROM tbl WHERE a > ’foo’ COLLATE "C";

Note that in the latter case the COLLATE clause is attached to an input argument of the operator we
wish to affect. It doesn’t matter which argument of the operator or function call the COLLATE clause is
attached to, because the collation that is applied by the operator or function is derived by considering
all arguments, and an explicit COLLATE clause will override the collations of all other arguments.

40

Chapter 4. SQL Syntax

(Attaching non-matching COLLATE clauses to more than one argument, however, is an error. For
more details see Section 22.2.) Thus, this gives the same result as the previous example:

SELECT % FROM tbl WHERE a COLLATE "C" > ’foo’;
But this is an error:
SELECT * FROM tbl WHERE (a > ’'foo’) COLLATE "C";

because it attempts to apply a collation to the result of the > operator, which is of the non-collatable
data type boolean.

4.2.11. Scalar Subqueries

A scalar subquery is an ordinary SELECT query in parentheses that returns exactly one row with one
column. (See Chapter 7 for information about writing queries.) The SELECT query is executed and
the single returned value is used in the surrounding value expression. It is an error to use a query that
returns more than one row or more than one column as a scalar subquery. (But if, during a particular
execution, the subquery returns no rows, there is no error; the scalar result is taken to be null.) The
subquery can refer to variables from the surrounding query, which will act as constants during any
one evaluation of the subquery. See also Section 9.20 for other expressions involving subqueries.

For example, the following finds the largest city population in each state:

SELECT name, (SELECT max (pop) FROM cities WHERE cities.state = states.name)
FROM states;

4.2.12. Array Constructors

An array constructor is an expression that builds an array value using values for its member elements.
A simple array constructor consists of the key word ARRAY, a left square bracket [, a list of expressions
(separated by commas) for the array element values, and finally a right square bracket 1. For example:

SELECT ARRAY[1,2,3+4];

By default, the array element type is the common type of the member expressions, determined using
the same rules as for UNION or CASE constructs (see Section 10.5). You can override this by explicitly
casting the array constructor to the desired type, for example:

SELECT ARRAY[1,2,22.7]::integer[];

{1,2,23}
(1 row)

This has the same effect as casting each expression to the array element type individually. For more
on casting, see Section 4.2.9.

41

Chapter 4. SQL Syntax

Multidimensional array values can be built by nesting array constructors. In the inner constructors,
the key word ARRAY can be omitted. For example, these produce the same result:

SELECT ARRAY[ARRAY[1,2], ARRAY[3,4]];

{{1,2},{3,4}}
(1 row)

SELECT ARRAY[[1,2],1[3,411];

{{1,2},{3,4}}
(1 row)

Since multidimensional arrays must be rectangular, inner constructors at the same level must pro-
duce sub-arrays of identical dimensions. Any cast applied to the outer ARRAY constructor propagates
automatically to all the inner constructors.

Multidimensional array constructor elements can be anything yielding an array of the proper kind, not
only a sub-ARRAY construct. For example:

CREATE TABLE arr(fl intf[], f2 int[]);
INSERT INTO arr VALUES (ARRAY[[1,2],[3,4]], ARRAY[[5,6],1[7,811);

SELECT ARRAY[fl, f£2, ’'{{9,10},{11,12}}’::int[]] FROM arr;
array

{4{1,2},{3,4}},{{5,6},{7,8}},{{9,10},{11,12}}}
(1 row)

You can construct an empty array, but since it’s impossible to have an array with no type, you must
explicitly cast your empty array to the desired type. For example:

SELECT ARRAY[]::integer([];
array

It is also possible to construct an array from the results of a subquery. In this form, the array construc-
tor is written with the key word ARRAY followed by a parenthesized (not bracketed) subquery. For
example:

SELECT ARRAY (SELECT oid FROM pg_proc WHERE proname LIKE ’'bytea%’);
?column?

{2011,1954,1948,1952,1951,1244,1950,2005,1949,1953,2006,31}
(1 row)

The subquery must return a single column. The resulting one-dimensional array will have an element
for each row in the subquery result, with an element type matching that of the subquery’s output
column.

42

Chapter 4. SQL Syntax

The subscripts of an array value built with ARRAY always begin with one. For more information about
arrays, see Section 8.14.

4.2.13. Row Constructors

A row constructor is an expression that builds a row value (also called a composite value) using
values for its member fields. A row constructor consists of the key word ROw, a left parenthesis, zero
or more expressions (separated by commas) for the row field values, and finally a right parenthesis.
For example:

SELECT ROW(1,2.5,"this is a test’);

The key word rROW is optional when there is more than one expression in the list.

A row constructor can include the syntax rowvalue.«, which will be expanded to a list of the ele-
ments of the row value, just as occurs when the . ~ syntax is used at the top level of a SELECT list. For
example, if table t has columns £1 and £2, these are the same:

SELECT ROW(t.*, 42) FROM t;
SELECT ROW(t.fl, t.f2, 42) FROM t;

Note: Before PostgreSQL 8.2, the .« syntax was not expanded, so that writing rRow (t ., 42)
created a two-field row whose first field was another row value. The new behavior is usually more
useful. If you need the old behavior of nested row values, write the inner row value without . «, for
instance row (t, 42).

By default, the value created by a ROw expression is of an anonymous record type. If necessary, it can
be cast to a named composite type — either the row type of a table, or a composite type created with
CREATE TYPE AS. An explicit cast might be needed to avoid ambiguity. For example:

CREATE TABLE mytable(fl int, f2 float, £f3 text);

CREATE FUNCTION getfl (mytable) RETURNS int AS ’'SELECT $1.f1’ LANGUAGE SQL;

—-— No cast needed since only one getfl() exists
SELECT getfl (ROW(1,2.5,’this is a test’));
getfl

1
(1 row)

CREATE TYPE myrowtype AS (fl int, £f2 text, £3 numeric);

CREATE FUNCTION getfl (myrowtype) RETURNS int AS /SELECT $1.f1’ LANGUAGE SQL;
—-— Now we need a cast to indicate which function to call:

SELECT getfl (ROW(1,2.5,"this is a test’));

ERROR: function getfl (record) is not unique

SELECT getfl (ROW(1l,2.5,’this is a test’)::mytable);
getfl

43

Chapter 4. SQL Syntax

1
(1 row)

SELECT getfl (CAST(ROW(11l,’this is a test’,2.5) AS myrowtype));
getfl

Row constructors can be used to build composite values to be stored in a composite-type table column,
or to be passed to a function that accepts a composite parameter. Also, it is possible to compare two
row values or test a row with IS NULL or IS NOT NULL, for example:

SELECT ROW(1,2.5,"this is a test’) = ROW(1l, 3, ’"not the same’);
SELECT ROW (table.x) IS NULL FROM table; —— detect all-null rows

For more detail see Section 9.21. Row constructors can also be used in connection with subqueries,
as discussed in Section 9.20.

4.2.14. Expression Evaluation Rules

The order of evaluation of subexpressions is not defined. In particular, the inputs of an operator or
function are not necessarily evaluated left-to-right or in any other fixed order.

Furthermore, if the result of an expression can be determined by evaluating only some parts of it, then
other subexpressions might not be evaluated at all. For instance, if one wrote:

SELECT true OR somefunc();
then somefunc () would (probably) not be called at all. The same would be the case if one wrote:
SELECT somefunc() OR true;

Note that this is not the same as the left-to-right “short-circuiting” of Boolean operators that is found
in some programming languages.

As a consequence, it is unwise to use functions with side effects as part of complex expressions. It is
particularly dangerous to rely on side effects or evaluation order in WHERE and HAVING clauses, since
those clauses are extensively reprocessed as part of developing an execution plan. Boolean expressions
(AND/OR/NOT combinations) in those clauses can be reorganized in any manner allowed by the laws
of Boolean algebra.

When it is essential to force evaluation order, a CASE construct (see Section 9.16) can be used. For
example, this is an untrustworthy way of trying to avoid division by zero in a WHERE clause:

SELECT ... WHERE x > 0 AND y/x > 1.5;
But this is safe:
SELECT ... WHERE CASE WHEN x > 0 THEN y/x > 1.5 ELSE false END;

A CASE construct used in this fashion will defeat optimization attempts, so it should only be done
when necessary. (In this particular example, it would be better to sidestep the problem by writing y
> 1.5«x instead.)

44

Chapter 4. SQL Syntax

4.3. Calling Functions

PostgreSQL allows functions that have named parameters to be called using either positional or named
notation. Named notation is especially useful for functions that have a large number of parameters,
since it makes the associations between parameters and actual arguments more explicit and reliable.
In positional notation, a function call is written with its argument values in the same order as they
are defined in the function declaration. In named notation, the arguments are matched to the function
parameters by name and can be written in any order.

In either notation, parameters that have default values given in the function declaration need not be
written in the call at all. But this is particularly useful in named notation, since any combination of
parameters can be omitted; while in positional notation parameters can only be omitted from right to
left.

PostgreSQL also supports mixed notation, which combines positional and named notation. In this
case, positional parameters are written first and named parameters appear after them.

The following examples will illustrate the usage of all three notations, using the following function
definition:

CREATE FUNCTION concat_lower_or_upper (a text, b text, uppercase boolean DEFAULT false)
RETURNS text

AS

$$

SELECT CASE
WHEN $3 THEN UPPER(S$S1 || 7 7 || $2)
ELSE LOWER(S$1 || ' ' || $2)
END;

$$

LANGUAGE SQL IMMUTABLE STRICT;

Function concat_lower_or_upper has two mandatory parameters, a and b. Additionally there is
one optional parameter uppercase which defaults to false. The a and b inputs will be concatenated,
and forced to either upper or lower case depending on the uppercase parameter. The remaining
details of this function definition are not important here (see Chapter 35 for more information).

4.3.1. Using Positional Notation

Positional notation is the traditional mechanism for passing arguments to functions in PostgreSQL.
An example is:

SELECT concat_lower_or_upper ('Hello’, ’'World’, true);
concat_lower_or_upper

HELLO WORLD
(1 row)

All arguments are specified in order. The result is upper case since uppercase is specified as true.
Another example is:

SELECT concat_lower_or_upper ('Hello’, ’'World’);
concat_lower_or_upper

hello world
(1 row)

45

Chapter 4. SQL Syntax

Here, the uppercase parameter is omitted, so it receives its default value of false, resulting in
lower case output. In positional notation, arguments can be omitted from right to left so long as they
have defaults.

4.3.2. Using Named Notation

In named notation, each argument’s name is specified using := to separate it from the argument
expression. For example:

SELECT concat_lower_or_upper(a := "Hello’, b := "World’');
concat_lower_or_upper

hello world
(1 row)

Again, the argument uppercase was omitted so it is set to false implicitly. One advantage of using
named notation is that the arguments may be specified in any order, for example:

SELECT concat_lower_or_upper(a := ’"Hello’, b := ’"World’, uppercase := true);
concat_lower_or_upper

HELLO WORLD
(1 row)

SELECT concat_lower_or_upper (a "Hello’, uppercase := true, b := 'World’);

concat_lower_or_upper

HELLO WORLD
(1 row)

4.3.3. Using Mixed Notation

The mixed notation combines positional and named notation. However, as already mentioned, named
arguments cannot precede positional arguments. For example:

SELECT concat_lower_or_upper ('Hello’, ’"World’, uppercase := true);
concat_lower_or_upper

HELLO WORLD
(1 row)

In the above query, the arguments a and b are specified positionally, while uppercase is specified by
name. In this example, that adds little except documentation. With a more complex function having
numerous parameters that have default values, named or mixed notation can save a great deal of
writing and reduce chances for error.

46

Chapter 5. Data Definition

This chapter covers how one creates the database structures that will hold one’s data. In a relational
database, the raw data is stored in tables, so the majority of this chapter is devoted to explaining how
tables are created and modified and what features are available to control what data is stored in the
tables. Subsequently, we discuss how tables can be organized into schemas, and how privileges can
be assigned to tables. Finally, we will briefly look at other features that affect the data storage, such
as inheritance, views, functions, and triggers.

5.1. Table Basics

A table in a relational database is much like a table on paper: It consists of rows and columns. The
number and order of the columns is fixed, and each column has a name. The number of rows is
variable — it reflects how much data is stored at a given moment. SQL does not make any guarantees
about the order of the rows in a table. When a table is read, the rows will appear in an unspecified
order, unless sorting is explicitly requested. This is covered in Chapter 7. Furthermore, SQL does not
assign unique identifiers to rows, so it is possible to have several completely identical rows in a table.
This is a consequence of the mathematical model that underlies SQL but is usually not desirable.
Later in this chapter we will see how to deal with this issue.

Each column has a data type. The data type constrains the set of possible values that can be assigned
to a column and assigns semantics to the data stored in the column so that it can be used for com-
putations. For instance, a column declared to be of a numerical type will not accept arbitrary text
strings, and the data stored in such a column can be used for mathematical computations. By contrast,
a column declared to be of a character string type will accept almost any kind of data but it does not
lend itself to mathematical calculations, although other operations such as string concatenation are
available.

PostgreSQL includes a sizable set of built-in data types that fit many applications. Users can also
define their own data types. Most built-in data types have obvious names and semantics, so we defer
a detailed explanation to Chapter 8. Some of the frequently used data types are integer for whole
numbers, numeric for possibly fractional numbers, text for character strings, date for dates, t ime
for time-of-day values, and t imestamp for values containing both date and time.

To create a table, you use the aptly named CREATE TABLE command. In this command you specify
at least a name for the new table, the names of the columns and the data type of each column. For
example:

CREATE TABLE my_first_table (
first_column text,
second_column integer

)

This creates a table named my_first_table with two columns. The first column is named
first_column and has a data type of text; the second column has the name second_column and
the type integer. The table and column names follow the identifier syntax explained in Section
4.1.1. The type names are usually also identifiers, but there are some exceptions. Note that the
column list is comma-separated and surrounded by parentheses.

Of course, the previous example was heavily contrived. Normally, you would give names to your
tables and columns that convey what kind of data they store. So let’s look at a more realistic example:

CREATE TABLE products (

47

Chapter 5. Data Definition

product_no integer,
name text,
price numeric

)

(The numeric type can store fractional components, as would be typical of monetary amounts.)

Tip: When you create many interrelated tables it is wise to choose a consistent naming pattern
for the tables and columns. For instance, there is a choice of using singular or plural nouns for
table names, both of which are favored by some theorist or other.

There is a limit on how many columns a table can contain. Depending on the column types, it is
between 250 and 1600. However, defining a table with anywhere near this many columns is highly
unusual and often a questionable design.

If you no longer need a table, you can remove it using the DROP TABLE command. For example:

DROP TABLE my_first_table;
DROP TABLE products;

Attempting to drop a table that does not exist is an error. Nevertheless, it is common in SQL script files
to unconditionally try to drop each table before creating it, ignoring any error messages, so that the
script works whether or not the table exists. (If you like, you can use the DROP TABLE IF EXISTS
variant to avoid the error messages, but this is not standard SQL.)

If you need to modify a table that already exists, see Section 5.5 later in this chapter.

With the tools discussed so far you can create fully functional tables. The remainder of this chapter is
concerned with adding features to the table definition to ensure data integrity, security, or convenience.
If you are eager to fill your tables with data now you can skip ahead to Chapter 6 and read the rest of
this chapter later.

5.2. Default Values

A column can be assigned a default value. When a new row is created and no values are specified
for some of the columns, those columns will be filled with their respective default values. A data
manipulation command can also request explicitly that a column be set to its default value, without
having to know what that value is. (Details about data manipulation commands are in Chapter 6.)

If no default value is declared explicitly, the default value is the null value. This usually makes sense
because a null value can be considered to represent unknown data.

In a table definition, default values are listed after the column data type. For example:

CREATE TABLE products (
product_no integer,
name text,
price numeric DEFAULT 9.99
)i

The default value can be an expression, which will be evaluated whenever the default value is inserted
(not when the table is created). A common example is for a t imestamp column to have a default of

48

Chapter 5. Data Definition

CURRENT_TIMESTAMP, so that it gets set to the time of row insertion. Another common example is
generating a “serial number” for each row. In PostgreSQL this is typically done by something like:

CREATE TABLE products (
product_no integer DEFAULT nextval (' products_product_no_seq’),

)

where the nextval () function supplies successive values from a sequence object (see Section 9.15).
This arrangement is sufficiently common that there’s a special shorthand for it:

CREATE TABLE products (
product_no SERIAL,

)

The sERIAL shorthand is discussed further in Section 8.1.4.

5.3. Constraints

Data types are a way to limit the kind of data that can be stored in a table. For many applications,
however, the constraint they provide is too coarse. For example, a column containing a product price
should probably only accept positive values. But there is no standard data type that accepts only
positive numbers. Another issue is that you might want to constrain column data with respect to other
columns or rows. For example, in a table containing product information, there should be only one
row for each product number.

To that end, SQL allows you to define constraints on columns and tables. Constraints give you as
much control over the data in your tables as you wish. If a user attempts to store data in a column
that would violate a constraint, an error is raised. This applies even if the value came from the default
value definition.

5.3.1. Check Constraints

A check constraint is the most generic constraint type. It allows you to specify that the value in
a certain column must satisfy a Boolean (truth-value) expression. For instance, to require positive
product prices, you could use:

CREATE TABLE products (

product_no integer,

name text,

price numeric CHECK (price > 0)
)i

As you see, the constraint definition comes after the data type, just like default value definitions.
Default values and constraints can be listed in any order. A check constraint consists of the key word
CHECK followed by an expression in parentheses. The check constraint expression should involve the
column thus constrained, otherwise the constraint would not make too much sense.

You can also give the constraint a separate name. This clarifies error messages and allows you to refer
to the constraint when you need to change it. The syntax is:

49

Chapter 5. Data Definition

CREATE TABLE products (

product_no integer,

name text,

price numeric CONSTRAINT positive_price CHECK (price > 0)
)i

So, to specify a named constraint, use the key word CONSTRAINT followed by an identifier followed
by the constraint definition. (If you don’t specify a constraint name in this way, the system chooses a
name for you.)

A check constraint can also refer to several columns. Say you store a regular price and a discounted
price, and you want to ensure that the discounted price is lower than the regular price:

CREATE TABLE products (
product_no integer,
name text,
price numeric CHECK (price > 0),
discounted_price numeric CHECK (discounted_price > 0),
CHECK (price > discounted_price)

The first two constraints should look familiar. The third one uses a new syntax. It is not attached to a
particular column, instead it appears as a separate item in the comma-separated column list. Column
definitions and these constraint definitions can be listed in mixed order.

We say that the first two constraints are column constraints, whereas the third one is a table constraint
because it is written separately from any one column definition. Column constraints can also be writ-
ten as table constraints, while the reverse is not necessarily possible, since a column constraint is
supposed to refer to only the column it is attached to. (PostgreSQL doesn’t enforce that rule, but you
should follow it if you want your table definitions to work with other database systems.) The above
example could also be written as:

CREATE TABLE products (
product_no integer,
name text,
price numeric,
CHECK (price > 0),
discounted_price numeric,
CHECK (discounted_price > 0),
CHECK (price > discounted_price)
)i

or even:

CREATE TABLE products (

product_no integer,

name text,

price numeric CHECK (price > 0),

discounted_price numeric,

CHECK (discounted_price > 0 AND price > discounted_price)
)i

It’s a matter of taste.

Names can be assigned to table constraints in the same way as column constraints:

CREATE TABLE products (

50

Chapter 5. Data Definition

product_no integer,

name text,

price numeric,

CHECK (price > 0),

discounted_price numeric,

CHECK (discounted_price > 0),

CONSTRAINT valid_discount CHECK (price > discounted_price)

It should be noted that a check constraint is satisfied if the check expression evaluates to true or the
null value. Since most expressions will evaluate to the null value if any operand is null, they will not
prevent null values in the constrained columns. To ensure that a column does not contain null values,
the not-null constraint described in the next section can be used.

5.3.2. Not-Null Constraints

A not-null constraint simply specifies that a column must not assume the null value. A syntax example:

CREATE TABLE products (
product_no integer NOT NULL,
name text NOT NULL,
price numeric

)

A not-null constraint is always written as a column constraint. A not-null constraint is functionally
equivalent to creating a check constraint CHECK (column_name IS NOT NULL), but in PostgreSQL
creating an explicit not-null constraint is more efficient. The drawback is that you cannot give explicit
names to not-null constraints created this way.

Of course, a column can have more than one constraint. Just write the constraints one after another:

CREATE TABLE products (

product_no integer NOT NULL,

name text NOT NULL,

price numeric NOT NULL CHECK (price > 0)
)i

The order doesn’t matter. It does not necessarily determine in which order the constraints are checked.

The NOT NULL constraint has an inverse: the NULL constraint. This does not mean that the column
must be null, which would surely be useless. Instead, this simply selects the default behavior that the
column might be null. The NULL constraint is not present in the SQL standard and should not be used
in portable applications. (It was only added to PostgreSQL to be compatible with some other database
systems.) Some users, however, like it because it makes it easy to toggle the constraint in a script file.
For example, you could start with:

CREATE TABLE products (
product_no integer NULL,
name text NULL,
price numeric NULL

)i

and then insert the NOT key word where desired.

51

Chapter 5. Data Definition

Tip: In most database designs the majority of columns should be marked not null.

5.3.3. Unique Constraints

Unique constraints ensure that the data contained in a column or a group of columns is unique with
respect to all the rows in the table. The syntax is:

CREATE TABLE products (
product_no integer UNIQUE,
name text,
price numeric

)i
when written as a column constraint, and:

CREATE TABLE products (
product_no integer,
name text,
price numeric,
UNIQUE (product_no)

)i

when written as a table constraint.

If a unique constraint refers to a group of columns, the columns are listed separated by commas:

CREATE TABLE example (
a integer,
b integer,
c integer,
UNIQUE (a, c)
)i

This specifies that the combination of values in the indicated columns is unique across the whole
table, though any one of the columns need not be (and ordinarily isn’t) unique.

You can assign your own name for a unique constraint, in the usual way:

CREATE TABLE products (
product_no integer CONSTRAINT must_be_different UNIQUE,
name text,
price numeric

)i

Adding a unique constraint will automatically create a unique btree index on the column or group of
columns used in the constraint.

In general, a unique constraint is violated when there is more than one row in the table where the
values of all of the columns included in the constraint are equal. However, two null values are not
considered equal in this comparison. That means even in the presence of a unique constraint it is
possible to store duplicate rows that contain a null value in at least one of the constrained columns.
This behavior conforms to the SQL standard, but we have heard that other SQL databases might not
follow this rule. So be careful when developing applications that are intended to be portable.

52

Chapter 5. Data Definition

5.3.4. Primary Keys

Technically, a primary key constraint is simply a combination of a unique constraint and a not-null
constraint. So, the following two table definitions accept the same data:

CREATE TABLE products (
product_no integer UNIQUE NOT NULL,
name text,
price numeric

)

CREATE TABLE products (
product_no integer PRIMARY KEY,
name text,
price numeric

)i

Primary keys can also constrain more than one column; the syntax is similar to unique constraints:

CREATE TABLE example (
a integer,
b integer,
c integer,
PRIMARY KEY (a, c)
)i

A primary key indicates that a column or group of columns can be used as a unique identifier for
rows in the table. (This is a direct consequence of the definition of a primary key. Note that a unique
constraint does not, by itself, provide a unique identifier because it does not exclude null values.) This
is useful both for documentation purposes and for client applications. For example, a GUI application
that allows modifying row values probably needs to know the primary key of a table to be able to
identify rows uniquely.

Adding a primary key will automatically create a unique btree index on the column or group of
columns used in the primary key.

A table can have at most one primary key. (There can be any number of unique and not-null con-
straints, which are functionally the same thing, but only one can be identified as the primary key.)
Relational database theory dictates that every table must have a primary key. This rule is not enforced
by PostgreSQL, but it is usually best to follow it.

5.3.5. Foreign Keys

A foreign key constraint specifies that the values in a column (or a group of columns) must match the
values appearing in some row of another table. We say this maintains the referential integrity between
two related tables.

Say you have the product table that we have used several times already:

CREATE TABLE products (
product_no integer PRIMARY KEY,
name text,
price numeric

)

53

Chapter 5. Data Definition

Let’s also assume you have a table storing orders of those products. We want to ensure that the orders
table only contains orders of products that actually exist. So we define a foreign key constraint in the
orders table that references the products table:

CREATE TABLE orders (
order_id integer PRIMARY KEY,
product_no integer REFERENCES products (product_no),
quantity integer

)i

Now it is impossible to create orders with product_no entries that do not appear in the products
table.

We say that in this situation the orders table is the referencing table and the products table is the
referenced table. Similarly, there are referencing and referenced columns.

You can also shorten the above command to:

CREATE TABLE orders (
order_id integer PRIMARY KEY,
product_no integer REFERENCES products,
quantity integer

)i

because in absence of a column list the primary key of the referenced table is used as the referenced
column(s).

A foreign key can also constrain and reference a group of columns. As usual, it then needs to be
written in table constraint form. Here is a contrived syntax example:

CREATE TABLE tl (

a integer PRIMARY KEY,

b integer,

c integer,

FOREIGN KEY (b, c) REFERENCES other table (cl, c2)
)i

Of course, the number and type of the constrained columns need to match the number and type of the
referenced columns.

You can assign your own name for a foreign key constraint, in the usual way.

A table can contain more than one foreign key constraint. This is used to implement many-to-many
relationships between tables. Say you have tables about products and orders, but now you want to
allow one order to contain possibly many products (which the structure above did not allow). You
could use this table structure:

CREATE TABLE products (
product_no integer PRIMARY KEY,
name text,
price numeric

)
CREATE TABLE orders (

order_id integer PRIMARY KEY,
shipping_address text,

54

Chapter 5. Data Definition

CREATE TABLE order_items (
product_no integer REFERENCES products,
order_id integer REFERENCES orders,
quantity integer,
PRIMARY KEY (product_no, order_id)

)i

Notice that the primary key overlaps with the foreign keys in the last table.

We know that the foreign keys disallow creation of orders that do not relate to any products. But what
if a product is removed after an order is created that references it? SQL allows you to handle that as
well. Intuitively, we have a few options:

« Disallow deleting a referenced product
+ Delete the orders as well
» Something else?

To illustrate this, let’s implement the following policy on the many-to-many relationship example
above: when someone wants to remove a product that is still referenced by an order (via
order_items), we disallow it. If someone removes an order, the order items are removed as well:

CREATE TABLE products (
product_no integer PRIMARY KEY,
name text,
price numeric

)i

CREATE TABLE orders (
order_id integer PRIMARY KEY,
shipping_address text,

)

CREATE TABLE order_items (
product_no integer REFERENCES products ON DELETE RESTRICT,
order_id integer REFERENCES orders ON DELETE CASCADE,
quantity integer,
PRIMARY KEY (product_no, order_id)

Restricting and cascading deletes are the two most common options. RESTRICT prevents deletion of
a referenced row. NO ACTION means that if any referencing rows still exist when the constraint is
checked, an error is raised; this is the default behavior if you do not specify anything. (The essential
difference between these two choices is that NO ACTION allows the check to be deferred until later
in the transaction, whereas RESTRICT does not.) CASCADE specifies that when a referenced row is
deleted, row(s) referencing it should be automatically deleted as well. There are two other options:
SET NULL and SET DEFAULT. These cause the referencing columns to be set to nulls or default
values, respectively, when the referenced row is deleted. Note that these do not excuse you from
observing any constraints. For example, if an action specifies SET DEFAULT but the default value
would not satisfy the foreign key, the operation will fail.

Analogous to ON DELETE there is also ON UPDATE which is invoked when a referenced column is
changed (updated). The possible actions are the same.

55

Chapter 5. Data Definition

Since a DELETE of a row from the referenced table or an UPDATE of a referenced column will require
a scan of the referencing table for rows matching the old value, it is often a good idea to index the
referencing columns. Because this is not always needed, and there are many choices available on
how to index, declaration of a foreign key constraint does not automatically create an index on the
referencing columns.

More information about updating and deleting data is in Chapter 6.

Finally, we should mention that a foreign key must reference columns that either are a primary key or
form a unique constraint. If the foreign key references a unique constraint, there are some additional
possibilities regarding how null values are matched. These are explained in the reference documenta-
tion for CREATE TABLE.

5.3.6. Exclusion Constraints

Exclusion constraints ensure that if any two rows are compared on the specified columns or expres-
sions using the specified operators, at least one of these operator comparisons will return false or null.
The syntax is:

CREATE TABLE circles (

c circle,

EXCLUDE USING gist (c WITH &&)
)i

See also CREATE TABLE ... CONSTRAINT ... EXCLUDE for details.

Adding an exclusion constraint will automatically create an index of the type specified in the con-
straint declaration.

5.4. System Columns

Every table has several system columns that are implicitly defined by the system. Therefore, these
names cannot be used as names of user-defined columns. (Note that these restrictions are separate
from whether the name is a key word or not; quoting a name will not allow you to escape these
restrictions.) You do not really need to be concerned about these columns; just know they exist.

oid
The object identifier (object ID) of a row. This column is only present if the table was created
using WITH OIDS, or if the default_with_oids configuration variable was set at the time. This

column is of type oid (same name as the column); see Section 8.16 for more information about
the type.

tableoid

The OID of the table containing this row. This column is particularly handy for queries that
select from inheritance hierarchies (see Section 5.8), since without it, it’s difficult to tell which
individual table a row came from. The tableoid can be joined against the oid column of
pg_class to obtain the table name.

56

Chapter 5. Data Definition

xmin

The identity (transaction ID) of the inserting transaction for this row version. (A row version is
an individual state of a row; each update of a row creates a new row version for the same logical
row.)

cmin
The command identifier (starting at zero) within the inserting transaction.
Xmax

The identity (transaction ID) of the deleting transaction, or zero for an undeleted row version. It
is possible for this column to be nonzero in a visible row version. That usually indicates that the
deleting transaction hasn’t committed yet, or that an attempted deletion was rolled back.

cmax
The command identifier within the deleting transaction, or zero.
ctid

The physical location of the row version within its table. Note that although the ctid can be
used to locate the row version very quickly, a row’s ctid will change if it is updated or moved
by vacuuM FULL. Therefore ctid is useless as a long-term row identifier. The OID, or even
better a user-defined serial number, should be used to identify logical rows.

OIDs are 32-bit quantities and are assigned from a single cluster-wide counter. In a large or long-lived
database, it is possible for the counter to wrap around. Hence, it is bad practice to assume that OIDs
are unique, unless you take steps to ensure that this is the case. If you need to identify the rows in
a table, using a sequence generator is strongly recommended. However, OIDs can be used as well,
provided that a few additional precautions are taken:

« A unique constraint should be created on the OID column of each table for which the OID will
be used to identify rows. When such a unique constraint (or unique index) exists, the system takes
care not to generate an OID matching an already-existing row. (Of course, this is only possible if
the table contains fewer than 2*? (4 billion) rows, and in practice the table size had better be much
less than that, or performance might suffer.)

+ OIDs should never be assumed to be unique across tables; use the combination of tableoid and
row OID if you need a database-wide identifier.

« Of course, the tables in question must be created WITH OIDS. As of PostgreSQL 8.1, WITHOUT
01DS is the default.

Transaction identifiers are also 32-bit quantities. In a long-lived database it is possible for transaction
IDs to wrap around. This is not a fatal problem given appropriate maintenance procedures; see Chapter
23 for details. It is unwise, however, to depend on the uniqueness of transaction IDs over the long term
(more than one billion transactions).

Command identifiers are also 32-bit quantities. This creates a hard limit of 2*? (4 billion) SQL com-
mands within a single transaction. In practice this limit is not a problem — note that the limit is on
the number of SQL commands, not the number of rows processed. Also, as of PostgreSQL 8.3, only
commands that actually modify the database contents will consume a command identifier.

57

Chapter 5. Data Definition

5.5. Modifying Tables

When you create a table and you realize that you made a mistake, or the requirements of the appli-
cation change, you can drop the table and create it again. But this is not a convenient option if the
table is already filled with data, or if the table is referenced by other database objects (for instance a
foreign key constraint). Therefore PostgreSQL provides a family of commands to make modifications
to existing tables. Note that this is conceptually distinct from altering the data contained in the table:
here we are interested in altering the definition, or structure, of the table.

You can:

« Add columns

« Remove columns

« Add constraints

« Remove constraints

+ Change default values

+ Change column data types
« Rename columns

« Rename tables

All these actions are performed using the ALTER TABLE command, whose reference page contains
details beyond those given here.

5.5.1. Adding a Column

To add a column, use a command like:

ALTER TABLE products ADD COLUMN description text;

The new column is initially filled with whatever default value is given (null if you don’t specify a
DEFAULT clause).

You can also define constraints on the column at the same time, using the usual syntax:
ALTER TABLE products ADD COLUMN description text CHECK (description <> ”);

In fact all the options that can be applied to a column description in CREATE TABLE can be used here.
Keep in mind however that the default value must satisfy the given constraints, or the ADD will fail.
Alternatively, you can add constraints later (see below) after you’ve filled in the new column correctly.

Tip: Adding a column with a default requires updating each row of the table (to store the new
column value). However, if no default is specified, PostgreSQL is able to avoid the physical update.
So if you intend to fill the column with mostly nondefault values, it's best to add the column with
no default, insert the correct values using uppATE, and then add any desired default as described
below.

5.5.2. Removing a Column

To remove a column, use a command like:

ALTER TABLE products DROP COLUMN description;

58

Chapter 5. Data Definition

Whatever data was in the column disappears. Table constraints involving the column are dropped, too.
However, if the column is referenced by a foreign key constraint of another table, PostgreSQL will
not silently drop that constraint. You can authorize dropping everything that depends on the column
by adding CASCADE:

ALTER TABLE products DROP COLUMN description CASCADE;

See Section 5.12 for a description of the general mechanism behind this.

5.5.3. Adding a Constraint

To add a constraint, the table constraint syntax is used. For example:

ALTER TABLE products ADD CHECK (name <> ");
ALTER TABLE products ADD CONSTRAINT some_name UNIQUE (product_no);
ALTER TABLE products ADD FOREIGN KEY (product_group_id) REFERENCES product_groups;

To add a not-null constraint, which cannot be written as a table constraint, use this syntax:

ALTER TABLE products ALTER COLUMN product_no SET NOT NULL;

The constraint will be checked immediately, so the table data must satisfy the constraint before it can
be added.

5.5.4. Removing a Constraint

To remove a constraint you need to know its name. If you gave it a name then that’s easy. Otherwise the
system assigned a generated name, which you need to find out. The psql command \d tablename can
be helpful here; other interfaces might also provide a way to inspect table details. Then the command
is:

ALTER TABLE products DROP CONSTRAINT some_name;

(If you are dealing with a generated constraint name like $2, don’t forget that you’ll need to double-
quote it to make it a valid identifier.)

As with dropping a column, you need to add CASCADE if you want to drop a constraint that something
else depends on. An example is that a foreign key constraint depends on a unique or primary key
constraint on the referenced column(s).

This works the same for all constraint types except not-null constraints. To drop a not null constraint
use:

ALTER TABLE products ALTER COLUMN product_no DROP NOT NULL;

(Recall that not-null constraints do not have names.)

5.5.5. Changing a Column’s Default Value
To set a new default for a column, use a command like:

ALTER TABLE products ALTER COLUMN price SET DEFAULT 7.77;

59

Chapter 5. Data Definition

Note that this doesn’t affect any existing rows in the table, it just changes the default for future INSERT
commands.

To remove any default value, use:
ALTER TABLE products ALTER COLUMN price DROP DEFAULT;

This is effectively the same as setting the default to null. As a consequence, it is not an error to drop
a default where one hadn’t been defined, because the default is implicitly the null value.

5.5.6. Changing a Column’s Data Type
To convert a column to a different data type, use a command like:

ALTER TABLE products ALTER COLUMN price TYPE numeric(10,2);

This will succeed only if each existing entry in the column can be converted to the new type by an
implicit cast. If a more complex conversion is needed, you can add a USING clause that specifies how
to compute the new values from the old.

PostgreSQL will attempt to convert the column’s default value (if any) to the new type, as well as
any constraints that involve the column. But these conversions might fail, or might produce surprising
results. It’s often best to drop any constraints on the column before altering its type, and then add back
suitably modified constraints afterwards.

5.5.7. Renaming a Column

To rename a column:

ALTER TABLE products RENAME COLUMN product_no TO product_number;

5.5.8. Renaming a Table
To rename a table:

ALTER TABLE products RENAME TO items;

5.6. Privileges

When an object is created, it is assigned an owner. The owner is normally the role that executed the
creation statement. For most kinds of objects, the initial state is that only the owner (or a superuser)
can do anything with the object. To allow other roles to use it, privileges must be granted.

There are different kinds of privileges: SELECT, INSERT, UPDATE, DELETE, TRUNCATE,
REFERENCES, TRIGGER, CREATE, CONNECT, TEMPORARY, EXECUTE, and USAGE. The privileges
applicable to a particular object vary depending on the object’s type (table, function, etc). For

60

Chapter 5. Data Definition

complete information on the different types of privileges supported by PostgreSQL, refer to the
GRANT reference page. The following sections and chapters will also show you how those
privileges are used.

The right to modify or destroy an object is always the privilege of the owner only.

An object can be assigned to a new owner with an ALTER command of the appropriate kind for the
object, e.g. ALTER TABLE. Superusers can always do this; ordinary roles can only do it if they are
both the current owner of the object (or a member of the owning role) and a member of the new
owning role.

To assign privileges, the GRANT command is used. For example, if joe is an existing user, and
accounts is an existing table, the privilege to update the table can be granted with:

GRANT UPDATE ON accounts TO joe;

Writing ALL in place of a specific privilege grants all privileges that are relevant for the object type.

The special “user” name PUBLIC can be used to grant a privilege to every user on the system. Also,
“group” roles can be set up to help manage privileges when there are many users of a database — for
details see Chapter 20.

To revoke a privilege, use the fittingly named REVOKE command:
REVOKE ALL ON accounts FROM PUBLIC;

The special privileges of the object owner (i.e., the right to do DROP, GRANT, REVOKE, etc.) are always
implicit in being the owner, and cannot be granted or revoked. But the object owner can choose to
revoke his own ordinary privileges, for example to make a table read-only for himself as well as
others.

Ordinarily, only the object’s owner (or a superuser) can grant or revoke privileges on an object. How-
ever, it is possible to grant a privilege “with grant option”, which gives the recipient the right to grant
it in turn to others. If the grant option is subsequently revoked then all who received the privilege
from that recipient (directly or through a chain of grants) will lose the privilege. For details see the
GRANT and REVOKE reference pages.

5.7. Schemas

A PostgreSQL database cluster contains one or more named databases. Users and groups of users are
shared across the entire cluster, but no other data is shared across databases. Any given client con-
nection to the server can access only the data in a single database, the one specified in the connection
request.

Note: Users of a cluster do not necessarily have the privilege to access every database in the
cluster. Sharing of user names means that there cannot be different users named, say, joe in
two databases in the same cluster; but the system can be configured to allow joe access to only
some of the databases.

A database contains one or more named schemas, which in turn contain tables. Schemas also contain
other kinds of named objects, including data types, functions, and operators. The same object name
can be used in different schemas without conflict; for example, both schemal and myschema can
contain tables named mytable. Unlike databases, schemas are not rigidly separated: a user can access
objects in any of the schemas in the database he is connected to, if he has privileges to do so.

61

Chapter 5. Data Definition

There are several reasons why one might want to use schemas:

+ To allow many users to use one database without interfering with each other.
« To organize database objects into logical groups to make them more manageable.

« Third-party applications can be put into separate schemas so they do not collide with the names of
other objects.

Schemas are analogous to directories at the operating system level, except that schemas cannot be
nested.

5.7.1. Creating a Schema

To create a schema, use the CREATE SCHEMA command. Give the schema a name of your choice.
For example:

CREATE SCHEMA myschema;

To create or access objects in a schema, write a qualified name consisting of the schema name and
table name separated by a dot:

schema.table

This works anywhere a table name is expected, including the table modification commands and the
data access commands discussed in the following chapters. (For brevity we will speak of tables only,
but the same ideas apply to other kinds of named objects, such as types and functions.)

Actually, the even more general syntax
database.schema.table

can be used too, but at present this is just for pro forma compliance with the SQL standard. If you
write a database name, it must be the same as the database you are connected to.

So to create a table in the new schema, use:

CREATE TABLE myschema.mytable (

)

To drop a schema if it’s empty (all objects in it have been dropped), use:
DROP SCHEMA myschema;

To drop a schema including all contained objects, use:

DROP SCHEMA myschema CASCADE;

See Section 5.12 for a description of the general mechanism behind this.

Often you will want to create a schema owned by someone else (since this is one of the ways to
restrict the activities of your users to well-defined namespaces). The syntax for that is:

CREATE SCHEMA schemaname AUTHORIZATION username;

62

Chapter 5. Data Definition
You can even omit the schema name, in which case the schema name will be the same as the user
name. See Section 5.7.6 for how this can be useful.

Schema names beginning with pg_ are reserved for system purposes and cannot be created by users.

5.7.2. The Public Schema

In the previous sections we created tables without specifying any schema names. By default such
tables (and other objects) are automatically put into a schema named “public”’. Every new database
contains such a schema. Thus, the following are equivalent:

CREATE TABLE products (...);
and:

CREATE TABLE public.products (...);

5.7.3. The Schema Search Path

Qualified names are tedious to write, and it’s often best not to wire a particular schema name into
applications anyway. Therefore tables are often referred to by unqualified names, which consist of
just the table name. The system determines which table is meant by following a search path, which is
a list of schemas to look in. The first matching table in the search path is taken to be the one wanted.
If there is no match in the search path, an error is reported, even if matching table names exist in other
schemas in the database.

The first schema named in the search path is called the current schema. Aside from being the first
schema searched, it is also the schema in which new tables will be created if the CREATE TABLE
command does not specify a schema name.

To show the current search path, use the following command:
SHOW search_path;
In the default setup this returns:

search_path

"Suser",public

The first element specifies that a schema with the same name as the current user is to be searched. If
no such schema exists, the entry is ignored. The second element refers to the public schema that we
have seen already.

The first schema in the search path that exists is the default location for creating new objects. That
is the reason that by default objects are created in the public schema. When objects are referenced
in any other context without schema qualification (table modification, data modification, or query
commands) the search path is traversed until a matching object is found. Therefore, in the default
configuration, any unqualified access again can only refer to the public schema.

To put our new schema in the path, we use:

SET search_path TO myschema,public;

63

Chapter 5. Data Definition

(We omit the Suser here because we have no immediate need for it.) And then we can access the
table without schema qualification:

DROP TABLE mytable;

Also, since myschema is the first element in the path, new objects would by default be created in it.

We could also have written:
SET search_path TO myschema;

Then we no longer have access to the public schema without explicit qualification. There is nothing
special about the public schema except that it exists by default. It can be dropped, too.

See also Section 9.23 for other ways to manipulate the schema search path.

The search path works in the same way for data type names, function names, and operator names as it
does for table names. Data type and function names can be qualified in exactly the same way as table
names. If you need to write a qualified operator name in an expression, there is a special provision:
you must write

OPERATOR (schema.operator)

This is needed to avoid syntactic ambiguity. An example is:
SELECT 3 OPERATOR (pg_catalog.+) 4;

In practice one usually relies on the search path for operators, so as not to have to write anything so
ugly as that.

5.7.4. Schemas and Privileges

By default, users cannot access any objects in schemas they do not own. To allow that, the owner of
the schema must grant the USAGE privilege on the schema. To allow users to make use of the objects
in the schema, additional privileges might need to be granted, as appropriate for the object.

A user can also be allowed to create objects in someone else’s schema. To allow that, the CREATE
privilege on the schema needs to be granted. Note that by default, everyone has CREATE and USAGE
privileges on the schema public. This allows all users that are able to connect to a given database to
create objects in its public schema. If you do not want to allow that, you can revoke that privilege:

REVOKE CREATE ON SCHEMA public FROM PUBLIC;

(The first “public” is the schema, the second “public” means “every user”. In the first sense it is an
identifier, in the second sense it is a key word, hence the different capitalization; recall the guidelines
from Section 4.1.1.)

5.7.5. The System Catalog Schema

In addition to public and user-created schemas, each database contains a pg_catalog schema,
which contains the system tables and all the built-in data types, functions, and operators. pg_catalog
is always effectively part of the search path. If it is not named explicitly in the path then it is implicitly
searched before searching the path’s schemas. This ensures that built-in names will always be findable.
However, you can explicitly place pg_catalog at the end of your search path if you prefer to have
user-defined names override built-in names.

64

Chapter 5. Data Definition

In PostgreSQL versions before 7.3, table names beginning with pg_ were reserved. This is no longer
true: you can create such a table name if you wish, in any non-system schema. However, it’s best
to continue to avoid such names, to ensure that you won’t suffer a conflict if some future version
defines a system table named the same as your table. (With the default search path, an unqualified
reference to your table name would then be resolved as the system table instead.) System tables will
continue to follow the convention of having names beginning with pg_, so that they will not conflict
with unqualified user-table names so long as users avoid the pg_ prefix.

5.7.6. Usage Patterns

Schemas can be used to organize your data in many ways. There are a few usage patterns that are
recommended and are easily supported by the default configuration:

« If you do not create any schemas then all users access the public schema implicitly. This simu-
lates the situation where schemas are not available at all. This setup is mainly recommended when
there is only a single user or a few cooperating users in a database. This setup also allows smooth
transition from the non-schema-aware world.

« You can create a schema for each user with the same name as that user. Recall that the default
search path starts with Suser, which resolves to the user name. Therefore, if each user has a
separate schema, they access their own schemas by default.

If you use this setup then you might also want to revoke access to the public schema (or drop it
altogether), so users are truly constrained to their own schemas.

« To install shared applications (tables to be used by everyone, additional functions provided by third
parties, etc.), put them into separate schemas. Remember to grant appropriate privileges to allow
the other users to access them. Users can then refer to these additional objects by qualifying the
names with a schema name, or they can put the additional schemas into their search path, as they
choose.

5.7.7. Portability

In the SQL standard, the notion of objects in the same schema being owned by different users does
not exist. Moreover, some implementations do not allow you to create schemas that have a different
name than their owner. In fact, the concepts of schema and user are nearly equivalent in a database
system that implements only the basic schema support specified in the standard. Therefore, many
users consider qualified names to really consist of username.tablename. This is how PostgreSQL
will effectively behave if you create a per-user schema for every user.

Also, there is no concept of a public schema in the SQL standard. For maximum conformance to
the standard, you should not use (perhaps even remove) the public schema.

Of course, some SQL database systems might not implement schemas at all, or provide namespace
support by allowing (possibly limited) cross-database access. If you need to work with those systems,
then maximum portability would be achieved by not using schemas at all.

65

Chapter 5. Data Definition

5.8. Inheritance

PostgreSQL implements table inheritance, which can be a useful tool for database designers.
(SQL:1999 and later define a type inheritance feature, which differs in many respects from the
features described here.)

Let’s start with an example: suppose we are trying to build a data model for cities. Each state has many
cities, but only one capital. We want to be able to quickly retrieve the capital city for any particular
state. This can be done by creating two tables, one for state capitals and one for cities that are not
capitals. However, what happens when we want to ask for data about a city, regardless of whether it
is a capital or not? The inheritance feature can help to resolve this problem. We define the capitals
table so that it inherits from cities:

CREATE TABLE cities (

name text,
population float,
altitude int -— in feet

)i

CREATE TABLE capitals (
state char (2)
) INHERITS (cities);

In this case, the capitals table inherits all the columns of its parent table, cities. State capitals
also have an extra column, state, that shows their state.

In PostgreSQL, a table can inherit from zero or more other tables, and a query can reference either all
rows of a table or all rows of a table plus all of its descendant tables. The latter behavior is the default.
For example, the following query finds the names of all cities, including state capitals, that are located
at an altitude over 500 feet:

SELECT name, altitude
FROM cities
WHERE altitude > 500;

Given the sample data from the PostgreSQL tutorial (see Section 2.1), this returns:

name | altitude
___________ b
Las Vegas | 2174
Mariposa | 1953
Madison | 845

On the other hand, the following query finds all the cities that are not state capitals and are situated at
an altitude over 500 feet:

SELECT name, altitude
FROM ONLY cities
WHERE altitude > 500;

name | altitude
___________ b
Las Vegas | 2174
Mariposa | 1953

66

Chapter 5. Data Definition

Here the oNLY keyword indicates that the query should apply only to cities, and not any tables
below cities in the inheritance hierarchy. Many of the commands that we have already discussed
— SELECT, UPDATE and DELETE — support the ONLY keyword.

You can also write the table name with a trailing » to explicitly specify that descendant tables are
included:

SELECT name, altitude
FROM citiesx
WHERE altitude > 500;

Writing » is not necessary, since this behavior is the default (unless you have changed the setting
of the sql_inheritance configuration option). However writing « might be useful to emphasize that
additional tables will be searched.

In some cases you might wish to know which table a particular row originated from. There is a system
column called tableoid in each table which can tell you the originating table:

SELECT c.tableoid, c.name, c.altitude
FROM cities c
WHERE c.altitude > 500;

which returns:

tableoid | name | altitude

__________ e
139793 | Las Vegas | 2174
139793 | Mariposa | 1953
139798 | Madison | 845

(If you try to reproduce this example, you will probably get different numeric OIDs.) By doing a join
with pg_class you can see the actual table names:

SELECT p.relname, c.name, c.altitude
FROM cities ¢, pg_class p
WHERE c.altitude > 500 AND c.tableoid = p.oid;

which returns:

relname | name | altitude
,,,,,,,,,, T
cities | Las Vegas | 2174
cities | Mariposa | 1953
capitals | Madison | 845

Inheritance does not automatically propagate data from INSERT or COPY commands to other tables in
the inheritance hierarchy. In our example, the following INSERT statement will fail:

INSERT INTO cities (name, population, altitude, state)
VALUES (’New York’, NULL, NULL, ’'NY’);

We might hope that the data would somehow be routed to the capitals table, but this does not
happen: INSERT always inserts into exactly the table specified. In some cases it is possible to redirect
the insertion using a rule (see Chapter 37). However that does not help for the above case because the
cities table does not contain the column state, and so the command will be rejected before the
rule can be applied.

67

Chapter 5. Data Definition

All check constraints and not-null constraints on a parent table are automatically inherited by its chil-
dren. Other types of constraints (unique, primary key, and foreign key constraints) are not inherited.

A table can inherit from more than one parent table, in which case it has the union of the columns
defined by the parent tables. Any columns declared in the child table’s definition are added to these.
If the same column name appears in multiple parent tables, or in both a parent table and the child’s
definition, then these columns are “merged” so that there is only one such column in the child table.
To be merged, columns must have the same data types, else an error is raised. The merged column
will have copies of all the check constraints coming from any one of the column definitions it came
from, and will be marked not-null if any of them are.

Table inheritance is typically established when the child table is created, using the INHERITS clause
of the CREATE TABLE statement. Alternatively, a table which is already defined in a compatible
way can have a new parent relationship added, using the INHERIT variant of ALTER TABLE. To do
this the new child table must already include columns with the same names and types as the columns
of the parent. It must also include check constraints with the same names and check expressions as
those of the parent. Similarly an inheritance link can be removed from a child using the NO INHERIT
variant of ALTER TABLE. Dynamically adding and removing inheritance links like this can be useful
when the inheritance relationship is being used for table partitioning (see Section 5.9).

One convenient way to create a compatible table that will later be made a new child is to use the
LIKE clause in CREATE TABLE. This creates a new table with the same columns as the source table. If
there are any CHECK constraints defined on the source table, the INCLUDING CONSTRAINTS option to
LIKE should be specified, as the new child must have constraints matching the parent to be considered
compatible.

A parent table cannot be dropped while any of its children remain. Neither can columns or check
constraints of child tables be dropped or altered if they are inherited from any parent tables. If you
wish to remove a table and all of its descendants, one easy way is to drop the parent table with the
CASCADE option.

ALTER TABLE will propagate any changes in column data definitions and check constraints down the
inheritance hierarchy. Again, dropping columns that are depended on by other tables is only possible
when using the CASCADE option. ALTER TABLE follows the same rules for duplicate column merging
and rejection that apply during CREATE TABLE.

Note how table access permissions are handled. Querying a parent table can automatically access data
in child tables without further access privilege checking. This preserves the appearance that the data
is (also) in the parent table. Accessing the child tables directly is, however, not automatically allowed
and would require further privileges to be granted.

5.8.1. Caveats

Note that not all SQL commands are able to work on inheritance hierarchies. Commands that are
used for data querying, data modification, or schema modification (e.g., SELECT, UPDATE, DELETE,
most variants of ALTER TABLE, but not INSERT or ALTER TABLE ... RENAME) typically default
to including child tables and support the ONLY notation to exclude them. Commands that do database
maintenance and tuning (e.g., REINDEX, VACUUM) typically only work on individual, physical tables
and do not support recursing over inheritance hierarchies. The respective behavior of each individual
command is documented in its reference page (Reference I, SOQL Commands).

A serious limitation of the inheritance feature is that indexes (including unique constraints) and for-
eign key constraints only apply to single tables, not to their inheritance children. This is true on both
the referencing and referenced sides of a foreign key constraint. Thus, in the terms of the above ex-
ample:

68

Chapter 5. Data Definition

If we declared cities.name to be UNIQUE or a PRIMARY KEY, this would not stop the capitals
table from having rows with names duplicating rows in cities. And those duplicate rows would
by default show up in queries from cities. In fact, by default capitals would have no unique
constraint at all, and so could contain multiple rows with the same name. You could add a unique
constraint to capitals, but this would not prevent duplication compared to cities.

Similarly, if we were to specify that cities.name REFERENCES some other table, this constraint
would not automatically propagate to capitals. In this case you could work around it by manually
adding the same REFERENCES constraint to capitals.

Specifying that another table’s column REFERENCES cities (name) would allow the other table
to contain city names, but not capital names. There is no good workaround for this case.

These deficiencies will probably be fixed in some future release, but in the meantime considerable
care is needed in deciding whether inheritance is useful for your application.

5.9. Partitioning

PostgreSQL supports basic table partitioning. This section describes why and how to implement par-
titioning as part of your database design.

5.9.1. Overview

Partitioning refers to splitting what is logically one large table into smaller physical pieces. Partition-
ing can provide several benefits:

Query performance can be improved dramatically in certain situations, particularly when most of
the heavily accessed rows of the table are in a single partition or a small number of partitions. The
partitioning substitutes for leading columns of indexes, reducing index size and making it more
likely that the heavily-used parts of the indexes fit in memory.

When queries or updates access a large percentage of a single partition, performance can be im-
proved by taking advantage of sequential scan of that partition instead of using an index and random
access reads scattered across the whole table.

Bulk loads and deletes can be accomplished by adding or removing partitions, if that requirement
is planned into the partitioning design. ALTER TABLE NO INHERIT and DROP TABLE are both far
faster than a bulk operation. These commands also entirely avoid the vAcuuM overhead caused by
abulk DELETE.

Seldom-used data can be migrated to cheaper and slower storage media.

The benefits will normally be worthwhile only when a table would otherwise be very large. The exact

point at which a table will benefit from partitioning depends on the application, although a rule of

thumb is that the size of the table should exceed the physical memory of the database server.

Currently, PostgreSQL supports partitioning via table inheritance. Each partition must be created as a
child table of a single parent table. The parent table itself is normally empty; it exists just to represent
the entire data set. You should be familiar with inheritance (see Section 5.8) before attempting to set
up partitioning.

The following forms of partitioning can be implemented in PostgreSQL.:

69

Chapter 5. Data Definition

Range Partitioning

The table is partitioned into “ranges” defined by a key column or set of columns, with no overlap
between the ranges of values assigned to different partitions. For example one might partition by
date ranges, or by ranges of identifiers for particular business objects.

List Partitioning

The table is partitioned by explicitly listing which key values appear in each partition.

5.9.2. Implementing Partitioning

To set up a partitioned table, do the following:

1. Create the “master” table, from which all of the partitions will inherit.

This table will contain no data. Do not define any check constraints on this table, unless you
intend them to be applied equally to all partitions. There is no point in defining any indexes or
unique constraints on it, either.

2. Create several “child” tables that each inherit from the master table. Normally, these tables will
not add any columns to the set inherited from the master.

We will refer to the child tables as partitions, though they are in every way normal PostgreSQL
tables.

3. Add table constraints to the partition tables to define the allowed key values in each partition.
Typical examples would be:
CHECK (x = 1)
CHECK (county IN (’'Oxfordshire’, ’'Buckinghamshire’, ’'Warwickshire’))
CHECK (outletID >= 100 AND outletID < 200)
Ensure that the constraints guarantee that there is no overlap between the key values permitted in
different partitions. A common mistake is to set up range constraints like:

CHECK (outletID BETWEEN 100 AND 200)
CHECK (outletID BETWEEN 200 AND 300)

This is wrong since it is not clear which partition the key value 200 belongs in.

Note that there is no difference in syntax between range and list partitioning; those terms are
descriptive only.

4. For each partition, create an index on the key column(s), as well as any other indexes you might
want. (The key index is not strictly necessary, but in most scenarios it is helpful. If you intend
the key values to be unique then you should always create a unique or primary-key constraint for
each partition.)

5. Optionally, define a trigger or rule to redirect data inserted into the master table to the appropriate
partition.

6. Ensure that the constraint exclusion configuration parameter is not disabled in
postgresql.cont. If it is, queries will not be optimized as desired.

For example, suppose we are constructing a database for a large ice cream company. The company
measures peak temperatures every day as well as ice cream sales in each region. Conceptually, we
want a table like:

CREATE TABLE measurement (

70

city_id
logdate

peaktemp
unitsales

)

int not null,
date not null,
int,

int

Chapter 5. Data Definition

We know that most queries will access just the last week’s, month’s or quarter’s data, since the main
use of this table will be to prepare online reports for management. To reduce the amount of old data
that needs to be stored, we decide to only keep the most recent 3 years worth of data. At the beginning
of each month we will remove the oldest month’s data.

In this situation we can use partitioning to help us meet all of our different requirements for the

measurements table. Following the steps outlined above, partitioning can be set up as follows:

1. The master table is the measurement table, declared exactly as above.
2. Next we create one partition for each active month:

CREATE
CREATE
CREATE
CREATE
CREATE

TABLE
TABLE

TABLE
TABLE
TABLE

measurement_y2006m02 () INHERITS (measurement);
measurement_y2006m03 () INHERITS (measurement);
measurement_y2007mll () INHERITS (measurement);
measurement_y2007ml2 () INHERITS (measurement);
measurement_y2008m01 () INHERITS (measurement);

Each of the partitions are complete tables in their own right, but they inherit their definitions from
the measurement table.

This solves one of our problems: deleting old data. Each month, all we will need to do is perform

a DROP TABLE on the oldest child table and create a new child table for the new month’s data.
3. We must provide non-overlapping table constraints. Rather than just creating the partition tables

as above, the table creation script should really be:

CREATE TABLE measurement_y2006m02 (
CHECK (

) INHERITS (measurement);

CREATE TABLE measurement_y2006m03 (
CHECK (

) INHERITS (measurement);

CREATE TABLE measurement_y2007mll (
CHECK (

) INHERITS (measurement);

CREATE TABLE measurement_y2007ml2 (
CHECK (

) INHERITS (measurement);

CREATE TABLE measurement_y2008m01 (
CHECK

) INHERITS (measurement);

. We probably need indexes on the key columns too:

CREATE
CREATE
CREATE
CREATE
CREATE

logdate >= DATE ’2006-02-01"

logdate >= DATE ’2006-03-01"

logdate >= DATE ’2007-11-01’

logdate >= DATE ’2007-12-01"

(logdate >= DATE ’'2008-01-01"

INDEX measurement_y2006m02_logdate
INDEX measurement_y2006m03_logdate

INDEX measurement_y2007mll_logdate
INDEX measurement_y2007ml2_logdate
INDEX measurement_y2008m0l1_logdate

We choose not to add further indexes at this time.
. We want our application to be able to say INSERT INTO measurement

AND

AND

AND

AND

AND

ON
ON

ON
ON
ON

logdate < DATE

logdate < DATE

logdate < DATE

logdate < DATE

logdate < DATE

measurement_y2006m02
measurement_y2006m03

measurement_y2007mll
measurement_y2007ml2
measurement_y2008m01

72006-03-01")

72006-04-01")

"2007-12-01")

72008-01-01")

72008-02-01")

(logdate) ;
(logdate) ;

(logdate) ;
(logdate) ;
(logdate) ;

... and have the data

be redirected into the appropriate partition table. We can arrange that by attaching a suitable

71

Chapter 5. Data Definition

trigger function to the master table. If data will be added only to the latest partition, we can use a

very simple trigger function:

CREATE OR REPLACE FUNCTION measurement_insert_trigger ()

RETURNS TRIGGER AS $$
BEGIN

INSERT INTO measurement_y2008m0l1 VALUES (NEW.x);

RETURN NULL;
END;
$$
LANGUAGE plpgsql;

After creating the function, we create a trigger which calls the trigger function:

CREATE TRIGGER insert_measurement_trigger
BEFORE INSERT ON measurement

FOR EACH ROW EXECUTE PROCEDURE measurement_insert_trigger();
We must redefine the trigger function each month so that it always points to the current partition.

The trigger definition does not need to be updated, however.

We might want to insert data and have the server automatically locate the partition into which the
row should be added. We could do this with a more complex trigger function, for example:

CREATE OR REPLACE FUNCTION measurement_insert_trigger ()

RETURNS TRIGGER AS $$
BEGIN
IF (NEW.logdate >= DATE ’2006-02-01" AND
NEW.logdate < DATE ’2006-03-01") THEN
INSERT INTO measurement_y2006m02 VALUES
ELSIF (NEW.logdate >= DATE '2006-03-01’ AND

NEW.logdate < DATE ’"2006-04-01") THEN
(NEW. *) ;

INSERT INTO measurement_y2006m03 VALUES

ELSIF (NEW.logdate >= DATE ’2008-01-01’ AND

NEW.logdate < DATE ’'2008-02-01") THEN
(NEW. %) ;

INSERT INTO measurement_y2008m01 VALUES
ELSE

(NEW. %) ;

RAISE EXCEPTION ’Date out of range. Fix the measurement_insert_trigger ()

END IF;
RETURN NULL;

END;

$$

LANGUAGE plpgsql;

The trigger definition is the same as before. Note that each IF test must exactly match the CHECK

constraint for its partition.

While this function is more complex than the single-month case, it doesn’t need to be updated as

often, since branches can be added in advance of being needed.

Note: In practice it might be best to check the newest partition first, if most inserts go into
that partition. For simplicity we have shown the trigger’s tests in the same order as in other

parts of this example.

72

fur

Chapter 5. Data Definition

As we can see, a complex partitioning scheme could require a substantial amount of DDL. In the
above example we would be creating a new partition each month, so it might be wise to write a script
that generates the required DDL automatically.

5.9.3. Managing Partitions

Normally the set of partitions established when initially defining the table are not intended to remain
static. It is common to want to remove old partitions of data and periodically add new partitions
for new data. One of the most important advantages of partitioning is precisely that it allows this
otherwise painful task to be executed nearly instantaneously by manipulating the partition structure,
rather than physically moving large amounts of data around.

The simplest option for removing old data is simply to drop the partition that is no longer necessary:
DROP TABLE measurement_y2006m02;

This can very quickly delete millions of records because it doesn’t have to individually delete every
record.

Another option that is often preferable is to remove the partition from the partitioned table but retain
access to it as a table in its own right:

ALTER TABLE measurement_y2006m02 NO INHERIT measurement;

This allows further operations to be performed on the data before it is dropped. For example, this is
often a useful time to back up the data using copy, pg_dump, or similar tools. It might also be a useful
time to aggregate data into smaller formats, perform other data manipulations, or run reports.

Similarly we can add a new partition to handle new data. We can create an empty partition in the
partitioned table just as the original partitions were created above:

CREATE TABLE measurement_y2008m02 (
CHECK (logdate >= DATE ’2008-02-01’ AND logdate < DATE ’2008-03-01")
) INHERITS (measurement);

As an alternative, it is sometimes more convenient to create the new table outside the partition struc-
ture, and make it a proper partition later. This allows the data to be loaded, checked, and transformed
prior to it appearing in the partitioned table:

CREATE TABLE measurement_y2008m02
(LIKE measurement INCLUDING DEFAULTS INCLUDING CONSTRAINTS) ;
ALTER TABLE measurement_y2008m02 ADD CONSTRAINT y2008m02
CHECK (logdate >= DATE ’2008-02-01" AND logdate < DATE ’2008-03-01");
\copy measurement_y2008m02 from ’'measurement_y2008m02’
—— possibly some other data preparation work
ALTER TABLE measurement_y2008m02 INHERIT measurement;

5.9.4. Partitioning and Constraint Exclusion

Constraint exclusion is a query optimization technique that improves performance for partitioned
tables defined in the fashion described above. As an example:

SET constraint_exclusion = on;

73

Chapter 5. Data Definition

SELECT count () FROM measurement WHERE logdate >= DATE ’2008-01-01';

Without constraint exclusion, the above query would scan each of the partitions of the measurement
table. With constraint exclusion enabled, the planner will examine the constraints of each partition
and try to prove that the partition need not be scanned because it could not contain any rows meeting
the query’s WHERE clause. When the planner can prove this, it excludes the partition from the query
plan.

You can use the EXPLAIN command to show the difference between a plan with
constraint_exclusion on and a plan with it off. A typical unoptimized plan for this type of table
setup is:

SET constraint_exclusion = off;
EXPLAIN SELECT count (x) FROM measurement WHERE logdate >= DATE ’2008-01-01’";

QUERY PLAN

Aggregate (cost=158.66..158.68 rows=1 width=0)
-> Append (cost=0.00..151.88 rows=2715 width=0)
-> Seq Scan on measurement (cost=0.00..30.38 rows=543 width=0)
Filter: (logdate >= ’2008-01-01’::date)

-> Seq Scan on measurement_y2006m02 measurement (cost=0.00..30.38 rows=543 wi
Filter: (logdate >= ’72008-01-01’::date)
-> Seqg Scan on measurement_y2006m03 measurement (cost=0.00..30.38 rows=543 wi
Filter: (logdate >= ’72008-01-01’::date)
-> Seq Scan on measurement_y2007ml2 measurement (cost=0.00..30.38 rows=543 wi
Filter: (logdate >= ’2008-01-01’::date)
-> Seq Scan on measurement_y2008m0l1 measurement (cost=0.00..30.38 rows=543 wi
Filter: (logdate >= ’2008-01-01’::date)
Some or all of the partitions might use index scans instead of full-table sequential scans, but the point
here is that there is no need to scan the older partitions at all to answer this query. When we enable
constraint exclusion, we get a significantly cheaper plan that will deliver the same answer:
SET constraint_exclusion = on;
EXPLAIN SELECT count (x) FROM measurement WHERE logdate >= DATE ’2008-01-01’;
QUERY PLAN
Aggregate (cost=63.47..63.48 rows=1 width=0)
-> Append (cost=0.00..60.75 rows=1086 width=0)
-> Seqg Scan on measurement (cost=0.00..30.38 rows=543 width=0)
Filter: (logdate >= ’2008-01-01’::date)
-> Seq Scan on measurement_y2008m0l1 measurement (cost=0.00..30.38 rows=543 wi

Filter: (logdate >= ’2008-01-01’::date)

Note that constraint exclusion is driven only by CHECK constraints, not by the presence of indexes.
Therefore it isn’t necessary to define indexes on the key columns. Whether an index needs to be
created for a given partition depends on whether you expect that queries that scan the partition will
generally scan a large part of the partition or just a small part. An index will be helpful in the latter
case but not the former.

The default (and recommended) setting of constraint_exclusion is actually neither on nor of £, but an
intermediate setting called partition, which causes the technique to be applied only to queries that

74

Chapter 5. Data Definition

are likely to be working on partitioned tables. The on setting causes the planner to examine CHECK
constraints in all queries, even simple ones that are unlikely to benefit.

5.9.5. Alternative Partitioning Methods

A different approach to redirecting inserts into the appropriate partition table is to set up rules, instead
of a trigger, on the master table. For example:

CREATE RULE measurement_insert_y2006m02 AS
ON INSERT TO measurement WHERE

(logdate >= DATE ’'2006-02-01’ AND logdate < DATE "2006-03-01")
DO INSTEAD

INSERT INTO measurement_y2006m02 VALUES (NEW.x);

CREATE RULE measurement_insert_y2008m01 AS
ON INSERT TO measurement WHERE

(logdate >= DATE ’2008-01-01" AND logdate < DATE ’'2008-02-01")
DO INSTEAD

INSERT INTO measurement_y2008m01 VALUES (NEW.x);

A rule has significantly more overhead than a trigger, but the overhead is paid once per query rather
than once per row, so this method might be advantageous for bulk-insert situations. In most cases,
however, the trigger method will offer better performance.

Be aware that COPY ignores rules. If you want to use COPY to insert data, you’ll need to copy into the
correct partition table rather than into the master. COpY does fire triggers, so you can use it normally
if you use the trigger approach.

Another disadvantage of the rule approach is that there is no simple way to force an error if the set of
rules doesn’t cover the insertion date; the data will silently go into the master table instead.

Partitioning can also be arranged using a UNION ALL view, instead of table inheritance. For example,

CREATE VIEW measurement AS
SELECT x FROM measurement_y2006m02
UNION ALL SELECT % FROM measurement_y2006m03

UNION ALL SELECT % FROM measurement_y2007mll
UNION ALL SELECT % FROM measurement_y2007ml2
UNION ALL SELECT % FROM measurement_y2008m01;

However, the need to recreate the view adds an extra step to adding and dropping individual partitions
of the data set. In practice this method has little to recommend it compared to using inheritance.

5.9.6. Caveats

The following caveats apply to partitioned tables:

« There is no automatic way to verify that all of the CHECK constraints are mutually exclusive. It is
safer to create code that generates partitions and creates and/or modifies associated objects than to
write each by hand.

« The schemes shown here assume that the partition key column(s) of a row never change, or at
least do not change enough to require it to move to another partition. An UPDATE that attempts

75

Chapter 5. Data Definition

to do that will fail because of the CHECK constraints. If you need to handle such cases, you can
put suitable update triggers on the partition tables, but it makes management of the structure much
more complicated.

« If you are using manual VACUUM or ANALYZE commands, don’t forget that you need to run them on
each partition individually. A command like:

ANALYZE measurement;
will only process the master table.

The following caveats apply to constraint exclusion:

+ Constraint exclusion only works when the query’s WHERE clause contains constants. A parameter-
ized query will not be optimized, since the planner cannot know which partitions the parameter
value might select at run time. For the same reason, “stable” functions such as CURRENT_DATE
must be avoided.

« Keep the partitioning constraints simple, else the planner may not be able to prove that partitions
don’t need to be visited. Use simple equality conditions for list partitioning, or simple range tests for
range partitioning, as illustrated in the preceding examples. A good rule of thumb is that partitioning
constraints should contain only comparisons of the partitioning column(s) to constants using B-
tree-indexable operators.

+ All constraints on all partitions of the master table are examined during constraint exclusion, so
large numbers of partitions are likely to increase query planning time considerably. Partitioning
using these techniques will work well with up to perhaps a hundred partitions; don’t try to use
many thousands of partitions.

5.10. Foreign Data

PostgreSQL implements portions of the SQL/MED specification, allowing you to access data that
resides outside PostgreSQL using regular SQL queries. Such data is referred to as foreign data. (Note
that this usage is not to be confused with foreign keys, which are a type of constraint within the
database.)

Foreign data is accessed with help from a foreign data wrapper. A foreign data wrapper is a library
that can communicate with an external data source, hiding the details of connecting to the data source
and fetching data from it. There is a foreign data wrapper available as a cont rib module, which can
read plain data files residing on the server. Other kind of foreign data wrappers might be found as
third party products. If none of the existing foreign data wrappers suit your needs, you can write your
own; see Chapter 50.

To access foreign data, you need to create a foreign server object, which defines how to connect to
a particular external data source, according to the set of options used by a particular foreign data
wrapper. Then you need to create one or more foreign tables, which define the structure of the remote
data. A foreign table can be used in queries just like a normal table, but a foreign table has no storage
in the PostgreSQL server. Whenever it is used, PostgreSQL asks the foreign data wrapper to fetch the
data from the external source.

76

Chapter 5. Data Definition

Accessing remote data may require authentication at the external data source. This information can be
provided by a user mapping, which can provide additional options based on the current PostgreSQL
role.

Currently, foreign tables are read-only. This limitation may be fixed in a future release.

5.11. Other Database Objects

Tables are the central objects in a relational database structure, because they hold your data. But they
are not the only objects that exist in a database. Many other kinds of objects can be created to make the
use and management of the data more efficient or convenient. They are not discussed in this chapter,
but we give you a list here so that you are aware of what is possible:

« Views

« Functions and operators

+ Data types and domains

« Triggers and rewrite rules

Detailed information on these topics appears in Part V.

5.12. Dependency Tracking

When you create complex database structures involving many tables with foreign key constraints,
views, triggers, functions, etc. you implicitly create a net of dependencies between the objects. For
instance, a table with a foreign key constraint depends on the table it references.

To ensure the integrity of the entire database structure, PostgreSQL makes sure that you cannot drop
objects that other objects still depend on. For example, attempting to drop the products table we had
considered in Section 5.3.5, with the orders table depending on it, would result in an error message
such as this:

DROP TABLE products;

NOTICE: constraint orders_product_no_fkey on table orders depends on table products
ERROR: cannot drop table products because other objects depend on it
HINT: Use DROP ... CASCADE to drop the dependent objects too.

The error message contains a useful hint: if you do not want to bother deleting all the dependent
objects individually, you can run:

DROP TABLE products CASCADE;

and all the dependent objects will be removed. In this case, it doesn’t remove the orders table, it only
removes the foreign key constraint. (If you want to check what DROP ... CaASCADE will do, run
DROP without CASCADE and read the NOTICE messages.)

All drop commands in PostgreSQL support specifying CASCADE. Of course, the nature of the possible
dependencies varies with the type of the object. You can also write RESTRICT instead of CASCADE to
get the default behavior, which is to prevent the dropping of objects that other objects depend on.

77

Chapter 5. Data Definition

Note: According to the SQL standard, specifying either RESTRICT or cascapk is required. No
database system actually enforces that rule, but whether the default behavior is REsTRICT or
CASCADE varies across systems.

Note: Foreign key constraint dependencies and serial column dependencies from PostgreSQL
versions prior to 7.3 are not maintained or created during the upgrade process. All other depen-
dency types will be properly created during an upgrade from a pre-7.3 database.

78

Chapter 6. Data Manipulation

The previous chapter discussed how to create tables and other structures to hold your data. Now it is
time to fill the tables with data. This chapter covers how to insert, update, and delete table data. The
chapter after this will finally explain how to extract your long-lost data from the database.

6.1. Inserting Data

When a table is created, it contains no data. The first thing to do before a database can be of much use
is to insert data. Data is conceptually inserted one row at a time. Of course you can also insert more
than one row, but there is no way to insert less than one row. Even if you know only some column
values, a complete row must be created.

To create a new row, use the INSERT command. The command requires the table name and column
values. For example, consider the products table from Chapter 5:

CREATE TABLE products (
product_no integer,
name text,
price numeric

)i
An example command to insert a row would be:

INSERT INTO products VALUES (1, ’Cheese’, 9.99);
The data values are listed in the order in which the columns appear in the table, separated by commas.
Usually, the data values will be literals (constants), but scalar expressions are also allowed.

The above syntax has the drawback that you need to know the order of the columns in the table. To
avoid this you can also list the columns explicitly. For example, both of the following commands have
the same effect as the one above:

INSERT INTO products (product_no, name, price) VALUES (1, ’Cheese’, 9.99);
INSERT INTO products (name, price, product_no) VALUES (’'Cheese’, 9.99, 1);

Many users consider it good practice to always list the column names.

If you don’t have values for all the columns, you can omit some of them. In that case, the columns
will be filled with their default values. For example:

INSERT INTO products (product_no, name) VALUES (1, ’Cheese’);
INSERT INTO products VALUES (1, ’Cheese’);

The second form is a PostgreSQL extension. It fills the columns from the left with as many values as
are given, and the rest will be defaulted.

For clarity, you can also request default values explicitly, for individual columns or for the entire row:

INSERT INTO products (product_no, name, price) VALUES (1, ’'Cheese’, DEFAULT);
INSERT INTO products DEFAULT VALUES;

You can insert multiple rows in a single command:

INSERT INTO products (product_no, name, price) VALUES

79

Chapter 6. Data Manipulation

(1, ’"Cheese’, 9.99),
(2, '"Bread’, 1.99),
(3, 'Milk’, 2.99);

Tip: When inserting a lot of data at the same time, considering using the COPY command. It
is not as flexible as the INSERT command, but is more efficient. Refer to Section 14.4 for more
information on improving bulk loading performance.

6.2. Updating Data

The modification of data that is already in the database is referred to as updating. You can update
individual rows, all the rows in a table, or a subset of all rows. Each column can be updated separately;
the other columns are not affected.

To update existing rows, use the UPDATE command. This requires three pieces of information:

1. The name of the table and column to update
2. The new value of the column
3. Which row(s) to update

Recall from Chapter 5 that SQL does not, in general, provide a unique identifier for rows. Therefore it
is not always possible to directly specify which row to update. Instead, you specify which conditions
a row must meet in order to be updated. Only if you have a primary key in the table (independent of
whether you declared it or not) can you reliably address individual rows by choosing a condition that
matches the primary key. Graphical database access tools rely on this fact to allow you to update rows
individually.

For example, this command updates all products that have a price of 5 to have a price of 10:
UPDATE products SET price = 10 WHERE price = 5;

This might cause zero, one, or many rows to be updated. It is not an error to attempt an update that
does not match any rows.

Let’s look at that command in detail. First is the key word UPDATE followed by the table name. As
usual, the table name can be schema-qualified, otherwise it is looked up in the path. Next is the key
word SET followed by the column name, an equal sign, and the new column value. The new column
value can be any scalar expression, not just a constant. For example, if you want to raise the price of
all products by 10% you could use:

UPDATE products SET price = price * 1.10;

As you see, the expression for the new value can refer to the existing value(s) in the row. We also
left out the WHERE clause. If it is omitted, it means that all rows in the table are updated. If it is
present, only those rows that match the WHERE condition are updated. Note that the equals sign in
the SET clause is an assignment while the one in the WHERE clause is a comparison, but this does not
create any ambiguity. Of course, the WHERE condition does not have to be an equality test. Many other
operators are available (see Chapter 9). But the expression needs to evaluate to a Boolean result.

80

Chapter 6. Data Manipulation

You can update more than one column in an UPDATE command by listing more than one assignment
in the SET clause. For example:

UPDATE mytable SET a = 5, b = 3, ¢ = 1 WHERE a > 0;

6.3. Deleting Data

So far we have explained how to add data to tables and how to change data. What remains is to
discuss how to remove data that is no longer needed. Just as adding data is only possible in whole
rows, you can only remove entire rows from a table. In the previous section we explained that SQL
does not provide a way to directly address individual rows. Therefore, removing rows can only be
done by specifying conditions that the rows to be removed have to match. If you have a primary key
in the table then you can specify the exact row. But you can also remove groups of rows matching a
condition, or you can remove all rows in the table at once.

You use the DELETE command to remove rows; the syntax is very similar to the UPDATE command.
For instance, to remove all rows from the products table that have a price of 10, use:

DELETE FROM products WHERE price = 10;
If you simply write:

DELETE FROM products;

then all rows in the table will be deleted! Caveat programmer.

81

Chapter 7. Queries

The previous chapters explained how to create tables, how to fill them with data, and how to manipu-
late that data. Now we finally discuss how to retrieve the data from the database.

7.1. Overview

The process of retrieving or the command to retrieve data from a database is called a query. In SQL
the SELECT command is used to specify queries. The general syntax of the SELECT command is

[WITH with_queries] SELECT select_list FROM table_expression [sort_specification]
The following sections describe the details of the select list, the table expression, and the sort specifi-
cation. WITH queries are treated last since they are an advanced feature.

A simple kind of query has the form:

SELECT * FROM tablel;

Assuming that there is a table called tablel, this command would retrieve all rows and all columns
from tablel. (The method of retrieval depends on the client application. For example, the psql
program will display an ASCII-art table on the screen, while client libraries will offer functions to
extract individual values from the query result.) The select list specification » means all columns that
the table expression happens to provide. A select list can also select a subset of the available columns
or make calculations using the columns. For example, if tablel has columns named a, b, and c (and
perhaps others) you can make the following query:

SELECT a, b + ¢ FROM tablel;

(assuming that b and c are of a numerical data type). See Section 7.3 for more details.

FROM tablel isasimple kind of table expression: it reads just one table. In general, table expressions
can be complex constructs of base tables, joins, and subqueries. But you can also omit the table
expression entirely and use the SELECT command as a calculator:

SELECT 3 * 4;

This is more useful if the expressions in the select list return varying results. For example, you could
call a function this way:

SELECT random() ;

7.2. Table Expressions

A table expression computes a table. The table expression contains a FROM clause that is optionally
followed by WHERE, GROUP BY, and HAVING clauses. Trivial table expressions simply refer to a table
on disk, a so-called base table, but more complex expressions can be used to modify or combine base
tables in various ways.

The optional WHERE, GROUP BY, and HAVING clauses in the table expression specify a pipeline of
successive transformations performed on the table derived in the FrROM clause. All these transforma-

82

Chapter 7. Queries

tions produce a virtual table that provides the rows that are passed to the select list to compute the
output rows of the query.

7.2.1. The rroM Clause

The FROM Clause derives a table from one or more other tables given in a comma-separated table
reference list.

FROM table_reference [, table_reference [, ...]]

A table reference can be a table name (possibly schema-qualified), or a derived table such as a sub-
query, a table join, or complex combinations of these. If more than one table reference is listed in the
FROM clause they are cross-joined (see below) to form the intermediate virtual table that can then be
subject to transformations by the WHERE, GROUP BY, and HAVING clauses and is finally the result of
the overall table expression.

When a table reference names a table that is the parent of a table inheritance hierarchy, the table
reference produces rows of not only that table but all of its descendant tables, unless the key word
ONLY precedes the table name. However, the reference produces only the columns that appear in the
named table — any columns added in subtables are ignored.

Instead of writing ONLY before the table name, you can write x after the table name to explicitly
specify that descendant tables are included. Writing » is not necessary since that behavior is the
default (unless you have changed the setting of the sql_inheritance configuration option). However
writing » might be useful to emphasize that additional tables will be searched.

7.2.1.1. Joined Tables

A joined table is a table derived from two other (real or derived) tables according to the rules of the
particular join type. Inner, outer, and cross-joins are available.

Join Types
Cross join
T1 CROSS JOIN T2

For every possible combination of rows from 71 and 72 (i.e., a Cartesian product), the joined
table will contain a row consisting of all columns in 71 followed by all columns in 72. If the
tables have N and M rows respectively, the joined table will have N * M rows.

FROM T1 CROSS JOIN T2 is equivalent to FROM 71, 72. It is also equivalent to FROM T1
INNER JOIN T2 ON TRUE (see below).
Qualified joins

T1 { [INNER] | { LEFT | RIGHT | FULL } [OUTER

Tl NATURAL [INNER] | { LEFT | RIGHT | FULL [OUTER] } JOIN T2

The words INNER and OUTER are optional in all forms. INNER is the default; LEFT, RIGHT, and
FULL imply an outer join.

The join condition is specified in the ON or USING clause, or implicitly by the word NATURAL.
The join condition determines which rows from the two source tables are considered to “match”,
as explained in detail below.

83

]] } JOIN T2 ON boolean_expression
71 { [INNER] | { LEFT | RIGHT | FULL } [OUTER] } JOIN T2 USING (join column list
{ }

)

Chapter 7. Queries

The on clause is the most general kind of join condition: it takes a Boolean value expression
of the same kind as is used in a WHERE clause. A pair of rows from 71 and 72 match if the on
expression evaluates to true for them.

USING is a shorthand notation: it takes a comma-separated list of column names, which the joined
tables must have in common, and forms a join condition specifying equality of each of these pairs
of columns. Furthermore, the output of JOIN USING has one column for each of the equated
pairs of input columns, followed by the remaining columns from each table. Thus, USING (a,
b, c)isequivalenttoON (tl.a = t2.a AND tl.b = t2.b AND tl.c = t2.c) withthe
exception that if ON is used there will be two columns a, b, and c in the result, whereas with
USING there will be only one of each (and they will appear first if SELECT « is used).

Finally, NATURAL is a shorthand form of USING: it forms a USING list consisting of all column
names that appear in both input tables. As with USING, these columns appear only once in the
output table. If there are no common columns, NATURAL behaves like CROSS JOIN.

The possible types of qualified join are:

INNER JOIN

For each row R1 of T1, the joined table has a row for each row in T2 that satisfies the join
condition with R1.

LEFT OUTER JOIN

First, an inner join is performed. Then, for each row in T1 that does not satisfy the join
condition with any row in T2, a joined row is added with null values in columns of T2.
Thus, the joined table always has at least one row for each row in T1.

RIGHT OUTER JOIN

First, an inner join is performed. Then, for each row in T2 that does not satisfy the join
condition with any row in T1, a joined row is added with null values in columns of T1. This
is the converse of a left join: the result table will always have a row for each row in T2.

FULL OUTER JOIN

First, an inner join is performed. Then, for each row in T1 that does not satisfy the join
condition with any row in T2, a joined row is added with null values in columns of T2.
Also, for each row of T2 that does not satisfy the join condition with any row in T1, a
joined row with null values in the columns of T1 is added.

Joins of all types can be chained together or nested: either or both 71 and T2 can be joined tables.
Parentheses can be used around JOIN clauses to control the join order. In the absence of parentheses,
JOIN clauses nest left-to-right.

To put this together, assume we have tables £ 1:

num | name
,,,,, I
1] a
2 | b
3 | ¢
and t2

84

Chapter 7. Queries

3 1 yyy
5 | zzz

then we get the following results for the various joins:

=> SELECT x FROM tl CROSS JOIN t2;

num | name | num | value
————— o
1] a | 1 | xxx
1] a \ 31 yyy
1] a \ 5 | zzz
2 |1 b | 1 | xxx
2 1 Db \ 31 yyy
2 1 Db \ 5 | zzz
3 1 c \ 1 | xxx
31| c \ 3 1 yyy
31 c \ 5 | zzz
(9 rows)

=> SELECT x FROM tl INNER JOIN t2 ON tl.num = t2.num;

num | name | num | value
————— o ——
1| a | 1 | xxx
31 ¢ \ 31 yyy
(2 rows)

=> SELECT x FROM tl INNER JOIN t2 USING (num);

num | name | value
_____ e
1] a | XXX
31 c | yyy
(2 rows)

=> SELECT x FROM tl NATURAL INNER JOIN t2;

num | name | value
_____ e
1] a | XXX
31 ¢ | yyy
(2 rows)

=> SELECT x FROM tl LEFT JOIN t2 ON tl.num = t2.num;

num | name | num | value
————— o
1] a | 1 | xxx
2 |1 b \ |
3| c \ 3 1 yyy
(3 rows)

=> SELECT » FROM tl LEFT JOIN t2 USING (num);

num | name | value
,,,,, e

1] a | xxxX

2 | b \

31 ¢ l yyy
(3 rows)

=> SELECT *x FROM tl RIGHT JOIN t2 ON tl.num = t2.num;

85

Chapter 7. Queries

num | name | num | value
77777 G e
11 a | 1 | xxx
31 ¢ \ 3 1 yyy
\ \ 5 | zzz
(3 rows)

=> SELECT x FROM tl FULL JOIN t2 ON tl.num = t2.num;

num | name | num | value
————— o ——
11 a \ 1 | xxx
2 1 Db \ |
3| c \ 3 1 yyy
\ \ 5 | zzz
(4 rows)

The join condition specified with ON can also contain conditions that do not relate directly to the join.
This can prove useful for some queries but needs to be thought out carefully. For example:

=> SELECT x FROM tl LEFT JOIN t2 ON tl.num = t2.num AND t2.value = ’'xxx’;

num | name | num | value
_____ T
1] a | 1 | xxx
2 |1 b \ |
3 | c \ |
(3 rows)

Notice that placing the restriction in the WHERE clause produces a different result:

=> SELECT * FROM tl LEFT JOIN t2 ON tl.num = t2.num WHERE t2.value = ’'xxx’;
num | name | num | value
————— o
1 a 1 | xxx
(1 row)

This is because a restriction placed in the ON clause is processed before the join, while a restriction
placed in the WHERE clause is processed after the join.

7.2.1.2. Table and Column Aliases

A temporary name can be given to tables and complex table references to be used for references to
the derived table in the rest of the query. This is called a table alias.

To create a table alias, write

FROM table_reference AS alias
or

FROM table reference alias

The As key word is optional noise. alias can be any identifier.

A typical application of table aliases is to assign short identifiers to long table names to keep the join
clauses readable. For example:

86

Chapter 7. Queries

SELECT = FROM some_very_long_table_name s JOIN another_fairly long_name a ON s.id = a.nu

The alias becomes the new name of the table reference so far as the current query is concerned — it
is not allowed to refer to the table by the original name elsewhere in the query. Thus, this is not valid:

SELECT x FROM my_table AS m WHERE my_table.a > 5; —-— wrong

Table aliases are mainly for notational convenience, but it is necessary to use them when joining a
table to itself, e.g.:

SELECT * FROM people AS mother JOIN people AS child ON mother.id = child.mother_id;

Additionally, an alias is required if the table reference is a subquery (see Section 7.2.1.3).

Parentheses are used to resolve ambiguities. In the following example, the first statement assigns the
alias b to the second instance of my_table, but the second statement assigns the alias to the result of
the join:

SELECT x FROM my_table AS a CROSS JOIN my_table AS b
SELECT % FROM (my_table AS a CROSS JOIN my_table) AS b

Another form of table aliasing gives temporary names to the columns of the table, as well as the table
itself:

FROM table_reference [AS] alias (columnl [, column2 [, ...]])

If fewer column aliases are specified than the actual table has columns, the remaining columns are not
renamed. This syntax is especially useful for self-joins or subqueries.

When an alias is applied to the output of a JOIN clause, the alias hides the original name(s) within the
JOIN. For example:

SELECT a.x FROM my_table AS a JOIN your_table AS b ON
is valid SQL, but:
SELECT a.x» FROM (my_table AS a JOIN your_table AS b ON ...) AS c

is not valid; the table alias a is not visible outside the alias c.

7.2.1.3. Subqueries

Subqueries specifying a derived table must be enclosed in parentheses and must be assigned a table
alias name. (See Section 7.2.1.2.) For example:

FROM (SELECT * FROM tablel) AS alias_name

This example is equivalent to FROM tablel AS alias_name. More interesting cases, which cannot
be reduced to a plain join, arise when the subquery involves grouping or aggregation.

A subquery can also be a VALUES list:

87

Chapter 7. Queries

FROM (VALUES (’anne’, ’'smith’), (‘bob’, ’jones’), (’joe’, ’'blow’))
AS names (first, last)

Again, a table alias is required. Assigning alias names to the columns of the VALUES list is optional,
but is good practice. For more information see Section 7.7.

7.2.1.4. Table Functions

Table functions are functions that produce a set of rows, made up of either base data types (scalar
types) or composite data types (table rows). They are used like a table, view, or subquery in the FROM
clause of a query. Columns returned by table functions can be included in SELECT, JOIN, or WHERE
clauses in the same manner as a table, view, or subquery column.

If a table function returns a base data type, the single result column name matches the function name.
If the function returns a composite type, the result columns get the same names as the individual
attributes of the type.

A table function can be aliased in the FROM clause, but it also can be left unaliased. If a function is
used in the FROM clause with no alias, the function name is used as the resulting table name.

Some examples:

CREATE TABLE foo (fooid int, foosubid int, fooname text);

CREATE FUNCTION getfoo (int) RETURNS SETOF foo AS $$
SELECT % FROM foo WHERE fooid = $1;
$$ LANGUAGE SQL;

SELECT » FROM getfoo(l) AS tl1;

SELECT x FROM foo
WHERE foosubid IN (
SELECT foosubid
FROM getfoo (foo.fooid) z
WHERE z.fooid = foo.fooid
)i

CREATE VIEW vw_getfoo AS SELECT *x FROM getfoo(l);

SELECT * FROM vw_getfoo;

In some cases it is useful to define table functions that can return different column sets depending on
how they are invoked. To support this, the table function can be declared as returning the pseudotype
record. When such a function is used in a query, the expected row structure must be specified in the
query itself, so that the system can know how to parse and plan the query. Consider this example:

SELECT «*
FROM dblink (’ dbname=mydb’, ’SELECT proname, prosrc FROM pg_proc’)
AS tl (proname name, prosrc text)
WHERE proname LIKE ’bytea%’;

The dblink function (part of the dblink module>) executes a remote query. It is declared to return
record since it might be used for any kind of query. The actual column set must be specified in the
calling query so that the parser knows, for example, what « should expand to.

88

Chapter 7. Queries

7.2.2. The wHERE Clause

The syntax of the WHERE Clause is
WHERE search condition

where search condition is any value expression (see Section 4.2) that returns a value of type

boolean.

After the processing of the FROM clause is done, each row of the derived virtual table is checked
against the search condition. If the result of the condition is true, the row is kept in the output table,
otherwise (i.e., if the result is false or null) it is discarded. The search condition typically references
at least one column of the table generated in the FROM clause; this is not required, but otherwise the
WHERE clause will be fairly useless.

Note: The join condition of an inner join can be written either in the wrERE clause or in the JoIn
clause. For example, these table expressions are equivalent:

FROM a, b WHERE a.id = b.id AND b.val > 5

and:

FROM a INNER JOIN b ON (a.id = b.id) WHERE b.val > 5
or perhaps even:

FROM a NATURAL JOIN b WHERE b.val > 5

Which one of these you use is mainly a matter of style. The Jo1n syntax in the Frou clause is
probably not as portable to other SQL database management systems, even though it is in the
SQL standard. For outer joins there is no choice: they must be done in the From clause. The ox
or UsING clause of an outer join is not equivalent to a wHERE condition, because it results in the
addition of rows (for unmatched input rows) as well as the removal of rows in the final result.

Here are some examples of WHERE clauses:

SELECT ... FROM fdt WHERE cl > 5

SELECT ... FROM fdt WHERE cl IN (1, 2, 3)

SELECT ... FROM fdt WHERE cl IN (SELECT cl FROM t2)

SELECT ... FROM fdt WHERE cl IN (SELECT c3 FROM t2 WHERE c2 = fdt.cl + 10)
SELECT ... FROM fdt WHERE cl BETWEEN (SELECT c3 FROM t2 WHERE c2 = fdt.cl +
SELECT ... FROM fdt WHERE EXISTS (SELECT cl FROM t2 WHERE c2 > fdt.cl)

fdt is the table derived in the FROM clause. Rows that do not meet the search condition of the WHERE
clause are eliminated from fdt. Notice the use of scalar subqueries as value expressions. Just like any
other query, the subqueries can employ complex table expressions. Notice also how fdt is referenced
in the subqueries. Qualifying c1 as £dt . c1 is only necessary if c1 is also the name of a column in the
derived input table of the subquery. But qualifying the column name adds clarity even when it is not
needed. This example shows how the column naming scope of an outer query extends into its inner
queries.

89

10)

AND 100

Chapter 7. Queries

7.2.3. The crourP BY and HAVING Clauses

After passing the WHERE filter, the derived input table might be subject to grouping, using the GROUP
BY clause, and elimination of group rows using the HAVING clause.

SELECT select_list
FROM
[WHERE ...]
GROUP BY grouping_column_reference [, grouping_column_reference] ...

The GROUP BY Clause is used to group together those rows in a table that have the same values in all
the columns listed. The order in which the columns are listed does not matter. The effect is to combine
each set of rows having common values into one group row that represents all rows in the group. This
is done to eliminate redundancy in the output and/or compute aggregates that apply to these groups.
For instance:

=> SELECT * FROM testl;
X

a
c
b
a
4

(

(3 rows)

In the second query, we could not have written SELECT » FROM testl GROUP BY x, because
there is no single value for the column y that could be associated with each group. The grouped-
by columns can be referenced in the select list since they have a single value in each group.

In general, if a table is grouped, columns that are not listed in GROUP BY cannot be referenced except
in aggregate expressions. An example with aggregate expressions is:

=> SELECT x, sum(y) FROM testl GROUP BY x;

X | sum

Here sum is an aggregate function that computes a single value over the entire group. More informa-
tion about the available aggregate functions can be found in Section 9.18.

Tip: Grouping without aggregate expressions effectively calculates the set of distinct values in a
column. This can also be achieved using the prsTINCT clause (see Section 7.3.3).

90

Chapter 7. Queries

Here is another example: it calculates the total sales for each product (rather than the total sales of all
products):

SELECT product_id, p.name, (sum(s.units) * p.price) AS sales
FROM products p LEFT JOIN sales s USING (product_id)
GROUP BY product_id, p.name, p.price;

In this example, the columns product_id, p.name, and p.price must be in the GROUP BY clause
since they are referenced in the query select list (but see below). The column s.units does not
have to be in the GROUP BY list since it is only used in an aggregate expression (sum (. . .)), which
represents the sales of a product. For each product, the query returns a summary row about all sales
of the product.

If the products table is set up so that, say, product_id is the primary key, then it would be enough to
group by product_id in the above example, since name and price would be functionally dependent
on the product ID, and so there would be no ambiguity about which name and price value to return
for each product ID group.

In strict SQL, GROUP BY can only group by columns of the source table but PostgreSQL extends this
to also allow GROUP BY to group by columns in the select list. Grouping by value expressions instead
of simple column names is also allowed.

If a table has been grouped using GROUP BY, but only certain groups are of interest, the HAVING
clause can be used, much like a WHERE clause, to eliminate groups from the result. The syntax is:

SELECT select_list FROM ... [WHERE ...] GROUP BY ... HAVING boolean_expression
Expressions in the HAVING clause can refer both to grouped expressions and to ungrouped expressions
(which necessarily involve an aggregate function).

Example:

=> SELECT x, sum(y) FROM testl GROUP BY x HAVING sum(y) > 3;
X | sum

=> SELECT x, sum(y) FROM testl GROUP BY x HAVING x < 'c’;
X | sum

Again, a more realistic example:

SELECT product_id, p.name, (sum(s.units) * (p.price - p.cost)) AS profit
FROM products p LEFT JOIN sales s USING (product_id)
WHERE s.date > CURRENT_DATE - INTERVAL ’'4 weeks’
GROUP BY product_id, p.name, p.price, p.cost
HAVING sum(p.price x s.units) > 5000;

In the example above, the WHERE clause is selecting rows by a column that is not grouped (the expres-
sion is only true for sales during the last four weeks), while the HAVING clause restricts the output to

91

Chapter 7. Queries

groups with total gross sales over 5000. Note that the aggregate expressions do not necessarily need
to be the same in all parts of the query.

If a query contains aggregate function calls, but no GROUP BY clause, grouping still occurs: the result
is a single group row (or perhaps no rows at all, if the single row is then eliminated by HAVING). The
same is true if it contains a HAVING clause, even without any aggregate function calls or GROUP BY
clause.

7.2.4. Window Function Processing

If the query contains any window functions (see Section 3.5, Section 9.19 and Section 4.2.8), these
functions are evaluated after any grouping, aggregation, and HAVING filtering is performed. That is,
if the query uses any aggregates, GROUP BY, or HAVING, then the rows seen by the window functions
are the group rows instead of the original table rows from FROM/WHERE.

When multiple window functions are used, all the window functions having syntactically equivalent
PARTITION BY and ORDER BY clauses in their window definitions are guaranteed to be evaluated
in a single pass over the data. Therefore they will see the same sort ordering, even if the ORDER BY
does not uniquely determine an ordering. However, no guarantees are made about the evaluation of
functions having different PARTITION BY or ORDER BY specifications. (In such cases a sort step is
typically required between the passes of window function evaluations, and the sort is not guaranteed
to preserve ordering of rows that its ORDER BY sees as equivalent.)

Currently, window functions always require presorted data, and so the query output will be ordered
according to one or another of the window functions’ PARTITION BY/ORDER BY clauses. It is not
recommendable to rely on this, however. Use an explicit top-level ORDER BY clause if you want to be
sure the results are sorted in a particular way.

7.3. Select Lists

As shown in the previous section, the table expression in the SELECT command constructs an inter-
mediate virtual table by possibly combining tables, views, eliminating rows, grouping, etc. This table
is finally passed on to processing by the select list. The select list determines which columns of the
intermediate table are actually output.

7.3.1. Select-List ltems

The simplest kind of select list is » which emits all columns that the table expression produces.
Otherwise, a select list is a comma-separated list of value expressions (as defined in Section 4.2). For
instance, it could be a list of column names:

SELECT a, b, c FROM

The columns names a, b, and c are either the actual names of the columns of tables referenced in the
FROM clause, or the aliases given to them as explained in Section 7.2.1.2. The name space available in
the select list is the same as in the WHERE clause, unless grouping is used, in which case it is the same
as in the HAVING clause.

If more than one table has a column of the same name, the table name must also be given, as in:

SELECT tbll.a, tbl2.a, tbll.b FROM

92

Chapter 7. Queries

When working with multiple tables, it can also be useful to ask for all the columns of a particular
table:

SELECT tbll.x, tbl2.a FROM

(See also Section 7.2.2.)

If an arbitrary value expression is used in the select list, it conceptually adds a new virtual column to
the returned table. The value expression is evaluated once for each result row, with the row’s values
substituted for any column references. But the expressions in the select list do not have to reference
any columns in the table expression of the FROM clause; they can be constant arithmetic expressions,
for instance.

7.3.2. Column Labels

The entries in the select list can be assigned names for subsequent processing, such as for use in an
ORDER BY clause or for display by the client application. For example:

SELECT a AS value, b + ¢ AS sum FROM

If no output column name is specified using As, the system assigns a default column name. For simple
column references, this is the name of the referenced column. For function calls, this is the name of
the function. For complex expressions, the system will generate a generic name.

The As keyword is optional, but only if the new column name does not match any PostgreSQL key-
word (see Appendix C). To avoid an accidental match to a keyword, you can double-quote the column
name. For example, VALUE is a keyword, so this does not work:

SELECT a value, b + ¢ AS sum FROM
but this does:
SELECT a "value", b + ¢ AS sum FROM

For protection against possible future keyword additions, it is recommended that you always either
write AS or double-quote the output column name.

Note: The naming of output columns here is different from that done in the Frowm clause (see
Section 7.2.1.2). It is possible to rename the same column twice, but the name assigned in the
select list is the one that will be passed on.

7.3.3. DISTINCT

After the select list has been processed, the result table can optionally be subject to the elimination of
duplicate rows. The DISTINCT key word is written directly after SELECT to specify this:

SELECT DISTINCT select_list

(Instead of DISTINCT the key word ALL can be used to specify the default behavior of retaining all
rows.)

93

Chapter 7. Queries

Obviously, two rows are considered distinct if they differ in at least one column value. Null values are
considered equal in this comparison.

Alternatively, an arbitrary expression can determine what rows are to be considered distinct:
SELECT DISTINCT ON (expression [, expression ...]) select_list

Here expression is an arbitrary value expression that is evaluated for all rows. A set of rows for
which all the expressions are equal are considered duplicates, and only the first row of the set is kept
in the output. Note that the “first row” of a set is unpredictable unless the query is sorted on enough
columns to guarantee a unique ordering of the rows arriving at the DISTINCT filter. (DISTINCT ON
processing occurs after ORDER BY sorting.)

The DISTINCT ON clause is not part of the SQL standard and is sometimes considered bad style
because of the potentially indeterminate nature of its results. With judicious use of GROUP BY and
subqueries in FROM, this construct can be avoided, but it is often the most convenient alternative.

7.4. Combining Queries

The results of two queries can be combined using the set operations union, intersection, and differ-
ence. The syntax is

queryl UNION [ALL] gquery2
queryl INTERSECT [ALL] query?2
queryl EXCEPT [ALL] query2

queryl and query2 are queries that can use any of the features discussed up to this point. Set
operations can also be nested and chained, for example

queryl UNION query2 UNION query3
which is executed as:

(queryl UNION gquery2) UNION query3

UNION effectively appends the result of query2 to the result of query1 (although there is no guaran-
tee that this is the order in which the rows are actually returned). Furthermore, it eliminates duplicate
rows from its result, in the same way as DISTINCT, unless UNION ALL is used.

INTERSECT returns all rows that are both in the result of guery1 and in the result of query2. Dupli-
cate rows are eliminated unless INTERSECT ALL is used.

EXCEPT returns all rows that are in the result of query1 but not in the result of query2. (This is some-
times called the difference between two queries.) Again, duplicates are eliminated unless EXCEPT
ALL is used.

In order to calculate the union, intersection, or difference of two queries, the two queries must be
“union compatible”, which means that they return the same number of columns and the corresponding
columns have compatible data types, as described in Section 10.5.

94

Chapter 7. Queries

7.5. Sorting Rows

After a query has produced an output table (after the select list has been processed) it can optionally
be sorted. If sorting is not chosen, the rows will be returned in an unspecified order. The actual order
in that case will depend on the scan and join plan types and the order on disk, but it must not be relied
on. A particular output ordering can only be guaranteed if the sort step is explicitly chosen.

The ORDER BY clause specifies the sort order:

SELECT select_list
FROM table _expression
ORDER BY sort_expressionl [ASC | DESC] [NULLS { FIRST | LAST }]
[, sort_expression2z [ASC | DESC] [NULLS { FIRST | LAST }] ...]

The sort expression(s) can be any expression that would be valid in the query’s select list. An example
is:

SELECT a, b FROM tablel ORDER BY a + b, c;

When more than one expression is specified, the later values are used to sort rows that are equal
according to the earlier values. Each expression can be followed by an optional ASC or DESC keyword
to set the sort direction to ascending or descending. ASC order is the default. Ascending order puts
smaller values first, where “smaller” is defined in terms of the < operator. Similarly, descending order
is determined with the > operator. '

The NULLS FIRST and NULLS LAST options can be used to determine whether nulls appear before
or after non-null values in the sort ordering. By default, null values sort as if larger than any non-null
value; that is, NULLS FIRST is the default for DESC order, and NULLS LAST otherwise.

Note that the ordering options are considered independently for each sort column. For example ORDER
BY x, y DESC means ORDER BY x ASC, y DESC, which is not the same as ORDER BY x DESC,
y DESC.

A sort_expression can also be the column label or number of an output column, as in:

SELECT a + b AS sum, c FROM tablel ORDER BY sum;
SELECT a, max(b) FROM tablel GROUP BY a ORDER BY 1;

both of which sort by the first output column. Note that an output column name has to stand alone,
that is, it cannot be used in an expression — for example, this is not correct:

SELECT a + b AS sum, c FROM tablel ORDER BY sum + c; —-— wrong

This restriction is made to reduce ambiguity. There is still ambiguity if an ORDER BY item is a simple
name that could match either an output column name or a column from the table expression. The
output column is used in such cases. This would only cause confusion if you use As to rename an
output column to match some other table column’s name.

ORDER BY can be applied to the result of a UNION, INTERSECT, or EXCEPT combination, but in this
case it is only permitted to sort by output column names or numbers, not by expressions.

1. Actually, PostgreSQL uses the default B-tree operator class for the expression’s data type to determine the sort ordering
for asc and DEsc. Conventionally, data types will be set up so that the < and > operators correspond to this sort ordering, but
a user-defined data type’s designer could choose to do something different.

95

Chapter 7. Queries

7.6. LIMIT and OFFSET

LIMIT and OFFSET allow you to retrieve just a portion of the rows that are generated by the rest of
the query:

SELECT select_1list
FROM table_expression
[ORDER BY ...]
[LIMIT { number | ALL }] [OFFSET number]

If a limit count is given, no more than that many rows will be returned (but possibly less, if the query
itself yields less rows). LIMIT ALL is the same as omitting the LIMIT clause.

OFFSET says to skip that many rows before beginning to return rows. OFFSET 0 is the same as
omitting the OFFSET clause, and LIMIT NULL is the same as omitting the LIMIT clause. If both
OFFSET and LIMIT appear, then OFFSET rows are skipped before starting to count the LIMIT rows
that are returned.

When using LIMIT, it is important to use an ORDER BY clause that constrains the result rows into a
unique order. Otherwise you will get an unpredictable subset of the query’s rows. You might be asking
for the tenth through twentieth rows, but tenth through twentieth in what ordering? The ordering is
unknown, unless you specified ORDER BY.

The query optimizer takes LIMIT into account when generating query plans, so you are very likely
to get different plans (yielding different row orders) depending on what you give for LIMIT and
OFFSET. Thus, using different LIMIT/OFFSET values to select different subsets of a query result will
give inconsistent results unless you enforce a predictable result ordering with ORDER BY. This is not
a bug; it is an inherent consequence of the fact that SQL does not promise to deliver the results of a
query in any particular order unless ORDER BY is used to constrain the order.

The rows skipped by an OFFSET clause still have to be computed inside the server; therefore a large
OFFSET might be inefficient.

7.7. vALUES Lists

VALUES provides a way to generate a “constant table” that can be used in a query without having to
actually create and populate a table on-disk. The syntax is

VALUES (expression [, ...]1) [, ...]

Each parenthesized list of expressions generates a row in the table. The lists must all have the same
number of elements (i.e., the number of columns in the table), and corresponding entries in each
list must have compatible data types. The actual data type assigned to each column of the result is
determined using the same rules as for UNION (see Section 10.5).

As an example:
VALUES (1, ’'one’), (2, 'two’), (3, "three’);
will return a table of two columns and three rows. It’s effectively equivalent to:

SELECT 1 AS columnl, ’'one’ AS column2
UNION ALL
SELECT 2, ’"two’

96

Chapter 7. Queries

UNION ALL
SELECT 3, ’'three’;

By default, PostgreSQL assigns the names columnl, column2, etc. to the columns of a VALUES
table. The column names are not specified by the SQL standard and different database systems do it
differently, so it’s usually better to override the default names with a table alias list.

Syntactically, VALUES followed by expression lists is treated as equivalent to:

SELECT select_list FROM table_expression

and can appear anywhere a SELECT can. For example, you can use it as part of a UNION, or attach a
sort_specification (ORDER BY, LIMIT, and/or OFFSET) to it. VALUES is most commonly used
as the data source in an INSERT command, and next most commonly as a subquery.

For more information see VALUES.

7.8. wiTH Queries (Common Table Expressions)

WITH provides a way to write auxiliary statements for use in a larger query. These statements, which
are often referred to as Common Table Expressions or CTEs, can be thought of as defining temporary
tables that exist just for one query. Each auxiliary statement in a WITH clause can be a SELECT,
INSERT, UPDATE, or DELETE; and the WITH clause itself is attached to a primary statement that can
also be a SELECT, INSERT, UPDATE, or DELETE.

7.8.1. SELECT in WITH

The basic value of SELECT in WITH is to break down complicated queries into simpler parts. An
example is:

WITH regional_sales AS (
SELECT region, SUM(amount) AS total_sales
FROM orders
GROUP BY region
), top_regions AS (
SELECT region
FROM regional_sales
WHERE total_sales > (SELECT SUM(total_sales)/10 FROM regional_sales)
)
SELECT region,
product,
SUM (quantity) AS product_units,
SUM (amount) AS product_sales
FROM orders
WHERE region IN (SELECT region FROM top_regions)
GROUP BY region, product;

which displays per-product sales totals in only the top sales regions. The WITH clause defines
two auxiliary statements named regional_sales and top_regions, where the output of
regional_sales is used in top_regions and the output of top_regions is used in the primary
SELECT query. This example could have been written without wITH, but we’d have needed two
levels of nested sub-SELECTs. It’s a bit easier to follow this way.

97

Chapter 7. Queries

The optional RECURSIVE modifier changes WITH from a mere syntactic convenience into a feature
that accomplishes things not otherwise possible in standard SQL. Using RECURSIVE, a WITH query
can refer to its own output. A very simple example is this query to sum the integers from 1 through
100:

WITH RECURSIVE t (n) AS (
VALUES (1)
UNION ALL
SELECT n+l FROM t WHERE n < 100

)
SELECT sum(n) FROM t;

The general form of a recursive WITH query is always a non-recursive term, then UNION (or UNION
ALL), then a recursive term, where only the recursive term can contain a reference to the query’s own
output. Such a query is executed as follows:

Recursive Query Evaluation

1. Evaluate the non-recursive term. For UNION (but not UNION ALL), discard duplicate rows. In-
clude all remaining rows in the result of the recursive query, and also place them in a temporary
working table.

2. So long as the working table is not empty, repeat these steps:

a. Evaluate the recursive term, substituting the current contents of the working table for
the recursive self-reference. For UNTON (but not UNION ALL), discard duplicate rows
and rows that duplicate any previous result row. Include all remaining rows in the result
of the recursive query, and also place them in a temporary intermediate table.

b. Replace the contents of the working table with the contents of the intermediate table,
then empty the intermediate table.

Note: Strictly speaking, this process is iteration not recursion, but RECURSIVE is the terminology
chosen by the SQL standards committee.

In the example above, the working table has just a single row in each step, and it takes on the values
from 1 through 100 in successive steps. In the 100th step, there is no output because of the WHERE
clause, and so the query terminates.

Recursive queries are typically used to deal with hierarchical or tree-structured data. A useful example
is this query to find all the direct and indirect sub-parts of a product, given only a table that shows
immediate inclusions:

WITH RECURSIVE included_parts (sub_part, part, quantity) AS (
SELECT sub_part, part, quantity FROM parts WHERE part = ’our_product’
UNION ALL
SELECT p.sub_part, p.part, p.quantity
FROM included_parts pr, parts p
WHERE p.part = pr.sub_part
)
SELECT sub_part, SUM(quantity) as total_quantity
FROM included_parts
GROUP BY sub_part

98

Chapter 7. Queries

When working with recursive queries it is important to be sure that the recursive part of the query will
eventually return no tuples, or else the query will loop indefinitely. Sometimes, using UNION instead
of UNION ALL can accomplish this by discarding rows that duplicate previous output rows. However,
often a cycle does not involve output rows that are completely duplicate: it may be necessary to check
just one or a few fields to see if the same point has been reached before. The standard method for
handling such situations is to compute an array of the already-visited values. For example, consider
the following query that searches a table graph using a 1ink field:

WITH RECURSIVE search_graph(id, link, data, depth) AS (
SELECT g.id, g.link, g.data, 1
FROM graph g
UNION ALL
SELECT g.id, g.link, g.data, sg.depth + 1
FROM graph g, search_graph sg
WHERE g.id = sg.link
)
SELECT = FROM search_graph;

This query will loop if the 1ink relationships contain cycles. Because we require a “depth” output,
just changing UNION ALL to UNION would not eliminate the looping. Instead we need to recognize
whether we have reached the same row again while following a particular path of links. We add two
columns path and cycle to the loop-prone query:

WITH RECURSIVE search_graph(id, 1link, data, depth, path, cycle) AS (
SELECT g.id, g.link, g.data, 1,
ARRAY [g.1d],
false
FROM graph g
UNION ALL
SELECT g.id, g.link, g.data, sg.depth + 1,
path || g.id,
g.1id = ANY (path)
FROM graph g, search_graph sg
WHERE g.id = sg.link AND NOT cycle
)
SELECT x FROM search_graph;

Aside from preventing cycles, the array value is often useful in its own right as representing the “path”
taken to reach any particular row.

In the general case where more than one field needs to be checked to recognize a cycle, use an array
of rows. For example, if we needed to compare fields £1 and £2:

WITH RECURSIVE search_graph(id, link, data, depth, path, cycle) AS (
SELECT g.id, g.link, g.data, 1,
ARRAY [ROW (g.fl, g.f2)],

false
FROM graph g
UNION ALL
SELECT g.id, g.link, g.data, sg.depth + 1,
path || ROW(g.fl, g.f2),
ROW(g.fl, g.f2) = ANY (path)

FROM graph g, search_graph sg
WHERE g.id = sg.link AND NOT cycle

99

Chapter 7. Queries

SELECT x FROM search_graph;

Tip: Omit the row () syntax in the common case where only one field needs to be checked to
recognize a cycle. This allows a simple array rather than a composite-type array to be used,
gaining efficiency.

Tip: The recursive query evaluation algorithm produces its output in breadth-first search order.
You can display the results in depth-first search order by making the outer query orDER BY a
“path” column constructed in this way.

A helpful trick for testing queries when you are not certain if they might loop is to place a LIMIT in
the parent query. For example, this query would loop forever without the LIMIT:

WITH RECURSIVE t (n) AS (
SELECT 1
UNION ALL
SELECT n+l FROM t

)
SELECT n FROM t LIMIT 100;

This works because PostgreSQL’s implementation evaluates only as many rows of a WITH query as
are actually fetched by the parent query. Using this trick in production is not recommended, because
other systems might work differently. Also, it usually won’t work if you make the outer query sort the
recursive query’s results or join them to some other table, because in such cases the outer query will
usually try to fetch all of the WITH query’s output anyway.

A useful property of WITH queries is that they are evaluated only once per execution of the parent
query, even if they are referred to more than once by the parent query or sibling WITH queries. Thus,
expensive calculations that are needed in multiple places can be placed within a WITH query to avoid
redundant work. Another possible application is to prevent unwanted multiple evaluations of func-
tions with side-effects. However, the other side of this coin is that the optimizer is less able to push
restrictions from the parent query down into a WITH query than an ordinary sub-query. The WITH
query will generally be evaluated as written, without suppression of rows that the parent query might
discard afterwards. (But, as mentioned above, evaluation might stop early if the reference(s) to the
query demand only a limited number of rows.)

The examples above only show WITH being used with SELECT, but it can be attached in the same way
to INSERT, UPDATE, or DELETE. In each case it effectively provides temporary table(s) that can be
referred to in the main command.

7.8.2. Data-Modifying Statements in wITH

You can use data-modifying statements (INSERT, UPDATE, or DELETE) in WITH. This allows you to
perform several different operations in the same query. An example is:

WITH moved_rows AS (
DELETE FROM products
WHERE
"date" >= ’2010-10-01" AND

100

Chapter 7. Queries

"date" < 72010-11-01"
RETURNING =*

)
INSERT INTO products_log
SELECT x» FROM moved_rows;

This query effectively moves rows from products to products_log. The DELETE in WITH deletes
the specified rows from products, returning their contents by means of its RETURNING clause; and
then the primary query reads that output and inserts it into products_1log.

A fine point of the above example is that the WITH clause is attached to the INSERT, not the sub-
SELECT within the INSERT. This is necessary because data-modifying statements are only allowed
in WITH clauses that are attached to the top-level statement. However, normal WITH visibility rules
apply, so it is possible to refer to the WITH statement’s output from the sub-SELECT.

Data-modifying statements in WITH usually have RETURNING clauses, as seen in the example above.
It is the output of the RETURNING clause, not the target table of the data-modifying statement, that
forms the temporary table that can be referred to by the rest of the query. If a data-modifying statement
in WITH lacks a RETURNING clause, then it forms no temporary table and cannot be referred to in the
rest of the query. Such a statement will be executed nonetheless. A not-particularly-useful example
is:

WITH t AS (
DELETE FROM foo

)
DELETE FROM bar;

This example would remove all rows from tables foo and bar. The number of affected rows reported
to the client would only include rows removed from bar.

Recursive self-references in data-modifying statements are not allowed. In some cases it is possible
to work around this limitation by referring to the output of a recursive wITH, for example:

WITH RECURSIVE included_parts (sub_part, part) AS (
SELECT sub_part, part FROM parts WHERE part = ’our_product’
UNION ALL
SELECT p.sub_part, p.part
FROM included_parts pr, parts p
WHERE p.part = pr.sub_part

)
DELETE FROM parts
WHERE part IN (SELECT part FROM included_parts);

This query would remove all direct and indirect subparts of a product.

Data-modifying statements in WITH are executed exactly once, and always to completion, indepen-
dently of whether the primary query reads all (or indeed any) of their output. Notice that this is
different from the rule for SELECT in WITH: as stated in the previous section, execution of a SELECT
is carried only as far as the primary query demands its output.

The sub-statements in WITH are executed concurrently with each other and with the main query.
Therefore, when using data-modifying statements in WITH, the order in which the specified updates
actually happen is unpredictable. All the statements are executed with the same snapshot (see Chapter
13), so they cannot “see” each others’ effects on the target tables. This alleviates the effects of the
unpredictability of the actual order of row updates, and means that RETURNING data is the only way
to communicate changes between different WITH sub-statements and the main query. An example of
this is that in

101

Chapter 7. Queries

WITH t AS (
UPDATE products SET price = price = 1.05
RETURNING =

)
SELECT x FROM products;

the outer SELECT would return the original prices before the action of the UPDATE, while in

WITH t AS (
UPDATE products SET price = price » 1.05
RETURNING =

)
SELECT * FROM t;

the outer SELECT would return the updated data.

Trying to update the same row twice in a single statement is not supported. Only one of the modi-
fications takes place, but it is not easy (and sometimes not possible) to reliably predict which one.
This also applies to deleting a row that was already updated in the same statement: only the update
is performed. Therefore you should generally avoid trying to modify a single row twice in a single
statement. In particular avoid writing WITH sub-statements that could affect the same rows changed by
the main statement or a sibling sub-statement. The effects of such a statement will not be predictable.

At present, any table used as the target of a data-modifying statement in WITH must not have a condi-
tional rule, nor an ALSO rule, nor an INSTEAD rule that expands to multiple statements.

102

Chapter 8. Data Types

PostgreSQL has a rich set of native data types available to users. Users can add new types to Post-
greSQL using the CREATE TYPE command.

Table 8-1 shows all the built-in general-purpose data types. Most of the alternative names listed in
the “Aliases” column are the names used internally by PostgreSQL for historical reasons. In addition,
some internally used or deprecated types are available, but are not listed here.

Table 8-1. Data Types

Name Aliases Description

bigint int8 signed eight-byte integer

bigserial serial8 autoincrementing eight-byte
integer

bit [(n)] fixed-length bit string

bit varying [(n)] varbit variable-length bit string

boolean bool logical Boolean (true/false)

box rectangular box on a plane

bytea binary data (“byte array”)

character varying [(n) |varchar [(n)] variable-length character string

]

character [(n)] char [(n)] fixed-length character string

cidr IPv4 or IPv6 network address

circle circle on a plane

date calendar date (year, month,
day)

double precision float8 double precision floating-point
number (8 bytes)

inet IPv4 or IPv6 host address

integer int, int4 signed four-byte integer

interval [fields] [time span

(p)]

line infinite line on a plane

lseg line segment on a plane

macaddr MAC (Media Access Control)
address

money currency amount

numeric [(p, s)] decimal [(p, s)] exact numeric of selectable
precision

path geometric path on a plane

point geometric point on a plane

polygon closed geometric path on a
plane

real float4 single precision floating-point
number (4 bytes)

103

Chapter 8. Data Types

Name Aliases Description

smallint int2 signed two-byte integer

serial serial4 autoincrementing four-byte
integer

text variable-length character string

time [(p)] [without time of day (no time zone)

time zone]

time [(p)] with time |timetz time of day, including time

zone zone

timestamp [(p) 1 [date and time (no time zone)

without time zone]

timestamp [(p)] with

time zone

timestamptz

date and time, including time
zone

tsquery

text search query

tsvector

text search document

txid_snapshot

user-level transaction ID

snapshot
uuid universally unique identifier
xml XML data

Compatibility: The following types (or spellings thereof) are specified by SQL: bigint, bit, bit
varying, boolean, char, character varying, character, varchar, date, double precision,
integer, interval, numeric, decimal, real, smallint, time (With or without time zone),
timestamp (with or without time zone), xm1.

Each data type has an external representation determined by its input and output functions. Many of
the built-in types have obvious external formats. However, several types are either unique to Post-
greSQL, such as geometric paths, or have several possible formats, such as the date and time types.
Some of the input and output functions are not invertible, i.e., the result of an output function might

lose accuracy when compared to the original input.

8.1. Numeric Types

Numeric types consist of two-, four-, and eight-byte integers, four- and eight-byte floating-point num-
bers, and selectable-precision decimals. Table 8-2 lists the available types.

Table 8-2. Numeric Types

Name Storage Size Description Range

smallint 2 bytes small-range integer -32768 to +32767

integer 4 bytes typical choice for -2147483648 to
integer +2147483647

104

Chapter 8. Data Types

Name Storage Size Description Range
bigint 8 bytes large-range integer -
9223372036854775808
to
9223372036854775807
decimal variable user-specified up to 131072 digits
precision, exact before the decimal

point; up to 16383
digits after the decimal

point
numeric variable user-specified up to 131072 digits
precision, exact before the decimal

point; up to 16383
digits after the decimal

point
real 4 bytes variable-precision, 6 decimal digits
inexact precision
double precision |8 bytes variable-precision, 15 decimal digits
inexact precision
serial 4 bytes autoincrementing 1 to 2147483647
integer
bigserial 8 bytes large autoincrementing | 1 to
integer 9223372036854775807

The syntax of constants for the numeric types is described in Section 4.1.2. The numeric types have a
full set of corresponding arithmetic operators and functions. Refer to Chapter 9 for more information.
The following sections describe the types in detail.

8.1.1. Integer Types

The types smallint, integer, and bigint store whole numbers, that is, numbers without fractional
components, of various ranges. Attempts to store values outside of the allowed range will result in an
error.

The type integer is the common choice, as it offers the best balance between range, storage size,
and performance. The smallint type is generally only used if disk space is at a premium. The
bigint type should only be used if the range of the integer type is insufficient, because the latter
is definitely faster.

On very minimal operating systems the bigint type might not function correctly, because it relies
on compiler support for eight-byte integers. On such machines, bigint acts the same as integer,
but still takes up eight bytes of storage. (We are not aware of any modern platform where this is the
case.)

SQL only specifies the integer types integer (or int), smallint, and bigint. The type names
int2, int4, and int8 are extensions, which are also used by some other SQL database systems.

105

Chapter 8. Data Types

8.1.2. Arbitrary Precision Numbers

The type numeric can store numbers with a very large number of digits and perform calculations
exactly. It is especially recommended for storing monetary amounts and other quantities where exact-
ness is required. However, arithmetic on numeric values is very slow compared to the integer types,
or to the floating-point types described in the next section.

We use the following terms below: The scale of a numeric is the count of decimal digits in the
fractional part, to the right of the decimal point. The precision of a numeric is the total count of
significant digits in the whole number, that is, the number of digits to both sides of the decimal point.
So the number 23.5141 has a precision of 6 and a scale of 4. Integers can be considered to have a
scale of zero.

Both the maximum precision and the maximum scale of a numeric column can be configured. To
declare a column of type numeric use the syntax:

NUMERIC (precision, scale)
The precision must be positive, the scale zero or positive. Alternatively:
NUMERIC (precision)

selects a scale of 0. Specifying:

NUMERIC

without any precision or scale creates a column in which numeric values of any precision and scale
can be stored, up to the implementation limit on precision. A column of this kind will not coerce
input values to any particular scale, whereas numeric columns with a declared scale will coerce input
values to that scale. (The SQL standard requires a default scale of 0, i.e., coercion to integer precision.
We find this a bit useless. If you’re concerned about portability, always specify the precision and scale
explicitly.)

Note: The maximum allowed precision when explicitly specified in the type declaration is 1000;
NUMERIC without a specified precision is subject to the limits described in Table 8-2.

If the scale of a value to be stored is greater than the declared scale of the column, the system will
round the value to the specified number of fractional digits. Then, if the number of digits to the left of
the decimal point exceeds the declared precision minus the declared scale, an error is raised.

Numeric values are physically stored without any extra leading or trailing zeroes. Thus, the declared
precision and scale of a column are maximums, not fixed allocations. (In this sense the numeric type
is more akin to varchar (n) than to char (n).) The actual storage requirement is two bytes for each
group of four decimal digits, plus three to eight bytes overhead.

In addition to ordinary numeric values, the numeric type allows the special value NaN, meaning
“not-a-number”’. Any operation on NaN yields another NaN. When writing this value as a constant in
an SQL command, you must put quotes around it, for example UPDATE table SET x = ’NaN’.
On input, the string NaN is recognized in a case-insensitive manner.

Note: In most implementations of the “not-a-number” concept, Nan is not considered equal to any
other numeric value (including nan). In order to allow numeric values to be sorted and used in
tree-based indexes, PostgreSQL treats nan values as equal, and greater than all non-nan values.

106

Chapter 8. Data Types

The types decimal and numeric are equivalent. Both types are part of the SQL standard.

8.1.3. Floating-Point Types

The data types real and double precision are inexact, variable-precision numeric types. In prac-
tice, these types are usually implementations of IEEE Standard 754 for Binary Floating-Point Arith-
metic (single and double precision, respectively), to the extent that the underlying processor, operating
system, and compiler support it.

Inexact means that some values cannot be converted exactly to the internal format and are stored as ap-
proximations, so that storing and retrieving a value might show slight discrepancies. Managing these
errors and how they propagate through calculations is the subject of an entire branch of mathematics
and computer science and will not be discussed here, except for the following points:

« If you require exact storage and calculations (such as for monetary amounts), use the numeric
type instead.

« If you want to do complicated calculations with these types for anything important, especially
if you rely on certain behavior in boundary cases (infinity, underflow), you should evaluate the
implementation carefully.

« Comparing two floating-point values for equality might not always work as expected.

On most platforms, the real type has a range of at least 1E-37 to 1E+37 with a precision of at least 6
decimal digits. The double precision type typically has a range of around 1E-307 to 1E+308 with
a precision of at least 15 digits. Values that are too large or too small will cause an error. Rounding
might take place if the precision of an input number is too high. Numbers too close to zero that are
not representable as distinct from zero will cause an underflow error.

In addition to ordinary numeric values, the floating-point types have several special values:

Infinity
—Infinity
NaN

CEINNT3

These represent the IEEE 754 special values “infinity”, “negative infinity”, and “not-a-number”, re-
spectively. (On a machine whose floating-point arithmetic does not follow IEEE 754, these values
will probably not work as expected.) When writing these values as constants in an SQL command,
you must put quotes around them, for example UPDATE table SET x = ’Infinity’. On input,
these strings are recognized in a case-insensitive manner.

Note: IEEE754 specifies that nan should not compare equal to any other floating-point value
(including nan). In order to allow floating-point values to be sorted and used in tree-based indexes,
PostgreSQL treats nan values as equal, and greater than all non-nan values.

PostgreSQL also supports the SQL-standard notations float and float (p) for specifying inexact
numeric types. Here, p specifies the minimum acceptable precision in binary digits. PostgreSQL
accepts float (1) to float (24) as selecting the real type, while f1oat (25) to float (53) select
double precision. Values of p outside the allowed range draw an error. £1oat with no precision
specified is taken to mean double precision.

107

Chapter 8. Data Types

Note: Prior to PostgreSQL 7.4, the precision in float (p) was taken to mean so many decimal
digits. This has been corrected to match the SQL standard, which specifies that the precision is
measured in binary digits. The assumption that real and double precision have exactly 24 and
53 bits in the mantissa respectively is correct for IEEE-standard floating point implementations.
On non-IEEE platforms it might be off a little, but for simplicity the same ranges of p are used on
all platforms.

8.1.4. Serial Types

The data types serial and bigserial are not true types, but merely a notational convenience for
creating unique identifier columns (similar to the AUTO_INCREMENT property supported by some
other databases). In the current implementation, specifying:

CREATE TABLE tablename (

)i

colname SERIAL

is equivalent to specifying:

CREATE SEQUENCE tablename_colname_seq;
CREATE TABLE tablename (

)i

colname integer NOT NULL DEFAULT nextval (' tablename_colname_seq’)

ALTER SEQUENCE tablename_colname_seq OWNED BY tablename.colname;

Thus, we have created an integer column and arranged for its default values to be assigned from a se-
quence generator. A NOT NULL constraint is applied to ensure that a null value cannot be inserted. (In
most cases you would also want to attach a UNIQUE or PRIMARY KEY constraint to prevent duplicate
values from being inserted by accident, but this is not automatic.) Lastly, the sequence is marked as
“owned by” the column, so that it will be dropped if the column or table is dropped.

Note: Because smallserial, serial and bigserial are implemented using sequences, there
may be "holes" or gaps in the sequence of values which appears in the column, even if no rows
are ever deleted. A value allocated from the sequence is still "used up" even if a row containing
that value is never successfully inserted into the table column. This may happen, for example, if
the inserting transaction rolls back. See nextval () in Section 9.15 for details.

Note: Prior to PostgreSQL 7.3, serial implied unzguk. This is no longer automatic. If you wish a
serial column to have a unique constraint or be a primary key, it must now be specified, just like
any other data type.

To insert the next value of the sequence into the serial column, specify that the serial column
should be assigned its default value. This can be done either by excluding the column from the list of
columns in the INSERT statement, or through the use of the DEFAULT key word.

The type names serial and serial4 are equivalent: both create integer columns. The type names
bigserial and serial8 work the same way, except that they create abigint column. bigserial
should be used if you anticipate the use of more than 2*' identifiers over the lifetime of the table.

108

Chapter 8. Data Types

The sequence created for a serial column is automatically dropped when the owning column is
dropped. You can drop the sequence without dropping the column, but this will force removal of the

column default expression.

8.2. Monetary Types

The money type stores a currency amount with a fixed fractional precision; see Table 8-3. The frac-

tional precision is determined by the database’s lc_monetary setting. The range shown in the table

assumes there are two fractional digits. Input is accepted in a variety of formats, including integer

and floating-point literals, as well as typical currency formatting, such as ’ $1, 000.00’. Output is
generally in the latter form but depends on the locale.

Table 8-3. Monetary Types

Name Storage Size Description Range

money 8 bytes currency amount -
92233720368547758.08
to
+92233720368547758.0)

Since the output of this data type is locale-sensitive, it might not work to load money data into a
database that has a different setting of 1c_monetary. To avoid problems, before restoring a dump
into a new database make sure 1c_monetary has the same or equivalent value as in the database that

was dumped.

Values of the numeric, int, and bigint data types can be cast to money. Conversion from the real

and double precision data types can be done by casting to numeric first, for example:

SELECT ’'12.34"::float8::numeric: ::money;

However, this is not recommended. Floating point numbers should not be used to handle money due

to the potential for rounding errors.

A money value can be cast to numeric without loss of precision. Conversion to other types could
potentially lose precision, and must also be done in two stages:

SELECT "52093.89' ::money::numeric::float8;

When a money value is divided by another money value, the result is double precision (i.e., a
pure number, not money); the currency units cancel each other out in the division.

8.3. Character Types

Table 8-4. Character Types

Name

Description

character varying(n), varchar (n)

variable-length with limit

109

Chapter 8. Data Types

Name Description
character (n), char (n) fixed-length, blank padded
text variable unlimited length

Table 8-4 shows the general-purpose character types available in PostgreSQL.

SQL defines two primary character types: character varying(n) and character (n), where n
is a positive integer. Both of these types can store strings up to n characters (not bytes) in length.
An attempt to store a longer string into a column of these types will result in an error, unless the
excess characters are all spaces, in which case the string will be truncated to the maximum length.
(This somewhat bizarre exception is required by the SQL standard.) If the string to be stored is shorter
than the declared length, values of type character will be space-padded; values of type character
varying will simply store the shorter string.

If one explicitly casts a value to character varying(n) or character (n), then an over-length
value will be truncated to n characters without raising an error. (This too is required by the SQL
standard.)

The notations varchar (n) and char(n) are aliases for character varying(n) and
character (n), respectively. character without length specifier is equivalent to character (1).
If character varying is used without length specifier, the type accepts strings of any size. The
latter is a PostgreSQL extension.

In addition, PostgreSQL provides the text type, which stores strings of any length. Although the
type text is not in the SQL standard, several other SQL database management systems have it as
well.

Values of type character are physically padded with spaces to the specified width n, and are stored
and displayed that way. However, the padding spaces are treated as semantically insignificant. Trailing
spaces are disregarded when comparing two values of type character, and they will be removed
when converting a character value to one of the other string types. Note that trailing spaces are
semantically significant in character varying and text values, and when using pattern matching,
e.g. LIKE, regular expressions.

The storage requirement for a short string (up to 126 bytes) is 1 byte plus the actual string, which
includes the space padding in the case of character. Longer strings have 4 bytes of overhead instead
of 1. Long strings are compressed by the system automatically, so the physical requirement on disk
might be less. Very long values are also stored in background tables so that they do not interfere with
rapid access to shorter column values. In any case, the longest possible character string that can be
stored is about 1 GB. (The maximum value that will be allowed for n in the data type declaration
is less than that. It wouldn’t be useful to change this because with multibyte character encodings
the number of characters and bytes can be quite different. If you desire to store long strings with no
specific upper limit, use text or character varying without a length specifier, rather than making
up an arbitrary length limit.)

Tip: There is no performance difference among these three types, apart from increased storage
space when using the blank-padded type, and a few extra CPU cycles to check the length when
storing into a length-constrained column. While character (n) has performance advantages in
some other database systems, there is no such advantage in PostgreSQL; in fact character (n)
is usually the slowest of the three because of its additional storage costs. In most situations text
Or character varying should be used instead.

Refer to Section 4.1.2.1 for information about the syntax of string literals, and to Chapter 9 for infor-
mation about available operators and functions. The database character set determines the character

110

Chapter 8. Data Types
set used to store textual values; for more information on character set support, refer to Section 22.3.

Example 8-1. Using the Character Types

CREATE TABLE testl (a character(4));
INSERT INTO testl VALUES (’'ok’);

SELECT a, char_length(a) FROM testl; -- ©
a | char_length

,,,,,, e

ok | 2

CREATE TABLE test2 (b wvarchar(5));

INSERT INTO test2 VALUES ('ok’);

INSERT INTO test2 VALUES (’good ")

INSERT INTO test2 VALUES (’too long’);

ERROR: value too long for type character varying(5)

INSERT INTO test2 VALUES (’too long’::varchar(5)); -- explicit truncation
SELECT b, char_length(b) FROM test2;
b | char_length
,,,,,,, e
ok | 2
good | 5
too 1 | 5

©® The char_length function is discussed in Section 9.4.

There are two other fixed-length character types in PostgreSQL, shown in Table 8-5. The name type
exists only for the storage of identifiers in the internal system catalogs and is not intended for use by
the general user. Its length is currently defined as 64 bytes (63 usable characters plus terminator) but
should be referenced using the constant NAMEDATALEN in C source code. The length is set at compile
time (and is therefore adjustable for special uses); the default maximum length might change in a
future release. The type "char" (note the quotes) is different from char (1) in that it only uses one
byte of storage. It is internally used in the system catalogs as a simplistic enumeration type.

Table 8-5. Special Character Types

Name Storage Size Description
"char" 1 byte single-byte internal type
name 64 bytes internal type for object names

8.4. Binary Data Types

The bytea data type allows storage of binary strings; see Table 8-6.

Table 8-6. Binary Data Types

Name Storage Size Description

bytea 1 or 4 bytes plus the actual variable-length binary string
binary string

A binary string is a sequence of octets (or bytes). Binary strings are distinguished from character

111

Chapter 8. Data Types

strings in two ways. First, binary strings specifically allow storing octets of value zero and other “non-
printable” octets (usually, octets outside the range 32 to 126). Character strings disallow zero octets,
and also disallow any other octet values and sequences of octet values that are invalid according to
the database’s selected character set encoding. Second, operations on binary strings process the actual
bytes, whereas the processing of character strings depends on locale settings. In short, binary strings
are appropriate for storing data that the programmer thinks of as “raw bytes”, whereas character
strings are appropriate for storing text.

The bytea type supports two external formats for input and output: PostgreSQL’s historical “escape”
format, and “hex” format. Both of these are always accepted on input. The output format depends on
the configuration parameter bytea_output; the default is hex. (Note that the hex format was introduced
in PostgreSQL 9.0; earlier versions and some tools don’t understand it.)

The SQL standard defines a different binary string type, called BLOB or BINARY LARGE OBJECT.
The input format is different from bytea, but the provided functions and operators are mostly the
same.

8.4.1. bytea Hex Format

The “hex” format encodes binary data as 2 hexadecimal digits per byte, most significant nibble first.
The entire string is preceded by the sequence \x (to distinguish it from the escape format). In some
contexts, the initial backslash may need to be escaped by doubling it, in the same cases in which
backslashes have to be doubled in escape format; details appear below. The hexadecimal digits can
be either upper or lower case, and whitespace is permitted between digit pairs (but not within a digit
pair nor in the starting \x sequence). The hex format is compatible with a wide range of external
applications and protocols, and it tends to be faster to convert than the escape format, so its use is
preferred.

Example:

SELECT E’\\xDEADBEEF’;

8.4.2. bytea Escape Format

The “escape” format is the traditional PostgreSQL format for the bytea type. It takes the approach
of representing a binary string as a sequence of ASCII characters, while converting those bytes that
cannot be represented as an ASCII character into special escape sequences. If, from the point of
view of the application, representing bytes as characters makes sense, then this representation can be
convenient. But in practice it is usually confusing because it fuzzes up the distinction between binary
strings and character strings, and also the particular escape mechanism that was chosen is somewhat
unwieldy. So this format should probably be avoided for most new applications.

When entering bytea values in escape format, octets of certain values must be escaped, while all
octet values can be escaped. In general, to escape an octet, convert it into its three-digit octal value
and precede it by a backslash (or two backslashes, if writing the value as a literal using escape string
syntax). Backslash itself (octet value 92) can alternatively be represented by double backslashes.
Table 8-7 shows the characters that must be escaped, and gives the alternative escape sequences where
applicable.

Table 8-7. bytea Literal Escaped Octets

112

Chapter 8. Data Types

Decimal Octet | Description Escaped Input | Example Output
Value Representation Representation
0 zero octet E’\\000" SELECT \000

E’\\0OO’ : :bytea;

39 single quote 77 or E/'\\047’ |SELECT ’
E’\”::bytea;
92 backslash E’\\\\" or SELECT A\
E’\\134" E’\\\\’ : :bytea
0to 31 and 127 to | “non-printable” E’\\xxx’ (octal |SELECT \001
255 octets value) E’\\001’ ::bytea;

The requirement to escape non-printable octets varies depending on locale settings. In some instances
you can get away with leaving them unescaped. Note that the result in each of the examples in Table
8-7 was exactly one octet in length, even though the output representation is sometimes more than
one character.

The reason multiple backslashes are required, as shown in Table 8-7, is that an input string written
as a string literal must pass through two parse phases in the PostgreSQL server. The first backslash
of each pair is interpreted as an escape character by the string-literal parser (assuming escape string
syntax is used) and is therefore consumed, leaving the second backslash of the pair. (Dollar-quoted
strings can be used to avoid this level of escaping.) The remaining backslash is then recognized by
the bytea input function as starting either a three digit octal value or escaping another backslash. For
example, a string literal passed to the server as E’ \\001’ becomes \001 after passing through the
escape string parser. The \001 is then sent to the bytea input function, where it is converted to a
single octet with a decimal value of 1. Note that the single-quote character is not treated specially by
bytea, so it follows the normal rules for string literals. (See also Section 4.1.2.1.)

Bytea octets are sometimes escaped when output. In general, each “non-printable” octet is converted
into its equivalent three-digit octal value and preceded by one backslash. Most “printable” octets are
represented by their standard representation in the client character set. The octet with decimal value
92 (backslash) is doubled in the output. Details are in Table 8-8.

Table 8-8. bytea Output Escaped Octets

Decimal Octet |Description Escaped Example Output Result
Value Output
Representation

92 backslash A\ SELECT AN\
E’\\134’ : :bytea;

0to 31 and 127 to | “non-printable” \xxx (octal value) | SELECT \001
255 octets E’\\0O1’ : :bytea;
32to0 126 “printable” octets | client character SELECT ~

set representation |E’\\176’ : :bytea;

113

Chapter 8. Data Types

Depending on the front end to PostgreSQL you use, you might have additional work to do in terms of
escaping and unescaping bytea strings. For example, you might also have to escape line feeds and

carriage returns if your interface automatically translates these.

8.5. Date/Time Types

PostgreSQL supports the full set of SQL date and time types, shown in Table 8-9. The operations
available on these data types are described in Section 9.9.

Table 8-9. Date/Time Types

Name Storage Size | Description |Low Value High Value |Resolution
timestamp [|8 bytes both date and | 4713 BC 294276 AD 1 microsecond
(p) 1 1 time (no time / 14 digits
without zone)
time zone]
timestamp [|8 bytes both date and [4713 BC 294276 AD 1 microsecond
(p)] with time, with time / 14 digits
time zone zone
date 4 bytes date (no time [4713 BC 5874897 AD |1 day

of day)
time [(p) |8 bytes time of day (no | 00:00:00 24:00:00 1 microsecond
] [without date) / 14 digits
time zone]
time [(p) |12 bytes times of day 00:00:00+1459 | 24:00:00-1459 | 1 microsecond
] with time only, with time / 14 digits
zone zone
interval [12 bytes time interval -178000000 178000000 1 microsecond
fields 1 | years years / 14 digits
(p)]

Note: The SQL standard requires that writing just timestamp be equivalent to timestamp
without time zone, and PostgreSQL honors that behavior. (Releases prior to 7.3 treated it as
timestamp with time zone.) timestamptz iS accepted as an abbreviation for timestamp
with time zone; this is a PostgreSQL extension.

time, timestamp, and interval accept an optional precision value p which specifies the number
of fractional digits retained in the seconds field. By default, there is no explicit bound on precision.
The allowed range of p is from 0 to 6 for the t imestamp and interval types.

Note: When timestamp values are stored as eight-byte integers (currently the default), microsec-
ond precision is available over the full range of values. When timestamp values are stored as
double precision floating-point numbers instead (a deprecated compile-time option), the effective
limit of precision might be less than 6. timestamp values are stored as seconds before or after

114

Chapter 8. Data Types

midnight 2000-01-01. When timestamp values are implemented using floating-point numbers,
microsecond precision is achieved for dates within a few years of 2000-01-01, but the precision
degrades for dates further away. Note that using floating-point datetimes allows a larger range of
timestamp values to be represented than shown above: from 4713 BC up to 5874897 AD.

The same compile-time option also determines whether time and interval values are stored
as floating-point numbers or eight-byte integers. In the floating-point case, large interval values
degrade in precision as the size of the interval increases.

For the t ime types, the allowed range of p is from 0 to 6 when eight-byte integer storage is used, or
from O to 10 when floating-point storage is used.

The interval type has an additional option, which is to restrict the set of stored fields by writing
one of these phrases:

YEAR

MONTH

DAY

HOUR

MINUTE

SECOND

YEAR TO MONTH
DAY TO HOUR
DAY TO MINUTE
DAY TO SECOND
HOUR TO MINUTE
HOUR TO SECOND
MINUTE TO SECOND

Note that if both fields and p are specified, the fields must include SECOND, since the precision
applies only to the seconds.

The type time with time zone is defined by the SQL standard, but the definition exhibits
properties which lead to questionable usefulness. In most cases, a combination of date, time,
timestamp without time zone, and timestamp with time zone should provide a
complete range of date/time functionality required by any application.

The types abstime and reltime are lower precision types which are used internally. You are dis-
couraged from using these types in applications; these internal types might disappear in a future
release.

8.5.1. Date/Time Input

Date and time input is accepted in almost any reasonable format, including ISO 8601,
SQL-compatible, traditional POSTGRES, and others. For some formats, ordering of day, month, and
year in date input is ambiguous and there is support for specifying the expected ordering of these
fields. Set the DateStyle parameter to MDY to select month-day-year interpretation, DMY to select
day-month-year interpretation, or YMD to select year-month-day interpretation.

PostgreSQL is more flexible in handling date/time input than the SQL standard requires. See Ap-
pendix B for the exact parsing rules of date/time input and for the recognized text fields including
months, days of the week, and time zones.

Remember that any date or time literal input needs to be enclosed in single quotes, like text strings.
Refer to Section 4.1.2.7 for more information. SQL requires the following syntax

115

Chapter 8. Data Types

type [(p) 1 'value’

where p is an optional precision specification giving the number of fractional digits in the seconds
field. Precision can be specified for t ime, t imestamp, and interval types. The allowed values are
mentioned above. If no precision is specified in a constant specification, it defaults to the precision of
the literal value.

8.5.1.1. Dates

Table 8-10 shows some possible inputs for the date type.

Table 8-10. Date Input

Example Description

1999-01-08 ISO 8601; January 8 in any mode
(recommended format)

January 8, 1999 unambiguous in any datestyle input mode

1/8/1999 January 8 in MDY mode; August 1 in DMY mode

1/18/1999 January 18 in MDY mode; rejected in other modes

01/02/03 January 2, 2003 in MDY mode; February 1, 2003
in DMY mode; February 3, 2001 in YMD mode

1999-Jan-08 January 8 in any mode

Jan-08-1999 January 8 in any mode

08-Jan-1999 January 8 in any mode

99-Jan-08 January 8 in YMD mode, else error

08-Jan-99 January 8, except error in YMD mode

Jan-08-99 January 8, except error in YMD mode

19990108 ISO 8601; January 8, 1999 in any mode

990108 ISO 8601; January 8, 1999 in any mode

1999.008 year and day of year

J2451187 Julian day

January 8, 99 BC year 99 BC

8.5.1.2. Times

The time-of-day types are time [(p)] without time zoneandtime [(p)] with time
zone. time alone is equivalent to time without time zone.

Valid input for these types consists of a time of day followed by an optional time zone. (See Table §-11
and Table 8-12.) If a time zone is specified in the input for time without time zone, itis silently
ignored. You can also specify a date but it will be ignored, except when you use a time zone name
that involves a daylight-savings rule, such as America/New_York. In this case specifying the date
is required in order to determine whether standard or daylight-savings time applies. The appropriate
time zone offset is recorded in the time with time zone value.

Table 8-11. Time Input

116

Chapter 8. Data Types

Example Description

04:05:06.789 ISO 8601

04:05:06 ISO 8601

04:05 ISO 8601

040506 ISO 8601

04:05 AM same as 04:05; AM does not affect value
04:05 PM same as 16:05; input hour must be <= 12
04:05:06.789-8 ISO 8601

04:05:06-08:00 ISO 8601

04:05-08:00 ISO 8601

040506-08 ISO 8601

04:05:06 PST time zone specified by abbreviation
2003-04-12 04:05:06 America/New_York |time zone specified by full name

Table 8-12. Time Zone Input

Example Description

PST Abbreviation (for Pacific Standard Time)
America/New_York Full time zone name

PST8PDT POSIX-style time zone specification
-8:00 ISO-8601 offset for PST

-800 ISO-8601 offset for PST

-8 ISO-8601 offset for PST

zulu Military abbreviation for UTC

z Short form of zulu

Refer to Section 8.5.3 for more information on how to specify time zones.

8.5.1.3. Time Stamps

Valid input for the time stamp types consists of the concatenation of a date and a time, followed by
an optional time zone, followed by an optional AD or BC. (Alternatively, AD/BC can appear before the
time zone, but this is not the preferred ordering.) Thus:

1999-01-08 04:05:06

and:

1999-01-08 04:05:06 —-8:00

are valid values, which follow the ISO 8601 standard. In addition, the common format:
January 8 04:05:06 1999 PST

is supported.

117

Chapter 8. Data Types

The SQL standard differentiates t imestamp without time zone and timestamp with time
zone literals by the presence of a “+” or “-” symbol and time zone offset after the time. Hence,
according to the standard,

TIMESTAMP ’'2004-10-19 10:23:54'

isatimestamp without time zone, while

TIMESTAMP "2004-10-19 10:23:54+02’

isatimestamp with time zone.PostgreSQL never examines the content of a literal string before
determining its type, and therefore will treat both of the above as t imestamp without time zone.
To ensure that a literal is treated as t imestamp with time zone, give it the correct explicit type:

TIMESTAMP WITH TIME ZONE ’2004-10-19 10:23:54+02'

In a literal that has been determined to be timestamp without time zone, PostgreSQL will
silently ignore any time zone indication. That is, the resulting value is derived from the date/time
fields in the input value, and is not adjusted for time zone.

For timestamp with time zone, the internally stored value is always in UTC (Universal Coordi-
nated Time, traditionally known as Greenwich Mean Time, GMT). An input value that has an explicit
time zone specified is converted to UTC using the appropriate offset for that time zone. If no time
zone is stated in the input string, then it is assumed to be in the time zone indicated by the system’s
timezone parameter, and is converted to UTC using the offset for the t imezone zone.

When a timestamp with time zone value is output, it is always converted from UTC to the
current timezone zone, and displayed as local time in that zone. To see the time in another time
zone, either change t imezone or use the AT TIME ZONE construct (see Section 9.9.3).

Conversions between timestamp without time zone and timestamp with time zone
normally assume that the timestamp without time zone value should be taken or given as
timezone local time. A different time zone can be specified for the conversion using AT TIME
ZONE.

8.5.1.4. Special Values

PostgreSQL supports several special date/time input values for convenience, as shown in Table 8-13.
The values infinity and —-infinity are specially represented inside the system and will be dis-
played unchanged; but the others are simply notational shorthands that will be converted to ordinary
date/time values when read. (In particular, now and related strings are converted to a specific time
value as soon as they are read.) All of these values need to be enclosed in single quotes when used as
constants in SQL commands.

Table 8-13. Special Date/Time Inputs

Input String Valid Types Description

epoch date, timestamp 1970-01-01 00:00:00+00 (Unix
system time zero)

infinity date, timestamp later than all other time stamps

—infinity date, timestamp earlier than all other time
stamps

now date, time, timestamp current transaction’s start time

118

Chapter 8. Data Types

Input String Valid Types Description
today date, timestamp midnight today
tomorrow date, timestamp midnight tomorrow
yesterday date, timestamp midnight yesterday
allballs time 00:00:00.00 UTC

The following SQL-compatible functions can also be used to obtain the current time value for the
corresponding data type: CURRENT_DATE, CURRENT_TIME, CURRENT_TIMESTAMP, LOCALTIME,
LOCALTIMESTAMP. The latter four accept an optional subsecond precision specification. (See
Section 9.9.4.) Note that these are SQL functions and are not recognized in data input strings.

8.5.2. Date/Time Output

The output format of the date/time types can be set to one of the four styles ISO 8601, SQL (Ingres),
traditional POSTGRES (Unix date format), or German. The default is the ISO format. (The SQL
standard requires the use of the ISO 8601 format. The name of the “SQL” output format is a historical
accident.) Table 8-14 shows examples of each output style. The output of the date and t ime types is
of course only the date or time part in accordance with the given examples.

Table 8-14. Date/Time Output Styles

Style Specification Description Example

ISO ISO 8601/SQL standard 1997-12-17 07:37:16-08

SQL traditional style 12/17/1997 07:37:16.00 PST

POSTGRES original style Wed Dec 17 07:37:16 1997
PST

German regional style 17.12.1997 07:37:16.00 PST

In the SQL and POSTGRES styles, day appears before month if DMY field ordering has been spec-
ified, otherwise month appears before day. (See Section 8.5.1 for how this setting also affects inter-
pretation of input values.) Table 8-15 shows an example.

Table 8-15. Date Order Conventions

datestyle Setting Input Ordering Example Output

SQL, DMY day/monthlyear 17/12/1997 15:37:16.00 CET

SQL, MDY month/daylyear 12/17/1997 07:37:16.00 PST

Postgres, DMY day/monthlyear Wed 17 Dec 07:37:16 1997
PST

The date/time styles can be selected by the user using the SET datestyle command, the DateStyle
parameter in the postgresgl.conf configuration file, or the PGDATESTYLE environment variable
on the server or client. The formatting function to_char (see Section 9.8) is also available as a more
flexible way to format date/time output.

119

Chapter 8. Data Types

8.5.3. Time Zones

Time zones, and time-zone conventions, are influenced by political decisions, not just earth geometry.
Time zones around the world became somewhat standardized during the 1900’s, but continue to be
prone to arbitrary changes, particularly with respect to daylight-savings rules. PostgreSQL uses the
widely-used zoneinfo time zone database for information about historical time zone rules. For times
in the future, the assumption is that the latest known rules for a given time zone will continue to be
observed indefinitely far into the future.

PostgreSQL endeavors to be compatible with the SQL standard definitions for typical usage. However,
the SQL standard has an odd mix of date and time types and capabilities. Two obvious problems are:

« Although the date type cannot have an associated time zone, the t ime type can. Time zones in the
real world have little meaning unless associated with a date as well as a time, since the offset can
vary through the year with daylight-saving time boundaries.

+ The default time zone is specified as a constant numeric offset from UTC. It is therefore impossible
to adapt to daylight-saving time when doing date/time arithmetic across DST boundaries.

To address these difficulties, we recommend using date/time types that contain both date and time
when using time zones. We do not recommend using the type time with time zone (though it
is supported by PostgreSQL for legacy applications and for compliance with the SQL standard).
PostgreSQL assumes your local time zone for any type containing only date or time.

All timezone-aware dates and times are stored internally in UTC. They are converted to local time in
the zone specified by the timezone configuration parameter before being displayed to the client.

PostgreSQL allows you to specify time zones in three different forms:

« A full time zone name, for example America/New_York. The recognized time zone names are
listed in the pg_timezone_names view (see Section 45.67). PostgreSQL uses the widely-used
zoneinfo time zone data for this purpose, so the same names are also recognized by much other
software.

« A time zone abbreviation, for example PST. Such a specification merely defines a particular offset
from UTC, in contrast to full time zone names which can imply a set of daylight savings transition-
date rules as well. The recognized abbreviations are listed in the pg_timezone_abbrevs view
(see Section 45.66). You cannot set the configuration parameters timezone or log_timezone to a
time zone abbreviation, but you can use abbreviations in date/time input values and with the AT
TIME ZONE operator.

+ In addition to the timezone names and abbreviations, PostgreSQL will accept POSIX-style time
zone specifications of the form STDoffset or STDoffsetDST, where STD is a zone abbreviation,
offset is a numeric offset in hours west from UTC, and DST is an optional daylight-savings zone
abbreviation, assumed to stand for one hour ahead of the given offset. For example, if ESTSEDT
were not already a recognized zone name, it would be accepted and would be functionally equiva-
lent to United States East Coast time. When a daylight-savings zone name is present, it is assumed
to be used according to the same daylight-savings transition rules used in the zoneinfo time zone
database’s posixrules entry. In a standard PostgreSQL installation, posixrules is the same as
Us/Eastern, so that POSIX-style time zone specifications follow USA daylight-savings rules. If
needed, you can adjust this behavior by replacing the posixrules file.

In short, this is the difference between abbreviations and full names: abbreviations always represent a
fixed offset from UTC, whereas most of the full names imply a local daylight-savings time rule, and

120

Chapter 8. Data Types

so have two possible UTC offsets.

One should be wary that the POSIX-style time zone feature can lead to silently accepting bogus input,
since there is no check on the reasonableness of the zone abbreviations. For example, SET TIMEZONE
TO FOOBARO will work, leaving the system effectively using a rather peculiar abbreviation for UTC.
Another issue to keep in mind is that in POSIX time zone names, positive offsets are used for locations
west of Greenwich. Everywhere else, PostgreSQL follows the ISO-8601 convention that positive
timezone offsets are east of Greenwich.

In all cases, timezone names are recognized case-insensitively. (This is a change from PostgreSQL
versions prior to 8.2, which were case-sensitive in some contexts but not others.)

Neither full names nor abbreviations are hard-wired into the server; they are obtained from configura-
tion files stored under . . . /share/timezone/ and .../share/timezonesets/ of the installation
directory (see Section B.3).

The timezone configuration parameter can be set in the file postgresqgl . conf, or in any of the other
standard ways described in Chapter 18. There are also several special ways to set it:

+ If timezone is not specified in postgresqgl.conf or as a server command-line option, the server
attempts to use the value of the Tz environment variable as the default time zone. If TZ is not
defined or is not any of the time zone names known to PostgreSQL, the server attempts to deter-
mine the operating system’s default time zone by checking the behavior of the C library function
localtime (). The default time zone is selected as the closest match among PostgreSQL’s known
time zones. (These rules are also used to choose the default value of log_timezone, if not specified.)

« The SQL command SET TIME ZONE sets the time zone for the session. This is an alternative
spelling of SET TIMEZONE TO with a more SQL-spec-compatible syntax.

« The pPGTZ environment variable is used by libpq clients to send a SET TIME ZONE command to
the server upon connection.

8.5.4. Interval Input

interval values can be written using the following verbose syntax:
[@Q] quantity unit [quantity unit...] [direction]

where quantity is a number (possibly signed); unit is microsecond, millisecond, second,
minute, hour, day, week, month, year, decade, century, millennium, or abbreviations or plu-
rals of these units; direction can be ago or empty. The at sign (@) is optional noise. The amounts
of the different units are implicitly added with appropriate sign accounting. ago negates all the fields.
This syntax is also used for interval output, if IntervalStyle is set to postgres_verbose.

Quantities of days, hours, minutes, and seconds can be specified without explicit unit markings. For
example, 1 12:59:10’ isread the same as '1 day 12 hours 59 min 10 sec’. Also, a com-
bination of years and months can be specified with a dash; for example ' 200-10" is read the same
as 200 years 10 months’. (These shorter forms are in fact the only ones allowed by the SQL
standard, and are used for output when IntervalStyle is setto sql_standard.)

Interval values can also be written as ISO 8601 time intervals, using either the “format with designa-
tors” of the standard’s section 4.4.3.2 or the “alternative format” of section 4.4.3.3. The format with
designators looks like this:

P quantity unit [quantity unit ...] [T [quantity unit ...]]

121

Chapter 8. Data Types

The string must start with a P, and may include a T that introduces the time-of-day units. The available
unit abbreviations are given in Table 8-16. Units may be omitted, and may be specified in any order,
but units smaller than a day must appear after T. In particular, the meaning of M depends on whether
it is before or after T.

Table 8-16. ISO 8601 Interval Unit Abbreviations

Abbreviation Meaning

Years

Months (in the date part)

Weeks

Days

Hours

Minutes (in the time part)

AREICIEIEE

Seconds

In the alternative format:
P [years—months—days] [T hours:minutes:seconds]

the string must begin with P, and a T separates the date and time parts of the interval. The values are
given as numbers similar to ISO 8601 dates.

When writing an interval constant with a fields specification, or when assigning a string to an in-
terval column that was defined with a £ields specification, the interpretation of unmarked quantities
depends on the fields. For example INTERVAL ’1’ YEAR is read as 1 year, whereas INTERVAL
71" means 1 second. Also, field values “to the right” of the least significant field allowed by the
fields specification are silently discarded. For example, writing INTERVAL ’1 day 2:03:04"
HOUR TO MINUTE results in dropping the seconds field, but not the day field.

According to the SQL standard all fields of an interval value must have the same sign, so a leading
negative sign applies to all fields; for example the negative sign in the interval literal 7 -1 2:03:04"
applies to both the days and hour/minute/second parts. PostgreSQL allows the fields to have differ-
ent signs, and traditionally treats each field in the textual representation as independently signed, so
that the hour/minute/second part is considered positive in this example. If IntervalStyle is set
to sql_standard then a leading sign is considered to apply to all fields (but only if no additional
signs appear). Otherwise the traditional PostgreSQL interpretation is used. To avoid ambiguity, it’s
recommended to attach an explicit sign to each field if any field is negative.

Internally interval values are stored as months, days, and seconds. This is done because the number
of days in a month varies, and a day can have 23 or 25 hours if a daylight savings time adjustment is
involved. The months and days fields are integers while the seconds field can store fractions. Because
intervals are usually created from constant strings or timestamp subtraction, this storage method
works well in most cases. Functions justify_days and justify_hours are available for adjusting
days and hours that overflow their normal ranges.

In the verbose input format, and in some fields of the more compact input formats, field values can
have fractional parts; for example 1.5 week’ or 01:02:03.45”. Such input is converted to the
appropriate number of months, days, and seconds for storage. When this would result in a fractional
number of months or days, the fraction is added to the lower-order fields using the conversion factors
1 month = 30 days and 1 day = 24 hours. For example, ' 1.5 month’ becomes 1 month and 15 days.
Only seconds will ever be shown as fractional on output.

Table 8-17 shows some examples of valid interval input.

122

Chapter 8. Data Types

Table 8-17. Interval Input

Example Description
1-2 SQL standard format: 1 year 2 months
3 4:05:06 SQL standard format: 3 days 4 hours 5 minutes

6 seconds

1 year 2 months 3 days 4 hours 5 minutes 6
seconds

P1Y2M3DT4H5M6S

Traditional Postgres format: 1 year 2 months 3
days 4 hours 5 minutes 6 seconds

ISO 8601 “format with designators™: same
meaning as above

P0001-02-03T04:05:06 ISO 8601 “alternative format”: same meaning as

above

8.5.5. Interval Output

The output format of the interval type can be set to one of the four styles sql_standard, postgres,
postgres_verbose, or iso_8601, using the command SET intervalstyle. The default is the
postgres format. Table 8-18 shows examples of each output style.

The sqgl_standard style produces output that conforms to the SQL standard’s specification for
interval literal strings, if the interval value meets the standard’s restrictions (either year-month only or
day-time only, with no mixing of positive and negative components). Otherwise the output looks like
a standard year-month literal string followed by a day-time literal string, with explicit signs added to
disambiguate mixed-sign intervals.

The output of the postgres style matches the output of PostgreSQL releases prior to 8.4 when the
DateStyle parameter was set to ISO.

The output of the postgres_verbose style matches the output of PostgreSQL releases prior to 8.4
when the DateStyle parameter was set to non-ISO output.

The output of the iso_8601 style matches the “format with designators” described in section 4.4.3.2
of the ISO 8601 standard.

Table 8-18. Interval Output Style Examples

Style Specification

Year-Month Interval

Day-Time Interval

Mixed Interval

sgl_standard

1-2

3 4:05:06

-1-2 +3 -4:05:06

postgres

1 year 2 mons

3 days 04:05:06

-1 year -2 mons +3
days -04:05:06

postgres_verbose

@ 1 year 2 mons

@ 3 days 4 hours 5

@ 1 year 2 mons -3

mins 6 secs days 4 hours 5 mins 6
secs ago
iso_8601 P1Y2M P3DT4H5M6S P-1Y-2M3DT-4H-5M-

6S

123

Chapter 8. Data Types
8.5.6. Internals

PostgreSQL uses Julian dates for all date/time calculations. This has the useful property of correctly
calculating dates from 4713 BC to far into the future, using the assumption that the length of the year
is 365.2425 days.

Date conventions before the 19th century make for interesting reading, but are not consistent enough
to warrant coding into a date/time handler.

8.6. Boolean Type

PostgreSQL provides the standard SQL type boolean; see Table 8-19. The boolean type can have
several states: “true”, “false”, and a third state, “unknown”, which is represented by the SQL null
value.

Table 8-19. Boolean Data Type

Name Storage Size Description

boolean 1 byte state of true or false

Valid literal values for the “true” state are:

TRUE
!t!
"true’
!y!
’yes’
!Onl
!1!

For the “false” state, the following values can be used:

FALSE
!f!
"false’
!n!
!nol
roff’
!O!

Leading or trailing whitespace is ignored, and case does not matter. The key words TRUE and FALSE
are the preferred (SQL-compliant) usage.

Example 8-2 shows that boolean values are output using the letters t and £.

Example 8-2. Using the boolean Type

CREATE TABLE testl (a boolean, b text);
INSERT INTO testl VALUES (TRUE, ’sic est’);
INSERT INTO testl VALUES (FALSE, ’'non est’);
SELECT + FROM testl;

a | b

124

Chapter 8. Data Types

a | b

t | sic est

8.7. Enumerated Types

Enumerated (enum) types are data types that comprise a static, ordered set of values. They are equiv-
alent to the enum types supported in a number of programming languages. An example of an enum
type might be the days of the week, or a set of status values for a piece of data.

8.7.1. Declaration of Enumerated Types
Enum types are created using the CREATE TYPE command, for example:

CREATE TYPE mood AS ENUM (’sad’, ’'ok’, ’"happy’);

Once created, the enum type can be used in table and function definitions much like any other type:

CREATE TYPE mood AS ENUM (’sad’, ’'ok’, "happy’):;
CREATE TABLE person (
name text,
current_mood mood
)i
INSERT INTO person VALUES (’'Moe’, ’"happy’);

SELECT * FROM person WHERE current_mood = "happy’;
name | current_mood

______ e

Moe | happy

(1 row)

8.7.2. Ordering

The ordering of the values in an enum type is the order in which the values were listed when the

type was created. All standard comparison operators and related aggregate functions are supported
for enums. For example:

INSERT INTO person VALUES (’'Larry’, ’sad’);
INSERT INTO person VALUES (’Curly’, ’ok’);
SELECT x FROM person WHERE current_mood > ’'sad’;

name | current_mood
_______ e
Moe | happy

Curly | ok

(2 rows)

125

SELECT * FROM person WHERE current_mood >

name current_mood

SELECT name
FROM person

"'sad’

ORDER BY current_mood;

Chapter 8. Data Types

WHERE current_mood = (SELECT MIN (current_mood) FROM person);

name

8.7.3. Type Safety

Each enumerated data type is separate and cannot be compared with other enumerated types. See this

example:

CREATE TYPE happiness AS ENUM (’happy’, 'very happy’

CREATE TABLE holidays (

num_weeks integer,

happiness happiness
)i
INSERT INTO holidays (num_weeks, happiness)
INSERT INTO holidays (num_weeks, happiness)
INSERT INTO holidays (num_weeks, happiness)
INSERT INTO holidays (num_weeks, happiness)

VALUES
VALUES
VALUES
VALUES

ERROR: invalid input value for enum happiness:

(4,
(6,
(8,
(2,

"sad"

holidays

SELECT person.name, holidays.num_weeks FROM person,

WHERE person.current_mood = holidays.happiness;

ERROR: operator does not exist: mood = happiness

"ecstatic’);

"happy’);
"very happy’);
"ecstatic’);
"sad’);

If you really need to do something like that, you can either write a custom operator or add explicit

casts to your query:

SELECT person.name, holidays.num_weeks FROM person, holidays
WHERE person.current_mood::text = holidays.happiness::text;
name | num_weeks

______ B,

Moe | 4

(1 row)

126

Chapter 8. Data Types

8.7.4. Implementation Details

An enum value occupies four bytes on disk. The length of an enum value’s textual label is limited by
the NAMEDATALEN setting compiled into PostgreSQL; in standard builds this means at most 63 bytes.

Enum labels are case sensitive, so ’ happy’ is not the same as ' HAPPY’. White space in the labels is
significant too.

The translations from internal enum values to textual labels are kept in the system catalog pg_enum.
Querying this catalog directly can be useful.

8.8. Geometric Types

Geometric data types represent two-dimensional spatial objects. Table 8-20 shows the geometric types
available in PostgreSQL. The most fundamental type, the point, forms the basis for all of the other

types.

Table 8-20. Geometric Types

Name Storage Size Representation Description

point 16 bytes Point on a plane (x,y)

line 32 bytes Infinite line (not fully | ((x1,y1),(x2,y2))
implemented)

lseg 32 bytes Finite line segment ((x1,y1),(x2,y2))

box 32 bytes Rectangular box ((x1,y1),(x2,y2))

path 16+16n bytes Closed path (similar to | ((x1,yl),...)
polygon)

path 16+16n bytes Open path [(xLyD),...]

polygon 40+16n bytes Polygon (similar to (x1,yD),...)
closed path)

circle 24 bytes Circle <(x,y),r> (center point

and radius)

A rich set of functions and operators is available to perform various geometric operations such as
scaling, translation, rotation, and determining intersections. They are explained in Section 9.11.

8.8.1. Points

Points are the fundamental two-dimensional building block for geometric types. Values of type point
are specified using either of the following syntaxes:

(x, v)
X 5 Y

where x and y are the respective coordinates, as floating-point numbers.

Points are output using the first syntax.

127

Chapter 8. Data Types

8.8.2. Line Segments

Line segments (1seg) are represented by pairs of points. Values of type 1seg are specified using any
of the following syntaxes:

[(x1, y1) , (x2, y2)]
((x>, y1) , (x2, y2))
(x1, y1), (x2, y2)
x1 , yil ’ x2 , y2

where (x1, y1) and (x2, y2) are the end points of the line segment.

Line segments are output using the first syntax.

8.8.3. Boxes

Boxes are represented by pairs of points that are opposite corners of the box. Values of type box are
specified using any of the following syntaxes:

((x1, y1) , (x2, y2))
(xI ; vyl) ’ (x2 r y2)
x1 , vyl , x2 , y2
where (x1,y1) and (x2, y2) are any two opposite corners of the box.

Boxes are output using the second syntax.

Any two opposite corners can be supplied on input, but the values will be reordered as needed to store
the upper right and lower left corners, in that order.

8.8.4. Paths

Paths are represented by lists of connected points. Paths can be open, where the first and last points
in the list are considered not connected, or closed, where the first and last points are considered
connected.

Values of type path are specified using any of the following syntaxes:

[(x1 , y1) , «.. , (xn , yn) 1]
((x1, y1) , «.. , (xn , yn))
(x1 , y1) , .. , (xn , yn)

(x1 , yl ;e xn , yn)
x1 , yl ;e g xn , yn

where the points are the end points of the line segments comprising the path. Square brackets ([1)
indicate an open path, while parentheses (()) indicate a closed path. When the outermost parentheses
are omitted, as in the third through fifth syntaxes, a closed path is assumed.

Paths are output using the first or second syntax, as appropriate.

8.8.5. Polygons

Polygons are represented by lists of points (the vertexes of the polygon). Polygons are very similar to
closed paths, but are stored differently and have their own set of support routines.

128

Chapter 8. Data Types

Values of type polygon are specified using any of the following syntaxes:

((x1, y1) , + (xn , yn))
(x1, yl) , + (xn , yn)
(x1 , yI , , xn , yn)

x1 , yl , ’ xn , yn

where the points are the end points of the line segments comprising the boundary of the polygon.

Polygons are output using the first syntax.

8.8.6. Circles

Circles are represented by a center point and radius. Values of type circle are specified using any of
the following syntaxes:

< (x,vyv), r>

((x, v), r)
(x, v), r
X 4y r I

where (x, y) is the center point and r is the radius of the circle.

Circles are output using the first syntax.

8.9. Network Address Types

PostgreSQL offers data types to store IPv4, IPv6, and MAC addresses, as shown in Table 8-21. It is
better to use these types instead of plain text types to store network addresses, because these types
offer input error checking and specialized operators and functions (see Section 9.12).

Table 8-21. Network Address Types

Name Storage Size Description

cidr 7 or 19 bytes IPv4 and IPv6 networks

inet 7 or 19 bytes IPv4 and IPv6 hosts and
networks

macaddr 6 bytes MAC addresses

When sorting inet or cidr data types, IPv4 addresses will always sort before IPv6 addresses, in-
cluding IPv4 addresses encapsulated or mapped to IPv6 addresses, such as ::10.2.3.4 or ::ffff:10.4.3.2.

8.9.1. inet

The inet type holds an IPv4 or IPv6 host address, and optionally its subnet, all in one field. The sub-
net is represented by the number of network address bits present in the host address (the “netmask™).
If the netmask is 32 and the address is IPv4, then the value does not indicate a subnet, only a single
host. In IPv6, the address length is 128 bits, so 128 bits specify a unique host address. Note that if you
want to accept only networks, you should use the cidr type rather than inet.

The input format for this type is address/y where address is an IPv4 or IPv6 address and y is the

129

Chapter 8. Data Types

number of bits in the netmask. If the /y portion is missing, the netmask is 32 for IPv4 and 128 for
IPv6, so the value represents just a single host. On display, the /y portion is suppressed if the netmask

specifies a single host.

8.9.2. cidr

The cidr type holds an IPv4 or IPv6 network specification. Input and output formats follow Class-

less Internet Domain Routing conventions. The format for specifying networks is address,/y where

address is the network represented as an IPv4 or IPv6 address, and y is the number of bits in the

netmask. If y is omitted, it is calculated using assumptions from the older classful network numbering

system, except it will be at least large enough to include all of the octets written in the input. It is an
error to specify a network address that has bits set to the right of the specified netmask.

Table 8-22 shows some examples.

Table 8-22. cidr Type Input Ex

amples

|

cidr Input cidr Output abbrev (cidr)
192.168.100.128/25 192.168.100.128/25 192.168.100.128/25
192.168/24 192.168.0.0/24 192.168.0/24
192.168/25 192.168.0.0/25 192.168.0.0/25
192.168.1 192.168.1.0/24 192.168.1/24
192.168 192.168.0.0/24 192.168.0/24

128.1 128.1.0.0/16 128.1/16

128 128.0.0.0/16 128.0/16

128.1.2 128.1.2.0/24 128.1.2/24

10.1.2 10.1.2.0/24 10.1.2/24

10.1 10.1.0.0/16 10.1/16

10 10.0.0.0/8 10/8

10.1.2.3/32 10.1.2.3/32 10.1.2.3/32
2001:4£8:3:ba::/64 2001:418:3:ba::/64 2001:418:3:ba::/64
2001:4£8:3:ba:2e0:811f:fe22:d 1f] AWl :4£8:3:ba:2e0:81{f:fe22:d 1 {1 AMBl :4£8:3:ba:2e0:81{f:fe22:d1f
::ffff:1.2.3.0/120 +ffff:1.2.3.0/120 :offff:1.2.3/120
:offff:1.2.3.0/128 ffff:1.2.3.0/128 :offff:1.2.3.0/128

8.9.3. inet VS. cidr

The essential difference between inet and cidr data types is that inet accepts values with nonzero
bits to the right of the netmask, whereas cidr does not.

Tip: If you do not like the output format for inet or cidr values, try the functions host, text, and

abbrev.

130

Chapter 8. Data Types

8.9.4. macaddr

The macaddr type stores MAC addresses, known for example from Ethernet card hardware addresses
(although MAC addresses are used for other purposes as well). Input is accepted in the following
formats:

708:00:2b:01:02:03"
"08-00-2b-01-02-03"
708002b:010203"
708002b-010203"
70800.2b01.0203"
708002b010203"

These examples would all specify the same address. Upper and lower case is accepted for the digits a
through £. Output is always in the first of the forms shown.

IEEE Std 802-2001 specifies the second shown form (with hyphens) as the canonical form for MAC
addresses, and specifies the first form (with colons) as the bit-reversed notation, so that 08-00-2b-01-
02-03 = 01:00:4D:08:04:0C. This convention is widely ignored nowadays, and it is only relevant for
obsolete network protocols (such as Token Ring). PostgreSQL makes no provisions for bit reversal,
and all accepted formats use the canonical LSB order.

The remaining four input formats are not part of any standard.

8.10. Bit String Types

Bit strings are strings of 1’s and 0’s. They can be used to store or visualize bit masks. There are two
SQL bit types: bit (n) and bit varying (n), where nis a positive integer.

bit type data must match the length n exactly; it is an error to attempt to store shorter or longer bit
strings. bit varying data is of variable length up to the maximum length n; longer strings will be
rejected. Writing bit without a length is equivalenttobit (1), whilebit varying without alength
specification means unlimited length.

Note: If one explicitly casts a bit-string value to bit (n), it will be truncated or zero-padded on the
right to be exactly n bits, without raising an error. Similarly, if one explicitly casts a bit-string value
tobit varying(n), it will be truncated on the right if it is more than n bits.

Refer to Section 4.1.2.5 for information about the syntax of bit string constants. Bit-logical operators
and string manipulation functions are available; see Section 9.6.

Example 8-3. Using the Bit String Types

CREATE TABLE test (a BIT(3), b BIT VARYING(5));
INSERT INTO test VALUES (B’101’, B’00");

INSERT INTO test VALUES (B’10’, B’"1017);

ERROR: Dbit string length 2 does not match type bit (3)
INSERT INTO test VALUES (B’10’::bit(3), B’1017");
SELECT x FROM test;

131

Chapter 8. Data Types
100 | 101

A bit string value requires 1 byte for each group of 8 bits, plus 5 or 8 bytes overhead depending on the
length of the string (but long values may be compressed or moved out-of-line, as explained in Section
8.3 for character strings).

8.11. Text Search Types

PostgreSQL provides two data types that are designed to support full text search, which is the activity
of searching through a collection of natural-language documents to locate those that best match a
query. The tsvector type represents a document in a form optimized for text search; the t squery
type similarly represents a text query. Chapter 12 provides a detailed explanation of this facility, and
Section 9.13 summarizes the related functions and operators.

8.11.1. tsvector

A tsvector value is a sorted list of distinct lexemes, which are words that have been normalized
to merge different variants of the same word (see Chapter 12 for details). Sorting and duplicate-
elimination are done automatically during input, as shown in this example:

SELECT "a fat cat sat on a mat and ate a fat rat’::tsvector;
tsvector

To represent lexemes containing whitespace or punctuation, surround them with quotes:

SELECT Sthe lexeme ' ’ contains spaces$$::tsvector;
tsvector
! " ’contains’ ’lexeme’ ’spaces’ ’the’

(We use dollar-quoted string literals in this example and the next one to avoid the confusion of having
to double quote marks within the literals.) Embedded quotes and backslashes must be doubled:

SELECT $$the lexeme ’Joe”s’ contains a quote$$::tsvector;
tsvector

s’ "a’ ’'contains’ ’lexeme’ ’'quote’ ’‘the’
Optionally, integer positions can be attached to lexemes:

SELECT "a:1 fat:2 cat:3 sat:4 on:5 a:6 mat:7 and:8 ate:9 a:10 fat:11 rat:12’::tsvector;
tsvector

"a’”:1,6,10 "and’ :8 "ate’:9 'cat’:3 'fat’:2,11 'mat’:7 ’'on’:5 'rat’:12 ’'sat’:4

A position normally indicates the source word’s location in the document. Positional information can
be used for proximity ranking. Position values can range from 1 to 16383; larger numbers are silently
set to 16383. Duplicate positions for the same lexeme are discarded.

Lexemes that have positions can further be labeled with a weight, which can be A, B, C, or D. D is the
default and hence is not shown on output:

132

Chapter 8. Data Types

SELECT "a:1A fat:2B,4C cat:5D’::tsvector;
tsvector

"a’” ;1A ’'cat’:5 ’"fat’ :2B,4C

Weights are typically used to reflect document structure, for example by marking title words differ-
ently from body words. Text search ranking functions can assign different priorities to the different
weight markers.

It is important to understand that the tsvector type itself does not perform any normalization; it
assumes the words it is given are normalized appropriately for the application. For example,

select ’"The Fat Rats’ ::tsvector;
tsvector

"Fat’” ’'Rats’ ’'The’

For most English-text-searching applications the above words would be considered non-normalized,
but tsvector doesn’t care. Raw document text should usually be passed through to_tsvector to
normalize the words appropriately for searching:

SELECT to_tsvector (’english’, ’'The Fat Rats’);
to_tsvector

"fat’:2 ’'rat’:3

Again, see Chapter 12 for more detail.

8.11.2. tsquery

A tsquery value stores lexemes that are to be searched for, and combines them honoring the Boolean
operators & (AND), | (OR), and ! (NOT). Parentheses can be used to enforce grouping of the opera-
tors:

SELECT ’fat & rat’::tsquery;
tsquery

SELECT "fat & (rat | cat)’::tsquery;
tsquery

SELECT "fat & rat & ! cat’::tsquery;
tsquery

"fat’” & ’'rat’ & !’cat’

In the absence of parentheses, ! (NOT) binds most tightly, and & (AND) binds more tightly than |
(OR).

Optionally, lexemes in a tsquery can be labeled with one or more weight letters, which restricts
them to match only t svector lexemes with matching weights:

SELECT ’fat:ab & cat’::tsquery;

133

Chapter 8. Data Types

tsquery

"fat’ :AB & 'cat’

Also, lexemes in a t squery can be labeled with « to specify prefix matching:

SELECT ’super:*’::tsquery;
tsquery

This query will match any word in a tsvector that begins with “super”. Note that prefixes are first
processed by text search configurations, which means this comparison returns true:

SELECT to_tsvector("postgraduate’) @@ to_tsquery(’'postgres:x’);
?column?

because postgres gets stemmed to postgr:

SELECT to_tsquery (’'postgres:*’);
to_tsquery

"postgr’ :x
(1 row)

which then matches postgraduate.

Quoting rules for lexemes are the same as described previously for lexemes in t svector; and, as with
tsvector, any required normalization of words must be done before converting to the t squery type.
The to_tsquery function is convenient for performing such normalization:

SELECT to_tsquery ('Fat:ab & Cats’);
to_tsquery

8.12. UUID Type

The data type uuid stores Universally Unique Identifiers (UUID) as defined by RFC 4122, ISO/IEC
9834-8:2005, and related standards. (Some systems refer to this data type as a globally unique identi-
fier, or GUID, instead.) This identifier is a 128-bit quantity that is generated by an algorithm chosen
to make it very unlikely that the same identifier will be generated by anyone else in the known uni-
verse using the same algorithm. Therefore, for distributed systems, these identifiers provide a better
uniqueness guarantee than sequence generators, which are only unique within a single database.

A UUID is written as a sequence of lower-case hexadecimal digits, in several groups separated by
hyphens, specifically a group of 8§ digits followed by three groups of 4 digits followed by a group of

134

Chapter 8. Data Types

12 digits, for a total of 32 digits representing the 128 bits. An example of a UUID in this standard
form is:

aleebc99-9c0b-4ef8-bb6d-6bb9%bd380all

PostgreSQL also accepts the following alternative forms for input: use of upper-case digits, the stan-
dard format surrounded by braces, omitting some or all hyphens, adding a hyphen after any group of
four digits. Examples are:

AQEEBC99-9COB-4EF8-BB6D-6BB9BD380A11
{a0eebc99-9c0b-4ef8-bbod-6bb90d380all}
aleebc999c0b4ef8bb6bdobb9bd380all
alee-bc99-9c0b-4ef8-bbb6d-6bb9-bd38-0all
{a0eebc99-9c0b4ef8-bb6d6bb9-bd380all}

Output is always in the standard form.

PostgreSQL provides storage and comparison functions for UUIDs, but the core database does not
include any function for generating UUIDs, because no single algorithm is well suited for every
application. The uuid-ossp module provides functions that implement several standard algorithms.
Alternatively, UUIDs could be generated by client applications or other libraries invoked through a
server-side function.

8.13. XML Type

The xm1 data type can be used to store XML data. Its advantage over storing XML data in a text
field is that it checks the input values for well-formedness, and there are support functions to perform
type-safe operations on it; see Section 9.14. Use of this data type requires the installation to have been
built with configure --with-libxml.

The xm1 type can store well-formed “documents”, as defined by the XML standard, as well as “con-
tent” fragments, which are defined by the production xMLDecl? content in the XML standard.
Roughly, this means that content fragments can have more than one top-level element or character
node. The expression xmlvalue IS DOCUMENT can be used to evaluate whether a particular xml
value is a full document or only a content fragment.

8.13.1. Creating XML Values

To produce a value of type xm1 from character data, use the function xmlparse:
XMLPARSE ({ DOCUMENT | CONTENT } wvalue)
Examples:

XMLPARSE (DOCUMENT ’<?xml version="1.0"?><book><title>Manual</title><chapter>...</chapte
XMLPARSE (CONTENT ’abc<foo>bar</foo><bar>foo</bar>')

While this is the only way to convert character strings into XML values according to the SQL standard,
the PostgreSQL-specific syntaxes:

xml ’<foo>bar</foo>’
' <foo>bar</foo>’::xml

can also be used.

135

Chapter 8. Data Types

The xm1 type does not validate input values against a document type declaration (DTD), even when
the input value specifies a DTD. There is also currently no built-in support for validating against other
XML schema languages such as XML Schema.

The inverse operation, producing a character string value from xm1, uses the function xmlserialize:

XMLSERIALIZE ({ DOCUMENT | CONTENT } value AS type)

type can be character, character varying, or text (or an alias for one of those). Again,
according to the SQL standard, this is the only way to convert between type xm1 and character types,
but PostgreSQL also allows you to simply cast the value.

When a character string value is cast to or from type xml without going through XMLPARSE or
XMLSERIALIZE, respectively, the choice of DOCUMENT versus CONTENT is determined by the “XML
option” session configuration parameter, which can be set using the standard command:

SET XML OPTION { DOCUMENT | CONTENT };

or the more PostgreSQL-like syntax
SET xmloption TO { DOCUMENT | CONTENT };

The default is CONTENT, so all forms of XML data are allowed.

Note: With the default XML option setting, you cannot directly cast character strings to type xm1 if
they contain a document type declaration, because the definition of XML content fragment does
not accept them. If you need to do that, either use xvLpPARSE or change the XML option.

8.13.2. Encoding Handling

Care must be taken when dealing with multiple character encodings on the client, server, and in
the XML data passed through them. When using the text mode to pass queries to the server and
query results to the client (which is the normal mode), PostgreSQL converts all character data passed
between the client and the server and vice versa to the character encoding of the respective end; see
Section 22.3. This includes string representations of XML values, such as in the above examples.
This would ordinarily mean that encoding declarations contained in XML data can become invalid as
the character data is converted to other encodings while travelling between client and server, because
the embedded encoding declaration is not changed. To cope with this behavior, encoding declarations
contained in character strings presented for input to the xm1 type are ignored, and content is assumed
to be in the current server encoding. Consequently, for correct processing, character strings of XML
data must be sent from the client in the current client encoding. It is the responsibility of the client
to either convert documents to the current client encoding before sending them to the server, or to
adjust the client encoding appropriately. On output, values of type xm1 will not have an encoding
declaration, and clients should assume all data is in the current client encoding.

When using binary mode to pass query parameters to the server and query results back to the client, no
character set conversion is performed, so the situation is different. In this case, an encoding declaration
in the XML data will be observed, and if it is absent, the data will be assumed to be in UTF-8 (as
required by the XML standard; note that PostgreSQL does not support UTF-16). On output, data will
have an encoding declaration specifying the client encoding, unless the client encoding is UTF-8, in
which case it will be omitted.

136

Chapter 8. Data Types

Needless to say, processing XML data with PostgreSQL will be less error-prone and more efficient
if the XML data encoding, client encoding, and server encoding are the same. Since XML data is
internally processed in UTF-8, computations will be most efficient if the server encoding is also
UTF-8.

Caution

Some XML-related functions may not work at all on non-ASCII data when the
server encoding is not UTF-8. This is known to be an issue for xpath () in
particular.

8.13.3. Accessing XML Values

The xm1 data type is unusual in that it does not provide any comparison operators. This is because
there is no well-defined and universally useful comparison algorithm for XML data. One consequence
of this is that you cannot retrieve rows by comparing an xml column against a search value. XML
values should therefore typically be accompanied by a separate key field such as an ID. An alternative
solution for comparing XML values is to convert them to character strings first, but note that character
string comparison has little to do with a useful XML comparison method.

Since there are no comparison operators for the xm1 data type, it is not possible to create an index
directly on a column of this type. If speedy searches in XML data are desired, possible workarounds
include casting the expression to a character string type and indexing that, or indexing an XPath
expression. Of course, the actual query would have to be adjusted to search by the indexed expression.

The text-search functionality in PostgreSQL can also be used to speed up full-document searches
of XML data. The necessary preprocessing support is, however, not yet available in the PostgreSQL
distribution.

8.14. Arrays

PostgreSQL allows columns of a table to be defined as variable-length multidimensional arrays. Ar-
rays of any built-in or user-defined base type, enum type, or composite type can be created. Arrays of
domains are not yet supported.

8.14.1. Declaration of Array Types

To illustrate the use of array types, we create this table:

CREATE TABLE sal_emp (
name text,
pay_by_quarter integer|[],
schedule text [][]
)i

As shown, an array data type is named by appending square brackets ([1) to the data type name of
the array elements. The above command will create a table named sal_emp with a column of type
text (name), a one-dimensional array of type integer (pay_by_quarter), which represents the
employee’s salary by quarter, and a two-dimensional array of text (schedule), which represents
the employee’s weekly schedule.

137

Chapter 8. Data Types

The syntax for CREATE TABLE allows the exact size of arrays to be specified, for example:

CREATE TABLE tictactoe (
squares integer[3][3]
)

However, the current implementation ignores any supplied array size limits, i.e., the behavior is the
same as for arrays of unspecified length.

The current implementation does not enforce the declared number of dimensions either. Arrays of
a particular element type are all considered to be of the same type, regardless of size or number
of dimensions. So, declaring the array size or number of dimensions in CREATE TABLE is simply
documentation; it does not affect run-time behavior.

An alternative syntax, which conforms to the SQL standard by using the keyword ARRAY, can be used
for one-dimensional arrays. pay_by_quarter could have been defined as:

pay_by_qgquarter integer ARRAY[4],
Or, if no array size is to be specified:

pay_by_quarter integer ARRAY,

As before, however, PostgreSQL does not enforce the size restriction in any case.

8.14.2. Array Value Input

To write an array value as a literal constant, enclose the element values within curly braces and
separate them by commas. (If you know C, this is not unlike the C syntax for initializing structures.)
You can put double quotes around any element value, and must do so if it contains commas or curly
braces. (More details appear below.) Thus, the general format of an array constant is the following:

"{ vall delim val2 delim ... }'

where delim is the delimiter character for the type, as recorded in its pg_type entry. Among the
standard data types provided in the PostgreSQL distribution, all use a comma (,), except for type box
which uses a semicolon (;). Each val is either a constant of the array element type, or a subarray. An
example of an array constant is:

"{{1,2,3},{4,5,6},{7,8,9}}’

This constant is a two-dimensional, 3-by-3 array consisting of three subarrays of integers.

To set an element of an array constant to NULL, write NULL for the element value. (Any upper- or
lower-case variant of NULL will do.) If you want an actual string value “NULL”, you must put double
quotes around it.

(These kinds of array constants are actually only a special case of the generic type constants discussed
in Section 4.1.2.7. The constant is initially treated as a string and passed to the array input conversion
routine. An explicit type specification might be necessary.)

Now we can show some INSERT statements:
INSERT INTO sal_emp
VALUES (’'Bill’,

{10000, 10000, 10000, 10000}",
"{{"meeting", "lunch"}, {"training", "presentation"}}’);

138

Chapter 8. Data Types

INSERT INTO sal_emp
VALUES ('Carol’,
{20000, 25000, 25000, 25000}",
"{{"breakfast", "consulting"}, {"meeting", "lunch"}}’);

The result of the previous two inserts looks like this:

SELECT = FROM sal_emp;

name | pay_by_quarter | schedule

,,,,,,, S
Bill | {10000,10000,10000,10000} | {{meeting,lunch}, {training,presentation}}
Carol | {20000,25000,25000,25000} | {{breakfast,consulting}, {meeting, lunch}}
(2 rows)

Multidimensional arrays must have matching extents for each dimension. A mismatch causes an error,
for example:

INSERT INTO sal_emp
VALUES (’'Bill’,
{10000, 10000, 10000, 10000}",
"{{"meeting", "lunch"}, {"meeting"}}’);
ERROR: multidimensional arrays must have array expressions with matching dimensions

The ARRAY constructor syntax can also be used:

INSERT INTO sal_emp
VALUES (’Bill’,
ARRAY[10000, 10000, 10000, 100007,
ARRAY [['meeting’, ’lunch’], [’'training’, ’'presentation’]]);

INSERT INTO sal_emp
VALUES (’Carol’,
ARRAY[20000, 25000, 25000, 25000],
ARRAY [["breakfast’, ’consulting’], ['meeting’, ’"lunch’]11]);

Notice that the array elements are ordinary SQL constants or expressions; for instance, string literals
are single quoted, instead of double quoted as they would be in an array literal. The ARRAY constructor
syntax is discussed in more detail in Section 4.2.12.

8.14.3. Accessing Arrays

Now, we can run some queries on the table. First, we show how to access a single element of an array.
This query retrieves the names of the employees whose pay changed in the second quarter:

SELECT name FROM sal_emp WHERE pay_by_quarter[l] <> pay_by_qguarter[2];

139

Chapter 8. Data Types

The array subscript numbers are written within square brackets. By default PostgreSQL uses a one-
based numbering convention for arrays, that is, an array of n elements starts with array[1] and ends
with array [n].

This query retrieves the third quarter pay of all employees:

SELECT pay_by_quarter[3] FROM sal_emp;

pay_by_quarter

10000
25000
(2 rows)

We can also access arbitrary rectangular slices of an array, or subarrays. An array slice is denoted
by writing Iower-bound: upper-bound for one or more array dimensions. For example, this query
retrieves the first item on Bill’s schedule for the first two days of the week:

SELECT schedule[1:2][1:1] FROM sal_emp WHERE name = ’'Bill’;

schedule

{{meeting}, {training}}
(1 row)

If any dimension is written as a slice, i.e., contains a colon, then all dimensions are treated as slices.
Any dimension that has only a single number (no colon) is treated as being from 1 to the number
specified. For example, [2] is treated as [1:2], as in this example:

SELECT schedule[1l:2][2] FROM sal_emp WHERE name = ’'Bill’;

schedule

{{meeting, lunch}, {training, presentation}}
(1 row)

To avoid confusion with the non-slice case, it’s best to use slice syntax for all dimensions, e.g.,
[1:2][1:1],n0t [2][1:1].

An array subscript expression will return null if either the array itself or any of the subscript expres-
sions are null. Also, null is returned if a subscript is outside the array bounds (this case does not raise
an error). For example, if schedule currently has the dimensions [1:3][1:2] then referencing
schedule[3][3] yields NULL. Similarly, an array reference with the wrong number of subscripts
yields a null rather than an error.

An array slice expression likewise yields null if the array itself or any of the subscript expressions are
null. However, in other cases such as selecting an array slice that is completely outside the current
array bounds, a slice expression yields an empty (zero-dimensional) array instead of null. (This does
not match non-slice behavior and is done for historical reasons.) If the requested slice partially over-
laps the array bounds, then it is silently reduced to just the overlapping region instead of returning
null.

The current dimensions of any array value can be retrieved with the array_dims function:

SELECT array_dims (schedule) FROM sal_emp WHERE name = ’'Carol’;

140

Chapter 8. Data Types

array_dims

[1:2][1:2]
(1 row)

array_dims produces a text result, which is convenient for people to read but perhaps inconvenient
for programs. Dimensions can also be retrieved with array_upper and array_1lower, which return
the upper and lower bound of a specified array dimension, respectively:

SELECT array_upper (schedule, 1) FROM sal_emp WHERE name = ’Carol’;

array_upper

(1 row)
array_length will return the length of a specified array dimension:

SELECT array_length(schedule, 1) FROM sal_emp WHERE name = ’'Carol’;

array_length

8.14.4. Modifying Arrays

An array value can be replaced completely:

UPDATE sal_emp SET pay_by_quarter = ' {25000,25000,27000,27000}"
WHERE name = ’'Carol’;

or using the ARRAY expression syntax:

UPDATE sal_emp SET pay_by_quarter = ARRAY[25000,25000,27000,27000]
WHERE name = ’'Carol’;

An array can also be updated at a single element:

UPDATE sal_emp SET pay_by_quarter[4] = 15000
WHERE name = ’'Bill’;

or updated in a slice:

UPDATE sal_emp SET pay_by_quarter[1l:2] = 7 {27000,27000}"
WHERE name = ’'Carol’;

A stored array value can be enlarged by assigning to elements not already present. Any positions be-
tween those previously present and the newly assigned elements will be filled with nulls. For example,
if array myarray currently has 4 elements, it will have six elements after an update that assigns to
myarray[6]; myarray[5] will contain null. Currently, enlargement in this fashion is only allowed
for one-dimensional arrays, not multidimensional arrays.

141

Chapter 8. Data Types

Subscripted assignment allows creation of arrays that do not use one-based subscripts. For example
one might assign to myarray[-2:7] to create an array with subscript values from -2 to 7.

New array values can also be constructed using the concatenation operator, | |:

SELECT ARRAY[1,2] || ARRAY[3,4];
?column?

{1,2,3,4}
(1 row)

SELECT ARRAY[5,6] || ARRAY[[1,2]1,1[3,4]1];
?column?

{{5,6},{1,2},{3,4}}
(1 row)

The concatenation operator allows a single element to be pushed onto the beginning or end of a
one-dimensional array. It also accepts two N-dimensional arrays, or an N-dimensional and an N+1-
dimensional array.

When a single element is pushed onto either the beginning or end of a one-dimensional array, the
result is an array with the same lower bound subscript as the array operand. For example:

SELECT array_dims (1l || "[0:1]={2,3}" ::int[]);
array_dims

[0:2]
(1 row)

SELECT array_dims (ARRAY[1,2] || 3);
array_dims

[1:3]
(1 row)

When two arrays with an equal number of dimensions are concatenated, the result retains the lower
bound subscript of the left-hand operand’s outer dimension. The result is an array comprising every
element of the left-hand operand followed by every element of the right-hand operand. For example:

SELECT array_dims (ARRAY[1,2] || ARRAY[3,4,5]);
array_dims

[1:5]
(1 row)

SELECT array_dims (ARRAY[[1,2],[3,41] || ARRAY[[5,6],[7,81,19,011);
array_dims

[1:5][1:2]
(1 row)

142

Chapter 8. Data Types

When an nN-dimensional array is pushed onto the beginning or end of an N+I-dimensional array, the
result is analogous to the element-array case above. Each N-dimensional sub-array is essentially an
element of the N+1-dimensional array’s outer dimension. For example:

SELECT array_dims (ARRAY[1,2] || ARRAY[[3,4]1,1[5,611);
array_dims

[1:3][1:2]
(1 row)

An array can also be constructed by using the functions array_prepend, array_append,
or array_cat. The first two only support one-dimensional arrays, but array_cat supports
multidimensional arrays. Note that the concatenation operator discussed above is preferred over
direct use of these functions. In fact, these functions primarily exist for use in implementing the
concatenation operator. However, they might be directly useful in the creation of user-defined
aggregates. Some examples:

SELECT array_prepend(l, ARRAY[2,3]);
array_prepend

{1,2,3}
(1 row)

SELECT array_append (ARRAY[1,2], 3);
array_append

{1,2,3}
(1 row)

SELECT array_cat (ARRAY[1,2], ARRAY[3,4]);
array_cat

{1,2,3,4}
(1 row)

SELECT array_cat (ARRAY[[1,2],[3,4]1]1, ARRAY[5,61]);
array_cat

{{1,2},{3,4},{5,6}}
(1 row)

SELECT array_cat (ARRAY[5,6], ARRAY[[1,2],(3,411);
array_cat

{{5,6},{1,2},{3,4}}

8.14.5. Searching in Arrays

To search for a value in an array, each value must be checked. This can be done manually, if you know
the size of the array. For example:

SELECT x FROM sal_emp WHERE pay_by_quarter[1l] = 10000 OR

143

Chapter 8. Data Types

pay_by_qgquarter[2] = 10000 OR
pay_by_qgquarter[3] = 10000 OR
pay_by_quarter[4] = 10000;

However, this quickly becomes tedious for large arrays, and is not helpful if the size of the array is
unknown. An alternative method is described in Section 9.21. The above query could be replaced by:

SELECT * FROM sal_emp WHERE 10000 = ANY (pay_by_quarter);
In addition, you can find rows where the array has all values equal to 10000 with:

SELECT = FROM sal_emp WHERE 10000 = ALL (pay_by_quarter);

Alternatively, the generate_subscripts function can be used. For example:

SELECT x FROM
(SELECT pay_by_quarter,
generate_subscripts (pay_by_gquarter, 1) AS s
FROM sal_emp) AS foo
WHERE pay_by_dquarter([s] = 10000;

This function is described in Table 9-46.

Tip: Arrays are not sets; searching for specific array elements can be a sign of database misde-
sign. Consider using a separate table with a row for each item that would be an array element.
This will be easier to search, and is likely to scale better for a large number of elements.

8.14.6. Array Input and Output Syntax

The external text representation of an array value consists of items that are interpreted according to the
I/O conversion rules for the array’s element type, plus decoration that indicates the array structure.
The decoration consists of curly braces ({ and }) around the array value plus delimiter characters
between adjacent items. The delimiter character is usually a comma (,) but can be something else:
it is determined by the typdelim setting for the array’s element type. Among the standard data
types provided in the PostgreSQL distribution, all use a comma, except for type box, which uses a
semicolon (;). In a multidimensional array, each dimension (row, plane, cube, etc.) gets its own level
of curly braces, and delimiters must be written between adjacent curly-braced entities of the same
level.

The array output routine will put double quotes around element values if they are empty strings,
contain curly braces, delimiter characters, double quotes, backslashes, or white space, or match the
word NULL. Double quotes and backslashes embedded in element values will be backslash-escaped.
For numeric data types it is safe to assume that double quotes will never appear, but for textual data
types one should be prepared to cope with either the presence or absence of quotes.

By default, the lower bound index value of an array’s dimensions is set to one. To represent arrays
with other lower bounds, the array subscript ranges can be specified explicitly before writing the array
contents. This decoration consists of square brackets ([]) around each array dimension’s lower and
upper bounds, with a colon (:) delimiter character in between. The array dimension decoration is
followed by an equal sign (=). For example:

SELECT £1[1][-2][3] AS el, f1[1][-1]1[5] AS e2

144

Chapter 8. Data Types

FROM (SELECT ' [1:1]1([-2:-111[3:51={{{1,2,3},{4,5,6}}}" ::int[] AS fl) AS ss;

The array output routine will include explicit dimensions in its result only when there are one or more
lower bounds different from one.

If the value written for an element is NULL (in any case variant), the element is taken to be NULL.
The presence of any quotes or backslashes disables this and allows the literal string value “NULL”
to be entered. Also, for backward compatibility with pre-8.2 versions of PostgreSQL, the array_nulls
configuration parameter can be turned of £ to suppress recognition of NULL as a NULL.

As shown previously, when writing an array value you can use double quotes around any individual
array element. You must do so if the element value would otherwise confuse the array-value parser.
For example, elements containing curly braces, commas (or the data type’s delimiter character), dou-
ble quotes, backslashes, or leading or trailing whitespace must be double-quoted. Empty strings and
strings matching the word NULL must be quoted, too. To put a double quote or backslash in a quoted
array element value, use escape string syntax and precede it with a backslash. Alternatively, you can
avoid quotes and use backslash-escaping to protect all data characters that would otherwise be taken
as array syntax.

You can add whitespace before a left brace or after a right brace. You can also add whitespace before
or after any individual item string. In all of these cases the whitespace will be ignored. However,
whitespace within double-quoted elements, or surrounded on both sides by non-whitespace characters
of an element, is not ignored.

Note: Remember that what you write in an SQL command will first be interpreted as a string
literal, and then as an array. This doubles the number of backslashes you need. For example, to
insert a text array value containing a backslash and a double quote, you'd need to write:

INSERT ... VALUES (E’ {"\\\\","\\""}");

The escape string processor removes one level of backslashes, so that what arrives at the array-
value parser looks like {"\\", "\""}. In turn, the strings fed to the text data type’s input routine
become \ and " respectively. (If we were working with a data type whose input routine also treated
backslashes specially, bytea for example, we might need as many as eight backslashes in the
command to get one backslash into the stored array element.) Dollar quoting (see Section 4.1.2.4)
can be used to avoid the need to double backslashes.

Tip: The arRrAY constructor syntax (see Section 4.2.12) is often easier to work with than the array-
literal syntax when writing array values in SQL commands. In array, individual element values
are written the same way they would be written when not members of an array.

8.15. Composite Types

A composite type represents the structure of a row or record; it is essentially just a list of field names
and their data types. PostgreSQL allows composite types to be used in many of the same ways that

145

Chapter 8. Data Types

simple types can be used. For example, a column of a table can be declared to be of a composite type.

8.15.1. Declaration of Composite Types

Here are two simple examples of defining composite types:

CREATE TYPE complex AS (
r double precision,
i double precision
)i

CREATE TYPE inventory_item AS (

name text,
supplier_id integer,
price numeric

)

The syntax is comparable to CREATE TABLE, except that only field names and types can be specified;
no constraints (such as NOT NULL) can presently be included. Note that the AS keyword is essential;
without it, the system will think a different kind of CREATE TYPE command is meant, and you will
get odd syntax errors.

Having defined the types, we can use them to create tables:
CREATE TABLE on_hand (
item inventory_item,

count integer

)i
INSERT INTO on_hand VALUES (ROW(’fuzzy dice’, 42, 1.99), 1000);
or functions:

CREATE FUNCTION price_extension (inventory_item, integer) RETURNS numeric
AS 'SELECT $1l.price % $2’ LANGUAGE SQL;

SELECT price_extension(item, 10) FROM on_hand;

Whenever you create a table, a composite type is also automatically created, with the same name as
the table, to represent the table’s row type. For example, had we said:

CREATE TABLE inventory_item (

name text,
supplier_id integer REFERENCES suppliers,
price numeric CHECK (price > 0)

)

then the same inventory_item composite type shown above would come into being as a byproduct,
and could be used just as above. Note however an important restriction of the current implementation:
since no constraints are associated with a composite type, the constraints shown in the table definition
do not apply to values of the composite type outside the table. (A partial workaround is to use domain
types as members of composite types.)

146

Chapter 8. Data Types

8.15.2. Composite Value Input

To write a composite value as a literal constant, enclose the field values within parentheses and sepa-
rate them by commas. You can put double quotes around any field value, and must do so if it contains
commas or parentheses. (More details appear below.) Thus, the general format of a composite constant
is the following:

'(vall , valz , ...)’
An example is:
" ("fuzzy dice",42,1.99)'

which would be a valid value of the inventory_item type defined above. To make a field be NULL,
write no characters at all in its position in the list. For example, this constant specifies a NULL third
field:

" ("fuzzy dice",42,)’
If you want an empty string rather than NULL, write double quotes:
4 (nmn , 4 2 ,) 4

Here the first field is a non-NULL empty string, the third is NULL.

(These constants are actually only a special case of the generic type constants discussed in Section
4.1.2.7. The constant is initially treated as a string and passed to the composite-type input conversion
routine. An explicit type specification might be necessary.)

The ROW expression syntax can also be used to construct composite values. In most cases this is
considerably simpler to use than the string-literal syntax since you don’t have to worry about multiple
layers of quoting. We already used this method above:

ROW (" fuzzy dice’, 42, 1.99)
ROW (”, 42, NULL)

The ROW keyword is actually optional as long as you have more than one field in the expression, so
these can simplify to:

(" fuzzy dice’, 42, 1.99)
(", 42, NULL)

The rOW expression syntax is discussed in more detail in Section 4.2.13.

8.15.3. Accessing Composite Types

To access a field of a composite column, one writes a dot and the field name, much like selecting a
field from a table name. In fact, it’s so much like selecting from a table name that you often have to use
parentheses to keep from confusing the parser. For example, you might try to select some subfields
from our on_hand example table with something like:

SELECT item.name FROM on_hand WHERE item.price > 9.99;

This will not work since the name item is taken to be a table name, not a column name of on_hand,
per SQL syntax rules. You must write it like this:

SELECT (item) .name FROM on_hand WHERE (item) .price > 9.99;

147

Chapter 8. Data Types

or if you need to use the table name as well (for instance in a multitable query), like this:
SELECT (on_hand.item) .name FROM on_hand WHERE (on_hand.item) .price > 9.99;

Now the parenthesized object is correctly interpreted as a reference to the item column, and then the
subfield can be selected from it.

Similar syntactic issues apply whenever you select a field from a composite value. For instance, to
select just one field from the result of a function that returns a composite value, you’d need to write
something like:

SELECT (my_func(...)).field FROM ...

Without the extra parentheses, this will generate a syntax error.

8.15.4. Modifying Composite Types

Here are some examples of the proper syntax for inserting and updating composite columns. First,
inserting or updating a whole column:

INSERT INTO mytab (complex_col) VALUES((1.1,2.2));
UPDATE mytab SET complex_col = ROW(l1.1,2.2) WHERE ...;

The first example omits ROW, the second uses it; we could have done it either way.

We can update an individual subfield of a composite column:

UPDATE mytab SET complex_col.r = (complex_col).r + 1 WHERE ...;

Notice here that we don’t need to (and indeed cannot) put parentheses around the column name
appearing just after SET, but we do need parentheses when referencing the same column in the ex-
pression to the right of the equal sign.

And we can specify subfields as targets for INSERT, too:
INSERT INTO mytab (complex_col.r, complex_col.i) VALUES(l1.1, 2.2);

Had we not supplied values for all the subfields of the column, the remaining subfields would have
been filled with null values.

8.15.5. Composite Type Input and Output Syntax

The external text representation of a composite value consists of items that are interpreted according
to the I/O conversion rules for the individual field types, plus decoration that indicates the composite
structure. The decoration consists of parentheses ((and)) around the whole value, plus commas (,)
between adjacent items. Whitespace outside the parentheses is ignored, but within the parentheses it
is considered part of the field value, and might or might not be significant depending on the input
conversion rules for the field data type. For example, in:

I(42)/

the whitespace will be ignored if the field type is integer, but not if it is text.

As shown previously, when writing a composite value you can write double quotes around any in-
dividual field value. You must do so if the field value would otherwise confuse the composite-value

148

Chapter 8. Data Types

parser. In particular, fields containing parentheses, commas, double quotes, or backslashes must be
double-quoted. To put a double quote or backslash in a quoted composite field value, precede it with
a backslash. (Also, a pair of double quotes within a double-quoted field value is taken to represent a
double quote character, analogously to the rules for single quotes in SQL literal strings.) Alternatively,
you can avoid quoting and use backslash-escaping to protect all data characters that would otherwise
be taken as composite syntax.

A completely empty field value (no characters at all between the commas or parentheses) represents
a NULL. To write a value that is an empty string rather than NULL, write "".

The composite output routine will put double quotes around field values if they are empty strings or
contain parentheses, commas, double quotes, backslashes, or white space. (Doing so for white space
is not essential, but aids legibility.) Double quotes and backslashes embedded in field values will be
doubled.

Note: Remember that what you write in an SQL command will first be interpreted as a string
literal, and then as a composite. This doubles the number of backslashes you need (assuming
escape string syntax is used). For example, to insert a text field containing a double quote and
a backslash in a composite value, you'd need to write:

INSERT ... VALUES (E’ ("\\"\\\\")");

The string-literal processor removes one level of backslashes, so that what arrives at the
composite-value parser looks like ("\"\\"). In turn, the string fed to the text data type’s input
routine becomes "\. (If we were working with a data type whose input routine also treated
backslashes specially, bytea for example, we might need as many as eight backslashes in the
command to get one backslash into the stored composite field.) Dollar quoting (see Section
4.1.2.4) can be used to avoid the need to double backslashes.

Tip: The row constructor syntax is usually easier to work with than the composite-literal syntax
when writing composite values in SQL commands. In row, individual field values are written the
same way they would be written when not members of a composite.

8.16. Object Identifier Types

Object identifiers (OIDs) are used internally by PostgreSQL as primary keys for various system tables.
OIDs are not added to user-created tables, unless WITH 01IDS is specified when the table is created,
or the default_with_oids configuration variable is enabled. Type oid represents an object identifier.
There are also several alias types for oid: regproc, regprocedure, regoper, regoperator,
regclass, regtype, regconfig, and regdictionary. Table 8-23 shows an overview.

The oid type is currently implemented as an unsigned four-byte integer. Therefore, it is not large
enough to provide database-wide uniqueness in large databases, or even in large individual tables. So,
using a user-created table’s OID column as a primary key is discouraged. OIDs are best used only for
references to system tables.

The oid type itself has few operations beyond comparison. It can be cast to integer, however, and
then manipulated using the standard integer operators. (Beware of possible signed-versus-unsigned
confusion if you do this.)

149

Chapter 8. Data Types

The OID alias types have no operations of their own except for specialized input and output routines.
These routines are able to accept and display symbolic names for system objects, rather than the raw
numeric value that type oid would use. The alias types allow simplified lookup of OID values for
objects. For example, to examine the pg_attribute rows related to a table mytable, one could
write:

SELECT FROM pg_attribute WHERE attrelid = 'mytable’ ::regclass;
rather than:

SELECT * FROM pg_attribute
WHERE attrelid = (SELECT oid FROM pg_class WHERE relname = 'mytable’);

While that doesn’t look all that bad by itself, it’s still oversimplified. A far more complicated sub-
select would be needed to select the right OID if there are multiple tables named mytable in differ-
ent schemas. The regclass input converter handles the table lookup according to the schema path
setting, and so it does the “right thing” automatically. Similarly, casting a table’s OID to regclass
is handy for symbolic display of a numeric OID.

Table 8-23. Object Identifier Types

Name References Description Value Example
oid any numeric object 564182
identifier
regproc pPg_proc function name sum
regprocedure pg_proc function with argument | sum (int4)
types
regoper pg_operator operator name +
regoperator pg_operator operator with argument | » (integer, integer)
types or - (NONE, integer)
regclass pg_class relation name Pg_type
regtype pPg_type data type name integer
regconfig pg_ts_config text search english
configuration
regdictionary pg_ts_dict text search dictionary |simple

All of the OID alias types accept schema-qualified names, and will display schema-qualified names
on output if the object would not be found in the current search path without being qualified. The
regproc and regoper alias types will only accept input names that are unique (not overloaded), so
they are of limited use; for most uses regprocedure or regoperator are more appropriate. For
regoperator, unary operators are identified by writing NONE for the unused operand.

An additional property of the OID alias types is the creation of dependencies. If a constant of one
of these types appears in a stored expression (such as a column default expression or view), it
creates a dependency on the referenced object. For example, if a column has a default expression
nextval ('my_seq’ : :regclass), PostgreSQL understands that the default expression depends on
the sequence my_segq; the system will not let the sequence be dropped without first removing the
default expression.

Another identifier type used by the system is xid, or transaction (abbreviated xact) identifier. This is
the data type of the system columns xmin and xmax. Transaction identifiers are 32-bit quantities.

A third identifier type used by the system is cid, or command identifier. This is the data type of the

150

Chapter 8. Data Types

system columns cmin and cmax. Command identifiers are also 32-bit quantities.

A final identifier type used by the system is tid, or tuple identifier (row identifier). This is the data
type of the system column ctid. A tuple ID is a pair (block number, tuple index within block) that
identifies the physical location of the row within its table.

(The system columns are further explained in Section 5.4.)

8.17. Pseudo-Types

The PostgreSQL type system contains a number of special-purpose entries that are collectively called
pseudo-types. A pseudo-type cannot be used as a column data type, but it can be used to declare a
function’s argument or result type. Each of the available pseudo-types is useful in situations where a
function’s behavior does not correspond to simply taking or returning a value of a specific SQL data

type. Table 8-24 lists the existing pseudo-types.

Table 8-24. Pseudo-Types

Name Description

any Indicates that a function accepts any input data
type.

anyarray Indicates that a function accepts any array data
type (see Section 35.2.5).

anyelement Indicates that a function accepts any data type
(see Section 35.2.5).

anyenum Indicates that a function accepts any enum data
type (see Section 35.2.5 and Section 8.7).

anynonarray Indicates that a function accepts any non-array
data type (see Section 35.2.5).

cstring Indicates that a function accepts or returns a
null-terminated C string.

internal Indicates that a function accepts or returns a

server-internal data type.

language_handler

A procedural language call handler is declared to
return language_handler.

fdw_handler

A foreign-data wrapper handler is declared to
return fdw_handler.

record Identifies a function returning an unspecified
row type.

trigger A trigger function is declared to return
trigger.

void Indicates that a function returns no value.

opaque An obsolete type name that formerly served all

the above purposes.

Functions coded in C (whether built-in or dynamically loaded) can be declared to accept or return any
of these pseudo data types. It is up to the function author to ensure that the function will behave safely

when a pseudo-type is used as an argument type.

151

Chapter 8. Data Types

Functions coded in procedural languages can use pseudo-types only as allowed by their implementa-
tion languages. At present the procedural languages all forbid use of a pseudo-type as argument type,
and allow only void and record as a result type (plus t rigger when the function is used as a trig-
ger). Some also support polymorphic functions using the types anyarray, anyelement, anyenum,

and anynonarray.

The internal pseudo-type is used to declare functions that are meant only to be called internally
by the database system, and not by direct invocation in an SQL query. If a function has at least one
internal-type argument then it cannot be called from SQL. To preserve the type safety of this
restriction it is important to follow this coding rule: do not create any function that is declared to
return internal unless it has at least one internal argument.

152

Chapter 9. Functions and Operators

PostgreSQL provides a large number of functions and operators for the built-in data types. Users can
also define their own functions and operators, as described in Part V. The psql commands \df and
\do can be used to list all available functions and operators, respectively.

If you are concerned about portability then note that most of the functions and operators described
in this chapter, with the exception of the most trivial arithmetic and comparison operators and some
explicitly marked functions, are not specified by the SQL standard. Some of this extended function-
ality is present in other SQL database management systems, and in many cases this functionality is
compatible and consistent between the various implementations. This chapter is also not exhaustive;
additional functions appear in relevant sections of the manual.

9.1. Logical Operators

The usual logical operators are available:

AND
OR
NOT

SQL uses a three-valued logic system with true, false, and nul1, which represents “unknown”. Ob-
serve the following truth tables:

a b a AND b aORb
TRUE TRUE TRUE TRUE
TRUE FALSE FALSE TRUE
TRUE NULL NULL TRUE
FALSE FALSE FALSE FALSE
FALSE NULL FALSE NULL
NULL NULL NULL NULL
a NOT a

TRUE FALSE

FALSE TRUE

NULL NULL

The operators AND and OR are commutative, that is, you can switch the left and right operand without
affecting the result. But see Section 4.2.14 for more information about the order of evaluation of
subexpressions.

9.2. Comparison Operators

The usual comparison operators are available, shown in Table 9-1.

153

Chapter 9. Functions and Operators

Table 9-1. Comparison Operators

Operator Description

< less than

> greater than

<= less than or equal to
>= greater than or equal to
= equal

<>or!l= not equal

Note: The != operator is converted to <> in the parser stage. It is not possible to implement =
and <> operators that do different things.

Comparison operators are available for all relevant data types. All comparison operators are binary
operators that return values of type boolean; expressions like 1 < 2 < 3 are not valid (because
there is no < operator to compare a Boolean value with 3).

In addition to the comparison operators, the special BETWEEN construct is available:
a BETWEEN x AND y

is equivalent to

a >= x AND a <=y

Notice that BETWEEN treats the endpoint values as included in the range. NOT BETWEEN does the
opposite comparison:

a NOT BETWEEN x AND y
is equivalent to
a< x OR a >y

BETWEEN SYMMETRIC is the same as BETWEEN except there is no requirement that the argument to
the left of AND be less than or equal to the argument on the right. If it is not, those two arguments are
automatically swapped, so that a nonempty range is always implied.

To check whether a value is or is not null, use the constructs:

expression IS NULL
expression 1S NOT NULL

or the equivalent, but nonstandard, constructs:

expression ISNULL
expression NOTNULL

Do not write expression = NULL because NULL is not “equal to” NULL. (The null value represents an
unknown value, and it is not known whether two unknown values are equal.) This behavior conforms
to the SQL standard.

154

Chapter 9. Functions and Operators

Tip: Some applications might expect that expression = NULL returns true if expression evalu-
ates to the null value. It is highly recommended that these applications be modified to comply
with the SQL standard. However, if that cannot be done the transform_null_equals configuration
variable is available. If it is enabled, PostgreSQL will convert x = NULL clauses to x IS NULL.

Note: If the expression is row-valued, then 1s NULL is true when the row expression itself is null
or when all the row’s fields are null, while 1s noT NULL is true when the row expression itself is
non-null and all the row’s fields are non-null. Because of this behavior, 1s nULL and Is NOT NULL
do not always return inverse results for row-valued expressions, i.e., a row-valued expression that
contains both NULL and non-null values will return false for both tests. This definition conforms
to the SQL standard, and is a change from the inconsistent behavior exhibited by PostgreSQL
versions prior to 8.2.

Ordinary comparison operators yield null (signifying “unknown”), not true or false, when either input
is null. For example, 7 = NULL yields null. When this behavior is not suitable, use the IS [NOT]
DISTINCT FROM constructs:

expression IS DISTINCT FROM expression
expression IS NOT DISTINCT FROM expression

For non-null inputs, IS DISTINCT FROM is the same as the <> operator. However, if both inputs are
null it returns false, and if only one input is null it returns true. Similarly, IS NOT DISTINCT FROM
is identical to = for non-null inputs, but it returns true when both inputs are null, and false when only
one input is null. Thus, these constructs effectively act as though null were a normal data value, rather
than “unknown”.

Boolean values can also be tested using the constructs

expression IS TRUE
expression 1S NOT TRUE
expression 1S FALSE
expression IS NOT FALSE
expression IS UNKNOWN
expression IS NOT UNKNOWN

These will always return true or false, never a null value, even when the operand is null. A null
input is treated as the logical value “unknown”. Notice that IS UNKNOWN and IS NOT UNKNOWN are
effectively the same as Is NULL and IS NOT NULL, respectively, except that the input expression
must be of Boolean type.

9.3. Mathematical Functions and Operators

Mathematical operators are provided for many PostgreSQL types. For types without standard mathe-
matical conventions (e.g., date/time types) we describe the actual behavior in subsequent sections.

Table 9-2 shows the available mathematical operators.

Table 9-2. Mathematical Operators

Operator Description Example Result

155

Chapter 9. Functions and Operators

Operator Description Example Result
+ addition 2 + 3 5
- subtraction 2 -3 -1
* multiplication 2 % 3 6
/ division (integer 4/ 2 2
division truncates the
result)
S modulo (remainder) 5% 4 1
0 exponentiation 2.0 ~ 3.0 8
|/ square root |/ 25.0 5
|1/ cube root |/ 27.0 3
! factorial 5 ! 120
! factorial (prefix 15 120
operator)
@ absolute value @ -5.0 5
& bitwise AND 91 & 15 11
| bitwise OR 32 | 3 35
bitwise XOR 17 # 5 20
~ bitwise NOT ~1 -2
<< bitwise shift left 1 << 4 16
>> bitwise shift right 8 >> 2 2

The bitwise operators work only on integral data types, whereas the others are available for all numeric
data types. The bitwise operators are also available for the bit string types bit and bit varying, as

shown in Table 9-10.

Table 9-3 shows the available mathematical functions. In the table, dp indicates double precision.
Many of these functions are provided in multiple forms with different argument types. Except where
noted, any given form of a function returns the same data type as its argument. The functions work-
ing with double precision data are mostly implemented on top of the host system’s C library;
accuracy and behavior in boundary cases can therefore vary depending on the host system.

Table 9-3. Mathematical Functions

Function Return Type Description Example Result
abs (x) (same as input) absolute value abs (-17.4) 17.4
cbrt (dp) dp cube root cbrt (27.0) 3
ceil(dp or (same as input) smallest integer ceil (-42.8) -42

numeric) not less than

argument
ceiling(dp or |(same as input) smallest integer ceiling (-95.3) |-95

numeric)

not less than
argument (alias
for ceil)

degrees (dp)

dp

radians to degrees

degrees (0.5)

28.64788975654

| 2

156

Chapter 9. Functions and Operators

Function Return Type Description Example Result
div (y numeric, |numeric integer quotient of | div (9, 4) 2
X numeric) y/x
exp (dp or (same as input) exponential exp (1.0) 2.71828182845905
numeric)
floor (dp or (same as input) largest integer not | floor (-42.8) -43
numeric) greater than
argument
1n(dp or (same as input) natural logarithm | 1n(2.0) 0.693147180559945
numeric)
log(dp or (same as input) base 10 logarithm | 1og (100.0) 2
numeric)
log (b numeric, x |numeric logarithm to base | log (2.0, 6.0000000000
numeric) b 64.0)
mod (y, x) (same as argument | remainder of y/x | mod (9, 4) 1
types)
pi() dp “m” constant pi() 3.14159265358979
power (a dp, b |dp a raised to the power (9.0, 729
dp) power of b 3.0)
power (a numeric, |numeric a raised to the power (9.0, 729
b numeric) power of b 3.0)
radians (dp) dp degrees to radians | radians (45.0) [0.785398163397448
random () dp random value in random ()
the range 0.0 <=
x < 1.0
round (dp or (same as input) round to nearest round (42.4) 42
numeric) integer
round (v numeric, |numeric round to s round (42.4382, | 42.44
s int) decimal places 2)
setseed (dp) void set seed for setseed (0.548238)
subsequent
random () calls
(value between
-1.0 and 1.0,
inclusive)
sign(dp or (same as input) sign of the sign(-8.4) -1
numeric) argument (-1, 0,
+1)
sqrt (dp or (same as input) square root sqrt (2.0) 1.4142135623731

numeric)

trunc (dp or (same as input) truncate toward trunc (42.8) 42
numeric) Zero
trunc (v numeric, |numeric truncate to s trunc(42.4382,(42.43

s int)

decimal places

2)

157

Chapter 9. Functions and Operators

Function Return Type Description Example Result
int return the bucket |width_bucket (5} 35,
width_bucket (op to which operand | 0.024, 10.06,
numeric, bl would be assigned | 5)
numeric, b2 in an equidepth
numeric, count histogram with
int) count buckets, in
the range b1 to b2
width_bucket (op |int return the bucket |width_bucket (5}35,

to which operand | 0.024,
would be assigned | 5)

in an equidepth
histogram with

dp, bl dp, b2 10.060,

dp, count int)

count buckets, in
the range b1l to b2

Finally, Table 9-4 shows the available trigonometric functions. All trigonometric functions take ar-
guments and return values of type double precision. Trigonometric functions arguments are ex-
pressed in radians. Inverse functions return values are expressed in radians. See unit transformation
functions radians () and degrees () above.

Table 9-4. Trigonometric Functions

Function Description
acos (x) inverse cosine
asin (x) inverse sine
atan (x) inverse tangent

atan2 (y, x) inverse tangent of y/x

cos (x) cosine
cot (x) cotangent
sin(x) sine

tan (x) tangent

9.4. String Functions and Operators

This section describes functions and operators for examining and manipulating string values. Strings
in this context include values of the types character, character varying, and text. Unless
otherwise noted, all of the functions listed below work on all of these types, but be wary of poten-
tial effects of automatic space-padding when using the character type. Some functions also exist
natively for the bit-string types.

SQL defines some string functions that use key words, rather than commas, to separate arguments.
Details are in Table 9-5. PostgreSQL also provides versions of these functions that use the regular
function invocation syntax (see Table 9-6).

158

Chapter 9. Functions and Operators

Note: Before PostgreSQL 8.3, these functions would silently accept values of several non-string
data types as well, due to the presence of implicit coercions from those data types to text. Those
coercions have been removed because they frequently caused surprising behaviors. However,
the string concatenation operator (| |) still accepts non-string input, so long as at least one input
is of a string type, as shown in Table 9-5. For other cases, insert an explicit coercion to text if
you need to duplicate the previous behavior.

Table 9-5. SQL String Functions and Operators

Function Return Type Description Example Result
string || text String "Post’ || PostgreSQL
string concatenation "greSQL’
string || text String "Value: 7 || Value: 42
non-string Or concatenation 42
non-string || with one
string non-string input
int Number of bits in |bit_length (' jo$82)
bit_length (string) string
int Number of char_length (’ jode’)
char_length (string) characters in
or string
character_length|(string)
lower (string) text Convert string to | lower (’ TOM') tom
lower case
int Number of bytes |octet_length(’ fjése’)
octet_length (string) in string
overlay (string |text Replace substring | overlay (' TxxxxaEhomas
placing string placing "hom’
from int [for from 2 for 4)
int])
int Location of position(’om’ |3
position (substrirg specified substring | in ’ Thomas’)
in string)
text Extract substring | substring (' Thomhst
substring (string from 2 for 3)
[from int] [for
int])
substring (string | text Extract substring | substring (' Thommas
from pattern) matching POSIX from ’...$")
regular
expression. See
Section 9.7 for
more information
on pattern
matching.

159

Chapter 9. Functions and Operators

upper case

Function Return Type Description Example Result
substring (string | text Extract substring | substring (' Thomema
from pattern for matching SQL from
escape) regular "S#"o_a#"_’
expression. See for "#7)
Section 9.7 for
more information
on pattern
matching.
trim([leading |text Remove the trim(both ’x’ |Tom
| trailing | longest string from
both] containing only " xTomxx"')
[characters] the characters
from string) (a space by
default) from the
start/end/both
ends of the
string
upper (string) text Convert string to | upper (' tom’) TOM

Additional string manipulation functions are available and are listed in Table 9-6. Some of them are
used internally to implement the SQL-standard string functions listed in Table 9-5.

Table 9-6. Other String Functions

Function

Return Type

Description

Example

Result

ascii (string)

int

ASCII code of
the first character
of the argument.
For UTFS returns
the Unicode code
point of the
character. For
other multibyte
encodings, the
argument must be
an ASCII
character.

ascii(’'x")

120

btrim(string
text [,
characters

text])

text

Remove the
longest string
consisting only of
characters in
characters (a
space by default)
from the start and
end of string

btrim(’xyxtrimy

"xy’)

yExin

160

Chapter 9. Functions and Operators

Function

Return Type

Description

Example

Result

chr (int)

text

Character with
the given code.
For UTFS the
argument is
treated as a
Unicode code
point. For other
multibyte
encodings the
argument must
designate an
ASCII character.
The NULL (0)
character is not
allowed because
text data types
cannot store such
bytes.

chr (65)

A

concat (str
"any" [, str
"any" [, ...]

1)

text

Concatenate all
arguments. NULL
arguments are
ignored.

concat (" abcde’
2, NULL, 22)

abcde222

concat_ws (sep
text, str "any"
[, str "any" [,

1

text

Concatenate all
but first arguments
with separators.
The first
parameter is used
as a separator.
NULL arguments
are ignored.

concat_ws(’,’,
"abcde’, 2,
NULL, 22)

abcde, 2,22

convert (string
bytea,
src_encoding
name,
dest_encoding

name)

bytea

Convert string to
dest_encoding.
The original
encoding is
specified by
src_encoding
The string must
be valid in this
encoding.
Conversions can
be defined by
CREATE
CONVERSION.
Also there are
some predefined
conversions. See
Table 9-7 for
available
conversions.

convert (' text_
"UTF8’,
"LATIN1")

ihext f8h, utf8
represented in
Latin-1 encoding
(ISO 8859-1)

161

Chapter 9. Functions and Operators

Function Return Type Description Example Result
text Convert string to | convert_from (’ tegktinnutfgs,
convert_from(string the database "UTF8’) represented in the
bytea, encoding. The current database
src_encoding original encoding encoding
name) is specified by
src_encoding
The string must
be valid in this
encoding.
bytea COHVGHSangtO convert_to (’ somsome text
convert_to (strin dest_encoding. |text’, represented in the
text, "UTF8') UTF8 encoding
dest_encoding
name)
decode (string bytea Decode binary decode (' MTIzAAEX%%3132330001
text, format data from textual |’base64’)
text) representation in
string. Options
for format are
same as in
encode.
encode (data text Encode binary encode (E’ 123\\ QMUY XAAEL,
bytea, format data into a textual |’base64’)
text) representation.

Supported formats
are: base64, hex,
escape. escape
merely outputs
null bytes as \000
and doubles
backslashes.

162

Chapter 9. Functions and Operators

Function

Return Type

Description

Example

Result

format (formatstry
text [, str
"any" [, ...]

1)

text

Format a string.
This function is
similar to the C
function
sprintf; but
only the following
conversion
specifications are
recognized: %s
interpolates the
corresponding
argument as a
string; %I escapes
its argument as an
SQL identifier; 3L
escapes its
argument as an
SQL literal; %
outputs a literal %.
A conversion can
reference an
explicit parameter
position by
preceding the
conversion
specifier with n$,
where n is the
argument
position. See also
Example 39-1.

format ("Hello
%$s, %1$s’,
"World’")

Hello World,
World

initcap (string)

text

Convert the first
letter of each word
to upper case and
the rest to lower
case. Words are
sequences of
alphanumeric
characters
separated by
non-alphanumeric
characters.

initcap(’hi
THOMAS')

Hi Thomas

left (s