PostGIS 1.5.5 Manual

PostGIS 1.5.5 Manual

SVN Revision (10084)

PostGIS 1.5.5 Manual

ii

Contents
1 Introduction 2
1.1 Project Steering Committee e e 2
1.2 Contributors Past and Present L e 2
1.3 More Information e e 3
2 Installation 4
2.1 Short Version e e e 4
2.2 Requirements it i e e e e 4
2.3 Getting the SOUICE o e e e e e e e 5
24 Installation L. L 5
24.1 Configuration e e e 6
242 Building 7
243 Testig e e 7
244 Installationo e 9
2.5 Create a spatially-enabled database 9
2.6 Create a spatially-enabled database fromatemplate 10
2.7 Upgrading L e 10
27.1 Softupgrade e 10
272 Hardupgrade L e e e e e e e e e e e 10
2.8 Common Problems e e 11
2.9 JDBC . . . e 11
2.10 Loader/Dumper it e e e e e e 12
3 Frequently Asked Questions 13
4 Using PostGIS: Data Management and Queries 17
4.1 GISODbJects o e 17
4.1.1 OpenGIS WKB and WKT 17
4.1.2 PostGIS EWKB, EWKT and Canonical Forms 18
413 SQL-MMPart3 e e e 19
4.2 PostGIS Geography Type o 19

PostGIS 1.5.5 Manual

i

4.2.1 Geography Basics L e 20
4.2.2 When to use Geography Data type over Geometry datatype 21

423 Geography Advanced FAQ L e 22

4.3 Using OpenGIS Standards 22
4.3.1 The SPATIAL_REF_SYS Table and Spatial Reference Systems 23
4.3.2 The GEOMETRY_COLUMNS Table ettt 24

433 CreatingaSpatial Table L 24
4.3.4 Manually Registering Geometry Columns in geometry_columns 25

4.3.5 Ensuring OpenGIS compliancy of geometries e 26
4.3.6 Dimensionally Extended 9 Intersection Model (DE-9OIM) 30
43.6.1 Theory e 32

44 Loading GISData e 35
4.4.1 Using SQL oL e e 35
442 Usingthe Loader e 35

4.5 Retrieving GISData. e 36
4.5.1 Using SQL L e e e e e 36
452 Usingthe Dumper e e e e e 37

4.6 Building Indexes L e 38
4.6.1 GISTIndexes i i e 38

4.6.2 UsingIndexes. o . e e e e 39

4.7 Complex QUeries e e 39
4.7.1 Taking Advantage of Indexes 39

4772 Examples of Spatial SQL L 40
Using PostGIS: Building Applications 43
5.1 Using MapServer o o o o e e e e e e e e e e e 43
5.0, BasicUsage o o o e e e e e e e 43

5.1.2 Frequently Asked Questions L 44

5.1.3 Advanced Usage e 45

5.1.4 Exampleso e e e e e e e e 46

5.2 JavaClients JDBC) e e 47
53 CClients (Iibpq) o o o 48
5.3.1 0 TextCursors oot e e e e e e 48

532 Binary CUSOTS v o vt it e e e e e e e e e e e e e 49

PostGIS 1.5.5 Manual

iv

6 Performance tips 50
6.1 Small tables of large geometries L. L 50
6.1.1 Problemdescription e e e e e e e e 50

6.1.2 Workarounds e 50

6.2 CLUSTERing on geometry indiCes o v v it ittt it e e e e e e e 51
6.3 Avoiding dimension CONVersion e e e e e e e e e 51
6.4 Tuning your configuration e e e e 52
6.4.1 Startup e e e e e e e 52

6.42 RunNtime L e 52

7 PostGIS Reference 53
7.1 PostgreSQL PostGIS Types o o e e e e 53
T11 box2d . . L e 53

T.1.20 box3d . .o 53

7.1.3 box3d_extent e e e e e e 54

T4 EOMELTY v it e e e e e e e e e e e e e 54

7.1.5 geometry_dump e e e 55

7.1.6 geographyo e 55

7.2 Management Functions L e e e e e e e e 56
7.2.1 AddGeometryColumn 56

7.2.2 DropGeometryColumn e e e e e e e e 57

7.2.3 DropGeometryTable 58

7.2.4 PostGIS_Full Version 58

7.2.5 PostGIS_GEOS_Version e e 59

7.2.6 PostGIS_LibXML_Version 0 o o e 59

7.2.77 PostGIS_Lib_Build_Date 60

7.2.8 PostGIS_Lib_Version e 60

7.2.9 PostGIS_PROJ_Version e 61
7.2.10 PostGIS_Scripts_Build_Date 62
7.2.11 PostGIS_Scripts_Installed e e 62
7.2.12 PostGIS_Scripts_Released 63
7.2.13 PostGIS_Uses_Stats o o oo i e e e e 63
7.2.14 PostGIS_Version o o o e e 64
7.2.15 Populate_Geometry_Columns L e e 65
7.2.16 Probe_Geometry_Columns e e e e e e e 65
7.2.17 UpdateGeometrySRID L 66

7.3 Geometry CONSIIUCIOIS o it ittt e ettt e e e e e e 67
7.3.1 ST_BdPolyFromText e e e e e e e e e 67

7.3.2 ST_BdMPolyFromText e e 67

PostGIS 1.5.5 Manual

v
7.3.3 ST_GeogFromText e 68
7.3.4 ST_GeographyFromText e 69
7.3.5 ST_GeogFromWKB e 69
7.3.6 ST_GeomCollFromText e 70
7.3.77 ST_GeomFromEWKB e e 70
7.3.8 ST_GeomFromEWKT e 71
7.3.9 ST_GeometryFromText e 73
7.3.10 ST_GeomFromGML e 73
7.3.11 ST_GeomFromKML 0 e 74
7.3.12 ST_GMLToSQL e e 75
7.3.13 ST_GeomFromText 76
7.3.14 ST_GeomFromWKB e 77
7.3.15 ST LineFromMultiPoint 78
7.3.16 ST_LineFromText e 79
7.3.17 ST_LineFromWKB 80
7.3.18 ST_LinestringFromWKB e 80
7.3.19 ST _MakeBox2D e 81
7.3.20 ST_MakeBox3D e e 82
7.3.21 ST _Makeline 83
7.3.22 ST_MakeEnvelope e e 84
7.3.23 ST_MakePolygon e 85
7.3.24 ST _MakePoint e 87
7.3.25 ST MakePointM 88
7.3.26 ST_MLineFromText e 89
7.3.27 ST _MPointFromText e 90
7.3.28 ST_MPolyFromText e e e e e e 90
7.3.29 ST_Point o o e e 91
7.3.30 ST_PointFromText e e 92
7.3.31 ST_PointFromWKB o 93
7.3.32 ST_Polygon e e e e e 94
7.3.33 ST_PolygonFromText 95
7.334 ST_WKBTOSQL e 96
7.3.35 ST_WKTToSQL 96

T4 Geometry ACCESSOTS .« . v v v v v e 97
741 GeometryType o o e e e 97
742 ST _Boundary L e e e e 98
743 ST CoordDIm 99
744 ST DImension i e e e e e e 99
745 ST_EndPoint e 100

PostGIS 1.5.5 Manual

vi

7.4.6 ST_Envelope e 101
7477 ST_ExteriorRing e e e 102
7.4.8 ST_GeometryN L . e 103
749 ST_GeometryType o o e e e e e e 104
7.4.10 ST_InteriorRingN o e 105
7.4.11 ST_IsClosed o o e e 106
7.4.12 ST_ISEmpty o o e 107
7413 ST_ISRING o o e e e 108
7.4.14 ST_IsSimple o o o e 109
7415 ST_IsValid o e 110
7.4.16 ST_IsValidReason 111
TATT ST M . oo 112
7.4.18 ST_NDIMS oo e 112
7419 ST_NPOINS o oo e e e e 113
7.420 ST_NRINGS o o o e 114
7.4.21 ST_NumGeometries v v vt ettt e e e e e e e e 115
7.4.22 ST_NumlnteriorRings 115
7.4.23 ST_NumlnteriorRing e 116
7.424 ST NumPoINts 116
7425 ST_PointN e e e 117
7.426 ST_SRID 118
7.4.27 ST_StartPoint e e e 119
7428 ST_Summary oo e e e e e e e 120
TA29 ST X o o 121
7430 STY . o o 122
TA31 ST _Z . . o o 122
7432 ST Zmflag L e 123
7.5 Geometry EAitors L e e e e e e 124
7.5.1 ST_AddPoint e 124
7.52 ST_Affine o o e e 125
7.53 ST_Force 2D e 126
7.5.4 ST Force 3D e 127
7.5.5 ST_Force 3DZ e 128
7.5.6 ST _Force 3DM e 128
7.5.7 ST_Force_4D L e 129
7.5.8 ST _Force_Collection i i e e 130
7.5.9 ST_ForceRHR e 131
7.5.10 ST_LineMerge o o o i e e e e e e 131
7.5.11 ST CollectionEXtract e e e e 132

PostGIS 1.5.5 Manual

vii

7502 ST_Multh . . . o oo 133
7.5.13 ST_RemovePoint 134
T.5.14 ST REVEISE o o e e 134
75015 ST_Rotate e 135
7.5.16 ST_RotateX e e 135
7.5.17 ST_RotateY 136
7508 ST_RotateZ o o e 137
7.5.19 ST_Scale 138
7.5.20 ST_Segmentize vttt e e e e e e 139
7.521 ST_SetPoint 140
7.522 ST_SetSRID o o 141
7.5.23 ST_SnapToGrid o e e e e 142
7.5.24 ST Transform o o e e 143
7525 ST Translate 145
7.526 ST TransScale 146
7.6 Geometry OUIPULS o o v v et e e e e e e e e e e e e e e e 147
7.6.1 ST_AsBinary 147
7.62 ST_ASEWKB o 149
7.63 ST_ASEWKT o 150
7.64 ST_AsGeoJSON 151
7.6.5 ST_AsGML 152
7.6.6 ST_ASHEXEWKB 154
7.6.7 ST_AsKML 154
7.6.8 ST_AsSVG o 156
7.6.9 ST _GeoHash e 156
7.6.10 ST_AsText 157
T OPErators . . . v v v v i e e e e e e e e e e e e e e e e 158
TAL && . . o 158
TT2 &< o 159
T3 &<l o 160
TTA &> 161
TS« e 162
TT.6 o 163
TIAT = 163
T8 » 165
TIO @ o 165
TAI0 1&> . o o o 166
TAIL I» 167
T2 ~ 168

PostGIS 1.5.5 Manual

viii

TTA3 ~= 169
7.8 Spatial Relationships and Measurementsot e e e e e e e e e e 169
7.8.1 ST_Area 169
7.82 ST_Azimuth e 171
7.83 ST_Centroid e 172
7.8.4 ST_ClosestPoint e e 173
T.8.5 ST ContaiNs o v v e e e e e 174
7.8.6 ST_ContainsProperly e e 178
T.BT ST_COVEIS o o o e 179
7.8.8 ST_CoveredBy e e 181
T.8.9 ST CroSses o v v v e et e e e e e e e e e 182
7.8.10 ST_LineCrossingDirection o 0t e e e e e 185
7.8.11 ST_Disjoint o o o e e e e e 187
7.8.12 ST_Distance o e e e e e e 189
7.8.13 ST HausdorffDistance 0 190
7.8.14 ST _MaxDistance o o o e e e e e 191
7.8.15 ST_Distance_Sphere 192
7.8.16 ST_Distance_Spheroid e 193
7.8.17 ST_DFullyWithin. o 193
7.8.18 ST_DWithin e 194
7.8.19 ST_Equals e 195
7.820 ST_HasArc e 196
T.8.21 ST_INErsects o . o e e e e e e 197
7.822 ST_Length L e e 198
7.823 ST_Length2D e 200
7.824 ST Length3D e e e 200
7.8.25 ST_Length_Spheroid 201
7.8.26 ST_Length2D_Spheroid e e 202
7.8.27 ST_Length3D_Spheroid e 203
7.8.28 ST_Longestline o i e e e e e e e 204
7.829 ST _OrderingEquals. 206
7.830 ST_Overlaps o o o e e e e e 207
7.831 ST Perimeter o e 209
7.8.32 ST_Perimeter2D e e e 210
7.8.33 ST Perimeter3D 210
7.8.34 ST_PointOnSurface e 211
7.835 ST_Relate e e 212
7.8.36 ST_ShortestLine e 214
7.8.37 ST Touches 215

PostGIS 1.5.5 Manual

ix

7.838 ST_Within e 217

7.9 Geometry Processing Functions e e 219
7.9.1 ST_Buffer e 219
7.9.2 ST BuildArea e 222
7.9.3 ST_Collect o e 224
794 ST ConvexHull. e 226
7.9.5 ST_CurveToLine e 227
7.9.6 ST_Difference e e 230
797 ST Dump o o e e 231
7.9.8 ST _DumpPoints e e e e 232
7.9.9 ST _DumpRings e 234
7.9.10 ST_Intersection i ittt e e e e e e e 235
7.9.11 ST LIneToCurve o o e e e 237
7.9.12 ST _MemUnion0 e e e 238
7.9.13 ST_MinimumBoundingCircle 239
7.9.14 ST_Polygonize e e e e e 240
7.9.15 ST_Shift_Longitude 241
7.9.16 ST_SImplify o e e 242
7.9.17 ST_SimplifyPreserveTopology 243
7.9.18 ST_SymbDifference L e e 244
7.9.19 ST_Union o o0 o e e 246
7.10 Linear Referencing L e e e e e e 248
7.10.1 ST_Line_Interpolate_Point. 248
7.10.2 ST_Line_Locate_Point e 250
7.10.3 ST_Line_Substring L 251
7.10.4 ST_Locate_Along_Measure o v v v vt ittt e e e e e e e 252
7.10.5 ST Locate_Between Measures v v v v v v i i e 253
7.10.6 ST_LocateBetweenElevations e 254
7.10.7 ST _AddMeasure o o e e 255
7.11 Long Transactions SUPPOTt v it it e e e e e e e e e e e e e e e e e e 256
7011 AddAuth 256
7.11.2 CheckAuth o e 257
7.11.3 DisableLongTransactions it e e e e 258
7.11.4 EnableLongTransactions o 0 v i it it e e e e e e e 258
7015 LockRow o e 259
7.11.6 UnlockROWS L L e e 259
7.12 Miscellaneous Functions L e 260
7121 ST_Accum oo e e e 260

7.12.2 Box2D ..o 261

PostGIS 1.5.5 Manual

X
7.12.3 Box3D ..o 262
7.12.4 ST Estimated_EXtent e e e 262
7125 ST_Expand o o oL e 263
7.12.6 ST_EXtent o e e 265
71277 ST_Extent3D o L o e 266
7.12.8 Find_SRID e e 267
7.12.9 ST_Mem_SizZe o o 268
7.12.10 ST _Point_Inside_Circle 269
TA2ALST_XMaAX . . o o oo o e e e e e e e e 269
TA2A2ST_XMIN oo e e e 270
TA2A3ST_YMaAX o 271
TA2AAST_YMIN . . . o o e 272
TA2ASST_ZMaX o oo e e e e 273
TA2A6ST_ZMIn o o 274

7.13 Exceptional Functions e e 275
7.13.1 PostGIS_AddBBOX o e 276
7.13.2 PostGIS_DropBBox e e 276
7.13.3 PostGIS _HasBBoOX e 277

PostGIS Special Functions Index 279

8.1 PostGIS Aggregate Functions L 279

8.2 PostGIS SQL-MM Compliant Functions 0 e 279

8.3 PostGIS Geography Support Functions e 283

8.4 PostGIS Geometry Dump Functions 284

8.5 PostGIS Box Functions e 284

8.6 PostGIS Functions that support 3D L e e e e 285

8.7 PostGIS Curved Geometry Support Functions e 288

8.8 PostGIS Function Support MatrixX e 290

8.9 New PostGIS Functions e 296
8.9.1 PostGIS Functions new, behavior changed, or enhancedin 1.5 296
8.9.2 PostGIS Functions new, behavior changed, or enhancedin 1.4 298
8.9.3 PostGIS Functionsnew in 1.3 L 298

Reporting Problems 299

9.1 Reporting Software Bugs 299

9.2 Reporting Documentation Issues e e e e e e 299

PostGIS 1.5.5 Manual

Xi

A Appendix 300
Al Release 1.5.5 o 300
ALl BugFixes e 300

A2 Release 1.5.4 300
A2.1 BugFixes e 300

A3 Release 1.5.3 301
A3.1 BugFixes 301

A4 Release 1.5.2 o 302
A4l BugFixes 302

A5 Release 1.5.1o 302
AS.1 BugFixes 302

A6 Release 1.5.0 303
A.6.1 APIStability 303
A.6.2 Compatibility o e e e e e 303
A.63 NewPFeatures e 303
A.6.4 Enhancements 304
A6S5 Bugfixes 304

A7 Release 1.4.0 304
A1 APIStability o 304
A7.2 Compatibilityo e e e e e 304
A7.3 NewFeatures L e 305
A74 Enhancements 305
ATS Bugfixes 305

A8 Release 1.3.6 306
A9 Release 1.3.5 306
AdO Release 1.3.4 306
A1l Release 1.3.3 L L e e 306
A2 Release 1.3.2 306
A.13 Release 1.3.1 L o e e 306
Ad4 Release 1.3.0 306
A.14.1 Added Functionality 307
A.14.2 Performance Enhancements o 307
A.14.3 Other Changes o i i e 307
A5 Release 1.2.1o 307
AS5.1 Changes o e 307
All6 Release 1.2.0 o 307
A16.1 Changes o o o e 307

AdT7 Release 1.1.6 308

A17.1 Upgrading oL e 308

PostGIS 1.5.5 Manual

Xii
Ad7.2 BugfiXes o 308
A 173 Otherchanges. o e e e e e e 308
A.18 Release 1.1.5 308
AL8.1 Upgrading o e e e e e e 308
Ad8.2 BUugfiXes o e 308
A.18.3 New Features e 309
A19 Release 1.1.4 309
A19.1 Upgrading o o e e e e 309
A19.2 BUugfiXes o e 309
A.19.3 Javachanges L e e e 309
A20Release 1.1.3 309
A20.1 Upgrading o o e e e e e e 309
A.20.2 Bug fiIXes / COITECINESS v v v v i v e e e e e e e e e e e e 310
A.20.3 New functionalities L e 310
A.20.4 JDBCchanges e e e e 310
A.20.5 Otherchanges. o o o e e e e 310
A21 Release 1.1.2 L o e e e 310
A21.1 Upgrading o e e e e e 310
A21.2 BugfiXes o e 311
A.21.3 New functionalities L e 311
A21.4 Otherchanges e 311
A22 Release 1.1.1 o e 311
A22.1 Upgrading e 311
A22.2 BUugfiXes o i e e e e e e e 311
A.22.3 New functionalities L e 312
A23 Release 1.1.0 o e 312
A23.1 CreditS 312
A23.2 Upgrading o e e e e e e e 312
A233 New functions e 312
A23.4 Bugfixes i e e e e e e 313
A.23.5 Function semantic changes L e 313
A.23.6 Performance improvements i e e e e e e e e e e e e 313
A23.7 JDBC2WOrKS o o e 313
A.23.8 Othernew things e e e e e 313
A.239 Otherchanges. 314
A24 Release 1.0.6 o L e 314
A24.1 Upgrading L e e 314
A242 Bugfixes i e e e e e e 314

A24.3 TMProvements v vt it e e e e e e e e e e e e e e e e 314

PostGIS 1.5.5 Manual

Xiii
A25Release 1.0.5 314
A25.1 Upgrading o e e e e 315
A25.2 Librarychanges e 315
A.25.3 Loaderchanges L e e e 315
A254 Otherchanges o e 315
A26 Release 1.0.4 315
A26.1 Upgrading L e e 315
A26.2 Bugfixes o e e 316
A26.3 TMProvements i e e e e e e 316
A27 Release 1.0.3 o 316
A27.1 Upgrading oo e e 316
A27.2 Bugfixes o i i e e e e e e e 316
A273 IMProvements o v vttt e e e e e e e e e e e e e e e e e e e 317
A28 Release 1.0.2 317
A28.1 Upgrading L e e 317
A28.2 Bugfixes i e e e e 317
A283 ImMProvementso e e e e e e e e e e e e e e e e 317
A29 Release 1.0.1 317
A29.1 Upgrading e 317
A.29.2 Library changes e e e e 317
A.29.3 Other changes/additions 318
A30 Release 1.0.0 318
A30.1 Upgrading o L e 318
A.30.2 Library changes e e e e e e 318
A.30.3 Other changes/additions L 318
A3l Release 1.O.ORCO 318
A3L.1 Upgrading oL e e 319
A31.2 Library changes e e e e e e e 319
A31.3 Scriptschanges e 319
A31.4 Otherchanges. o . o e e e e e e e e 319
A32 Release 1.0.0RCS 319
A32.1 Upgrading o e e e e e e 319
A.32.2 Librarychanges e 319
A32.3 Otherchanges. o . e e e e e e e 319
A33 Release 1.0.0RC4 319
A33.1 Upgrading o e e e e e 319
A.33.2 Librarychanges L e 320
A.33.3 Scriptschanges e e e e e e e 320

A.33.4 Otherchanges. e e 320

PostGIS 1.5.5 Manual

Xiv

A34 Release 1.0.0RC3 320
A34.1 Upgrading o e e e e e e 320
A342 Librarychanges L e e e 320
A.34.3 Scriptschanges e e 321
A344 JDBCchanges i i i e 321
A34.5 Otherchanges. o o o e e e e 321
A35 Release 1.0.0RC2 L 321
A35.1 Upgrading o e e 321
A.35.2 Library changes o e e e e e e 321
A.35.3 Scriptschanges L e e e e 322
A.35.4 Otherchanges. e e 322
A36 Release 1.0.0RCL 322
A36.1 Upgrading e e e e e 322

A36.2 Changes e 322

Abstract

PostGIS is an extension to the PostgreSQL object-relational database system which allows GIS (Geographic Information Sys-
tems) objects to be stored in the database. PostGIS includes support for GiST-based R-Tree spatial indexes, and functions for
analysis and processing of GIS objects.

This is the manual for version 1.5.5

‘@ﬁ This work is licensed under a Creative Commons Attribution-Share Alike 3.0 License. Feel free to use

this material any way you like, but we ask that you attribute credit to the PostGIS Project and wherever possible, a link back to
http://www.postgis.org.

http://creativecommons.org/licenses/by-sa/3.0/
http://www.postgis.org

PostGIS 1.5.5 Manual
1/322

SVN Revision (10084)

PostGIS 1.5.5 Manual
2/322

Chapter 1

Introduction

PostGIS is developed by Refractions Research Inc, as a spatial database technology research project. Refractions is a GIS
and database consulting company in Victoria, British Columbia, Canada, specializing in data integration and custom software
development. We plan on supporting and developing PostGIS to support a range of important GIS functionality, including full
OpenGIS support, advanced topological constructs (coverages, surfaces, networks), desktop user interface tools for viewing and
editing GIS data, and web-based access tools.

1.1 Project Steering Committee

The PostGIS Project Steering Committee (PSC) coordinates the general direction, release cycles, documentation, and outreach
efforts for the PostGIS project. In addition the PSC provides general user support, accepts and approves patches from the general
PostGIS community and votes on miscellaneous issues involving PostGIS such as developer commit access, new PSC members
or significant API changes.

Mark Cave-Ayland Coordinates bug fixing and maintenance effort, alignment of PostGIS with PostgreSQL releases, spatial
index selectivity and binding, windows production builds, integration of new GEOS functionality, and new function en-
hancements.

Paul Ramsey Co-founder of PostGIS project. General bug fixing, geography support, GEOS functionality integration and
alignment with GEOS releases.

Kevin Neufeld Documentation, Hudson automated build, advanced user support on PostGIS newsgroup, and postgis mainte-
nance function enhancements.

Regina Obe Documentation, general user support on PostGIS newsgroup, windows production and experimental builds, and
smoke testing new functionality or major code changes.

1.2 Contributors Past and Present

Sandro Santilli Bug fixes and maintenance and integration of new GEOS functionality. WKT Raster support.

Dave Blasby The original developer/Co-founder of PostGIS. Dave wrote the server side objects, index bindings, and many of
the server side analytical functions.

Jeff Lounsbury Original development of the Shape file loader/dumper. Current PostGIS Project Owner representative.
Mark Leslie Ongoing maintenance and development of core functions. Enhanced curve support.

Olivier Courtin Input output XML (KML,GML)/GeoJSON functions and bug fixes.

PostGIS 1.5.5 Manual
3/322

Pierre Racine WKT Raster overall architecture and programming support

Mateusz Loskot WKT Raster support

Chris Hodgson General development

Nicklas Avén Distance function enhancements and additions, Windows testing, and general user support
Jorge Arevalo WKT Raster development

Stephen Frost Tiger geocoder development

Other contributors In alphabetical order: Alex Bodnaru, Alex Mayrhofer, Barbara Phillipot, Ben Jubb, Bernhard Reiter, Bruce
Rindahl, Bruno Wolff III, Carl Anderson, Charlie Savage, Dane Springmeyer, David Skea, David Techer, Eduin Carrillo,
IIDA Tetsushi, George Silva, Geographic Data BC, Gerald Fenoy, Gino Lucrezi, Greg Stark, Guillaume Lelarge, Klaus
Foerster, Kris Jurka, Mark Sondheim, Markus Schaber, Maxime Guillaud, Maxime van Noppen, Michael Fuhr, Nikita
Shulga, Norman Vine, Ralph Mason, Steffen Macke, Vincent Picavet

Important Support Libraries The GEOS geometry operations library, and the algorithmic work of Martin Davis in making it
all work, ongoing maintenance and support of Mateusz Loskot, Paul Ramsey and others.

The Proj4 cartographic projection library, and the work of Gerald Evenden and Frank Warmerdam in creating and main-
taining it.

1.3 More Information

* The latest software, documentation and news items are available at the PostGIS web site, http://postgis.refractions.net.

* More information about the GEOS geometry operations library is available athttp://trac.osgeo.org/geos/.

* More information about the Proj4 reprojection library is available at http://trac.osgeo.org/proj/.

* More information about the PostgreSQL database server is available at the PostgreSQL main site http://www.postgresql.org.

* More information about GiST indexing is available at the PostgreSQL GiST development site, http://www.sai.msu.su/~megera/-
postgres/gist/.

* More information about MapServer internet map server is available at http://mapserver.gis.umn.edu.

* The "Simple Features for Specification for SQL" is available at the OpenGIS Consortium web site: http://www.opengeospatial.org/-

http://trac.osgeo.org/geos/
http://trac.osgeo.org/proj/
http://postgis.refractions.net
http://trac.osgeo.org/geos/
http://trac.osgeo.org/proj/
http://www.postgresql.org
http://www.sai.msu.su/~megera/postgres/gist/
http://www.sai.msu.su/~megera/postgres/gist/
http://mapserver.gis.umn.edu/
http://www.opengeospatial.org/standards/sfs
http://www.opengeospatial.org/
http://www.opengeospatial.org/

PostGIS 1.5.5 Manual
4/322

Chapter 2

Installation

This chapter details the steps required to install PostGIS.

2.1 Short Version

tar xvfz postgis-1.5.5.tar.gz

cd postgis-1.5.5

./configure

make

make install

#BEGIN OPTIONAL —-- this is already part of the tar
only really need this if installing from SVN
cd doc/

make comments—-install

#END OPTIONAL

createdb yourdatabase

createlang plpgsgl yourdatabase

psql -d yourdatabase —-f postgis.sqgl

psgl -d yourdatabase —-f postgis_comments.sqgl
psgl —-d yourdatabase —-f spatial_ref sys.sqgl

Note

Nﬁ'“’! NOTE: The postgis.sql and spatial_ref_sys.sql will be installed in the /share/contrib/postgis-1.5 of your PostGIS install.
If you didn’t install the OPTIONAL comments section, you will need to manually copy the postgis_comments.sql file
from the doc folder of your source install to your /share/contrib/postgis-1.5 folder.

i

The rest of this chapter goes into detail each of the above installation steps.

2.2 Requirements

PostGIS has the following requirements for building and usage:

Required

* PostgreSQL 8.3 or higher. A complete installation of PostgreSQL (including server headers) is required. PostgreSQL is
available from http://www.postgresql.org .

For a full PostgreSQL / PostGIS support matrix and PostGIS/GEOS support matrix refer to http://trac.osgeo.org/postgis/wiki/-
UsersWikiPostgreSQLPostGIS

http://www.postgresql.org
http://trac.osgeo.org/postgis/wiki/UsersWikiPostgreSQLPostGIS
http://trac.osgeo.org/postgis/wiki/UsersWikiPostgreSQLPostGIS

PostGIS 1.5.5 Manual
5/322

* GNU C compiler (gcc). Some other ANSI C compilers can be used to compile PostGIS, but we find far fewer problems when
compiling with gcc.

* GNU Make (gmake or make). For many systems, GNU make is the default version of make. Check the version by invoking
make—v. Other versions of make may not process the PostGIS Makefile properly.

* Proj4 reprojection library, version 4.6.0 or greater. The Proj4 library is used to provide coordinate reprojection support within
PostGIS. Proj4 is available for download from http://trac.osgeo.org/proj/ .

* GEOS geometry library, version 3.1.1 or greater, but GEOS 3.2 is recommended. Without GEOS 3.2, you will be missing some
major enhancements with handling of topological exceptions and improvements to ST_Buffer that allow beveling and mitre and
much faster buffering. The GEOS library is used to provide geometry tests (ST_Touches(), ST_Contains(), ST_Intersects())
and operations (ST_Buffer(), ST_Union(),ST_Intersection() ST_Difference()) within PostGIS. GEOS is available for download
from http://trac.osgeo.org/geos/ .

* LibXML2, version 2.5.x or higher. LibXML2 is currently used in some imports functions (ST_GeomFromGML and ST_GeomFromKI
LibXML2 is available for download from http://xmlsoft.org/downloads.html.

Optional

* GTK (requires GTK+2.0) to compile the shp2pgsql-gui shape file loader. http://www.gtk.org/ .
e CUnit (CUnit). This is needed for regression tests. http://cunit.sourceforge.net/

* Apache Ant (ant) is required for building any of the drivers under the java directory. Antis available from http://ant.apache.org

* DocBook (xs1ltproc) is required for building the documentation. Docbook is available from http://www.docbook.org/ .

DBLatex (dblatex)is required for building the documentation in PDF format. DBLatex is available from http://dblatex.sourceforge.

» ImageMagick (convert) is required to generate the images used in the documentation. ImageMagick is available from
http://www.imagemagick.org/ .

2.3 Getting the Source

Retrieve the PostGIS source archive from the downloads website http://www.postgis.org/download/postgis-1.5.5.tar.gz

wget http://www.postgis.org/download/postgis-1.5.5.tar.gz
tar -xvzf postgis-1.5.5.tar.gz

This will create a directory called postgis—1.5.5 in the current working directory.
Alternatively, checkout the source from the svn repository http://svn.osgeo.org/postgis/trunk/ .

svn checkout http://svn.osgeo.org/postgis/trunk/ postgis-1.5.5

Change into the newly created postgis—1.5.5 directory to continue the installation.

2.4 Installation

Note
Many OS systems now include pre-built packages for PostgreSQL/PostGIS. In many cases compilation is only neces-
sary if you want the most bleeding edge versions or you are a package maintainer.

http://trac.osgeo.org/proj/
http://trac.osgeo.org/geos/
http://xmlsoft.org/downloads.html
http://www.gtk.org/
http://cunit.sourceforge.net/
http://ant.apache.org
http://ant.apache.org
http://www.docbook.org/
http://dblatex.sourceforge.net/
http://dblatex.sourceforge.net/
http://www.imagemagick.org/
http://www.postgis.org/download/postgis-1.5.5.tar.gz
http://subversion.tigris.org/
http://svn.osgeo.org/postgis/trunk/

PostGIS 1.5.5 Manual
6/322

The PostGIS module is an extension to the PostgreSQL backend server. As such, PostGIS 1.5.5 requires full PostgreSQL server
headers access in order to compile. It can be built against PostgreSQL versions 8.3 or higher. Earlier versions of PostgreSQL are
not supported.

Refer to the PostgreSQL installation guides if you haven’t already installed PostgreSQL. http://www.postgresql.org .

Note
For GEOS functionality, when you install PostgresSQL you may need to explicitly link PostgreSQL against the standard

s C++ library:
Note

LDFLAGS=-1stdc++ ./configure [YOUR OPTIONS HERE]

This is a workaround for bogus C++ exceptions interaction with older development tools. If you experience weird
problems (backend unexpectedly closed or similar things) try this trick. This will require recompiling your PostgreSQL
from scratch, of course.

The following steps outline the configuration and compilation of the PostGIS source. They are written for Linux users and will
not work on Windows or Mac.

2.4.1 Configuration

As with most linux installations, the first step is to generate the Makefile that will be used to build the source code. This is done
by running the shell script

Jconfigure

With no additional parameters, this command will attempt to automatically locate the required components and libraries needed
to build the PostGIS source code on your system. Although this is the most common usage of ./configure, the script accepts
several parameters for those who have the required libraries and programs in non-standard locations.

The following list shows only the most commonly used parameters. For a complete list, use the --help or --help=short parame-
ters.

--prefix=PREFIX This is the location the PostGIS libraries and SQL scripts will be installed to. By default, this location is the
same as the detected PostgreSQL installation.

« 1 Caution
This paramater is currently broken, as the package will only install into the PostgreSQL installation directory. Visit
http://trac.osgeo.org/postgis/ticket/160 to track this bug.

--with-pgconfig=FILE PostgreSQL provides a utility called pg_config to enable extensions like PostGIS to locate the Post-
greSQL installation directory. Use this parameter (--with-pgconfig=/path/to/pg_config) to manually specify a particular
PostgreSQL installation that PostGIS will build against.

--with-geosconfig=FILE GEOS, a required geometry library, provides a utility called geos-config to enable software installa-
tions to locate the GEOS installation directory. Use this parameter (--with-geosconfig=/path/to/geos-config) to manually
specify a particular GEOS installation that PostGIS will build against.

--with-projdir=DIR Proj4 is a reprojection library required by PostGIS. Use this parameter (--with-projdir=/path/to/projdir)
to manually specify a particular Proj4 installation directory that PostGIS will build against.

--with-gui Compile the data import GUI (requires GTK+2.0). This will create shp2pgsql-gui graphical interface to shp2pgsql.

http://www.postgresql.org
http://trac.osgeo.org/postgis/ticket/160

PostGIS 1.5.5 Manual
7 /322

Note
. If you obtained PostGIS from the SVN repository , the first step is really to run the script
Not? jautogen.sh
This script will generate the configure script that in turn is used to customize the intallation of PostGIS.
If you instead obtained PostGIS as a tarball, running ./autogen.sh is not necessary as configure has already been
generated.

2.4.2 Building

Once the Makefile has been generated, building PostGIS is as simple as running
make
The last line of the output should be "PostGIS was built successfully. Ready to install."

As of PostGIS v1.4.0, all the functions have comments generated from the documentation. If you wish to install these comments
into your spatial databases later, run the command which requires docbook. The postgis_comments.sql is also packaged in the
tar.gz distribution in the doc folder so no need to make comments if installing from the tar ball.

make comments

2.4.3 Testing

If you wish to test the PostGIS build, run
make check

The above command will run through various checks and regression tests using the generated library against an actual Post-
greSQL database.

) Note
Note!
If you configured PostGIS using non-standard PostgreSQL, GEOS, or Proj4 locations, you may need to add their library

locations to the LD_LIBRARY_PATH environment variable.

Caution

£ 1 % Currently, the make check relies on the PATH and PGPORT environment variables when performing the checks - it
does not use the PostgreSQL version that may have been specified using the configuration paramter --with-pgconfig.
So make sure to modify your PATH to match the detected PostgreSQL installation during configuration or be prepared
to deal with the impending headaches. Visit http:/trac.osgeo.org/postgis/ticket/186 to track this bug.

If successful, the output of the test should be similiar to the following:

CUnit - A Unit testing framework for C - Version 2.1-0
http://cunit.sourceforge.net/

Suite: PostGIS Computational Geometry Suite

Test: test_lw_segment_side() ... passed

Test: test_lw_segment_intersects() ... passed

Test: test_lwline_crossing_short_lines() ... passed
Test: test_lwline_crossing_long_lines() ... passed
Test: test_lwpoint_set_ordinate() ... passed

Test: test_lwpoint_get_ordinate() ... passed

Test: test_lwpoint_interpolate() ... passed

Test: test_lwline_clip() ... passed

http://svn.osgeo.org/postgis/trunk/
http://trac.osgeo.org/postgis/ticket/186

PostGIS 1.5.5 Manual

8/322
Test: test_lwline_clip_big() passed
Test: test_lwmline_clip() ... passed
Test: test_geohash_point () passed
Test: test_geohash_precision() passed
Test: test_geohash() ... passed
Suite: PostGIS Measures Suite
Test: test_mindistance2d_recursive_tolerance() ... passed
——Run Summary: Type Total Ran Passed Failed
suites 2 2 n/a 0
tests 14 14 14 0
asserts 84 84 84 0
Creating spatial db postgis_reg
TMPDIR is /tmp/pgis_reg_ 15328
PostgreSQL 8.3.7 on 1686-pc-linux—-gnu, compiled by GCC gcc (GCC) 4.1.2 20080704 (Red Hat <«

4.1.2-44)

Postgis 1.4.0SVN - 2009-05-25 20:21:55

GEOS: 3.1.0-CAPI-1.5.0
PROJ: Rel. 4.6.1, 21 August 20

Running tests

loader/Point.....cuovuvn... ok
loader/PointM.......oouu... ok
loader/PointZ.............. ok
loader/MultiPoint..............
loader/MultiPointM..............
loader/MultiPointZ......couovuen..
loader/ArcC...c.oueeeeenn.. ok
loader/ArcM. ..o eennn.. ok
loader/ArcZ......o.... ok
loader/Polygon...c..oeeeueenn. ok
loader/PolygonM. ... c.ouvun... ok
loader/PolygonZ.uoeeueu... ok
regress. ok

regress_index. ok
regress_index_nulls. ok
lwgeom_regress. ok

regress_1lrs. ok

removepoint. ok

setpoint. ok

simplify. ok

snaptogrid. ok

affine. ok

wkt. ok

measures. ok

long_xact. ok

ctors. ok

sgl-mm-serialize. ok
sgl-mm-circularstring. ok
sgl-mm-compoundcurve. ok
sgl-mm-curvepoly. ok
sgl-mm-general. ok
sgl-mm-multicurve. ok
sgl-mm-multisurface. ok

geojson. ok

gml. ok

svg. ok

kml. ok

08

PostGIS 1.5.5 Manual
9/322

regress_ogc. ok
regress_bdpoly. ok
regress_proj. ok
regress_ogc_cover. ok
regress_ogc_prep. ok

Run tests: 42
Failed: 0

2.4.4 Installation

To install PostGIS, type
make install

This will copy the PostGIS installation files into their appropriate subdirectory specified by the --prefix configuration parameter.
In particular:

* The loader and dumper binaries are installed in [prefix] /bin.

* The SQL files, such as postgis.sqgl, are installed in [prefix]/share/contrib.

* The PostGIS libraries are installed in [prefix]/1lib.

If you previously ran the make comments command to generate the postgis_comments.sql file, install the sql file by
running

make comments-install

N:rld Note

postgis_comments.sqgl was separated from the typical build and installation targets since with it comes the extra
dependency of xsltproc.

2.5 Create a spatially-enabled database

The first step in creating a PostGIS database is to create a simple PostgreSQL database.
createdb [yourdatabase]

Many of the PostGIS functions are written in the PL/pgSQL procedural language. As such, the next step to create a PostGIS
database is to enable the PL/pgSQL language in your new database. This is accomplish by the command

createlang plpgsql [yourdatabase]

Now load the PostGIS object and function definitions into your database by loading the postgis. sqgl definitions file (located
in [prefix]/share/contrib as specified during the configuration step).

psql -d [yourdatabase] -f postgis.sql

For a complete set of EPSG coordinate system definition identifiers, you can also load the spatial_ref_sys.sqgl definitions
file and populate the spatial_ref_sys table. This will permit you to perform ST_Transform() operations on geometries.

psql -d [yourdatabase] -f spatial_ref sys.sql

If you wish to add comments to the PostGIS functions, the final step is to load the postgis_comments. sqgl into your spatial
database. The comments can be viewed by simply typing \dd [function_name] from a psql terminal window.

psql -d [yourdatabase] -f postgis_comments.sql

PostGIS 1.5.5 Manual
10 /322

2.6 Create a spatially-enabled database from a template

Some packaged distributions of PostGIS (in particular the Win32 installers for PostGIS >= 1.1.5) load the PostGIS functions
into a template database called template_postgis. If the template_postgis database exists in your PostgreSQL
installation then it is possible for users and/or applications to create spatially-enabled databases using a single command. Note
that in both cases, the database user must have been granted the privilege to create new databases.

From the shell:

createdb -T template_postgis my_spatial_db

From SQL:

postgres=# CREATE DATABASE my_spatial db TEMPLATE=template_postgis

2.7 Upgrading

Upgrading existing spatial databases can be tricky as it requires replacement or introduction of new PostGIS object definitions.
Unfortunately not all definitions can be easily replaced in a live database, so sometimes your best bet is a dump/reload process.

PostGIS provides a SOFT UPGRADE procedure for minor or bugfix releases, and an HARD UPGRADE procedure for major
releases.

Before attempting to upgrade postgis, it is always worth to backup your data. If you use the -Fc flag to pg_dump you will always
be able to restore the dump with an HARD UPGRADE.

2.7.1 Soft upgrade

After compiling you should find several postgis_upgradex.sql files. Install the one for your version of PostGIS. For
example postgis_upgrade_13_to_15.sqgl should be used if you are upgrading from postgis 1.3 to 1.5.

$ psgl -f postgis_upgrade_13_to_15.sgql -d your_spatial_database

If a soft upgrade is not possible the script will abort and you will be warned about HARD UPGRADE being required, so do not
hesitate to try a soft upgrade first.

Note
If you can’t find the postgis_upgradex*.sql files you are probably using a version prior to 1.1 and must generate
that file by yourself. This is done with the following command:

$ utils/postgis_proc_upgrade.pl postgis.sql > postgis_upgrade.sql

2.7.2 Hard upgrade

By HARD UPGRADE we intend full dump/reload of postgis-enabled databases. You need an HARD UPGRADE when postgis
objects’ internal storage changes or when SOFT UPGRADE is not possible. The Release Notes appendix reports for each version
whether you need a dump/reload (HARD UPGRADE) to upgrade.

PostGIS provides an utility script to restore a dump produced with the pg_dump -Fc command. It is experimental so redirecting
its output to a file will help in case of problems. The procedure is as follow:

Create a "custom-format" dump of the database you want to upgrade (let’s call it "olddb")

S pg_dump -Fc olddb > olddb.dump

PostGIS 1.5.5 Manual
11 /322

Restore the dump contextually upgrading postgis into a new database. The new database doesn’t have to exist. postgis_restore
accepts createdb parameters after the dump file name, and that can for instance be used if you are using a non-default character
encoding for your database. Let’s call it "newdb", with UNICODE as the character encoding:

S sh utils/postgis_restore.pl postgis.sql newdb olddb.dump —-E=UNICODE > restore.log

Check that all restored dump objects really had to be restored from dump and do not conflict with the ones defined in postgis.sql

$ grep "KEEPING restore.log | less

If upgrading from PostgreSQL < 8.0 to >= 8.0 you might want to drop the attrelid, varattnum and stats columns in the geom-
etry_columns table, which are no-more needed. Keeping them won’t hurt. DROPPING THEM WHEN REALLY NEEDED
WILL DO HURT !

$ psgl newdb -c "ALTER TABLE geometry_columns DROP attrelid"
$ psgl newdb -c "ALTER TABLE geometry_columns DROP varattnum"
$ psgl newdb -c "ALTER TABLE geometry_columns DROP stats"

spatial_ref_sys table is restore from the dump, to ensure your custom additions are kept, but the distributed one might contain
modification so you should backup your entries, drop the table and source the new one. If you did make additions we assume
you know how to backup them before upgrading the table. Replace of it with the new one is done like this:

$ psgl newdb

newdb=> truncate spatial_ref_ sys;
TRUNCATE

newdb=> \i spatial_ref_sys.sql

2.8 Common Problems

There are several things to check when your installation or upgrade doesn’t go as you expected.

1. Check that you you have installed PostgreSQL 8.1 or newer, and that you are compiling against the same version of the
PostgreSQL source as the version of PostgreSQL that is running. Mix-ups can occur when your (Linux) distribution has
already installed PostgreSQL, or you have otherwise installed PostgreSQL before and forgotten about it. PostGIS will only
work with PostgreSQL 8.1 or newer, and strange, unexpected error messages will result if you use an older version. To
check the version of PostgreSQL which is running, connect to the database using psql and run this query:

SELECT version();

If you are running an RPM based distribution, you can check for the existence of pre-installed packages using the rpm
command as follows: rpm -qa | grep postgresql

Also check that configure has correctly detected the location and version of PostgreSQL, the Proj4 library and the GEOS library.

1. The output from configure is used to generate the postgis_config.h file. Check that the POSTGIS_PGSQL_VER-
SION, POSTGIS_PROJ_VERSION and POSTGIS_GEOS_VERSION variables have been set correctly.

2.9 JDBC

The JDBC extensions provide Java objects corresponding to the internal PostGIS types. These objects can be used to write Java
clients which query the PostGIS database and draw or do calculations on the GIS data in PostGIS.

1. Enter the java/ jdbc sub-directory of the PostGIS distribution.

2. Run the ant command. Copy the postgis. jar file to wherever you keep your java libraries.

PostGIS 1.5.5 Manual
12 /322

The JDBC extensions require a PostgreSQL JDBC driver to be present in the current CLASSPATH during the build process. If
the PostgreSQL JDBC driver is located elsewhere, you may pass the location of the JDBC driver JAR separately using the -D
parameter like this:

ant -Dclasspath=/path/to/postgresqgl-jdbc. jar

PostgreSQL JDBC drivers can be downloaded from http://jdbc.postgresql.org .

2.10 Loader/Dumper

The data loader and dumper are built and installed automatically as part of the PostGIS build. To build and install them manually:

cd postgis-1.5.5/loader
make
make install

The loader is called shp2pgsqgl and converts ESRI Shape files into SQL suitable for loading in PostGIS/PostgreSQL. The
dumper is called pgsgl2shp and converts PostGIS tables (or queries) into ESRI Shape files. For more verbose documentation,
see the online help, and the manual pages.

http://jdbc.postgresql.org

PostGIS 1.5.5 Manual
13 /322

Chapter 3

Frequently Asked Questions

1. I'm running PostgreSQL 9.0 and I can no longer read/view geometries in OpenJump, Safe FME, and some other tools?

In PostgreSQL 9.0+, the default encoding for bytea data has been changed to hex and older JDBC drivers still assume
escape format. This has affected some applications such as Java applications using older JDBC drivers or .NET ap-
plications that use the older npgsql driver that expect the old behavior of ST_AsBinary. There are two approaches to
getting this to work again.You can upgrade your JDBC driver to the latest PostgreSQL 9.0 version which you can get
from http://jdbc.postgresql.org/download.htmlIf you are running a .NET app, you can use Npgsql 2.0.11 or higher which
you can download from http://pgfoundry.org/frs/?group_id=1000140 and as described on Francisco Figueiredo’s NpgSQL
2.0.11 released blog entryIf upgrading your PostgreSQL driver is not an option, then you can set the default back to the
old behavior with the following change:

ALTER DATABASE mypostgisdb SET bytea_output=’escape’;

2. Itried to use PgAdmin to view my geometry column and it is blank, what gives?

PgAdmin doesn’t show anything for large geometries. The best ways to verify you do have day in your geometry columns
are?

—— this should return no records if all your geom fields are filled in
SELECT somefield FROM mytable WHERE geom IS NULL;

—— To tell just how large your geometry is do a query of the form

——which will tell you the most number of points you have in any of your geometry <«
columns

SELECT MAX (ST_NPoints (geom)) FROM sometable;

3. What kind of geometric objects can I store?

You can store point, line, polygon, multipoint, multiline, multipolygon, and geometrycollections. These are specified in the
Open GIS Well Known Text Format (with XYZ,XYM,XYZM extensions). There are two data types currently supported.
The standard OGC geometry data type which uses a planar coordinate system for measurement and the geography data
type which uses a geodetic coordinate system. Only WGS 84 long lat (SRID:4326) is supported by the geography data

type.

4. I'm all confused. Which data store should I use geometry or geography?

Short Answer: geography is a new data type that supports long range distances measurements, but most computations on
it are currently slower than they are on geometry. If you use geography -- you don’t need to learn much about planar
coordinate systems. Geography is generally best if all you care about is measuring distances and lengths and you have
data from all over the world. Geometry data type is an older data type that has many more functions supporting it, enjoys
greater support from third party tools, and operations on it are generally faster -- sometimes as much as 10 fold faster
for larger geometries. Geometry is best if you are pretty comfortable with spatial reference systems or you are dealing
with localized data where all your data fits in a single spatial reference system (SRID), or you need to do a lot of spatial
processing. Note: It is fairly easy to do one-off conversions between the two types to gain the benefits of each. Refer to

http://jdbc.postgresql.org/download.html
http://pgfoundry.org/frs/?group_id=1000140
http://fxjr.blogspot.com/2010/11/npgsql-2011-released.html
http://fxjr.blogspot.com/2010/11/npgsql-2011-released.html

PostGIS 1.5.5 Manual
14 /322

Section 8.8 to see what is currently supported and what is not. Long Answer: Refer to our more lengthy discussion in the
Section 4.2.2 and function type matrix.

5. I have more intense questions about geography, such as how big of a geographic region can I stuff in a geography column
and still get reasonable answers. Are there limitations such as poles, everything in the field must fit in a hemisphere (like
SQL Server 2008 has), speed etc?

Your questions are too deep and complex to be adequately answered in this section. Please refer to our Section 4.2.3 .

6. How do I insert a GIS object into the database?

First, you need to create a table with a column of type "geometry" or "geography" to hold your GIS data. Storing geography
type data is a little different than storing geometry. Refer to Section 4.2.1 for details on storing geography. For geometry:
Connect to your database with psgl and try the following SQL:

CREATE TABLE gtest (ID int4, NAME varchar (20));
SELECT AddGeometryColumn(’’, ’gtest’,’geom’,-1,’LINESTRING’,?2);

If the geometry column addition fails, you probably have not loaded the PostGIS functions and objects into this database.
See the Section 2.4.Then, you can insert a geometry into the table using a SQL insert statement. The GIS object itself is
formatted using the OpenGIS Consortium "well-known text" format:

INSERT INTO gtest (ID, NAME, GEOM)
VALUES (

1/

"First Geometry’,

ST_GeomFromText (' LINESTRING(2 3,4 5,6 5,7 8)’, -1)
)i

For more information about other GIS objects, see the object reference.To view your GIS data in the table:

SELECT id, name, ST_AsText (geom) AS geom FROM gtest;

The return value should look something like this:

1 | First Geometry | LINESTRING(2 3,4 5,6 5,7 8)
(1 row)

7. How do I construct a spatial query?

The same way you construct any other database query, as an SQL combination of return values, functions, and boolean
tests.For spatial queries, there are two issues that are important to keep in mind while constructing your query: is there a
spatial index you can make use of; and, are you doing expensive calculations on a large number of geometries.In general,
you will want to use the "intersects operator" (&&) which tests whether the bounding boxes of features intersect. The
reason the && operator is useful is because if a spatial index is available to speed up the test, the && operator will make
use of this. This can make queries much much faster.You will also make use of spatial functions, such as Distance(),
ST_Intersects(), ST_Contains() and ST_Within(), among others, to narrow down the results of your search. Most spatial
queries include both an indexed test and a spatial function test. The index test serves to limit the number of return tuples
to only tuples that might meet the condition of interest. The spatial functions are then use to test the condition exactly.

SELECT id, the_geom
FROM thetable
WHERE
ST_Contains (the_geom, ' POLYGON((O O, O 10, 10 10, 10 0, 0 0))");

8. How do I speed up spatial queries on large tables?

Fast queries on large tables is the raison d’etre of spatial databases (along with transaction support) so having a good index
is important.To build a spatial index on a table with a geomet ry column, use the "CREATE INDEX" function as follows:

CREATE INDEX [indexname] ON [tablename] USING GIST ([geometrycolumn]);

PostGIS 1.5.5 Manual

15/322

10.

11.

12.

13.

The "USING GIST" option tells the server to use a GiST (Generalized Search Tree) index.

ot¢) Note
N GiST indexes are assumed to be lossy. Lossy indexes uses a proxy object (in the spatial case, a bounding box)
for building the index.

You should also ensure that the PostgreSQL query planner has enough information about your index to make rational
decisions about when to use it. To do this, you have to "gather statistics" on your geometry tables.For PostgreSQL
8.0.x and greater, just run the VACUUM ANALYZE command.For PostgreSQL 7.4.x and below, run the SELECT UP-
DATE_GEOMETRY_STATS() command.

Why aren’t PostgreSQL R-Tree indexes supported?

Early versions of PostGIS used the PostgreSQL R-Tree indexes. However, PostgreSQL R-Trees have been completely
discarded since version 0.6, and spatial indexing is provided with an R-Tree-over-GiST scheme.Our tests have shown
search speed for native R-Tree and GiST to be comparable. Native PostgreSQL R-Trees have two limitations which make
them undesirable for use with GIS features (note that these limitations are due to the current PostgreSQL native R-Tree
implementation, not the R-Tree concept in general):

* R-Tree indexes in PostgreSQL cannot handle features which are larger than 8K in size. GiST indexes can, using the
"lossy" trick of substituting the bounding box for the feature itself.

* R-Tree indexes in PostgreSQL are not "null safe”, so building an index on a geometry column which contains null
geometries will fail.

Why should I use the AddGeometryColumn () function and all the other OpenGIS stuff?

If you do not want to use the OpenGIS support functions, you do not have to. Simply create tables as in older versions,
defining your geometry columns in the CREATE statement. All your geometries will have SRIDs of -1, and the OpenGIS
meta-data tables will not be filled in properly. However, this will cause most applications based on PostGIS to fail, and it
is generally suggested that you do use AddGeometryColumn () to create geometry tables.MapServer is one application
which makes use of the geometry_columns meta-data. Specifically, MapServer can use the SRID of the geometry
column to do on-the-fly reprojection of features into the correct map projection.

What is the best way to find all objects within a radius of another object?

To use the database most efficiently, it is best to do radius queries which combine the radius test with a bounding box test:
the bounding box test uses the spatial index, giving fast access to a subset of data which the radius test is then applied to.The
ST_DWithin (geometry, geometry, distance) function is a handy way of performing an indexed distance
search. It works by creating a search rectangle large enough to enclose the distance radius, then performing an exact
distance search on the indexed subset of results.For example, to find all objects with 100 meters of POINT(1000 1000) the
following query would work well:

SELECT » FROM geotable
WHERE ST_DWithin (geocolumn, ’'POINT (1000 1000)", 100.0);

How do I perform a coordinate reprojection as part of a query?

To perform a reprojection, both the source and destination coordinate systems must be defined in the SPATIAL_REF_SYS
table, and the geometries being reprojected must already have an SRID set on them. Once that is done, a reprojection is
as simple as referring to the desired destination SRID. The below projects a geometry to NAD 83 long lat. The below will
only work if the srid of the_geom is not -1 (not undefined spatial ref)

SELECT ST_Transform(the_geom,4269) FROM geotable;

1 did an ST_ASsEWKT and ST_AsText on my rather large geometry and it returned blank field. What gives?

You are probably using PgAdmin or some other tool that doesn’t output large text. If your geometry is big enough, it will
appear blank in these tools. Use PSQL if you really need to see it or output it in WKT.

——To check number of geometries are really blank
SELECT count (gid) FROM geotable WHERE the_geom IS NULL;

PostGIS 1.5.5 Manual
16 /322

14. When I do an ST _Intersects, it says my two geometries don’t intersect when I KNOW THEY DO. What gives?

This generally happens in two common cases. Your geometry is invalid -- check ST_IsValid or you are assuming they
intersect because ST_AsText truncates the numbers and you have lots of decimals after it is not showing you.

PostGIS 1.5.5 Manual
17 /322

Chapter 4

Using PostGIS: Data Management and Queries

4.1 GIS Objects

The GIS objects supported by PostGIS are a superset of the "Simple Features" defined by the OpenGIS Consortium (OGC). As
of version 0.9, PostGIS supports all the objects and functions specified in the OGC "Simple Features for SQL" specification.

PostGIS extends the standard with support for 3DZ,3DM and 4D coordinates.

4.1.1 OpenGIS WKB and WKT

The OpenGIS specification defines two standard ways of expressing spatial objects: the Well-Known Text (WKT) form and the
Well-Known Binary (WKB) form. Both WKT and WKB include information about the type of the object and the coordinates
which form the object.

Examples of the text representations (WKT) of the spatial objects of the features are as follows:

POINT(0 0)

LINESTRING(0 0,1 1,1 2)

POLYGON((00,40,44,04,00),(11,21,22,12,11))

MULTIPOINT(0 0,1 2)

MULTILINESTRING((0 0,1 1,1 2),(2 3,3 2,5 4))

MULTIPOLYGON(((0 0,4 0,4 4,0 4,0 0),(1 1,2 1,22,1 2,1 1)), ((-1 -1,-1 -2,-2 -2,-2 -1 ,-1 -1)))

GEOMETRYCOLLECTION(POINT(2 3),LINESTRING(2 3,3 4))

The OpenGIS specification also requires that the internal storage format of spatial objects include a spatial referencing system
identifier (SRID). The SRID is required when creating spatial objects for insertion into the database.

Input/Output of these formats are available using the following interfaces:

bytea WKB = ST_AsBinary (geometry) ;

text WKT = ST_AsText (geometry);

geometry = ST_GeomFromWKB (bytea WKB, SRID);
geometry = ST_GeometryFromText (text WKT, SRID);

For example, a valid insert statement to create and insert an OGC spatial object would be:

INSERT INTO geotable (the_geom, the_name)
VALUES (ST_GeomFromText (' POINT (-126.4 45.32)', 312), 'A Place’);

PostGIS 1.5.5 Manual
18 /322

4.1.2 PostGIS EWKB, EWKT and Canonical Forms

OGC formats only support 2d geometries, and the associated SRID is *never* embedded in the input/output representations.

PostGIS extended formats are currently superset of OGC one (every valid WKB/WKT is a valid EWKB/EWKT) but this might
vary in the future, specifically if OGC comes out with a new format conflicting with our extensions. Thus you SHOULD NOT
rely on this feature!

PostGIS EWKB/EWKT add 3dm,3dz,4d coordinates support and embedded SRID information.

Examples of the text representations (EWKT) of the extended spatial objects of the features are as follows:

* POINT(000) -- XYZ

* SRID=32632;POINT(0 0) -- XY with SRID

e POINTM(0 0 0) -- XYM

* POINT(0 00 0) -- XYZM

* SRID=4326;MULTIPOINTM(0 0 0,1 2 1) -- XYM with SRID

e MULTILINESTRING((000,110,121),(231,321,541))

* POLYGON((000,400,440,040,000),(110,210,220,120,110))

* MULTIPOLYGON(((000,400,440,040,000),(110,210,220,120,110)),((-1-10,-1-20,-2-20,-2-10,-1-10)))
* GEOMETRYCOLLECTIONM(POINTM(2 3 9), LINESTRINGM(2 3 4,3 4 5))

Input/Output of these formats are available using the following interfaces:

bytea EWKB = ST_ASEWKB (geometry);

text EWKT = ST_ASEWKT (geometry);
geometry = ST_GeomFromEWKB (bytea EWKB) ;
geometry = ST_GeomFromEWKT (text EWKT) ;

For example, a valid insert statement to create and insert a PostGIS spatial object would be:

INSERT INTO geotable (the_geom, the_name)
VALUES (ST_GeomFromEWKT (' SRID=312;POINTM(-126.4 45.32 15)’), '"A Place’)

The "canonical forms" of a PostgreSQL type are the representations you get with a simple query (without any function call) and
the one which is guaranteed to be accepted with a simple insert, update or copy. For the postgis ’geometry’ type these are:

- Output

— binary: EWKB

ascii: HEXEWKB (EWKB in hex form)
- Input

— binary: EWKB

ascii: HEXEWKB |EWKT

For example this statement reads EWKT and returns HEXEWKB in the process of canonical ascii input/output:

=# SELECT ’SRID=4;POINT(0 0)’::geometry;

geometry

01010000200400000000000000000000000000000000000000
(1 row)

PostGIS 1.5.5 Manual
19 /322

41.3 SQL-MM Part 3

The SQL Multimedia Applications Spatial specification extends the simple features for SQL spec by defining a number of
circularly interpolated curves.

The SQL-MM definitions include 3dm, 3dz and 4d coordinates, but do not allow the embedding of SRID information.

The well-known text extensions are not yet fully supported. Examples of some simple curved geometries are shown below:

* CIRCULARSTRING(00,11,10)
CIRCULARSTRING(00,40,44,04,00)

The CIRCULARSTRING is the basic curve type, similar to a LINESTRING in the linear world. A single segment required
three points, the start and end points (first and third) and any other point on the arc. The exception to this is for a closed circle,
where the start and end points are the same. In this case the second point MUST be the center of the arc, ie the opposite
side of the circle. To chain arcs together, the last point of the previous arc becomes the first point of the next arc, just like in
LINESTRING. This means that a valid circular string must have an odd number of points greated than 1.

* COMPOUNDCURVE(CIRCULARSTRING(00, 11,1 0),(10,0 1))

A compound curve is a single, continuous curve that has both curved (circular) segments and linear segments. That means that
in addition to having well-formed components, the end point of every component (except the last) must be coincident with the
start point of the following component.

* CURVEPOLYGON(CIRCULARSTRING(00,40,44,04,00),(11,33,31,11))

Example compound curve in a curve polygon: CURVEPOLY GON(COMPOUNDCURVE(CIRCULARSTRING(0 0,20, 2 1,
23,43),(43,45,14,00)), CIRCULARSTRING(1.71,1.404,1.60.4,1.60.5,1.71))

A CURVEPOLYGON is just like a polygon, with an outer ring and zero or more inner rings. The difference is that a ring can
take the form of a circular string, linear string or compound string.

As of PostGIS 1.4 PostGIS supports compound curves in a curve polygon.

* MULTICURVE((0 0, 5 5),CIRCULARSTRING(4 0, 4 4, 8 4))

The MULTICURVE is a collection of curves, which can include linear strings, circular strings or compound strings.

« MULTISURFACE(CURVEPOLYGON(CIRCULARSTRING(0 0,4 0,4 4,04,00),(1 1,33,3 1, 1 1)),((10 10, 14 12, 11 10,
10 10),(11 11, 11.5 11, 11 11.5, 11 11)))

This is a collection of surfaces, which can be (linear) polygons or curve polygons.

N:rld Note

PostGIS prior to 1.4 does not support compound curves in a curve polygon, but PostGIS 1.4 and above do support the
use of Compound Curves in a Curve Polygon.

Note! Note

All floating point comparisons within the SQL-MM implementation are performed to a specified tolerance, currently
1E-8.

4.2 PostGIS Geography Type

The geography type provides native support for spatial features represented on "geographic" coordinates (sometimes called
"geodetic" coordinates, or "lat/lon", or "lon/lat"). Geographic coordinates are spherical coordinates expressed in angular units
(degrees).

PostGIS 1.5.5 Manual
20/ 322

The basis for the PostGIS geometry type is a plane. The shortest path between two points on the plane is a straight line. That
means calculations on geometries (areas, distances, lengths, intersections, etc) can be calculated using cartesian mathematics and
straight line vectors.

The basis for the PostGIS geographic type is a sphere. The shortest path between two points on the sphere is a great circle arc.
That means that calculations on geographies (areas, distances, lengths, intersections, etc) must be calculated on the sphere, using
more complicated mathematics. For more accurate measurements, the calculations must take the actual spheroidal shape of the
world into account, and the mathematics becomes very complicated indeed.

Because the underlying mathematics is much more complicated, there are fewer functions defined for the geography type than
for the geometry type. Over time, as new algorithms are added, the capabilities of the geography type will expand.

One restriction is that it only supports WGS 84 long lat (SRID:4326). It uses a new data type called geography. None of the
GEOS functions support this new type. As a workaround one can convert back and forth between geometry and geography types.

The new geography type uses the PostgreSQL 8.3+ typmod definition format so that a table with a geography field can be added
in a single step. All the standard OGC formats except for curves are supported.

4.21 Geography Basics

The geography type only supports the simplest of simple features. Standard geometry type data will autocast to geography if it
is of SRID 4326. You can also use the EWKT and EWKB conventions to insert data.

* POINT: Creating a table with 2d point geometry:

CREATE TABLE testgeog(gid serial PRIMARY KEY, the_geog geography (POINT, 4326));

Creating a table with z coordinate point

CREATE TABLE testgeog(gid serial PRIMARY KEY, the_geog geography (POINTZ,4326));

* LINESTRING

* POLYGON

* MULTIPOINT
 MULTILINESTRING

* MULTIPOLYGON

* GEOMETRYCOLLECTION

The new geography fields don’t get registered in the geometry_columns. They get registered in a new view called geogra-
phy_columns which is a view against the system catalogs so is always automatically kept up to date without need for an Ad-
dGeom... like function.

Now, check the "geography_columns" view and see that your table is listed.

You can create a new table with a GEOGRAPHY column using the CREATE TABLE syntax. Unlike GEOMETRY, there is no
need to run a separate AddGeometryColumns() process to register the column in metadata.

CREATE TABLE global_points (
id SERIAL PRIMARY KEY,
name VARCHAR (64),
location GEOGRAPHY (POINT, 4326)
)i

Note that the location column has type GEOGRAPHY and that geography type supports two optional modifier: a type modifier
that restricts the kind of shapes and dimensions allowed in the column; an SRID modifier that restricts the coordinate reference
identifier to a particular number.

PostGIS 1.5.5 Manual
21/322

Allowable values for the type modifier are: POINT, LINESTRING, POLYGON, MULTIPOINT, MULTILINESTRING, MUL-
TIPOLYGON. The modifier also supports dimensionality restrictions through suffixes: Z, M and ZM. So, for example a modifier
of 'LINESTRINGM’ would only allow line strings with three dimensions in, and would treat the third dimension as a measure.
Similarly, "POINTZM’ would expect four dimensional data.

The SRID modifier is currently of limited use: only 4326 (WGS84) is allowed as a value. If you do not specify an SRID, the a
value O (undefined spheroid) will be used, and all calculations will proceed using WGS84 anyways.

In the future, alternate SRIDs will allow calculations on spheroids other than WGS84.
Once you have created your table, you can see it in the GEOGRAPHY_COLUMNS table:

—— See the contents of the metadata view
SELECT x FROM geography_columns;

You can insert data into the table the same as you would if it was using a GEOMETRY column:

—-— Add some data into the test table

INSERT INTO global_points (name, location) VALUES (’Town’, ST_GeographyFromText (' SRID=4326; <>
POINT (=110 30)"));

INSERT INTO global_points (name, location) VALUES (’Forest’, ST_GeographyFromText (/ SRID <
=4326;POINT (=109 29)"));

INSERT INTO global_points (name, location) VALUES (’London’, ST_GeographyFromText (/ SRID «
=4326;POINT (0 49)"));

Creating an index works the same as GEOMETRY. PostGIS will note that the column type is GEOGRAPHY and create an
appropriate sphere-based index instead of the usual planar index used for GEOMETRY.

—— Index the test table with a spherical index
CREATE INDEX global_points_gix ON global_points USING GIST (location);

Query and measurement functions use units of meters. So distance parameters should be expressed in meters, and return values
should be expected in meters (or square meters for areas).

—-— Show a distance query and note, London is outside the 1000km tolerance
SELECT name FROM global_points WHERE ST_DWithin(location, ST_GeographyFromText (’ SRID <«
=4326;POINT (=110 29)"), 1000000);

You can see the power of GEOGRAPHY in action by calculating the how close a plane flying from Seattle to London (LINESTRING(-
122.33 47.606, 0.0 51.5)) comes to Reykjavik (POINT(-21.96 64.15)).

—— Distance calculation using GEOGRAPHY (122.2km)
SELECT ST_Distance (' LINESTRING (-122.33 47.606, 0.0 51.5)’::geography, ’'POINT(-21.96 <«
64.15)’ :: geography) ;

—— Distance calculation using GEOMETRY (13.3 "degrees")
SELECT ST_Distance (' LINESTRING(-122.33 47.606, 0.0 51.5)’::geometry, ’'POINT(-21.96 64.15) <
:: geometry);

The GEOGRAPHY type calculates the true shortest distance over the sphere between Reykjavik and the great circle flight path
between Seattle and London.

Great Circle mapper The GEOMETRY type calculates a meaningless cartesian distance between Reykjavik and the straight line
path from Seattle to London plotted on a flat map of the world. The nominal units of the result might be called "degrees", but the
result doesn’t correspond to any true angular difference between the points, so even calling them "degrees" is inaccurate.

4.2.2 When to use Geography Data type over Geometry data type
The new GEOGRAPHY type allows you to store data in longitude/latitude coordinates, but at a cost: there are fewer functions
defined on GEOGRAPHY than there are on GEOMETRY; those functions that are defined take more CPU time to execute.

The type you choose should be conditioned on the expected working area of the application you are building. Will your data
span the globe or a large continental area, or is it local to a state, county or municipality?

http://gc.kls2.com/cgi-bin/gc?PATH=SEA-LHR

PostGIS 1.5.5 Manual
22 /322

* If your data is contained in a small area, you might find that choosing an appropriate projection and using GEOMETRY is the
best solution, in terms of performance and functionality available.

* If your data is global or covers a continental region, you may find that GEOGRAPHY allows you to build a system without
having to worry about projection details. You store your data in longitude/latitude, and use the functions that have been defined
on GEOGRAPHY.

* If you don’t understand projections, and you don’t want to learn about them, and you’re prepared to accept the limitations in
functionality available in GEOGRAPHY, then it might be easier for you to use GEOGRAPHY than GEOMETRY. Simply load
your data up as longitude/latitude and go from there.

Refer to Section 8.8 for compare between what is supported for Geography vs. Geometry. For a brief listing and description of
Geography functions, refer to Section 8.3

4.2.3 Geography Advanced FAQ

1. Do you calculate on the sphere or the spheroid?

By default, all distance and area calculations are done on the spheroid. You should find that the results of calculations in
local areas match up will with local planar results in good local projections. Over larger areas, the spheroidal calculations
will be more accurate than any calculation done on a projected plane. All the geography functions have the option of
using a sphere calculation, by setting a final boolean parameter to "FALSE’. This will somewhat speed up calculations,
particularly for cases where the geometries are very simple.

2. What about the date-line and the poles?

All the calculations have no conception of date-line or poles, the coordinates are spherical (longitude/latitude) so a shape
that crosses the dateline is, from a calculation point of view, no different from any other shape.

3. What is the longest arc you can process?

We use great circle arcs as the "interpolation line" between two points. That means any two points are actually joined up
two ways, depending on which direction you travel along the great circle. All our code assumes that the points are joined
by the *shorter* of the two paths along the great circle. As a consequence, shapes that have arcs of more than 180 degrees
will not be correctly modelled.

4. Why is it so slow to calculate the area of Europe / Russia / insert big geographic region here ?

Because the polygon is so darned huge! Big areas are bad for two reasons: their bounds are huge, so the index tends to pull
the feature no matter what query you run; the number of vertices is huge, and tests (distance, containment) have to traverse
the vertex list at least once and sometimes N times (with N being the number of vertices in the other candidate feature).
As with GEOMETRY, we recommend that when you have very large polygons, but are doing queries in small areas, you
"denormalize" your geometric data into smaller chunks so that the index can effectively subquery parts of the object and
so queries don’t have to pull out the whole object every time. Just because you *can* store all of Europe in one polygon
doesn’t mean you *should*.

4.3 Using OpenGIS Standards

The OpenGIS "Simple Features Specification for SQL" defines standard GIS object types, the functions required to manipulate
them, and a set of meta-data tables. In order to ensure that meta-data remain consistent, operations such as creating and removing
a spatial column are carried out through special procedures defined by OpenGIS.

There are two OpenGIS meta-data tables: SPATIAL_REF_SYS and GEOMETRY_COLUMNS. The SPATIAL_REF_SYS table
holds the numeric IDs and textual descriptions of coordinate systems used in the spatial database.

PostGIS 1.5.5 Manual
23 /322

4.3.1 The SPATIAL_REF_SYS Table and Spatial Reference Systems

The spatial_ref_sys table is a PostGIS included and OGC compliant database table that lists over 3000 known spatial reference
systems and details needed to transform/reproject between them.

Although the PostGIS spatial_ref_sys table contains over 3000 of the more commonly used spatial reference system definitions
that can be handled by the proj library, it does not contain all known to man and you can even define your own custom projection
if you are familiar with proj4 constructs. Keep in mind that most spatial reference systems are regional and have no meaning
when used outside of the bounds they were intended for.

An excellent resource for finding spatial reference systems not defined in the core set is http://spatialreference.org/

Some of the more commonly used spatial reference systems are: 4326 - WGS 84 Long Lat, 4269 - NAD 83 Long Lat, 3395 -
WGS 84 World Mercator, 2163 - US National Atlas Equal Area, Spatial reference systems for each NAD 83, WGS 84 UTM
zone - UTM zones are one of the most ideal for measurement, but only cover 6-degree regions.

Various US state plane spatial reference systems (meter or feet based) - usually one or 2 exists per US state. Most of the meter
ones are in the core set, but many of the feet based ones or ESRI created ones you will need to pull from spatialreference.org.

For details on determining which UTM zone to use for your area of interest, check out the utmzone PostGIS plpgsql helper
function.

The SPATIAL_REF_SYS table definition is as follows:

CREATE TABLE spatial_ref_sys (
srid INTEGER NOT NULL PRIMARY KEY,
auth_name VARCHAR(256),
auth_srid INTEGER,
srtext VARCHAR (2048),
projdtext VARCHAR (2048)

The SPATIAL_REF_SYS columns are as follows:

SRID An integer value that uniquely identifies the Spatial Referencing System (SRS) within the database.

AUTH_NAME The name of the standard or standards body that is being cited for this reference system. For example, "EPSG"
would be a valid AUTH_ NAME.

AUTH_SRID The ID of the Spatial Reference System as defined by the Authority cited in the AUTH_NAME. In the case of
EPSQG, this is where the EPSG projection code would go.

SRTEXT The Well-Known Text representation of the Spatial Reference System. An example of a WKT SRS representation is:

PROJCS ["NAD83 / UTM Zone 10N",
GEOGCS ["NAD83",
DATUM["North_American_Datum_1983",

SPHEROID["GRS 1980",6378137,298.257222101]

]I
PRIMEM["Greenwich", 0],
UNIT["degree",0.0174532925199433]
]I
PROJECTION["Transverse_Mercator"],
PARAMETER["latitude_of_origin", 0],
PARAMETER["central meridian",-123],
PARAMETER["scale_factor",0.9996],
PARAMETER["false_easting", 5000007,
PARAMETER["false_northing",0],
UNIT["metre", 1]

]

For a listing of EPSG projection codes and their corresponding WKT representations, see http://www.opengeospatial.org/.
For a discussion of WKT in general, see the OpenGIS "Coordinate Transformation Services Implementation Specification"
at http://www.opengeospatial.org/standards. For information on the European Petroleum Survey Group (EPSG) and their
database of spatial reference systems, see http://www.epsg.org.

http://www.sharpgis.net/post/2007/05/Spatial-references2c-coordinate-systems2c-projections2c-datums2c-ellipsoids-e28093-confusing.aspx
http://www.sharpgis.net/post/2007/05/Spatial-references2c-coordinate-systems2c-projections2c-datums2c-ellipsoids-e28093-confusing.aspx
http://spatialreference.org/
http://spatialreference.org/ref/epsg/4326/
http://spatialreference.org/ref/epsg/4269/
http://spatialreference.org/ref/epsg/3395/
http://spatialreference.org/ref/epsg/3395/
http://spatialreference.org/ref/epsg/2163/
http://spatialreference.org
http://trac.osgeo.org/postgis/wiki/UsersWikiplpgsqlfunctionsDistance
http://trac.osgeo.org/postgis/wiki/UsersWikiplpgsqlfunctionsDistance
http://en.wikipedia.org/wiki/SRID
http://www.opengeospatial.org/
http://www.opengeospatial.org/standards
http://www.epsg.org/

PostGIS 1.5.5 Manual
24 /322

PROJ4ATEXT PostGIS uses the Proj4 library to provide coordinate transformation capabilities. The PROJ4TEXT column
contains the Proj4 coordinate definition string for a particular SRID. For example:

+proj=utm +zone=10 +ellps=clrk66 +datum=NAD27 +units=m

For more information about, see the Proj4 web site at http://trac.osgeo.org/proj/. The spatial_ ref sys.sql file
contains both SRTEXT and PROJ4TEXT definitions for all EPSG projections.

4.3.2 The GEOMETRY_COLUMNS Table

The GEOMETRY_ COLUMNS table definition is as follows:

CREATE TABLE geometry_columns (
f_table_catalog VARRCHAR (256) NOT NULL,

f_table_schema VARCHAR (256) NOT NULL,
f_table_name VARCHAR (256) NOT NULL,
f_geometry_column VARCHAR(256) NOT NULL,
coord_dimension INTEGER NOT NULL,

srid INTEGER NOT NULL,

type VARCHAR (30) NOT NULL

The columns are as follows:

F_TABLE_CATALOG, F_TABLE_SCHEMA, F_TABLE_NAME The fully qualified name of the feature table containing
the geometry column. Note that the terms "catalog" and "schema" are Oracle-ish. There is not PostgreSQL analogue of
"catalog" so that column is left blank -- for "schema" the PostgreSQL schema name is used (public is the default).

F_GEOMETRY_COLUMN The name of the geometry column in the feature table.
COORD_DIMENSION The spatial dimension (2, 3 or 4 dimensional) of the column.

SRID The ID of the spatial reference system used for the coordinate geometry in this table. It is a foreign key reference to the
SPATIAL_REF_SYS.

TYPE The type of the spatial object. To restrict the spatial column to a single type, use one of: POINT, LINESTRING, POLY-
GON, MULTIPOINT, MULTILINESTRING, MULTIPOLYGON, GEOMETRYCOLLECTION or corresponding XYM
versions POINTM, LINESTRINGM, POLYGONM, MULTIPOINTM, MULTILINESTRINGM, MULTIPOLYGONM,
GEOMETRYCOLLECTIONM. For heterogeneous (mixed-type) collections, you can use "GEOMETRY" as the type.

N-ﬂ"t"! Note

This attribute is (probably) not part of the OpenGIS specification, but is required for ensuring type homogeneity.

4.3.3 Creating a Spatial Table
Creating a table with spatial data is done in two stages:

* Create a normal non-spatial table.
For example: CREATE TABLE ROADS_GEOM (ID int4, NAME varchar(25))

* Add a spatial column to the table using the OpenGIS "AddGeometryColumn" function.

The syntax is:

http://trac.osgeo.org/proj/

PostGIS 1.5.5 Manual
25/322

AddGeometryColumn (
<schema_name>,
<table_name>,
<column_name>,
<srid>,
<type>,
<dimension>

Or, using current schema:

AddGeometryColumn (
<table_name>,
<column_name>,
<srid>,
<type>,
<dimension>

Examplel: SELECT AddGeometryColumn(’public’, ’roads_geom’, ’geom’, 423, "LINESTRING’, 2)
Example2: SELECT AddGeometryColumn(’roads_geom’, ’geom’, 423, "LINESTRING’, 2)

Here is an example of SQL used to create a table and add a spatial column (assuming that an SRID of 128 exists already):

CREATE TABLE parks (
park_id INTEGER,
park_name VARCHAR,
park_date DATE,
park_type VARCHAR
)i
SELECT AddGeometryColumn (’parks’, ’'park_geom’, 128, ’'MULTIPOLYGON’, 2);

Here is another example, using the generic "geometry" type and the undefined SRID value of -1:

CREATE TABLE roads (
road_id INTEGER,
road_name VARCHAR
)
SELECT AddGeometryColumn(’roads’, ’'roads_geom’, -1, ’'GEOMETRY’, 3);

4.3.4 Manually Registering Geometry Columns in geometry_columns

The AddGeometryColumn() approach creates a geometry column and also registers the new column in the geometry_columns
table. If your software utilizes geometry_columns, then any geometry columns you need to query by must be registered in
this table. Two of the cases where you want a geometry column to be registered in the geometry_columns table, but you can’t
use AddGeometryColumn, is in the case of SQL Views and bulk inserts. For these cases, you must register the column in the
geometry_columns table manually. Below is a simple script to do that.

—-Lets say you have a view created like this

CREATE VIEW public.vwmytablemercator AS
SELECT gid, ST_Transform(the_geom,3395) As the_geom, f_name
FROM public.mytable;

—--To register this table in AddGeometry columns - do the following

INSERT INTO geometry_columns (f_table_catalog, f_table_schema, f_table_name, —
f_geometry_column, coord_dimension, srid, "type")

SELECT ’’, ’'public’, ’vwmytablemercator’, ’'the_geom’, ST_CoordDim(the_geom), ST_SRID(<«
the_geom), GeometryType (the_geom)

FROM public.vwmytablemercator LIMIT 1;

PostGIS 1.5.5 Manual
26 /322

—-Lets say you created a derivative table by doing a bulk insert

SELECT poi.gid, poi.the_geom, citybounds.city_name

INTO myschema.myspecialpois

FROM poi INNER JOIN citybounds ON ST_Intersects (citybounds.the_geom, poi.the_geom);

——Create index on new table
CREATE INDEX idx_myschema_myspecialpois_geom_gist
ON myschema.myspecialpois USING gist (the_geom) ;

—-—-To manually register this new table’s geometry column in geometry_columns

—-— we do the same thing as with view

INSERT INTO geometry_columns (f_table_catalog, f_table_schema, f_table_name, «—
f_geometry_column, coord_dimension, srid, "type")

SELECT ’’, ’'myschema’, ’'myspecialpois’, ’'the_geom’, ST_CoordDim(the_geom), ST_SRID (the_geom >
), GeometryType (the_geom)

FROM public.myschema.myspecialpois LIMIT 1;

4.3.5 Ensuring OpenGIS compliancy of geometries

PostGIS is compliant with the Open Geospatial Consortium’s (OGC) OpenGIS Specifications. As such, many PostGIS methods
require, or more accurately, assume that geometries that are operated on are both simple and valid. for example, it does not
make sense to calculate the area of a polygon that has a hole defined outside of the polygon, or to construct a polygon from a
non-simple boundary line.

According to the OGC Specifications, a simple geometry is one that has no anomalous geometric points, such as self intersection
or self tangency and primarily refers to O or 1-dimensional geometries (i.e. [MULTI]POINT, [MULTI]LINESTRING).
Geometry validity, on the other hand, primarily refers to 2-dimensional geometries (i.e. [MULTI]POLYGON) and defines the
set of assertions that characterizes a valid polygon. The description of each geometric class includes specific conditions that
further detail geometric simplicity and validity.

A POINT is inheritably simple as a 0-dimensional geometry object.
MULTIPOINTS are simple if no two coordinates (POINTSs) are equal (have identical coordinate values).

A LINESTRING is simple if it does not pass through the same POINT twice (except for the endpoints, in which case it is referred
to as a linear ring and additionally considered closed).

PostGIS 1.5.5 Manual
27 /322

(c) (d)

(a) and (c) are simple LINESTRINGS, (b) and (d) are not.

A MULTILINESTRING is simple only if all of its elements are simple and the only intersection between any two elements
occurs at POINTS that are on the boundaries of both elements.

PostGIS 1.5.5 Manual
28 /322

() ® @

(e) and (f) are simple MULTILINESTRINGS, (g) is not.

By definition, a POLYGON is always simple. It is valid if no two rings in the boundary (made up of an exterior ring and interior
rings) cross. The boundary of a POLYGON may intersect at a POINT but only as a tangent (i.e. not on a line). A POLYGON may
not have cut lines or spikes and the interior rings must be contained entirely within the exterior ring.

(h) @) ()

PostGIS 1.5.5 Manual
29 /322

(k)) (m)

(h) and (i) are valid POLYGONS, (j-m) cannot be represented as single POLYGONS, but (j) and (m) could be represented as
a valid MULTIPOLYGON.

A MULTIPOLYGON is valid if and only if all of its elements are valid and the interiors of no two elements intersect. The
boundaries of any two elements may touch, but only at a finite number of POINTS.

(n) (0)

(n) and (o) are not valid MULTIPOLYGONS.

Most of the functions implemented by the GEOS library rely on the assumption that your geometries are valid as specified by

the OpenGIS Simple Feature Specification. To check simplicity or validity of geometries you can use the ST_IsSimple() and
ST_IsValid()

—-— Typically, it doesn’t make sense to check
—— for validity on linear features since it will always return TRUE.

PostGIS 1.5.5 Manual
30/322

—-— But in this example, PostGIS extends the definition of the OGC IsValid
—-— by returning false if a LinearRing (start and end points are the same)
—— has less than 2 vertices.
gisdb=# SELECT

ST_IsValid (/LINESTRING(0 0, 1 1)’),

ST_IsValid (/' LINESTRING(0O 0, 0 0)");

st_isvalid | st_isvalid
777777777777 +77777777777
t \ f

By default, PostGIS does not apply this validity check on geometry input, because testing for validity needs lots of CPU time for
complex geometries, especially polygons. If you do not trust your data sources, you can manually enforce such a check to your
tables by adding a check constraint:

ALTER TABLE mytable
ADD CONSTRAINT geometry_valid_check
CHECK (ST_IsValid(the_geom));

If you encounter any strange error messages such as "GEOS Intersection() threw an error!" or "JTS Intersection() threw an error!"
when calling PostGIS functions with valid input geometries, you likely found an error in either PostGIS or one of the libraries
it uses, and you should contact the PostGIS developers. The same is true if a PostGIS function returns an invalid geometry for
valid input.

. Note
Nf’""! Strictly compliant OGC geometries cannot have Z or M values. The ST_IsValid() function won’t consider higher dimen-
sioned geometries invalid! Invocations of AddGeometryColumn() will add a constraint checking geometry dimensions,
so it is enough to specify 2 there.

4.3.6 Dimensionally Extended 9 Intersection Model (DE-9IM)

It is sometimes the case that the typical spatial predicates (ST_Contains, ST_Crosses, ST_Intersects, ST_Touches, ...) are
insufficient in and of themselves to adequately provide that desired spatial filter.

PostGIS 1.5.5 Manual
31/322

For example, consider a linear dataset representing a road network. It may be the task of a GIS analyst to identify all road
segments that cross each other, not at a point, but on a line, perhaps invalidating some business rule. In this case,
ST_Crosses does not adequately provide the necessary spatial filter since, for linear features, it returns t rue only where
they cross at a point.

One two-step solution might be to first perform the actual intersection (ST_Intersection) of pairs of road segments that
spatially intersect (ST_Intersects), and then compare the intersection’s ST_GeometryType with 'LINESTRING’ (properly
dealing with cases that return GEOMETRYCOLLECTIONs of [MULTI]POINTS, [MULTI]LINESTRINGS, etc.).

A more elegant / faster solution may indeed be desirable.

PostGIS 1.5.5 Manual
32/322

A second [theoretical] example may be that of a GIS analyst trying to locate all wharfs or docks that intersect a lake’s
boundary on a line and where only one end of the wharf is up on shore. In other words, where a wharf is within, but not
completely within a lake, intersecting the boundary of a lake on a line, and where the wharf’s endpoints are both
completely within and on the boundary of the lake. The analyst may need to use a combination of spatial predicates to
isolate the sought after features:

e ST Contains(lake, wharf) = TRUE
* ST_ContainsProperly(lake, wharf) = FALSE
e ST_GeometryType(ST_Intersection(wharf, lake)) = "LINESTRING’

e ST_NumGeometries(ST_Multi(ST_Intersection(ST_Boundary(wharf), ST_Boundary(lake)))) = 1

... (needless to say, this could get quite complicated)

So enters the Dimensionally Extended 9 Intersection Model, or DE-9IM for short.

4.3.6.1 Theory

According to the OpenGIS Simple Features Implementation Specification for SQL, "the basic approach to comparing two ge-
ometries is to make pair-wise tests of the intersections between the Interiors, Boundaries and Exteriors of the two geometries and
to classify the relationship between the two geometries based on the entries in the resulting *intersection’ matrix."

Boundary

The boundary of a geometry is the set of geometries of the next lower dimension. For POINTSs, which have a dimension of
0, the boundary is the empty set. The boundary of a LINESTRING are the two endpoints. For POLYGONSs, the boundary
is the linework that make up the exterior and interior rings.

Interior

The interior of a geometry are those points of a geometry that are left when the boundary is removed. For POINTSs,
the interior is the POINT itself. The interior of a LINESTRING are the set of real points between the endpoints. For
POLYGONS, the interior is the areal surface inside the polygon.

Exterior

The exterior of a geometry is the universe, an areal surface, not on the interior or boundary of the geometry.

http://www.opengeospatial.org/standards/sfs

PostGIS 1.5.5 Manual

33/322

Given geometry a, where the I(a), B(a), and E(a) are the Interior, Boundary, and Exterior of a, the mathematical representation

of the matrix is:

Interior Boundary Exterior
Interior dim(I(a)N1(b)) dim(I(a)NB(b)) dim(I(a)NE(D))
Boundary dim(B(a)NI(b)) dim(B(a)NB(b)) dim(B(a)NE(D))
Exterior dim(E(a)N1(b)) dim(E(a)NB(b)) dim(E(a)NE(b))

Where dim(a) is the dimension of a as specified by ST_Dimension but has the domain of {0,1,2,T,F, *}

* 0 =>point

e 1 =>line

e 2 =>area

e T=>1{0,1,2}
¢ F'=>empty set

e x =>don’t care

Visually, for two overlapping polygonal geometries, this looks like:

PostGIS 1.5.5 Manual
34 /322

Interior Boundary Exterior
Interior
dim(...) =2 dim(...) =1 dim(...) =2
Boundary
dim(...) =1 dim(...) =0 dim(...) =1
Exterior
dim(...) =2

Read from left to right and from top to bottom, the dimensional matrix is represented, *212101212’.
A relate matrix that would therefore represent our first example of two lines that intersect on a line would be: *1#1%%%] %%’

—— Identify road segments that cross on a line
SELECT a.id

FROM roads a, roads b

WHERE a.id != b.id

AND a.geom && b.geom

AND ST_Relate(a.geom, b.geom, "1xls*xxlxx');

A relate matrix that represents the second example of wharfs partly on the lake’s shoreline would be *102101FF2’

—— Identify wharfs partly on a lake’s shoreline

PostGIS 1.5.5 Manual
35/322

SELECT a.lake_id, b.wharf_ id

FROM lakes a, wharfs b

WHERE a.geom && b.geom

AND ST_Relate(a.geom, b.geom, ’"102101FF2’");

For more information or reading, see:

e OpenGIS Simple Features Implementation Specification for SQL (version 1.1, section 2.1.13.2)
* Dimensionally Extended Nine-Intersection Model (DE-9IM) by Christian Strobl

* GeoTools: Dimensionally Extended Nine-Intersection Matrix

* Encyclopedia of GIS By Hui Xiong

4.4 Loading GIS Data

Once you have created a spatial table, you are ready to upload GIS data to the database. Currently, there are two ways to get data
into a PostGIS/PostgreSQL database: using formatted SQL statements or using the Shape file loader/dumper.

4.41 Using SQL

If you can convert your data to a text representation, then using formatted SQL might be the easiest way to get your data into
PostGIS. As with Oracle and other SQL databases, data can be bulk loaded by piping a large text file full of SQL "INSERT"
statements into the SQL terminal monitor.

A data upload file (roads . sgl for example) might look like this:

BEGIN;
INSERT INTO roads (road_id, roads_geom, road_name)

VALUES (1,ST_GeomFromText (" LINESTRING (191232 243118,191108 243242)",-1),"’Jeff Rd");
INSERT INTO roads (road_id, roads_geom, road_name)

VALUES (2, ST_GeomFromText (' LINESTRING (189141 244158,189265 244817)’,-1),’Geordie Rd’);
INSERT INTO roads (road_id, roads_geom, road_name)

VALUES (3,ST_GeomFromText (/' LINESTRING (192783 228138,192612 229814)’,-1),"Paul St’);
INSERT INTO roads (road_id, roads_geom, road_name)

VALUES (4,ST_GeomFromText (' LINESTRING (189412 252431,189631 259122)’,-1),’Graeme Ave’);
INSERT INTO roads (road_id, roads_geom, road_name)

VALUES (5, ST_GeomFromText (' LINESTRING (190131 224148,190871 228134)’,-1),’Phil Tce’);
INSERT INTO roads (road_id, roads_geom, road_name)

VALUES (6, ST_GeomFromText (' LINESTRING (198231 263418,198213 268322)'’,-1),’Dave Cres’);
COMMIT;

The data file can be piped into PostgreSQL very easily using the "psql" SQL terminal monitor:

psgl —-d [database] —-f roads.sqgl

4.4.2 Using the Loader

The shp2pgsqgl data loader converts ESRI Shape files into SQL suitable for insertion into a PostGIS/PostgreSQL database
either in geometry or geography format. The loader has several operating modes distinguished by command line flags:

In addition to the shp2pgsql command-line loader, there is an shp2pgsgl—gui graphical interface with most of the options as
the command-line loader, but may be easier to use for one-off non-scripted loading or if you are new to PostGIS. It can also be
configured as a plugin to PgAdminlIII.

(claldlp) These are mutually exclusive options:

http://www.opengeospatial.org/standards/sfs
http://gis.hsr.ch/wiki/images/3/3d/9dem_springer.pdf
http://docs.codehaus.org/display/GEOTDOC/Point+Set+Theory+and+the+DE-9IM+Matrix#PointSetTheoryandtheDE-9IMMatrix-9IntersectionMatrix

PostGIS 1.5.5 Manual
36 /322

-c Creates a new table and populates it from the shapefile. This is the default mode.

-a Appends data from the Shape file into the database table. Note that to use this option to load multiple files, the files
must have the same attributes and same data types.

-d Drops the database table before creating a new table with the data in the Shape file.

-p Only produces the table creation SQL code, without adding any actual data. This can be used if you need to completely
separate the table creation and data loading steps.

-? Display help screen.

-D Use the PostgreSQL "dump" format for the output data. This can be combined with -a, -c and -d. It is much faster to load
than the default "insert" SQL format. Use this for very large data sets.

-s <SRID> Creates and populates the geometry tables with the specified SRID.
-k Keep identifiers’ case (column, schema and attributes). Note that attributes in Shapefile are all UPPERCASE.

-i Coerce all integers to standard 32-bit integers, do not create 64-bit bigints, even if the DBF header signature appears to warrant
it.

-I Create a GiST index on the geometry column.

-w Output WKT format, for use with older (0.x) versions of PostGIS. Note that this will introduce coordinate drifts and will
drop M values from shapefiles.

-W <encoding> Specify encoding of the input data (dbf file). When used, all attributes of the dbf are converted from the
specified encoding to UTF8. The resulting SQL output will contain a SET CLIENT_ENCODING to UTF8 command,
so that the backend will be able to reconvert from UTFS§ to whatever encoding the database is configured to use internally.

-N <policy> NULL geometries handling policy (insert*,skip,abort)

-n -n Only import DBF file. If your data has no corresponding shapefile, it will automatically switch to this mode and load just
the dbf. So setting this flag is only needed if you have a full shapefile set, and you only want the attribute data and no
geometry.

-G Use geography type instead of geometry (requires lon/lat data) in WGS84 long lat (SRID=4326)

An example session using the loader to create an input file and uploading it might look like this:

shp2pgsgl -c -D -s 4269 -i -I shaperoads.shp myschema.roadstable > roads.sqgl
psgl -d roadsdb -f roads.sqgl

A conversion and upload can be done all in one step using UNIX pipes:

shp2pgsgl shaperoads.shp myschema.roadstable | psgl -d roadsdb

4.5 Retrieving GIS Data

Data can be extracted from the database using either SQL or the Shape file loader/dumper. In the section on SQL we will discuss
some of the operators available to do comparisons and queries on spatial tables.

4.5.1 Using SQL

The most straightforward means of pulling data out of the database is to use a SQL select query to reduce the number of
RECORDS and COLUMNS returned and dump the resulting columns into a parsable text file:

PostGIS 1.5.5 Manual
37 /322

db=# SELECT road_id, ST_AsText (road_geom) AS geom, road_name FROM roads;

road_id | geom | road_name
________ O S
1 | LINESTRING (191232 243118,191108 243242) | Jeff Rd
2 | LINESTRING(189141 244158,189265 244817) | Geordie Rd
3 | LINESTRING (192783 228138,192612 229814) | Paul St
4 | LINESTRING (189412 252431,189631 259122) | Graeme Ave
5 | LINESTRING (190131 224148,190871 228134) | Phil Tce
6 | LINESTRING (198231 263418,198213 268322) | Dave Cres
7 | LINESTRING (218421 284121,224123 241231) | Chris Way
(6 rows)

However, there will be times when some kind of restriction is necessary to cut down the number of fields returned. In the case of
attribute-based restrictions, just use the same SQL syntax as normal with a non-spatial table. In the case of spatial restrictions,
the following operators are available/useful:

& & This operator tells whether the bounding box of one geometry intersects the bounding box of another.

~= This operators tests whether two geometries are geometrically identical. For example, if 'POLYGON((0 0,1 1,1 0,0 0))’ is
the same as "POLYGON((0 0,1 1,1 0,0 0))’ (it is).

= This operator is a little more naive, it only tests whether the bounding boxes of two geometries are the same.

Next, you can use these operators in queries. Note that when specifying geometries and boxes on the SQL command line, you
must explicitly turn the string representations into geometries by using the "GeomFromText()" function. So, for example:

SELECT road_id, road_name
FROM roads
WHERE roads_geom ~= ST_GeomFromText (' LINESTRING (191232 243118,191108 243242)");

The above query would return the single record from the "ROADS_GEOM" table in which the geometry was equal to that value.

When using the "&&" operator, you can specify either a BOX3D as the comparison feature or a GEOMETRY. When you specify
a GEOMETRY, however, its bounding box will be used for the comparison.

SELECT road_id, road_name
FROM roads
WHERE roads_geom && ST_GeomFromText ('POLYGON((...))”");

The above query will use the bounding box of the polygon for comparison purposes.

The most common spatial query will probably be a "frame-based" query, used by client software, like data browsers and web
mappers, to grab a "map frame" worth of data for display. Using a "BOX3D" object for the frame, such a query looks like this:

SELECT ST_AsText (roads_geom) AS geom
FROM roads
WHERE
roads_geom && SetSRID (’BOX3D (191232 243117,191232 243119)’ ::box3d,-1);

Note the use of the SRID, to specify the projection of the BOX3D. The value -1 is used to indicate no specified SRID.

4.5.2 Using the Dumper

The pgsgl2shp table dumper connects directly to the database and converts a table (possibly defined by a query) into a shape
file. The basic syntax is:

pgsgl2shp [<options>] <database> [<schema>.]<table>

PostGIS 1.5.5 Manual
38/322

pgsgl2shp [<options>] <database> <query>
The commandline options are:

-f <filename> Write the output to a particular filename.

-h <host> The database host to connect to.

-p <port> The port to connect to on the database host.

-P <password> The password to use when connecting to the database.
-u <user> The username to use when connecting to the database.

-g <geometry column> In the case of tables with multiple geometry columns, the geometry column to use when writing the
shape file.

-b Use a binary cursor. This will make the operation faster, but will not work if any NON-geometry attribute in the table lacks a
cast to text.

-r Raw mode. Do not drop the gid field, or escape column names.

-d For backward compatibility: write a 3-dimensional shape file when dumping from old (pre-1.0.0) postgis databases (the
default is to write a 2-dimensional shape file in that case). Starting from postgis-1.0.0+, dimensions are fully encoded.

4.6 Building Indexes

Indexes are what make using a spatial database for large data sets possible. Without indexing, any search for a feature would
require a "sequential scan" of every record in the database. Indexing speeds up searching by organizing the data into a search
tree which can be quickly traversed to find a particular record. PostgreSQL supports three kinds of indexes by default: B-Tree
indexes, R-Tree indexes, and GiST indexes.

* B-Trees are used for data which can be sorted along one axis; for example, numbers, letters, dates. GIS data cannot be rationally
sorted along one axis (which is greater, (0,0) or (0,1) or (1,0)?) so B-Tree indexing is of no use for us.

* R-Trees break up data into rectangles, and sub-rectangles, and sub-sub rectangles, etc. R-Trees are used by some spatial
databases to index GIS data, but the PostgreSQL R-Tree implementation is not as robust as the GiST implementation.

non non

* GiST (Generalized Search Trees) indexes break up data into "things to one side", "things which overlap", "things which are
inside" and can be used on a wide range of data-types, including GIS data. PostGIS uses an R-Tree index implemented on top
of GiST to index GIS data.

4.6.1 GiST Indexes

GiST stands for "Generalized Search Tree" and is a generic form of indexing. In addition to GIS indexing, GiST is used to speed
up searches on all kinds of irregular data structures (integer arrays, spectral data, etc) which are not amenable to normal B-Tree
indexing.

Once a GIS data table exceeds a few thousand rows, you will want to build an index to speed up spatial searches of the data
(unless all your searches are based on attributes, in which case you’ll want to build a normal index on the attribute fields).

The syntax for building a GiST index on a "geometry" column is as follows:

CREATE INDEX [indexname] ON [tablename] USING GIST ([geometryfield]);

Building a spatial index is a computationally intensive exercise: on tables of around 1 million rows, on a 300MHz Solaris
machine, we have found building a GiST index takes about 1 hour. After building an index, it is important to force PostgreSQL
to collect table statistics, which are used to optimize query plans:

PostGIS 1.5.5 Manual
39 /322

VACUUM ANALYZE [table_name] [(column_name)];
—— This is only needed for PostgreSQL 7.4 installations and below
SELECT UPDATE_GEOMETRY_STATS ([table_name], [column_name]);

GiST indexes have two advantages over R-Tree indexes in PostgreSQL. Firstly, GiST indexes are "null safe", meaning they can
index columns which include null values. Secondly, GiST indexes support the concept of "lossiness" which is important when
dealing with GIS objects larger than the PostgreSQL 8K page size. Lossiness allows PostgreSQL to store only the "important”
part of an object in an index -- in the case of GIS objects, just the bounding box. GIS objects larger than 8K will cause R-Tree
indexes to fail in the process of being built.

4.6.2 Using Indexes

Ordinarily, indexes invisibly speed up data access: once the index is built, the query planner transparently decides when to use
index information to speed up a query plan. Unfortunately, the PostgreSQL query planner does not optimize the use of GiST
indexes well, so sometimes searches which should use a spatial index instead default to a sequence scan of the whole table.

If you find your spatial indexes are not being used (or your attribute indexes, for that matter) there are a couple things you can
do:

* Firstly, make sure statistics are gathered about the number and distributions of values in a table, to provide the query plan-
ner with better information to make decisions around index usage. For PostgreSQL 7.4 installations and below this is done
by running update_geometry_stats([table_name, column_name]) (compute distribution) and VACUUM ANALYZE [ta-
ble_name] [column_name] (compute number of values). Starting with PostgreSQL 8.0 running VACUUM ANALYZE will
do both operations. You should regularly vacuum your databases anyways -- many PostgreSQL DBAs have VACUUM run as
an off-peak cron job on a regular basis.

* If vacuuming does not work, you can force the planner to use the index information by using the SET ENABLE_SEQSCAN=OFF

command. You should only use this command sparingly, and only on spatially indexed queries: generally speaking, the planner
knows better than you do about when to use normal B-Tree indexes. Once you have run your query, you should consider setting
ENABLE_SEQSCAN back on, so that other queries will utilize the planner as normal.

N;i"l"’! Note

As of version 0.6, it should not be necessary to force the planner to use the index with ENABLE__SEQSCAN.

e If you find the planner wrong about the cost of sequential vs index scans try reducing the value of random_page_cost in
postgresql.conf or using SET random_page_cost=#. Default value for the parameter is 4, try setting it to 1 or 2. Decrementing
the value makes the planner more inclined of using Index scans.

4.7 Complex Queries

The raison d’etre of spatial database functionality is performing queries inside the database which would ordinarily require
desktop GIS functionality. Using PostGIS effectively requires knowing what spatial functions are available, and ensuring that
appropriate indexes are in place to provide good performance.

4.7.1 Taking Advantage of Indexes

When constructing a query it is important to remember that only the bounding-box-based operators such as && can take advan-
tage of the GiST spatial index. Functions such as distance () cannot use the index to optimize their operation. For example,
the following query would be quite slow on a large table:

PostGIS 1.5.5 Manual
40/ 322

SELECT the_geom
FROM geom_table
WHERE ST_Distance (the_geom, ST_GeomFromText ('POINT (100000 200000)")) < 100

This query is selecting all the geometries in geom_table which are within 100 units of the point (100000, 200000). It will be
slow because it is calculating the distance between each point in the table and our specified point, ie. one ST_Distance ()
calculation for each row in the table. We can avoid this by using the && operator to reduce the number of distance calculations
required:

SELECT the_geom
FROM geom_table
WHERE the_geom && ’/BOX3D (90900 190900, 100100 200100)’ ::box3d
AND
ST_Distance (the_geom, ST_GeomFromText (POINT (100000 200000)")) < 100

This query selects the same geometries, but it does it in a more efficient way. Assuming there is a GiST index on the_geom,
the query planner will recognize that it can use the index to reduce the number of rows before calculating the result of the d-
istance () function. Notice that the BOX3D geometry which is used in the && operation is a 200 unit square box centered
on the original point - this is our "query box". The && operator uses the index to quickly reduce the result set down to only
those geometries which have bounding boxes that overlap the "query box". Assuming that our query box is much smaller than
the extents of the entire geometry table, this will drastically reduce the number of distance calculations that need to be done.

N:"“’! Change in Behavior
As of PostGIS 1.3.0, most of the Geometry Relationship Functions, with the notable exceptions of ST_Disjoint and
ST_Relate, include implicit bounding box overlap operators.

4.7.2 Examples of Spatial SQL

The examples in this section will make use of two tables, a table of linear roads, and a table of polygonal municipality boundaries.
The table definitions for the bc__roads table is:

Column | Type | Description

,,,,,,,,,,,, o

gid | integer | Unique ID

name | character varying | Road Name

the_geom | geometry | Location Geometry (Linestring)

The table definition for the bc_municipality table is:

Column | Type | Description

___________ +___________________+___________________

gid | integer | Unique ID

code | integer | Unique ID

name | character varying | City / Town Name

the_geom | geometry | Location Geometry (Polygon)

1. What is the total length of all roads, expressed in kilometers?

You can answer this question with a very simple piece of SQL:

SELECT sum(ST_Length (the_geom)) /1000 AS km_roads FROM bc_roads;

70842.1243039643
(1 row)

PostGIS 1.5.5 Manual
41 /322

2. How large is the city of Prince George, in hectares?
This query combines an attribute condition (on the municipality name) with a spatial calculation (of the area):

SELECT

ST_Area (the_geom) /10000 AS hectares
FROM bc_municipality
WHERE name = ’'PRINCE GEORGE’;

hectares

32657.9103824927
(1 row)

3. What is the largest municipality in the province, by area?

This query brings a spatial measurement into the query condition. There are several ways of approaching this problem, but
the most efficient is below:

SELECT

name,

ST_Area (the_geom) /10000 AS hectares
FROM

bc_municipality
ORDER BY hectares DESC

LIMIT 1;

name | hectares
_______________ +_________________
TUMBLER RIDGE | 155020.02556131
(1 row)

Note that in order to answer this query we have to calculate the area of every polygon. If we were doing this a lot it would
make sense to add an area column to the table that we could separately index for performance. By ordering the results in a
descending direction, and them using the PostgreSQL "LIMIT" command we can easily pick off the largest value without
using an aggregate function like max().

4. What is the length of roads fully contained within each municipality?

This is an example of a "spatial join", because we are bringing together data from two tables (doing a join) but using a
spatial interaction condition ("contained") as the join condition rather than the usual relational approach of joining on a
common key:

SELECT
m.name,
sum (ST_Length (r.the_geom)) /1000 as roads_km
FROM
bc_roads AS r,
bc_municipality AS m
WHERE
ST_Contains (m.the_geom, r.the_geom)
GROUP BY m.name
ORDER BY roads_km;

PRINCE GEORGE 694.37554369147

name | roads_km

____________________________ e

SURREY | 1539.47553551242

VANCOUVER | 1450.33093486576

LANGLEY DISTRICT | 833.793392535662

BURNABY | 773.769091404338
|

PostGIS 1.5.5 Manual
42 /322

This query takes a while, because every road in the table is summarized into the final result (about 250K roads for our
particular example table). For smaller overlays (several thousand records on several hundred) the response can be very
fast.

5. Create a new table with all the roads within the city of Prince George.

This is an example of an "overlay", which takes in two tables and outputs a new table that consists of spatially clipped or
cut resultants. Unlike the "spatial join" demonstrated above, this query actually creates new geometries. An overlay is like
a turbo-charged spatial join, and is useful for more exact analysis work:

CREATE TABLE pg_roads as
SELECT
ST_Intersection(r.the_geom, m.the_geom) AS intersection_geom,
ST_Length (r.the_geom) AS rd_orig_length,
r.*
FROM
bc_roads AS r,
bc_municipality AS m
WHERE m.name = ’'PRINCE GEORGE’ AND ST_Intersects(r.the_geom, m.the_geom);

6. What is the length in kilometers of "Douglas St" in Victoria?

SELECT
sum (ST_Length (r.the_geom)) /1000 AS kilometers
FROM
bc_roads r,
bc_municipality m
WHERE r.name = ’'Douglas St’ AND m.name = ’"VICTORIA’
AND ST_Contains (m.the_geom, r.the_geom) ;

kilometers

4.89151904172838
(1 row)

7. What is the largest municipality polygon that has a hole?

SELECT gid, name, ST_Area(the_geom) AS area
FROM bc_municipality

WHERE ST_NRings (the_geom) > 1

ORDER BY area DESC LIMIT 1;

PostGIS 1.5.5 Manual
43 /322

Chapter 5

Using PostGIS: Building Applications

5.1 Using MapServer

The Minnesota MapServer is an internet web-mapping server which conforms to the OpenGIS Web Mapping Server specification.

* The MapServer homepage is at http://mapserver.org.

* The OpenGIS Web Map Specification is at http://www.opengeospatial.org/standards/wms.

5.1.1 Basic Usage

To use PostGIS with MapServer, you will need to know about how to configure MapServer, which is beyond the scope of this
documentation. This section will cover specific PostGIS issues and configuration details.

To use PostGIS with MapServer, you will need:

e Version 0.6 or newer of PostGIS.

* Version 3.5 or newer of MapServer.

MapServer accesses PostGIS/PostgreSQL data like any other PostgreSQL client -- using the 1ibpq interface. This means that
MapServer can be installed on any machine with network access to the PostGIS server, and use PostGIS as a source of data. The
faster the connection between the systems, the better.

1. Compile and install MapServer, with whatever options you desire, including the "--with-postgis" configuration option.

2. In your MapServer map file, add a PostGIS layer. For example:

LAYER
CONNECTIONTYPE postgis
NAME "widehighways"
Connect to a remote spatial database
CONNECTION "user=dbuser dbname=gisdatabase host=bigserver"
PROCESSING "CLOSE_CONNECTION=DEFER"
Get the lines from the ’'geom’ column of the ’roads’ table
DATA "geom from roads using srid=4326 using unique gid"

STATUS ON

TYPE LINE

Of the lines in the extents, only render the wide highways
FILTER "type = 'highway’ and numlanes >= 4"

CLASS

Make the superhighways brighter and 2 pixels wide

http://mapserver.org
http://www.opengeospatial.org/standards/wms

PostGIS 1.5.5 Manual

44 /322

EXPRESSION ([numlanes] >= 6)
STYLE
COLOR 255 22 22
WIDTH 2
END
END
CLASS
All the rest are darker and only 1 pixel wide
EXPRESSION ([numlanes] < 6)
STYLE
COLOR 205 92 82
END
END
END

In the example above, the PostGIS-specific directives are as follows:

CONNECTIONTYPE For PostGIS layers, this is always "postgis".

CONNECTION The database connection is governed by the a ’connection string’ which is a standard set of keys and
values like this (with the default values in <>):
user=<username> password=<password> dbname=<username> hostname=<server> port=<5432>
An empty connection string is still valid, and any of the key/value pairs can be omitted. At a minimum you will
generally supply the database name and username to connect with.

DATA The form of this parameter is "<geocolumn> from <tablename> using srid=<srid> using unique <primary key>"
where the column is the spatial column to be rendered to the map, the SRID is SRID used by the column and the
primary key is the table primary key (or any other uniquely-valued column with an index).

You can omit the "using srid" and "using unique" clauses and MapServer will automatically determine the correct
values if possible, but at the cost of running a few extra queries on the server for each map draw.

PROCESSING Putting in a CLOSE_CONNECTION=DEFER if you have multiple layers reuses existing connections
instead of closing them. This improves speed. Refer to for MapServer PostGIS Performance Tips for a more detailed
explanation.

FILTER The filter must be a valid SQL string corresponding to the logic normally following the "WHERE" keyword in
a SQL query. So, for example, to render only roads with 6 or more lanes, use a filter of "num_lanes >= 6".

. In your spatial database, ensure you have spatial (GiST) indexes built for any the layers you will be drawing.

CREATE INDEX [indexname] ON [tablename] USING GIST ([geometrycolumn]);

. If you will be querying your layers using MapServer you will also need to use the "using unique" clause in your DATA
statement.

MapServer requires unique identifiers for each spatial record when doing queries, and the PostGIS module of MapServer
uses the unique value you specify in order to provide these unique identifiers. Using the table primary key is the best
practice.

5.1.2 Frequently Asked Questions

1. When I use an EXPRESSION in my map file, the condition never returns as true, even though I know the values exist in

my table.
Unlike shape files, PostGIS field names have to be referenced in EXPRESSIONS using lower case.

EXPRESSION ([numlanes] >= 6)

. The FILTER I use for my Shape files is not working for my PostGIS table of the same data.

Unlike shape files, filters for PostGIS layers use SQL syntax (they are appended to the SQL statement the PostGIS con-
nector generates for drawing layers in MapServer).

http://blog.cleverelephant.ca/2008/10/mapserverpostgis-performance-tips.html

PostGIS 1.5.5 Manual
45 /322

FILTER "type = ’'highway’ and numlanes >= 4"

3. My PostGIS layer draws much slower than my Shape file layer, is this normal?

In general, the more features you are drawing into a given map, the more likely it is that PostGIS will be slower than
Shape files. For maps with relatively few features (100s), PostGIS will often be faster. For maps with high feature density
(1000s), PostGIS will always be slower. If you are finding substantial draw performance problems, it is possible that you
have not built a spatial index on your table.

postgis# CREATE INDEX geotable_gix ON geotable USING GIST (geocolumn);
postgis# VACUUM ANALYZE;

4. My PostGIS layer draws fine, but queries are really slow. What is wrong?

For queries to be fast, you must have a unique key for your spatial table and you must have an index on that unique key. You
can specify what unique key for mapserver to use with the USING UNIQUE clause in your DATA line:

DATA "the_geom FROM geotable USING UNIQUE gid"

5. Can I use "geography" columns (new in PostGIS 1.5) as a source for MapServer layers?

Yes! MapServer understands geography columns as being the same as geometry columns, but always using an SRID of
4326. Just make sure to include a "using srid=4326" clause in your DATA statement. Everything else works exactly the
same as with geometry.

DATA "the_geog FROM geogtable USING SRID=4326 USING UNIQUE gid"

5.1.3 Advanced Usage

The USING pseudo-SQL clause is used to add some information to help mapserver understand the results of more complex
queries. More specifically, when either a view or a subselect is used as the source table (the thing to the right of "FROM" in a
DATA definition) it is more difficult for mapserver to automatically determine a unique identifier for each row and also the SRID
for the table. The USING clause can provide mapserver with these two pieces of information as follows:

DATA "the_geom FROM (
SELECT
tablel.the_geom AS the_geom,
tablel.gid AS gid,
table2.data AS data
FROM tablel
LEFT JOIN table2
ON tablel.id = table2.id
) AS new_table USING UNIQUE gid USING SRID=-1"

USING UNIQUE <uniqueid> MapServer requires a unique id for each row in order to identify the row when doing map
queries. Normally it identifies the primary key from the system tables. However, views and subselects don’t automatically
have an known unique column. If you want to use MapServer’s query functionality, you need to ensure your view or
subselect includes a uniquely valued column, and declare it with USING UNIQUE. For example, you could explicitly
select nee of the table’s primary key values for this purpose, or any other column which is guaranteed to be unique for the
result set.

N:’w Note

"Querying a Map" is the action of clicking on a map to ask for information about the map features in that location.
Don’t confuse "map queries” with the SQL query in a DATA definition.

USING SRID=<srid> PostGIS needs to know which spatial referencing system is being used by the geometries in order to
return the correct data back to MapServer. Normally it is possible to find this information in the "geometry_columns" table
in the PostGIS database, however, this is not possible for tables which are created on the fly such as subselects and views.
So the USING SRID= option allows the correct SRID to be specified in the DATA definition.

PostGIS 1.5.5 Manual

46 /322

5.1.4 Examples

Lets start with a simple example and work our way up. Consider the following MapServer layer definition:

LAYER
CONNECTIONTYPE postgis
NAME "roads"

CONNECTION "user=theuser password=thepass dbname=thedb host=theserver"

DATA "the_geom from roads"
STATUS ON
TYPE LINE
CLASS

STYLE

COLOR 0 0 O

END

END
END

This layer will display all the road geometries in the roads table as black lines.

Now lets say we want to show only the highways until we get zoomed in to at least a 1:100000 scale - the next two layers will

achieve this effect:

LAYER
CONNECTIONTYPE postgis

CONNECTION "user=theuser password=thepass dbname=thedb host=theserver"

PROCESSING "CLOSE_CONNECTION=DEFER"
DATA "the_geom from roads"
MINSCALE 100000

STATUS ON
TYPE LINE
FILTER "road_type = "highway’"
CLASS
COLOR 0 0 O
END
END
LAYER

CONNECTIONTYPE postgis

CONNECTION "user=theuser password=thepass dbname=thedb

PROCESSING "CLOSE_CONNECTION=DEFER"
DATA "the_geom from roads"
MAXSCALE 100000
STATUS ON
TYPE LINE
CLASSITEM road_type
CLASS
EXPRESSION "highway"
STYLE
WIDTH 2
COLOR 255 0 O
END
END
CLASS
STYLE
COLOR 0 0 O
END
END
END

host=theserver"

The first layer is used when the scale is greater than 1:100000, and displays only the roads of type "highway" as black lines. The

FILTER option causes only roads of type "highway" to be displayed.

PostGIS 1.5.5 Manual
47 /322

The second layer is used when the scale is less than 1:100000, and will display highways as double-thick red lines, and other
roads as regular black lines.

So, we have done a couple of interesting things using only MapServer functionality, but our DATA SQL statement has remained
simple. Suppose that the name of the road is stored in another table (for whatever reason) and we need to do a join to get it and
label our roads.

LAYER
CONNECTIONTYPE postgis
CONNECTION "user=theuser password=thepass dbname=thedb host=theserver"
DATA "the_geom FROM (SELECT roads.oid AS oid, roads.the_geom AS the_geom,
road_names.name as name FROM roads LEFT JOIN road_names ON
roads.road_name_id = road_names.road_name_id)
AS named_roads USING UNIQUE oid USING SRID=-1"
MAXSCALE 20000
STATUS ON
TYPE ANNOTATION
LABELITEM name
CLASS
LABEL
ANGLE auto
SIZE 8
COLOR 0 192 0
TYPE truetype
FONT arial
END
END
END

This annotation layer adds green labels to all the roads when the scale gets down to 1:20000 or less. It also demonstrates how to
use an SQL join in a DATA definition.

5.2 Java Clients (JDBC)

Java clients can access PostGIS "geometry" objects in the PostgreSQL database either directly as text representations or using
the JDBC extension objects bundled with PostGIS. In order to use the extension objects, the "postgis.jar" file must be in your
CLASSPATH along with the "postgresql.jar" JDBC driver package.

import java.sqgl.x;
import java.util.x;
import java.lang.x;
import org.postgis.x;
public class JavaGIS {

public static void main (String[] args) {

java.sqgl.Connection conn;

try {
/ *
* Load the JDBC driver and establish a connection.
x/
Class.forName ("org.postgresqgl.Driver");
String url = "jdbc:postgresqgl://localhost:5432/database";
conn = DriverManager.getConnection (url, "postgres", "");
/ *

* Add the geometry types to the connection. Note that you
+ must cast the connection to the pgsgl-specific connection
* implementation before calling the addDataType () method.

PostGIS 1.5.5 Manual
48 /322

*/
((org.postgresqgl.PGConnection) conn) .addDataType ("geometry",Class.forName ("org.postgis. «

PGgeometry")) ;
((org.postgresgl .PGConnection) conn) .addDataType ("box3d",Class.forName ("org.postgis. <

PGbox3d")) ;

/ *
* Create a statement and execute a select query.
x/
Statement s = conn.createStatement () ;
ResultSet r = s.executeQuery("select geom,id from geomtable");
while(r.next ()) {
/ *

* Retrieve the geometry as an object then cast it to the geometry type.
+ Print things out.

*/

PGgeometry geom = (PGgeometry)r.getObject (1);
int id = r.getInt(2);

System.out.println("Row " + id + ":");

System.out.println (geom.toString());
}
s.close();
conn.close();
}
catch(Exception e) {
e.printStackTrace () ;

}

The "PGgeometry" object is a wrapper object which contains a specific topological geometry object (subclasses of the abstract
class "Geometry") depending on the type: Point, LineString, Polygon, MultiPoint, MultiLineString, MultiPolygon.

PGgeometry geom = (PGgeometry)r.getObject (1) ;
if (geom.getType () == Geometry.POLYGON) {
Polygon pl = (Polygon)geom.getGeometry () ;
for(int r = 0; r < pl.numRings(); r++) {
LinearRing rng = pl.getRing(r);
System.out.println ("Ring: " + r);
for(int p = 0; p < rng.numPoints(); p++) {
Point pt = rng.getPoint (p);
System.out.println ("Point: " + p);
System.out.println(pt.toString());

The JavaDoc for the extension objects provides a reference for the various data accessor functions in the geometric objects.

5.3 C Clients (libpq)

5.3.1 Text Cursors

PostGIS 1.5.5 Manual
49 /322

5.3.2 Binary Cursors

PostGIS 1.5.5 Manual
50/ 322

Chapter 6

Performance tips

6.1 Small tables of large geometries

6.1.1 Problem description

Current PostgreSQL versions (including 8.0) suffer from a query optimizer weakness regarding TOAST tables. TOAST tables
are a kind of "extension room" used to store large (in the sense of data size) values that do not fit into normal data pages (like
long texts, images or complex geometries with lots of vertices), see http://www.postgresql.org/docs/current/interactive/storage-
toast.html for more information).

The problem appears if you happen to have a table with rather large geometries, but not too much rows of them (like a table
containing the boundaries of all European countries in high resolution). Then the table itself is small, but it uses lots of TOAST
space. In our example case, the table itself had about 80 rows and used only 3 data pages, but the TOAST table used 8225 pages.

Now issue a query where you use the geometry operator && to search for a bounding box that matches only very few of those
rows. Now the query optimizer sees that the table has only 3 pages and 80 rows. He estimates that a sequential scan on such a
small table is much faster than using an index. And so he decides to ignore the GIST index. Usually, this estimation is correct.
But in our case, the && operator has to fetch every geometry from disk to compare the bounding boxes, thus reading all TOAST
pages, too.

To see whether your suffer from this bug, use the "EXPLAIN ANALYZE" postgresql command. For more information and
the technical details, you can read the thread on the postgres performance mailing list: http://archives.postgresql.org/pgsql-
performance/2005-02/msg00030.php

6.1.2 Workarounds

The PostgreSQL people are trying to solve this issue by making the query estimation TOAST-aware. For now, here are two
workarounds:

The first workaround is to force the query planner to use the index. Send "SET enable_seqscan TO off;" to the server before
issuing the query. This basically forces the query planner to avoid sequential scans whenever possible. So it uses the GIST index
as usual. But this flag has to be set on every connection, and it causes the query planner to make misestimations in other cases,
so you should "SET enable_seqscan TO on;" after the query.

The second workaround is to make the sequential scan as fast as the query planner thinks. This can be achieved by creating an
additional column that "caches" the bbox, and matching against this. In our example, the commands are like:

SELECT AddGeometryColumn ('myschema’,’mytable’,’bbox’,”4326’,’' GEOMETRY’ ,"2");
UPDATE mytable SET bbox = ST_Envelope (ST_Force_2d(the_geom)) ;

Now change your query to use the && operator against bbox instead of geom_column, like:

PostGIS 1.5.5 Manual
51/322

SELECT geom_column
FROM mytable
WHERE bbox && ST_SetSRID(’BOX3D(0 0,1 1)’::box3d,4326);

Of course, if you change or add rows to mytable, you have to keep the bbox "in sync". The most transparent way to do this would
be triggers, but you also can modify your application to keep the bbox column current or run the UPDATE query above after
every modification.

6.2 CLUSTERing on geometry indices

For tables that are mostly read-only, and where a single index is used for the majority of queries, PostgreSQL offers the CLUS-
TER command. This command physically reorders all the data rows in the same order as the index criteria, yielding two
performance advantages: First, for index range scans, the number of seeks on the data table is drastically reduced. Second, if
your working set concentrates to some small intervals on the indices, you have a more efficient caching because the data rows
are spread along fewer data pages. (Feel invited to read the CLUSTER command documentation from the PostgreSQL manual
at this point.)

However, currently PostgreSQL does not allow clustering on PostGIS GIST indices because GIST indices simply ignores NULL
values, you get an error message like:

lwgeom=# CLUSTER my_geom_index ON my_table;
ERROR: cannot cluster when index access method does not handle null values
HINT: You may be able to work around this by marking column "the_geom" NOT NULL.

As the HINT message tells you, one can work around this deficiency by adding a "not null" constraint to the table:

lwgeom=# ALTER TABLE my_table ALTER COLUMN the_geom SET not null;
ALTER TABLE

Of course, this will not work if you in fact need NULL values in your geometry column. Additionally, you must use the above
method to add the constraint, using a CHECK constraint like "ALTER TABLE blubb ADD CHECK (geometry is not null);" will
not work.

6.3 Avoiding dimension conversion

Sometimes, you happen to have 3D or 4D data in your table, but always access it using OpenGIS compliant ST_AsText() or
ST_AsBinary() functions that only output 2D geometries. They do this by internally calling the ST_Force_2d() function, which
introduces a significant overhead for large geometries. To avoid this overhead, it may be feasible to pre-drop those additional
dimensions once and forever:

UPDATE mytable SET the_geom = ST_Force_2d(the_geom);
VACUUM FULL ANALYZE mytable;

Note that if you added your geometry column using AddGeometryColumn() there’ll be a constraint on geometry dimension. To
bypass it you will need to drop the constraint. Remember to update the entry in the geometry_columns table and recreate the
constraint afterwards.

In case of large tables, it may be wise to divide this UPDATE into smaller portions by constraining the UPDATE to a part of the
table via a WHERE clause and your primary key or another feasible criteria, and running a simple "VACUUM;" between your
UPDATEs. This drastically reduces the need for temporary disk space. Additionally, if you have mixed dimension geometries,
restricting the UPDATE by "WHERE dimension(the_geom)>2" skips re-writing of geometries that already are in 2D.

PostGIS 1.5.5 Manual
52 /322

6.4 Tuning your configuration

These tips are taken from Kevin Neufeld’s presentation "Tips for the PostGIS Power User" at the FOSS4G 2007 conference.
Depending on your use of PostGIS (for example, static data and complex analysis vs frequently updated data and lots of users)
these changes can provide significant speedups to your queries.

For a more tips (and better formatting), the original presentation is at http://2007.foss4g.org/presentations/view.php?abstract_id=117.

6.4.1 Startup

These settings are configured in postgresql.conf:

checkpoint_segment_size (this setting is obsolete in newer versions of PostgreSQL) got replaced with many configurations with
names starting with checkpoint and WAL.

o # of WAL files = 16MB each; default is 3

* Set to at least 10 or 30 for databases with heavy write activity, or more for large database loads. Another article on the topic
worth reading Greg Smith: Checkpoint and Background writer

* Possibly store the xlog on a separate disk device
constraint_exclusion

 Default: off (prior to PostgreSQL 8.4 and for PostgreSQL 8.4+ is set to partition)

 This is generally used for table partitioning. If you are running PostgreSQL versions below 8.4, set to "on" to ensure the query
planner will optimize as desired. As of PostgreSQL 8.4, the default for this is set to "partition" which is ideal for PostgreSQL
8.4 and above since it will force the planner to only analyze tables for constraint consideration if they are in an inherited
hierarchy and not pay the planner penalty otherwise.

shared_buffers

¢ Default: ~32MB
e Set to about 1/3 to 3/4 of available RAM

6.4.2 Runtime
work_mem (the memory used for sort operations and complex queries)

e Default: IMB
* Adjust up for large dbs, complex queries, lots of RAM
* Adjust down for many concurrent users or low RAM.

* If you have lots of RAM and few developers:
SET work_mem TO 1200000;

maintenance_work_mem (used for VACUUM, CREATE INDEX, etc.)

* Default: 16MB
* Generally too low - ties up I/O, locks objects while swapping memory

* Recommend 32MB to 256MB on production servers w/lots of RAM, but depends on the # of concurrent users. If you have
lots of RAM and few developers:

SET maintainence_work_mem TO 1200000;

http://2007.foss4g.org/presentations/view.php?abstract_id=117
http://www.postgresql.org/docs/current/interactive/runtime-config-wal.html#GUC-CHECKPOINT-SEGMENTS
http://www.westnet.com/~gsmith/content/postgresql/chkp-bgw-83.htm
http://www.postgresql.org/docs/current/interactive/runtime-config-query.html#GUC-CONSTRAINT-EXCLUSION
http://www.postgresql.org/docs/current/interactive/runtime-config-resource.html
http://www.postgresql.org/docs/current/interactive/runtime-config-resource.html#GUC-WORK-MEM
http://www.postgresql.org/docs/current/interactive/runtime-config-resource.html#GUC-MAINTENANCE-WORK-MEM

PostGIS 1.5.5 Manual
53 /322

Chapter 7

PostGIS Reference

The functions given below are the ones which a user of PostGIS is likely to need. There are other functions which are required
support functions to the PostGIS objects which are not of use to a general user.

Note
. PostGIS has begun a transition from the existing naming convention to an SQL-MM-centric convention. As a result,
N"M most of the functions that you know and love have been renamed using the standard spatial type (ST) prefix. Previous
functions are still available, though are not listed in this document where updated functions are equivalent. The non
ST_ functions not listed in this documentation are deprecated and will be removed in a future release so STOP USING
THEM.

7.1 PostgreSQL PostGIS Types

7.1.1 box2d

Name

box2d — A box composed of x min, ymin, xmax, ymax. Often used to return the 2d enclosing box of a geometry.

Description

box2d is a spatial data type used to represent the enclosing box of a geometry or set of geometries. ST_Extent in earlier versions
prior to PostGIS 1.4 would return a box2d.

7.1.2 box3d

Name

box3d — A box composed of x min, ymin, zmin, Xmax, ymax, zmax. Often used to return the 3d extent of a geometry or collection
of geometries.

Description

box3d is a postgis spatial data type used to represent the enclosing box of a geometry or set of geometries. ST_Extent3D returns
a box3d object.

PostGIS 1.5.5 Manual

54 /322

Casting Behavor

This section lists the automatic as well as explicit casts allowed for this data type

Cast To Behavior

box automatic
box2d automatic
geometry automatic

7.1.3 box3d_extent

Name

box3d_extent — A box composed of x min, ymin, zmin, Xmax, ymax, zmax. Often used to return the extent of a geometry.

Description

box3d_extent is a data type returned by ST_Extent. In versions prior to PostGIS 1.4, ST_Extent would return a box2d.

Casting Behavor

This section lists the automatic as well as explicit casts allowed for this data type

Cast To Behavior
box2d automatic
box3d automatic
geometry automatic
See Also
Section 8.5

7.1.4 geometry

Name

geometry — Planar spatial data type.

Description

geometry is a fundamental postgis spatial data type used to represent a feature in the Euclidean coordinate system.

Casting Behavor

This section lists the automatic as well as explicit casts allowed for this data type

Cast To Behavior

box automatic
box2d automatic
box3d automatic

PostGIS 1.5.5 Manual
55 /322

bytea automatic
geography automatic
text automatic
See Also
Section 4.1

7.1.5 geometry_dump

Name

geometry_dump — A spatial datatype with two fields - geom (holding a geometry object) and path[] (a 1-d array holding the
position of the geometry within the dumped object.)

Description

geometry_dump is a compound data type consisting of a geometry object referenced by the .geom field and path[] a 1-dimensional
integer array (starting at 1 e.g. path[1] to get first element) array that defines the navigation path within the dumped geometry to
find this element. It is used by the ST_Dump* family of functions as an output type to explode a more complex geometry into
its constituent parts and location of parts.

See Also

Section 8.4
7.1.6 geography
Name

geography — Ellipsoidal spatial data type.

Description

geography is a spatial data type used to represent a feature in the round-earth coordinate system.

Casting Behavor

This section lists the automatic as well as explicit casts allowed for this data type

Cast To Behavior
geometry explicit
See Also

Section 8.3,Section 4.2

PostGIS 1.5.5 Manual
56 /322

7.2 Management Functions

7.21 AddGeometryColumn

Name

AddGeometryColumn — Adds a geometry column to an existing table of attributes.

Synopsis

text AddGeometryColumn(varchar table_name, varchar column_name, integer srid, varchar type, integer dimension);

text AddGeometryColumn(varchar schema_name, varchar table_name, varchar column_name, integer srid, varchar type, inte-
ger dimension);

text AddGeometryColumn(varchar catalog_name, varchar schema_name, varchar table_name, varchar column_name, integer
srid, varchar type, integer dimension);

Description

Adds a geometry column to an existing table of attributes. The schema_name is the name of the table schema (unused for
pre-schema PostgreSQL installations). The srid must be an integer value reference to an entry in the SPATIAL_REF_SYS
table. The t ype must be an uppercase string corresponding to the geometry type, eg, ’'POLYGON’ or "MULTILINESTRING’.
An error is thrown if the schemaname doesn’t exist (or not visible in the current search_path) or the specified SRID, geometry
type, or dimension is invalid.

* Note
N"M Views and derivatively created spatial tables will need to be registered in geometry_columns manually, since AddGe-
ometryColumn also adds a spatial column which is not needed when you already have a spatial column. Refer to
Section 4.3.4.

/ This method implements the OpenGIS Simple Features Implementation Specification for SQL 1.1.
J This function supports 3d and will not drop the z-index.

/ This method supports Circular Strings and Curves

Examples

—— Create a new simple PostgreSQL table
postgis=# CREATE TABLE my_schema.my_spatial_table (id serial);

—— Describing the table shows a simple table with a single "id" column.
postgis=# \d my_schema.my_spatial_table
Table "my_schema.my_spatial_table"
Column | Type | Modifiers

id | integer | not null default nextval ('my_schema.my_spatial_ table_id_seq’::regclass)
—-— Add a spatial column to the table

postgis=# SELECT AddGeometryColumn (’my_schema’,’my_spatial_table’,’the_geom’,4326,’'POINT «
"1 2);

http://www.opengeospatial.org/standards/sfs

PostGIS 1.5.5 Manual
57 /322

—-—Add a curvepolygon
SELECT AddGeometryColumn (’my_schema’,’my_spatial_table’,’the_geomcp’,4326,’ CURVEPOLYGON <>
", 2);

—— Describe the table again reveals the addition of a new "the_geom" column.
postgis=# \d my_schema.my_spatial_table

Column | Type | Modifiers
____________ +__________+___
id | integer | not null default nextval ('my_schema.my_spatial_table_id_seqg’:: «
regclass)
the_geom | geometry |

the_geomcp | geometry |
Check constraints:

"enforce_dims_the_geom" CHECK (ndims (the_geom) = 2)
"enforce_dims_the_geomcp" CHECK (ndims (the_geomcp) = 2)
"enforce_geotype_the_geom" CHECK (geometrytype (the_geom) = ’'POINT’::text OR
the_geom IS NULL)
"enforce_geotype_the_geomcp" CHECK (geometrytype (the_geomcp) = ’'CURVEPOLYGON
"::text OR the_geomcp IS NULL)
"enforce_srid_the_geom" CHECK (srid(the_geom) = 4326)
"enforce_srid_the_geomcp" CHECK (srid(the_geomcp) = 4326)
See Also

DropGeometryColumn, DropGeometryTable, Section 4.3.4

7.2.2 DropGeometryColumn

Name

DropGeometryColumn — Removes a geometry column from a spatial table.

Synopsis

text DropGeometryColumn(varchar table_name, varchar column_name);
text DropGeometryColumn(varchar schema_name, varchar table_name, varchar column_name);
text DropGeometryColumn(varchar catalog_name, varchar schema_name, varchar table_name, varchar column_name);

Description

Removes a geometry column from a spatial table. Note that schema_name will need to match the f_table_schema field of the
table’s row in the geometry_columns table.

/ This method implements the OpenGIS Simple Features Implementation Specification for SQL 1.1.
/ This function supports 3d and will not drop the z-index.

/ This method supports Circular Strings and Curves

o

http://www.opengeospatial.org/standards/sfs

PostGIS 1.5.5 Manual
58 /322

Examples

SELECT DropGeometryColumn (’'my_schema’,’my_spatial_table’,’the_geomcp’);
—-———-RESULT output ---
my_schema.my_spatial_table.the_geomcp effectively removed.

See Also

AddGeometryColumn, DropGeometryTable

7.2.3 DropGeometryTable

Name

DropGeometryTable — Drops a table and all its references in geometry_columns.

Synopsis

boolean DropGeometryTable(varchar table_name);
boolean DropGeometryTable(varchar schema_name, varchar table_name);
boolean DropGeometryTable(varchar catalog_name, varchar schema_name, varchar table_name);

Description

Drops a table and all its references in geometry_columns. Note: uses current_schema() on schema-aware pgsql installations if
schema is not provided.

Examples

SELECT DropGeometryTable (’'my_schema’,’my_spatial_table’);
-——-RESULT output ——-—
my_schema.my_spatial_table dropped.

See Also

AddGeometryColumn, DropGeometryColumn

7.2.4 PostGIS Full Version

Name

PostGIS_Full_Version — Reports full postgis version and build configuration infos.

Synopsis

text PostGIS_Full_Version();

PostGIS 1.5.5 Manual
59 /322

Description

Reports full postgis version and build configuration infos.

Examples

SELECT PostGIS_Full_Version();
postgis_full_version

POSTGIS="1.3.3" GEOS="3.1.0-CAPI-1.5.0" PROJ="Rel. 4.4.9, 29 Oct 2004" USE_STATS
(1 row)

See Also

PostGIS_GEOS_ Version, PostGIS_Lib_Version, PostGIS_LibXML_ Version, PostGIS_PROJ_Version, PostGIS_Version

7.2.5 PostGIS GEOS Version

Name

PostGIS_GEOS_Version — Returns the version number of the GEOS library.

Synopsis

text PostGIS_GEQOS_Version();

Description

Returns the version number of the GEOS library, or NULL if GEOS support is not enabled.

Examples

SELECT PostGIS_GEOS_Version();
postgis_geos_version

3.1.0-CAPI-1.5.0
(1 row)

See Also

PostGIS_Full_Version, PostGIS_Lib_Version, PostGIS_LibXML_ Version, PostGIS_PROJ_Version, PostGIS_ Version

7.2.6 PostGIS_LibXML_Version

Name

PostGIS_LibXML_ Version — Returns the version number of the libxml2 library.

PostGIS 1.5.5 Manual
60 /322

Synopsis

text PostGIS_LibXML_Version();

Description

Returns the version number of the LibXML2 library.
Availability: 1.5

Examples

SELECT PostGIS_LibXML_Version () ;
postgis_libxml_version

2.7.6
(1 row)

See Also

PostGIS_Full_Version, PostGIS_Lib_Version, PostGIS_PROJ_Version, PostGIS_GEOS_Version, PostGIS_Version

7.2.7 PostGIS Lib Build Date

Name

PostGIS_Lib_Build_Date — Returns build date of the PostGIS library.

Synopsis

text PostGIS_Lib_Build_Date();

Description

Returns build date of the PostGIS library.

Examples

SELECT PostGIS_Lib_Build_Date();
postgis_lib_build_date

2008-06-21 17:53:21
(1 row)
7.2.8 PostGIS Lib_Version

Name

PostGIS_Lib_Version — Returns the version number of the PostGIS library.

PostGIS 1.5.5 Manual
61/322

Synopsis

text PostGIS_Lib_Version();

Description

Returns the version number of the PostGIS library.

Examples

SELECT PostGIS_Lib_Version();
postgis_lib_version

1.3.3
(1 row)

See Also

PostGIS_Full_Version, PostGIS_GEOS_Version, PostGIS_LibXML_Version, PostGIS_PROJ_Version, PostGIS_Version

7.2.9 PostGIS PROJ Version

Name

PostGIS_PROJ_Version — Returns the version number of the PROJ4 library.

Synopsis

text PostGIS_PROJ_Version();

Description

Returns the version number of the PROJ4 library, or NULL if PROJ4 support is not enabled.

Examples

SELECT PostGIS_PROJ_Version();
postgis_proj_version

See Also

PostGIS_Full_Version, PostGIS_GEOS_Version, PostGIS_Lib_Version, PostGIS_LibXML_Version, PostGIS_Version

PostGIS 1.5.5 Manual
62 /322

7.2.10 PostGIS_Scripts_Build_Date

Name

PostGIS_Scripts_Build_Date — Returns build date of the PostGIS scripts.

Synopsis

text PostGIS_Scripts_Build_Date();

Description

Returns build date of the PostGIS scripts.
Auvailability: 1.0.0RC1

Examples

SELECT PostGIS_Scripts_Build_Date();
postgis_scripts_build_date

2007-08-18 09:09:26
(1 row)

See Also

PostGIS_Full_Version, PostGIS_GEOS_ Version, PostGIS_Lib_Version, PostGIS_LibXML_ Version, PostGIS_ Version

7.2.11 PostGIS_Scripts_Installed

Name

PostGIS_Scripts_Installed — Returns version of the postgis scripts installed in this database.

Synopsis

text PostGIS_Scripts_Installed();

Description

Returns version of the postgis scripts installed in this database.

:rti'! Note
N If the output of this function doesn’t match the output of PostGIS_Scripts_Released you probably missed to properly
upgrade an existing database. See the Upgrading section for more info.

Availability: 0.9.0

PostGIS 1.5.5 Manual

63 /322
Examples
SELECT PostGIS_Scripts_Installed();
postgis_scripts_installed
1.5.0SVN
(1 row)
See Also
PostGIS_Full_Version, PostGIS_Scripts_Released, PostGIS_Version
7.2.12 PostGIS_Scripts_Released
Name
PostGIS_Scripts_Released — Returns the version number of the postgis.sql script released with the installed postgis lib.
Synopsis
text PostGIS_Scripts_Released();
Description
Returns the version number of the postgis.sql script released with the installed postgis lib.
N;“’! Note
Starting with version 1.1.0 this function returns the same value of PostGIS_Lib_Version. Kept for backward compatibil-
ity.

Auvailability: 0.9.0

Examples

SELECT PostGIS_Scripts_Released();
postgis_scripts_released

1.3.435VN
(1 row)

See Also

PostGIS_Full_Version, PostGIS_Scripts_Installed, PostGIS_Lib_Version

7.2.13 PostGIS Uses Stats

Name

PostGIS_Uses_Stats — Returns TRUE if STATS usage has been enabled.

PostGIS 1.5.5 Manual

64 /322

Synopsis

text PostGIS_Uses_Stats();

Description

Returns TRUE if STATS usage has been enabled, FALSE otherwise.

Examples

SELECT PostGIS_Uses_Stats();
postgis_uses_stats

See Also

PostGIS_Version

7.2.14 PostGIS Version

Name

PostGIS_Version — Returns PostGIS version number and compile-time options.

Synopsis

text PostGIS_Version();

Description

Returns PostGIS version number and compile-time options.

Examples

SELECT PostGIS_Version () ;
postgis_version

1.3 USE_GEOS=1 USE_PROJ=1 USE_STATS=1
(1 row)

See Also

PostGIS_Full_Version, PostGIS_GEOS_ Version,PostGIS_Lib_Version, PostGIS_LibXML_Version, PostGIS_PROJ_Version

PostGIS 1.5.5 Manual
65/322

7.2.15 Populate_Geometry_Columns

Name

Populate_Geometry_Columns — Ensures geometry columns have appropriate spatial constraints and exist in the geometry_-
columns table.

Synopsis

text Populate_Geometry_Columns();
int Populate_Geometry_Columns(oid relation_oid);

Description

Ensures geometry columns have appropriate spatial constraints and exist in the geometry_columns table. In particular, this
means that every geometry column belonging to a table has at least three constraints:

* enforce_dims_the_geom - ensures every geometry has the same dimension (see ST_NDims)

* enforce_geotype_the_geom - ensures every geometry is of the same type (see GeometryType)

* enforce_srid_the_geom - ensures every geometry is in the same projection (see ST_SRID)

If a table oid is provided, this function tries to determine the srid, dimension, and geometry type of all geometry columns in the

table, adding contraints as necessary. If successful, an appropriate row is inserted into the geometry_columns table, otherwise,
the exception is caught and an error notice is raised describing the problem.

If the oid of a view is provided, as with a table oid, this function tries to determine the srid, dimension, and type of all
the geometries in the view, inserting appropriate entries into the geometry_columns table, but nothing is done to enforce
contraints.

The parameterless variant is a simple wrapper for the parameterized variant that first truncates and repopulates the geome-
try_columns table for every spatial table and view in the database, adding spatial contraints to tables where appropriate. It returns
a summary of the number of geometry columns detected in the database and the number that were inserted into the geome-
try_columns table. The parameterized version simply returns the number of rows inserted into the geometry_columns
table.

Availability: 1.4.0

Examples

SELECT Populate_Geometry_Columns ('public.myspatial_table’::regclass);

See Also

Probe_Geometry_Columns

7.2.16 Probe_Geometry Columns

Name

Probe_Geometry_Columns — Scans all tables with PostGIS geometry constraints and adds them to the geometry_columns
table if they are not there.

PostGIS 1.5.5 Manual
66 /322

Synopsis

text Probe_Geometry_Columns();

Description

Scans all tables with PostGIS geometry constraints and adds them to the geomet ry_columns table if they are not there. Also
give stats on number of inserts and already present or possibly obsolete.

st¢} Note
N This will usually only pick up records added by AddGeometryColumn() function. It will not scan views so views will need
to be manually added to geometry_columns table.

Examples

SELECT Probe_Geometry_Columns () ;
probe_geometry_columns

probed:6 inserted:0 conflicts:6 stale:0
(1 row)

See Also

AddGeometryColumn

7.2.17 UpdateGeometrySRID

Name

UpdateGeometrySRID — Updates the SRID of all features in a geometry column, geometry_columns metadata and srid table
constraint

Synopsis

text UpdateGeometrySRID(varchar table_name, varchar column_name, integer srid);

text UpdateGeometrySRID(varchar schema_name, varchar table_name, varchar column_name, integer srid);

text UpdateGeometrySRID(varchar catalog_name, varchar schema_name, varchar table_name, varchar column_name, integer
srid);

Description

Updates the SRID of all features in a geometry column, updating constraints and reference in geometry_columns. Note: uses
current_schema() on schema-aware pgsql installations if schema is not provided.

/ This function supports 3d and will not drop the z-index.

J This method supports Circular Strings and Curves

PostGIS 1.5.5 Manual
67 /322

See Also

ST_SetSRID

7.3 Geometry Constructors

7.3.1 ST_BdPolyFromText

Name

ST_BdPolyFromText — Construct a Polygon given an arbitrary collection of closed linestrings as a MultiLineString Well-Known
text representation.

Synopsis

geometry ST_BdPolyFromText(text WKT, integer srid);

Description

Construct a Polygon given an arbitrary collection of closed linestrings as a MultiLineString Well-Known text representation.

:rti'! Note
N Throws an error if WKT is not a MULTILINESTRING. Throws an error if output is a MULTIPOLYGON; use

ST_BdMPolyFromText in that case, or see ST_BuildArea() for a postgis-specific approach.

/ This method implements the OpenGIS Simple Features Implementation Specification for SQL 1.1. $3.2.6.2
Auvailability: 1.1.0 - requires GEOS >=2.1.0.

Examples

Forthcoming

See Also

ST_BuildArea, ST_BdMPolyFromText

7.3.2 ST_BdMPolyFromText

Name

ST_BdMPolyFromText — Construct a MultiPolygon given an arbitrary collection of closed linestrings as a MultiLineString text
representation Well-Known text representation.

Synopsis

geometry ST_BdMPolyFromText(text WKT, integer srid);

http://www.opengeospatial.org/standards/sfs

PostGIS 1.5.5 Manual
68 /322

Description

Construct a Polygon given an arbitrary collection of closed linestrings, polygons, MultiLineStrings as Well-Known text repre-
sentation.

- Note
Nﬂ‘l"! Throws an error if WKT is not a MULTILINESTRING. Forces MULTIPOLYGON output even when result is really only
composed by a single POLYGON; use ST_BdPolyFromText if you're sure a single POLYGON will result from operation,
or see ST_BuildArea() for a postgis-specific approach.

/ This method implements the OpenGIS Simple Features Implementation Specification for SQL 1.1. s3.2.6.2
Awailability: 1.1.0 - requires GEOS >=2.1.0.

Examples

Forthcoming

See Also

ST_BuildArea, ST_BdPolyFromText

7.3.3 ST_GeogFromText

Name

ST_GeogFromText — Return a specified geography value from Well-Known Text representation or extended (WKT).

Synopsis

geography ST_GeogFromText(text EWKT);

Description

Returns a geography object from the well-known text or extended well-known representation. SRID 4326 is assumed. This is an
alias for ST_GeographyFromText

Examples

—-—— converting lon lat coords to geography
ALTER TABLE sometable ADD COLUMN geog geography (POINT,4326);
UPDATE sometable SET geog = ST_GeogFromText (/ SRID=4326;POINT (" || lon || " 7 || lat [] ")") «

’

See Also

ST_AsText,ST_GeographyFromText

http://www.opengeospatial.org/standards/sfs

PostGIS 1.5.5 Manual
69 /322

7.3.4 ST_GeographyFromText
Name

ST_GeographyFromText — Return a specified geography value from Well-Known Text representation or extended (WKT).

Synopsis

geography ST_GeographyFromText(text EWKT);

Description

Returns a geography object from the well-known text representation. SRID 4326 is assumed.

See Also

ST _AsText

7.3.5 ST_GeogFromWKB

Name

ST_GeogFromWKB - Creates a geography instance from a Well-Known Binary geometry representation (WKB) or extended
Well Known Binary (EWKB).

Synopsis

geography ST_GeogFromWKB(bytea geom);

Description

The ST_GeogFromWKB function, takes a well-known binary representation (WKB) of a geometry or PostGIS Extended WKB
and creates an instance of the appropriate geography type. This function plays the role of the Geometry Factory in SQL.

If SRID is not specified, it defaults to 4326 (WGS 84 long lat).

/ This method supports Circular Strings and Curves

Examples

—-Although bytea rep contains single \, these need to be escaped when inserting into a <«
table

SELECT ST_AsText (

ST_GeogFromWKB (E/ \\001\\002\\000\\000\\000\\002\\000\\000\\000\\037\\205\\353Q «
AN\270~\N\N\NNN300\\323Mb\\020X\\231C@\\020X9\\264 \\310~\\\\\\300) \\\\\\217\\302\\365\\230 «
cer)

st_astext

LINESTRING(-113.98 39.198,-113.981 39.195)
(1 row)

PostGIS 1.5.5 Manual
70/ 322

See Also

ST_GeogFromText, ST_AsBinary

7.3.6 ST_GeomCollFromText

Name

ST_GeomCollFromText — Makes a collection Geometry from collection WKT with the given SRID. If SRID is not give, it
defaults to -1.

Synopsis

geometry ST _GeomCollFromText(text WKT, integer srid);
geometry ST_GeomCollFromText(text WKT);

Description

Makes a collection Geometry from the Well-Known-Text (WKT) representation with the given SRID. If SRID is not give, it
defaults to -1.

OGC SPEC 3.2.6.2 - option SRID is from the conformance suite

Returns null if the WKT is not a GEOMETRYCOLLECTION

N:rtd Note

If you are absolutely sure all your WKT geometries are collections, don’t use this function. It is slower than
ST_GeomFromText since it adds an additional validation step.

/ This method implements the OpenGIS Simple Features Implementation Specification for SQL 1.1. $3.2.6.2

/ This method implements the SQL/MM specification.

Examples

SELECT ST_GeomCollFromText (' GEOMETRYCOLLECTION (POINT (1 2), LINESTRING(1 2, 3 4))');

See Also

ST _GeomFromText, ST _SRID

7.3.7 ST_GeomFromEWKB

Name

ST_GeomFromEWKB — Return a specified ST_Geometry value from Extended Well-Known Binary representation (EWKB).

http://www.opengeospatial.org/standards/sfs

PostGIS 1.5.5 Manual
71/322

Synopsis

geometry ST_GeomFromEWKB(bytea EWKB);

Description

Constructs a PostGIS ST_Geometry object from the OGC Extended Well-Known binary (EWKT) representation.

ote! Note
N The EWKB format is not an OGC standard, but a PostGIS specific format that includes the spatial reference system
(SRID) identifier

/ This function supports 3d and will not drop the z-index.

/ This method supports Circular Strings and Curves

Examples

line string binary rep Of LINESTRING(-71.160281 42.258729,-71.160837 42.259113,-71.161144 42.25932) in NAD 83 long lat
(4269).

;R'! Note
N NOTE: Even though byte arrays are delimited with \ and may have ’, we need to escape both out with \ and ”. So it does
not look exactly like its ASEWKB representation.

SELECT ST_GeomFromEWKB (E’\\001\\002\\000\\000 \\255\\020\\000\\000\\003\\000\\000\\000\\344 «
J=

A\\N013BA\3120\\300n\\303 (\\010\\036!ER’"\\277E’ 'K

\\3120\\300\\366{b\\235%x!E@\\225|\\354.P\\3120Q

\\300p\\231\\323el!EQ");

See Also

ST_AsBinary, ST_ASEWKB, ST_GeomFromWKB

7.3.8 ST_GeomFromEWKT

Name

ST_GeomFromEWKT — Return a specified ST_Geometry value from Extended Well-Known Text representation (EWKT).

Synopsis

geometry ST_GeomFromEWKT/(text EWKT);

PostGIS 1.5.5 Manual
72 /322

Description

Constructs a PostGIS ST_Geometry object from the OGC Extended Well-Known text (EWKT) representation.

o4} Note
N The EWKT format is not an OGC standard, but an PostGIS specific format that includes the spatial reference system
(SRID) identifier

/ This function supports 3d and will not drop the z-index.

/ This method supports Circular Strings and Curves

Examples

SELECT ST_GeomFromEWKT (/ SRID=4269; LINESTRING (-71.160281 42.258729,-71.160837 <«
42.259113,-71.161144 42.25932)");

SELECT ST_GeomFromEWKT (' SRID=4269; MULTILINESTRING ((-71.160281 42.258729,-71.160837 <«
42.259113,-71.161144 42.25932))");

SELECT ST_GeomFromEWKT (' SRID=4269; POINT (-71.064544 42.28787)");

SELECT ST_GeomFromEWKT (/ SRID=4269; POLYGON ((=71.1776585052917 <«
42.3902909739571,-71.1776820268866 42.3903701743239,

-71.1776063012595 42.3903825660754,-71.1775826583081 42.3903033653531,-71.1776585052917 <«
42.3902909739571)) ") ;

SELECT ST_GeomFromEWKT (/ SRID=4269; MULTIPOLYGON (((—-71.1031880899493 42.3152774590236,
—71.1031627617667 42.3152960829043,-71.102923838298 42.3149156848307,
—-71.1023097974109 42.3151969047397,-71.1019285062273 42.3147384934248,
—71.102505233663 42.3144722937587,-71.10277487471 42.3141658254797,
—71.103113945163 42.3142739188902,-71.10324876416 42.31402489987,
—-71.1033002961013 42.3140393340215,-71.1033488797549 42.3139495090772,
-71.103396240451 42.3138632439557,-71.1041521907712 42.3141153348029,
—71.1041411411543 42.3141545014533,-71.1041287795912 42.3142114839058,
—71.1041188134329 42.3142693656241,-71.1041112482575 42.3143272556118,
-71.1041072845732 42.3143851580048,-71.1041057218871 42.3144430686681,
-71.1041065602059 42.3145009876017,-71.1041097995362 42.3145589148055,
—-71.1041166403905 42.3146168544148,-71.1041258822717 42.3146748022936,
—-71.1041375307579 42.3147318674446,-71.1041492906949 42.3147711126569,
-71.1041598612795 42.314808571739,-71.1042515013869 42.3151287620809,
-71.1041173835118 42.3150739481917,-71.1040809891419 42.3151344119048,
—-71.1040438678912 42.3151191367447,-71.1040194562988 42.3151832057859,
—-71.1038734225584 42.3151140942995,-71.1038446938243 42.3151006300338,
-71.1038315271889 42.315094347535,-71.1037393329282 42.315054824985,
—71.1035447555574 42.3152608696313,-71.1033436658644 42.3151648370544,
—-71.1032580383161 42.3152269126061,-71.103223066939 42.3152517403219,
—-71.1031880899493 42.315277459023¢6)),
((=71.1043632495873 42.315113108546,-71.1043583974082 42.3151211109857,
—71.1043443253471 42.3150676015829,-71.1043850704575 42.3150793250568,-71.1043632495873 <«
42.315113108546)))");

—-3d circular string
SELECT ST_GeomFromEWKT (/ CIRCULARSTRING (220268 150415 1,220227 150505 2,220227 150406 3)’);

PostGIS 1.5.5 Manual
73/322

See Also

ST _AsEWKT, ST_GeomFromText, ST_GeomFromEWKT

7.3.9 ST_GeometryFromText

Name

ST_GeometryFromText — Return a specified ST_Geometry value from Well-Known Text representation (WKT). This is an alias
name for ST_GeomFromText

Synopsis

geometry ST_GeometryFromText(text WKT);
geometry ST_GeometryFromText(text WKT, integer srid);

Description

/ This method implements the OpenGIS Simple Features Implementation Specification for SQL 1.1.

/ This method implements the SQL/MM specification. SQL-MM 3: 5.1.40

See Also

ST GeomFromText

7.3.10 ST _GeomFromGML

Name

ST_GeomFromGML — Takes as input GML representation of geometry and outputs a PostGIS geometry object

Synopsis

geometry ST_GeomFromGML(text geomgml);

Description

Constructs a PostGIS ST_Geometry object from the OGC GML representation.
ST_GeomFromGML works only for GML Geometry fragments. It throws an error if you try to use it on a whole GML document.

OGC GML versions supported:

* GML 3.2.1 Namespace
* GML 3.1.1 Simple Features profile SF-2 (with GML 3.1.0 and 3.0.0 backward compatibility)
* GML2.1.2

http://www.opengeospatial.org/standards/sfs

PostGIS 1.5.5 Manual
74 /322

OGC GML standards, cf: http://www.opengeospatial.org/standards/gml:
Availability: 1.5

/ This function supports 3d and will not drop the z-index.

GML allow mixed dimensions (2D and 3D inside the same MultiGeometry for instance). As PostGIS geometries don’t,
ST_GeomFromGML convert the whole geometry to 2D if a missing Z dimension is found once.

GML support mixed SRS inside the same MultiGeometry. As PostGIS geometries don’t, ST_GeomFromGML, in this case,
reproject all subgeometries to the SRS root node. If no srsName attribute available for the GML root node, the function throw an
error.

ST_GeomFromGML function is not pedantic about an explicit GML namespace. You could avoid to mention it explicitly for
common usages. But you need it if you want to use XLink feature inside GML.

N;ﬂ"! Note

ST_GeomFromGML function not support SQL/MM curves geometries.

Examples - A single geometry with srsName

SELECT ST_GeomFromGML (”
<gml:LineString srsName="EPSG:4269">
<gml:coordinates>
-71.16028,42.258729 -71.160837,42.259112 -71.161143,42.25932
</gml:coordinates>
</gml:LineString>’);

Examples - XLink usage

ST_GeomFromGML (’
<gml:LineString xmlns:gml="http://www.opengis.net/gml"
xmlns:x1link="http://www.w3.0rg/1999/x1ink"
srsName="urn:ogc:def:crs:EPSG: :4269">
<gml:pointProperty>
<gml:Point gml:id="pl"><gml:pos>42.258729 -71.16028</gml:pos></gml:Point>
</gml:pointProperty>
<gml:pos>42.259112 -71.160837</gml:pos>
<gml:pointProperty>
<gml:Point xlink:type="simple" xlink:href="#pl"/>
</gml:pointProperty>
</gml:LineString>"););

See Also

ST_AsGML
ST_GMLToSQL

7.3.11 ST_GeomFromKML

Name

ST_GeomFromKML - Takes as input KML representation of geometry and outputs a PostGIS geometry object

http://www.opengeospatial.org/standards/gml

PostGIS 1.5.5 Manual
75/ 322

Synopsis

geometry ST_GeomFromKML(text geomkml);

Description

Constructs a PostGIS ST_Geometry object from the OGC KML representation.
ST_GeomFromKML works only for KML Geometry fragments. It throws an error if you try to use it on a whole KML document.

OGC KML versions supported:
e KML 2.2.0 Namespace
OGC KML standards, cf: http://www.opengeospatial.org/standards/kml:

Auvailability: 1.5

/ This function supports 3d and will not drop the z-index.

Not¢ Note
ST_GeomFromKML function not support SQL/MM curves geometries.

Examples - A single geometry with srsName

SELECT ST_GeomFromKML (’
<LineString>
<coordinates>-71.1663,42.2614
-71.1667,42.2616</coordinates>
</LineString>’);

See Also
ST _AsKML

7.3.12 ST_GMLToSQL

Name

ST_GMLToSQL — Return a specified ST_Geometry value from GML representation. This is an alias name for ST_GeomFromGML

Synopsis

geometry ST_GMLToSQL(text geomgml);

Description

/ This method implements the SQL/MM specification. SQL-MM 3: 5.1.50 (except for curves support).
Auvailability: 1.5

http://www.opengeospatial.org/standards/kml

PostGIS 1.5.5 Manual
76 /322

See Also

ST_GeomFromGML
ST_AsGML
7.3.13 ST_GeomFromText

Name

ST_GeomFromText — Return a specified ST_Geometry value from Well-Known Text representation (WKT).

Synopsis

geometry ST_GeomFromText(text WKT);
geometry ST_GeomFromText(text WKT, integer srid);

Description

Constructs a PostGIS ST_Geometry object from the OGC Well-Known text representation.

B Note
NO‘H’! There are 2 variants of ST_GeomFromText function, the first takes no SRID and returns a geometry with no defined
spatial reference system. The second takes a spatial reference id as the second argument and returns an ST_Geometry
that includes this srid as part of its meta-data. The srid must be defined in the spatial_ref_sys table.

/ This method implements the OpenGIS Simple Features Implementation Specification for SQL 1.1. $3.2.6.2 - option SRID
is from the conformance suite.

/ This method implements the SQL/MM specification. SQL-MM 3: 5.1.40

/ This method supports Circular Strings and Curves

Examples

SELECT ST_GeomFromText (' LINESTRING(-71.160281 42.258729,-71.160837 42.259113,-71.161144 <«

42.25932)7);
SELECT ST_GeomFromText (' LINESTRING(-71.160281 42.258729,-71.160837 42.259113,-71.161144 <«
42.25932)",4269) ;

SELECT ST_GeomFromText ('MULTILINESTRING((-71.160281 42.258729,-71.160837 <«
42.259113,-71.161144 42.25932))");

SELECT ST_GeomFromText ("POINT (-71.064544 42.28787)");

SELECT ST_GeomFromText (' POLYGON ((-71.1776585052917 42.3902909739571,-71.1776820268866 <+
42.3903701743239,
-71.1776063012595 42.3903825660754,-71.1775826583081 42.3903033653531,-71.1776585052917 <«

42.3902909739571))");

SELECT ST_GeomFromText ('MULTIPOLYGON (((—-71.1031880899493 42.3152774590236,
-71.1031627617667 42.3152960829043,-71.102923838298 42.3149156848307,

http://www.opengeospatial.org/standards/sfs

PostGIS 1.5.5 Manual
77 1322

-71.1023097974109 42.3151969047397,-71.1019285062273 42.3147384934248,
—71.102505233663 42.3144722937587,-71.10277487471 42.3141658254797,
—71.103113945163 42.3142739188902,-71.10324876416 42.31402489987,
-71.1033002961013 42.3140393340215,-71.1033488797549 42.3139495090772,
-71.103396240451 42.3138632439557,-71.1041521907712 42.3141153348029,
—-71.1041411411543 42.3141545014533,-71.1041287795912 42.3142114839058,
—71.1041188134329 42.3142693656241,-71.1041112482575 42.3143272556118,
-71.1041072845732 42.3143851580048,-71.1041057218871 42.3144430686681,
-71.1041065602059 42.3145009876017,-71.1041097995362 42.3145589148055,
-71.1041166403905 42.3146168544148,-71.1041258822717 42.3146748022936,
—-71.1041375307579 42.3147318674446,-71.1041492906949 42.3147711126569,
—-71.1041598612795 42.314808571739,-71.1042515013869 42.3151287620809,
-71.1041173835118 42.3150739481917,-71.1040809891419 42.3151344119048,
—71.1040438678912 42.3151191367447,-71.1040194562988 42.3151832057859,
—-71.1038734225584 42.3151140942995,-71.1038446938243 42.3151006300338,
—71.1038315271889 42.315094347535,-71.1037393329282 42.315054824985,
—71.1035447555574 42.3152608696313,-71.1033436658644 42.3151648370544,
—-71.1032580383161 42.3152269126061,-71.103223066939 42.3152517403219,
-71.1031880899493 42.3152774590236)),
((=71.1043632495873 42.315113108546,-71.1043583974082 42.3151211109857,
—-71.1043443253471 42.3150676015829,-71.1043850704575 42.3150793250568,-71.1043632495873 <«
42.315113108546)))"’,4326);

SELECT ST_GeomFromText (' CIRCULARSTRING (220268 150415,220227 150505,220227 150406)");

See Also

ST _GeomFromEWKT, ST _GeomFromWKB, ST_SRID

7.3.14 ST_GeomFromWKB

Name

ST_GeomFromWKB - Creates a geometry instance from a Well-Known Binary geometry representation (WKB) and optional
SRID.

Synopsis

geometry ST _GeomFromWKB(bytea geom);
geometry ST_GeomFromWKB(bytea geom, integer srid);

Description
The ST_GeomFromWKB function, takes a well-known binary representation of a geometry and a Spatial Reference System ID

(SRID) and creates an instance of the appropriate geometry type. This function plays the role of the Geometry Factory in SQL.
This is an alternate name for ST_WKBToSQL.

If SRID is not specified, it defaults to -1 (Unknown).

/ This method implements the OpenGIS Simple Features Implementation Specification for SQL 1.1. s3.2.7.2 - the optional
SRID is from the conformance suite

/ This method implements the SQL/MM specification. SQL-MM 3: 5.1.41

/ This method supports Circular Strings and Curves

http://www.opengeospatial.org/standards/sfs

PostGIS 1.5.5 Manual
78 /322

Examples

—-—-Although bytea rep contains single \, these need to be escaped when inserting into a
table

SELECT ST_ASEWKT (

ST_GeomFromWKB (E/ \\001\\002\\000\\000\\000\\002\\000\\000\\000\\037\\205\\3530Q0 «
A\270~N\N\N\NN300\\323Mb\\020X\\231C@\\020X9\\264 \\310~\\\\\\300) \\\\\\N217\\302\\365\\230
CQ’,4326)

st_asewkt

SRID=4326; LINESTRING (-113.98 39.198,-113.981 39.195)
(1 row)

SELECT
ST_AsText (
ST_GeomFromWKB (
ST_ASEWKB (' POINT (2 5)’ ::geometry)
)
)i

st_astext

POINT (2 5)
(1 row)

See Also

ST_WKBToSQL, ST_AsBinary, ST_GeomFromEWKB

7.3.15 ST_LineFromMultiPoint

Name

ST_LineFromMultiPoint — Creates a LineString from a MultiPoint geometry.

Synopsis

geometry ST_LineFromMultiPoint(geometry aMultiPoint);

Description

Creates a LineString from a MultiPoint geometry.

/ This function supports 3d and will not drop the z-index.

Examples

—-—Create a 3d line string from a 3d multipoint

SELECT ST_ASEWKT (ST_LineFromMultiPoint (ST_GeomFromEWKT (MULTIPOINT (1 2 3, 4 5 6, 7 8 9)7))) «
;

——result--

LINESTRING(1 2 3,4 5 6,7 8 9)

PostGIS 1.5.5 Manual
79 /322

See Also

ST_AsSEWKT, ST_Collect,ST_MakeLine

7.3.16 ST_LineFromText
Name

ST_LineFromText — Makes a Geometry from WKT representation with the given SRID. If SRID is not given, it defaults to -1.

Synopsis

geometry ST_LineFromText(text WKT);
geometry ST_LineFromText(text WKT, integer srid);

Description

Makes a Geometry from WKT with the given SRID. If SRID is not give, it defaults to -1. If WKT passed in is not a LINESTRING,
then null is returned.

Nott Note
OGC SPEC 3.2.6.2 - option SRID is from the conformance suite.

4 Note
N If you know all your geometries are LINESTRINGS, its more efficient to just use ST_GeomFromText. This just calls
ST_GeomFromText and adds additional validation that it returns a linestring.

/ This method implements the OpenGIS Simple Features Implementation Specification for SQL 1.1. $3.2.6.2

/ This method implements the SQL/MM specification. SQL-MM 3: 7.2.8

Examples

SELECT ST_LineFromText (' LINESTRING(1 2, 3 4)’) AS aline, ST_LineFromText ('POINT (1l 2)’) AS <«
null_return;

aline | null_return
010200000002000000000000000000F ... | t
See Also

ST _GeomFromText

http://www.opengeospatial.org/standards/sfs

PostGIS 1.5.5 Manual
80 /322

7.3.17 ST_LineFromWKB

Name

ST_LineFromWKB — Makes a LINESTRING from WKB with the given SRID

Synopsis

geometry ST_LineFromWKB(bytea WKB);
geometry ST_LineFromWKB(bytea WKB, integer srid);

Description

The ST_LineFromWKB function, takes a well-known binary representation of geometry and a Spatial Reference System ID
(SRID) and creates an instance of the appropriate geometry type - in this case, a LINESTRING geometry. This function plays
the role of the Geometry Factory in SQL.

If an SRID is not specified, it defaults to -1. NULL is returned if the input bytea does not represent a LINESTRING.

Not¥ Note
OGC SPEC 3.2.6.2 - option SRID is from the conformance suite.

o400 Note
N If you know all your geometries are LINESTRINGS, its more efficient to just use ST_GeomFromWKB. This function
just calls ST_GeomFromWKB and adds additional validation that it returns a linestring.

/ This method implements the OpenGIS Simple Features Implementation Specification for SQL 1.1. $3.2.6.2

/ This method implements the SQL/MM specification. SQL-MM 3: 7.2.9

Examples

SELECT ST_LineFromWKB (ST_AsBinary (ST_GeomFromText (' LINESTRING(1 2, 3 4)’))) AS aline,

ST_LineFromWKB (ST_AsBinary (ST_GeomFromText ("POINT (1 2)’))) IS NULL AS null_return;
aline | null_return
010200000002000000000000000000F ... | t
See Also

ST_GeomFromWKB, ST_LinestringFromWKB

7.3.18 ST_LinestringFromWKB

Name

ST_LinestringFromWKB — Makes a geometry from WKB with the given SRID.

http://www.opengeospatial.org/standards/sfs

PostGIS 1.5.5 Manual
81/322

Synopsis

geometry ST_LinestringFromWKB(bytea WKB);
geometry ST_LinestringFromWKB(bytea WKB, integer srid);

Description

The ST_LinestringFromWKB function, takes a well-known binary representation of geometry and a Spatial Reference Sys-
tem ID (SRID) and creates an instance of the appropriate geometry type - in this case, a LINESTRING geometry. This function
plays the role of the Geometry Factory in SQL.

If an SRID is not specified, it defaults to -1. NULL is returned if the input byt ea does not represent a LINESTRING geometry.
This an alias for ST LineFromWKB.

Not Note
OGC SPEC 3.2.6.2 - optional SRID is from the conformance suite.

Note
If you know all your geometries are LINESTRINGS, it's more efficient to just use ST_GeomFromWKB. This function
just calls ST_GeomFromWKB and adds additional validation that it returns a LINESTRING.

/ This method implements the OpenGIS Simple Features Implementation Specification for SQL 1.1. $3.2.6.2

/ This method implements the SQL/MM specification. SQL-MM 3: 7.2.9

Examples

SELECT
ST_LineStringFromWKB (
ST_AsBinary (ST_GeomFromText (' LINESTRING(1 2, 3 4)'))
) AS aline,
ST_LinestringFromWKB (
ST_AsBinary (ST_GeomFromText (' POINT (1 2)'))
) IS NULL AS null_return;

aline | null_return
010200000002000000000000000000F ... | t
See Also

ST_GeomFromWKB, ST LineFromWKB

7.3.19 ST_MakeBox2D

Name

ST_MakeBox2D — Creates a BOX2D defined by the given point geometries.

http://www.opengeospatial.org/standards/sfs

PostGIS 1.5.5 Manual
82 /322

Synopsis

box2d ST_MakeBox2D(geometry pointLowLeft, geometry pointUpRight);

Description

Creates a BOX2D defined by the given point geometries. This is useful for doing range queries

Examples

——Return all features that fall reside or partly reside in a US national atlas coordinate <«
bounding box

——It is assumed here that the geometries are stored with SRID = 2163 (US National atlas <«
equal area)

SELECT feature_id, feature_name, the_geom

FROM features

WHERE the_geom && ST_SetSRID (ST_MakeBox2D (ST_Point (-989502.1875, 528439.5625),

ST_Point (-987121.375 ,529933.1875)),2163)

See Also

ST _MakePoint, ST_Point, ST_SetSRID, ST_SRID

7.3.20 ST_MakeBox3D

Name

ST_MakeBox3D — Creates a BOX3D defined by the given 3d point geometries.

Synopsis

box3d ST_MakeBox3D(geometry point3DLowLeftBottom, geometry point3DUpRightTop);

Description

Creates a BOX3D defined by the given 2 3D point geometries.

/ This function supports 3d and will not drop the z-index.

Examples

SELECT ST_MakeBox3D (ST_MakePoint (-989502.1875, 528439.5625, 10),
ST_MakePoint (-987121.375 ,529933.1875, 10)) As abb3d

==Iglo Jel==

BOX3D (-989502.1875 528439.5625 10,-987121.375 529933.1875 10)

PostGIS 1.5.5 Manual
83 /322

See Also

ST_MakePoint, ST_SetSRID, ST_SRID

7.3.21 ST_MakelLine

Name

ST_MakeLine — Creates a Linestring from point geometries.

Synopsis

geometry ST_MakeLine(geometry set pointfield);
geometry ST_MakeLine(geometry pointl, geometry point2);
geometry ST_MakeLine(geometry[] point_array);

Description

ST_MakeLine comes in 3 forms: a spatial aggregate that takes rows of point geometries and returns a line string, a function that
takes an array of points, and a regular function that takes two point geometries. You might want to use a subselect to order points
before feeding them to the aggregate version of this function.

J This function supports 3d and will not drop the z-index.

Availability: 1.4.0 - ST_MakeLine(geomarray) was introduced. ST_MakeLine aggregate functions was enhanced to handle more
points faster.

Examples: Spatial Aggregate version

This example takes a sequence of GPS points and creates one record for each gps travel where the geometry field is a line string
composed of the gps points in the order of the travel.

—-— For pre-PostgreSQL 9.0 - this usually works,
—— but the planner may on occasion choose not to respect the order of the subquery
SELECT gps.gps_track, ST_MakeLine (gps.the_geom) As newgeom
FROM (SELECT gps_track,gps_time, the_geom
FROM gps_points ORDER BY gps_track, gps_time) As gps
GROUP BY gps.gps_track;

—-— If you are using PostgreSQL 9.0+

—-— (you can use the new ORDER BY support for aggregates)

—— this is a guaranteed way to get a correctly ordered linestring

—— Your order by part can order by more than one column if needed

SELECT gps.gps_track, ST_MakelLine (gps.the_geom ORDER BY gps_time) As newgeom
FROM gps_points As gps
GROUP BY gps.gps_track;

Examples: Non-Spatial Aggregate version

First example is a simple one off line string composed of 2 points. The second formulates line strings from 2 points a user draws.
The third is a one-off that joins 2 3d points to create a line in 3d space.

PostGIS 1.5.5 Manual
84 /322

SELECT ST_AsText (ST_MakeLine (ST_MakePoint (1,2), ST_MakePoint (3,4)));
st_astext

LINESTRING (1 2,3 4)

SELECT userpoints.id, ST_Makeline (startpoint, endpoint) As drawn_line
FROM userpoints ;

SELECT ST_ASEWKT (ST_MakeLine (ST_MakePoint (1,2,3), ST_MakePoint (3,4,5)));
st_asewkt

LINESTRING(1 2 3,3 4 5)

Examples: Using Array version

SELECT ST_MakeLine (ARRAY (SELECT ST_Centroid(the_geom) FROM visit_locations ORDER BY <«
visit_time));

—--Making a 3d line with 3 3-d points
SELECT ST_ASEWKT (ST_MakeLine (ARRAY [ST_MakePoint (1,2, 3),

ST_MakePoint (3,4,5), ST_MakePoint (6,6,6)]1));
st_asewkt

LINESTRING(1 2 3,3 4 5,6 6 6)

See Also

ST _ASEWKT, ST _AsText, ST_GeomFromText, ST _MakePoint

7.3.22 ST_MakeEnvelope

Name

ST_MakeEnvelope — Creates a rectangular Polygon formed from the given minimums and maximums. Input values must be in
SRS specified by the SRID.

Synopsis

geometry ST_MakeEnvelope(double precision xmin, double precision ymin, double precision xmax, double precision ymax,
integer srid);

Description

Creates a rectangular Polygon formed from the minima and maxima. by the given shell. Input values must be in SRS specified
by the SRID.

Availability: 1.5

PostGIS 1.5.5 Manual
85 /322

Example: Building a bounding box polygon

SELECT ST_AsText (ST_MakeEnvelope (10, 10, 11, 11, 4326));

st_asewkt

POLYGON((10 10, 10 11, 11 11, 11 10, 10 10))

See Also

ST_MakePoint, ST_MakeLine, ST_MakePolygon

7.3.23 ST_MakePolygon

Name

ST_MakePolygon — Creates a Polygon formed by the given shell. Input geometries must be closed LINESTRINGS.

Synopsis

geometry ST_MakePolygon(geometry linestring);

geometry ST_MakePolygon(geometry outerlinestring, geometry[] interiorlinestrings);

Description

Creates a Polygon formed by the given shell. Input geometries must be closed LINESTRINGS. Comes in 2 variants.
Variant 1: takes one closed linestring.

Variant 2: Creates a Polygon formed by the given shell and array of holes. You can construct a geometry array using ST_Accum
or the PostgreSQL ARRAY(] and ARRAY() constructs. Input geometries must be closed LINESTRINGS.

Not¢ Note
This function will not accept a MULTILINESTRING. Use ST_LineMerge or ST_Dump to generate line strings.

/ This function supports 3d and will not drop the z-index.

Examples: Single closed LINESTRING

--2d line

SELECT ST_MakePolygon (ST_GeomFromText (/ LINESTRING (75.15 29.53,77 29,77.6 29.5, 75.15 29.53) <«
"))

—-If linestring is not closed

—-—-you can add the start point to close it

SELECT ST_MakePolygon (ST_AddPoint (foo.open_line, ST_StartPoint (foo.open_line)))

FROM (

SELECT ST_GeomFromText (' LINESTRING(75.15 29.53,77 29,77.6 29.5)’) As open_line) As foo;

—-3d closed line

PostGIS 1.5.5 Manual
86 /322

SELECT ST_MakePolygon (ST_GeomFromText (/ LINESTRING(75.15 29.53 1,77 29 1,77.6 29.5 1, 75.15
29.53 1)"));

st_asewkt

POLYGON ((75.15 29.53 1,77 29 1,77.6 29.5 1,75.15 29.53 1))

—--measured line —-—
SELECT ST_MakePolygon (ST_GeomFromText (/ LINESTRINGM (75.15 29.53 1,77 29 1,77.6 29.5 2, 75.15 «>
29.53 2)"));

st_asewkt

POLYGONM ((75.15 29.53 1,77 29 1,77.6 29.5 2,75.15 29.53 2))

Examples: Outter shell with inner shells

Build a donut with an ant hole

SELECT ST_MakePolygon (
ST_ExteriorRing (ST_Buffer (foo.line, 10)),
ARRAY [ST_Translate (foo.line,1,1),
ST_ExteriorRing (ST_Buffer (ST_MakePoint (20,20),1))]
)
FROM
(SELECT ST_ExteriorRing(ST_Buffer (ST_MakePoint (10,10),10,10))
As line)
As foo;

Build province boundaries with holes representing lakes in the province from a set of province polygons/multipolygons and water
line strings this is an example of using PostGIS ST_Accum

Not Note
The use of CASE because feeding a null array into ST_MakePolygon results in NULL

i

Not? Note

the use of left join to guarantee we get all provinces back even if they have no lakes

SELECT p.gid, p.province_name,
CASE WHEN
ST_Accum (w.the_geom) IS NULL THEN p.the_geom
ELSE ST_MakePolygon (ST_LineMerge (ST_Boundary (p.the_geom)), ST_Accum(w.the_geom)) END
FROM
provinces p LEFT JOIN waterlines w
ON (ST_Within(w.the_geom, p.the_geom) AND ST_IsClosed(w.the_geom))
GROUP BY p.gid, p.province_name, p.the_geom;

—-Same example above but utilizing a correlated subquery
——and PostgreSQL built-in ARRAY () function that converts a row set to an array

SELECT p.gid, @p.province_name, CASE WHEN
EXISTS (SELECT w.the_geom
FROM waterlines w

PostGIS 1.5.5 Manual
87 /322

WHERE ST_Within(w.the_geom, p.the_geom)
AND ST_IsClosed(w.the_geom))
THEN
ST_MakePolygon (ST_LineMerge (ST_Boundary (p.the_geom)),
ARRAY (SELECT w.the_geom
FROM waterlines w
WHERE ST_Within (w.the_geom, p.the_geom)
AND ST_IsClosed(w.the_geom)))
ELSE p.the_geom END As the_geom
FROM
provinces p;

See Also

ST_Accum, ST_AddPoint, ST_GeometryType, ST_IsClosed, ST_LineMerge

7.3.24 ST_MakePoint

Name

ST_MakePoint — Creates a 2D,3DZ or 4D point geometry.

Synopsis

geometry ST_MakePoint(double precision x, double precision y);
geometry ST_MakePoint(double precision x, double precision y, double precision z);

geometry ST_MakePoint(double precision x, double precision y, double precision z, double precision m);

Description

Creates a 2D,3DZ or 4D point geometry (geometry with measure). ST_MakePoint while not being OGC compliant is generally
faster and more precise than ST_GeomFromText and ST_PointFromText. It is also easier to use if you have raw coordinates rather
than WKT.

LS

Not? Note

Note x is longitude and y is latitude

i

Not? Note

Use ST_MakePointM if you need to make a point with x,y,m.

/ This function supports 3d and will not drop the z-index.

PostGIS 1.5.5 Manual
88 /322

Examples

——Return point with unknown SRID
SELECT ST_MakePoint (-71.1043443253471, 42.3150676015829) ;

—--Return point marked as WGS 84 long lat
SELECT ST_SetSRID(ST_MakePoint (-71.1043443253471, 42.3150676015829),4326);

—-—-Return a 3D point (e.g. has altitude)
SELECT ST_MakePoint (1, 2,1.5);

-—-Get z of point
SELECT ST_Z (ST_MakePoint (1, 2,1.5));
result

See Also

ST_GeomFromText, ST PointFromText, ST _SetSRID, ST MakePointM

7.3.25 ST_MakePointM

Name

ST_MakePointM — Creates a point geometry with an x y and m coordinate.

Synopsis

geometry ST_MakePointM(float x, float y, float m);

Description

Creates a point with x, y and measure coordinates.

N;‘l"! Note

Note x is longitude and y is latitude.

Examples

We use ST_ASEWKT in these examples to show the text representation instead of ST_AsText because ST_AsText does not
support returning M.

——Return EWKT representation of point with unknown SRID
SELECT ST_ASEWKT (ST_MakePointM(-71.1043443253471, 42.3150676015829, 10));

—--result
st_asewkt

POINTM(-71.1043443253471 42.3150676015829 10)

PostGIS 1.5.5 Manual
89 /322

——Return EWKT representation of point with measure marked as WGS 84 long lat
SELECT ST_ASEWKT (ST_SetSRID (ST_MakePointM(-71.1043443253471, 42.3150676015829,10),4326));

st_asewkt

SRID=4326;POINTM(-71.1043443253471 42.3150676015829 10)

—-—Return a 3d point (e.g. has altitude)
SELECT ST_MakePoint (1, 2,1.5);

—-—Get m of point
SELECT ST_M(ST_MakePointM(-71.1043443253471, 42.3150676015829,10));
result

See Also

ST_ASEWKT, ST_MakePoint, ST_SetSRID

7.3.26 ST_MLineFromText

Name

ST_MLineFromText — Return a specified ST_MultiLineString value from WKT representation.

Synopsis

geometry ST_MULineFromText(text WKT, integer srid);
geometry ST_MLineFromText(text WKT);

Description

Makes a Geometry from Well-Known-Text (WKT) with the given SRID. If SRID is not give, it defaults to -1.
OGC SPEC 3.2.6.2 - option SRID is from the conformance suite
Returns null if the WKT is not a MULTILINESTRING

N;‘R’! Note
If you are absolutely sure all your WKT geometries are points, don't use this function. It is slower than
ST_GeomFromText since it adds an additional validation step.

/ This method implements the OpenGIS Simple Features Implementation Specification for SQL 1.1. $3.2.6.2

/ This method implements the SQL/MM specification.SQL-MM 3: 9.4.4

Examples

SELECT ST_MLineFromText (' MULTILINESTRING((1 2, 3 4), (4 5, 6 7))");

http://www.opengeospatial.org/standards/sfs

PostGIS 1.5.5 Manual
90 /322

See Also

ST_GeomFromText

7.3.27 ST_MPointFromText

Name

ST_MPointFromText — Makes a Geometry from WKT with the given SRID. If SRID is not give, it defaults to -1.

Synopsis

geometry ST_MPointFromText(text WKT, integer srid);
geometry ST_MPointFromText(text WKT);

Description

Makes a Geometry from WKT with the given SRID. If SRID is not give, it defaults to -1.
OGC SPEC 3.2.6.2 - option SRID is from the conformance suite
Returns null if the WKT is not a MULTIPOINT

N;l"! Note

If you are absolutely sure all your WKT geometries are points, don’t use this function. It is slower than
ST_GeomFromText since it adds an additional validation step.

/ This method implements the OpenGIS Simple Features Implementation Specification for SQL 1.1. 3.2.6.2
/ This method implements the SQL/MM specification. SQL-MM 3: 9.2.4

Examples

SELECT ST_MPointFromText (MULTIPOINT (1 2, 3 4)');
SELECT ST_MPointFromText (' MULTIPOINT (-70.9590 42.1180, -70.9611 42.1223)’, 4326);

See Also

ST _GeomFromText

7.3.28 ST_MPolyFromText

Name

ST_MPolyFromText — Makes a MultiPolygon Geometry from WKT with the given SRID. If SRID is not give, it defaults to -1.

http://www.opengeospatial.org/standards/sfs

PostGIS 1.5.5 Manual
91/322

Synopsis

geometry ST_MPolyFromText(text WKT, integer srid);
geometry ST_MPolyFromText(text WKT);

Description

Makes a MultiPolygon from WKT with the given SRID. If SRID is not give, it defaults to -1.
OGC SPEC 3.2.6.2 - option SRID is from the conformance suite
Throws an error if the WKT is not a MULTIPOLY GON

. Note
Note
If you are absolutely sure all your WKT geometries are multipolygons, don’t use this function. It is slower than
ST_GeomFromText since it adds an additional validation step.

/ This method implements the OpenGIS Simple Features Implementation Specification for SQL 1.1. $3.2.6.2

/ This method implements the SQL/MM specification. SQL-MM 3: 9.6.4

Examples

SELECT ST_MPolyFromText (' MULTIPOLYGON(((O O 1,20 0 1,20 20 1,0 20 1,0 O0 1),(5 5 3,5 7 3,7 7 «
3,75 3,55 3)))");

SELECt ST_MPolyFromText ("MULTIPOLYGON (((-70.916 42.1002,-70.9468 42.0946,-70.9765 <+«
42.0872,-70.9754 42.0875,-70.9749 42.0879,-70.9752 42.0881,-70.9754 42.0891,-70.9758
42.0894,-70.9759 42.0897,-70.9759 42.0899,-70.9754 42.0902,-70.9756 42.0906,-70.9753
42.0907,-70.9753 42.0917,-70.9757 42.0924,-70.9755 42.0928,-70.9755 42.0942,-70.9751
42.0948,-70.9755 42.0953,-70.9751 42.0958,-70.9751 42.0962,-70.9759 42.0983,-70.9767
42.0987,-70.9768 42.0991,-70.9771 42.0997,-70.9771 42.1003,-70.9768 42.1005,-70.977
42.1011,-70.9766 42.1019,-70.9768 42.1026,-70.9769 42.1033,-70.9775 42.1042,-70.9773
42.1043,-70.9776 42.1043,-70.9778 42.1048,-70.9773 42.1058,-70.9774 42.1061,-70.9779
42.1065,-70.9782 42.1078,-70.9788 42.1085,-70.9798 42.1087,-70.9806 42.109,-70.9807
42.1093,-70.9806 42.1099,-70.9809 42.1109,-70.9808 42.1112,-70.9798 42.1116,-70.9792
42.1127,-70.979 42.1129,-70.9787 42.1134,-70.979 42.1139,-70.9791 42.1141,-70.9987 <«
42.1116,-71.0022 42.1273,

-70.9408 42.1513,-70.9315 42.1165,-70.916 42.1002)))"’,4326);

AEREEEEE

See Also

ST_GeomFromText, ST_SRID

7.3.29 ST_Point

Name

ST_Point — Returns an ST_Point with the given coordinate values. OGC alias for ST_MakePoint.

Synopsis

geometry ST_Point(float x_lon, float y_lat);

http://www.opengeospatial.org/standards/sfs

PostGIS 1.5.5 Manual
92 /322

Description

Returns an ST_Point with the given coordinate values. MM compliant alias for ST_MakePoint that takes just an x and y.

J This method implements the SQL/MM specification. SQL-MM 3: 6.1.2

Examples: Geometry

SELECT ST_SetSRID(ST_Point (-71.1043443253471, 42.3150676015829),4326)

Examples: Geography

SELECT CAST (ST_SetSRID (ST_Point (-71.1043443253471, 42.3150676015829),4326) As geography);

—— the :: is PostgreSQL short-hand for casting.
SELECT ST_SetSRID(ST_Point (-71.1043443253471, 42.3150676015829),4326) : :geography;

—-—-If your point coordinates are in a different spatial reference from WGS-84 long lat, then <
you need to transform before casting
—— This example we convert a point in Pennsylvania State Plane feet to WGS 84 and then <«

geography
SELECT ST_Transform(ST_SetSRID(ST_Point (3637510, 3014852),2273),4326) : :geography

See Also

Section 4.2.1, ST_MakePoint, ST_SetSRID, ST_Transform

7.3.30 ST_PointFromText

Name

ST_PointFromText — Makes a point Geometry from WKT with the given SRID. If SRID is not given, it defaults to unknown.

Synopsis

geometry ST_PointFromText(text WKT);
geometry ST_PointFromText(text WKT, integer srid);

Description

Constructs a PostGIS ST_Geometry point object from the OGC Well-Known text representation. If SRID is not give, it defaults
to unknown (currently -1). If geometry is not a WKT point representation, returns null. If completely invalid WKT, then throws
an error.

- Note
NW"! There are 2 variants of ST_PointFromText function, the first takes no SRID and returns a geometry with no defined
spatial reference system. The second takes a spatial reference id as the second argument and returns an ST_Geometry
that includes this srid as part of its meta-data. The srid must be defined in the spatial_ref_sys table.

PostGIS 1.5.5 Manual
93 /322

Note

No-lfv! If you are absolutely sure all your WKT geometries are points, don’t use this function. It is slower than
ST_GeomFromText since it adds an additional validation step. If you are building points from long lat coordinates
and care more about performance and accuracy than OGC compliance, use ST_MakePoint or OGC compliant alias
ST _Point.

/ This method implements the OpenGIS Simple Features Implementation Specification for SQL 1.1. s3.2.6.2 - option SRID
is from the conformance suite.

/ This method implements the SQL/MM specification. SQL-MM 3: 6.1.8

Examples

SELECT ST_PointFromText ('POINT (-71.064544 42.28787)");
SELECT ST_PointFromText (' POINT (-71.064544 42.28787)’, 4326);

See Also

ST_GeomFromText, ST_MakePoint, ST_Point, ST_SRID

7.3.31 ST_PointFromWKB

Name

ST_PointFromWKB — Makes a geometry from WKB with the given SRID

Synopsis

geometry ST_GeomFromWKB(bytea geom);
geometry ST_GeomFromWKB(bytea geom, integer srid);

Description

The ST_PointFromWKB function, takes a well-known binary representation of geometry and a Spatial Reference System ID
(SRID) and creates an instance of the appropriate geometry type - in this case, a POINT geometry. This function plays the role
of the Geometry Factory in SQL.

If an SRID is not specified, it defaults to -1. NULL is returned if the input byt ea does not represent a POINT geometry.

/ This method implements the OpenGIS Simple Features Implementation Specification for SQL 1.1. $3.2.7.2

/ This method implements the SQL/MM specification. SQL-MM 3: 6.1.9

/ This function supports 3d and will not drop the z-index.

/ This method supports Circular Strings and Curves

http://www.opengeospatial.org/standards/sfs
http://www.opengeospatial.org/standards/sfs

PostGIS 1.5.5 Manual
94 /322

Examples

SELECT
ST_AsText (
ST_PointFromWKB (
ST_ASEWKB (' POINT (2 5)’ ::geometry)
)
)
st_astext

POINT (2 5)
(1 row)

SELECT
ST_AsText (
ST_PointFromWKB (
ST_ASEWKB (' LINESTRING (2 5, 2 6)’::geometry)
)
)i
st_astext

See Also

ST _GeomFromWKB, ST LineFromWKB

7.3.32 ST_Polygon

Name

ST_Polygon — Returns a polygon built from the specified linestring and SRID.

Synopsis

geometry ST_Polygon(geometry aLineString, integer srid);

Description

Returns a polygon built from the specified linestring and SRID.

S Note
Nﬂ‘“’! ST_Polygon is similar to first version oST_MakePolygon except it also sets the spatial ref sys (SRID) of the polygon.
Will not work with MULTILINESTRINGS so use LineMerge to merge multilines. Also does not create polygons with
holes. Use ST_MakePolygon for that.

/ This method implements the OpenGIS Simple Features Implementation Specification for SQL 1.1.
/ This method implements the SQL/MM specification. SQL-MM 3: 8.3.2

/ This function supports 3d and will not drop the z-index.

http://www.opengeospatial.org/standards/sfs

PostGIS 1.5.5 Manual
95 /322

Examples

-—a 2d polygon

SELECT ST_Polygon (ST_GeomFromText (' LINESTRING(75.15 29.53,77 29,77.6 29.5, 75.15 29.53)"), —
4326) ;

==E@gulit==

POLYGON ((75.15 29.53,77 29,77.6 29.5,75.15 29.53))

-—a 3d polygon

SELECT ST_ASEWKT (ST_Polygon (ST_GeomFromEWKT (/ LINESTRING(75.15 29.53 1,77 29 1,77.6 29.5 1, «—
75.15 29.53 1)"), 4326));

result

SRID=4326;POLYGON((75.15 29.53 1,77 29 1,77.6 29.5 1,75.15 29.53 1))

See Also

ST_AsEWKT, ST_AsText, ST_GeomFromEWKT, ST_GeomFromText, ST_LineMerge, ST_MakePolygon

7.3.33 ST_PolygonFromText

Name

ST_PolygonFromText — Makes a Geometry from WKT with the given SRID. If SRID is not give, it defaults to -1.

Synopsis

geometry ST_PolygonFromText(text WKT);
geometry ST_PolygonFromText(text WKT, integer srid);

Description

Makes a Geometry from WKT with the given SRID. If SRID is not give, it defaults to -1. Returns null if WKT is not a polygon.
OGC SPEC 3.2.6.2 - option SRID is from the conformance suite

N;'ld Note

If you are absolutely sure all your WKT geometries are polygons, don’t use this function. It is slower than
ST_GeomFromText since it adds an additional validation step.

/ This method implements the OpenGIS Simple Features Implementation Specification for SQL 1.1. $3.2.6.2

/ This method implements the SQL/MM specification. SQL-MM 3: 8.3.6

http://www.opengeospatial.org/standards/sfs

PostGIS 1.5.5 Manual
96 /322

Examples

SELECT ST_PolygonFromText (' POLYGON ((-71.1776585052917 42.3902909739571,-71.1776820268866 <+
42.3903701743239,

-71.1776063012595 42.3903825660754,-71.1775826583081 42.3903033653531,-71.1776585052917 <«
42.3902909739571)) ") ;

st_polygonfromtext

010300000001000000050000006. . .

SELECT ST_PolygonFromText (POINT (1 2)’) IS NULL as point_is_notpoly;

point_is_not_poly

See Also

ST_GeomFromText

7.3.34 ST_WKBToSQL

Name

ST_WKBToSQL — Return a specified ST_Geometry value from Well-Known Binary representation (WKB). This is an alias
name for ST_GeomFromWXKB that takes no srid

Synopsis

geometry ST_WKBToSQL(bytea WKB);

Description

/ This method implements the SQL/MM specification. SQL-MM 3: 5.1.36

See Also

ST _GeomFromWKB

7.3.35 ST_WKTToSQL

Name

ST_WKTToSQL — Return a specified ST_Geometry value from Well-Known Text representation (WKT). This is an alias name
for ST_GeomFromText

Synopsis

geometry ST_WKTToSQL(text WKT);

PostGIS 1.5.5 Manual
97 /322

Description

/ This method implements the SQL/MM specification. SQL-MM 3: 5.1.34

See Also

ST _GeomFromText

7.4 Geometry Accessors

7.4.1 GeometryType

Name

GeometryType — Returns the type of the geometry as a string. Eg: "LINESTRING’, "POLYGON’, "MULTIPOINT", etc.

Synopsis

text GeometryType(geometry geomA);

Description

Returns the type of the geometry as a string. Eg: "LINESTRING’, ’POLYGON’, "MULTIPOINT”, etc.

OGC SPEC s2.1.1.1 - Returns the name of the instantiable subtype of Geometry of which this Geometry instance is a member.
The name of the instantiable subtype of Geometry is returned as a string.

N;l"! Note

This function also indicates if the geometry is measured, by returning a string of the form 'POINTM’.

/ This method implements the OpenGIS Simple Features Implementation Specification for SQL 1.1.

/ This method supports Circular Strings and Curves

Examples

SELECT GeometryType (ST_GeomFromText (' LINESTRING(77.29 29.07,77.42 29.26,77.27 29.31,77.29 <>
29.07)"));
geometrytype

LINESTRING

See Also

ST_GeometryType

http://www.opengeospatial.org/standards/sfs

PostGIS 1.5.5 Manual
98 /322

7.4.2 ST_Boundary
Name

ST_Boundary — Returns the closure of the combinatorial boundary of this Geometry.

Synopsis

geometry ST_Boundary(geometry geomA);

Description

Returns the closure of the combinatorial boundary of this Geometry. The combinatorial boundary is defined as described in
section 3.12.3.2 of the OGC SPEC. Because the result of this function is a closure, and hence topologically closed, the resulting
boundary can be represented using representational geometry primitives as discussed in the OGC SPEC, section 3.12.2.

Performed by the GEOS module

I Important
Do not call with a GEOMETRYCOLLECTION as an argument

/ This method implements the OpenGIS Simple Features Implementation Specification for SQL 1.1. OGC SPEC s2.1.1.1
/ This method implements the SQL/MM specification. SQL-MM 3: 5.1.14

/ This function supports 3d and will not drop the z-index.

Examples

SELECT ST_AsText (ST_Boundary (ST_GeomFromText (' LINESTRING(1 1,0 0, -1 1)7)));
st_astext

MULTIPOINT (1 1,-1 1)

SELECT ST_AsText (ST_Boundary (ST_GeomFromText ('POLYGON((1 1,0 0, -1 1, 1 1))’)));
st_astext

LINESTRING(1 1,0 0,-1 1,1 1)

--Using a 3d polygon
SELECT ST_ASEWKT (ST_Boundary (ST_GeomFromEWKT (/POLYGON((1 1 1,0 0 1, -1 1 1, 1 1 1))’)));

st_asewkt

LINESTRING(1 1 1,0 0O 1,-1 1 1,1 1 1)

—-Using a 3d multilinestring
SELECT ST_ASEWKT (ST_Boundary (ST_GeomFromEWKT (' MULTILINESTRING((1 1 1,0 0 0.5, -1 1 1), (1 1 <«
0.5,0 0 0.5, -1 1 0.5, 11 0.5)")));

st_asewkt

MULTIPOINT (-1 1 1,1 1 0.75)

http://www.opengeospatial.org/standards/sfs

PostGIS 1.5.5 Manual
99 /322

See Also

ST_ExteriorRing, ST_MakePolygon

7.4.3 ST_CoordDim

Name

ST_CoordDim — Return the coordinate dimension of the ST_Geometry value.

Synopsis

integer ST_CoordDim(geometry geomA);

Description

Return the coordinate dimension of the ST_Geometry value.

This is the MM compliant alias name for ST_NDims

/ This method implements the OpenGIS Simple Features Implementation Specification for SQL 1.1.
/ This method implements the SQL/MM specification. SQL-MM 3: 5.1.3

/ This method supports Circular Strings and Curves

/ This function supports 3d and will not drop the z-index.

Examples

SELECT ST_CoordDim (’ CIRCULARSTRING(1 2 3, 1 3 4, 56 7, 8 9 10, 11 12 13)7");
———result——
3

SELECT ST_CoordDim(ST_Point (1,2));
——result—-
2

See Also

ST NDims

7.4.4 ST_Dimension

Name

ST_Dimension — The inherent dimension of this Geometry object, which must be less than or equal to the coordinate dimension.

http://www.opengeospatial.org/standards/sfs

PostGIS 1.5.5 Manual
100/ 322

Synopsis

integer ST_Dimension(geometry g);

Description
The inherent dimension of this Geometry object, which must be less than or equal to the coordinate dimension. OGC SPEC

s2.1.1.1 - returns O for POINT, 1 for LINESTRING, 2 for POLYGON, and the largest dimension of the components of a GEOM—
ETRYCOLLECTION.

/ This method implements the SQL/MM specification. SQL-MM 3: 5.1.2

Examples

SELECT ST_Dimension (' GEOMETRYCOLLECTION (LINESTRING(1 1,0 0),POINT(0 0))");
ST_Dimension

See Also

ST_NDims

7.4.5 ST_EndPoint

Name

ST_EndPoint — Returns the last point of a LINESTRING geometry as a POINT.

Synopsis

boolean ST_EndPoint(geometry g);

Description

Returns the last point of a LINESTRING geometry as a POINT or NULL if the input parameter is not a LINESTRING.
/ This method implements the SQL/MM specification. SQL-MM 3: 7.1.4

/ This function supports 3d and will not drop the z-index.

Examples

postgis=# SELECT ST_AsText (ST_EndPoint (LINESTRING(1 1, 2 2, 3 3)’::geometry));
st_astext

POINT (3 3)
(1 row)

postgis=# SELECT ST_EndPoint (POINT(1 1)’::geometry) IS NULL AS is_null;

PostGIS 1.5.5 Manual
101 /322

—--3d endpoint
SELECT ST_ASEWKT (ST_EndPoint (' LINESTRING(1 1 2, 1 2 3, 0 0 5)7));
st_asewkt

POINT (O O 5)
(1 row)

See Also

ST _PointN, ST_StartPoint

7.4.6 ST_Envelope

Name

ST_Envelope — Returns a geometry representing the double precision (float8) bounding box of the supplied geometry.

Synopsis

geometry ST_Envelope(geometry gl);

Description

Returns the float8 minimum bounding box for the supplied geometry, as a geometry. The polygon is defined by the corner
points of the bounding box (MINX, MINY), (MINX, MAXY), (MAXX, MAXY), (MAXX, MINY), (MINX, MINY)). (PostGIS will add
a ZMIN/ZMAX coordinate as well).

Degenerate cases (vertical lines, points) will return a geometry of lower dimension than POLYGON, ie. POINT or LINESTRING.

Availability: 1.5.0 behavior changed to output double precision instead of float4
/ This method implements the OpenGIS Simple Features Implementation Specification for SQL 1.1. s2.1.1.1

/ This method implements the SQL/MM specification. SQL-MM 3: 5.1.15

Examples

SELECT ST_AsText (ST_Envelope ('POINT (1 3)’::geometry));
st_astext

POINT (1 3)
(1 row)

SELECT ST_AsText (ST_Envelope (' LINESTRING(0O 0, 1 3)’::geometry));
st_astext

POLYGON ((O 0,0 3,1 3,1 0,0 0))

http://www.opengeospatial.org/standards/sfs

PostGIS 1.5.5 Manual
102 /322

(1 row)

SELECT ST_AsText (ST_Envelope (' POLYGON((O 0, 0 1, 1.0000001 1, 1.0000001 0, O 0))’::geometry

))
st_astext

POLYGON((O 0,0 1,1.00000011920929 1,1.00000011920929 0,0 0))
(1 row)
SELECT ST_AsText (ST_Envelope (' POLYGON((O 0, O 1, 1.0000000001 1, 1.0000000001 0, O 0))’:: <
geometry));
st_astext

POLYGON((O 0,0 1,1.00000011920929 1,1.00000011920929 0,0 0))
(1 row)

SELECT Box3D (geom), Box2D (geom), ST_AsText (ST_Envelope (geom)) As envelopewkt
FROM (SELECT ’'POLYGON((0O 0, 0 1000012333334.34545678, 1.0000001 1, 1.0000001 0, O 0))":: <
geometry As geom) As foo;

See Also

Box2D, Box3D

7.4.7 ST_ExteriorRing

Name

ST_ExteriorRing — Returns a line string representing the exterior ring of the POLYGON geometry. Return NULL if the geometry
is not a polygon. Will not work with MULTIPOLY GON

Synopsis

geometry ST_ExteriorRing(geometry a_polygon);

Description

Returns a line string representing the exterior ring of the POLYGON geometry. Return NULL if the geometry is not a polygon.

Not¥ Note
Only works with POLYGON geometry types

/ This method implements the OpenGIS Simple Features Implementation Specification for SQL 1.1. 2.1.5.1
/ This method implements the SQL/MM specification. SQL-MM 3: 8.2.3, 8.3.3

/ This function supports 3d and will not drop the z-index.

http://www.opengeospatial.org/standards/sfs

PostGIS 1.5.5 Manual
103 /322

Examples

——If you have a table of polygons
SELECT gid, ST_ExteriorRing(the_geom) AS ering
FROM sometable;

——If you have a table of MULTIPOLYGONs
—-—and want to return a MULTILINESTRING composed of the exterior rings of each polygon
SELECT gid, ST_Collect (ST_ExteriorRing(the_geom)) AS erings
FROM (SELECT gid, (ST_Dump (the_geom)).geom As the_geom
FROM sometable) As foo
GROUP BY gid;

—-3d Example

SELECT ST_AsSEWKT (
ST_ExteriorRing(
ST_GeomFromEWKT (' POLYGON((O O 1, 1 1 1, 1 2 1, 1 11, 0 0 1))")
)

)

st_asewkt

LINESTRING(O O 1,1 1 1,1 2 1,1 1 1,0 0 1)

See Also

ST_Boundary, ST_NumlInteriorRings

7.4.8 ST_GeometryN

Name

ST_GeometryN — Return the 1-based Nth geometry if the geometry is a GEOMETRYCOLLECTION, MULTIPOINT, MULTI-
LINESTRING, MULTICURVE or MULTIPOLY GON. Otherwise, return NULL.

Synopsis

geometry ST_GeometryN(geometry geomA, integer n);

Description

Return the 1-based Nth geometry if the geometry is a GEOMETRYCOLLECTION, MULTIPOINT, MULTILINESTRING,
MULTICURVE or MULTIPOLY GON. Otherwise, return NULL.

=

Not? Note

Index is 1-based as for OGC specs since version 0.8.0. Previous versions implemented this as 0-based instead.

Not? Note

If you want to extract all geometries, of a geometry, ST_Dump is more efficient and will also work for singular geoms.

PostGIS 1.5.5 Manual
104 / 322

/ This method implements the OpenGIS Simple Features Implementation Specification for SQL 1.1.
/ This method implements the SQL/MM specification. SQL-MM 3: 9.1.5
/ This function supports 3d and will not drop the z-index.

/ This method supports Circular Strings and Curves

Examples

—--Extracting a subset of points from a 3d multipoint

SELECT n, ST_ASEWKT (ST_GeometryN (the_geom, n)) As geomewkt

FROM (

VALUES (ST_GeomFromEWKT (' MULTIPOINT (1 2 7, 3 4 7, 56 7, 8 9 10)")),

(ST_GeomFromEWKT (' MULTICURVE (CIRCULARSTRING (2.5 2.5,4.5 2.5, 3.5 3.5), (10 11, 12 11))"))
)As foo (the_geom)
CROSS JOIN generate_series (1,100) n

WHERE n <= ST_NumGeometries (the_geom) ;

n | geomewkt
___+ ___
1 | POINT(1 2 7)
2 | POINT (3 4 7)
3 | POINT(5 6 7)
4 | POINT(8 9 10)
1 | CIRCULARSTRING(2.5 2.5,4.5 2.5,3.5 3.5)
2 | LINESTRING(10 11,12 11)

—-—-Extracting all geometries (useful when you want to assign an id)
SELECT gid, n, ST_GeometryN (the_geom, n)

FROM sometable CROSS JOIN generate_series(1,100) n

WHERE n <= ST_NumGeometries (the_geom);

See Also

ST_Dump, ST_NumGeometries

7.4.9 ST_GeometryType
Name

ST_GeometryType — Return the geometry type of the ST_Geometry value.

Synopsis

text ST_GeometryType(geometry gl);

http://www.opengeospatial.org/standards/sfs

PostGIS 1.5.5 Manual
105/ 322

Description
Returns the type of the geometry as a string. EG: ST_Linestring’, ’ST_Polygon’,’ST_MultiPolygon’ etc. This function differs

from GeometryType(geometry) in the case of the string and ST in front that is returned, as well as the fact that it will not indicate
whether the geometry is measured.

/ This method implements the SQL/MM specification. SQL-MM 3: 5.1.4

Examples

SELECT ST_GeometryType (ST_GeomFromText (' LINESTRING(77.29 29.07,77.42 29.26,77.27 <«
29.31,77.29 29.07)"));
—-—result
ST_LineString

See Also

GeometryType

7.4.10 ST_InteriorRingN

Name

ST_InteriorRingN — Return the Nth interior linestring ring of the polygon geometry. Return NULL if the geometry is not a
polygon or the given N is out of range.

Synopsis

geometry ST_InteriorRingN(geometry a_polygon, integer n);

Description

Return the Nth interior linestring ring of the polygon geometry. Return NULL if the geometry is not a polygon or the given N is
out of range. index starts at 1.

Not? Note
This will not work for MULTIPOLYGONSs. Use in conjunction with ST_Dump for MULTIPOLYGONS

/ This method implements the OpenGIS Simple Features Implementation Specification for SQL 1.1.
/ This method implements the SQL/MM specification. SQL-MM 3: 8.2.6, 8.3.5

/ This function supports 3d and will not drop the z-index.

http://www.opengeospatial.org/standards/sfs

PostGIS 1.5.5 Manual

106 / 322

Examples

SELECT ST_AsText (ST_InteriorRingN(the_geom, 1)) As the_geom
FROM (SELECT ST_BuildArea(
ST_Collect (ST _Buffer (ST _Point(1,2), 20,3),
ST_Buffer (ST_Point (1, 2), 10,3))) As the_geom
) as foo

See Also

ST_BuildArea, ST_Collect, ST_Dump, ST_NumlInteriorRing, ST_NumlInteriorRings

7.4.11 ST IsClosed

Name

ST_IsClosed — Returns TRUE if the LINESTRING’s start and end points are coincident.

Synopsis

boolean ST_IsClosed(geometry g);

Description

Returns TRUE if the LINESTRING’s start and end points are coincident.
/ This method implements the OpenGIS Simple Features Implementation Specification for SQL 1.1.

/ This method implements the SQL/MM specification. SQL-MM 3: 7.1.5,9.3.3

N;'ld Note

SQL-MM defines the result of ST_IsClosed (NULL) to be 0, while PostGIS returns NULL.

/ This function supports 3d and will not drop the z-index.

/ This method supports Circular Strings and Curves

Examples

postgis=# SELECT ST_IsClosed(’LINESTRING(0 0, 1 1)’::geometry);
st_isclosed

postgis=# SELECT ST_IsClosed(’LINESTRING(O O, 0 1, 1 1, 0 0)’::geometry);
st_isclosed

http://www.opengeospatial.org/standards/sfs

PostGIS 1.5.5 Manual
107 / 322

postgis=# SELECT ST_IsClosed(’MULTILINESTRING((O O, 0 1, 1 1, 0 0), (0 0, 1 1))’::geometry);
st_isclosed

postgis=# SELECT ST_IsClosed(’POINT (0 0)’::geometry);
st_isclosed

postgis=# SELECT ST_IsClosed (’MULTIPOINT((0 0), (1 1))’::geometry);
st_isclosed

See Also

ST_IsRing

7.4.12 ST_IsEmpty

Name

ST_IsEmpty — Returns true if this Geometry is an empty geometry . If true, then this Geometry represents the empty point set -
i.e. GEOMETRYCOLLECTION(EMPTY).

Synopsis

boolean ST_IsEmpty(geometry geomA);

Description

Returns true if this Geometry is an empty geometry . If true, then this Geometry represents an empty geometry collection,
polygon, point etc.

Not? Note
SQL-MM defines the result of ST_IsEmpty(NULL) to be 0, while PostGIS returns NULL.

/ This method implements the OpenGIS Simple Features Implementation Specification for SQL 1.1. s2.1.1.1
/ This method implements the SQL/MM specification. SQL-MM 3: 5.1.7

/ This method supports Circular Strings and Curves

http://www.opengeospatial.org/standards/sfs

PostGIS 1.5.5 Manual
108 /322

Examples

SELECT ST_IsEmpty ('’ GEOMETRYCOLLECTION (EMPTY) ") ;
st_isempty

SELECT ST_IsEmpty (ST_GeomFromText (' POLYGON EMPTY’));
st_isempty

SELECT ST_IsEmpty (ST_GeomFromText ('POLYGON((1 2, 3 4, 5 6, 1 2))’));

st_isempty

SELECT ST_IsEmpty (ST_GeomFromText (POLYGON((1 2, 3 4, 5 6, 1 2))’)) = false;
?column?

SELECT ST_IsEmpty (ST_GeomFromText (' CIRCULARSTRING EMPTY’));
st_isempty

7.4.13 ST_lIsRing

Name

ST_IsRing — Returns TRUE if this LINESTRING is both closed and simple.

Synopsis

boolean ST_IsRing(geometry g);

Description

Returns TRUE if this LINESTRING is both ST_IsClosed (ST_StartPoint ((g)) ~= ST_Endpoint ((g))) and ST_IsSimple
(does not self intersect).

/ This method implements the OpenGIS Simple Features Implementation Specification for SQL 1.1. 2.1.5.1

/ This method implements the SQL/MM specification. SQL-MM 3: 7.1.6

http://www.opengeospatial.org/standards/sfs

PostGIS 1.5.5 Manual
109 /322

N;’H’! Note

SQL-MM defines the result of ST_TIsRing (NULL) to be 0, while PostGIS returns NULL.

Examples

SELECT ST_IsRing(the_geom), ST_IsClosed(the_geom), ST _IsSimple (the_geom)
FROM (SELECT ’LINESTRING(O O, 0 1, 1 1, 1 0, O 0)’::geometry AS the_geom) AS foo;

st_isring | st_isclosed | st_issimple
77777777777 +77777777777774_7777777777777
t |t |t

(1 row)

SELECT ST_IsRing(the_geom), ST_IsClosed(the_geom), ST_IsSimple (the_geom)
FROM (SELECT ’LINESTRING(O O, 0 1, 1 0, 1 1, O 0)’::geometry AS the_geom) AS foo;

st_isring | st_isclosed | st_issimple
___________ +_____________+_____________
f | t | £
(1 row)
See Also

ST_IsClosed, ST_IsSimple, ST_StartPoint, ST_EndPoint

7.4.14 ST_IsSimple

Name

ST_IsSimple — Returns (TRUE) if this Geometry has no anomalous geometric points, such as self intersection or self tangency.

Synopsis

boolean ST_IsSimple(geometry geomA);

Description

Returns true if this Geometry has no anomalous geometric points, such as self intersection or self tangency. For more information
on the OGC’s definition of geometry simplicity and validity, refer to "Ensuring OpenGIS compliancy of geometries"

Not? Note
SQL-MM defines the result of ST_IsSimple(NULL) to be 0, while PostGIS returns NULL.

/ This method implements the OpenGIS Simple Features Implementation Specification for SQL 1.1. s2.1.1.1
/ This method implements the SQL/MM specification. SQL-MM 3: 5.1.8

/ This function supports 3d and will not drop the z-index.

http://www.opengeospatial.org/standards/sfs

PostGIS 1.5.5 Manual
110/ 322

Examples

SELECT ST_IsSimple (ST_GeomFromText ('POLYGON((1 2, 3 4, 56, 1 2))"));
st_issimple

SELECT ST_IsSimple (ST_GeomFromText (' LINESTRING(1 1,2 2,2 3.5,1 3,1 2,2 1)"));
st_issimple

See Also

ST IsValid

7.4.15 ST lIsValid

Name

ST_IsValid — Returns t rue if the ST_Geometry is well formed.

Synopsis

boolean ST _IsValid(geometry g);

Description

Test if an ST_Geometry value is well formed. For geometries that are invalid, the PostgreSQL NOTICE will provide details
of why it is not valid. For more information on the OGC’s definition of geometry simplicity and validity, refer to "Ensuring
OpenGIS compliancy of geometries"

Not¥ Note
SQL-MM defines the result of ST_IsValid(NULL) to be 0, while PostGIS returns NULL.

/ This method implements the OpenGIS Simple Features Implementation Specification for SQL 1.1.

/ This method implements the SQL/MM specification. SQL-MM 3: 5.1.9

Examples
SELECT ST_IsValid(ST_GeomFromText (' LINESTRING(O 0, 1 1)’
ST _IsValid(ST_GeomFromText ('POLYGON((O O, 1 1, 1 2, 1
—-—results
NOTICE: Self-intersection at or near point 0 O
good_line | bad_poly
,,,,,,,,,,, b
t | £

)) As good_line,
1, 0 0))")) As bad_poly

http://www.opengeospatial.org/standards/sfs

PostGIS 1.5.5 Manual
111/322

See Also

ST_IsSimple, ST_IsValidReason, ST_Summary

7.4.16 ST_lsValidReason

Name

ST_IsValidReason — Returns text stating if a geometry is valid or not and if not valid, a reason why.

Synopsis

text ST_IsValidReason(geometry geomA);

Description

Returns text stating if a geometry is valid or not an if not valid, a reason why.
Useful in combination with ST_IsValid to generate a detailed report of invalid geometries and reasons.
Availability: 1.4 - requires GEOS >=3.1.0.

Examples

——First 3 Rejects from a successful quintuplet experiment
SELECT gid, ST_IsValidReason (the_geom) as validity_info
FROM
(SELECT ST_MakePolygon (ST_ExteriorRing(e.buff), ST_Accum(f.line)) As the_geom, gid
FROM (SELECT ST_Buffer (ST_MakePoint (x1x10,y1l), zl) As buff, x1x10 + yl%x100 + z1x1000 As gid
FROM generate_series(-4,6) x1
CROSS JOIN generate_series(2,5) vyl
CROSS JOIN generate_series(1,8) =zl
WHERE x1 > y1x0.5 AND zl < xlxyl) As e
INNER JOIN (SELECT ST _Translate(ST_ExteriorRing(ST_Buffer (ST_MakePoint (x1%10,vy1l), zl)),yl <
*1, z1%2) As line
FROM generate_series(-3,6) x1
CROSS JOIN generate_series (2,5) vyl
CROSS JOIN generate_series(1,10) =zl
WHERE x1 > y1x0.75 AND zl < xlxyl) As f
ON (ST_Area(e.buff) > 78 AND ST_Contains (e.buff, f.line))
GROUP BY gid, e.buff) As quintuplet_experiment

WHERE ST_IsValid(the_geom) = false

ORDER BY gid

LIMIT 3;
gid | validity_info

,,,,,, o
5330 | Self-intersection [32 5]
5340 | Self-intersection [42 5]
5350 | Self-intersection [52 5]

—-simple example
SELECT ST_IsValidReason (/' LINESTRING (220227 150406,2220227 150407,222020 150410)");

st_isvalidreason

Valid Geometry

PostGIS 1.5.5 Manual
112 /322

See Also

ST_IsValid, ST_Summary

7.417 ST.M

Name

ST_M — Return the M coordinate of the point, or NULL if not available. Input must be a point.

Synopsis

float ST_M(geometry a_point);

Description

Return the M coordinate of the point, or NULL if not available. Input must be a point.

N;’H’! Note

This is not (yet) part of the OGC spec, but is listed here to complete the point coordinate extractor function list.

/ This method implements the OpenGIS Simple Features Implementation Specification for SQL 1.1.
/ This method implements the SQL/MM specification.
/ This function supports 3d and will not drop the z-index.

Examples

SELECT ST_M(ST_GeomFromEWKT (" POINT(1 2 3 4)"));

See Also

ST_GeomFromEWKT, ST_X, ST_Y, ST_Z

7.418 ST _NDims

Name

ST_NDims — Returns coordinate dimension of the geometry as a small int. Values are: 2,3 or 4.

http://www.opengeospatial.org/standards/sfs

PostGIS 1.5.5 Manual
113 /322

Synopsis

integer ST_NDims(geometry gl);

Description

Returns the coordinate dimension of the geometry. PostGIS supports 2 - (x,y) , 3 - (X,y,z) or 2D with measure - x,y,m, and 4 - 3D
with measure space X,y,z,m

/ This function supports 3d and will not drop the z-index.

Examples

SELECT ST_NDims (ST_GeomFromText ('POINT(1 1)’)) As d2point,
ST_NDims (ST_GeomFromEWKT (' POINT (1 1 2)’)) As d3point,
ST_NDims (ST_GeomFromEWKT (/ POINTM(1 1 0.5)’)) As d2pointm;

d2point | d3point | d2pointm

See Also

ST CoordDim, ST_Dimension, ST _GeomFromEWKT

7.4.19 ST NPoints

Name

ST_NPoints — Return the number of points (vertexes) in a geometry.

Synopsis

integer ST_NPoints(geometry gl);

Description

Return the number of points in a geometry. Works for all geometries.

N;‘l"! Note

Prior to 1.3.4, this function crashes if used with geometries that contain CURVES. This is fixed in 1.3.4+

/ This function supports 3d and will not drop the z-index.

/ This method supports Circular Strings and Curves

PostGIS 1.5.5 Manual
114 /322

Examples

SELECT ST_NPoints (ST_GeomFromText (' LINESTRING(77.29 29.07,77.42 29.26,77.27 29.31,77.29 <+
29.07)7));

——result

4

—--Polygon in 3D space

SELECT ST_NPoints (ST_GeomFromEWKT (/ LINESTRING(77.29 29.07 1,77.42 29.26 0,77.27 29.31
=-1,77.29 29.07 3)"))

—-—result

4

See Also

ST_NumPoints

7.4.20 ST_NRings

Name

ST_NRings — If the geometry is a polygon or multi-polygon returns the number of rings.

Synopsis

integer ST_NRings(geometry geomA);

Description

If the geometry is a polygon or multi-polygon returns the number of rings. Unlike NumInteriorRings, it counts the outer rings as
well.

/ This function supports 3d and will not drop the z-index.

/ This method supports Circular Strings and Curves

Examples

SELECT ST_NRings (the_geom) As Nrings, ST_NumInteriorRings (the_geom) As ninterrings
FROM (SELECT ST_GeomFromText (POLYGON((1 2, 3 4, 5 6, 1 2))’) As the_geom) As foo

’

nrings | ninterrings
________ +_____________
1| 0
(1 row)
See Also

ST_NumlnteriorRings

PostGIS 1.5.5 Manual
115/322

7.4.21 ST_NumGeometries

Name

ST_NumGeometries — If geometry is a GEOMETRYCOLLECTION (or MULTT*) return the number of geometries, otherwise
return NULL.

Synopsis

integer ST_NumGeometries(geometry a_multi_or_geomcollection);

Description

Returns the number of Geometries. If geometry is a GEOMETRYCOLLECTION (or MULTT*) return the number of geometries,
otherwise return NULL.

/ This method implements the SQL/MM specification. SQL-MM 3: 9.1.4

Examples

——Although ST_NumGeometries will return null when passed a single, you can wrap in ST _Multi <«
to force 1 or more for all geoms

SELECT ST_NumGeometries (ST_Multi (ST_GeomFromText (' LINESTRING(77.29 29.07,77.42 29.26,77.27 <+
29.31,77.29 29.07)")));

——result

1

——Geometry Collection Example — multis count as one geom in a collection

SELECT ST_NumGeometries (ST_GeomFromEWKT (' GEOMETRYCOLLECTION (MULTIPOINT (-2 3 , -2 2),

LINESTRING(5 5 ,10 10),

POLYGON ((-7 4.2,-7.1 5,-7.1 4.3,-7 4.2)))"));
——-result

3

See Also

ST_GeometryN, ST_Multi

7.4.22 ST_NuminteriorRings

Name

ST_NumlnteriorRings — Return the number of interior rings of the first polygon in the geometry. This will work with both
POLYGON and MULTIPOLY GON types but only looks at the first polygon. Return NULL if there is no polygon in the geometry.

Synopsis

integer ST_NumlInteriorRings(geometry a_polygon);

PostGIS 1.5.5 Manual
116 /322

Description

Return the number of interior rings of the first polygon in the geometry. This will work with both POLYGON and MULTIPOLY-
GON types but only looks at the first polygon. Return NULL if there is no polygon in the geometry.

/ This method implements the SQL/MM specification. SQL-MM 3: 8.2.5

Examples

-—-If you have a regular polygon
SELECT gid, fieldl, field2, ST_NumInteriorRings (the_geom) AS numholes
FROM sometable;

—--If you have multipolygons
—-—-And you want to know the total number of interior rings in the MULTIPOLYGON
SELECT gid, fieldl, field2, SUM(ST_NumInteriorRings (the_geom)) AS numholes
FROM (SELECT gid, fieldl, field2, (ST_Dump (the_geom)) .geom As the_geom

FROM sometable) As foo
GROUP BY gid, fieldl,field2;

See Also

ST_NumlInteriorRing

7.4.23 ST_NuminteriorRing

Name

ST_NumlnteriorRing — Return the number of interior rings of the first polygon in the geometry. Synonym to ST_NumlnteriorRings.

Synopsis

integer ST_NumlInteriorRing(geometry a_polygon);

Description

Return the number of interior rings of the first polygon in the geometry. Synonym to ST_NumlInteriorRings. The OpenGIS specs
are ambiguous about the exact function naming, so we provide both spellings.

/ This method implements the SQL/MM specification. SQL-MM 3: 8.2.5

See Also

ST_NumlInteriorRings

7.4.24 ST_NumPoints

Name

ST_NumPoints — Return the number of points in an ST_LineString or ST_CircularString value.

PostGIS 1.5.5 Manual
117 /322

Synopsis

integer ST_NumPoints(geometry gl);

Description
Return the number of points in an ST_LineString or ST_CircularString value. Prior to 1.4 only works with Linestrings as the

specs state. From 1.4 forward this is an alias for ST_NPoints which returns number of vertexes for not just line strings. Consider
using ST_NPoints instead which is multi-purpose and works with many geometry types.

/ This method implements the OpenGIS Simple Features Implementation Specification for SQL 1.1.

/ This method implements the SQL/MM specification. SQL-MM 3: 7.2.4

Examples

SELECT ST_NumPoints (ST_GeomFromText (/' LINESTRING(77.29 29.07,77.42 29.26,77.27 29.31,77.29 «
29.07)"));
—-—-result
4

See Also

ST NPoints

7.4.25 ST_PointN

Name

ST_PointN — Return the Nth point in the first linestring or circular linestring in the geometry. Return NULL if there is no
linestring in the geometry.

Synopsis

geometry ST_PointN(geometry a_linestring, integer n);

Description

Return the Nth point in the first linestring or circular linestring in the geometry. Return NULL if there is no linestring in the
geometry.

Not? Note

Index is 1-based as for OGC specs since version 0.8.0. Previous versions implemented this as 0-based instead.

Not? Note

If you want to get the nth point of each line string in a multilinestring, use in conjunction with ST_Dump

http://www.opengeospatial.org/standards/sfs

PostGIS 1.5.5 Manual

118 /322

/ This method implements the OpenGIS Simple Features Implementation Specification for SQL 1.1.
/ This method implements the SQL/MM specification. SQL-MM 3: 7.2.5, 7.3.5
/ This function supports 3d and will not drop the z-index.

/ This method supports Circular Strings and Curves

Examples

—— Extract all POINTs from a LINESTRING
SELECT ST_AsText (
ST_PointN(
columnl,
generate_series (1, ST_NPoints (columnl))
))
FROM (VALUES (’/LINESTRING(0 0, 1 1, 2 2)’::geometry)) AS foo;

st_astext

POINT (0O 0)
POINT (1 1)
POINT (2 2)
(3 rows)

—-—-Example circular string
SELECT ST_AsText (ST_PointN (ST_GeomFromText (/ CIRCULARSTRING (1 2, 3 2, 1 2)7),2));

’

st_astext

POINT (3 2)

See Also

ST_NPoints

7.4.26 ST_SRID

Name

ST_SRID — Returns the spatial reference identifier for the ST_Geometry as defined in spatial_ref_sys table.

Synopsis

integer ST_SRID(geometry gl);

Description

Returns the spatial reference identifier for the ST_Geometry as defined in Section 4.3.1 table.

http://www.opengeospatial.org/standards/sfs

PostGIS 1.5.5 Manual
119 /322

S Note
NO'H’! spatial_ref_sys table is a table that catalogs all spatial reference systems known to PostGIS and is used for transforma-
tions from one spatial reference system to another. So verifying you have the right spatial reference system identifier is
important if you plan to ever transform your geometries.

/ This method implements the OpenGIS Simple Features Implementation Specification for SQL 1.1. s2.1.1.1
/ This method implements the SQL/MM specification. SQL-MM 3: 5.1.5

/ This method supports Circular Strings and Curves

Examples

SELECT ST_SRID(ST_GeomFromText ("POINT (-71.1043 42.315)',4326));
—-—result
4326

See Also

Section 4.3.1,ST_GeomFromText, ST_SetSRID, ST Transform

7.4.27 ST_StartPoint
Name

ST_StartPoint — Returns the first point of a LINESTRING geometry as a POINT.

Synopsis

geometry ST_StartPoint(geometry geomA);

Description

Returns the first point of a LINESTRING geometry as a POINT or NULL if the input parameter is not a LINESTRING.
/ This method implements the SQL/MM specification. SQL-MM 3: 7.1.3

/ This function supports 3d and will not drop the z-index.

Examples

SELECT ST_AsText (ST_StartPoint (' LINESTRING(0O 1, 0 2)’::geometry));
st_astext

POINT (0 1)
(1 row)

http://www.opengeospatial.org/standards/sfs

PostGIS 1.5.5 Manual
120/ 322

SELECT ST_StartPoint (POINT(0 1)’ ::geometry) IS NULL AS is_null;
is_null

t

(1 row)

--3d line

SELECT ST_ASEWKT (ST_StartPoint (' LINESTRING(O 1 1, 0 2 2)’::geometry));

st_asewkt

POINT (0 1 1)
(1 row)

See Also

ST_EndPoint, ST_PointN

7.4.28 ST_Summary

Name

ST_Summary — Returns a text summary of the contents of the ST_Geometry.

Synopsis

text ST_Summary(geometry g);

Description

Returns a text summary of the contents of the geometry.

/ This function supports 3d and will not drop the z-index.

Examples

4

SELECT ST_Summary (ST_GeomFromText (' LINESTRING (0 O

, 11
ST_Summary (ST_GeomFromText (" POLYGON((O O, 1 1, 1 2,

) As good_line,

) ")
11, 00))")) As bad_poly

——-results

good_1line | bad_poly
______________________ +_________________________

\
Line[B] with 2 points : Polygon[B] with 1 rings
ring 0 has 5 points
--3d polygon
SELECT ST_Summary (ST_GeomFromEWKT (/ LINESTRING(O 0 1, 1 1 1)’)) As good_line,
ST_Summary (ST_GeomFromEWKT (" POLYGON((O O 1, 1 1 2, 1 2 3, 1 11, 00 1))’)) As poly

——results

good_1line | poly

7777777777777777777777 +7777777777777777777777777
\

PostGIS 1.5.5 Manual
121/322

Line[ZB] with 2 points : Polygon[ZB] with 1 rings
ring 0 has 5 points

See Also

ST _IsValid, ST_IsValidReason

7.4.29 ST X
Name

ST_X — Return the X coordinate of the point, or NULL if not available. Input must be a point.

Synopsis

float ST_X(geometry a_point);

Description

Return the X coordinate of the point, or NULL if not available. Input must be a point.

N;"l"’! Note

If you want to get the max min x values of any geometry look at ST_XMin, ST_XMax functions.

/ This method implements the SQL/MM specification. SQL-MM 3: 6.1.3

/ This function supports 3d and will not drop the z-index.

Examples

SELECT ST_X(ST_GeomFromEWKT (' POINT(1 2 3 4)7));
st_x

SELECT ST_Y (ST_Centroid(ST_GeomFromEWKT (' LINESTRING(1 2 3 4, 1 1 1 1)")));
st_y

See Also

ST Centroid, ST GeomFromEWKT, ST M, ST XMax, ST XMin, ST Y, ST Z

PostGIS 1.5.5 Manual

122 /322

7430 STY
Name

ST_Y — Return the Y coordinate of the point, or NULL if not available. Input must be a point.

Synopsis

float ST_Y(geometry a_point);

Description

Return the Y coordinate of the point, or NULL if not available. Input must be a point.
/ This method implements the OpenGIS Simple Features Implementation Specification for SQL 1.1.
/ This method implements the SQL/MM specification. SQL-MM 3: 6.1.4

/ This function supports 3d and will not drop the z-index.

Examples

SELECT ST_Y (ST_GeomFromEWKT (' POINT(1 2 3 4)7));
st_y

SELECT ST_Y (ST_Centroid(ST_GeomFromEWKT (/ LINESTRING(1 2 3 4, 1 1 1 1)")));
st_y

See Also

ST_Centroid, ST_GeomFromEWKT, ST _M, ST_X, ST _YMax, ST_YMin, ST_Z

7.431 ST Z

Name

ST_Z — Return the Z coordinate of the point, or NULL if not available. Input must be a point.

Synopsis

float ST_Z(geometry a_point);

http://www.opengeospatial.org/standards/sfs

PostGIS 1.5.5 Manual
123 /322

Description

Return the Z coordinate of the point, or NULL if not available. Input must be a point.
/ This method implements the SQL/MM specification.
/ This function supports 3d and will not drop the z-index.

Examples

SELECT ST_Z (ST_GeomFromEWKT (' POINT(1 2 3 4)7));
st_z

See Also

ST_GeomFromEWKT, ST_M, ST_X, ST_Y, ST_ZMax, ST_ZMin

7.4.32 ST_Zmflag

Name

ST_Zmflag — Returns ZM (dimension semantic) flag of the geometries as a small int. Values are: 0=2d, 1=3dm, 2=3dz, 3=4d.

Synopsis

smallint ST_Zmflag(geometry geomA);

Description

Returns ZM (dimension semantic) flag of the geometries as a small int. Values are: 0=2d, 1=3dm, 2=3dz, 3=4d.
/ This function supports 3d and will not drop the z-index.

/ This method supports Circular Strings and Curves

Examples

SELECT ST_Zmflag (ST_GeomFromEWKT (' LINESTRING(1 2, 3 4)'));
st_zmflag

,,,,,5 ,,,,,

SELECT ST_Zmflag (ST_GeomFromEWKT (' LINESTRINGM(1 2 3, 3 4 3)"));

st_zmflag

PostGIS 1.5.5 Manual
124 /322

SELECT ST_Zmflag (ST_GeomFromEWKT (/ CIRCULARSTRING(1 2 3, 3 4 3, 56 3)"));
st_zmflag

SELECT ST_Zmflag (ST_GeomFromEWKT ('POINT(1 2 3 4)7));
st_zmflag

See Also

ST CoordDim, ST_NDims, ST_Dimension

7.5 Geometry Editors

7.5.1 ST_AddPoint

Name

ST_AddPoint — Adds a point to a LineString before point <position> (0-based index).

Synopsis

geometry ST_AddPoint(geometry linestring, geometry point);

geometry ST_AddPoint(geometry linestring, geometry point, integer position);

Description

Adds a point to a LineString before point <position> (0-based index). Third parameter can be omitted or set to -1 for appending.

Availability: 1.1.0

/ This function supports 3d and will not drop the z-index.

Examples

—-—guarantee all linestrings in a table are closed

—--by adding the start point of each linestring to the end of the line string
—--only for those that are not closed

UPDATE sometable

SET the_geom = ST_AddPoint (the_geom, ST_StartPoint (the_geom))

FROM sometable

WHERE ST_IsClosed(the_geom) = false;

—-Adding point to a 3-d line

SELECT ST_ASEWKT (ST_AddPoint (ST_GeomFromEWKT (' LINESTRING(O 0 1, 1 1 1)’), ST _MakePoint <«
(L, 2, 3)));
—-—result

st_asewkt

LINESTRING(O O 1,1 1 1,1 2 3)

PostGIS 1.5.5 Manual
125/322

See Also

ST _RemovePoint, ST _SetPoint

7.5.2 ST_Affine

Name

ST_Affine — Applies a 3d affine transformation to the geometry to do things like translate, rotate, scale in one step.

Synopsis
geometry ST_Affine(geometry geomA, float a, float b, float ¢, float d, float e, float f, float g, float h, float i, float xoff, float yoff,

float zoff);
geometry ST_Affine(geometry geomA, float a, float b, float d, float e, > float xoff, float yoff);

Description

Applies a 3d affine transformation to the geometry to do things like translate, rotate, scale in one step.
Version 1: The call

ST_Affine(geom, a, b, ¢, d, e, £, g, h, i, xoff, yoff, zoff)

represents the transformation matrix

/ a b ¢ xoff \
| d e £ yoff |
| g h i zoff |
N0 0 O 1/

and the vertices are transformed as follows:

x’! = ax*x + bxy + cxz + xoff
vy’ = d«x + exy + fxz + yoff
g*x + hxy + ixz + zoff

7!

All of the translate / scale functions below are expressed via such an affine transformation.
Version 2: Applies a 2d affine transformation to the geometry. The call

ST_Affine(geom, a, b, d, e, xoff, yoff)

represents the transformation matrix

/ a b 0 xoff \ / a b =xoff \
| d e 0 vyoff | rsp. | d e yoff

| 0 0 1 0 | \ 0 O 1/
N\ 0 0 O 1/

and the vertices are transformed as follows:

x’ = a*x + bxy + xoff
y’ = dxx + exy + yoff
z! =z

This method is a subcase of the 3D method above.

Awailability: 1.1.2. Name changed from Affine to ST_Affine in 1.2.2

PostGIS 1.5.5 Manual
126 /322

N:"H’! Note

Prior to 1.3.4, this function crashes if used with geometries that contain CURVES. This is fixed in 1.3.4+

/ This function supports 3d and will not drop the z-index.

/ This method supports Circular Strings and Curves

Examples

—-—-Rotate a 3d line 180 degrees about the z axis. Note this is long-hand for doing <«
ST_RotateZ();
SELECT ST_ASEWKT (ST_Affine(the_geom, <cos(pi()), -sin(pi()), 0, sin(pi()), cos(pi()), 0, <«
o, 0, 1, 0, 0, 0)) As using_affine,
ST_ASEWKT (ST_RotateZ (the_geom, pi())) As using_rotatez
FROM (SELECT ST_GeomFromEWKT (' LINESTRING(1 2 3, 1 4 3)’) As the_geom) As foo;
using_affine | using_rotatez
_____________________________ +_____________________________
LINESTRING(-1 -2 3,-1 -4 3) | LINESTRING(-1 -2 3,-1 -4 3)
(1 row)

——Rotate a 3d line 180 degrees in both the x and z axis
SELECT ST_ASEWKT (ST_Affine(the_geom, cos(pi()), -sin(pi()), 0, sin(pi()), cos(pi()), -sin(<
pi()), 0, sin(pi()), cos(pi()), O, 0, 0))

FROM (SELECT ST_GeomFromEWKT (' LINESTRING(1 2 3, 1 4 3)’) As the_geom) As foo;
st_asewkt

LINESTRING (-1 -2 -3,-1 -4 -3)
(1 row)

See Also

ST Rotate, ST_Scale, ST Translate, ST TransScale

7.5.3 ST_Force 2D

Name

ST_Force_2D - Forces the geometries into a "2-dimensional mode" so that all output representations will only have the X and Y
coordinates.

Synopsis

geometry ST_Force_2D(geometry geomA);

Description

Forces the geometries into a "2-dimensional mode" so that all output representations will only have the X and Y coordinates.
This is useful for force OGC-compliant output (since OGC only specifies 2-D geometries).

/ This method supports Circular Strings and Curves

PostGIS 1.5.5 Manual
127 /322

Examples
SELECT ST_ASEWKT (ST_Force_2D (ST_GeomFromEWKT (' CIRCULARSTRING(1 1 2, 2 3 2, 452, 6 7 2, 5

6 2)")));
st_asewkt

CIRCULARSTRING(1 1,2 3,4 5,6 7,5 6)

SELECT ST_ASEWKT (ST_Force_2D ('POLYGON((0 0 2,0 52,50 2,00 2),(112,312,132,112)) «
"))

st_asewkt

POLYGON((O 0,0 5,5 0,0 0),(1 1,3 1,1 3,1 1))

See Also

ST Force 3D

7.5.4 ST Force 3D

Name

ST_Force_3D — Forces the geometries into XYZ mode. This is an alias for ST_Force_3DZ.

Synopsis

geometry ST_Force_3D(geometry geomA);

Description

Forces the geometries into XYZ mode. This is an alias for ST_Force_3DZ. If a geometry has no Z component, then a 0 Z
coordinate is tacked on.

/ This function supports 3d and will not drop the z-index.

/ This method supports Circular Strings and Curves

Examples

—--Nothing happens to an already 3D geometry
SELECT ST_ASEWKT (ST_Force_3D (ST_GeomFromEWKT (/ CIRCULARSTRING(1 1 2, 2 3 2, 4 5 2, 6 7 <«
2, 562)")))i
st_asewkt

CIRCULARSTRING(1 1 2,2 3 2,4 5 2,6 7 2,5 6 2)

SELECT ST_ASEWKT (ST_Force_3D ('POLYGON((O 0,0 5,5 0,0 0),(1 1,3 1,1 3,1 1))"));

st_asewkt

POLYGON((O O 0,0 5 0,5 0 0,0 0 O),(1 10,3 10,13 0,110))

PostGIS 1.5.5 Manual
128 /322

See Also

ST_ASEWKT, ST_Force_2D, ST_Force_3DM, ST_Force_3DZ

7.5.5 ST Force 3DZ

Name

ST_Force_3DZ — Forces the geometries into XYZ mode. This is a synonym for ST_Force_3D.

Synopsis

geometry ST_Force_3DZ(geometry geomA);

Description

Forces the geometries into XYZ mode. This is a synonym for ST_Force_3DZ. If a geometry has no Z component, then a 0 Z
coordinate is tacked on.

/ This function supports 3d and will not drop the z-index.

/ This method supports Circular Strings and Curves

Examples

—--Nothing happens to an already 3D geometry

SELECT ST_ASEWKT (ST_Force_3DZ (ST_GeomFromEWKT (' CIRCULARSTRING(1 1 2, 2 3 2, 4 5 2, 6 7 2, 5 <
6 2)")));

st_asewkt

CIRCULARSTRING(1 1 2,2 3 2,4 5 2,6 7 2,5 6 2)

SELECT ST_ASEWKT (ST_Force_3DZ(’'POLYGON((O O,0 5,5 0,0 O), (1 1,3 1,1 3,1 1))"));

st_asewkt

POLYGON((O O 0,0 5 0,5 0 0,0 0 O),(1 10,3 10,13 0,110))

See Also

ST_ASEWKT, ST _Force 2D, ST Force_3DM, ST_Force 3D

7.5.6 ST Force 3DM

Name

ST_Force_3DM - Forces the geometries into XYM mode.

PostGIS 1.5.5 Manual
129 /322

Synopsis

geometry ST_Force_3DM(geometry geomA);

Description

Forces the geometries into XYM mode. If a geometry has no M component, then a 0 M coordinate is tacked on. If it has a Z
component, then Z is removed

/ This method supports Circular Strings and Curves

Examples

——Nothing happens to an already 3D geometry
SELECT ST_ASEWKT (ST_Force_3DM(ST_GeomFromEWKT (' CIRCULARSTRING(1 1 2, 2 3 2, 45 2, 6 7 2, 5 <
6 2)")));
st_asewkt

CIRCULARSTRINGM(1 1 0,2 3 0,4 5 0,6 7 0,5 6 0)
SELECT ST_ASEWKT (ST_Force_3DM(’POLYGON((O O 1,0 51,50 1,00 1),¢1 11,3 11,1 31,11 1) «

st_asewkt

POLYGONM((O O 0,0 5 0,5 0 0,0 O 0),(2L 1 0,3 10,1 30,11 0))

See Also

ST_AsEWKT, ST _Force_2D, ST _Force_3DM, ST_Force_3D, ST_GeomFromEWKT

7.5.7 ST_Force 4D

Name

ST_Force_4D — Forces the geometries into XYZM mode.

Synopsis

geometry ST_Force_4D(geometry geomA);

Description

Forces the geometries into XYZM mode. 0 is tacked on for missing Z and M dimensions.
/ This function supports 3d and will not drop the z-index.

/ This method supports Circular Strings and Curves

PostGIS 1.5.5 Manual
130/ 322

Examples

——Nothing happens to an already 3D geometry
SELECT ST_ASEWKT (ST_Force_4D (ST_GeomFromEWKT (CIRCULARSTRING(1 1 2, 2 3 2, 4 52, 6 7 2, 5
6.2)")));
st_asewkt

CIRCULARSTRING(1 1 2 0,2 3 2 0,4 5 2 0,6 72 0,5 6 2 0)

SELECT ST _AsSEWKT (ST_Force_4D (' MULTILINESTRINGM((0 0 1,0 5 2,5 0 3,0 0 4),(1 1 1,3 1 1,1 3 «
1,11 1))"));

st_asewkt

MULTILINESTRING((O O O 1,0 50 2,500 3,000 4),¢(2x101,3101,1 301,110 1))

See Also

ST_AsEWKT, ST_Force_2D, ST Force_3DM, ST_Force_3D

7.5.8 ST_Force_Collection

Name

ST_Force_Collection — Converts the geometry into a GEOMETRYCOLLECTION.

Synopsis

geometry ST_Force_Collection(geometry geomA);

Description
Converts the geometry into a GEOMETRYCOLLECTION. This is useful for simplifying the WKB representation.
Auvailability: 1.2.2, prior to 1.3.4 this function will crash with Curves. This is fixed in 1.3.4+

/ This function supports 3d and will not drop the z-index.

/ This method supports Circular Strings and Curves
Examples
SELECT ST_ASEWKT (ST_Force_Collection (’POLYGON((O 0 1,0 51,50 1,0 0 1),(1 1 1,3 1 1,1 3 «
1,11 1))"));
st_asewkt

GEOMETRYCOLLECTION (POLYGON((O O 1,0 51,50 1,001),(2 11,3 11,13 1,1 11)))

PostGIS 1.5.5 Manual
131/322

SELECT ST_AsText (ST_Force_Collection (" CIRCULARSTRING (220227 150406,2220227 150407,220227
150406)7));
st_astext

GEOMETRYCOLLECTION (CIRCULARSTRING (220227 150406,2220227 150407,220227 150406))
(1 row)

See Also

ST _AsEWKT, ST _Force_2D, ST _Force_3DM, ST_Force_3D, ST_GeomFromEWKT

7.5.9 ST_ForceRHR

Name

ST_ForceRHR — Forces the orientation of the vertices in a polygon to follow the Right-Hand-Rule.

Synopsis

boolean ST_ForceRHR(geometry g);

Description
Forces the orientation of the vertices in a polygon to follow the Right-Hand-Rule. In GIS terminology, this means that the area

that is bounded by the polygon is to the right of the boundary. In particular, the exterior ring is orientated in a clockwise direction
and the interior rings in a counter-clockwise direction.

/ This function supports 3d and will not drop the z-index.

Examples
SELECT ST_AsSEWKT (

ST_ForceRHR (
"POLYGON((O 0 2, 502, 052, 002),(L 12, 132, 312, 112)"

st_asewkt

POLYGON((O O 2,0 5 2,50 2,00 2),¢(112,312,132,112))
(1 row)

See Also

ST_BuildArea, ST_Polygonize, ST_Reverse

7.5.10 ST_LineMerge

Name

ST_LineMerge — Returns a (set of) LineString(s) formed by sewing together a MULTILINESTRING.

PostGIS 1.5.5 Manual
132 /322

Synopsis

geometry ST_LineMerge(geometry amultilinestring);

Description

Returns a (set of) LineString(s) formed by sewing together the constituent line work of a MULTILINESTRING.

:rlﬁ'! Note
N Only use with MULTILINESTRING/LINESTRINGs. If you feed a polygon or geometry collection into this function, it will

return an empty GEOMETRYCOLLECTION

Availability: 1.1.0

Not¢ Note
requires GEOS >=2.1.0

Examples

SELECT ST_AsText (ST_LineMerge (

ST_GeomFromText ('MULTILINESTRING((-29 -27,-30 -29.7,-36 -31,-45 -33), (=45 -33,-46 -32))")
)

)i

st_astext

LINESTRING (-29 -27,-30 -29.7,-36 -31,-45 -33,-46 -32)
(1 row)

——If can’t be merged - original MULTILINESTRING is returned

SELECT ST_AsText (ST_LineMerge (

ST_GeomFromText ("MULTILINESTRING((-29 -27,-30 -29.7,-36 -31,-45 -33), (-45.2 -33.2,-46 -32)) <
")

)

)i

st_astext

MULTILINESTRING((-45.2 -33.2,-46 -32), (-29 -27,-30 -29.7,-36 -31,-45 -33))

See Also

ST_Segmentize, ST_Line_Substring

7.5.11 ST_CollectionExtract

Name

ST_CollectionExtract — Given a GEOMETRYCOLLECTION, returns a MULTI* geometry consisting only of the specified type.
Sub-geometries that are not the specified type are ignored. If there are no sub-geometries of the right type, an EMPTY collection
will be returned. Only points, lines and polygons are supported. Type numbers are 1 == POINT, 2 == LINESTRING, 3 ==
POLYGON.

PostGIS 1.5.5 Manual
133 /322

Synopsis

geometry ST_CollectionExtract(geometry collection, integer type);

Description

Given a GEOMETRYCOLLECTION, returns a MULTT* geometry consisting only of the specified type. Sub-geometries that
are not the specified type are ignored. If there are no sub-geometries of the right type, an EMPTY collection will be returned.
Only points, lines and polygons are supported. Type numbers are 1 == POINT, 2 == LINESTRING, 3 == POLYGON.

Availability: 1.5.0

Examples

—-— Constants: 1 == POINT, 2 == LINESTRING, 3 == POLYGON

SELECT ST_AsText (ST_CollectionExtract (ST_GeomFromText (! GEOMETRYCOLLECTION (<«
GEOMETRYCOLLECTION (POINT (O 0)))’"),1));

st_astext

MULTIPOINT (O 0)
(1 row)

SELECT ST_AsText (ST_CollectionExtract (ST_GeomFromText (! GEOMETRYCOLLECTION (<«
GEOMETRYCOLLECTION (LINESTRING(0 0, 1 1)),LINESTRING(2 2, 3 3))’),2));
st_astext

MULTILINESTRING((O 0, 1 1), (2 2, 3 3))
(1 row)

See Also

ST_Multi

7.5.12 ST _Multi

Name

ST_Multi — Returns the geometry as a MULTIT* geometry. If the geometry is already a MULTI#, it is returned unchanged.

Synopsis

geometry ST_Multi(geometry gl);

Description

Returns the geometry as a MULTI* geometry. If the geometry is already a MULTT*, it is returned unchanged.

PostGIS 1.5.5 Manual
134 /322

Examples

SELECT ST_AsText (ST_Multi (ST_GeomFromText (" POLYGON ((743238 2967416,743238 2967450,
743265 2967450, 743265.625 2967416,743238 2967416))")));
st_astext

MULTIPOLYGON (((743238 2967416, 743238 2967450, 743265 2967450, 743265.625 2967416,
743238 2967416)))
(1 row)

See Also

ST_AsText

7.5.13 ST_RemovePoint

Name

ST_RemovePoint — Removes point from a linestring. Offset is 0-based.

Synopsis

geometry ST_RemovePoint(geometry linestring, integer offset);

Description
Removes point from a linestring. Useful for turning a closed ring into an open line string

Auvailability: 1.1.0

/ This function supports 3d and will not drop the z-index.

Examples

——guarantee no LINESTRINGS are closed
—--by removing the end point. The below assumes the_geom is of type LINESTRING
UPDATE sometable

SET the_geom = ST_RemovePoint (the_geom, ST_NPoints (the_geom) - 1)

FROM sometable

WHERE ST_TIsClosed(the_geom) = true;

See Also

ST _AddPoint, ST _NPoints, ST _NumPoints

7.5.14 ST Reverse

Name

ST_Reverse — Returns the geometry with vertex order reversed.

PostGIS 1.5.5 Manual
135/322

Synopsis

geometry ST_Reverse(geometry gl);

Description

Can be used on any geometry and reverses the order of the vertexes.

Examples

SELECT ST_AsText (the_geom) as line, ST_AsText (ST_Reverse (the_geom)) As reverseline
FROM
(SELECT ST_MakeLine (ST_MakePoint (1,2),

ST_MakePoint (1,10)) As the_geom) as foo;

—--result

line | reverseline
_____________________ +______________________
LINESTRING(1 2,1 10) | LINESTRING(1 10,1 2)

7.5.15 ST_Rotate

Name

ST_Rotate — This is a synonym for ST_RotateZ

Synopsis

geometry ST_Rotate(geometry geomA, float rotZRadians);

Description

This is a synonym for ST_RotateZ.. Rotates geometry rotZRadians about the Z-axis.
Availability: 1.1.2. Name changed from Rotate to ST_Rotate in 1.2.2

/ This function supports 3d and will not drop the z-index.

/ This method supports Circular Strings and Curves

Examples

See Also

ST Affine, ST _RotateX, ST _RotateY, ST RotateZ

7.5.16 ST RotateX

Name

ST_RotateX — Rotate a geometry rotRadians about the X axis.

PostGIS 1.5.5 Manual
136 /322

Synopsis

geometry ST_RotateX(geometry geomA, float rotRadians);

Description

Rotate a geometry geomA - rotRadians about the X axis.

N:ﬂ"’! Note

ST_RotateX (geomA, rotRadians) is short-hand for ST_Affine (geomaA, 1, 0, 0, 0, cos(rot-
Radians), —-sin(rotRadians), 0, sin(rotRadians), cos(rotRadians), 0, 0, 0).

Auvailability: 1.1.2. Name changed from RotateX to ST_RotateX in 1.2.2

/ This function supports 3d and will not drop the z-index.

Examples

—-—Rotate a line 90 degrees along x-axis
SELECT ST_ASEWKT (ST_RotateX (ST_GeomFromEWKT (/ LINESTRING(1 2 3, 1 1 1)’), pi()/2));
st_asewkt

LINESTRING(1 -3 2,1 -1 1)

See Also

ST_Affine, ST_RotateY, ST_RotateZ

7.5.17 ST_RotateY

Name

ST_RotateY — Rotate a geometry rotRadians about the Y axis.

Synopsis

geometry ST _RotateY(geometry geomA, float rotRadians);

Description

Rotate a geometry geomA - rotRadians about the y axis.

N;’""! Note

ST_RotateY (geomA, rotRadians) is short-hand for ST_Affine (geomA, cos (rotRadians), O,
sin(rotRadians), 0, 1, 0, -sin(rotRadians), 0, cos(rotRadians), 0, 0, 0).

Auvailability: 1.1.2. Name changed from RotateY to ST_RotateY in 1.2.2

/ This function supports 3d and will not drop the z-index.

PostGIS 1.5.5 Manual
137 /322

Examples

——Rotate a line 90 degrees along y-axis
SELECT ST_ASEWKT (ST_RotateY (ST_GeomFromEWKT (/ LINESTRING(1 2 3, 1 1 1)"), pi()/2));
st_asewkt

LINESTRING(3 2 -1,1 1 -1)

See Also

ST_Affine, ST_RotateX, ST_RotateZ, Rotate around Point, Create Ellipse functions

7.5.18 ST RotateZ

Name

ST_RotateZ — Rotate a geometry rotRadians about the Z axis.

Synopsis

geometry ST_RotateZ(geometry geomA, float rotRadians);

Description

Rotate a geometry geomA - rotRadians about the Z axis.

& Note

N"R’! ST_RotateZ (geomA, rotRadians) is short-hand for SELECT ST_Affine (geomA, cos (rotRadia-
ns), —-sin(rotRadians), 0, sin(rotRadians), cos(rotRadians), 0, 0, 0, 1, 0, O,
0).

Availability: 1.1.2. Name changed from RotateZ to ST_RotateZ in 1.2.2

N;‘l"! Note

Prior to 1.3.4, this function crashes if used with geometries that contain CURVES. This is fixed in 1.3.4+

/ This function supports 3d and will not drop the z-index.

/ This method supports Circular Strings and Curves

Examples

file:/support/wiki/index.php?plpgsqlfunctions

PostGIS 1.5.5 Manual
138 /322

—-—-Rotate a line 90 degrees along z-axis
SELECT ST_ASEWKT (ST_RotateZ (ST_GeomFromEWKT (/ LINESTRING(1 2 3, 1 1 1)7), pi()/2));
st_asewkt

LINESTRING(-2 1 3,-1 1 1)
——Rotate a curved circle around z-axis
SELECT ST_ASEWKT (ST_RotateZ (the_geom, pi()/2))
FROM (SELECT ST_LineToCurve (ST_Buffer (ST_GeomFromText ('POINT (234 567)"), 3)) As the_geom) —
As foo;

st_asewkt

CURVEPOLYGON (CIRCULARSTRING (-567 237,-564.87867965644 236.12132034356,-564 <«
234,-569.12132034356 231.87867965644,-567 237))

See Also

ST_Affine, ST_RotateX, ST_RotateY, Rotate around Point, Create Ellipse functions

7.5.19 ST Scale

Name

ST_Scale — Scales the geometry to a new size by multiplying the ordinates with the parameters. Ie: ST_Scale(geom, Xfactor,
Yfactor, Zfactor).

Synopsis

geometry ST_Scale(geometry geomA, float XFactor, float YFactor, float ZFactor);
geometry ST_Scale(geometry geomA, float XFactor, float YFactor);

Description

Scales the geometry to a new size by multiplying the ordinates with the parameters. Ie: ST_Scale(geom, Xfactor, Yfactor,
Zfactor).

N:ﬂd Note

ST_Scale (geomA, XFactor, YFactor, ZFactor) is short-hand for ST_Affine (geomA, XFacto-
r, 0, 0, 0, YFactor, 0, 0, 0, ZFactor, 0, 0, 0).

Not? Note

Prior to 1.3.4, this function crashes if used with geometries that contain CURVES. This is fixed in 1.3.4+

Availability: 1.1.0.

file:/support/wiki/index.php?plpgsqlfunctions

PostGIS 1.5.5 Manual
139 /322

/ This function supports 3d and will not drop the z-index.

/ This method supports Circular Strings and Curves

Examples

——Version 1: scale X, Y, Z
SELECT ST_ASEWKT (ST_Scale (ST_GeomFromEWKT (" LINESTRING(1 2 3, 1 1 1)"), 0.5, 0.75, 0.8));
st_asewkt

LINESTRING(0.5 1.5 2.4,0.5 0.75 0.8)

—-—Version 2: Scale X Y
SELECT ST_ASEWKT (ST_Scale (ST_GeomFromEWKT (' LINESTRING(1 2 3, 1 1 1)"), 0.5, 0.75));
st_asewkt

LINESTRING(0.5 1.5 3,0.5 0.75 1)

See Also

ST _Affine, ST TransScale

7.5.20 ST_Segmentize
Name

ST_Segmentize — Return a modified geometry having no segment longer than the given distance. Distance computation is
performed in 2d only.

Synopsis

geometry ST_Segmentize(geometry geomA, float max_length);

Description

Returns a modified geometry having no segment longer than the given distance. Distance computation is performed in 2d only.

Availability: 1.2.2

N:’M Note

This will only increase segments. It will not lengthen segments shorter than max length

PostGIS 1.5.5 Manual
140/ 322

Examples

SELECT ST_AsText (ST_Segmentize (

ST_GeomFromText (' MULTILINESTRING((-29 -27,-30 -29.7,-36 -31,-45 -33), (=45 -33,-46 -32))")
r9)

)i

st_astext

MULTILINESTRING((-29 -27,-30 -29.7,-34.886615700134 -30.758766735029,-36 -31,
-40.8809353009198 -32.0846522890933,-45 -33),

(=45 -33,-46 -32))

(1 row)

SELECT ST_AsText (ST_Segmentize (ST_GeomFromText (' POLYGON ((-29 28, -30 40, -29 28))'),10));
st_astext

POLYGON ((=29 28,-29.8304547985374 37.9654575824488,-30 40,-29.1695452014626 <«
30.0345424175512,-29 28))
(1 row)

See Also

ST_Line_Substring

7.5.21 ST_SetPoint

Name

ST_SetPoint — Replace point N of linestring with given point. Index is 0-based.

Synopsis

geometry ST_SetPoint(geometry linestring, integer zerobasedposition, geometry point);

Description

Replace point N of linestring with given point. Index is 0-based. This is especially useful in triggers when trying to maintain
relationship of joints when one vertex moves.

Auvailability: 1.1.0

/ This function supports 3d and will not drop the z-index.

Examples

——Change first point in line string from -1 3 to -1 1
SELECT ST_AsText (ST_SetPoint (' LINESTRING(-1 2,-1 3)’, 0, "POINT(-1 1)"));
st_astext

LINESTRING(-1 1,-1 3)

———Change last point in a line string (lets play with 3d linestring this time)

PostGIS 1.5.5 Manual
141 /322

SELECT ST_ASEWKT (ST_SetPoint (foo.the_geom, ST_NumPoints (foo.the_geom) - 1, ST_GeomFromEWKT <«
("POINT (-1 1 3)7)))

FROM (SELECT ST_GeomFromEWKT (' LINESTRING(-1 2 3,-1 3 4, 5 6 7)") As the_geom) As foo;
st_asewkt

LINESTRING(-1 2 3,-1 3 4,-1 1 3)

See Also

ST _AddPoint,ST_NPoints, ST _NumPoints, ST_PointN, ST_RemovePoint

7.5.22 ST_SetSRID

Name

ST_SetSRID — Sets the SRID on a geometry to a particular integer value.

Synopsis

geometry ST_SetSRID(geometry geom, integer srid);

Description

Sets the SRID on a geometry to a particular integer value. Useful in constructing bounding boxes for queries.

& Note
NO'H’! This function does not transform the geometry coordinates in any way - it simply sets the meta data defining the spatial
reference system the geometry is assumed to be in. Use ST_Transform if you want to transform the geometry into a
new projection.

/ This method implements the OpenGIS Simple Features Implementation Specification for SQL 1.1.

/ This method supports Circular Strings and Curves

Examples

-- Mark a point as WGS 84 long lat --

SELECT ST_SetSRID(ST_Point (-123.365556, 48.428611),4326) As wgs84long_lat;
—— the ewkt representation (wrap with ST_ASEWKT) -
SRID=4326;POINT (-123.365556 48.428611)

-- Mark a point as WGS 84 long lat and then transform to web mercator (Spherical Mercator) --

SELECT ST_Transform(ST_SetSRID(ST_Point (-123.365556, 48.428611),4326),3785) As spere_merc;
—— the ewkt representation (wrap with ST_ASEWKT) -
SRID=3785;POINT (-13732990.8753491 6178458.96425423)

http://www.opengeospatial.org/standards/sfs

PostGIS 1.5.5 Manual
142 /322

See Also

Section 4.3.1, ST_ASEWKT, ST_Point, ST_SRID,ST_Transform, UpdateGeometrySRID

7.5.23 ST_SnapToGrid

Name

ST_SnapToGrid — Snap all points of the input geometry to the grid defined by its origin and cell size. Remove consecutive
points falling on the same cell, eventually returning NULL if output points are not enough to define a geometry of the given type.
Collapsed geometries in a collection are stripped from it. Useful for reducing precision.

Synopsis

geometry ST_SnapToGrid(geometry geomA, float originX, float originY, float sizeX, float sizeY);

geometry ST_SnapToGrid(geometry geomA, float sizeX, float sizeY);

geometry ST_SnapToGrid(geometry geomA, float size);

geometry ST_SnapToGrid(geometry geomA, geometry pointOrigin, float sizeX, float sizeY, float sizeZ, float sizeM);

Description

Variant 1,2,3: Snap all points of the input geometry to the grid defined by its origin and cell size. Remove consecutive points
falling on the same cell, eventually returning NULL if output points are not enough to define a geometry of the given type.
Collapsed geometries in a collection are stripped from it.

Variant 4: Introduced 1.1.0 - Snap all points of the input geometry to the grid defined by its origin (the second argument, must
be a point) and cell sizes. Specify 0 as size for any dimension you don’t want to snap to a grid.

N;"""! Note

The returned geometry might loose its simplicity (see ST_IsSimple).

. Note
N’M Before release 1.1.0 this function always returned a 2d geometry. Starting at 1.1.0 the returned geometry will have same
dimensionality as the input one with higher dimension values untouched. Use the version taking a second geometry
argument to define all grid dimensions.

Availability: 1.0.0RC1
Auvailability: 1.1.0 - Z and M support

J This function supports 3d and will not drop the z-index.

Examples

—-—Snap your geometries to a precision grid of 107-3
UPDATE mytable
SET the_geom = ST_SnapToGrid(the_geom, 0.001);

SELECT ST_AsText (ST_SnapToGrid (

PostGIS 1.5.5 Manual
143 /322

ST_GeomFromText (' LINESTRING(1.1115678 2.123, 4.111111 3.2374897, 4.11112 3.23748667) <«
")
0.001)

st_astext

LINESTRING(1.112 2.123,4.111 3.237)

——Snap a 4d geometry
SELECT ST_ASEWKT (ST_SnapToGrid(

ST_GeomFromEWKT (' LINESTRING(-1.1115678 2.123 2.3456 1.11111,

4.111111 3.2374897 3.1234 1.1111, -1.11111112 2.123 2.3456 1.1111112)"),

ST_GeomFromEWKT (" POINT (1.12 2.22 3.2 4.4444)"),

0.1, 0.1, 0.1, 0.01));

st_asewkt

LINESTRING(-1.08 2.12 2.3 1.1144,4.12 3.22 3.1 1.1144,-1.08 2.12 2.3 1.1144)

—-With a 4d geometry - the ST_SnapToGrid(geom,size) only touches x and y coords but keeps m <
and z the same
SELECT ST_ASEWKT (ST_SnapToGrid (ST_GeomFromEWKT (' LINESTRING(-1.1115678 2.123 3 2.345¢6,
4.111111 3.2374897 3.1234 1.1111)"),
0.01)) ;
st_asewkt

LINESTRING(-1.11 2.12 3 2.3456,4.11 3.24 3.1234 1.1111)

See Also

ST_AsEWKT, ST_AsText, ST_GeomFromText, ST_GeomFromEWKT, ST_Simplify

7.5.24 ST_Transform

Name

ST_Transform — Returns a new geometry with its coordinates transformed to the SRID referenced by the integer parameter.

Synopsis

geometry ST_Transform(geometry g1, integer srid);

Description
Returns a new geometry with its coordinates transformed to spatial reference system referenced by the SRID integer parameter.
The destination SRID must exist in the SPATIAL_REF_SYS table.

ST_Transform is often confused with ST_SetSRID(). ST_Transform actually changes the coordinates of a geometry from one
spatial reference system to another, while ST_SetSRID() simply changes the SRID identifier of the geometry

N;l-g! Note

Requires PostGIS be compiled with Proj support. Use PostGIS_Full_Version to confirm you have proj support compiled
in.

PostGIS 1.5.5 Manual
144 / 322

N;‘“’! Note

If using more than one transformation, it is useful to have a functional index on the commonly used transformations to
take advantage of index usage.

Not? Note

Prior to 1.3.4, this function crashes if used with geometries that contain CURVES. This is fixed in 1.3.4+

/ This method implements the OpenGIS Simple Features Implementation Specification for SQL 1.1.
/ This method implements the SQL/MM specification. SQL-MM 3: 5.1.6

/ This method supports Circular Strings and Curves

Examples

Change Mass state plane US feet geometry to WGS 84 long lat

SELECT ST_AsText (ST_Transform(ST_GeomFromText (' POLYGON ((743238 2967416, 743238 2967450,
743265 2967450,743265.625 2967416,743238 2967416))’,2249),4326)) As wgs_geom;

wgs_geom

POLYGON ((=71.1776848522251 42.3902896512902,-71.1776843766326 42.3903829478009,
—-71.1775844305465 42.3903826677917,-71.1775825927231 42.3902893647987,-71.177684
8522251 42.3902896512902)) ;

(1 row)

—-3D Circular String example
SELECT ST_ASEWKT (ST_Transform(ST_GeomFromEWKT (’/ SRID=2249; CIRCULARSTRING (743238 2967416 <«
1,743238 2967450 2,743265 2967450 3,743265.625 2967416 3,743238 2967416 4)’),4326));

st_asewkt
SRID=4326; CIRCULARSTRING (=71.1776848522251 42.3902896512902 1,-71.1776843766326 <«
42.3903829478009 2,
—-71.1775844305465 42.3903826677917 3,
—-71.1775825927231 42.3902893647987 3,-71.1776848522251 42.3902896512902 4)

Example of creating a partial functional index. For tables where you are not sure all the geometries will be filled in, its best to use
a partial index that leaves out null geometries which will both conserve space and make your index smaller and more efficient.

CREATE INDEX idx_the_geom 26986_parcels
ON parcels
USING gist
(ST_Transform(the_geom, 26986))
WHERE the_geom IS NOT NULL;

http://www.opengeospatial.org/standards/sfs

PostGIS 1.5.5 Manual
145/ 322

Configuring transformation behaviour

Sometimes coordinate transformation involving a grid-shift can fail, for example if PROJ.4 has not been built with grid-shift files
or the coordinate does not lie within the range for which the grid shift is defined. By default, PostGIS will throw an error if a
grid shift file is not present, but this behaviour can be configured on a per-SRID basis by altering the proj4text value within the
spatial_ref_sys table.

For example, the proj4text parameter +datum=NADS7 is a shorthand form for the following +nadgrids parameter:

+nadgrids=@conus, @alaska, @ntv2_0.gsb,@ntvl_can.dat

The @ prefix means no error is reported if the files are not present, but if the end of the list is reached with no file having been
appropriate (ie. found and overlapping) then an error is issued.

If, conversely, you wanted to ensure that at least the standard files were present, but that if all files were scanned without a hit a
null transformation is applied you could use:

+nadgrids=Q@conus, @alaska, @ntv2_0.gsb,@ntvl_can.dat,null
The null grid shift file is a valid grid shift file covering the whole world and applying no shift. So for a complete example, if you

wanted to alter PostGIS so that transformations to SRID 4267 that didn’t lie within the correct range did not throw an ERROR,
you would use the following:

UPDATE spatial_ref_ sys SET projdtext = ’+proj=longlat +ellps=clrk66 +nadgrids=@conus, <«
@alaska,@ntv2_0.gsb,@ntvl_can.dat,null +no_defs’ WHERE srid = 4267;

See Also

PostGIS_Full_Version, ST_AsText, ST_SetSRID, UpdateGeometrySRID

7.5.25 ST Translate

Name

ST_Translate — Translates the geometry to a new location using the numeric parameters as offsets. Ie: ST_Translate(geom, X,
Y) or ST_Translate(geom, X, Y,Z).

Synopsis

geometry ST_Translate(geometry g1, float deltax, float deltay);
geometry ST_Translate(geometry gl, float deltax, float deltay, float deltaz);

Description

Returns a new geometry whose coordinates are translated delta x,delta y,delta z units. Units are based on the units defined in
spatial reference (SRID) for this geometry.

N;ﬂ"! Note

Prior to 1.3.4, this function crashes if used with geometries that contain CURVES. This is fixed in 1.3.4+

Availability: 1.2.2
J This function supports 3d and will not drop the z-index.

/ This method supports Circular Strings and Curves

PostGIS 1.5.5 Manual
146 /322

Examples

Move a point 1 degree longitude

SELECT ST_AsText (ST_Translate (ST_GeomFromText (/POINT (-71.01 42.37)',4326),1,0)) As <«
wgs_transgeomtxt;

wgs_transgeomtxt

POINT (-70.01 42.37)

Move a linestring 1 degree longitude and 1/2 degree latitude

SELECT ST_AsText (ST_Translate (ST_GeomFromText (' LINESTRING(-71.01 42.37,-71.11 42.38)’,4326)
,1,0.5)) As wgs_transgeomtxt;
wgs_transgeomtxt

LINESTRING(-70.01 42.87,-70.11 42.88)

Move a 3d point

SELECT ST_ASEWKT (ST_Translate (CAST (’POINT(0 O 0)” As geometry), 5, 12,3));
st_asewkt

POINT (5 12 3)

Move a curve and a point

SELECT ST_AsText (ST_Translate (ST_Collect (' CURVEPOLYGON (CIRCULARSTRING (4 3,3.12 0.878,1 <«
0,-1.121 5.1213,6 7, 8 9,4 3))’,"POINT(1 3)"),1,2));
st_astext

GEOMETRYCOLLECTION (CURVEPOLYGON (CIRCULARSTRING (5 5,4.12 2.878,2 2,-0.121 7.1213,7 9,9 11,5 «
5)),POINT (2 5))

See Also

ST_Affine, ST_AsText, ST_GeomFromText

7.5.26 ST_TransScale

Name

ST_TransScale — Translates the geometry using the deltaX and deltaY args, then scales it using the XFactor, YFactor args,
working in 2D only.

Synopsis

geometry ST_TransScale(geometry geomA, float deltaX, float deltaY, float XFactor, float YFactor);

PostGIS 1.5.5 Manual
147 /322

Description

Translates the geometry using the deltaX and deltaY args, then scales it using the XFactor, YFactor args, working in 2D only.

& Note

N"M ST_TransScale (geomA, deltaX, deltaY, XFactor, YFactor) is short-hand for ST_Affine (g-
eomA, XFactor, 0, 0, 0, YFactor, O, 0, 0, 1, deltaX+«XFactor, delta¥YxYFactor,
0).

Not? Note

Prior to 1.3.4, this function crashes if used with geometries that contain CURVES. This is fixed in 1.3.4+

Availability: 1.1.0.
/ This function supports 3d and will not drop the z-index.

/ This method supports Circular Strings and Curves

Examples

SELECT ST_ASEWKT (ST_TransScale (ST_GeomFromEWKT (/ LINESTRING(1 2 3, 1 1 1)"), 0.5, 1, 1, 2));
st_asewkt

LINESTRING (1.5 6 3,1.5 4 1)

——Buffer a point to get an approximation of a circle, convert to curve and then translate <«
1,2 and scale it 3,4
SELECT ST_AsText (ST_Transscale (ST_LineToCurve (ST_Buffer (' POINT (234 567)', 3)),1,2,3,4));
st_astext

CURVEPOLYGON (CIRCULARSTRING (714 2276,711.363961030679 2267.51471862576, 705 <«
2264,698.636038969321 2284.48528137424,714 2276))

See Also

ST_Affine, ST Translate

7.6 Geometry Outputs

7.6.1 ST_AsBinary
Name

ST_AsBinary — Return the Well-Known Binary (WKB) representation of the geometry/geography without SRID meta data.

PostGIS 1.5.5 Manual
148 /322

Synopsis

bytea ST_AsBinary(geometry gl);
bytea ST_AsBinary(geography gl);
bytea ST_AsBinary(geometry g1, text NDR_or_XDR);

Description

Returns the Well-Known Binary representation of the geometry. There are 2 variants of the function. The first variant takes no
endian encoding paramater and defaults to little endian. The second variant takes a second argument denoting the encoding -
using little-endian NDR’) or big-endian ("XDR’) encoding.

This is useful in binary cursors to pull data out of the database without converting it to a string representation.

Not¥ Note
The WKB spec does not include the SRID. To get the OGC WKB with SRID format use ST_AsEWKB

Nfﬂ"! Note

ST_AsBinary is the reverse of ST_GeomFromWKB for geometry. Use ST_GeomFromWKB to convert to a postgis
geometry from ST_AsBinary representation.

Auvailability: 1.5.0 geography support was introduced.
/ This method implements the OpenGIS Simple Features Implementation Specification for SQL 1.1. s2.1.1.1
/ This method implements the SQL/MM specification. SQL-MM 3: 5.1.37

/ This method supports Circular Strings and Curves

Examples

SELECT ST_AsBinary (ST_GeomFromText (' POLYGON((O 0,0 1,1 1,1 0,0 0))'",4326));

st_asbinary
\001\003\000\000\000\001\000\000\000\005
\000\000\000\000\000\000N\000\000\000\000
\000\000\000\000\000\000\000\000\000\000
\000\000\000\N000\N000N\N000\N000\000\000N\000
\000\000\000\3602\000\000\000\000\000\000
\3602\000\000\000\000\000\000\3602\000\000
\000\000\N000\N000\3602\000\000\000\000\000
\000\000\N000\N0O00NO0O0ONOOONOOO\NOOON\NOOONOOON\OOO
\000\000\000\000\000\000\000\000
(1 row)

SELECT ST_AsBinary (ST_GeomFromText (' POLYGON((O 0,0 1,1 1,1 0,0 0))’",4326), ’'XDR’);
st_asbinary

\N000\000\000\000\003\000\000\000\001\000\000\000\005\000\000\000\000\000

http://www.opengeospatial.org/standards/sfs

PostGIS 1.5.5 Manual
149 /322

\000\000\N000\NO00O\NO00N\NO00N\NO00NO00ON\N000\000\000\000\N000\000\000\N000\000N\000
\000?\360\000\000\000\000\000\0002\360\000\000\000\000\000\000?\360\000\000
\000\000\000\N000?\360\000\000\000\000\000\N000\N000N\N000N\N000O\0O00\0O00\N0O00\N000\000
\000\000\000\N000\N000\N000N\N000N\N000\000\000\000\000\000\000\000\000

(1 row)

See Also

ST_ASEWKB, ST _AsEWKT, ST _AsText, ST GeomFromEWKB

7.6.2 ST_AsSEWKB

Name

ST_ASEWKB - Return the Well-Known Binary (WKB) representation of the geometry with SRID meta data.

Synopsis

bytea ST_ASEWKB(geometry gl);
bytea ST_ASEWKB(geometry gl, text NDR_or_XDR);

Description

Returns the Well-Known Binary representation of the geometry with SRID metadata. There are 2 variants of the function.
The first variant takes no endian encoding paramater and defaults to little endian. The second variant takes a second argument
denoting the encoding - using little-endian CNDR’) or big-endian ("XDR’) encoding.

This is useful in binary cursors to pull data out of the database without converting it to a string representation.

Not Note
The WKB spec does not include the SRID. To get the OGC WKB format use ST_AsBinary

) Note
Note
ST_AsEWKB is the reverse of ST_GeomFromEWKB. Use ST_GeomFromEWKB to convert to a postgis geometry from
ST_AsEWKB representation.

/ This function supports 3d and will not drop the z-index.

/ This method supports Circular Strings and Curves

Examples

PostGIS 1.5.5 Manual
150/ 322

SELECT ST_ASEWKB (ST_GeomFromText (' POLYGON((0O 0,0 1,1 1,1 0,0 0))',4326));

st_asewkb

\N001\003\000\000 \346\020\000\000\001\000
\000\000\005\000\000\000\000
\000\000\NO00\NO00N\N000N\NO00N\NO0O0O\OOO
\000\000\000\N000O\0O00\NO0O0\NOO0ON\NOOON\NOOO
\000\000\000\N000\N000N\N000\N000\0O00\0O00N\OO0
\000\000\360?\000\000\000\000\000\000\3607?
\000\000\000\000\000\000\3602\000\000\000\000\000
\000\360?\000\000\000\000\000\000\000\000\N000N\000\000
\000\000\N000\N0O00\N000N\N000N\N000N\N000\000\000\N000\N000N\000
(1 row)

SELECT ST_ASEWKB (ST_GeomFromText (POLYGON((0 0,0 1,1 1,1 0,0 0))’,4326), ’XDR’);
st_asewkb

\000 \000\000\003\000\000\020\346\000\000\000\001\000\000\000\005\000\000\000\000\
000\000\000\000\000\000\000\000N\000\N000\000\000\000\000\000\000\N000\000\000\000"?
\360\000\000\000\000\000\0002\360\000\000\000\000\000\0002\360\000\000\000\000
\000\0002\360\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000
\000\000\000\000\000\000\000\000\000N\000\0O00N\000\000

See Also

ST_AsBinary, ST_ASEWKT, ST_AsText, ST_GeomFromEWKT, ST_SRID

7.6.3 ST_ASEWKT

Name

ST_ASEWKT — Return the Well-Known Text (WKT) representation of the geometry with SRID meta data.

Synopsis

text ST_AsEWKT(geometry gl);

Description

Returns the Well-Known Text representation of the geometry prefixed with the SRID.

Not¢ Note
The WKT spec does not include the SRID. To get the OGC WKT format use ST_AsText

. WKT format does not maintain precision so to prevent floating truncation, use ST_AsBinary or ST_ASEWKB format for
transport.

PostGIS 1.5.5 Manual
151 /322

:rti'! Note
N ST_AsSEWKT is the reverse of ST_GeomFromEWKT. Use ST_GeomFromEWKT to convert to a postgis geometry from
ST_AsSEWKT representation.

/ This function supports 3d and will not drop the z-index.

/ This method supports Circular Strings and Curves

Examples

SELECT ST_ASEWKT (' 0103000020E61000000100000005000000000000
00
FO3F000000000000F03F000000000000F03F000000000000F03
F00" : : geometry) ;

st_asewkt

SRID=4326;POLYGON((O 0,0 1,1 1,1 0,0 0))
(1 row)

SELECT ST_ASEWKT (" 0108000080030000000000000060 <«
E30A4100000000785C0241000000000000F03F0000000018

E20A4100000000485F024100000000000000400000000018

E20A4100000000305C02410000000000000840")

—-—st_asewkt———
CIRCULARSTRING (220268 150415 1,220227 150505 2,220227 150406 3)

See Also

ST_AsBinaryST_AsEWKBST_AsText, ST_GeomFromEWKT

7.6.4 ST_AsGeoJSON

Name

ST_AsGeoJSON — Return the geometry as a GeoJSON element.

Synopsis

text ST_AsGeoJSON(geometry gl);

text ST_AsGeoJSON(geography g1);

text ST_AsGeoJSON(geometry gl, integer max_decimal_digits);

text ST_AsGeoJSON(geography g1, integer max_decimal_digits);

text ST_AsGeoJSON(geometry g1, integer max_decimal_digits, integer options);

text ST_AsGeoJSON(geography g1, integer max_decimal_digits, integer options);

text ST_AsGeoJSON(integer gj_version, geometry gl);

text ST_AsGeoJSON(integer gj_version, geography gl);

text ST_AsGeoJSON(integer gj_version, geometry gl, integer max_decimal_digits);

text ST_AsGeoJSON(integer gj_version, geography gl, integer max_decimal_digits);

text ST_AsGeoJSON(integer gj_version, geometry gl, integer max_decimal_digits, integer options);
text ST_AsGeoJSON(integer gj_version, geography gl, integer max_decimal_digits, integer options);

PostGIS 1.5.5 Manual
152 /322

Description

Return the geometry as a Geometry Javascript Object Notation (GeoJSON) element. (Cf GeoJSON specifications 1.0). 2D and
3D Geometries are both supported. GeoJSON only support SES 1.1 geometry type (no curve support for example).

The gj_version parameter is the major version of the GeoJSON spec. If specified, must be 1.

The third argument may be used to reduce the maximum number of decimal places used in output (defaults to 15).

The last *options’ argument could be used to add Bbox or Crs in GeoJSON output:

* 0: means no option (default value)

* 1: GeoJSON Bbox

e 2: GeoJSON Short CRS (e.g EPSG:4326)

* 4: GeoJSON Long CRS (e.g urn:ogc:def:crs:EPSG::4326)

Version 1: ST_AsGeoJSON(geom) / precision=15 version=1 options=0
Version 2: ST_AsGeoJSON(geom, precision) / version=1 options=0
Version 3: ST_AsGeoJSON(geom, precision, options) / version=1
Version 4: ST_AsGeoJSON(version, geom) / precision=15 options=0
Version 5: ST_AsGeoJSON(version, geom, precision) /options=0
Version 6: ST_AsGeoJSON(version, geom, precision,options)
Availability: 1.3.4

Availability: 1.5.0 geography support was introduced.

/ This function supports 3d and will not drop the z-index.

Examples

GeoJSON format is generally more efficient than other formats for use in ajax mapping. One popular javascript client that
supports this is Open Layers. Example of its use is OpenLayers GeoJSON Example

SELECT ST_AsGeoJSON (the_geom) from fe_edges limit 1;
st_asgeojson

{"type":"MultiLineString", "coordinates": [[[-89.734634999999997,31.4920720000000001,
[-89.734955999999997,31.492237999999997]1111}

(1 row)

--3d point

SELECT ST_AsGeoJSON (' LINESTRING(1 2 3, 4 5 6)');

st_asgeojson

{"type":"LineString", "coordinates":[[1,2,3],[4,5,6]]}

7.6.5 ST_AsGML

Name

ST_AsGML - Return the geometry as a GML version 2 or 3 element.

http://geojson.org/geojson-spec.html
http://openlayers.org/dev/examples/vector-formats.html

PostGIS 1.5.5 Manual
153 /322

Synopsis

text ST_AsGML(geometry gl);

text ST_AsGML(geography gl);

text ST_AsGML(geometry g1, integer precision);

text ST_AsGML(geography gl, integer precision);

text ST_AsGML(integer version, geometry gl);

text ST_AsGML(integer version, geography gl);

text ST_AsGML(integer version, geometry gl, integer precision);

text ST_AsGML(integer version, geography g1, integer precision);

text ST_AsGML(integer version, geometry g1, integer precision, integer options);
text ST_AsGML(integer version, geography g1, integer precision, integer options);

Description

Return the geometry as a Geography Markup Language (GML) element. The version parameter, if specified, may be either 2
or 3. If no version parameter is specified then the default is assumed to be 2. The third argument may be used to reduce the
maximum number of decimal places used in output (defaults to 15).

GML 2 refer to 2.1.2 version, GML 3 to 3.1.1 version
The last options’ argument is a bitfield. It could be used to define CRS output type in GML output, and to declare data as lat/lon:

* 0: GML Short CRS (e.g EPSG:4326), default value

* 1: GML Long CRS (e.g urn:ogc:def:crs:EPSG::4326)

* 16: Declare that datas are lat/lon (e.g srid=4326). Default is to assume that data are planars. This option is usefull for GML
3.1.1 output only, related to axis order.

N:ﬂ"! Note
Availability: 1.3.2
Availability: 1.5.0 geography support was introduced.

J This function supports 3d and will not drop the z-index.

Examples

SELECT ST_AsGML (ST_GeomFromText (/ POLYGON ((0 0,0 1,1 1,1 0,0 0))’,4326));
st_asgml

<gml:Polygon srsName="EPSG:4326"><gml:outerBoundaryIs><gml:LinearRing><gml:coordinates >
>0,0 0,1 1,1 1,0 0,0</gml:coordinates></gml:LinearRing></gml:outerBoundaryIs></gml: <«
Polygon>

SELECT ST_AsGML (3, ST_GeomFromText (’POINT(5.234234233242 6.34534534534)",4326), 5, 17);
st_asgml

<gml:Point srsName="urn:ogc:def:crs:EPSG::4326"><gml:pos>6.34535 5.23423</gml:pos></gml «
:Point>

See Also

ST _GeomFromGML

PostGIS 1.5.5 Manual
154 / 322

7.6.6 ST _AsHEXEWKB
Name

ST_AsHEXEWKB — Returns a Geometry in HEXEWKB format (as text) using either little-endian (NDR) or big-endian (XDR)
encoding.

Synopsis

text ST_AsHEXEWKB(geometry g1, text NDRorXDR);
text ST_AsHEXEWKB(geometry gl);

Description

Returns a Geometry in HEXEWKB format (as text) using either little-endian (NDR) or big-endian (XDR) encoding. If no
encoding is specified, then NDR is used.

Not? Note
Availability: 1.2.2

/ This function supports 3d and will not drop the z-index.

/ This method supports Circular Strings and Curves

Examples

SELECT ST_ASHEXEWKB (ST_GeomFromText (/ POLYGON ((0 0,0 1,1 1,1 0,0 0))’,4326));
which gives same answer as

SELECT ST_GeomFromText ("POLYGON((O 0,0 1,1 1,1 0,0 0))’,4326) ::text;

st_ashexewkb

0103000020E6100000010000000500
00000000000000000000000000000000
00000000000000000000000000000000F03F
000000000000F03F000000000000F03F000000000000F03
F00

7.6.7 ST_AsKML

Name

ST_AsKML — Return the geometry as a KML element. Several variants. Default version=2, default precision=15

PostGIS 1.5.5 Manual
155/ 322

Synopsis

text ST_AsKML(geometry gl);

text ST_AsKML(geography gl);

text ST_AsKML(geometry g1, integer precision);

text ST_AsKML(geography gl, integer precision);

text ST_AsKML(integer version, geometry geoml);

text ST_AsKML(integer version, geography geoml);

text ST_AsKML(integer version, geometry geoml, integer precision);
text ST_AsKML(integer version, geography geom1, integer precision);

Description

Return the geometry as a Keyhole Markup Language (KML) element. There are several variants of this function. maximum
number of decimal places used in output (defaults to 15) and version default to 2.

Version 1: ST_AsKML(geom) / version=2 precision=15

Version 2: ST_AsKML(geom, max_sig_digits) / version=2

Version 3: ST_AsKML(version, geom) / precision=15

Version 4: ST_AsKML(version, geom, precision)

No{d Note
Requires PostGIS be compiled with Proj support. Use PostGIS_Full_Version to confirm you have proj support compiled
in.

Not? Note

Availability: 1.2.2 - later variants that include version param came in 1.3.2

Not? Note

AsKML output will not work with geometries that do not have an SRID

/ This function supports 3d and will not drop the z-index.

Examples

SELECT ST_AsKML (ST_GeomFromText (' POLYGON((O 0,0 1,1 1,1 0,0 0))’,4326));

<Polygon><outerBoundaryIs><LinearRing><coordinates>0,0 0,1 1,1 1,0 0,0</coordinates></ «
LinearRing></outerBoundaryIs></Polygon>

—-3d linestring
SELECT ST_AsSKML (/ SRID=4326; LINESTRING(1 2 3, 4 5 6)’);
<LineString><coordinates>1,2,3 4,5, 6</coordinates></LineString>

PostGIS 1.5.5 Manual
156 /322

See Also

ST_AsSVG, ST_AsGML

7.6.8 ST_AsSVG

Name

ST_AsSVG — Returns a Geometry in SVG path data given a geometry or geography object.

Synopsis

text ST_AsSVG(geometry gl);

text ST_AsSVG(geography gl);

text ST_AsSVG(geometry g1, integer rel);

text ST_AsSVG(geography gl, integer rel);

text ST_AsSVG(geometry gl, integer rel, integer maxdecimaldigits);
text ST_AsSVG(geography gl, integer rel, integer maxdecimaldigits);

Description

Return the geometry as Scalar Vector Graphics (SVG) path data. Use 1 as second argument to have the path data implemented
in terms of relative moves, the default (or 0) uses absolute moves. Third argument may be used to reduce the maximum number
of decimal digits used in output (defaults to 15). Point geometries will be rendered as cx/cy when ’rel’ arg is 0, x/y when ’rel’ is

non

1. Multipoint geometries are delimited by commas (","), GeometryCollection geometries are delimited by semicolons (";").

ste} Note
N Availability: 1.2.2 . Availability: 1.4.0 Changed in PostGIS 1.4.0 to include L command in absolute path to conform to
http://www.w3.0rg/TR/SVG/paths.html#PathDataBNF

Examples

SELECT ST_AsSVG(ST_GeomFromText (' POLYGON((O 0,0 1,1 1,1 0,0 0))’",4326));

st_assvg

MOOLO-11-110 2

7.6.9 ST_GeoHash

Name

ST_GeoHash — Return a GeoHash representation (geohash.org) of the geometry.

Synopsis

text ST_GeoHash(geometry gl);
text ST_GeoHash(geometry g1, integer precision);

http://www.w3.org/TR/SVG/paths.html#PathDataBNF

PostGIS 1.5.5 Manual
157 /322

Description

Return a GeoHash representation (geohash.org) of the geometry. A GeoHash encodes a point into a text form that is sortable and
searchable based on prefixing. A shorter GeoHash is a less precise representation of a point. It can also be thought of as a box,
that contains the actual point.

The one-parameter variant of ST_GeoHash returns a GeoHash based on the input geometry type. Points return a GeoHash with
20 characters of precision (about enough to hold the full double precision of the input). Other types return a GeoHash with a
variable amount of precision, based on the size of the feature. Larger features are represented with less precision, smaller features
with more precision. The idea is that the box implied by the GeoHash will always contain the input feature.

The two-parameter variant of ST_GeoHash returns a GeoHash with a requested precision. For non-points, the starting point of
the calculation is the center of the bounding box of the geometry.

Availability: 1.4.0

N_O*"! Note

ST_GeoHash will not work with geometries that are not in geographic (lon/lat) coordinates.

/ This method supports Circular Strings and Curves

Examples

SELECT ST_GeoHash (ST_SetSRID (ST_MakePoint (-126,48),4326));

st_geohash

cOw3hfls70w3hfls70w3
SELECT ST_GeoHash (ST_SetSRID (ST_MakePoint (-126,48),4326),5);

st_geohash

See Also
7.6.10 ST AsText

Name

ST_AsText — Return the Well-Known Text (WKT) representation of the geometry/geography without SRID metadata.

Synopsis

text ST_AsText(geometry gl);
text ST_AsText(geography gl);

PostGIS 1.5.5 Manual

158 /322
Description
Returns the Well-Known Text representation of the geometry/geography.
N;'R’! Note
The WKT spec does not include the SRID. To get the SRID as part of the data, use the non-standard PostGIS
ST_AsSEWKT

. WKT format does not maintain precision so to prevent floating truncation, use ST_AsBinary or ST_ASEWKB format for
transport.

4 Note
N ST_AsText is the reverse of ST_GeomFromText. Use ST_GeomFromText to convert to a postgis geometry from
ST_AsText representation.

Availability: 1.5 - support for geography was introduced.
/ This method implements the OpenGIS Simple Features Implementation Specification for SQL 1.1. s2.1.1.1
/ This method implements the SQL/MM specification. SQL-MM 3: 5.1.25

/ This method supports Circular Strings and Curves

Examples

SELECT ST_AsText (01030000000100000005000000000000000000
00
FO3F000000000000F03F000000000000F03F000000000000F03
F00") ;

st_astext

POLYGON((O 0,0 1,1 1,1 0,0 0))
(1 row)

See Also

ST_AsBinary, ST_ASEWKB, ST_ASEWKT, ST_GeomFromText

7.7 Operators

771 &&

Name

&& — Returns TRUE if A’s bounding box overlaps B’s.

http://www.opengeospatial.org/standards/sfs

PostGIS 1.5.5 Manual

159 /322

Synopsis

boolean &&(geometry A , geometry B);
boolean &&(geography A , geography B);

Description

The && operator returns TRUE if the bounding box of geometry A overlaps the bounding box of geometry B.

N;ﬂ"! Note

This operand will make use of any indexes that may be available on the geometries.

Availability: 1.5.0 support for geography was introduced.

/ This method supports Circular Strings and Curves

Examples

SELECT tbll.columnl, tbl2.columnl, tbll.column2 && tbl2.column2 AS overlaps
FROM (VALUES

(1, "LINESTRING(0O 0, 3 3)’::geometry),

(2, '"LINESTRING(0 1, O 5)’::geometry)) AS tbll,
(VALUES

(3, 'LINESTRING(1 2, 4 6)’::geometry)) AS tbl2;

columnl | columnl | overlaps
_________ B
1 | 31t
2 | 3| £
(2 rows)
See Also

&>, &>, &<, &<, ~, @

77.2 &<

Name

&< — Returns TRUE if A’s bounding box overlaps or is to the left of B’s.

Synopsis

boolean &<(geometry A , geometry B);

PostGIS 1.5.5 Manual
160/ 322

Description

The &< operator returns TRUE if the bounding box of geometry A overlaps or is to the left of the bounding box of geometry B,
or more accurately, overlaps or is NOT to the right of the bounding box of geometry B.

N;ﬂ"! Note

This operand will make use of any indexes that may be available on the geometries.

Examples

SELECT tbll.columnl, tbl2.columnl, tbll.column2 &< tbl2.column2 AS overleft
FROM
(VALUES
1, ’"LINESTRING(1 2, 4 6)’::geometry)) AS tbll,
VALUES
2, "LINESTRING(O 0, 3 3)’::geometry),
3, "LINESTRING(0 1, 0 5)’::geometry)
4

(
(
(
(4

(4, "LINESTRING(6 0, 6 1)’::geometry)) AS tbl2;

columnl | columnl | overleft
_________ +_________+__________
1 | 2 | £
1| 3 | f
1 | 4 | t
(3 rows)
See Also

&&, &>, &>, &<l

7.7.3 &<|

Name

&<I - Returns TRUE if A’s bounding box overlaps or is below B’s.

Synopsis

boolean &<I(geometry A , geometry B);

Description

The &< | operator returns TRUE if the bounding box of geometry A overlaps or is below of the bounding box of geometry B, or
more accurately, overlaps or is NOT above the bounding box of geometry B.

/ This method supports Circular Strings and Curves

N;ﬂd Note

This operand will make use of any indexes that may be available on the geometries.

PostGIS 1.5.5 Manual
161 /322

Examples

SELECT tbll.columnl, tbl2.columnl, tbll.column2 &<| tbl2.column2 AS overbelow
FROM
(VALUES
1, "LINESTRING(6 0, 6 4)’::geometry)) AS tbll,
VALUES
2, "LINESTRING(O 0, 3 3)’::geometry),
3, 'LINESTRING(O 1, 0 5)’::geometry),
4, 'LINESTRING(l 2, 4 6)’::geometry)) AS tbl2;

columnl | columnl | overbelow
_________ ey
1 | 2 | £
1 | 3]t
1 | 4 | t
(3 rows)
See Also

&&, &>, &>, &<

774 &>

Name

&> — Returns TRUE if A’ bounding box overlaps or is to the right of B’s.

Synopsis

boolean &>(geometry A , geometry B);

Description

The &> operator returns TRUE if the bounding box of geometry A overlaps or is to the right of the bounding box of geometry B,
or more accurately, overlaps or is NOT to the left of the bounding box of geometry B.

N-ﬁ'l"! Note

This operand will make use of any indexes that may be available on the geometries.

Examples

SELECT tbll.columnl, tbl2.columnl, tbll.column2 &> tbl2.column2 AS overright
FROM
(VALUES
1, ’"LINESTRING(1 2, 4 6)’::geometry)) AS tbll,
VALUES
2, "LINESTRING(O 0, 3 3)’::geometry),
3, 'LINESTRING (0 1, ::geometry),
4, "LINESTRING(6 0, 6 1)’::geometry)) AS tbl2;

(@]
(6]
~

PostGIS 1.5.5 Manual
162 /322

columnl | columnl | overright
_________ +_________+___________
1| 2 |t
1 | 31t
1 | 4 | £
(3 rows)
See Also

&&, 1&>, &<, &<

7.75 «

Name

«—Returns TRUE if A’s bounding box is strictly to the left of B’s.

Synopsis

boolean «(geometry A , geometry B);

Description

The << operator returns TRUE if the bounding box of geometry A is strictly to the left of the bounding box of geometry B.

N;*'M Note

This operand will make use of any indexes that may be available on the geometries.

Examples

SELECT tbll.columnl, tbl2.columnl, tbll.column2 << tbl2.column2 AS left
FROM
(VALUES
1, "LINESTRING (1 2, 1 5)’::geometry)) AS tbll,
VALUES
2, "LINESTRING (0 0, 4 3)’::geometry),
3, 'LINESTRING (6 0, 6 5)’::geometry),
4, '"LINESTRING (2 2, 5 6)’::geometry)) AS tbl2;

columnl | columnl | left
_________ I
1 | 2 | £
1 | 3]t
1 4 | t
(3 rows)

See Also

», », «l

PostGIS 1.5.5 Manual

163 /322

7.7.6 «|

Name

«l — Returns TRUE if A’s bounding box is strictly below B’s.

Synopsis

boolean «I(geometry A , geometry B);

Description

The << | operator returns TRUE if the bounding box of geometry A is strictly below the bounding box of geometry B.

N;*'M Note

This operand will make use of any indexes that may be available on the geometries.

Examples

SELECT tbll.columnl,

FROM

(VALUES
(1, ’LINESTRING
(VALUES
(2, "LINESTRING
(3, "LINESTRING
(4, "LINESTRING

columnl | columnl

See Also

« o, I»
b b

7.7.7 =

Name

(0

(1
(6
(2

|
+
t
f
bl

tbl2.columnl, tbll.column2 <<| tbl2.column2 AS below

0, 4 3)"::geometry)) AS tbll,
4, 1 7)"::geometry),

1, 6 5)’::geometry),
3, 5 6)’::geometry)) AS tbl2;

=—Returns TRUE if A’s bounding box is the same as B’s (uses float4 boxes).

Synopsis

boolean =(geometry A , geometry B);
boolean =(geography A , geography B);

PostGIS 1.5.5 Manual

164 /322

Description

The = operator returns TRUE if the bounding box of geometry/geography A is the same as the bounding box of geometry/geog-
raphy B. PostgreSQL uses the =, <, and > operators defined for geometries to perform internal orderings and comparison of

geometries (ie. in a GROUP BY or ORDER BY clause).

Warning

. This is cause for a lot of confusion. When you compare geometryA = geometryB it will return true even when the
geometries are clearly different IF their bounding boxes are the same. To check for true equality use ST_OrderingEquals
or ST_Equals. Even for points, doing a bounding box check is not sufficient to determine true equality of points since

bounding box prior to PostGIS 2.0 are stored as float4.

KH
l_f # Caution
This operand will NOT make use of any indexes that may be available on the geometries.

/ This method supports Circular Strings and Curves

Examples

SELECT ’LINESTRING(O 0, 0 1, 1 0)’::geometry = 'LINESTRING(1 1, 0 0)’::geometry;
?column?

SELECT ST_AsText (columnl)
FROM (VALUES
(" LINESTRING (0O 0, 1 1)’ ::geometry),
("LINESTRING(1 1, 0 0)’::geometry)) AS foo;
st_astext
LINESTRING(0 0,1 1)
LINESTRING(1 1,0 0)
(2 rows)

—— Note: the GROUP BY uses the "=" to compare for geometry equivalency.
SELECT ST_AsText (columnl)
FROM (VALUES
(" LINESTRING (0O 0, 1 1)’::geometry),
(" LINESTRING (1 1, 0 0)’::geometry)) AS foo
GROUP BY columnl;
st_astext
LINESTRING(0 0,1 1)
(1 row)
—— NOTE: Although the points are different, the float4 boxes are the same
—— In versions 2.0+ and after, this will return false since 2.0+ switched
—-— to store double-precision (float8) bounding boxes instead of float4 (used in 1.5 and
prior) -—-
SELECT ST_GeomFromText (" POINT (1707296.37 4820536.77)") =
ST_GeomFromText (/POINT (1707296.27 4820536.87)") As pt_intersect;
—-—pt_intersect —-—
t

«

PostGIS 1.5.5 Manual

165 /322

See Also

ST_Equals, ST_OrderingEquals, ~=

778 »

Name

» — Returns TRUE if A’s bounding box is strictly to the right of B’s.

Synopsis

boolean »(geometry A , geometry B);

Description

The >> operator returns TRUE if the bounding box of geometry A is strictly to the right of the bounding box of geometry B.

N;ﬂ"! Note

This operand will make use of any indexes that may be available on the geometries.

Examples

SELECT tbll.columnl,

FROM
(VALUES

(
(VALUES
(
(
(

columnl |

See Also

«, I», «

779 @

Name

1, ’"LINESTRING
2, "LINESTRING
3, "LINESTRING
4, "LINESTRING

columnl

tbl2.columnl, tbll.column2 >> tbl2.column2 AS right

3, 5 6)'::geometry)) AS tbll,
4, 1 7)’::geometry),

1, 6 5)’::geometry),
0, 4 3)’::geometry)) AS tbl2;

@ — Returns TRUE if A’s bounding box is contained by B’s.

PostGIS 1.5.5 Manual
166 / 322

Synopsis

boolean @(geometry A , geometry B);

Description

The @ operator returns TRUE if the bounding box of geometry A is completely contained by the bounding box of geometry B.

N;"""! Note

This operand will make use of any indexes that may be available on the geometries.

Examples
SELECT tbll.columnl, tbl2.columnl, tbll.column2 @ tbl2.column2 AS contained
FROM
(VALUES
1, "LINESTRING (1 1, 3 3)’::geometry)) AS tbll,
VALUES
2, "LINESTRING (0 0, 4 4)’::geometry),
3, 'LINESTRING (2 2, 4 4)’::geometry),
4

(
(
(
(
(4, "LINESTRING (1 1, 3 3)’::geometry)) AS tbl2;

columnl | columnl contained

\
+
2 t
3 | £
4 t

See Also

~, &&

7.7.10 |&>

Name

|&> — Returns TRUE if A’s bounding box overlaps or is above B’s.

Synopsis

boolean |&>(geometry A , geometry B);

Description

The | &> operator returns TRUE if the bounding box of geometry A overlaps or is above the bounding box of geometry B, or
more accurately, overlaps or is NOT below the bounding box of geometry B.

N;"R’! Note

This operand will make use of any indexes that may be available on the geometries.

PostGIS 1.5.5 Manual
167 /322

Examples

SELECT tbll.columnl, tbl2.columnl, tbll.column2 |&> tbl2.column2 AS overabove
FROM
(VALUES
1, 'LINESTRING(6 0, 6 4)’::geometry)) AS tbll,
VALUES
2, "LINESTRING(0O 0, 3 3)’::geometry),
3, 'LINESTRING(O 1, 0 5)’::geometry),
4, '"LINESTRING(1 2, 4 6)’::geometry)) AS tbl2;

columnl | columnl | overabove
,,,,,,,,, oy
1 | 2 | t
1| 3 | f
1 4 | £
(3 rows)
See Also

&&, &>, &<, &<

7711 |»

Name

[» — Returns TRUE if A’s bounding box is strictly above B’s.

Synopsis

boolean I»(geometry A , geometry B);

Description

The | >> operator returns TRUE if the bounding box of geometry A is strictly to the right of the bounding box of geometry B.

N_ﬁ'l"! Note

This operand will make use of any indexes that may be available on the geometries.

Examples

SELECT tbll.columnl, tbl2.columnl, tbll.column2 |>> tbl2.column2 AS above
FROM
(VALUES
1, "LINESTRING (1 4, 1 7)’::geometry)) AS tbll,
VALUES
2, "LINESTRING (0 0, 4 2)’::geometry),
3, '"LINESTRING (6 1, 6 5)’::geometry),
4, '"LINESTRING (2 3, 5 6)’::geometry)) AS tbl2;

columnl | columnl | above

PostGIS 1.5.5 Manual

168 /322

See Also

« », «l

7712 ~

Name

L I I

~ —Returns TRUE if A’s bounding box contains B’s.

Synopsis

boolean ~(geometry A , geometry B);

Description

The ~ operator returns TRUE if the bounding box of geometry A completely contains the bounding box of geometry B.

N_G*"! Note

This operand will make use of any indexes that may be available on the geometries.

Examples

SELECT tbll.columnl,

FROM

(VALUES
(1, 'LINE
(VALUES
(2, '"LINE
(3, "LINE
(4, '"LINE

columnl |

STRING
STRING
STRING
STRING

columnl

tbl2.columnl, tbll.column2 ~ tbl2.column2 AS contains

0, 3 3)"::geometry)) AS tbll,

0, 4 4)’::geometry),
2)'" ::geometry),
0, 3 3)"::geometry)) AS tbl2;

=
~
N

contains

PostGIS 1.5.5 Manual
169 /322

7713 -~=

Name

~=— Returns TRUE if A’s bounding box is the same as B’s.

Synopsis

boolean ~=(geometry A , geometry B);

Description

The ~= operator returns TRUE if the bounding box of geometry/geography A is the same as the bounding box of geometry/geog-
raphy B.

N_ﬂ"l"! Note

This operand will make use of any indexes that may be available on the geometries.

Availability: 1.5.0 changed behavior

Warning

. This operator has changed behavior in PostGIS 1.5 from testing for actual geometric equality to only checking for
bounding box equality. To complicate things it also depends on if you have done a hard or soft upgrade which behavior
your database has. To find out which behavior your database has you can run the query below. To check for true
equality use ST_OrderingEquals or ST_Equals and to check for bounding box equality =; operator is a safer option.

Examples

select "LINESTRING(O 0, 1 1)’::geometry ~= 'LINESTRING(O 1, 1 0)’::geometry as equality;
equality \

The above can be used to test if you have the new or old behavior of ~= operator.

See Also

ST_Equals, ST_OrderingEquals, =

7.8 Spatial Relationships and Measurements

7.8.1 ST_Area

Name

ST_Area — Returns the area of the surface if it is a polygon or multi-polygon. For "geometry" type area is in SRID units. For
"geography" area is in square meters.

PostGIS 1.5.5 Manual
170/ 322

Synopsis

float ST_Area(geometry gl);
float ST_Area(geography gl);
float ST_Area(geography g1, boolean use_spheroid);

Description

Returns the area of the geometry if it is a polygon or multi-polygon. Return the area measurement of an ST_Surface or
ST_MultiSurface value. For geometry Area is in the units of the srid. For geography area is in square meters and defaults
to measuring about the spheroid of the geography (currently only WGS84). To measure around the faster but less accurate sphere
-- ST_Area(geog,false).

/ This method implements the OpenGIS Simple Features Implementation Specification for SQL 1.1.

/ This method implements the SQL/MM specification. SQL-MM 3: 8.1.2,9.5.3

Examples

Return area in square feet for a plot of Massachusetts land and multiply by conversion to get square meters. Note this is in square
feet because 2249 is Mass State Plane Feet

SELECT ST_Area(the_geom) As sqgft, ST_Area(the_geom)*POWER(0.3048,2) As sgm
FROM (SELECT
ST_GeomFromText (' POLYGON ((743238 2967416,743238 2967450,
743265 2967450,743265.625 2967416,743238 2967416))’,2249)) As foo(the_geom);
sgft | sam

928.625 | 86.27208552

Return area square feet and transform to Massachusetts state plane meters (26986) to get square meters. Note this is in square
feet because 2249 is Mass State Plane Feet and transformed area is in square meters since 26986 is state plane mass meters

SELECT ST_Area(the_geom) As sqgft, ST_Area(ST_Transform(the_geom,26986)) As sgm
FROM (SELECT
ST_GeomFromText (" POLYGON ((743238 2967416,743238 2967450,
743265 2967450,743265.625 2967416,743238 2967416))’,2249)) As foo(the_geom);
sgft | sqm

928.625 | 86.2724304199219

Return area square feet and square meters using Geography data type. Note that we transform to our geometry to geography
(before you can do that make sure your geometry is in WGS 84 long lat 4326). Geography always measures in meters. This is
just for demonstration to compare. Normally your table will be stored in geography data type already.

SELECT ST_Area (the_geog) /POWER (0.3048,2) As sqgft_spheroid, ST_Area (the_geog, false) /POWER «
(0.3048,2) As sqgft_sphere, ST_Area(the_geog) As sgm_spheroid
FROM (SELECT
geography (
ST _Transform (
ST_GeomFromText (" POLYGON ((743238 2967416,743238 2967450,743265 2967450, 743265.625 <«
2967416,743238 2967416)) ",
2249
) ,4326

http://www.opengeospatial.org/standards/sfs

PostGIS 1.5.5 Manual
171/322

)

) As foo(the_geoqg);

sgft_spheroid | sqgqft_sphere | sgm_spheroid
_________________ S
928.684405217197 | 927.186481558724 | 86.2776044452694

—-—if your data is in geography already

SELECT ST_Area (the_geog) /POWER(0.3048,2) As sqft, ST_Area(the_geog) As sgm

FROM somegeogtable;

See Also

ST_GeomFromText, ST_GeographyFromText, ST_SetSRID,ST_Transform

7.8.2 ST_Azimuth

Name

ST_Azimuth — Returns the angle in radians from the horizontal of the vector defined by pointA and pointB

Synopsis

float ST_Azimuth(geometry pointA, geometry pointB);

Description

Returns the azimuth of the segment defined by the given Point geometries, or NULL if the two points are coincident. Return
value is in radians.
The Azimuth is mathematical concept defined as the angle, in this case measured in radian, between a reference plane and a point

Auvailability: 1.1.0

Azimuth is especially useful in conjunction with ST_Translate for shifting an object along its perpendicular axis. See up-
gis_lineshift Plpgsqlfunctions PostGIS wiki section for example of this.

Examples

--Azimuth in degrees

SELECT ST_Azimuth (ST_MakePoint (1,2), ST_MakePoint (3,4))/(2+«pi())*360 as degAz,
ST_Azimuth (ST_MakePoint (3,4), ST_MakePoint (1,2))/(2+«pi())*360 As degAzrev

degaz degazrev

See Also

ST_MakePoint, ST_Translate

http://postgis.refractions.net/support/wiki/index.php?plpgsqlfunctions

PostGIS 1.5.5 Manual

172 /322

7.8.3 ST_Centroid

Name

ST_Centroid — Returns the geometric center of a geometry.

Synopsis

geometry ST_Centroid(geometry gl);

Description

Computes the geometric center of a geometry, or equivalently, the center of mass of the geometry as a POINT. For [MULTI]|P—
OINTSs, this is computed as the arithmetric mean of the input coordinates. For [MULTI]LINESTRINGS, this is computed as the
weighted length of each line segment. For [MULTI]POLYGONSs, "weight" is thought in terms of area. If an empty geometry is
supplied, an empty GEOMETRYCOLLECTION is returned. If NULL is supplied, NULL is returned.

The centroid is equal to the centroid of the set of component Geometries of highest dimension (since the lower-dimension

geometries contribute zero "weight" to the centroid).

Not? Note

Computation will be more accurate if performed by the GEOS module (enabled at compile time).

/ This method implements the OpenGIS Simple Features Implementation Specification for SQL 1.1.

/ This method implements the SQL/MM specification. SQL-MM 3: 8.1.4, 9.5.5

Examples

In each of the following illustrations, the blue dot represents the centroid of the source geometry.

e e
.

o
e

°"w v o

Centroid of a MULTIPOINT

Centroid of a LINESTRING

http://www.opengeospatial.org/standards/sfs

PostGIS 1.5.5 Manual

173 /322

Centroid of a POLYGON

Centroid of a GEOMETRYCOLLECTION

SELECT ST_AsText (ST_Centroid(’MULTIPOINT (-1 O,

0o, 6 0, 78, 98, 10 6)"));
st_astext

POINT (2.30769230769231 3.30769230769231)
(1 row)

See Also

ST PointOnSurface

7.8.4 ST ClosestPoint

Name

Zp, =1 3, =1 4, =1 7, @ 1, O 3, 1 i,

ST_ClosestPoint — Returns the 2-dimensional point on g1 that is closest to g2. This is the first point of the shortest line.

Synopsis

geometry ST_ClosestPoint(geometry g1, geometry g2);

Description

Returns the 2-dimensional point on g1 that is closest to g2. This is the first point of the shortest line.

Availability: 1.5.0

Examples

PostGIS 1.5.5 Manual

174 /322

Closest between point and linestring is the point itself, but
closest point between a linestring and point is the point on
line string that is closest.

SELECT ST_AsText (ST_ClosestPoint (pt, line)
) AS cp_pt_line,
ST_AsText (ST_ClosestPoint (line,pt <
)) As cp_line_pt
FROM (SELECT ’'POINT (100 100)’::geometry <«
As pt,

«

"LINESTRING
110 180,
) As foo;

(20 80, 98 <«

190, 50 75)’ ::geometry As line

cp_pt_line |

POINT (100 100) | POINT(73.0769230769231
115.384615384615)

o

closest point on polygon A to polygon B

SELECT ST_AsText (

ST_ClosestPoint (
ST_GeomFromText (!
20 40, 50 60, 125 100,
ST_Buffer (<
ST_GeomFromText (POINT (110 170)7),

)

) As ptwkt;

POLYGON ((175 150,

20)

]

175 150

See Also

ST_Distance, ST_LongestLine, ST_ShortestLine, ST_MaxDistance

7.8.5 ST Contains

Name

ST_Contains — Returns true if and only if no points of B lie in the exterior of A, and at least one point of the interior of B lies in

the interior of A.

PostGIS 1.5.5 Manual
175/ 322

Synopsis

boolean ST_Contains(geometry geomA, geometry geomB);

Description

Geometry A contains Geometry B if and only if no points of B lie in the exterior of A, and at least one point of the interior of B
lies in the interior of A. An important subtlety of this definition is that A does not contain its boundary, but A does contain itself.
Contrast that to ST_ContainsProperly where geometry A does not Contain Properly itself.

Returns TRUE if geometry B is completely inside geometry A. For this function to make sense, the source geometries must both
be of the same coordinate projection, having the same SRID. ST_Contains is the inverse of ST_Within. So ST_Contains(A,B)
implies ST_Within(B,A) except in the case of invalid geometries where the result is always false regardless or not defined.

Performed by the GEOS module

I Important
) Do not call with a GEOMETRYCOLLECTION as an argument

I Important
) Do not use this function with invalid geometries. You will get unexpected results.

This function call will automatically include a bounding box comparison that will make use of any indexes that are available on
the geometries. To avoid index use, use the function _ST_Contains.

NOTE: this is the "allowable" version that returns a boolean, not an integer.

/ This method implements the OpenGIS Simple Features Implementation Specification for SQL 1.1. s2.1.1.2 // s2.1.13.3 -
same as within(geometry B, geometry A)

/ This method implements the SQL/MM specification. SQL-MM 3: 5.1.31

There are certain subtleties to ST_Contains and ST_Within that are not intuitively obvious. For details check out Subtleties of
OGC Covers, Contains, Within

Examples

The ST_Contains predicate returns TRUE in all the following illustrations.

http://www.opengeospatial.org/standards/sfs
http://lin-ear-th-inking.blogspot.com/2007/06/subtleties-of-ogc-covers-spatial.html
http://lin-ear-th-inking.blogspot.com/2007/06/subtleties-of-ogc-covers-spatial.html

PostGIS 1.5.5 Manual
176/ 322

LINESTRING / MULTIPOINT POLYGON / POINT

POLYGON / LINESTRING POLYGON / POLYGON

The ST_Contains predicate returns FALSE in all the following illustrations.

PostGIS 1.5.5 Manual

177 /322

POLYGON / MULTIPOINT POLYGON / LINESTRING

—— A circle within a circle

SELECT ST_Contains(smallc, bigc) As smallcontainsbig,
ST_Contains (bigc, smallc) As bigcontainssmall,
ST_Contains (bigc, ST_Union(smallc, bigc)) as bigcontainsunion,
ST_Equals (bigc, ST_Union(smallc, bigc)) as bigisunion,
ST_Covers (bigc, ST_ExteriorRing(bigc)) As bigcoversexterior,
ST_Contains (bigc, ST_ExteriorRing(bigc)) As bigcontainsexterior

FROM (SELECT ST _Buffer (ST_GeomFromText ("POINT (1 2)’), 10) As smallc,

ST_Buffer (ST_GeomFromText ('POINT (1 2)’), 20) As bigc) As foo;

-— Result

smallcontainsbig | bigcontainssmall | bigcontainsunion | bigisunion | bigcoversexterior | <

bigcontainsexterior

—-— Example demonstrating difference between contains and contains properly
SELECT ST_GeometryType (geomA) As geomtype, ST_Contains (geomA,geomA) AS acontainsa,
ST_ContainsProperly (geomA, geomA) AS acontainspropa,
ST_Contains (geomA, ST_Boundary(geomA)) As acontainsba, ST_ContainsProperly (geomA,
ST_Boundary (geomA)) As acontainspropba
FROM (VALUES (ST_Buffer(ST_Point(1,1), 5,1)),
(ST_MakeLine (ST_Point (1,1), ST_Point (-1,-1))),
(ST_Point (1,1))
) As foo (geomd) ;

geomtype | acontainsa | acontainspropa | acontainsba | acontainspropba
—————————————— et H e e et e
ST_Polygon | t | £ | £ | £
ST_LineString | t | £ | £ | £
ST_Point | t | t | £ | £

«—

PostGIS 1.5.5 Manual
178 /322

See Also

ST_Boundary, ST_ContainsProperly, ST_Covers,ST_CoveredBy, ST_Equals,ST_Within

7.8.6 ST_ContainsProperly

Name

ST_ContainsProperly — Returns true if B intersects the interior of A but not the boundary (or exterior). A does not contain
properly itself, but does contain itself.

Synopsis

boolean ST_ContainsProperly(geometry geomA, geometry geomB);

Description

Returns true if B intersects the interior of A but not the boundary (or exterior).
A does not contain properly itself, but does contain itself.

Every point of the other geometry is a point of this geometry’s interior. The DE-9IM Intersection Matrix for the two geometries
matches [T**FF*FF*] used in ST_Relate

Note

From JTS docs slightly reworded: The advantage to using this predicate over ST_Contains and ST_Intersects is that it
N:"l"! can be computed efficiently, with no need to compute topology at individual points.

An example use case for this predicate is computing the intersections of a set of geometries with a large polygonal

geometry. Since intersection is a fairly slow operation, it can be more efficient to use containsProperly to filter out test

geometries which lie wholly inside the area. In these cases the intersection is known a priori to be exactly the original

test geometry.

Availability: 1.4.0 - requires GEOS >=3.1.0.

I Important
) Do not call with a GEOMETRYCOLLECTION as an argument

I Important
) Do not use this function with invalid geometries. You will get unexpected results.

This function call will automatically include a bounding box comparison that will make use of any indexes that are available on
the geometries. To avoid index use, use the function _ST_ContainsProperly.

PostGIS 1.5.5 Manual
179 /322

Examples

—-—a circle within a circle

SELECT ST_ContainsProperly(smallc, bigc) As smallcontainspropbig,

ST_ContainsProperly (bigc,smallc) As bigcontainspropsmall,

ST_ContainsProperly (bigc, ST_Union(smallc, bigc)) as bigcontainspropunion,

ST_Equals (bigc, ST _Union(smallc, bigc)) as bigisunion,

ST_Covers (bigc, ST_ExteriorRing(bigc)) As bigcoversexterior,

ST_ContainsProperly (bigc, ST_ExteriorRing(bigc)) As bigcontainsexterior

FROM (SELECT ST_Buffer (ST_GeomFromText (POINT (1 2)’), 10) As smallc,

ST_Buffer (ST_GeomFromText (' POINT (1 2)’), 20) As bigc) As foo;

—-—Result

smallcontainspropbig | bigcontainspropsmall | bigcontainspropunion | bigisunion | <«
bigcoversexterior | bigcontainsexterior

——example demonstrating difference between contains and contains properly
SELECT ST_GeometryType (geomA) As geomtype, ST_Contains (geomA,geomA) AS acontainsa, <«
ST_ContainsProperly (geomA, geomA) AS acontainspropa,
ST_Contains (geomA, ST_Boundary (geomA)) As acontainsba, ST_ContainsProperly (geomA, —
ST_Boundary (geomA)) As acontainspropba
FROM (VALUES (ST_Buffer (ST Point (1,1), 5,1)),
(ST_MakeLine (ST_Point (1,1), ST_Point(-1,-1))),
(ST_Point(1,1))
) As foo(geomA) ;

geomtype | acontainsa | acontainspropa | acontainsba | acontainspropba
—————————————— et Bt e
ST_Polygon |t | £ | £ | £
ST_LineString | t | £ | £ | £
ST_Point | t |t | £ | £
See Also

ST_GeometryType, ST_Boundary, ST_Contains, ST_Covers,ST_CoveredBy, ST_Equals,ST_Relate,ST_Within

7.8.7 ST Covers

Name

ST_Covers — Returns 1 (TRUE) if no point in Geometry B is outside Geometry A. For geography: if geography point B is not
outside Polygon Geography A

Synopsis

boolean ST_Covers(geometry geomA, geometry geomB);
boolean ST_Covers(geography geogpolyA, geography geogpointB);

Description

Returns 1 (TRUE) if no point in Geometry/Geography B is outside Geometry/Geography A
Performed by the GEOS module

PostGIS 1.5.5 Manual
180/ 322

I Important
) Do not call with a GEOMETRYCOLLECTION as an argument

I Important
) For geography only Polygon covers point is supported.

I Important
) Do not use this function with invalid geometries. You will get unexpected results.

This function call will automatically include a bounding box comparison that will make use of any indexes that are available on
the geometries. To avoid index use, use the function _ST_Covers.

Auvailability: 1.2.2 - requires GEOS >= 3.0

Awailability: 1.5 - support for geography was introduced.

NOTE: this is the "allowable" version that returns a boolean, not an integer.
Not an OGC standard, but Oracle has it too.

There are certain subtleties to ST_Contains and ST_Within that are not intuitively obvious. For details check out Subtleties of
OGC Covers, Contains, Within

Examples

Geometry example

——a circle covering a circle
SELECT ST_Covers(smallc,smallc) As smallinsmall,
ST_Covers (smallc, bigc) As smallcoversbig,

ST_Covers (bigc, ST_ExteriorRing(bigc)) As bigcoversexterior,
ST_Contains (bigc, ST_ExteriorRing(bigc)) As bigcontainsexterior
FROM (SELECT ST _Buffer (ST_GeomFromText ('POINT (1 2)’), 10) As smallc,

ST_Buffer (ST_GeomFromText (' POINT (1 2)’), 20) As bigc) As foo;

—-—Result
smallinsmall | smallcoversbig | bigcoversexterior | bigcontainsexterior
—————————————— e e
t | £ | € | £
(1 row)
Geeography Example

—-— a point with a 300 meter buffer compared to a point, a point and its 10 meter buffer
SELECT ST_Covers (geog_poly, geog_pt) As poly_covers_pt,
ST_Covers (ST_Buffer (geog_pt,10), geog_pt) As buff_10m_covers_cent
FROM (SELECT ST_Buffer (ST_GeogFromText (' SRID=4326;POINT (-99.327 31.4821)’), 300) As <«
geog_poly,
ST_GeogFromText (" SRID=4326;POINT (-99.33 31.483)’) As geog_pt) As foo;

poly_covers_pt | buff_ 10m_covers_cent
7777777777777777 +777777777777777777
f |t

http://lin-ear-th-inking.blogspot.com/2007/06/subtleties-of-ogc-covers-spatial.html
http://lin-ear-th-inking.blogspot.com/2007/06/subtleties-of-ogc-covers-spatial.html

PostGIS 1.5.5 Manual
181/322

See Also

ST_Contains, ST_CoveredBy, ST_Within

7.8.8 ST_CoveredBy
Name

ST_CoveredBy — Returns 1 (TRUE) if no point in Geometry/Geography A is outside Geometry/Geography B

Synopsis

boolean ST_CoveredBy(geometry geomA, geometry geomB);
boolean ST_CoveredBy(geography geogA, geography geogB);

Description

Returns 1 (TRUE) if no point in Geometry/Geography A is outside Geometry/Geography B
Performed by the GEOS module

I Important
) Do not call with a GEOMETRYCOLLECTION as an argument

I Important
) Do not use this function with invalid geometries. You will get unexpected results.

Auvailability: 1.2.2 - requires GEOS >= 3.0

This function call will automatically include a bounding box comparison that will make use of any indexes that are available on
the geometries. To avoid index use, use the function _ST_CoveredBy.

NOTE: this is the "allowable" version that returns a boolean, not an integer.
Not an OGC standard, but Oracle has it too.

There are certain subtleties to ST_Contains and ST_Within that are not intuitively obvious. For details check out Subtleties of
OGC Covers, Contains, Within

Examples

—-—a circle coveredby a circle
SELECT ST_CoveredBy (smallc,smallc) As smallinsmall,
ST_CoveredBy (smallc, bigc) As smallcoveredbybig,
ST_CoveredBy (ST_ExteriorRing(bigc), bigc) As exteriorcoveredbybig,
ST_Within (ST_ExteriorRing(bigc),bigc) As exeriorwithinbig
FROM (SELECT ST _Buffer (ST_GeomFromText ("POINT (1 2)’), 10) As smallc,
ST_Buffer (ST_GeomFromText (" POINT (1 2)’), 20) As bigc) As foo;
—-—Result
smallinsmall | smallcoveredbybig | exteriorcoveredbybig | exeriorwithinbig

http://lin-ear-th-inking.blogspot.com/2007/06/subtleties-of-ogc-covers-spatial.html
http://lin-ear-th-inking.blogspot.com/2007/06/subtleties-of-ogc-covers-spatial.html

PostGIS 1.5.5 Manual
182 /322

See Also

ST_Contains, ST_Covers, ST_ExteriorRing, ST_Within

7.8.9 ST_Crosses

Name

ST_Crosses — Returns TRUE if the supplied geometries have some, but not all, interior points in common.

Synopsis

boolean ST_Crosses(geometry gl, geometry g2);

Description

ST_Crosses takes two geometry objects and returns TRUE if their intersection "spatially cross", that is, the geometries have
some, but not all interior points in common. The intersection of the interiors of the geometries must not be the empty set and
must have a dimensionality less than the the maximum dimension of the two input geometries. Additionally, the intersection of
the two geometries must not equal either of the source geometries. Otherwise, it returns FALSE.

In mathematical terms, this is expressed as: E

i Crosses(h) = fdimilia) — fih)) = maxidimiTia)), dimihpg) ~ia b =a) ~ {a — b =h)
The DE-9IM Intersection Matrix for the two geometries is:

o T*T*#*%%% (for Point/Line, Point/Area, and Line/Area situations)
o TH***kTH* (for Line/Point, Area/Point, and Area/Line situations)

o (QF#xdxxA* (for Line/Line situations)

For any other combination of dimensions this predicate returns false.

The OpenGIS Simple Features Specification defines this predicate only for Point/Line, Point/Area, Line/Line, and Line/Area
situations. JTS / GEOS extends the definition to apply to Line/Point, Area/Point and Area/Line situations as well. This makes
the relation symmetric.

I Important
) Do not call with a GEOMETRYCOLLECTION as an argument

i

N"R’! Note

This function call will automatically include a bounding box comparison that will make use of any indexes that are
available on the geometries.

/ This method implements the OpenGIS Simple Features Implementation Specification for SQL 1.1. s2.1.13.3

/ This method implements the SQL/MM specification. SQL-MM 3: 5.1.29

TODO: Insert appropriate MathML markup here or use a gif. Simple HTML markup does not work well in both IE and Firefox.

http://www.opengeospatial.org/standards/sfs

PostGIS 1.5.5 Manual
183 /322

Examples

The following illustrations all return TRUE.

PostGIS 1.5.5 Manual

184 /322

MULTIPOINT / LINESTRING

-

MULTIPOINT / POLYGON

LINESTRING / POLYGON

LINESTRING / LINESTRING

Consider a situation where a user has two tables: a table of roads and a table of highways.

CREATE TABLE roads (
id serial NOT NULL,
the_geom geometry,
CONSTRAINT roads_pkey PRIMARY KEY
road_id)

)i

(

«

CREATE TABLE highways (
id serial NOT NULL,
the_gem geometry,
CONSTRAINT roads_pkey PRIMARY KEY (<«
road_id)

)i

To determine a list of roads that cross a highway, use a query similiar to:

PostGIS 1.5.5 Manual
185/322

SELECT roads.id
FROM roads, highways
WHERE ST_Crosses (roads.the_geom, highways.the_geom);

7.8.10 ST_LineCrossingDirection

Name

ST_LineCrossingDirection — Given 2 linestrings, returns a number between -3 and 3 denoting what kind of crossing behavior. 0
is no crossing.

Synopsis

integer ST_LineCrossingDirection(geometry linestringA, geometry linestringB);

Description

Given 2 linestrings, returns a number between -3 and 3 denoting what kind of crossing behavior. 0 is no crossing. This is only
supported for LINESTRING

Definition of integer constants is as follows:

0: LINE NO CROSS

-1: LINE CROSS LEFT

1: LINE CROSS RIGHT
 -2: LINE MULTICROSS END LEFT

2: LINE MULTICROSS END RIGHT

-3: LINE MULTICROSS END SAME FIRST LEFT

3: LINE MULTICROSS END SAME FIRST RIGHT

Availability: 1.4

Examples

PostGIS 1.5.5 Manual
186 /322

Line 1 (green), Line 2 (blue) ball is start point, triangle are

Line 1 (green), Line 2 ball is start point, triangle are end
end points. Query below.

points. Query below.
SELECT ST_LineCrossingDirection(foo.linel <«

SELECT ST_LineCrossingDirection(foo.linel <«
foo.line2) As 11_cross_12 ,

, foo.line2) As 11_cross_12 , ,
ST_LineCrossingDirection (foo. « ST_LineCrossingDirection (foo. «
line2, foo.linel) As 12_cross_11 line2, foo.linel) As 12_cross_11
FROM (FROM (
SELECT SELECT
ST_GeomFromText (' LINESTRING (25 169,89 « ST_GeomFromText (' LINESTRING (25 169,89 <«
114,40 70,86 43)’) As linel, 114,40 70,86 43)’) As linel,
ST_GeomFromText (' LINESTRING (171 154,20 <« ST_GeomFromText (/ LINESTRING (171 154, o
140,71 74,161 53)’) As line2 20 140, 71 74, 2.99 90.16)’) As line2
) As foo;) As foo;
11 _cross_12 | 12_cross_11 11 cross_12 | 12_cross_11
_____________ +_____________ _____________+_____________
2 | -2

PostGIS 1.5.5 Manual
187 /322

Line I (green), Line 2 (blue) ball is start point, triangle are
end points. Query below. Line I (green), Line 2 (blue) ball is start point, triangle are
end points. Query below.

SELECT
ST_LineCrossingDirection (foo. < SELECT ST_LineCrossingDirection(foo.linel «
linel, foo.line2) As 11_cross_12 , , foo.line2) As 1l1_cross_12 ,
ST_LineCrossingDirection (foo. ST_LineCrossingDirection (foo. «
line2, foo.linel) As 12_cross_11 line2, foo.linel) As 12_cross_11
FROM (FROM (SELECT
SELECT ST_GeomFromText (' LINESTRING (25 <«
ST_GeomFromText (! LINESTRING (25 169,89 « 169,89 114,40 70,86 43)’) As linel,
114,40 70,86 43)’) As linel, ST_GeomFromText (! LINESTRING(2.99 «
ST_GeomFromText (' LINESTRING (20 140, 71 « 90.16,71 74,20 140,171 154)’) As line2
74, 161 53)’) As line2) As foo;
) As foo;
1l _cross_12 | 12 _cross_11
11_cross_12 | 12_cross_11 | o
————————————— t-—— -2 | 2
-1 | 1

SELECT sl.gid, s2.gid, ST_LineCrossingDirection(sl.the_geom, s2.the_geom)
FROM streets sl CROSS JOIN streets s2 ON (sl.gid !'= s2.gid AND sl.the_geom && s2.the_geom <

)
WHERE ST_CrossingDirection(sl.the_geom, s2.the_geom) > O0;

See Also

ST_Crosses

7.8.11 ST_Disjoint

Name

ST_Disjoint — Returns TRUE if the Geometries do not "spatially intersect" - if they do not share any space together.

PostGIS 1.5.5 Manual
188 /322

Synopsis

boolean ST_Disjoint(geometry A , geometry B);

Description

Overlaps, Touches, Within all imply geometries are not spatially disjoint. If any of the aforementioned returns true, then the
geometries are not spatially disjoint. Disjoint implies false for spatial intersection.

I ' Important
Do not call with a GEOMETRYCOLLECTION as an argument

Performed by the GEOS module

N;’M Note

This function call does not use indexes

N;‘l"! Note

NOTE: this is the "allowable" version that returns a boolean, not an integer.

' This method implements the OpenGIS Simple Features Implementation Specification for SQL 1.1. s2.1.1.2 //s2.1.13.3 -
a.Relate(b, "FF*FF###*")

/ This method implements the SQL/MM specification. SQL-MM 3: 5.1.26

Examples

SELECT ST_Disjoint ("POINT(0 0)’::geometry, ’"LINESTRING (2 0, 0 2)’::geometry);
st_disjoint

(1 row)
SELECT ST_Disjoint (POINT(0 0)’::geometry, ’LINESTRING (0 0, 0O 2)’::geometry);
st_disjoint

See Also

ST IntersectsST_Intersects

http://www.opengeospatial.org/standards/sfs

PostGIS 1.5.5 Manual
189 /322

7.8.12 ST Distance
Name

ST_Distance — For geometry type Returns the 2-dimensional cartesian minimum distance (based on spatial ref) between two
geometries in projected units. For geography type defaults to return spheroidal minimum distance between two geographies in
meters.

Synopsis

float ST_Distance(geometry gl, geometry g2);
float ST_Distance(geography ggl, geography gg2);
float ST_Distance(geography ggl, geography gg2, boolean use_spheroid);

Description

For geometry type returns the 2-dimensional minimum cartesian distance between two geometries in projected units (spatial ref
units). For geography type defaults to return the minimum distance around WGS 84 spheroid between two geographies in meters.
Pass in false to return answer in sphere instead of spheroid.

/ This method implements the OpenGIS Simple Features Implementation Specification for SQL 1.1.

/ This method implements the SQL/MM specification. SQL-MM 3: 5.1.23

Auvailability: 1.5.0 geography support was introduced in 1.5. Speed improvements for planar to better handle large or many vertex
geometries

Examples

——Geometry example - units in planar degrees 4326 is WGS 84 long lat unit=degrees
SELECT ST_Distance (
ST_GeomFromText (' POINT (-72.1235 42.3521)",4326),
ST_GeomFromText (' LINESTRING (-72.1260 42.45, -72.123 42.1546)’, 4326)
)i
st_distance

0.00150567726382282

—— Geometry example - units in meters (SRID: 26986 Massachusetts state plane meters) (most <«
accurate for Massachusetts)
SELECT ST_Distance (
ST _Transform(ST_GeomFromText (' POINT (-72.1235 42.3521)",4326),26986),
ST_Transform(ST_GeomFromText (/' LINESTRING (-72.1260 42.45, -72.123 42.1546)’, 4326) «
,26986)
)
st_distance

123.797937878454

—— Geometry example - units in meters (SRID: 2163 US National Atlas Equal area) (least <«
accurate)
SELECT ST_Distance (
ST_Transform (ST_GeomFromText (' POINT (-72.1235 42.3521)'",4326),2163),
ST _Transform(ST_GeomFromText (/' LINESTRING (-72.1260 42.45, -72.123 42.1546)’, 4326) +
,2163)
)i

http://www.opengeospatial.org/standards/sfs

PostGIS 1.5.5 Manual

190/ 322
st_distance
126.664256056812
—— Geography example —-- same but note units in meters - use sphere for slightly faster less «

accurate
SELECT ST_Distance(ggl, gg2) As spheroid_dist, ST_Distance(ggl, gg2, false) As sphere_dist
FROM (SELECT
ST_GeographyFromText (/ SRID=4326;POINT (-72.1235 42.3521)") As ggl,
ST_GeographyFromText (' SRID=4326; LINESTRING (-72.1260 42.45, -72.123 42.1546)’) As gg2
) As foo ;

spheroid_dist | sphere_dist

777777777777777777 +777777777777777777
123.802076746848 | 123.475736916397

See Also

ST_DWithin, ST_Distance_Sphere, ST_Distance_Spheroid, ST_MaxDistance, ST_Transform

7.8.13 ST_HausdorffDistance

Name

ST_HausdorffDistance — Returns the Hausdorff distance between two geometries. Basically a measure of how similar or dissim-
ilar 2 geometries are. Units are in the units of the spatial reference system of the geometries.

Synopsis

float ST_HausdorffDistance(geometry g1, geometry g2);
float ST_HausdorffDistance(geometry g1, geometry g2, float densifyFrac);

Description

Implements algorithm for computing a distance metric which can be thought of as the "Discrete Hausdorff Distance". This is the
Hausdorff distance restricted to discrete points for one of the geometries. Wikipedia article on Hausdorff distance Martin Davis
note on how Hausdorff Distance calculation was used to prove correctness of the CascadePolygonUnion approach.

When densifyFrac is specified, this function performs a segment densification before computing the discrete hausdorff distance.
The densifyFrac parameter sets the fraction by which to densify each segment. Each segment will be split into a number of
equal-length subsegments, whose fraction of the total length is closest to the given fraction.

N:ﬂ"! Note

The current implementation supports only vertices as the discrete locations. This could be extended to allow an arbitrary
density of points to be used.

. Note
NG'H’! This algorithm is NOT equivalent to the standard Hausdorff distance. However, it computes an approximation that is
correct for a large subset of useful cases. One important part of this subset is Linestrings that are roughly parallel to
each other, and roughly equal in length. This is a useful metric for line matching.

Awailability: 1.5.0 - requires GEOS >=3.2.0

http://en.wikipedia.org/wiki/Hausdorff_distance
http://lin-ear-th-inking.blogspot.com/2009/01/computing-geometric-similarity.html
http://lin-ear-th-inking.blogspot.com/2009/01/computing-geometric-similarity.html

PostGIS 1.5.5 Manual
191 /322

Examples

postgis=# SELECT st_HausdorffDistance (
"LINESTRING (0 0, 2 0)’'::geometry,
"MULTIPOINT (O 1, 1 0, 2 1)’::geometry);
st_hausdorffdistance

postgis=# SELECT st_hausdorffdistance (' LINESTRING (130 0, 0 0, 0 150)’::geometry, '
LINESTRING (10 10, 10 150, 130 10)’::geometry, 0.5);
st_hausdorffdistance

7.8.14 ST_MaxDistance

Name

ST_MaxDistance — Returns the 2-dimensional largest distance between two geometries in projected units.

Synopsis

float ST_MaxDistance(geometry g1, geometry g2);

Description

Some useful description here.

N;ld Note

Returns the 2-dimensional maximum distance between two linestrings in projected units. If g1 and g2 is the same
geometry the function will return the distance between the two vertices most far from each other in that geometry.

Availability: 1.5.0

Examples

postgis=# SELECT ST_MaxDistance ('POINT(0 0)’::geometry, ’'LINESTRING (2 0, 0 2)’::geometry «
)i
st_maxdistance

postgis=# SELECT ST_MaxDistance (’POINT (0 0)’::geometry, ’'LINESTRING (2 2, 2 2)’::geometry
)
st_maxdistance

2.82842712474619
(1 row)

PostGIS 1.5.5 Manual
192 /322

See Also

ST_Distance, ST_LongestLine

7.8.15 ST_Distance_Sphere

Name

ST_Distance_Sphere — Returns minimum distance in meters between two lon/lat geometries. Uses a spherical earth and radius
of 6370986 meters. Faster than ST_Distance_Spheroid, but less accurate. PostGIS versions prior to 1.5 only implemented for
points.

Synopsis

float ST_Distance_Sphere(geometry geomlonlatA, geometry geomlonlatB);

Description

Returns minimum distance in meters between two lon/lat points. Uses a spherical earth and radius of 6370986 meters. Faster
than ST_Distance_Spheroid, but less accurate. PostGIS Versions prior to 1.5 only implemented for points.

. Note
Note!
This function currently does not look at the SRID of a geometry and will always assume its in WGS 84 long lat. Prior
versions of this function only support points.

Auvailability: 1.5 - support for other geometry types besides points was introduced. Prior versions only work with points.

Examples

SELECT round (CAST (ST_Distance_Sphere (ST_Centroid(the_geom), ST_GeomFromText (POINT(-118 38) <«
’,4326)) As numeric),2) As dist_meters,
round (CAST (ST_Distance (ST_Transform(ST_Centroid(the_geom),32611),
ST _Transform(ST_GeomFromText (POINT (-118 38)’, 4326),32611)) As numeric),2) As <«
dist_utmll_meters,
round (CAST (ST_Distance (ST_Centroid(the_geom), ST_GeomFromText (POINT(-118 38)’, 4326)) As <«
numeric),5) As dist_degrees,
round (CAST (ST_Distance (ST_Transform(the_geom, 32611),
ST _Transform(ST_GeomFromText (POINT (-118 38)’, 4326),32611)) As numeric),2) As <«
min_dist_line_point_meters

FROM
(SELECT ST_GeomFromText (' LINESTRING(-118.584 38.374,-118.583 38.5)’, 4326) As the_geom) —
as foo;
dist_meters | dist_utmll_meters | dist_degrees | min_dist_line_point_meters
————————————— e
70424.47 | 70438.00 | 0.72900 | 65871.18
See Also

ST_Distance, ST_Distance_Spheroid

PostGIS 1.5.5 Manual
193 /322

7.8.16 ST_Distance_Spheroid
Name

ST_Distance_Spheroid — Returns the minimum distance between two lon/lat geometries given a particular spheroid. PostGIS
versions prior to 1.5 only support points.

Synopsis

float ST_Distance_Spheroid(geometry geomlonlatA, geometry geomlonlatB, spheroid measurement_spheroid);

Description

Returns minimum distance in meters between two lon/lat geometries given a particular spheroid. See the explanation of spheroids
given for ST_Length_Spheroid. PostGIS version prior to 1.5 only support points.

:rti'! Note
N This function currently does not look at the SRID of a geometry and will always assume its represented in the coordi-
nates of the passed in spheroid. Prior versions of this function only support points.

Auvailability: 1.5 - support for other geometry types besides points was introduced. Prior versions only work with points.

Examples

SELECT round (CAST (
ST_Distance_Spheroid(ST_Centroid(the_geom), ST_GeomFromText ('POINT(-118 38)’,4326), ' «
SPHEROID["WGS 84",6378137,298.257223563]")
As numeric),2) As dist_meters_spheroid,
round (CAST (ST_Distance_Sphere (ST_Centroid(the_geom), ST_GeomFromText ('POINT (=118 38) <«
",4326)) As numeric),2) As dist_meters_sphere,
round (CAST (ST_Distance (ST_Transform(ST_Centroid(the_geom), 32611),
ST _Transform(ST_GeomFromText (' POINT (-118 38)’, 4326),32611)) As numeric),2) As <«
dist_utmll_meters

FROM
(SELECT ST_GeomFromText (' LINESTRING(-118.584 38.374,-118.583 38.5)’, 4326) As the_geom) «—
as foo;
dist_meters_spheroid | dist_meters_sphere | dist_utmll_meters
______________________ o
70454.92 | 70424.47 | 70438.00
See Also

ST_Distance, ST_Distance_Sphere

7.8.17 ST_DFullyWithin
Name

ST_DFullyWithin — Returns true if all of the geometries are within the specified distance of one another

PostGIS 1.5.5 Manual
194 / 322

Synopsis

boolean ST_DFullyWithin(geometry g1, geometry g2, double precision distance);

Description

Returns true if the geometries is fully within the specified distance of one another. The distance is specified in units defined by
the spatial reference system of the geometries. For this function to make sense, the source geometries must both be of the same
coordinate projection, having the same SRID.

1 Note
Note!
This function call will automatically include a bounding box comparison that will make use of any indexes that are
available on the geometries.

Availability: 1.5.0

Examples
postgis=# SELECT ST_DFullyWithin (geom_a, geom_b, 10) as DFullyWithinl0O, ST_DWithin (geom_a, «—
geom_b, 10) as DWithinl0O, ST_DFullyWithin (geom_a, geom_b, 20) as DFullyWithin20 from

(select ST_GeomFromText ("POINT(1 1)’) as geom_a,ST_GeomFromText (' LINESTRING(1 5, 2 7, 1 <
9, 14 12)’) as geom_b) tl;

DFullyWithinlO | DWithinlO | DFullyWithin20 |

See Also

ST MaxDistance, ST_DWithin

7.8.18 ST_DWithin

Name

ST_DWithin — Returns true if the geometries are within the specified distance of one another. For geometry units are in those
of spatial reference and For geography units are in meters and measurement is defaulted to use_spheroid=true (measure around
spheroid), for faster check, use_spheroid=false to measure along sphere.

Synopsis

boolean ST_DWithin(geometry g1, geometry g2, double precision distance_of_srid);
boolean ST_DWithin(geography ggl, geography gg2, double precision distance_meters);
boolean ST_DWithin(geography ggl, geography gg2, double precision distance_meters, boolean use_spheroid);

PostGIS 1.5.5 Manual
195/ 322

Description

Returns true if the geometries are within the specified distance of one another.

For Geometries: The distance is specified in units defined by the spatial reference system of the geometries. For this function to
make sense, the source geometries must both be of the same coorindate projection, having the same SRID.

For geography units are in meters and measurement is defaulted to use_spheroid=true (measure around WGS 84 spheroid), for
faster check, use_spheroid=false to measure along sphere.

N:’M Note

This function call will automatically include a bounding box comparison that will make use of any indexes that are
available on the geometries.

Note

Nﬁ'l"! Prior to 1.3, ST_Expand was commonly used in conjunction with && and ST_Distance to achieve the same effect and
in pre-1.3.4 this function was basically short-hand for that construct. From 1.3.4, ST_DWithin uses a more short-circuit
distance function which should make it more efficient than prior versions for larger buffer regions.

i

/ This method implements the OpenGIS Simple Features Implementation Specification for SQL 1.1.
Availability: 1.5.0 support for geography was introduced

Examples

—--Find the nearest hospital to each school
——that is within 3000 units of the school.
—— We do an ST_DWithin search to utilize indexes to limit our search list
—— that the non-indexable ST_Distance needs to process
——If the units of the spatial reference is meters then units would be meters
SELECT DISTINCT ON (s.gid) s.gid, s.school_name, s.the_geom, h.hospital_name
FROM schools s
LEFT JOIN hospitals h ON ST _DWithin(s.the_geom, h.the_geom, 3000)
ORDER BY s.gid, ST_Distance(s.the_geom, h.the_geom);

——The schools with no close hospitals
—-—Find all schools with no hospital within 3000 units
—-—away from the school. Units is in units of spatial ref (e.g. meters, feet, degrees)
SELECT s.gid, s.school_name
FROM schools s

LEFT JOIN hospitals h ON ST _DWithin(s.the_geom, h.the_geom, 3000)
WHERE h.gid IS NULL;

See Also

ST_Distance, ST_Expand

7.8.19 ST_Equals
Name

ST_Equals — Returns true if the given geometries represent the same geometry. Directionality is ignored.

http://www.opengeospatial.org/standards/sfs

PostGIS 1.5.5 Manual
196 /322

Synopsis

boolean ST_Equals(geometry A, geometry B);

Description

Returns TRUE if the given Geometries are "spatially equal”. Use this for a ’better’ answer than ’=". Note by spatially equal we
mean ST_Within(A,B) = true and ST_Within(B,A) = true and also mean ordering of points can be different but represent the same
geometry structure. To verify the order of points is consistent, use ST_OrderingEquals (it must be noted ST_OrderingEquals is
a little more stringent than simply verifying order of points are the same).

I ' Important
" This function will return false if either geometry is invalid even if they are binary equal.

/ This method implements the OpenGIS Simple Features Implementation Specification for SQL 1.1. s2.1.1.2

/ This method implements the SQL/MM specification. SQL-MM 3: 5.1.24

Examples

SELECT ST_Equals (ST_GeomFromText (/' LINESTRING(O 0, 10 10)'),
ST_GeomFromText (' LINESTRING(O 0, 5 5, 10 10)’));
st_equals

SELECT ST_Equals (ST_Reverse (ST_GeomFromText (' LINESTRING(O 0, 10 10)")),
ST_GeomFromText (' LINESTRING(O 0, 5 5, 10 10)"));
st_equals

See Also

ST_IsValid, ST_OrderingEquals, ST_Reverse, ST_Within

7.8.20 ST HasArc

Name

ST_HasArc — Returns true if a geometry or geometry collection contains a circular string

Synopsis

boolean ST_HasArc(geometry geomA);

http://www.opengeospatial.org/standards/sfs

PostGIS 1.5.5 Manual
197 /322

Description

Returns true if a geometry or geometry collection contains a circular string

Availability: 1.2.37
J This function supports 3d and will not drop the z-index.

/ This method supports Circular Strings and Curves

Examples
SELECT ST _HasArc (ST_Collect (' LINESTRING(1 2, 3 4, 5 6)’, 'CIRCULARSTRING(1 1, 2 3, 4 5, 6 <«

7, 56)"));
st_hasarc

See Also

ST _CurveToLine,ST LineToCurve

7.8.21 ST Intersects
Name

ST_Intersects — Returns TRUE if the Geometries/Geography "spatially intersect” - (share any portion of space) and FALSE if
they don’t (they are Disjoint). For geography -- tolerance is 0.00001 meters (so any points that close are considered to intersect)

Synopsis

boolean ST_Intersects(geometry geomA , geometry geomB);
boolean ST_Intersects(geography geogA , geography geogB);

Description

Overlaps, Touches, Within all imply spatial intersection. If any of the aforementioned returns true, then the geometries also
spatially intersect. Disjoint implies false for spatial intersection.

I Important
=~ Do not call with a GEOMETRYCOLLECTION as an argument for geometry version. The geography version supports
GEOMETRYCOLLECTION since its a thin wrapper around distance implementation.

Performed by the GEOS module (for geometry), geography is native
Auvailability: 1.5 support for geography was introduced.

) Note
Nottt 1O
This function call will automatically include a bounding box comparison that will make use of any indexes that are
available on the geometries.

PostGIS 1.5.5 Manual

198 /322
N;H’! Note
For geography, this function has a distance tolerance of about 0.00001 meters and uses the sphere rather than spheroid
calculation.
Not Note

NOTE: this is the "allowable" version that returns a boolean, not an integer.

/ This method implements the OpenGIS Simple Features Implementation Specification for SQL 1.1. s2.1.1.2 //s2.1.13.3 -
ST_Intersects(gl, g2) --> Not (ST_Disjoint(g1, g2))

/ This method implements the SQL/MM specification. SQL-MM 3: 5.1.27

Geometry Examples

SELECT ST_Intersects (’POINT(0 0)’::geometry, ’'LINESTRING (2 0, 0 2)’ ::geometry);
st_intersects

(1 row)
SELECT ST_Intersects (’POINT(0 0)’::geometry, ’'LINESTRING (O 0, 0O 2)’::geometry);
st_intersects

Geography Examples

SELECT ST_Intersects (
ST_GeographyFromText (! SRID=4326; LINESTRING (-43.23456 72.4567,-43.23456 72.4568)"),
ST_GeographyFromText (/ SRID=4326;POINT (-43.23456 72.4567772)")
)i

st_intersects

See Also

ST_Disjoint
7.8.22 ST_Length

Name

ST_Length — Returns the 2d length of the geometry if it is a linestring or multilinestring. geometry are in units of spatial reference
and geography are in meters (default spheroid)

http://www.opengeospatial.org/standards/sfs

PostGIS 1.5.5 Manual
199 /322

Synopsis

float ST_Length(geometry a_2dlinestring);
float ST_Length(geography gg);
float ST_Length(geography gg, boolean use_spheroid);

Description

For geometry: Returns the cartesian 2D length of the geometry if it is a linestring, multilinestring, ST_Curve, ST_MultiCurve. 0
is returned for areal geometries. For areal geometries use ST_Perimeter. Geometry: Measurements are in the units of the spatial
reference system of the geometry. Geography: Units are in meters and also acts as a Perimeter function for areal geogs.

Currently for geometry this is an alias for ST_Length2D, but this may change to support higher dimensions.

st¢} Note
N Currently applying this to a MULTI/POLYGON of type geography will give you the perimeter of the POLYGON/MULTI-

POLYGON. This is not the case with the geometry implementation.

Nfﬂ"’! Note

For geography measurement defaults spheroid measurement. To use the faster less accurate sphere use
ST_Length(gg.false);

/ This method implements the OpenGIS Simple Features Implementation Specification for SQL 1.1. s2.1.5.1

J This method implements the SQL/MM specification. SQL-MM 3: 7.1.2,9.3.4
Availability: 1.5.0 geography support was introduced in 1.5.

Geometry Examples

Return length in feet for line string. Note this is in feet because 2249 is Mass State Plane Feet

SELECT ST_Length (ST_GeomFromText (' LINESTRING (743238 2967416,743238 2967450, 743265 2967450,
743265.625 2967416,743238 2967416)',2249));
st_length

122.630744000095

——Transforming WGS 84 linestring to Massachusetts state plane meters
SELECT ST_Length (
ST_Transform (
ST_GeomFromEWKT (/ SRID=4326; LINESTRING (-72.1260 42.45, -72.1240 42.45666, -72.123
42.1546)"),
26986
)
)i
st_length

34309.4563576191

http://www.opengeospatial.org/standards/sfs

PostGIS 1.5.5 Manual
200 /322

Geography Examples

Return length of WGS 84 geography line

—— default calculation is using a sphere rather than spheroid
SELECT ST_Length (the_geog) As length_spheroid, ST_Length (the_geog, false) As length_sphere
FROM (SELECT ST_GeographyFromText (
"SRID=4326; LINESTRING (-72.1260 42.45, -72.1240 42.45666, -72.123 42.1546)’) As the_geoq)
As foo;

length_spheroid | length_sphere
__________________ +__________________
34310.5703627305 | 34346.2060960742
(1 row)
See Also

ST_GeographyFromText, ST_GeomFromEWKT, ST_Length_Spheroid, ST_Perimeter, ST_Transform

7.8.23 ST_Length2D

Name

ST_Length2D — Returns the 2-dimensional length of the geometry if it is a linestring or multi-linestring. This is an alias for
ST_Length

Synopsis

float ST_Length2D(geometry a_2dlinestring);

Description

Returns the 2-dimensional length of the geometry if it is a linestring or multi-linestring. This is an alias for ST_Length

See Also

ST_Length, ST_Length3D

7.8.24 ST_Length3D

Name

ST_Length3D — Returns the 3-dimensional or 2-dimensional length of the geometry if it is a linestring or multi-linestring.

Synopsis

float ST_Length3D(geometry a_3dlinestring);

PostGIS 1.5.5 Manual
201 /322

Description

Returns the 3-dimensional or 2-dimensional length of the geometry if it is a linestring or multi-linestring. For 2-d lines it will
just return the 2-d length (same as ST_Length and ST_Length2D)

/ This function supports 3d and will not drop the z-index.

Examples

Return length in feet for a 3D cable. Note this is in feet because 2249 is Mass State Plane Feet

SELECT ST_Length3D (ST_GeomFromText (' LINESTRING (743238 2967416 1,743238 2967450 1,743265 <«
2967450 3,

743265.625 2967416 3,743238 2967416 3)’,2249));

st_length3d

122.704716741457

See Also

ST_Length, ST_Length2D

7.8.25 ST_Length_Spheroid
Name

ST_Length_Spheroid — Calculates the 2D or 3D length of a linestring/multilinestring on an ellipsoid. This is useful if the
coordinates of the geometry are in longitude/latitude and a length is desired without reprojection.

Synopsis

float ST_Length_Spheroid(geometry a_linestring, spheroid a_spheroid);

Description

Calculates the length of a geometry on an ellipsoid. This is useful if the coordinates of the geometry are in longitude/latitude and
a length is desired without reprojection. The ellipsoid is a separate database type and can be constructed as follows:

SPHEROID [<NAME>, <SEMI-MAJOR
AXIS>,<INVERSE FLATTENING>]

SPHEROID["GRS_1980",6378137,298.257222101]

Not? Note
Will return 0 for anything that is not a MULTILINESTRING or LINESTRING

/ This function supports 3d and will not drop the z-index.

PostGIS 1.5.5 Manual
202 /322

Examples

SELECT ST_Length_Spheroid(geometry_column,
" SPHEROID["GRS_1980", 6378137,298.257222101]")
FROM geometry_table;

SELECT ST_Length_Spheroid(the_geom, sph_m) As tot_len,
ST_Length_Spheroid (ST_GeometryN (the_geom,1l), sph_m) As len_linel,
ST_Length_Spheroid (ST_GeometryN (the_geom,2), sph_m) As len_line2
FROM (SELECT ST_GeomFromText ('MULTILINESTRING((-118.584 38.374,-118.583 38.5),
(=71.05957 42.3589 , -71.061 43))’) As the_geom,

CAST (' SPHEROID["GRS_1980", 6378137,298.257222101]" As spheroid) As sph_m) as foo;

tot_len | len_1linel | len_1line?2
__________________ +__________________+__________________

85204.5207562955 | 13986.8725229309 | 71217.6482333646

--3D
SELECT ST_Length_Spheroid(the_geom, sph_m) As tot_len,
ST_Length_Spheroid (ST_GeometryN (the_geom,1), sph_m) As len_linel,

ST_Length_Spheroid (ST_GeometryN (the_geom,2), sph_m) As len_line2
FROM (SELECT ST_GeomFromEWKT (' MULTILINESTRING((-118.584 38.374 20,-118.583 38.5 30) <«

’

(=71.05957 42.3589 75, -71.061 43 90))’) As the_geom,
CAST (’ SPHEROID["GRS_1980",6378137,298.257222101]" As spheroid) As sph_m) as foo;

tot_len | len_linel | len_line2
777777777777777777 +77777777777777777+777777777777777777
85204.5259107402 | 13986.876097711 | 71217.6498130292

See Also

ST_GeometryN, ST_Length, ST_Length3D_Spheroid

7.8.26 ST_Length2D_Spheroid

Name

ST_Length2D_Spheroid — Calculates the 2D length of a linestring/multilinestring on an ellipsoid. This is useful if the coordinates
of the geometry are in longitude/latitude and a length is desired without reprojection.

Synopsis

float ST_Length2D_Spheroid(geometry a_linestring, spheroid a_spheroid);

Description

Calculates the 2D length of a geometry on an ellipsoid. This is useful if the coordinates of the geometry are in longitude/latitude
and a length is desired without reprojection. The ellipsoid is a separate database type and can be constructed as follows:

SPHEROID [<NAME>, <SEMI-MAJOR
AXIS>,<INVERSE FLATTENING>]

SPHEROID["GRS_1980",6378137,298.257222101]

PostGIS 1.5.5 Manual

203 /322
Not? Note
Will return 0 for anything that is not a MULTILINESTRING or LINESTRING
N:*'l"! Note
This is much like ST_Length_Spheroid and ST_Length3D_Spheroid except it will throw away the Z coordinate in calcu-
lations.
Examples

SELECT ST_Length2D_Spheroid(geometry_column,
" SPHEROID["GRS_1980",6378137,298.257222101]")
FROM geometry_table;

SELECT ST_Length2D_Spheroid(the_geom, sph_m) As tot_len,
ST_Length2D_Spheroid (ST_GeometryN (the_geom,1l), sph_m) As len_linel,
ST_Length2D_Spheroid (ST_GeometryN (the_geom,2), sph_m) As len_line2
FROM (SELECT ST_GeomFromText ('MULTILINESTRING((-118.584 38.374,-118.583 38.5),
(=71.05957 42.3589 , -71.061 43))’) As the_geom,

CAST (' SPHEROID["GRS_1980",6378137,298.257222101]" As spheroid) As sph_m) as foo;

tot_len | len_linel | len_line2
__________________ S

85204.5207562955 | 13986.8725229309 | 71217.6482333646

——3D Observe same answer
SELECT ST_Length2D_Spheroid(the_geom, sph_m) As tot_len,
ST_Length2D_Spheroid (ST_GeometryN (the_geom,1l), sph_m) As len_linel,
ST_Length2D_Spheroid (ST_GeometryN (the_geom,2), sph_m) As len_line2
FROM (SELECT ST_GeomFromEWKT (' MULTILINESTRING((-118.584 38.374 20,-118.583 38.5 30) «

’

(-=71.05957 42.3589 75, -71.061 43 90))’) As the_geom,
CAST (' SPHEROID["GRS_1980",6378137,298.257222101]" As spheroid) As sph_m) as foo;

tot_len | len_1linel | len_line?2
__________________ +__________________+__________________
85204.5207562955 | 13986.8725229309 | 71217.6482333646

See Also

ST_GeometryN, ST_Length_Spheroid, ST_Length3D_Spheroid

7.8.27 ST_Length3D_Spheroid

Name

ST_Length3D_Spheroid — Calculates the length of a geometry on an ellipsoid, taking the elevation into account. This is just an
alias for ST_Length_Spheroid.

Synopsis

float ST_Length3D_Spheroid(geometry a_linestring, spheroid a_spheroid);

PostGIS 1.5.5 Manual
204 /322

Description

Calculates the length of a geometry on an ellipsoid, taking the elevation into account. This is just an alias for ST_Length_Spheroid.

Not¢ Note
Will return 0 for anything that is not a MULTILINESTRING or LINESTRING

Not? Note

This functionis just an alias for ST_Length_Spheroid.

/ This function supports 3d and will not drop the z-index.

Examples

See ST_Length_Spheroid

See Also

ST_GeometryN, ST_Length, ST_Length_Spheroid

7.8.28 ST_LongestLine

Name
ST_LongestLine — Returns the 2-dimensional longest line points of two geometries. The function will only return the first longest

line if more than one, that the function finds. The line returned will always start in gl and end in g2. The length of the line this
function returns will always be the same as st_maxdistance returns for gl and g2.

Synopsis

geometry ST_LongestLine(geometry g1, geometry g2);

Description

Returns the 2-dimensional longest line between the points of two geometries.

Availability: 1.5.0

Examples

PostGIS 1.5.5 Manual

205 /322

Longest line between point and line

SELECT ST_AsText (

ST_LongestLine ("POINT (100 100)”

geometry,

"LINESTRING (20 80, 98
110 180, 50 75)’ ::geometry)
) As lline;

190,

LINESTRING (100 100,98 190)

>

o

longest line between polygon and polygon

SELECT ST_AsText (
ST_LongestLine (
ST_GeomFromText (' POLYGON +«—
((175 150, 20 40,
50 60, 125 100, <«
175 150)) "),
ST _Buffer (ST_GeomFromText <«
("POINT (110 170)"), 20)
)

) As llinewkt;

LINESTRING (20 40,121.111404660392 <«
186.629392246051)

PostGIS 1.5.5 Manual
206 /322

longest straight distance to travel from one part of an elegant city to the other Note the max distance = to the length of the
line.

SELECT ST_AsText (ST_LongestLine (c.the_geom, c.the_geom)) As llinewkt,
ST_MaxDistance (c.the_geom, c.the_geom) As max_dist,
ST_Length (ST_LongestLine (c.the_geom, c.the_geom)) As lenll
FROM (SELECT ST_BuildArea (ST_Collect (the_geom)) As the_geom
FROM (SELECT ST_Translate (ST_SnapToGrid(ST_Buffer (ST_Point (50 ,generate_series <

(50,190, 50)
),40, ’'quad_segs=2’),1), x, 0) As the_geom
FROM generate_series(1,100,50) As x) AS foo
) As c;
llinewkt | max_dist | lenll
___________________________ +__________________+__________________
LINESTRING (23 22,129 178) | 188.605408193933 | 188.605408193933
See Also

ST_MaxDistance, ST_ShortestLine, ST_LongestLine

7.8.29 ST_OrderingEquals

Name

ST_OrderingEquals — Returns true if the given geometries represent the same geometry and points are in the same directional
order.

Synopsis

boolean ST_OrderingEquals(geometry A, geometry B);

PostGIS 1.5.5 Manual
207/ 322

Description

ST_OrderingEquals compares two geometries and t (TRUE) if the geometries are equal and the coordinates are in the same order;
otherwise it returns f (FALSE).

N;ld Note
This function is implemented as per the ArcSDE SQL specification rather than SQL-MM.
http://edndoc.esri.com/arcsde/9.1/sql_api/sqlapi3.htm#ST_OrderingEquals

/ This method implements the SQL/MM specification. SQL-MM 3: 5.1.43

Examples

SELECT ST_OrderingEquals (ST_GeomFromText (' LINESTRING(O 0, 10 10)"),
ST_GeomFromText (' LINESTRING(O 0, 5 5, 10 10)’));
st_orderingequals

SELECT ST_OrderingEquals (ST_GeomFromText (' LINESTRING(O 0, 10 10)’),
ST_GeomFromText (! LINESTRING(O 0, 0 O, 10 10)"));
st_orderingequals

SELECT ST_OrderingEquals (ST_Reverse (ST_GeomFromText (' LINESTRING(O 0, 10 10)')),
ST_GeomFromText (' LINESTRING(O 0, 0 0, 10 10)’));
st_orderingequals

See Also

ST_Equals, ST_Reverse

7.8.30 ST_Overlaps

Name

ST_Overlaps — Returns TRUE if the Geometries share space, are of the same dimension, but are not completely contained by
each other.

Synopsis

boolean ST_Overlaps(geometry A, geometry B);

PostGIS 1.5.5 Manual
208 /322

Description

Returns TRUE if the Geometries "spatially overlap". By that we mean they intersect, but one does not completely contain another.

Performed by the GEOS module

N;‘l"! Note

Do not call with a GeometryCollection as an argument

This function call will automatically include a bounding box comparison that will make use of any indexes that are available on
the geometries. To avoid index use, use the function _ST_Overlaps.

NOTE: this is the "allowable" version that returns a boolean, not an integer.
/ This method implements the OpenGIS Simple Features Implementation Specification for SQL 1.1. s2.1.1.2 // s2.1.13.3

/ This method implements the SQL/MM specification. SQL-MM 3: 5.1.32

Examples

——a point on a line is contained by the line and is of a lower dimension, and therefore <«
does not overlap the line
nor crosses

SELECT ST_Overlaps(a,b) As a_overlap_b,
ST_Crosses(a,b) As a_crosses_Db,
ST_Intersects(a, b) As a_intersects_b, ST_Contains (b,a) As b_contains_a
FROM (SELECT ST_GeomFromText ('POINT(1 0.5)’) As a, ST_GeomFromText ('LINESTRING(1 0, 1 1, 3 <«

5)’) As b)
As foo
a_overlap_b | a_crosses_b | a_intersects_b | b_contains_a
777777777777 ————
f | £ | t | €t

—-—a line that is partly contained by circle, but not fully is defined as intersecting and <«
crossing,
—— but since of different dimension it does not overlap
SELECT ST_Overlaps(a,b) As a_overlap_b, ST_Crosses(a,b) As a_crosses_b,
ST _Intersects(a, b) As a_intersects_b,
ST_Contains(a,b) As a_contains_b
FROM (SELECT ST_Buffer (ST_GeomFromText (" POINT(1 0.5)"), 3) As a, ST_GeomFromText (! «
LINESTRING(1 O, 1 1, 3 5)") As b)
As foo;

a_overlap_b | a_crosses_b | a_intersects_b | a_contains_b

—— a 2-dimensional bent hot dog (aka puffered line string) that intersects a circle,

—— but is not fully contained by the circle is defined as overlapping since they are of <«
the same dimension,

-— but it does not cross, because the intersection of the 2 is of the same dimension

—-— as the maximum dimension of the 2

SELECT ST_Overlaps(a,b) As a_overlap_b, ST_Crosses(a,b) As a_crosses_b, ST_Intersects(a, b) <
As a_intersects_b,

http://www.opengeospatial.org/standards/sfs

PostGIS 1.5.5 Manual
209 /322

ST_Contains (b,a) As b_contains_a,
ST_Dimension(a) As dim_a, ST _Dimension(b) as dim_b, ST Dimension(ST_Intersection(a,b)) As <«
dima_intersection_b
FROM (SELECT ST Buffer (ST_GeomFromText ("POINT (1 0.5)7), 3) As a,
ST_Buffer (ST_GeomFromText (' LINESTRING(1 0, 1 1, 3 5)"),0.5) As b)

As foo;
a_overlap_b | a_crosses_b | a_intersects_b | b_contains_a | dim_a | dim_b | «—
dima_intersection_b
————————————— B et s e
t | £ |t | £ | 2 | 2 | 2

See Also

ST Contains, ST_Crosses, ST_Dimension, ST_Intersects

7.8.31 ST_Perimeter

Name

ST_Perimeter — Return the length measurement of the boundary of an ST_Surface or ST_MultiSurface value. (Polygon, Multi-
polygon)

Synopsis

float ST_Perimeter(geometry gl);

Description

Returns the 2D perimeter of the geometry if it is a ST_Surface, ST_MultiSurface (Polygon, Multipolygon). O is returned for
non-areal geometries. For linestrings use ST_Length. Measurements are in the units of the spatial reference system of the
geometry.

Currently this is an alias for ST_Perimeter2D, but this may change to support higher dimensions.
/ This method implements the OpenGIS Simple Features Implementation Specification for SQL 1.1. s2.1.5.1

/ This method implements the SQL/MM specification. SQL-MM 3: 8.1.3,9.5.4

Examples

Return perimeter in feet for polygon and multipolygon. Note this is in feet because 2249 is Mass State Plane Feet

SELECT ST_Perimeter (ST_GeomFromText (' POLYGON ((743238 2967416,743238 2967450,743265 2967450,
743265.625 2967416,743238 2967416))", 2249));
st_perimeter

122.630744000095
(1 row)

SELECT ST_Perimeter (ST_GeomFromText (' MULTIPOLYGON (((763104.471273676 2949418.44119003,
763104.477769673 2949418.42538203,

http://www.opengeospatial.org/standards/sfs

PostGIS 1.5.5 Manual
210/322

763104.189609677 2949418.22343004,763104.471273676 2949418.44119003)),
((763104.471273676 2949418.44119003,763095.804579742 2949436.33850239,
763086.132105649 2949451.46730207,763078.452329651 2949462.11549407,
763075.354136904 2949466.17407812,763064.362142565 2949477.64291974,
763059.953961626 2949481.28983009,762994.637609571 2949532.04103014,
762990.568508415 2949535.06640477,762986.710889563 2949539.61421415,
763117.237897679 2949709.50493431,763235.236617789 2949617.95619822,
763287.718121842 2949562.20592617,763111.553321674 2949423.91664605,
763104.471273676 2949418.44119003)))", 2249));

st_perimeter

845.227713366825
(1 row)

See Also

ST_Length

7.8.32 ST_Perimeter2D

Name

ST_Perimeter2D — Returns the 2-dimensional perimeter of the geometry, if it is a polygon or multi-polygon. This is currently an
alias for ST_Perimeter.

Synopsis

float ST_Perimeter2D(geometry geomA);

Description

Returns the 2-dimensional perimeter of the geometry, if it is a polygon or multi-polygon.

st¢} Note
N This is currently an alias for ST_Perimeter. In future versions ST_Perimeter may return the highest dimension perimeter
for a geometry. This is still under consideration

See Also

ST Perimeter

7.8.33 ST_Perimeter3D

Name

ST_Perimeter3D — Returns the 3-dimensional perimeter of the geometry, if it is a polygon or multi-polygon.

Synopsis

float ST_Perimeter3D(geometry geomA);

PostGIS 1.5.5 Manual
211/322

Description

Returns the 3-dimensional perimeter of the geometry, if it is a polygon or multi-polygon. If the geometry is 2-dimensional, then
the 2-dimensional perimeter is returned.

/ This function supports 3d and will not drop the z-index.

Examples

Perimeter of a slightly elevated polygon in the air in Massachusetts state plane feet

SELECT ST_Perimeter3D (the_geom), ST_Perimeter2d(the_geom), ST _Perimeter (the_geom) FROM
(SELECT ST_GeomFromEWKT (’/ SRID=2249; POLYGON ((743238 2967416 2,743238 2967450 1,
743265.625 2967416 1,743238 2967416 2))’) As the_geom) As foo;

st_perimeter3d | st_perimeter2d | st_perimeter
777777777777777777 +777777777777777777+777777777777777777
105.465793597674 | 105.432997272188 | 105.432997272188

See Also

ST _GeomFromEWKT, ST_Perimeter, ST_Perimeter2D

7.8.34 ST_PointOnSurface

Name

ST_PointOnSurface — Returns a POINT guaranteed to lie on the surface.

Synopsis

geometry ST_PointOnSurface(geometry gl);

Description

Returns a POINT guaranteed to intersect a surface.
/ This method implements the OpenGIS Simple Features Implementation Specification for SQL 1.1. $3.2.14.2 // s3.2.18.2

/ This method implements the SQL/MM specification. SQL-MM 3: 8.1.5,9.5.6. According to the specs, ST_PointOnSurface
works for surface geometries (POLYGONs, MULTIPOLYGONS, CURVED POLYGONS). So PostGIS seems to be extending
what the spec allows here. Most databases Oracle,DB II, ESRI SDE seem to only support this function for surfaces. SQL Server
2008 like PostGIS supports for all common geometries.

/ This function supports 3d and will not drop the z-index.

http://www.opengeospatial.org/standards/sfs

PostGIS 1.5.5 Manual
212/322

Examples

SELECT ST_AsText (ST_PointOnSurface ('POINT(0 5)’::geometry));
st_astext

POINT (0 5)
(1 row)

SELECT ST_AsText (ST_PointOnSurface (' LINESTRING(0 5, 0 10)’::geometry));
st_astext

POINT (0 5)
(1 row)

SELECT ST_AsText (ST_PointOnSurface (' POLYGON((O O, 0 5, 55, 5 0, 0 0))’::geometry));
st_astext

POINT (2.5 2.5)
(1 row)

SELECT ST_AsSEWKT (ST_PointOnSurface (ST_GeomFromEWKT (! LINESTRING(O 5 1, 0 0 1, 0 10 2)7)));
st_asewkt

POINT (0 O 1)
(1 row)

See Also

ST _Centroid, ST _Point_Inside_Circle

7.8.35 ST_Relate

Name

ST_Relate — Returns true if this Geometry is spatially related to anotherGeometry, by testing for intersections between the
Interior, Boundary and Exterior of the two geometries as specified by the values in the intersectionMatrixPattern. If no intersec-
tionMatrixPattern is passed in, then returns the maximum intersectionMatrixPattern that relates the 2 geometries.

Synopsis

boolean ST_Relate(geometry geomA, geometry geomB, text intersectionMatrixPattern);
text ST_Relate(geometry geomA, geometry geomB);

Description

Version 1: Takes geomA, geomB, intersectionMatrix and Returns 1 (TRUE) if this Geometry is spatially related to anotherGe-
ometry, by testing for intersections between the Interior, Boundary and Exterior of the two geometries as specified by the values
in the intersectionMatrixPattern.

This is especially useful for testing compound checks of intersection, crosses, etc in one step.

Do not call with a GeometryCollection as an argument

N;ﬂd Note

This is the "allowable" version that returns a boolean, not an integer. This is defined in OGC spec

http://docs.codehaus.org/display/GEOTDOC/Point+Set+Theory+and+the+DE-9IM+Matrix#PointSetTheoryandtheDE-9IMMatrix-9IntersectionMatrix

PostGIS 1.5.5 Manual
213/322

:rtﬁ'! Note
N This DOES NOT automagically include an index call. The reason for that is some relationships are anti e.g. Disjoint. If
you are using a relationship pattern that requires intersection, then include the && index call.

Version 2: Takes geomA and geomB and returns the Section 4.3.6

N;"""! Note

Do not call with a GeometryCollection as an argument

not in OGC spec, but implied. see s2.1.13.2
Both Performed by the GEOS module

/ This method implements the OpenGIS Simple Features Implementation Specification for SQL 1.1. s2.1.1.2 //s2.1.13.3

/ This method implements the SQL/MM specification. SQL-MM 3: 5.1.25

Examples

—--Find all compounds that intersect and not touch a poly (interior intersects)
SELECT 1.%x , b.name As poly_name
FROM polys As b

INNER JOIN compounds As 1

ON (p.the_geom && b.the_geom

AND ST_Relate(l.the_geom, b.the_geom,’ Txxxx*xxxx’));

SELECT ST_Relate (ST_GeometryFromText (POINT (1 2)’), ST_Buffer (ST_GeometryFromText ('POINT (1 <«
2)"),2));
st_relate

OFFFFF212

SELECT ST_Relate (ST_GeometryFromText (' LINESTRING(1 2, 3 4)’), ST_GeometryFromText (/!
LINESTRING(5 6, 7 8)'));
st_relate

FF1FF0102

SELECT ST_Relate (ST_GeometryFromText (POINT(1 2)’), ST_Buffer (ST_GeometryFromText ('POINT (1 <«
2)"),2), "OFFFFF212');
st_relate

SELECT ST_Relate (ST_GeometryFromText (POINT(1 2)’), ST_Buffer (ST_GeometryFromText ('POINT (1 <«
2)"),2), "«FFxFF212");
st_relate

http://www.opengeospatial.org/standards/sfs

PostGIS 1.5.5 Manual
214 /322

See Also

ST_Crosses, Section 4.3.6, ST_Disjoint, ST_Intersects, ST_Touches

7.8.36 ST_ShortestLine

Name

ST_ShortestLine — Returns the 2-dimensional shortest line between two geometries

Synopsis

geometry ST_ShortestLine(geometry g1, geometry g2);

Description

Returns the 2-dimensional shortest line between two geometries. The function will only return the first shortest line if more than
one, that the function finds. If gl and g2 intersects in just one point the function will return a line with both start and end in that
intersection-point. If gl and g2 are intersecting with more than one point the function will return a line with start and end in the
same point but it can be any of the intersecting points. The line returned will always start in g1 and end in g2. The length of the
line this function returns will always be the same as st_distance returns for gl and g2.

Availability: 1.5.0

Examples

PostGIS 1.5.5 Manual
215/322

Shortest line between point and linestring shortest line between polygon and polygon

SELECT ST_AsText (
ST_ShortestLine ('POINT (100 100) <«
! ::geometry,
"LINESTRING (20 80, 98 <«
190, 110 180, 50 75)’ ::geometry)
) As sline;

SELECT ST_AsText (
ST_ShortestLine (
ST_GeomFromText (! «
POLYGON ((175 150, 20 40, 50 60, 125 100, |175 15
ST_Buffer («
ST_GeomFromText (" POINT (110 170)"), 20)
)

) As slinewkt;

LINESTRING (100 100,73.0769230769231 <«
115.384615384615)

LINESTRING (140.752120669087 <«
125.695053378061,121.111404660392 153.370607753

See Also

ST_ClosestPoint, ST_Distance, ST_LongestLine, ST_ShortestLine, ST_MaxDistance

7.8.37 ST_Touches

Name

ST_Touches — Returns TRUE if the geometries have at least one point in common, but their interiors do not intersect.

Synopsis

boolean ST_Touches(geometry g1, geometry g2);

Description

Returns TRUE if the only points in common between g1 and g2 lie in the union of the boundaries of g1 and g2. The ST_To-
uches relation applies to all Area/Area, Line/Line, Line/Area, Point/Area and Point/Line pairs of relationships, but not to the
Point/Point pair.

PostGIS 1.5.5 Manual
216 /322

In mathematical terms, this predicate is expressed as: E

a. Touchesih) = (Tfa)~I(b) = &) A fa m b) =7
The allowable DE-9IM Intersection Matrices for the two geometries are:

o Fkkskoksksk
o kT Rk kK

o [okskskTkkkk

Important
Do not call with a GEOMETRYCOLLECTION as an argument

&
No*'* Note
This function call will automatically include a bounding box comparison that will make use of any indexes that are
available on the geometries. To avoid using an index, use _ST_Touches instead.

/ This method implements the OpenGIS Simple Features Implementation Specification for SQL 1.1. s2.1.1.2 // s2.1.13.3

/ This method implements the SQL/MM specification. SQL-MM 3: 5.1.28

Examples

The ST_Touches predicate returns TRUE in all the following illustrations.

POLYGON / POLYGON POLYGON / POLYGON POLYGON / LINESTRING

TODO: Insert appropriate MathML markup here or use a gif. Simple HTML markup does not work well in both IE and Firefox.

http://www.opengeospatial.org/standards/sfs

PostGIS 1.5.5 Manual
217 /322

LINESTRING / LINESTRING LINESTRING / LINESTRING POLYGON / POINT

SELECT ST_Touches (/LINESTRING(O 0, 1 1, 0 2)’::geometry, ’'POINT(1l 1)’::geometry);
st_touches

SELECT ST_Touches (/ LINESTRING(O 0, 1 1, 0 2)’::geometry, ’'POINT(0 2)’::geometry);
st_touches

7.8.38 ST_Within

Name

ST_Within — Returns true if the geometry A is completely inside geometry B

Synopsis

boolean ST_Within(geometry A, geometry B);

Description

Returns TRUE if geometry A is completely inside geometry B. For this function to make sense, the source geometries must both
be of the same coordinate projection, having the same SRID. It is a given that if ST_Within(A,B) is true and ST_Within(B,A) is
true, then the two geometries are considered spatially equal.

Performed by the GEOS module

Important
Do not call with a GEOMETRYCOLLECTION as an argument

PostGIS 1.5.5 Manual
218 /322

P
'm.!,f

Important
Do not use this function with invalid geometries. You will get unexpected results.

This function call will automatically include a bounding box comparison that will make use of any indexes that are available on
the geometries. To avoid index use, use the function _ST_Within.

NOTE: this is the "allowable" version that returns a boolean, not an integer.

/ This method implements the OpenGIS Simple Features Implementation Specification for SQL 1.1. s2.1.1.2 // s2.1.13.3 -
a.Relate(b, *T*F**F#**)

/ This method implements the SQL/MM specification. SQL-MM 3: 5.1.30

Examples

——a circle within a circle

SELECT ST _Within (smallc,smallc) As smallinsmall,
ST_Within(smallc, bigc) As smallinbig,
ST_Within (bigc,smallc) As biginsmall,
ST_Within (ST_Union(smallc, bigc), bigc) as unioninbig,
ST_Within(bigc, ST_Union(smallc, bigc)) as biginunion,
ST_Equals (bigc, ST _Union(smallc, bigc)) as bigisunion

FROM

(

SELECT ST_Buffer (ST_GeomFromText (" POINT (50 50)’), 20) As smallc,
ST_Buffer (ST_GeomFromText (' POINT (50 50)’), 40) As bigc) As foo;

—-—Result

smallinsmall | smallinbig | biginsmall | unioninbig | biginunion | bigisunion
77777777777777 e et et e
t | t | £ |t | t | t

(1 row)

See Also

ST_Contains, ST_Equals,ST_IsValid

http://www.opengeospatial.org/standards/sfs

PostGIS 1.5.5 Manual
219/322

7.9 Geometry Processing Functions

7.9.1 ST_Buffer

Name

ST_Buffer — (T) For geometry: Returns a geometry that represents all points whose distance from this Geometry is less than
or equal to distance. Calculations are in the Spatial Reference System of this Geometry. For geography: Uses a planar
transform wrapper. Introduced in 1.5 support for different end cap and mitre settings to control shape. buffer_style options:
quad_segs=#,endcap=roundlflatlsquare,join=roundImitrelbevel,mitre_limit=#.#

Synopsis

geometry ST_Buffer(geometry g1, float radius_of_buffer);

geometry ST_Buffer(geometry g1, float radius_of_buffer, integer num_seg_quarter_circle);
geometry ST_Buffer(geometry g1, float radius_of_buffer, text buffer_style_parameters);
geography ST_Buffer(geography g1, float radius_of_buffer_in_meters);

Description
Returns a geometry/geography that represents all points whose distance from this Geometry/geography is less than or equal to
distance.

Geometry: Calculations are in the Spatial Reference System of the geometry. Introduced in 1.5 support for different end cap and
mitre settings to control shape.

N;ﬂ"! Note

Negative radii: For polygons, a negative radius can be used, which will shrink the polygon rather than expanding it.

Note

No'H'! Geography: For geography this is really a thin wrapper around the geometry implementation. It first determines the
best SRID that fits the bounding box of the geography object (favoring UTM, Lambert Azimuthal Equal Area (LAEA)
north/south pole, and falling back on mercator in worst case scenario) and then buffers in that planar spatial ref and
retransforms back to WGS84 geography.

. For geography this may not behave as expected if object is sufficiently large that it falls between two UTM zones or
crosses the dateline

Awailability: 1.5 - ST_Buffer was enhanced to support different endcaps and join types. These are useful for example to convert
road linestrings into polygon roads with flat or square edges instead of rounded edges. Thin wrapper for geography was added. -
requires GEOS >= 3.2 to take advantage of advanced geometry functionality.

The optional third parameter (currently only applies to geometry) can either specify number of segments used to approximate a
quarter circle (integer case, defaults to 8) or a list of blank-separated key=value pairs (string case) to tweak operations as follows:
* ’quad_segs=#" : number of segments used to approximate a quarter circle (defaults to 8).

* “endcap=roundlflatlsquare’ : endcap style (defaults to "round", needs GEOS-3.2 or higher for a different value). ’butt’ is also
accepted as a synonym for flat’.

PostGIS 1.5.5 Manual
220/322

* ’join=roundimitrelbevel’ : join style (defaults to "round", needs GEOS-3.2 or higher for a different value). ’miter’ is also
accepted as a synonym for “mitre’.

* “mitre_limit=#.#" : mitre ratio limit (only affects mitred join style). *miter_limit’ is also accepted as a synonym for ’mitre_limit’.

Units of radius are measured in units of the spatial reference system.

The inputs can be POINTS, MULTIPOINTS, LINESTRINGS, MULTILINESTRINGS, POLYGONS, MULTIPOLYGONS, and
GeometryCollections.

ﬂo‘l‘d Note

This function ignores the third dimension (z) and will always give a 2-d buffer even when presented with a 3d-geometry.

Performed by the GEOS module.
/ This method implements the OpenGIS Simple Features Implementation Specification for SQL 1.1. s2.1.1.3

/ This method implements the SQL/MM specification. SQL-MM 3: 5.1.17

N:*‘! Note
People often make the mistake of using this function to try to do radius searches. Creating a buffer to to a radius search
is slow and pointless. Use ST_DWithin instead.

Examples
quad_segs=8 (default) quad_segs=2 (lame)
SELECT ST_Buffer(SELECT ST_Buffer (
ST_GeomFromText (" POINT (100 90)"), ST_GeomFromText (' POINT (100 90)"),
50, ’"quad_segs=8'); 50, ’"quad_segs=2');

http://www.opengeospatial.org/standards/sfs

PostGIS 1.5.5 Manual

221/322

endcap=round join=round (default)

SELECT ST_Buffer (

ST_GeomFromText (
"LINESTRING (50 50,150 150,150 50)"
), 10, ’"endcap=round Jjoin=round’);

endcap=square

SELECT ST_Buffer(

ST_GeomFromText (
"LINESTRING (50 50,150 150,150 50)’
), 10, ’"endcap=square join=round’);

Jjoin=bevel

SELECT ST_Buffer (
ST_GeomFromText (
"LINESTRING (50 50,150 150,150 50)”
), 10, ’join=bevel’);

Jjoin=mitre mitre_limit=>5.0 (default mitre limit)

SELECT ST_Buffer (
ST_GeomFromText (
"LINESTRING (50 50,150 150,150 50)”
), 10, ’join=mitre mitre_limit=5.0");

PostGIS 1.5.5 Manual
222 /322

——A buffered point approximates a circle

—-— A buffered point forcing approximation of (see diagram)

—— 2 points per circle is poly with 8 sides (see diagram)

SELECT ST_NPoints (ST_Buffer (ST_GeomFromText (POINT (100 90)’), 50)) As <«
promisingcircle_pcount,

ST_NPoints (ST_Buffer (ST_GeomFromText (' POINT (100 90)’), 50, 2)) As lamecircle_pcount;

promisingcircle_pcount | lamecircle_pcount
777777777777777777777777 +7777777777777777777
33 | 9

——A lighter but lamer circle

—-— only 2 points per quarter circle is an octagon

——Below is a 100 meter octagon

—— Note coordinates are in NAD 83 long lat which we transform

to Mass state plane meter and then buffer to get measurements in meters;
SELECT ST_AsText (ST_Buffer (

ST_Transform

ST_SetSRID (ST_MakePoint (-71.063526, 42.35785),4269), 26986)

,100,2)) As octagon;

POLYGON ((236057.59057465 900908.759918696,236028.301252769 900838.049240578,235
957.59057465 900808.759918696,235886.879896532 900838.049240578,235857.59057465
900908.759918696,235886.879896532 900979.470596815,235957.59057465 901008.759918
696,236028.301252769 900979.470596815,236057.59057465 900908.759918696))

See Also

ST Collect, ST _DWithin, ST _SetSRID, ST Transform, ST _Union

7.9.2 ST_BuildArea

Name

ST_BuildArea — Creates an areal geometry formed by the constituent linework of given geometry

Synopsis

geometry ST _BuildArea(geometry A);

Description

Creates an areal geometry formed by the constituent linework of given geometry. The return type can be a Polygon or Multi-
Polygon, depending on input. If the input lineworks do not form polygons NULL is returned. The inputs can be LINESTRINGS,
MULTILINESTRINGS, POLYGONS, MULTIPOLY GONS, and GeometryCollections.

This function will assume all inner geometries represent holes

Availability: 1.1.0 - requires GEOS >=2.1.0.

Examples

PostGIS 1.5.5 Manual
223 /322

This will create a donut

SELECT ST_BuildArea(ST_Collect (smallc,bigc))
FROM (SELECT
ST_Buffer(
ST_GeomFromText (' POINT (100 90)"), 25) As smallc,
ST_Buffer (ST_GeomFromText (' POINT (100 90)’), 50) As bigc) As foo;

PostGIS 1.5.5 Manual

224 /322

This will create a gaping hole inside the circle with prongs sticking out

SELECT ST_BuildArea (ST_Collect (line,circle))
FROM (SELECT
ST_Buffer(
ST_MakeLine (ST_MakePoint (10, 10), ST_MakePoint (190, 190)),
5) As line,
ST_Buffer (ST_GeomFromText (' POINT (100 90)’), 50) As circle) As foo;

--this creates the same gaping hole
—--but using linestrings instead of polygons
SELECT ST_BuildArea (
ST_Collect (ST_ExteriorRing(line), ST_ExteriorRing(circle))
)
FROM (SELECT ST_Buffer(
ST_MakeLine (ST_MakePoint (10, 10),ST_MakePoint (190, 190))
,5) As line,
ST_Buffer (ST_GeomFromText (' POINT (100 90)’), 50) As circle) As foo;

See Also

ST_BdPolyFromText, ST_BdMPolyFromTextwrappers to this function with standard OGC interface

7.9.3 ST_Collect

Name

ST_Collect — Return a specified ST_Geometry value from a collection of other geometries.

Synopsis

geometry ST_Collect(geometry set glfield);
geometry ST_Collect(geometry g1, geometry g2);
geometry ST_Collect(geometry[] gl_array);

PostGIS 1.5.5 Manual
225 /322

Description

Output type can be a MULTI* or a GEOMETRYCOLLECTION. Comes in 2 variants. Variant 1 collects 2 geometries. Variant
2 is an aggregate function that takes a set of geometries and collects them into a single ST_Geometry.

Aggregate version: This function returns a GEOMETRYCOLLECTION or a MULTT object from a set of geometries. The
ST_Collect() function is an "aggregate" function in the terminology of PostgreSQL. That means that it operates on rows of
data, in the same way the SUM() and AVG() functions do. For example, "SELECT ST_Collect(GEOM) FROM GEOMTABLE
GROUP BY ATTRCOLUMN" will return a separate GEOMETRYCOLLECTION for each distinct value of ATTRCOLUMN.

Non-Aggregate version: This function returns a geometry being a collection of two input geometries. Output type can be a
MULTI* or a GEOMETRYCOLLECTION.

Note

ST_Collect and ST_Union are often interchangeable. ST_Collect is in general orders of magnitude faster than
No'lfv! ST_Union because it does not try to dissolve boundaries or validate that a constructed MultiPolgon doesn’t have over-

lapping regions. It merely rolls up single geometries into MULTI and MULTI or mixed geometry types into Geometry

Collections. Unfortunately geometry collections are not well-supported by GIS tools. To prevent ST_Collect from re-

turning a Geometry Collection when collecting MULTI geometries, one can use the below trick that utilizes ST_Dump

to expand the MULTIs out to singles and then regroup them.

Auvailability: 1.4.0 - ST_Collect(geomarray) was introduced. ST_Collect was enhanced to handle more geometries faster.
/ This function supports 3d and will not drop the z-index.

J This method supports Circular Strings and Curves This method supports Circular Strings and Curves, but will never return
a MULTICURVE or MULTT as one would expect and PostGIS does not currently support those.

Examples

Aggregate example

Thread ref: http://postgis.refractions.net/pipermail/postgis-users/2008-June/020331.html
SELECT stusps,
ST_Multi (ST_Collect (f.the_geom)) as singlegeom
FROM (SELECT stusps, (ST_Dump (the_geom)) .geom As the_geom
FROM
somestatetable) As f
GROUP BY stusps

Non-Aggregate example

Thread ref: http://postgis.refractions.net/pipermail/postgis—users/2008-June/020331.html
SELECT ST_AsText (ST_Collect (ST_GeomFromText (POINT (1 2)’),
ST_GeomFromText (POINT (-2 3)’)));

st_astext

MULTIPOINT (1 2,-2 3)

—-—Collect 2 d points
SELECT ST_AsText (ST_Collect (ST_GeomFromText (POINT (1 2)’),
ST_GeomFromText ("POINT(1 2)")));

st_astext

MULTIPOINT (1 2,1 2)

PostGIS 1.5.5 Manual

226 /322

——Collect 3d points
SELECT ST_ASEWKT (ST_Collect (ST_GeomFromEWKT (' POINT (1 2 3)’),
ST_GeomFromEWKT ("POINT (1 2 4)’)));

st_asewkt

MULTIPOINT (1 2 3,1 2 4)

——-Example with curves
SELECT ST_AsText (ST_Collect (ST_GeomFromText (' CIRCULARSTRING (220268 150415,220227
150505,220227 150406)"),
ST_GeomFromText (" CIRCULARSTRING (220227 150406,2220227 150407,220227 150406)7)));
st_astext

GEOMETRYCOLLECTION (CIRCULARSTRING (220268 150415,220227 150505,220227 150406),
CIRCULARSTRING (220227 150406,2220227 150407,220227 150406))

——New ST_Collect array construct
SELECT ST_Collect (ARRAY (SELECT the_geom FROM sometable));

SELECT ST_AsText (ST_Collect (ARRAY[ST_GeomFromText (' LINESTRING(1 2, 3 4)'"),
ST_GeomFromText (' LINESTRING(3 4, 4 5)’)])) As wktcollect;

-—-wkt collect —--
MULTILINESTRING ((1 2,3 4), (3 4,4 5))

See Also

ST_Dump, ST_Union

7.9.4 ST_ConvexHull

Name

«

ST_ConvexHull — The convex hull of a geometry represents the minimum convex geometry that encloses all geometries within

the set.

Synopsis

geometry ST_ConvexHull(geometry geomA);

Description

The convex hull of a geometry represents the minimum convex geometry that encloses all geometries within the set.

One can think of the convex hull as the geometry you get by wrapping an elastic band around a set of geometries. This is different

from a concave hull (not currently supported) which is analogous to shrink-wrapping your geometries.

It is usually used with MULTI and Geometry Collections. Although it is not an aggregate - you can use it in conjunction with

ST_Collect to get the convex hull of a set of points. ST_ConvexHull(ST_Collect(somepointfield)).
It is often used to determine an affected area based on a set of point observations.

Performed by the GEOS module

PostGIS 1.5.5 Manual

227 /322

/ This method implements the OpenGIS Simple Features Implementation Specification for SQL 1.1. s2.1.1.3
/ This method implements the SQL/MM specification. SQL-MM 3: 5.1.16

/ This function supports 3d and will not drop the z-index.

Examples

——Get estimate of infected area based on point observations
SELECT d.disease_type,

ST_ConvexHull (ST_Collect (d.the_geom)) As the_geom

FROM disease_obs As d

GROUP BY d.disease_type;

Convex Hull of a MultiLinestring and a MultiPoint seen together with the MultiLinestring and MultiPoint
SELECT ST_AsText (ST_ConvexHull (
ST_Collect (
ST_GeomFromText ('MULTILINESTRING((100 190,10 8), (150 10, 20 30))"),

ST_GeomFromText (MULTIPOINT (50 5, 150 30, 50 10, 10 10)")

)))i
———st_astext——
POLYGON ((50 5,10 8,10 10,100 190,150 30,150 10,50 5))

See Also

ST_Collect, ST_MinimumBoundingCircle

7.9.5 ST_CurveTolLine
Name

ST_CurveToLine — Converts a CIRCULARSTRING/CURVEDPOLYGON to a LINESTRING/POLY GON

http://www.opengeospatial.org/standards/sfs

PostGIS 1.5.5 Manual
228 /322

Synopsis

geometry ST_CurveToLine(geometry curveGeom);
geometry ST_CurveToLine(geometry curveGeom, integer segments_per_qtr_circle);

Description

Converst a CIRCULAR STRING to regular LINESTRING or CURVEPOLYGON to POLYGON. Useful for outputting to de-
vices that can’t support CIRCULARSTRING geometry types

Converts a given geometry to a linear geometry. Each curved geometry or segment is converted into a linear approximation using
the default value of 32 segments per quarter circle

Availability: 1.2.27

/ This method implements the OpenGIS Simple Features Implementation Specification for SQL 1.1.
/ This method implements the SQL/MM specification. SQL-MM 3: 7.1.7

/ This function supports 3d and will not drop the z-index.

/ This method supports Circular Strings and Curves

Examples

SELECT ST_AsText (ST_CurveTolLine (ST_GeomFromText (' CIRCULARSTRING (220268 150415,220227 <«
150505,220227 150406)")));

—-—Result —-

LINESTRING (220268 150415,220269.95064912 150416.539364228,220271.823415575
150418.17258804,220273.613787707 150419.895736857,

220275.317452352 150421.704659462,220276.930305234 150423.594998003,220278.448460847 <«
150425.562198489,

220279.868261823 150427.60152176,220281.186287736 150429.708054909,220282.399363347 <«
150431.876723113,

220283.50456625 150434.10230186,220284.499233914 150436.379429536,220285.380970099 +«
150438.702620341,220286.147650624 150441.066277505,

220286.797428488 150443.464706771,220287.328738321 150445.892130112,220287.740300149
150448.342699654,

220288.031122486 150450.810511759,220288.200504713 150453.289621251,220288.248038775 <«
150455.77405574,

220288.173610157 150458.257830005,220287.977398166 150460.734960415,220287.659875492 «
150463.199479347,

220287.221807076 150465.64544956,220286.664248262 150468.066978495,220285.988542259 <«
150470.458232479,220285.196316903 150472.81345077,

220284.289480732 150475.126959442,220283.270218395 150477.39318505,220282.140985384 <«
150479.606668057,

220280.90450212 150481.762075989,220279.5637474 150483.85421628,220278.12195122
150485.87804878,

220276.582586992 150487.828697901,220274.949363179 150489.701464356,220273.226214362 <«
150491.491836488,

220271.417291757 150493.195501133,220269.526953216 150494.808354014,220267.559752731 <«
150496.326509628,

220265.520429459 150497.746310603,220263.41389631 150499.064336517,220261.245228106 <+«
150500.277412127,

220259.019649359 150501.38261503,220256.742521683 150502.377282695,220254.419330878 <«
150503.259018879,

http://www.opengeospatial.org/standards/sfs

PostGIS 1.5.5 Manual
229 /322

220252.055673714 150504.025699404,220249.657244448 150504.675477269,220247.229821107 <«
150505.206787101,

220244.779251566 150505.61834893,220242.311439461 150505.909171266,220239.832329968 <«
150506.078553494,

220237.347895479 150506.126087555,220234.864121215 150506.051658938,220232.386990804 <«
150505.855446946,

220229.922471872 150505.537924272,220227.47650166 150505.099855856,220225.054972724 <«
150504.542297043,

220222.663718741 150503.86659104,220220.308500449 150503.074365683,

220217.994991777 150502.167529512,220215.72876617 150501.148267175,

220213.515283163 150500.019034164,220211.35987523 150498.78255009,

220209.267734939 150497.441796181,220207.243902439 150496,

220205.293253319 150494.460635772,220203.420486864 150492.82741196,220201.630114732 <«
150491.104263143,

220199.926450087 150489.295340538,220198.313597205 150487.405001997,220196.795441592 <+
150485.437801511,

220195.375640616 150483.39847824,220194.057614703 150481.291945091,220192.844539092 <«
150479.123276887,220191.739336189 150476.89769814,

220190.744668525 150474.620570464,220189.86293234 150472.297379659,220189.096251815 <+«
150469.933722495,

220188.446473951 150467.535293229,220187.915164118 150465.107869888,220187.50360229 <«
150462.657300346,

220187.212779953 150460.189488241,220187.043397726 150457.710378749,220186.995863664 <«
150455.22594426,

220187.070292282 150452.742169995,220187.266504273 150450.265039585,220187.584026947 <«
150447.800520653,

220188.022095363 150445.35455044,220188.579654177 150442.933021505,220189.25536018 <«
150440.541767521,

220190.047585536 150438.18654923,220190.954421707 150435.873040558,220191.973684044 <«
150433.60681495,

220193.102917055 150431.393331943,220194.339400319 150429.237924011,220195.680155039 +«
150427.14578372,220197.12195122 150425.12195122,

220198.661315447 150423.171302099,220200.29453926 150421.298535644,220202.017688077 <«
150419.508163512,220203.826610682 150417.804498867,

220205.716949223 150416.191645986,220207.684149708 150414.673490372,220209.72347298 <«
150413.253689397,220211.830006129 150411.935663483,

220213.998674333 150410.722587873,220216.22425308 150409.61738497,220218.501380756 <«
150408.622717305,220220.824571561 150407.740981121,

220223.188228725 150406.974300596,220225.586657991 150406.324522731,220227 150406)

—--3d example
SELECT ST_ASEWKT (ST_CurveToLine (ST_GeomFromEWKT (/! CIRCULARSTRING (220268 150415 1,220227 <«
150505 2,220227 150406 3)’)));
Output
LINESTRING (220268 150415 1,220269.95064912 150416.539364228 1.0181172856673,
220271.823415575 150418.17258804 1.03623457133459,220273.613787707 150419.895736857 <«
1.05435185700189,AD INFINITUM
220225.586657991 150406.324522731 1.32611114201132,220227 150406 3)

—--use only 2 segments to approximate quarter circle
SELECT ST_AsText (ST_CurveToLine (ST_GeomFromText (/ CIRCULARSTRING (220268 150415,220227 <«
150505,220227 150406)"),2));
st_astext
LINESTRING (220268 150415,220287.740300149 150448.342699654,220278.12195122 <«
150485.87804878,
220244.779251566 150505.61834893,220207.243902439 150496,220187.50360229 150462.657300346,
220197.12195122 150425.12195122,220227 150406)

PostGIS 1.5.5 Manual
230/322

See Also

ST _LineToCurve

7.9.6 ST_Difference

Name

ST_Difference — Returns a geometry that represents that part of geometry A that does not intersect with geometry B.

Synopsis

geometry ST_Difference(geometry geomA, geometry geomB);

Description

Returns a geometry that represents that part of geometry A that does not intersect with geometry B. One can think of this as
GeometryA - ST_Intersection(A,B). If A is completely contained in B then an empty geometry collection is returned.

N;'R’! Note

Note - order matters. B - A will always return a portion of B

Performed by the GEOS module

N;‘l"! Note

Do not call with a GeometryCollection as an argument

/ This method implements the OpenGIS Simple Features Implementation Specification for SQL 1.1. s2.1.1.3
/ This method implements the SQL/MM specification. SQL-MM 3: 5.1.20

/ This function supports 3d and will not drop the z-index. However it seems to only consider x y when doing the difference
and tacks back on the Z-Index

Examples

http://www.opengeospatial.org/standards/sfs

PostGIS 1.5.5 Manual

231/322

The original linestrings shown together.

The difference of the two linestrings

—-Safe for 2d. This is same geometries as what is shown for st_symdifference

SELECT ST_AsText (
ST_Difference (
ST_GeomFromText (! LINESTRING (50 100, 50 200)"),
ST_GeomFromText (' LINESTRING (50 50, 50 150)7)
)
)i

st_astext

LINESTRING (50 150,50 200)

——When used in 3d doesn’t quite do the right thing

SELECT ST_ASEWKT (ST_Difference (ST_GeomFromEWKT (/ MULTIPOINT (-118.58 38.38 5,-118.60 38.329 «
6,-118.614 38.281 7)’), ST_GeomFromEWKT (' POINT(-118.614 38.281 5)’)));

st_asewkt

MULTIPOINT (-118.6 38.329 6,-118.58 38.38 5)
See Also
ST_SymDifference

7.9.7 ST_Dump

Name

ST_Dump — Returns a set of geometry_dump (geom,path) rows, that make up a geometry gl.

Synopsis

geometry_dump[]ST_Dump(geometry gl);

PostGIS 1.5.5 Manual
232 /322

Description

This is a set-returning function (SRF). It returns a set of geometry_dump rows, formed by a geometry (geom) and an array of
integers (path). When the input geometry is a simple type (POINT,LINESTRING,POLYGON) a single record will be returned
with an empty path array and the input geometry as geom. When the input geometry is a collection or multi it will return a record
for each of the collection components, and the path will express the position of the component inside the collection.

ST_Dump is useful for expanding geometries. It is the reverse of a GROUP BY in that it creates new rows. For example it can
be use to expand MULTIPOLY GONS into POLYGONS.

Auvailability: PostGIS 1.0.0RC1. Requires PostgreSQL 7.3 or higher.

N;ﬂ"! Note

Prior to 1.3.4, this function crashes if used with geometries that contain CURVES. This is fixed in 1.3.4+

/ This function supports 3d and will not drop the z-index.

/ This method supports Circular Strings and Curves

Examples

SELECT sometable.fieldl, sometable.fieldl,
(ST_Dump (sometable.the_geom)) .geom AS the_geom
FROM sometable;

—-—-Break a compound curve into its constituent linestrings and circularstrings
SELECT ST_ASEWKT (a.geom), ST_HasArc (a.geom)
FROM (SELECT (ST_Dump (p_geom)) .geom AS geom
FROM (SELECT ST_GeomFromEWKT (" COMPOUNDCURVE (CIRCULARSTRING(O 0O, 1 1, 1 0), (1 0, 0 <«
1))’) AS p_geom) AS b
) AS a;
st_asewkt

CIRCULARSTRING(O 0,1 1,1 0)

LINESTRING(1 0,0 1)
(2 rows)

See Also

geometry_dump, Section 8.4, ST_Collect, ST_Collect, ST_GeometryN

7.9.8 ST_DumpPoints

Name

ST_DumpPoints — Returns a set of geometry_dump (geom,path) rows of all points that make up a geometry.

Synopsis

geometry_dump[]ST_DumpPoints(geometry geom);

PostGIS 1.5.5 Manual
233 /322

Description

This set-returning function (SRF) returns a set of geomet ry_ dump rows formed by a geometry (geom) and an array of integers
(path).
The geom component of geomet ry_dump are all the POINTSs that make up the supplied geometry

The path component of geometry_dump (an integer []) is an index reference enumerating the POINTSs of the supplied
geometry. For example, if a LINESTRING is supplied, a path of {i} is returned where i is the nth coordinate in the LIN—
ESTRING. If a POLYGON is supplied, a path of {1, j} is returned where i is the outer ring followed by the inner rings and
enumerates the POINTS.

Availability: 1.5.0

/ This function supports 3d and will not drop the z-index.

/ This method supports Circular Strings and Curves

-

|

Examples

/

SELECT path, ST_AsText (geom)

FROM (
SELECT (ST_DumpPoints (g.geom)) .x*
FROM
(SELECT

" GEOMETRYCOLLECTION (
POINT (0 1)

LINESTRING (0 3, 3 4),
POLYGON ((2 0, 2 3, 0 2, 2 0)),
POLYGON ((3 0, 3 3, 6 3, 6 0, 3 0),
(51, 42, 52, 51)),
MULTIPOLYGON (
(05 08, 48, 45, 05),
(16, 36, 27, 16)),
((54, 58, 67, 54))

)
)’ ::geometry AS geom
) AS g
) Ji

PostGIS 1.5.5 Manual
234 /322

path | st_astext
,,,,,,,,,,, S,
{1,1} | POINT (0 1)
(2,1} | POINT (0 3)
{2,2} | POINT (3 4)
{3,1,1} | POINT (2 0)
{3,1,2} | POINT (2 3)
{3,1,3} | POINT (0 2)
{3,1,4} | POINT (2 0)
{4,1,1} | POINT (3 0)
{4,1,2} | POINT (3 3)
{4,1,3} | POINT (6 3)
{4,1,4} | POINT (6 0)
{4,1,5} | POINT (3 0)
{4,2,1} | POINT (5 1)
(4,2,2} | POINT (4 2)
{4,2,3} | POINT (5 2)
{4,2,4} | POINT (5 1)
{5,1,1,1} | POINT (0 5)
{5,1,1,2} | POINT(O 8)
{5,1,1,3} | POINT (4 8)
{5,1,1,4} | POINT (4 5)
{5,1,1,5} | POINT(O 5)
{5,1,2,1} | POINT(1 6)
{5,1,2,2} | POINT(3 6)
{5,1,2,3} | POINT(2 7)
{5,1,2,4} | POINT(1 6)
{5,2,1,1} | POINT (5 4)
{5,2,1,2} | POINT(5 8)
{5,2,1,3} | POINT (6 7)
{5,2,1,4} | POINT(5 4)
(29 rows)
See Also

geometry_dump, Section 8.4, ST_Dump, ST_DumpRings

7.9.9 ST _DumpRings

Name

ST_DumpRings — Returns a set of geomet ry_dump rows, representing the exterior and interior rings of a polygon.

Synopsis

geometry_dump(] ST_DumpRings(geometry a_polygon);

Description

This is a set-returning function (SRF). It returns a set of geomet ry_ dump rows, defined as an integer [] and a geometry,
aliased "path" and "geom" respectively. The "path" field holds the polygon ring index containing a single integer: O for the shell,
>0 for holes. The "geom" field contains the corresponding ring as a polygon.

Auvailability: PostGIS 1.1.3. Requires PostgreSQL 7.3 or higher.

PostGIS 1.5.5 Manual
235/322

Not? Note
This only works for POLYGON geometries. It will not work for MULTIPOLYGONS

/ This function supports 3d and will not drop the z-index.

Examples

SELECT sometable.fieldl, sometable.fieldl,
(ST_DumpRings (sometable.the_geom)) .geom As the_geom
FROM sometableOfpolys;

SELECT ST_ASEWKT (geom) As the_geom, path
FROM ST_DumpRings (

ST_GeomFromEWKT (" POLYGON ((-8149064 5133092 1,-8149064 5132986 1,-8148996 5132839 +«
1,-8148972 5132767 1,-8148958 5132508 1,-8148941 5132466 1,-8148924 5132394 1,

-8148903 5132210 1,-8148930 5131967 1,-8148992 5131978 1,-8149237 5132093 1,-8149404 <«
5132211 1,-8149647 5132310 1,-8149757 5132394 1,

-8150305 5132788 1,-8149064 5133092 1),

(-8149362 5132394 1,-8149446 5132501 1,-8149548 5132597 1,-8149695 5132675 1,-8149362 <«
5132394 1))")

) as foo;

{0} | POLYGON((—-8149064 5133092 1,-8149064 5132986 1,-8148996 5132839 1,-8148972 5132767 <«
1,-8148958 5132508 1,
-8148941 5132466 1,-8148924 5132394 1,
-8148903 5132210 1,-8148930 5131967 1,
-8148992 5131978 1,-8149237 5132093 1,
-8149404 5132211 1,-8149647 5132310 1,
1,-8149064 5133092 1))
{1} | POLYGON ((-8149362 5132394 1,-8149446 5132501 1,
| —-8149548 5132597 1,-8149695 5132675 1,-8149362 5132394 1))

-8149757 5132394 1,-8150305 5132788 <+

See Also

geometry_dump, Section 8.4, ST_Dump, ST_ExteriorRing, ST_InteriorRingN

7.9.10 ST Intersection

Name

ST_Intersection — (T) Returns a geometry that represents the shared portion of geomA and geomB. The geography implementa-
tion does a transform to geometry to do the intersection and then transform back to WGS84.

Synopsis

geometry ST_Intersection(geometry geomA , geometry geomB);
geography ST_Intersection(geography geogA , geography geogB);

PostGIS 1.5.5 Manual
236 /322

Description

Returns a geometry that represents the point set intersection of the Geometries.
In other words - that portion of geometry A and geometry B that is shared between the two geometries.
If the geometries do not share any space (are disjoint), then an empty geometry collection is returned.

ST_Intersection in conjunction with ST_Intersects is very useful for clipping geometries such as in bounding box, buffer, region
queries where you only want to return that portion of a geometry that sits in a country or region of interest.

Note
. Geography: For geography this is really a thin wrapper around the geometry implementation. It first determines the
Nﬂ‘l"! best SRID that fits the bounding box of the 2 geography objects (if geography objects are within one half zone UTM but
not same UTM will pick one of those) (favoring UTM or Lambert Azimuthal Equal Area (LAEA) north/south pole, and
falling back on mercator in worst case scenario) and then intersection in that best fit planar spatial ref and retransforms
back to WGS84 geography.

I Important
) Do not call with a GEOMETRYCOLLECTION as an argument

Performed by the GEOS module
Awailability: 1.5 support for geography data type was introduced.

/ This method implements the OpenGIS Simple Features Implementation Specification for SQL 1.1. s2.1.1.3

/ This method implements the SQL/MM specification. SQL-MM 3: 5.1.18

Examples

SELECT ST_AsText (ST_Intersection (’POINT(0 0)’::geometry, ’'LINESTRING (2 0, 0 2)':: «
geometry));
st_astext
GEOMETRYCOLLECTION EMPTY
(1 row)
SELECT ST_AsText (ST_Intersection (’POINT(0 0)’::geometry, ’"LINESTRING (0 0, 0 2)':: «
geometry));
st_astext
POINT (0O 0)
(1 row)

———Clip all lines (trails) by country (here we assume country geom are POLYGON or <>
MULTIPOLYGONS)

—-— NOTE: we are only keeping intersections that result in a LINESTRING or MULTILINESTRING <«
because we don’t

—— care about trails that just share a point

—— the dump is needed to expand a geometry collection into individual single MULTx parts

—— the below is fairly generic and will work for polys, etc. by just changing the where <«
clause

SELECT clipped.gid, clipped.f_name, clipped_geom

FROM (SELECT trails.gid, trails.f_name, (ST_Dump(ST_Intersection(country.the_geom, trails. <
the_geom))) .geom As clipped_geom

http://www.opengeospatial.org/standards/sfs

PostGIS 1.5.5 Manual
237 /322

FROM country
INNER JOIN trails
ON ST_Intersects (country.the_geom, trails.the_geom)) As clipped
WHERE ST_Dimension(clipped.clipped_geom) = 1 ;
——For polys e.g. polygon landmarks, you can also use the sometimes faster hack that <«
buffering anything by 0.0
—-— except a polygon results in an empty geometry collection
——(so a geometry collection containing polys, lines and points)
—— buffered by 0.0 would only leave the polygons and dissolve the collection shell
SELECT poly.gid, ST_Multi (ST_Buffer (
ST_Intersection (country.the_geom, poly.the_geom),
0.0)
) As clipped_geom
FROM country
INNER JOIN poly
ON ST_Intersects (country.the_geom, poly.the_geom)
WHERE Not ST_IsEmpty (ST_Buffer (ST_Intersection (country.the_geom, poly.the_geom),0.0));

See Also

ST_Difference, ST_Dimension, ST_Dump, ST_SymDifference, ST_Intersects, ST_Multi

7.9.11 ST_LineToCurve

Name

ST_LineToCurve — Converts a LINESTRING/POLYGON to a CIRCULARSTRING, CURVED POLYGON

Synopsis

geometry ST_LineToCurve(geometry geomANoncircular);

Description

Converts plain LINESTRING/POLYGONS to CIRCULAR STRINGs and Curved Polygons. Note much fewer points are needed
to describe the curved equivalent.

Availability: 1.2.27
/ This function supports 3d and will not drop the z-index.

/ This method supports Circular Strings and Curves

Examples
SELECT ST_AsText (ST_LineToCurve (foo.the_geom)) As curvedastext,ST_AsText (foo.the_geom) As <«
non_curvedastext

FROM (SELECT ST_Buffer ("POINT (1l 3)’::geometry, 3) As the_geom) As foo;

curvedatext non_curvedastext

PostGIS 1.5.5 Manual
238 /322

CURVEPOLYGON (CIRCULARSTRING (4 3,3.12132034355964 0.878679656440359, | POLYGON ((4 <«
3,3.94235584120969 2.41472903395162,3.77163859753386 1.85194970290473
1 0,-1.12132034355965 5.12132034355963,4 3)) | ,3.49440883690764 <«

1.33328930094119,3.12132034355964 0.878679656440359,
\ 2.66671069905881 <«
0.505591163092366,2.14805029709527 0.228361402466141,
\ 1.58527096604839 0.0576441587903094,1 0,
| 0.414729033951621 <«
0.0576441587903077,-0.148050297095264 «
0.228361402466137,
\ -0.666710699058802 «
0.505591163092361,-1.12132034355964 0.878679656440353,
\ -1.49440883690763 <«
1.33328930094119,-1.77163859753386 1.85194970290472
\ —--ETC-- ,3.94235584120969 3.58527096604839,4 3))
——-3D example
SELECT ST_ASEWKT (ST_LineToCurve (ST_GeomFromEWKT (/ LINESTRING(1 2 3, 3 4 8, 56 4, 78 4, 9 <«
10 4)7)));

st_asewkt

CIRCULARSTRING(1 2 3,5 6 4,9 10 4)

See Also

ST _CurveToLine

7.9.12 ST_MemUnion

Name

ST_MemUnion — Same as ST_Union, only memory-friendly (uses less memory and more processor time).

Synopsis

geometry ST_MemUnion(geometry set geomfield);

Description

Some useful description here.

. Note
N"R’! Same as ST_Union, only memory-friendly (uses less memory and more processor time). This aggregate function works
by unioning the geometries one at a time to previous result as opposed to ST_Union aggregate which first creates an
array and then unions

/ This function supports 3d and will not drop the z-index.

Examples

See ST _Union

PostGIS 1.5.5 Manual
239/322

See Also

ST_Union

7.9.13 ST_MinimumBoundingCircle

Name

ST_MinimumBoundingCircle — Returns the smallest circle polygon that can fully contain a geometry. Default uses 48 segments
per quarter circle.

Synopsis

geometry ST _MinimumBoundingCircle(geometry geomA);
geometry ST_MinimumBoundingCircle(geometry geomA, integer num_segs_per_qt_circ);

Description

Returns the smallest circle polygon that can fully contain a geometry.

) Note
Note
The circle is approximated by a polygon with a default of 48 segments per quarter circle. This number can be increased
with little performance penalty to obtain a more accurate result.

It is often used with MULTI and Geometry Collections. Although it is not an aggregate - you can use it in conjunction with
ST_Collect to get the minimum bounding cirlce of a set of geometries. ST_MinimumBoundingCircle(ST_Collect(somepointfield)).

The ratio of the area of a polygon divided by the area of its Minimum Bounding Circle is often referred to as the Roeck test.

Availability: 1.4.0 - requires GEOS

Examples

SELECT d.disease_type,
ST_MinimumBoundingCircle (ST_Collect (d.the_geom)) As the_geom
FROM disease_obs As d
GROUP BY d.disease_type;

PostGIS 1.5.5 Manual
240/ 322

Minimum bounding circle of a point and linestring. Using 8 segs to approximate a quarter circle

SELECT ST_AsText (ST_MinimumBoundingCircle (

ST_Collect (
ST_GeomFromEWKT (" LINESTRING (55 75,125 150)"),
ST_Point (20, 80)), 8
)) As wktmbc;

wktmbc

POLYGON ((135.59714732062 115,134.384753327498 102.690357210921,130.79416296937 <+«
90.8537670908995,124.963360620072 79.9451031602111,117.116420743937 <+
70.3835792560632,107.554896839789 62.5366393799277,96.6462329091006 <«
56.70583703063,84.8096427890789 53.115246672502,72.5000000000001 <«
51.9028526793802,60.1903572109213 53.1152466725019,48.3537670908996 <«
56.7058370306299,37.4451031602112 62.5366393799276,27.8835792560632 <«
70.383579256063,20.0366393799278 79.9451031602109,14.20583703063 <«
90.8537670908993,10.615246672502 102.690357210921,9.40285267938019 115,10.6152466725019 <«
127.309642789079,14.2058370306299 139.1462329091,20.0366393799275
150.054896839789,27.883579256063 159.616420743937,

37.4451031602108 167.463360620072,48.3537670908992 173.29416296937,60.190357210921 <«
176.884753327498,

72.4999999999998 178.09714732062,84.8096427890786 176.884753327498,96.6462329091003 <«
173.29416296937,107.554896839789 167.463360620072,

117.116420743937 159.616420743937,124.963360620072 150.054896839789,130.79416296937 <«
139.146232909101,134.384753327498 127.309642789079,135.59714732062 115))

See Also

ST Collect, ST ConvexHull

7.9.14 ST_Polygonize

Name

ST_Polygonize — Aggregate. Creates a GeometryCollection containing possible polygons formed from the constituent linework
of a set of geometries.

PostGIS 1.5.5 Manual
241 /322

Synopsis

geometry ST_Polygonize(geometry set geomfield);
geometry ST_Polygonize(geometry[] geom_array);

Description

Creates a GeometryCollection containing possible polygons formed from the constituent linework of a set of geometries.

o) Note
Note
Geometry Collections are often difficult to deal with with third party tools, so use ST_Polygonize in conjunction with
ST_Dump to dump the polygons out into individual polygons.

Auvailability: 1.0.0RC1 - requires GEOS >=2.1.0.

Examples: Polygonizing single linestrings

SELECT ST_ASEWKT (ST_Polygonize (the_geom_4269)) As geomtextrep
FROM (SELECT the_geom_4269 FROM ma.suffolk_edges ORDER BY tlid LIMIT 45) As foo;

geomtextrep

SRID=4269; GEOMETRYCOLLECTION (POLYGON ((—=71.040878 42.285678,-71.040943 42.2856,-71.04096 «
42.285752,-71.040878 42.285678)),

POLYGON ((=71.17166 42.353675,-71.172026 42.354044,-71.17239 42.354358,-71.171794 <+
42.354971,-71.170511 42.354855,

=71.17112 42.354238,-71.17166 42.353675)))

(1 row)

—-Use ST_Dump to dump out the polygonize geoms into individual polygons
SELECT ST_ASEWKT ((ST_Dump (foofoo.polycoll)) .geom) As geomtextrep
FROM (SELECT ST_Polygonize (the_geom_4269) As polycoll
FROM (SELECT the_geom_4269 FROM ma.suffolk_edges
ORDER BY tlid LIMIT 45) As foo) As foofoo;

geomtextrep

SRID=4269;POLYGON ((-71.040878 42.285678,-71.040943 42.2856,-71.04096 42.285752,
-71.040878 42.285678))

SRID=4269;POLYGON ((-71.17166 42.353675,-71.172026 42.354044,-71.17239 42.354358
,—71.171794 42.354971,-71.170511 42.354855,-71.17112 42.354238,-71.17166 42.353675))
(2 rows)

See Also

ST_Dump

7.9.15 ST_Shift_Longitude

Name

ST_Shift Longitude — Reads every point/vertex in every component of every feature in a geometry, and if the longitude coordi-
nate is <0, adds 360 to it. The result would be a 0-360 version of the data to be plotted in a 180 centric map

PostGIS 1.5.5 Manual
242 /322

Synopsis

geometry ST_Shift_Longitude(geometry geomA);

Description

Reads every point/vertex in every component of every feature in a geometry, and if the longitude coordinate is <0, adds 360 to it.
The result would be a 0-360 version of the data to be plotted in a 180 centric map

Not? Note
This is only useful for data in long lat e.g. 4326 (WGS 84 long lat)

. Pre-1.3.4 bug prevented this from working for MULTIPOINT. 1.3.4+ works with MULTIPOINT as well.

/ This function supports 3d and will not drop the z-index.

Examples
—--3d points
SELECT ST_ASEWKT (ST_Shift_Longitude (ST_GeomFromEWKT (' SRID=4326;POINT (-118.58 38.38 10)7))) <«
As geomA,
ST_ASEWKT (ST_Shift_Longitude (ST_GeomFromEWKT (/ SRID=4326; POINT (241.42 38.38 10)’))) As <«
geomb
geomA geomB

SRID=4326;POINT (241.42 38.38 10) SRID=4326;POINT(-118.58 38.38 10)

—-regular line string
SELECT ST_AsText (ST_Shift_Longitude (ST_GeomFromText (' LINESTRING(-118.58 38.38, -118.20 <«
38.45)7)))

st_astext

LINESTRING(241.42 38.38,241.8 38.45)

See Also

ST _GeomFromEWKT, ST _GeomFromText, ST _AsEWKT

7.9.16 ST _Simplify

Name

ST_Simplify — Returns a "simplified" version of the given geometry using the Douglas-Peucker algorithm.

Synopsis

geometry ST_Simplify(geometry geomA, float tolerance);

PostGIS 1.5.5 Manual
243 /322

Description

Returns a "simplified" version of the given geometry using the Douglas-Peucker algorithm. Will actually do something only
with (multi)lines and (multi)polygons but you can safely call it with any kind of geometry. Since simplification occurs on a
object-by-object basis you can also feed a GeometryCollection to this function.

N;ﬂ"! Note

Note that returned geometry might loose its simplicity (see ST_IsSimple)

Ntﬂ"! Note

Note topology may not be preserved and may result in invalid geometries. Use (see ST_SimplifyPreserveTopology) to
preserve topology.

Performed by the GEOS module.
Awailability: 1.2.2

Examples

A circle simplified too much becomes a triangle, medium an octagon,

SELECT ST_Npoints (the_geom) As np_before, ST_NPoints (ST_Simplify(the_geom,0.1l)) As <«
np0l_notbadcircle, ST_NPoints (ST_Simplify(the_geom,0.5)) As np05_notgquitecircle,
ST_NPoints (ST_Simplify (the_geom,1l)) As npl_octagon, ST_NPoints (ST_Simplify (the_geom,10)) As
nplO_triangle,
(ST_Simplify (the_geom,100) is null) As nplO0_geometrygoesaway
FROM (SELECT ST_Buffer (’POINT(1 3)’, 10,12) As the_geom) As foo;

—-result

np_before | np0l_notbadcircle | np05_notquitecircle | npl_octagon | nplO_triangle | «—
npl00_geometrygoesaway

77777777777 BT e T e
49 | 33 | 17 | 9 | 4 | t

See Also

ST_IsSimple, ST_SimplifyPreserveTopology

7.9.17 ST_SimplifyPreserveTopology

Name

ST_SimplifyPreserveTopology — Returns a "simplified" version of the given geometry using the Douglas-Peucker algorithm.
Will avoid creating derived geometries (polygons in particular) that are invalid.

Synopsis

geometry ST_SimplifyPreserveTopology(geometry geomA, float tolerance);

PostGIS 1.5.5 Manual
244 / 322

Description

Returns a "simplified" version of the given geometry using the Douglas-Peucker algorithm. Will avoid creating derived ge-
ometries (polygons in particular) that are invalid. Will actually do something only with (multi)lines and (multi)polygons but
you can safely call it with any kind of geometry. Since simplification occurs on a object-by-object basis you can also feed a
GeometryCollection to this function.

Performed by the GEOS module.

Not Note
Requires GEOS 3.0.0+

Availability: 1.3.3

Examples

Same example as Simplify, but we see Preserve Topology prevents oversimplification. The circle can at most become a square.

SELECT ST_Npoints (the_geom) As np_before, ST _NPoints (ST_SimplifyPreserveTopology (the_geom <«
,0.1)) As npOl_notbadcircle, ST _NPoints (ST_SimplifyPreserveTopology (the_geom,0.5)) As <«
np05_notquitecircle,

ST_NPoints (ST_SimplifyPreserveTopology (the_geom, 1)) As npl_octagon, ST_NPoints(<>
ST_SimplifyPreserveTopology (the_geom,10)) As nplO_square,

ST_NPoints (ST_SimplifyPreserveTopology (the_geom,100)) As npl00_stillsquare

FROM (SELECT ST_Buffer (’POINT(1 3)’, 10,12) As the_geom) As foo;

==E@gulic==
np_before | np0l_notbadcircle | npO5_notquitecircle | npl_octagon | nplO_sgquare | <=
npl00_stillsquare
——————————— e et s st e et
49 | 33 | 17 | 9 | 5 |
5

See Also

ST_Simplify

7.9.18 ST_SymbDifference

Name

ST_SymbDifference — Returns a geometry that represents the portions of A and B that do not intersect. It is called a symmetric
difference because ST_SymbDifference(A,B) = ST_SymDifference(B,A).

Synopsis

geometry ST_SymbDifference(geometry geomA, geometry geomB);

PostGIS 1.5.5 Manual

245 /322

Description

Returns a geometry that represents the portions of A and B that do not intersect. It is called a symmetric difference because
ST_SymbDifference(A,B) = ST_SymDifference(B,A). One can think of this as ST_Union(geomA,geomB) - ST_Intersection(A,B).

Performed by the GEOS module

Not? Note

Do not call with a GeometryCollection as an argument

/ This method implements the OpenGIS Simple Features Implementation Specification for SQL 1.1. s2.1.1.3

/ This method implements the SQL/MM specification. SQL-MM 3: 5.1.21

/ This function supports 3d and will not drop the z-index. However it seems to only consider x y when doing the difference

and tacks back on the Z-Index

Examples

The original linestrings shown together

The symmetric difference of the two linestrings

——-Safe for 2d - symmetric difference of 2 linestrings
SELECT ST_AsText (
ST_SymDifference (
ST_GeomFromText (' LINESTRING (50 100, 50 200)7),
ST_GeomFromText (! LINESTRING (50 50, 50 150)")
)
)i

st_astext

http://www.opengeospatial.org/standards/sfs

PostGIS 1.5.5 Manual
246 /322

MULTILINESTRING ((50 150,50 200), (50 50,50 100))

——When used in 3d doesn’t quite do the right thing
SELECT ST_ASEWKT (ST_SymDifference (ST_GeomFromEWKT (' LINESTRING(1 2 1, 1 4 2)'),
ST_GeomFromEWKT (' LINESTRING(1 1 3, 1 3 4)")))

st_astext

MULTILINESTRING((1 3 2.75,1 4 2),(1 1 3,1 2 2.25))

See Also

ST Difference, ST Intersection, ST_Union

7.9.19 ST_Union

Name

ST_Union — Returns a geometry that represents the point set union of the Geometries.

Synopsis

geometry ST_Union(geometry set glfield);
geometry ST_Union(geometry g1, geometry g2);
geometry ST_Union(geometry[] gl_array);

Description

Output type can be a MULTI* , single geometry, or Geometry Collection. Comes in 2 variants. Variant 1 unions 2 geometries
resulting in a new geomety with no intersecting regions. Variant 2 is an aggregate function that takes a set of geometries and
unions them into a single ST_Geometry resulting in no intersecting regions.

Aggregate version: This function returns a MULTI geometry or NON-MULTI geometry from a set of geometries. The ST_Union()
function is an "aggregate" function in the terminology of PostgreSQL. That means that it operates on rows of data, in the same
way the SUM() and AVG() functions do.

Non-Aggregate version: This function returns a geometry being a union of two input geometries. Output type can be a MULTI*
,NON-MULTI or GEOMETRYCOLLECTION.

. Note
Nﬁ't"! ST_Collect and ST_Union are often interchangeable. ST_Union is in general orders of magnitude slower than
ST_Collect because it tries to dissolve boundaries and reorder geometries to ensure that a constructed Multi* doesn’t
have intersecting regions.

Performed by the GEOS module.

NOTE: this function was formerly called GeomUnion(), which was renamed from "Union" because UNION is an SQL reserved
word.

Availability: 1.4.0 - ST_Union was enhanced. ST_Union(geomarray) was introduced and also faster aggregate collection in Post-
greSQL. If you are using GEOS 3.1.0+ ST_Union will use the faster Cascaded Union algorithm described in http://blog.cleverelephant.ca
2009/01/must-faster-unions-in-postgis-14.html

/ This method implements the OpenGIS Simple Features Implementation Specification for SQL 1.1. s2.1.1.3

http://blog.cleverelephant.ca/2009/01/must-faster-unions-in-postgis-14.html
http://blog.cleverelephant.ca/2009/01/must-faster-unions-in-postgis-14.html
http://www.opengeospatial.org/standards/sfs

PostGIS 1.5.5 Manual
247 / 322

Not? Note
Aggregate version is not explicitly defined in OGC SPEC.

/ This method implements the SQL/MM specification. SQL-MM 3: 5.1.19 the z-index (elevation) when polygons are
involved.

Examples

Aggregate example

SELECT stusps,
ST_Multi (ST_Union(f.the_geom)) as singlegeom
FROM sometable As f
GROUP BY stusps

Non-Aggregate example

SELECT ST_AsText (ST_Union (ST_GeomFromText (POINT (1 2)'),
ST_GeomFromText (' POINT (-2 3)7)))

st_astext

MULTIPOINT (-2 3,1 2)

SELECT ST_AsText (ST_Union (ST_GeomFromText (" POINT (1 2)'),
ST_GeomFromText ("POINT(1 2)")));
st_astext

POINT (1 2)
—-—-3d example - sort of supports 3d (and with mixed dimensions!)
SELECT ST_ASEWKT (st_union (the_geom))
FROM
(SELECT ST_GeomFromEWKT (' POLYGON ((-7 4.2,-7.1 4.2,-7.1 4.3,
=7 4.2))’) as the_geom
UNION ALL
SELECT ST_GeomFromEWKT ("POINT (5 5 5)’) as the_geom
UNION ALL
SELECT ST_GeomFromEWKT (" POINT (-2 3 1)’) as the_geom
UNION ALL

SELECT ST_GeomFromEWKT (' LINESTRING(5 5 5, 10 10 10)’) as the_geom) as foo;

st_asewkt
GEOMETRYCOLLECTION (POINT (-2 3 1),LINESTRING(5 5 5,10 10 10),POLYGON((-7 4.2 5,-7.1 4.2 «+
5,-7.1 4.3 5,-7 4.2 5)));

—-3d example not mixing dimensions
SELECT ST_ASEWKT (st_union (the_geom))
FROM
(SELECT ST_GeomFromEWKT (' POLYGON((-7 4.2 2,-7.1 4.2 3,-7.1 4.3 2,
=7 4.2 2))’) as the_geom
UNION ALL
SELECT ST_GeomFromEWKT (" POINT (5 5 5)’) as the_geom
UNION ALL
SELECT ST_GeomFromEWKT (" POINT (-2 3 1)’) as the_geom

PostGIS 1.5.5 Manual
248 / 322

UNION ALL
SELECT ST_GeomFromEWKT (' LINESTRING(5 5 5, 10 10 10)’) as the_geom) as foo;

st_asewkt

GEOMETRYCOLLECTION (POINT (-2 3 1),LINESTRING(5 5 5,10 10 10),POLYGON((-7 4.2 2,-7.1 4.2 <+«
3,-7.1 4.3 2,-7 4.2 2)))

——Examples using new Array construct
SELECT ST_Union (ARRAY (SELECT the_geom FROM sometable));

SELECT ST_AsText (ST_Union (ARRAY [ST_GeomFromText (' LINESTRING(1 2, 3 4)’),
ST_GeomFromText (" LINESTRING(3 4, 4 5)’)])) As wktunion;

—--wktunion——-—
MULTILINESTRING((3 4,4 5), (1 2,3 4))

See Also

ST_Collect

7.10 Linear Referencing

7.10.1 ST_Line_Interpolate_Point

Name

ST_Line_Interpolate_Point — Returns a point interpolated along a line. Second argument is a float8 between 0 and 1 representing
fraction of total length of linestring the point has to be located.

Synopsis

geometry ST_Line_Interpolate_Point(geometry a_linestring, float a_fraction);

Description

Returns a point interpolated along a line. First argument must be a LINESTRING. Second argument is a float8 between 0 and 1
representing fraction of total linestring length the point has to be located.

See ST_Line_Locate_Point for computing the line location nearest to a Point.

N;ﬂ"! Note

Since release 1.1.1 this function also interpolates M and Z values (when present), while prior releases set them to 0.0.

Auvailability: 0.8.2, Z and M supported added in 1.1.1

/ This function supports 3d and will not drop the z-index.

PostGIS 1.5.5 Manual
249 /322

Examples

A linestring with the interpolated point at 20% position (0.20)

—-Return point 20% along 2d line
SELECT ST_ASEWKT (ST_Line_Interpolate_Point (the_line, 0.20))
FROM (SELECT ST_GeomFromEWKT (' LINESTRING (25 50, 100 125, 150 190)’) as the_line) As foo;
st_asewkt

POINT (51.5974135047432 76.5974135047432)

—--Return point mid-way of 3d line
SELECT ST_ASEWKT (ST_Line_Interpolate_Point (the_line, 0.5))
FROM (SELECT ST_GeomFromEWKT (' LINESTRING(1 2 3, 4 5 6, 6 7 8)’) as the_line) As foo;

st_asewkt

POINT (3.5 4.5 5.5)

——find closest point on a line to a point or other geometry
SELECT ST_AsText (ST_Line_Interpolate_Point (foo.the_line, ST_Line_Locate_Point (foo.the_line <
, ST_GeomFromText ("POINT (4 3)7))))
FROM (SELECT ST_GeomFromText (' LINESTRING(1 2, 4 5, 6 7)’) As the_line) As foo;
st_astext

POINT (3 4)

See Also

ST_AsText,ST_AsEWKT,ST_Length, ST_Line_Locate_Point

PostGIS 1.5.5 Manual
250/ 322

7.10.2 ST Line Locate Point

Name

ST_Line_Locate_Point — Returns a float between 0 and 1 representing the location of the closest point on LineString to the given
Point, as a fraction of total 2d line length.

Synopsis

float ST_Line_Locate_Point(geometry a_linestring, geometry a_point);

Description

Returns a float between 0 and 1 representing the location of the closest point on LineString to the given Point, as a fraction of
total 2d line length.

You can use the returned location to extract a Point (ST_Line_Interpolate_Point) or a substring (ST_Line_Substring).
This is useful for approximating numbers of addresses

Availability: 1.1.0

Examples

—-—-Rough approximation of finding the street number of a point along the street
——Note the whole foo thing is just to generate dummy data that looks
——like house centroids and street
——We use ST_DWithin to exclude
—-—houses too far away from the street to be considered on the street
SELECT ST_AsText (house_loc) As as_text_house_loc,
startstreet_num +
CAST ((endstreet_num - startstreet_num)
% ST_Line_Locate_Point (street_line, house_loc) As integer) As street_num
FROM
(SELECT ST_GeomFromText (' LINESTRING(1 2, 3 4)’) As street_line,
ST_MakePoint (x+x1.01,y*1.03) As house_loc, 10 As startstreet_num,
20 As endstreet_num
FROM generate_series(l,3) x CROSS JOIN generate_series(2,4) As y)
As foo
WHERE ST_DWithin(street_line, house_loc, 0.2);

|
___________________ +____________
POINT (1.01 2.06) | 10
POINT (2.02 3.09) | 15
POINT (3.03 4.12) | 20

——find closest point on a line to a point or other geometry
SELECT ST_AsText (ST_Line_Interpolate_Point (foo.the_line, ST _Line_Locate_Point (foo.the_line <«
, ST_GeomFromText (POINT (4 3)"))))
FROM (SELECT ST GeomFromText (' LINESTRING(1 2, 4 5, 6 7)’) As the_line) As foo;
st_astext

POINT (3 4)

PostGIS 1.5.5 Manual
251 /322

See Also

ST_DWithin, ST_Length2D, ST_Line_Interpolate_Point, ST_Line_Substring

7.10.3 ST_Line_Substring

Name

ST_Line_Substring — Return a linestring being a substring of the input one starting and ending at the given fractions of total 2d
length. Second and third arguments are float8 values between 0 and 1.

Synopsis

geometry ST_Line_Substring(geometry a_linestring, float startfraction, float endfraction);

Description

Return a linestring being a substring of the input one starting and ending at the given fractions of total 2d length. Second and
third arguments are float8 values between 0 and 1. This only works with LINESTRINGs. To use with contiguous MULTI-
LINESTRINGS use in conjunction with ST_LineMerge.

If ’start’ and “end’ have the same value this is equivalent to ST_Line_Interpolate_Point.

See ST_Line_Locate_Point for computing the line location nearest to a Point.

N;ld Note

Since release 1.1.1 this function also interpolates M and Z values (when present), while prior releases set them to
unspecified values.

Availability: 1.1.0 , Z and M supported added in 1.1.1

/ This function supports 3d and will not drop the z-index.

Examples

A linestring seen with 1/3 midrange overlaid (0.333, 0.666)

PostGIS 1.5.5 Manual
252 /322

—-—Return the approximate 1/3 mid-range part of a linestring
SELECT ST_AsText (ST_Line_SubString (ST_GeomFromText (' LINESTRING (25 50, 100 125, 150 190)7), <«
0.333, 0.666));

st_astext

LINESTRING (69.2846934853974 94.2846934853974,100 125,111.700356260683 140.210463138888)

——The below example simulates a while loop in

——SQL using PostgreSQL generate_series () to cut all

—-linestrings in a table to 100 unit segments

—— of which no segment is longer than 100 units

—— units are measured in the SRID units of measurement

—-— It also assumes all geometries are LINESTRING or contiguous MULTILINESTRING
——and no geometry is longer than 100 units%10000

——for better performance you can reduce the 10000

—-—to match max number of segments you expect

SELECT fieldl, field2, ST_Line_Substring(the_geom, 100.00%n/length,

CASE
WHEN 100.00% (n+1) < length THEN 100.00% (n+1)/length
ELSE 1
END) As the_geom
FROM

(SELECT sometable.fieldl, sometable.field2,
ST_LineMerge (sometable.the_geom) AS the_geom,
ST_Length (sometable.the_geom) As length
FROM sometable
) AS t

CROSS JOIN generate_series (0,10000) AS n

WHERE n*100.00/length < 1;

See Also

ST_Length, ST_Line_Interpolate_Point, ST_LineMerge

7.10.4 ST_Locate_Along_Measure

Name

ST_Locate_Along_Measure — Return a derived geometry collection value with elements that match the specified measure. Polyg-
onal elements are not supported.

Synopsis

geometry ST _Locate_Along_Measure(geometry ageom_with_measure, float a_measure);

Description

Return a derived geometry collection value with elements that match the specified measure. Polygonal elements are not sup-
ported.

Semantic is specified by: ISO/IEC CD 13249-3:200x(E) - Text for Continuation CD Editing Meeting

Auwailability: 1.1.0

PostGIS 1.5.5 Manual
253 /322

N;ﬂ"! Note

Use this function only for geometries with an M component

/ This function supports M coordinates.

Examples

SELECT ST_ASEWKT (the_geom)
FROM
(SELECT ST_Locate_Along_Measure (
ST_GeomFromEWKT (' MULTILINESTRINGM((1 2 3, 3 4 2, 9 4 3),
(L 2 3, 545))"),3) As the_geom) As foo;

st_asewkt

GEOMETRYCOLLECTIONM (MULTIPOINT (1 2 3,9 4 3),POINT(1 2 3))

——Geometry collections are difficult animals so dump them
-—to make them more digestable
SELECT ST_ASEWKT ((ST_Dump (the_geom)) .geom)
FROM
(SELECT ST_Locate_Along_Measure (
ST_GeomFromEWKT (' MULTILINESTRINGM((1 2 3, 3 4 2, 9 4 3),
(L 23, 545))"),3) As the_geom) As foo;

st_asewkt

POINTM(1 2 3)
POINTM(9 4 3)
POINTM(1 2 3)

See Also

ST_Dump, ST_Locate_Between_Measures

7.10.5 ST_Locate_ Between_Measures

Name

ST_Locate_Between_Measures — Return a derived geometry collection value with elements that match the specified range of
measures inclusively. Polygonal elements are not supported.

Synopsis

geometry ST_Locate_Between_Measures(geometry geomA, float measure_start, float measure_end);

Description

Return a derived geometry collection value with elements that match the specified range of measures inclusively. Polygonal
elements are not supported.

PostGIS 1.5.5 Manual
254 /322

Semantic is specified by: ISO/IEC CD 13249-3:200x(E) - Text for Continuation CD Editing Meeting
Availability: 1.1.0

/ This function supports M coordinates.

Examples

SELECT ST_ASEWKT (the_geom)
FROM
(SELECT ST_Locate_Between_Measures (
ST_GeomFromEWKT (' MULTILINESTRINGM((1 2 3, 3 4 2, 9 4 3),
(L 23, 545))"),1.5, 3) As the_geom) As foo;

st_asewkt

GEOMETRYCOLLECTIONM (LINESTRING(1 2 3,3 4 2,9 4 3),POINT(1 2 3))
——Geometry collections are difficult animals so dump them
—-—to make them more digestable
SELECT ST_ASEWKT ((ST_Dump (the_geom)) .geom)
FROM
(SELECT ST_Locate_Between_Measures (
ST_GeomFromEWKT (' MULTILINESTRINGM((1 2 3, 3 4 2, 9 4 3),
(L 2 3, 545))"),1.5, 3) As the_geom) As foo;
st_asewkt

LINESTRINGM(1 2 3,3 4 2,9 4 3)
POINTM(1 2 3)

See Also

ST_Dump, ST_Locate_Along_Measure

7.10.6 ST_LocateBetweenElevations

Name

ST_LocateBetweenElevations — Return a derived geometry (collection) value with elements that intersect the specified range of
elevations inclusively. Only 3D, 4D LINESTRINGS and MULTILINESTRINGS are supported.

Synopsis

geometry ST_LocateBetweenElevations(geometry geom_mline, float elevation_start, float elevation_end);

Description

Return a derived geometry (collection) value with elements that intersect the specified range of elevations inclusively. Only 3D,
3DM LINESTRINGS and MULTILINESTRINGS are supported.

Availability: 1.4.0

/ This function supports 3d and will not drop the z-index.

PostGIS 1.5.5 Manual
255 /322

Examples

SELECT ST_ASEWKT (ST_LocateBetweenElevations (
ST_GeomFromEWKT (" LINESTRING(1 2 3, 4 5 6)"),2,4)) As ewelev;
ewelev

MULTILINESTRING((1 2 3,2 3 4))

SELECT ST_ASEWKT (ST_LocateBetweenElevations (
ST_GeomFromEWKT (' LINESTRING(1 2 6, 4 5 -1, 7 8 9)"),6,9)) As ewelev;

ewelev

GEOMETRYCOLLECTION (POINT (1 2 6),LINESTRING(6.1 7.1 6,7 8 9))

——Geometry collections are difficult animals so dump them
—-—to make them more digestable
SELECT ST_ASEWKT ((ST_Dump (the_geom)) .geom)
FROM
(SELECT ST_LocateBetweenElevations (
ST_GeomFromEWKT (' LINESTRING(1 2 6, 4 5 -1, 7 8 9)’),6,9) As the_geom) As foo;

st_asewkt

POINT (1 2 6)
LINESTRING(6.1 7.1 6,7 8 9)

See Also

ST_Dump

7.10.7 ST_AddMeasure

Name
ST_AddMeasure — Return a derived geometry with measure elements linearly interpolated between the start and end points. If

the geometry has no measure dimension, one is added. If the geometry has a measure dimension, it is over-written with new
values. Only LINESTRINGS and MULTILINESTRINGS are supported.

Synopsis

geometry ST_AddMeasure(geometry geom_mline, float measure_start, float measure_end);

Description

Return a derived geometry with measure elements linearly interpolated between the start and end points. If the geometry has
no measure dimension, one is added. If the geometry has a measure dimension, it is over-written with new values. Only
LINESTRINGS and MULTILINESTRINGS are supported.

Availability: 1.5.0

/ This function supports 3d and will not drop the z-index.

PostGIS 1.5.5 Manual
256 /322

Examples

SELECT ST_ASEWKT (ST_AddMeasure (
ST_GeomFromEWKT (" LINESTRING(1 0, 2 0, 4 0)"),1,4)) As ewelev;
ewelev

LINESTRINGM(1 0 1,2 0 2,4 0 4)

SELECT ST_ASEWKT (ST_AddMeasure (
ST_GeomFromEWKT (" LINESTRING(1 0 4, 2 0 4, 4 0 4)’),10,40)) As ewelev;
ewelev

LINESTRING(1 0 4 10,2 0 4 20,4 0 4 40)

SELECT ST_ASEWKT (ST_AddMeasure (
ST_GeomFromEWKT (" LINESTRINGM(1 0 4, 2 0 4, 4 0 4)"),10,40)) As ewelev;
ewelev

LINESTRINGM(1 0 10,2 0 20,4 0 40)

SELECT ST_ASEWKT (ST_AddMeasure (
ST_GeomFromEWKT (' MULTILINESTRINGM((1 O 4, 2 0 4, 4 0 4),(1 0 4, 2 0 4, 4 0 4))’),10,70)) As <«
ewelev;

MULTILINESTRINGM((1 O 10,2 0 20,4 0 40), (1 0 40,2 0 50,4 0 70))

7.11 Long Transactions Support

This module and associated pl/pgsql functions have been implemented to provide long locking support required by Web Feature
Service specification.

N;ﬂ"! Note

Users must use serializable transaction level otherwise locking mechanism would break.

7.11.1 AddAuth

Name

AddAuth — Add an authorization token to be used in current transaction.

Synopsis

boolean AddAuth(text auth_token);

Description

Add an authorization token to be used in current transaction.
Creates/adds to a temp table called temp_lock_have_table the current transaction identifier and authorization token key.

Auvailability: 1.1.3

http://portal.opengeospatial.org/files/index.php?artifact_id=7176
http://portal.opengeospatial.org/files/index.php?artifact_id=7176
http://www.postgresql.org/docs/8.3/static/transaction-iso.html

PostGIS 1.5.5 Manual
257 /322

Examples

SELECT LockRow (’towns’, ’'353’, ’priscilla’);
BEGIN TRANSACTION;

SELECT AddAuth (’ joey’);

UPDATE towns SET the_geom = ST_Translate (the_geom,2,2) WHERE gid = 353;
COMMIT;

—-——Error—-
ERROR: UPDATE where "gid" = ’353’ requires authorization ’priscilla’

See Also

LockRow

7.11.2 CheckAuth

Name

CheckAuth — Creates trigger on a table to prevent/allow updates and deletes of rows based on authorization token.

Synopsis

integer CheckAuth(text a_schema_name, text a_table_name, text a_key_column_name);
integer CheckAuth(text a_table_name, text a_key_column_name);

Description

Creates trigger on a table to prevent/allow updates and deletes of rows based on authorization token. Identify rows using
<rowid_col> column.

If a_schema_name is not passed in, then searches for table in current schema.

N;ld Note
If an authorization trigger already exists on this table function errors.
If Transaction support is not enabled, function throws an exception.

Availability: 1.1.3

Examples

SELECT CheckAuth (’public’, ’"towns’, ’'gid’);
result

See Also

EnableLongTransactions

PostGIS 1.5.5 Manual
258 /322

7.11.3 DisableLongTransactions

Name

DisableLongTransactions — Disable long transaction support. This function removes the long transaction support metadata tables,
and drops all triggers attached to lock-checked tables.

Synopsis

text DisableLongTransactions

Description

Disable long transaction support. This function removes the long transaction support metadata tables, and drops all triggers
attached to lock-checked tables.

Drops meta table called authorization_table and a view called authorized_tables and all triggers called chec—
kauthtrigger

Auvailability: 1.1.3

Examples

SELECT DisableLongTransactions () ;
——result—-
Long transactions support disabled

See Also

EnableLongTransactions

7.11.4 EnableLongTransactions

Name

EnableLongTransactions — Enable long transaction support. This function creates the required metadata tables, needs to be called
once before using the other functions in this section. Calling it twice is harmless.

Synopsis

text EnableLongTransactions

Description

Enable long transaction support. This function creates the required metadata tables, needs to be called once before using the
other functions in this section. Calling it twice is harmless.

Creates a meta table called authorization_table and a view called authorized_tables

Auwailability: 1.1.3

PostGIS 1.5.5 Manual
259 /322

Examples

SELECT EnablelongTransactions();
——result—-
Long transactions support enabled

See Also

DisableLongTransactions

7.11.5 LockRow

Name

LockRow — Set lock/authorization for specific row in table

Synopsis
integer LockRow(text a_schema_name, text a_table_name, text a_row_key, text an_auth_token, timestamp expire_dt);

integer LockRow(text a_table_name, text a_row_key, text an_auth_token, timestamp expire_dt);
integer LockRow(text a_table_name, text a_row_key, text an_auth_token);

Description

Set lock/authorization for specific row in table <authid> is a text value, <expires> is a timestamp defaulting to now()+1hour.
Returns 1 if lock has been assigned, 0 otherwise (already locked by other auth)

Auvailability: 1.1.3

Examples

SELECT LockRow (’public’, ’'towns’, ’2’, ’'joey’);
LockRow

——-Joey has already locked the record and Priscilla is out of luck
SELECT LockRow (’public’, ’'towns’, ’2’, ’'priscilla’);
LockRow

See Also

UnlockRows

7.11.6 UnlockRows

Name

UnlockRows — Remove all locks held by specified authorization id. Returns the number of locks released.

PostGIS 1.5.5 Manual

260 /322

Synopsis

integer UnlockRows(text auth_token);

Description

Remove all locks held by specified authorization id. Returns the number of locks released.

Auvailability: 1.1.3

Examples

SELECT LockRow (’towns’, ’353’, ’'priscilla’);
SELECT LockRow (’towns’, ’2’, ’'priscilla’);
SELECT UnLockRows ("priscilla’);

UnLockRows

See Also

LockRow

7.12 Miscellaneous Functions

7.12.1 ST_Accum

Name

ST_Accum — Aggregate. Constructs an array of geometries.

Synopsis

geometry[] ST_Accum(geometry set geomfield);

Description

Aggregate. Constructs an array of geometries.
/ This function supports 3d and will not drop the z-index.

/ This method supports Circular Strings and Curves

PostGIS 1.5.5 Manual

261 /322
Examples
SELECT (ST_Accum(the_geom)) As all_em, ST_AsText ((ST_Accum(the_geom))[1l]) As grabone,
(ST_Accum(the_geom)) [2:4] as grab_rest
FROM (SELECT ST_MakePoint (a*CAST (random()*10 As integer), ax*CAST (random()*10 As <«

integer), axCAST(random()*10 As integer)) As the_geom
FROM generate_series(1l,4) a) As foo;

all_em|grabone | grab_rest

{0101000080000000000000144000000000000024400000000000001040:
0101000080000000000
00018400000000000002C400000000000003040:
0101000080000000000000354000000000000038400000000000001840:
010100008000000000000040400000000000003Cc400000000000003040} |
POINT (5 10) | {010100008000000000000018400000000000002C400000000000003040:
0101000080000000000000354000000000000038400000000000001840:
010100008000000000000040400000000000003C400000000000003040}
(1 row)

See Also

ST Collect

7.12.2 Box2D

Name

Box2D — Returns a BOX2D representing the maximum extents of the geometry.

Synopsis

box2d Box2D(geometry geomA);

Description

Returns a BOX2D representing the maximum extents of the geometry.

/ This method supports Circular Strings and Curves

Examples

SELECT Box2D (ST_GeomFromText (' LINESTRING(1 2, 3 4, 5 6)’));
box2d

BOX (220186.984375 150406,220288.25 150506.140625)

o

PostGIS 1.5.5 Manual
262 /322

See Also

Box3D, ST_GeomFromText

7.12.3 Box3D

Name

Box3D — Returns a BOX3D representing the maximum extents of the geometry.

Synopsis

box3d Box3D(geometry geomA);

Description

Returns a BOX3D representing the maximum extents of the geometry.
/ This function supports 3d and will not drop the z-index.

/ This method supports Circular Strings and Curves

Examples

SELECT Box3D (ST_GeomFromEWKT (/ LINESTRING(1 2 3, 3 4 5, 56 5)"));
Box3d

BOX3D(1 2 3,5 6 5)
SELECT Box3D (ST_GeomFromEWKT (/ CIRCULARSTRING (220268 150415 1,220227 150505 1,220227 <«

150406 1)7));
Box3d

BOX3D (220227 150406 1,220268 150415 1)

See Also

Box2D, ST _GeomFromEWKT

7.12.4 ST_Estimated_Extent

Name

ST_Estimated_Extent — Return the ’estimated’ extent of the given spatial table. The estimated is taken from the geometry
column’s statistics. The current schema will be used if not specified.

Synopsis

box2d ST_Estimated_Extent(text schema_name, text table_name, text geocolumn_name);
box2d ST_Estimated_Extent(text table_name, text geocolumn_name);

PostGIS 1.5.5 Manual
263 /322

Description

Return the "estimated’ extent of the given spatial table. The estimated is taken from the geometry column’s statistics. The current
schema will be used if not specified.

For PostgreSQL>=8.0.0 statistics are gathered by VACUUM ANALYZE and resulting extent will be about 95% of the real one.

N:rld Note

In absence of statistics (empty table or no ANALYZE called) this function returns NULL. Prior to version 1.5.4 an
exception was thrown instead.

For PostgreSQL<8.0.0 statistics are gathered by update_geometry_stats() and resulting extent will be exact.
Availability: 1.0.0

J This method supports Circular Strings and Curves

Examples

SELECT ST_Estimated_extent (‘ny’, ’edges’, ’'the_geom’);
——result—-

BOX (-8877653 4912316,-8010225.5 5589284)

SELECT ST_Estimated_Extent (' feature_poly’, ’the_geom’);

——result—-
BOX (-124.659652709961 24.6830825805664,-67.7798080444336 49.0012092590332)

See Also

ST_Extent

7.12.5 ST_Expand

Name

ST_Expand — Returns bounding box expanded in all directions from the bounding box of the input geometry. Uses double-
precision

Synopsis

geometry ST_Expand(geometry g1, float units_to_expand);
box2d ST_Expand(box2d g1, float units_to_expand);
box3d ST_Expand(box3d g1, float units_to_expand);

Description

This function returns a bounding box expanded in all directions from the bounding box of the input geometry, by an amount
specified in the second argument. Uses double-precision. Very useful for distance() queries, or bounding box queries to add an
index filter to the query.

There are 3 variants of this. The one that takes a geometry will return a POLYGON geometry representation of the bounding box
and is the most commonly used variant.

PostGIS 1.5.5 Manual
264 /322

ST_Expand is similar in concept to ST_Buffer except while buffer expands the geometry in all directions, ST_Expand expands
the bounding box an X,y,z unit amount.

Units are in the units of the spatial reference system in use denoted by the SRID

. Note

Nﬁ'l"! Pre 1.3, ST _Expand was used in conjunction with distance to do indexable queries. Something of
the form the_geom && ST_Expand(’POINT (10 20)’, 10) AND ST_Distance (the_geom, ’'PO-
INT (10 20)") < 10 Post 1.2, this was replaced with the easier ST_DW.ithin construct.

Not? Note

Bounding boxes of all geometries are currently 2-d even if they are 3-dimensional geometries.

Not? Note

Availability: 1.5.0 behavior changed to output double precision instead of float4 coordinates.

Examples

N;ﬂ"! Note

Examples below use US National Atlas Equal Area (SRID=2163) which is a meter projection

—-—-10 meter expanded box around bbox of a linestring
SELECT CAST (ST_Expand (ST_GeomFromText (/ LINESTRING (2312980 110676,2312923 110701,2312892
110714)’, 2163),10) As box2d);
st_expand

BOX (2312882 110666,2312990 110724)

—-10 meter expanded 3d box of a 3d box
SELECT ST_Expand (CAST (/BOX3D (778783 2951741 1,794875 2970042.61545891 10)’ As box3d),10)
st_expand

BOX3D (778773 2951731 -9,794885 2970052.61545891 20)

—--10 meter geometry astext rep of a expand box around a point geometry
SELECT ST_AsEWKT (ST_Expand (ST_GeomFromEWKT (’ SRID=2163;POINT (2312980 110676)"),10));
st_asewkt

SRID=2163;POLYGON ((2312970 110666,2312970 110686,2312990 110686,2312990 110666,2312970 <«
110666))

See Also

ST _ASEWKT, ST Buffer, ST DWithin, ST GeomFromEWKT,ST_GeomFromText, ST SRID

PostGIS 1.5.5 Manual
265 /322

7.12.6 ST _Extent

Name

ST_Extent — an aggregate function that returns the bounding box that bounds rows of geometries.

Synopsis

box3d_extent ST_Extent(geometry set geomfield);

Description

ST_Extent returns a bounding box that encloses a set of geometries. The ST_Extent function is an "aggregate" function in the
terminology of SQL. That means that it operates on lists of data, in the same way the SUM() and AVG() functions do.

Since it returns a bounding box, the spatial Units are in the units of the spatial reference system in use denoted by the SRID

ST_Extent is similar in concept to Oracle Spatial/Locator’s SDO_AGGR_MBR

ote} Note
N Since ST_Extent returns a bounding box, the SRID meta-data is lost. Use ST_SetSRID to force it back into a geometry

with SRID meta data. The coordinates are in the units of the spatial ref of the orginal geometries.

Noﬂ’! Note

ST_Extent will return boxes with only an x and y component even with (x,y,z) coordinate geometries. To maintain x,y,z
use ST_Extent3D instead.

Not? Note

Availability: 1.4.0 As of 1.4.0 now returns a box3d_extent instead of box2d object.

Examples

Not Note
Examples below use Massachusetts State Plane ft (SRID=2249)

SELECT ST_Extent (the_geom) as bextent FROM sometable;
st_bextent

BOX (739651.875 2908247.25,794875.8125 2970042.75)

—-—-Return extent of each category of geometries
SELECT ST_Extent (the_geom) as bextent

FROM sometable

GROUP BY category ORDER BY category;

PostGIS 1.5.5 Manual
266 / 322

bextent | name
,, o
BOX (778783.5625 2951741.25,794875.8125 2970042.75) | A
BOX (751315.8125 2919164.75,765202.6875 2935417.25) | B
BOX (739651.875 2917394.75,756688.375 2935866) | C

——Force back into a geometry
—— and render the extended text representation of that geometry
SELECT ST_SetSRID(ST_Extent (the_geom),2249) as bextent FROM sometable;

bextent

SRID=2249;POLYGON ((739651.875 2908247.25,739651.875 2970042.75,794875.8125 2970042.75,
794875.8125 2908247.25,739651.875 2908247.25))

See Also

ST_ASEWKT, ST_Extent3D, ST_SetSRID, ST_SRID

7.12.7 ST_Extent3D

Name

ST_Extent3D — an aggregate function that returns the box3D bounding box that bounds rows of geometries.

Synopsis

box3d ST_Extent3D(geometry set geomfield);

Description

ST_Extent3D returns a box3d (includes Z coordinate) bounding box that encloses a set of geometries. The ST_Extent3D function
is an "aggregate" function in the terminology of SQL. That means that it operates on lists of data, in the same way the SUM()
and AVG() functions do.

Since it returns a bounding box, the spatial Units are in the units of the spatial reference system in use denoted by the SRID

Note
Since ST_Extent3D returns a bounding box, the SRID meta-data is lost. Use ST_SetSRID to force it back into a
geometry with SRID meta data. The coordinates are in the units of the spatial ref of the orginal geometries.

/ This function supports 3d and will not drop the z-index.

/ This method supports Circular Strings and Curves

PostGIS 1.5.5 Manual
267 /322

Examples

SELECT ST_Extent3D (foo.the_geom) As b3extent
FROM (SELECT ST_MakePoint (x,y,z) As the_geom
FROM generate_series(1l,3) As x
CROSS JOIN generate_series(l,2) As y
CROSS JOIN generate_series(0,2) As Z) As foo;
b3extent

BOX3D(1 1 0,3 2 2)
—-—-Get the extent of various elevated circular strings
SELECT ST_Extent3D (foo.the_geom) As b3extent
FROM (SELECT ST_Translate (ST_Force_3DZ(ST_LineToCurve (ST_Buffer (ST_MakePoint (x,y),1))),0,0, <
z) As the_geom
FROM generate_series(1,3) As x
CROSS JOIN generate_series(l,2) As y
CROSS JOIN generate_series(0,2) As Z) As foo;
b3extent

BOX3D(1 0 0,4 2 2)

See Also

ST_Extent, ST _Force 3DZ

7.12.8 Find_SRID

Name

Find_SRID - The syntax is find_srid(<db/schema>, <table>, <column>) and the function returns the integer SRID of the specified
column by searching through the GEOMETRY_COLUMNS table.

Synopsis

integer Find_SRID(varchar a_schema_name, varchar a_table_name, varchar a_geomfield_name);

Description

The syntax is find_srid(<db/schema>, <table>, <column>) and the function returns the integer SRID of the specified column by
searching through the GEOMETRY_COLUMNS table. If the geometry column has not been properly added with the AddGe-
ometryColumns() function, this function will not work either.

Examples

SELECT Find_SRID (’'public’, ’'tiger_us_state_2007’, ’'the_geom 4269');
find_srid

PostGIS 1.5.5 Manual
268 /322

See Also

ST_SRID

7.12.9 ST_Mem_Size

Name

ST_Mem_Size — Returns the amount of space (in bytes) the geometry takes.

Synopsis

integer ST_Mem_Size(geometry geomA);

Description

Returns the amount of space (in bytes) the geometry takes.

This is a nice compliment to PostgreSQL built in functions pg_size_pretty, pg_relation_size, pg_total_relation_size.

Note

Nﬁ'l"! pg_relation_size which gives the byte size of a table may return byte size lower than ST_Mem_Size. This is because
pg_relation_size does not add toasted table contribution and large geometries are stored in TOAST tables.
pg_total_relation_size - includes, the table, the toasted tables, and the indexes.

i

/ This function supports 3d and will not drop the z-index.

/ This method supports Circular Strings and Curves

Examples

—-—-Return how much byte space Boston takes up in our Mass data set

SELECT pg_size_pretty (SUM(ST_Mem_ Size (the_geom))) as totgeomsum,
pg_size_pretty (SUM(CASE WHEN town = ’BOSTON’ THEN st_mem_size (the_geom) ELSE 0 END)) As <>
bossum,

CAST (SUM (CASE WHEN town = ’'BOSTON’ THEN st_mem_size (the_geom) ELSE 0 END)*1.00 /
SUM (st_mem_size (the_geom))*100 As numeric(10,2)) As perbos
FROM towns;

totgeomsum bossum perbos

1522 kB 30 kB 1.99

SELECT ST_Mem_Size (ST_GeomFromText (" CIRCULARSTRING (220268 150415,220227 150505,220227 <«
150406) 7)) ;

73
——What percentage of our table is taken up by just the geometry

SELECT pg_total_relation_size(’public.neighborhoods’) As fulltable_size, sum(ST_Mem_Size(
the_geom)) As geomsize,

PostGIS 1.5.5 Manual
269 /322

sum (ST_Mem_Size (the_geom))*1.00/pg_total_relation_size (’public.neighborhoods’)*100 As <«
pergeom

FROM neighborhoods;

fulltable_size geomsize pergeom

262144 96238 36.71188354492187500000

See Also
7.12.10 ST Point_Inside Circle

Name

ST_Point_Inside_Circle — Is the point geometry insert circle defined by center_x, center_y , radius

Synopsis

boolean ST_Point_Inside_Circle(geometry a_point, float center_x, float center_y, float radius);

Description

The syntax for this functions is point_inside_circle(<geometry>,<circle_center_x>,<circle_center_y>,<radius>). Returns the
true if the geometry is a point and is inside the circle. Returns false otherwise.

Note This only works for points as the name suggests

Examples

SELECT ST_Point_Inside_Circle(ST_Point(1,2), 0.5, 2, 3);
st_point_inside_circle

See Also

ST_DWithin

7.12.11 ST_XMax

Name

ST_XMax — Returns X maxima of a bounding box 2d or 3d or a geometry.

Synopsis

float ST _XMax(box3d aGeomorBox2DorBox3D);

PostGIS 1.5.5 Manual
270/ 322

Description

Returns X maxima of a bounding box 2d or 3d or a geometry.

= Note
N"M Although this function is only defined for box3d, it will work for box2d and geometry because of the auto-casting behavior
defined for geometries and box2d. However you can not feed it a geometry or box2d text represenation, since that will
not auto-cast.

/ This function supports 3d and will not drop the z-index.

/ This method supports Circular Strings and Curves

Examples

SELECT ST_XMax ("BOX3D(1 2 3, 4 5 6)");
st_xmax

SELECT ST_XMax (ST_GeomFromText (' LINESTRING(1 3 4, 5 6 7)"));
st_xmax

SELECT ST_XMax (CAST ('BOX (-3 2, 3 4)’ As box2d));

st_xmax

3

——Observe THIS DOES NOT WORK because it will try to autocast the string representation to a «
BOX3D

SELECT ST_XMax (' LINESTRING(1 3, 5 6)7);
——ERROR: BOX3D parser - doesnt start with BOX3D (
SELECT ST_XMax (ST_GeomFromEWKT (" CIRCULARSTRING (220268 150415 1,220227 150505 2,220227

150406 3)7));
st_xmax

220288.248780547

See Also

ST_XMin, ST_YMax, ST_YMin, ST_ZMax, ST_ZMin

7.12.12 ST_XMin

Name

ST_XMin — Returns X minima of a bounding box 2d or 3d or a geometry.

PostGIS 1.5.5 Manual
271 /322

Synopsis

float ST_XMin(box3d aGeomorBox2DorBox3D);

Description

Returns X minima of a bounding box 2d or 3d or a geometry.

B Note
N"M Although this function is only defined for box3d, it will work for box2d and geometry because of the auto-casting behavior
defined for geometries and box2d. However you can not feed it a geometry or box2d text represenation, since that will
not auto-cast.

/ This function supports 3d and will not drop the z-index.

/ This method supports Circular Strings and Curves

Examples

SELECT ST_XMin ("BOX3D(1 2 3, 4 5 6)");
st_xmin

SELECT ST_XMin (ST_GeomFromText (" LINESTRING(1 3 4, 5 6 7)'));
st_xmin

SELECT ST_XMin (CAST ("BOX (-3 2, 3 4)’" As box2d));
st_xmin

——Observe THIS DOES NOT WORK because it will try to autocast the string representation to a «
BOX3D

SELECT ST_XMin (' LINESTRING(1 3, 5 6)7);

——ERROR: BOX3D parser - doesnt start with BOX3D (

SELECT ST_XMin (ST_GeomFromEWKT (/ CIRCULARSTRING (220268 150415 1,220227 150505 2,220227

150406 3)"));
st_xmin

220186.995121892

See Also

ST_XMax, ST_YMax, ST_YMin, ST_ZMax, ST_ZMin

7.12.13 ST _YMax

Name

ST_YMax — Returns Y maxima of a bounding box 2d or 3d or a geometry.

PostGIS 1.5.5 Manual
272 /322

Synopsis

float ST_YMax(box3d aGeomorBox2DorBox3D);

Description

Returns Y maxima of a bounding box 2d or 3d or a geometry.

B Note
N"M Although this function is only defined for box3d, it will work for box2d and geometry because of the auto-casting behavior
defined for geometries and box2d. However you can not feed it a geometry or box2d text represenation, since that will
not auto-cast.

/ This function supports 3d and will not drop the z-index.

/ This method supports Circular Strings and Curves

Examples

SELECT ST_YMax ("BOX3D(1 2 3, 4 5 6)");
st_ymax

SELECT ST_YMax (ST_GeomFromText (/' LINESTRING(1 3 4, 5 6 7)"));
st_ymax

SELECT ST_YMax (CAST ('BOX (-3 2, 3 4)’ As box2d));

st_ymax

4

——Observe THIS DOES NOT WORK because it will try to autocast the string representation to a «
BOX3D

SELECT ST_YMax (' LINESTRING(1 3, 5 6)7);
——ERROR: BOX3D parser - doesnt start with BOX3D (
SELECT ST_YMax (ST_GeomFromEWKT (/ CIRCULARSTRING (220268 150415 1,220227 150505 2,220227 <«

150406 3)"));
st_ymax

150506.126829327

See Also

ST_XMin, ST_XMax, ST_YMin, ST_ZMax, ST_ZMin

7.12.14 ST _YMin

Name

ST_YMin — Returns Y minima of a bounding box 2d or 3d or a geometry.

PostGIS 1.5.5 Manual
273 /322

Synopsis

float ST_YMin(box3d aGeomorBox2DorBox3D);

Description

Returns Y minima of a bounding box 2d or 3d or a geometry.

B Note
N"M Although this function is only defined for box3d, it will work for box2d and geometry because of the auto-casting behavior
defined for geometries and box2d. However you can not feed it a geometry or box2d text represenation, since that will
not auto-cast.

/ This function supports 3d and will not drop the z-index.

/ This method supports Circular Strings and Curves

Examples

SELECT ST_YMin ("BOX3D(1 2 3, 4 5 6)");
st_ymin

SELECT ST_YMin (ST_GeomFromText (" LINESTRING(1 3 4, 5 6 7)'));
st_ymin

SELECT ST_YMin (CAST ('BOX (-3 2, 3 4)’ As box2d));

st_ymin

2

——Observe THIS DOES NOT WORK because it will try to autocast the string representation to a «
BOX3D

SELECT ST_YMin (' LINESTRING(1 3, 5 6)7);
——ERROR: BOX3D parser - doesnt start with BOX3D (
SELECT ST_YMin (ST_GeomFromEWKT (CIRCULARSTRING (220268 150415 1,220227 150505 2,220227 <«

150406 3)"));
st_ymin

150406

See Also

ST_GeomFromEWKT, ST_XMin, ST_XMax, ST_YMax, ST_ZMax, ST_ZMin

7.12.15 ST _ZMax

Name

ST_ZMax — Returns Z minima of a bounding box 2d or 3d or a geometry.

PostGIS 1.5.5 Manual
274 /322

Synopsis

float ST_ZMax(box3d aGeomorBox2DorBox3D);

Description

Returns Z maxima of a bounding box 2d or 3d or a geometry.

B Note
N"M Although this function is only defined for box3d, it will work for box2d and geometry because of the auto-casting behavior
defined for geometries and box2d. However you can not feed it a geometry or box2d text represenation, since that will
not auto-cast.

/ This function supports 3d and will not drop the z-index.

/ This method supports Circular Strings and Curves

Examples

SELECT ST_ZMax ("BOX3D(1 2 3, 4 5 6)");
st_zmax

SELECT ST_ZMax (ST_GeomFromEWKT (" LINESTRING(1 3 4, 5 6 7)'));
st_zmax

SELECT ST_ZMax ('BOX3D(-3 2 1, 3 4 1)’);

st_zmax

1

——Observe THIS DOES NOT WORK because it will try to autocast the string representation to a «
BOX3D

SELECT ST_ZMax (' LINESTRING(1 3 4, 5 6 7)');
——ERROR: BOX3D parser - doesnt start with BOX3D (
SELECT ST_ZMax (ST_GeomFromEWKT (/" CIRCULARSTRING (220268 150415 1,220227 150505 2,220227 <«

150406 3)"));
st_zmax

See Also

ST_GeomFromEWKT, ST_XMin, ST_XMax, ST_YMax, ST_YMin, ST_ZMax

7.12.16 ST_ZMin

Name

ST_ZMin — Returns Z minima of a bounding box 2d or 3d or a geometry.

PostGIS 1.5.5 Manual
275/322

Synopsis

float ST_ZMin(box3d aGeomorBox2DorBox3D);

Description

Returns Z minima of a bounding box 2d or 3d or a geometry.

* Note
N"'M Although this function is only defined for box3d, it will work for box2d and geometry because of the auto-casting behavior
defined for geometries and box2d. However you can not feed it a geometry or box2d text represenation, since that will
not auto-cast.

/ This function supports 3d and will not drop the z-index.

/ This method supports Circular Strings and Curves

Examples

SELECT ST_ZMin ("BOX3D(1 2 3, 4 5 6)");
st_zmin

SELECT ST_ZMin (ST_GeomFromEWKT (' LINESTRING(1 3 4, 5 6 7)'));
st_zmin

SELECT ST_ZMin('BOX3D(-3 2 1, 3 4 1)’);

st_zmin

1

——Observe THIS DOES NOT WORK because it will try to autocast the string representation to a «
BOX3D

SELECT ST_ZMin (" LINESTRING(1 3 4, 5 6 7)");
——ERROR: BOX3D parser - doesnt start with BOX3D (
SELECT ST_ZMin (ST_GeomFromEWKT (" CIRCULARSTRING (220268 150415 1,220227 150505 2,220227 <«

150406 3)"));
st_zmin

See Also

ST_GeomFromEWKT, ST_GeomFromText, ST_XMin, ST _XMax, ST_YMax, ST_YMin, ST_ZMax

7.13 Exceptional Functions

These functions are rarely used functions that should only be used if your data is corrupted in someway. They are used for
troubleshooting corruption and also fixing things that should under normal circumstances, never happen.

PostGIS 1.5.5 Manual
276 /322

7.13.1 PostGIS_AddBBox

Name

PostGIS_AddBBox — Add bounding box to the geometry.

Synopsis

geometry PostGIS_AddBBox(geometry geomA);

Description

Add bounding box to the geometry. This would make bounding box based queries faster, but will increase the size of the
geometry.

- Note
N"M Bounding boxes are automatically added to geometries so in general this is not needed unless the generated bounding
box somehow becomes corrupted or you have an old install that is lacking bounding boxes. Then you need to drop the
old and readd.

/ This method supports Circular Strings and Curves

Examples

UPDATE sometable

SET the_geom = PostGIS_AddBBox (the_geom)
WHERE PostGIS_HasBBox (the_geom) = false;
See Also

PostGIS_DropBBox, PostGIS_HasBBox

7.13.2 PostGIS_DropBBox

Name

PostGIS_DropBBox — Drop the bounding box cache from the geometry.

Synopsis

geometry PostGIS_DropBBox(geometry geomA);

PostGIS 1.5.5 Manual
277/ 322

Description

Drop the bounding box cache from the geometry. This reduces geometry size, but makes bounding-box based queries slower. It
is also used to drop a corrupt bounding box. A tale-tell sign of a corrupt cached bounding box is when your ST_Intersects and
other relation queries leave out geometries that rightfully should return true.

Note

Bounding boxes are automatically added to geometries and improve speed of queries so in general this is not needed
N;'l"! unless the generated bounding box somehow becomes corrupted or you have an old install that is lacking bounding

boxes. Then you need to drop the old and readd. This kind of corruption has been observed in 8.3-8.3.6 series whereby

cached bboxes were not always recalculated when a geometry changed and upgrading to a newer version without a

dump reload will not correct already corrupted boxes. So one can manually correct using below and readd the bbox or

do a dump reload.

J This method supports Circular Strings and Curves

Examples
—-This example drops bounding boxes where the cached box is not correct
——The force to ST_AsBinary before applying Box2D forces a recalculation of the box, <+
and Box2D applied to the table geometry always
—-— returns the cached bounding box.
UPDATE sometable
SET the_geom = PostGIS_DropBBox (the_geom)
WHERE Not (Box2D (ST_AsBinary(the_geom)) = Box2D (the_geom)) ;
UPDATE sometable

SET the_geom = PostGIS_AddBBox (the_geom)
WHERE Not PostGIS_HasBBOX (the_geom) ;

See Also

PostGIS_AddBBox, PostGIS_HasBBox, Box2D

7.13.3 PostGIS_HasBBox

Name

PostGIS_HasBBox — Returns TRUE if the bbox of this geometry is cached, FALSE otherwise.

Synopsis

boolean PostGIS_HasBBox(geometry geomA);

Description

Returns TRUE if the bbox of this geometry is cached, FALSE otherwise. Use PostGIS_AddBBox and PostGIS_DropBBox to
control caching.

/ This method supports Circular Strings and Curves

PostGIS 1.5.5 Manual
278 /322

Examples

SELECT the_geom
FROM sometable WHERE PostGIS_HasBBox (the_geom) = false;

See Also

PostGIS_AddBBox, PostGIS_DropBBox

PostGIS 1.5.5 Manual
279/322

Chapter 8

PostGIS Special Functions Index

8.1 PostGIS Aggregate Functions

The functions given below are spatial aggregate functions provided with PostGIS that can be used just like any other sql aggregate
function such as sum, average.

e ST_Accum - Aggregate. Constructs an array of geometries.

e ST_Collect - Return a specified ST_Geometry value from a collection of other geometries.

» ST_Extent - an aggregate function that returns the bounding box that bounds rows of geometries.

» ST_Extent3D - an aggregate function that returns the box3D bounding box that bounds rows of geometries.
e ST_MakeLine - Creates a Linestring from point geometries.

e ST_MemUnion - Same as ST_Union, only memory-friendly (uses less memory and more processor time).

» ST_Polygonize - Aggregate. Creates a GeometryCollection containing possible polygons formed from the constituent linework
of a set of geometries.

e ST _Union - Returns a geometry that represents the point set union of the Geometries.

8.2 PostGIS SQL-MM Compliant Functions

The functions given below are PostGIS functions that conform to the SQL/MM 3 standard

Not¢ Note
SQL-MM defines the default SRID of all geometry constructors as 0. PostGIS uses a default SRID of -1.

e ST_Area - Returns the area of the surface if it is a polygon or multi-polygon. For "geometry" type area is in SRID units. For
"geography" area is in square meters. This method implements the SQL/MM specification. SQL-MM 3: 8.1.2, 9.5.3

e ST_AsBinary - Return the Well-Known Binary (WKB) representation of the geometry/geography without SRID meta data.
This method implements the SQL/MM specification. SQL-MM 3: 5.1.37

e ST_AsText - Return the Well-Known Text (WKT) representation of the geometry/geography without SRID metadata. This
method implements the SQL/MM specification. SQL-MM 3: 5.1.25

PostGIS 1.5.5 Manual
280 /322

ST_Boundary - Returns the closure of the combinatorial boundary of this Geometry. This method implements the SQL/MM
specification. SQL-MM 3: 5.1.14

ST_Buffer - (T) For geometry: Returns a geometry that represents all points whose distance from this Geometry is less than
or equal to distance. Calculations are in the Spatial Reference System of this Geometry. For geography: Uses a planar
transform wrapper. Introduced in 1.5 support for different end cap and mitre settings to control shape. buffer_style options:
quad_segs=#,endcap=roundIflatlsquare,join=roundimitrelbevel,mitre_limit=#.# This method implements the SQL/MM specifi-
cation. SQL-MM 3: 5.1.17

ST_Centroid - Returns the geometric center of a geometry. This method implements the SQL/MM specification. SQL-MM 3:
8.14,95.5

ST_Contains - Returns true if and only if no points of B lie in the exterior of A, and at least one point of the interior of B lies
in the interior of A. This method implements the SQL/MM specification. SQL-MM 3: 5.1.31

ST_ConvexHull - The convex hull of a geometry represents the minimum convex geometry that encloses all geometries within
the set. This method implements the SQL/MM specification. SQL-MM 3: 5.1.16

ST_CoordDim - Return the coordinate dimension of the ST_Geometry value. This method implements the SQL/MM specifi-
cation. SQL-MM 3: 5.1.3

ST_Crosses - Returns TRUE if the supplied geometries have some, but not all, interior points in common. This method
implements the SQL/MM specification. SQL-MM 3: 5.1.29

ST_CurveToLine - Converts a CIRCULARSTRING/CURVEDPOLYGON to a LINESTRING/POLYGON This method im-
plements the SQL/MM specification. SQL-MM 3: 7.1.7

ST_Difference - Returns a geometry that represents that part of geometry A that does not intersect with geometry B. This
method implements the SQL/MM specification. SQL-MM 3: 5.1.20

ST_Dimension - The inherent dimension of this Geometry object, which must be less than or equal to the coordinate dimension.
This method implements the SQL/MM specification. SQL-MM 3: 5.1.2

ST_Disjoint - Returns TRUE if the Geometries do not "spatially intersect” - if they do not share any space together. This
method implements the SQL/MM specification. SQL-MM 3: 5.1.26

ST_Distance - For geometry type Returns the 2-dimensional cartesian minimum distance (based on spatial ref) between two
geometries in projected units. For geography type defaults to return spheroidal minimum distance between two geographies in
meters. This method implements the SQL/MM specification. SQL-MM 3: 5.1.23

ST_EndPoint - Returns the last point of a LINESTRING geometry as a POINT. This method implements the SQL/MM speci-
fication. SQL-MM 3: 7.1.4

ST_Envelope - Returns a geometry representing the double precision (float8) bounding box of the supplied geometry. This
method implements the SQL/MM specification. SQL-MM 3: 5.1.15

ST_Equals - Returns true if the given geometries represent the same geometry. Directionality is ignored. This method imple-
ments the SQL/MM specification. SQL-MM 3: 5.1.24

ST_ExteriorRing - Returns a line string representing the exterior ring of the POLYGON geometry. Return NULL if the
geometry is not a polygon. Will not work with MULTIPOLY GON This method implements the SQL/MM specification. SQL-
MM 3: 8.2.3,8.3.3

ST_GMLToSQL - Return a specified ST_Geometry value from GML representation. This is an alias name for ST_GeomFromGML
This method implements the SQL/MM specification. SQL-MM 3: 5.1.50 (except for curves support).

ST_GeomCollFromText - Makes a collection Geometry from collection WKT with the given SRID. If SRID is not give, it
defaults to -1. This method implements the SQL/MM specification.

ST_GeomFromText - Return a specified ST_Geometry value from Well-Known Text representation (WKT). This method
implements the SQL/MM specification. SQL-MM 3: 5.1.40

ST_GeomFromWKB - Creates a geometry instance from a Well-Known Binary geometry representation (WKB) and optional
SRID. This method implements the SQL/MM specification. SQL-MM 3: 5.1.41

PostGIS 1.5.5 Manual
281 /322

ST_GeometryFromText - Return a specified ST_Geometry value from Well-Known Text representation (WKT). This is an
alias name for ST_GeomFromText This method implements the SQL/MM specification. SQL-MM 3: 5.1.40

ST_GeometryN - Return the 1-based Nth geometry if the geometry is a GEOMETRYCOLLECTION, MULTIPOINT, MUL-
TILINESTRING, MULTICURVE or MULTIPOLYGON. Otherwise, return NULL. This method implements the SQL/MM
specification. SQL-MM 3: 9.1.5

ST_GeometryType - Return the geometry type of the ST_Geometry value. This method implements the SQL/MM specifica-
tion. SQL-MM 3: 5.1.4

ST_InteriorRingN - Return the Nth interior linestring ring of the polygon geometry. Return NULL if the geometry is not a
polygon or the given N is out of range. This method implements the SQL/MM specification. SQL-MM 3: 8.2.6, 8.3.5

ST_Intersection - (T) Returns a geometry that represents the shared portion of geomA and geomB. The geography implemen-
tation does a transform to geometry to do the intersection and then transform back to WGS84. This method implements the
SQL/MM specification. SQL-MM 3: 5.1.18

ST_Intersects - Returns TRUE if the Geometries/Geography "spatially intersect” - (share any portion of space) and FALSE if
they don’t (they are Disjoint). For geography -- tolerance is 0.00001 meters (so any points that close are considered to intersect)
This method implements the SQL/MM specification. SQL-MM 3: 5.1.27

ST_IsClosed - Returns TRUE if the LINESTRING's start and end points are coincident. This method implements the SQL/MM
specification. SQL-MM 3: 7.1.5,9.3.3

ST_IsEmpty - Returns true if this Geometry is an empty geometry . If true, then this Geometry represents the empty point set
- i.e. GEOMETRYCOLLECTION(EMPTY). This method implements the SQL/MM specification. SQL-MM 3: 5.1.7

ST_IsRing - Returns TRUE if this LINESTRING is both closed and simple. This method implements the SQL/MM specifica-
tion. SQL-MM 3: 7.1.6

ST_IsSimple - Returns (TRUE) if this Geometry has no anomalous geometric points, such as self intersection or self tangency.
This method implements the SQL/MM specification. SQL-MM 3: 5.1.8

ST_IsValid - Returns true if the ST_Geometry is well formed. This method implements the SQL/MM specification. SQL-MM
3:5.1.9

ST_Length - Returns the 2d length of the geometry if it is a linestring or multilinestring. geometry are in units of spatial
reference and geography are in meters (default spheroid) This method implements the SQL/MM specification. SQL-MM 3:
7.1.2,9.3.4

ST_LineFromText - Makes a Geometry from WKT representation with the given SRID. If SRID is not given, it defaults to -1.
This method implements the SQL/MM specification. SQL-MM 3: 7.2.8

ST_LineFromWKB - Makes a LINESTRING from WKB with the given SRID This method implements the SQL/MM speci-
fication. SQL-MM 3: 7.2.9

ST_LinestringFromWKB - Makes a geometry from WKB with the given SRID. This method implements the SQL/MM speci-
fication. SQL-MM 3: 7.2.9

ST_M - Return the M coordinate of the point, or NULL if not available. Input must be a point. This method implements the
SQL/MM specification.

ST_MLineFromText - Return a specified ST_MultiLineString value from WKT representation. This method implements the
SQL/MM specification.SQL-MM 3: 9.4.4

ST_MPointFromText - Makes a Geometry from WKT with the given SRID. If SRID is not give, it defaults to -1. This method
implements the SQL/MM specification. SQL-MM 3: 9.2.4

ST_MPolyFromText - Makes a MultiPolygon Geometry from WKT with the given SRID. If SRID is not give, it defaults to -1.
This method implements the SQL/MM specification. SQL-MM 3: 9.6.4

ST_NumGeometries - If geometry is a GEOMETRYCOLLECTION (or MULTT*) return the number of geometries, otherwise
return NULL. This method implements the SQL/MM specification. SQL-MM 3: 9.1.4

PostGIS 1.5.5 Manual
282 /322

ST_NumlInteriorRing - Return the number of interior rings of the first polygon in the geometry. Synonym to ST_NumlInteriorRings.
This method implements the SQL/MM specification. SQL-MM 3: 8.2.5

ST_NumlInteriorRings - Return the number of interior rings of the first polygon in the geometry. This will work with both
POLYGON and MULTIPOLYGON types but only looks at the first polygon. Return NULL if there is no polygon in the
geometry. This method implements the SQL/MM specification. SQL-MM 3: 8.2.5

ST_NumPoints - Return the number of points in an ST_LineString or ST_CircularString value. This method implements the
SQL/MM specification. SQL-MM 3: 7.2.4

ST_OrderingEquals - Returns true if the given geometries represent the same geometry and points are in the same directional
order. This method implements the SQL/MM specification. SQL-MM 3: 5.1.43

ST_Overlaps - Returns TRUE if the Geometries share space, are of the same dimension, but are not completely contained by
each other. This method implements the SQL/MM specification. SQL-MM 3: 5.1.32

ST_Perimeter - Return the length measurement of the boundary of an ST_Surface or ST_MultiSurface value. (Polygon,
Multipolygon) This method implements the SQL/MM specification. SQL-MM 3: 8.1.3,9.5.4

ST_Point - Returns an ST_Point with the given coordinate values. OGC alias for ST_MakePoint. This method implements the
SQL/MM specification. SQL-MM 3: 6.1.2

ST_PointFromText - Makes a point Geometry from WKT with the given SRID. If SRID is not given, it defaults to unknown.
This method implements the SQL/MM specification. SQL-MM 3: 6.1.8

ST_PointFromWKB - Makes a geometry from WKB with the given SRID This method implements the SQL/MM specification.
SQL-MM 3: 6.1.9

ST_PointN - Return the Nth point in the first linestring or circular linestring in the geometry. Return NULL if there is no
linestring in the geometry. This method implements the SQL/MM specification. SQL-MM 3: 7.2.5,7.3.5

ST_PointOnSurface - Returns a POINT guaranteed to lie on the surface. This method implements the SQL/MM specifica-
tion. SQL-MM 3: 8.1.5, 9.5.6. According to the specs, ST_PointOnSurface works for surface geometries (POLYGON:Ss,
MULTIPOLYGONS, CURVED POLYGONS). So PostGIS seems to be extending what the spec allows here. Most databases
Oracle,DB II, ESRI SDE seem to only support this function for surfaces. SQL Server 2008 like PostGIS supports for all
common geometries.

ST_Polygon - Returns a polygon built from the specified linestring and SRID. This method implements the SQL/MM specifi-
cation. SQL-MM 3: 8.3.2

ST_PolygonFromText - Makes a Geometry from WKT with the given SRID. If SRID is not give, it defaults to -1. This method
implements the SQL/MM specification. SQL-MM 3: 8.3.6

ST_Relate - Returns true if this Geometry is spatially related to anotherGeometry, by testing for intersections between the
Interior, Boundary and Exterior of the two geometries as specified by the values in the intersectionMatrixPattern. If no in-
tersectionMatrixPattern is passed in, then returns the maximum intersectionMatrixPattern that relates the 2 geometries. This
method implements the SQL/MM specification. SQL-MM 3: 5.1.25

ST_SRID - Returns the spatial reference identifier for the ST_Geometry as defined in spatial_ref_sys table. This method
implements the SQL/MM specification. SQL-MM 3: 5.1.5

ST_StartPoint - Returns the first point of a LINESTRING geometry as a POINT. This method implements the SQL/MM
specification. SQL-MM 3: 7.1.3

ST_SymDifference - Returns a geometry that represents the portions of A and B that do not intersect. It is called a symmetric
difference because ST_SymDifference(A,B) = ST_SymDifference(B,A). This method implements the SQL/MM specification.
SQL-MM 3: 5.1.21

ST_Touches - Returns TRUE if the geometries have at least one point in common, but their interiors do not intersect. This
method implements the SQL/MM specification. SQL-MM 3: 5.1.28

ST_Transform - Returns a new geometry with its coordinates transformed to the SRID referenced by the integer parameter.
This method implements the SQL/MM specification. SQL-MM 3: 5.1.6

PostGIS 1.5.5 Manual
283 /322

e ST _Union - Returns a geometry that represents the point set union of the Geometries. This method implements the SQL/MM
specification. SQL-MM 3: 5.1.19 the z-index (elevation) when polygons are involved.

o ST_WKBToSQL - Return a specified ST_Geometry value from Well-Known Binary representation (WKB). This is an alias
name for ST_GeomFromWKB that takes no srid This method implements the SQL/MM specification. SQL-MM 3: 5.1.36

e ST_WKTToSQL - Return a specified ST_Geometry value from Well-Known Text representation (WKT). This is an alias name
for ST_GeomFromText This method implements the SQL/MM specification. SQL-MM 3: 5.1.34

* ST_Within - Returns true if the geometry A is completely inside geometry B This method implements the SQL/MM specifica-
tion. SQL-MM 3: 5.1.30

e ST_X - Return the X coordinate of the point, or NULL if not available. Input must be a point. This method implements the
SQL/MM specification. SQL-MM 3: 6.1.3

e ST_Y - Return the Y coordinate of the point, or NULL if not available. Input must be a point. This method implements the
SQL/MM specification. SQL-MM 3: 6.1.4

e ST_Z - Return the Z coordinate of the point, or NULL if not available. Input must be a point. This method implements the
SQL/MM specification.

8.3 PostGIS Geography Support Functions

The functions and operators given below are PostGIS functions/operators that take as input or return as output a geography data
type object.

Note

N:"R’! Functions with a (T) are not native geodetic functions, and use a ST_Transform call to and from geometry to do the
operation. As a result, they may not behave as expected when going over dateline, poles, and for large geometries or
geometry pairs that cover more than one UTM zone. Basic tranform - (favoring UTM, Lambert Azimuthal (North/South),
and falling back on mercator in worst case scenario)

e ST_Area - Returns the area of the surface if it is a polygon or multi-polygon. For "geometry" type area is in SRID units. For
"geography" area is in square meters.

e ST_AsBinary - Return the Well-Known Binary (WKB) representation of the geometry/geography without SRID meta data.
* ST_AsGML - Return the geometry as a GML version 2 or 3 element.

e ST_AsGeoJSON - Return the geometry as a GeoJSON element.

e ST_AsKML - Return the geometry as a KML element. Several variants. Default version=2, default precision=15

e ST_AsSVG - Returns a Geometry in SVG path data given a geometry or geography object.

» ST_AsText - Return the Well-Known Text (WKT) representation of the geometry/geography without SRID metadata.

e ST_Buffer - (T) For geometry: Returns a geometry that represents all points whose distance from this Geometry is less than
or equal to distance. Calculations are in the Spatial Reference System of this Geometry. For geography: Uses a planar
transform wrapper. Introduced in 1.5 support for different end cap and mitre settings to control shape. buffer_style options:
quad_segs=#,endcap=roundlflatlsquare,join=roundimitrelbevel,mitre_limit=#.#

* ST_CoveredBy - Returns 1 (TRUE) if no point in Geometry/Geography A is outside Geometry/Geography B

e ST _Covers - Returns 1 (TRUE) if no point in Geometry B is outside Geometry A. For geography: if geography point B is not
outside Polygon Geography A

e ST_DWithin - Returns true if the geometries are within the specified distance of one another. For geometry units are in those
of spatial reference and For geography units are in meters and measurement is defaulted to use_spheroid=true (measure around
spheroid), for faster check, use_spheroid=false to measure along sphere.

PostGIS 1.5.5 Manual
284 /322

» ST Distance - For geometry type Returns the 2-dimensional cartesian minimum distance (based on spatial ref) between two
geometries in projected units. For geography type defaults to return spheroidal minimum distance between two geographies in
meters.

e ST_GeogFromText - Return a specified geography value from Well-Known Text representation or extended (WKT).

e ST_GeogFromWKB - Creates a geography instance from a Well-Known Binary geometry representation (WKB) or extended
Well Known Binary (EWKB).

* ST_GeographyFromText - Return a specified geography value from Well-Known Text representation or extended (WKT).
* =-Returns TRUE if A’s bounding box is the same as B’s (uses float4 boxes).
e && - Returns TRUE if A’s bounding box overlaps B’s.

e ST_Intersection - (T) Returns a geometry that represents the shared portion of geomA and geomB. The geography implemen-
tation does a transform to geometry to do the intersection and then transform back to WGS84.

» ST Intersects - Returns TRUE if the Geometries/Geography "spatially intersect” - (share any portion of space) and FALSE if
they don’t (they are Disjoint). For geography -- tolerance is 0.00001 meters (so any points that close are considered to intersect)

e ST_Length - Returns the 2d length of the geometry if it is a linestring or multilinestring. geometry are in units of spatial
reference and geography are in meters (default spheroid)

8.4 PostGIS Geometry Dump Functions

The functions given below are PostGIS functions that take as input or return as output a set of or single geometry_dump data
type object.

e ST_Dump - Returns a set of geometry_dump (geom,path) rows, that make up a geometry gl.
e ST_DumpPoints - Returns a set of geometry_dump (geom,path) rows of all points that make up a geometry.

e ST_DumpRings - Returns a set of geometry_dump rows, representing the exterior and interior rings of a polygon.

8.5 PostGIS Box Functions

The functions given below are PostGIS functions that take as input or return as output the box* family of PostGIS spatial types.
The box family of types consists of box2d, box3d, box3d_extent

* Box2D - Returns a BOX2D representing the maximum extents of the geometry.
* Box3D - Returns a BOX3D representing the maximum extents of the geometry.

» ST_Estimated_Extent - Return the ’estimated’ extent of the given spatial table. The estimated is taken from the geometry
column’s statistics. The current schema will be used if not specified.

e ST_Expand - Returns bounding box expanded in all directions from the bounding box of the input geometry. Uses double-
precision

» ST_Extent - an aggregate function that returns the bounding box that bounds rows of geometries.

e ST_Extent3D - an aggregate function that returns the box3D bounding box that bounds rows of geometries.
e ST_MakeBox2D - Creates a BOX2D defined by the given point geometries.

e ST_MakeBox3D - Creates a BOX3D defined by the given 3d point geometries.

e ST_XMax - Returns X maxima of a bounding box 2d or 3d or a geometry.

PostGIS 1.5.5 Manual
285/322

ST_XMin - Returns X minima of a bounding box 2d or 3d or a geometry.
ST_YMax - Returns Y maxima of a bounding box 2d or 3d or a geometry.
ST_YMin - Returns Y minima of a bounding box 2d or 3d or a geometry.
ST_ZMax - Returns Z minima of a bounding box 2d or 3d or a geometry.

ST_ZMin - Returns Z minima of a bounding box 2d or 3d or a geometry.

8.6 PostGIS Functions that support 3D

The functions given below are PostGIS functions that do not throw away the Z-Index.

AddGeometryColumn - Adds a geometry column to an existing table of attributes.
Box3D - Returns a BOX3D representing the maximum extents of the geometry.
DropGeometryColumn - Removes a geometry column from a spatial table.
ST_Accum - Aggregate. Constructs an array of geometries.

ST_AddMeasure - Return a derived geometry with measure elements linearly interpolated between the start and end points. If
the geometry has no measure dimension, one is added. If the geometry has a measure dimension, it is over-written with new
values. Only LINESTRINGS and MULTILINESTRINGS are supported.

ST_AddPoint - Adds a point to a LineString before point <position> (0-based index).

ST_Affine - Applies a 3d affine transformation to the geometry to do things like translate, rotate, scale in one step.
ST_ASEWKB - Return the Well-Known Binary (WKB) representation of the geometry with SRID meta data.
ST_ASsEWKT - Return the Well-Known Text (WKT) representation of the geometry with SRID meta data.
ST_AsGML - Return the geometry as a GML version 2 or 3 element.

ST_AsGeoJSON - Return the geometry as a GeoJSON element.

ST_AsHEXEWKB - Returns a Geometry in HEXEWKB format (as text) using either little-endian (NDR) or big-endian (XDR)
encoding.

ST_AsKML - Return the geometry as a KML element. Several variants. Default version=2, default precision=15
ST_Boundary - Returns the closure of the combinatorial boundary of this Geometry.
ST_Collect - Return a specified ST_Geometry value from a collection of other geometries.

ST_ConvexHull - The convex hull of a geometry represents the minimum convex geometry that encloses all geometries within
the set.

ST_CoordDim - Return the coordinate dimension of the ST_Geometry value.

ST_CurveToLine - Converts a CIRCULARSTRING/CURVEDPOLYGON to a LINESTRING/POLY GON
ST_Difference - Returns a geometry that represents that part of geometry A that does not intersect with geometry B.
ST_Dump - Returns a set of geometry_dump (geom,path) rows, that make up a geometry gl.

ST_DumpPoints - Returns a set of geometry_dump (geom,path) rows of all points that make up a geometry.
ST_DumpRings - Returns a set of geometry_dump rows, representing the exterior and interior rings of a polygon.
ST_EndPoint - Returns the last point of a LINESTRING geometry as a POINT.

ST_Extent3D - an aggregate function that returns the box3D bounding box that bounds rows of geometries.

PostGIS 1.5.5 Manual
286 /322

ST_ExteriorRing - Returns a line string representing the exterior ring of the POLYGON geometry. Return NULL if the
geometry is not a polygon. Will not work with MULTIPOLY GON

ST_ForceRHR - Forces the orientation of the vertices in a polygon to follow the Right-Hand-Rule.

ST_Force_3D - Forces the geometries into XYZ mode. This is an alias for ST_Force_3DZ.

ST_Force_3DZ - Forces the geometries into XYZ mode. This is a synonym for ST_Force_3D.

ST_Force_4D - Forces the geometries into XYZM mode.

ST_Force_Collection - Converts the geometry into a GEOMETRYCOLLECTION.

ST_GeomFromEWKB - Return a specified ST_Geometry value from Extended Well-Known Binary representation (EWKB).
ST_GeomFromEWKT - Return a specified ST_Geometry value from Extended Well-Known Text representation (EWKT).
ST_GeomFromGML - Takes as input GML representation of geometry and outputs a PostGIS geometry object
ST_GeomFromKML - Takes as input KML representation of geometry and outputs a PostGIS geometry object

ST_GeometryN - Return the 1-based Nth geometry if the geometry is a GEOMETRYCOLLECTION, MULTIPOINT, MUL-
TILINESTRING, MULTICURVE or MULTIPOLYGON. Otherwise, return NULL.

ST_HasArc - Returns true if a geometry or geometry collection contains a circular string

ST_InteriorRingN - Return the Nth interior linestring ring of the polygon geometry. Return NULL if the geometry is not a
polygon or the given N is out of range.

ST_IsClosed - Returns TRUE if the LINESTRING's start and end points are coincident.
ST_IsSimple - Returns (TRUE) if this Geometry has no anomalous geometric points, such as self intersection or self tangency.
ST_Length3D - Returns the 3-dimensional or 2-dimensional length of the geometry if it is a linestring or multi-linestring.

ST_Length3D_Spheroid - Calculates the length of a geometry on an ellipsoid, taking the elevation into account. This is just an
alias for ST_Length_Spheroid.

ST_Length_Spheroid - Calculates the 2D or 3D length of a linestring/multilinestring on an ellipsoid. This is useful if the
coordinates of the geometry are in longitude/latitude and a length is desired without reprojection.

ST_LineFromMultiPoint - Creates a LineString from a MultiPoint geometry.
ST_LineToCurve - Converts a LINESTRING/POLYGON to a CIRCULARSTRING, CURVED POLYGON

ST_Line_Interpolate_Point - Returns a point interpolated along a line. Second argument is a float8 between 0 and 1 represent-
ing fraction of total length of linestring the point has to be located.

ST_Line_Substring - Return a linestring being a substring of the input one starting and ending at the given fractions of total 2d
length. Second and third arguments are float8 values between 0 and 1.

ST_LocateBetweenElevations - Return a derived geometry (collection) value with elements that intersect the specified range
of elevations inclusively. Only 3D, 4D LINESTRINGS and MULTILINESTRINGS are supported.

ST_M - Return the M coordinate of the point, or NULL if not available. Input must be a point.

ST_MakeBox3D - Creates a BOX3D defined by the given 3d point geometries.

ST_MakeLine - Creates a Linestring from point geometries.

ST_MakePoint - Creates a 2D,3DZ or 4D point geometry.

ST_MakePolygon - Creates a Polygon formed by the given shell. Input geometries must be closed LINESTRINGS.
ST_MemUnion - Same as ST_Union, only memory-friendly (uses less memory and more processor time).

ST_Mem_Size - Returns the amount of space (in bytes) the geometry takes.

PostGIS 1.5.5 Manual
287 /322

ST_NDims - Returns coordinate dimension of the geometry as a small int. Values are: 2,3 or 4.
ST_NPoints - Return the number of points (vertexes) in a geometry.

ST_NRings - If the geometry is a polygon or multi-polygon returns the number of rings.

ST_Perimeter3D - Returns the 3-dimensional perimeter of the geometry, if it is a polygon or multi-polygon.
ST_PointFromWKB - Makes a geometry from WKB with the given SRID

ST_PointN - Return the Nth point in the first linestring or circular linestring in the geometry. Return NULL if there is no
linestring in the geometry.

ST_PointOnSurface - Returns a POINT guaranteed to lie on the surface.
ST_Polygon - Returns a polygon built from the specified linestring and SRID.
ST_RemovePoint - Removes point from a linestring. Offset is 0-based.
ST_Rotate - This is a synonym for ST_RotateZ

ST_RotateX - Rotate a geometry rotRadians about the X axis.

ST_RotateY - Rotate a geometry rotRadians about the Y axis.

ST_RotateZ - Rotate a geometry rotRadians about the Z axis.

ST_Scale - Scales the geometry to a new size by multiplying the ordinates with the parameters. Ie: ST_Scale(geom, Xfactor,
Yfactor, Zfactor).

ST_SetPoint - Replace point N of linestring with given point. Index is 0-based.

ST_Shift_Longitude - Reads every point/vertex in every component of every feature in a geometry, and if the longitude coor-
dinate is <0, adds 360 to it. The result would be a 0-360 version of the data to be plotted in a 180 centric map

ST_SnapToGrid - Snap all points of the input geometry to the grid defined by its origin and cell size. Remove consecutive
points falling on the same cell, eventually returning NULL if output points are not enough to define a geometry of the given
type. Collapsed geometries in a collection are stripped from it. Useful for reducing precision.

ST_StartPoint - Returns the first point of a LINESTRING geometry as a POINT.
ST_Summary - Returns a text summary of the contents of the ST_Geometry.

ST_SymbDifference - Returns a geometry that represents the portions of A and B that do not intersect. It is called a symmetric
difference because ST_SymbDifference(A,B) = ST_SymbDifference(B,A).

ST_TransScale - Translates the geometry using the deltaX and deltaY args, then scales it using the XFactor, YFactor args,
working in 2D only.

ST_Translate - Translates the geometry to a new location using the numeric parameters as offsets. Ie: ST_Translate(geom, X,
Y) or ST_Translate(geom, X, Y,Z).

ST_X - Return the X coordinate of the point, or NULL if not available. Input must be a point.
ST_XMax - Returns X maxima of a bounding box 2d or 3d or a geometry.

ST_XMin - Returns X minima of a bounding box 2d or 3d or a geometry.

ST_Y - Return the Y coordinate of the point, or NULL if not available. Input must be a point.
ST_YMax - Returns Y maxima of a bounding box 2d or 3d or a geometry.

ST_YMin - Returns Y minima of a bounding box 2d or 3d or a geometry.

ST_Z - Return the Z coordinate of the point, or NULL if not available. Input must be a point.

ST_7ZMax - Returns Z minima of a bounding box 2d or 3d or a geometry.

PostGIS 1.5.5 Manual
288 /322

e ST_7ZMin - Returns Z minima of a bounding box 2d or 3d or a geometry.
e ST Zmflag - Returns ZM (dimension semantic) flag of the geometries as a small int. Values are: 0=2d, 1=3dm, 2=3dz, 3=4d.

* UpdateGeometrySRID - Updates the SRID of all features in a geometry column, geometry_columns metadata and srid table
constraint

8.7 PostGIS Curved Geometry Support Functions

The functions given below are PostGIS functions that can use CIRCULARSTRING, CURVEDPOLYGON, and other curved
geometry types

¢ AddGeometryColumn - Adds a geometry column to an existing table of attributes.

* Box2D - Returns a BOX2D representing the maximum extents of the geometry.

* Box3D - Returns a BOX3D representing the maximum extents of the geometry.

¢ DropGeometryColumn - Removes a geometry column from a spatial table.

* GeometryType - Returns the type of the geometry as a string. Eg: "LINESTRING’, 'POLYGON’, "MULTIPOINT”, etc.
* PostGIS_AddBBox - Add bounding box to the geometry.

* PostGIS_DropBBox - Drop the bounding box cache from the geometry.

* PostGIS_HasBBox - Returns TRUE if the bbox of this geometry is cached, FALSE otherwise.

e ST_Accum - Aggregate. Constructs an array of geometries.

o ST_Affine - Applies a 3d affine transformation to the geometry to do things like translate, rotate, scale in one step.

e ST_AsBinary - Return the Well-Known Binary (WKB) representation of the geometry/geography without SRID meta data.
e ST_ASEWKB - Return the Well-Known Binary (WKB) representation of the geometry with SRID meta data.

e ST_ASEWKT - Return the Well-Known Text (WKT) representation of the geometry with SRID meta data.

* ST_ASHEXEWKB - Returns a Geometry in HEXEWKB format (as text) using either little-endian (NDR) or big-endian (XDR)
encoding.

e ST_AsText - Return the Well-Known Text (WKT) representation of the geometry/geography without SRID metadata.
* ST_Collect - Return a specified ST_Geometry value from a collection of other geometries.

e ST_CoordDim - Return the coordinate dimension of the ST_Geometry value.

e ST CurveToLine - Converts a CIRCULARSTRING/CURVEDPOLYGON to a LINESTRING/POLYGON

e ST_Dump - Returns a set of geometry_dump (geom,path) rows, that make up a geometry gl.

e ST_DumpPoints - Returns a set of geometry_dump (geom,path) rows of all points that make up a geometry.

e ST_Estimated_Extent - Return the ’estimated’ extent of the given spatial table. The estimated is taken from the geometry
column’s statistics. The current schema will be used if not specified.

» ST _Extent3D - an aggregate function that returns the box3D bounding box that bounds rows of geometries.

e ST_Force_2D - Forces the geometries into a "2-dimensional mode" so that all output representations will only have the X and
Y coordinates.

e ST_Force_3D - Forces the geometries into XYZ mode. This is an alias for ST_Force_3DZ.

* ST_Force_3DM - Forces the geometries into XYM mode.

PostGIS 1.5.5 Manual
289 /322

ST_Force_3DZ - Forces the geometries into XYZ mode. This is a synonym for ST_Force_3D.
ST_Force_4D - Forces the geometries into XYZM mode.

ST_Force_Collection - Converts the geometry into a GEOMETRYCOLLECTION.
ST_GeoHash - Return a GeoHash representation (geohash.org) of the geometry.

ST_GeogFromWKB - Creates a geography instance from a Well-Known Binary geometry representation (WKB) or extended
Well Known Binary (EWKB).

ST_GeomFromEWKB - Return a specified ST_Geometry value from Extended Well-Known Binary representation (EWKB).
ST_GeomFromEWKT - Return a specified ST_Geometry value from Extended Well-Known Text representation (EWKT).
ST_GeomFromText - Return a specified ST_Geometry value from Well-Known Text representation (WKT).

ST_GeomFromWKB - Creates a geometry instance from a Well-Known Binary geometry representation (WKB) and optional
SRID.

ST_GeometryN - Return the 1-based Nth geometry if the geometry is a GEOMETRYCOLLECTION, MULTIPOINT, MUL-
TILINESTRING, MULTICURVE or MULTIPOLYGON. Otherwise, return NULL.

= - Returns TRUE if A’s bounding box is the same as B’s (uses float4 boxes).

&<l - Returns TRUE if A’s bounding box overlaps or is below B’s.

&& - Returns TRUE if A’s bounding box overlaps B’s.

ST_HasArc - Returns true if a geometry or geometry collection contains a circular string
ST_IsClosed - Returns TRUE if the LINESTRING's start and end points are coincident.

ST_IsEmpty - Returns true if this Geometry is an empty geometry . If true, then this Geometry represents the empty point set
- i.e. GEOMETRYCOLLECTION(EMPTY).

ST_LineToCurve - Converts a LINESTRING/POLY GON to a CIRCULARSTRING, CURVED POLYGON
ST_Mem_Size - Returns the amount of space (in bytes) the geometry takes.

ST_NPoints - Return the number of points (vertexes) in a geometry.

ST_NRings - If the geometry is a polygon or multi-polygon returns the number of rings.
ST_PointFromWKB - Makes a geometry from WKB with the given SRID

ST_PointN - Return the Nth point in the first linestring or circular linestring in the geometry. Return NULL if there is no
linestring in the geometry.

ST_Rotate - This is a synonym for ST_RotateZ
ST_RotateZ - Rotate a geometry rotRadians about the Z axis.
ST_SRID - Returns the spatial reference identifier for the ST_Geometry as defined in spatial_ref_sys table.

ST_Scale - Scales the geometry to a new size by multiplying the ordinates with the parameters. Ie: ST_Scale(geom, Xfactor,
Yfactor, Zfactor).

ST_SetSRID - Sets the SRID on a geometry to a particular integer value.

ST_TransScale - Translates the geometry using the deltaX and deltaY args, then scales it using the XFactor, YFactor args,
working in 2D only.

ST_Transform - Returns a new geometry with its coordinates transformed to the SRID referenced by the integer parameter.

ST_Translate - Translates the geometry to a new location using the numeric parameters as offsets. Ie: ST_Translate(geom, X,
Y) or ST_Translate(geom, X, Y,Z).

PostGIS 1.5.5 Manual
290 /322

e ST_XMax - Returns X maxima of a bounding box 2d or 3d or a geometry.

e ST_XMin - Returns X minima of a bounding box 2d or 3d or a geometry.

e ST_YMax - Returns Y maxima of a bounding box 2d or 3d or a geometry.

e ST_YMin - Returns Y minima of a bounding box 2d or 3d or a geometry.

e ST_7ZMax - Returns Z minima of a bounding box 2d or 3d or a geometry.

e ST_7ZMin - Returns Z minima of a bounding box 2d or 3d or a geometry.

e ST _Zmflag - Returns ZM (dimension semantic) flag of the geometries as a small int. Values are: 0=2d, 1=3dm, 2=3dz, 3=4d.

* UpdateGeometrySRID - Updates the SRID of all features in a geometry column, geometry_columns metadata and srid table
constraint

8.8 PostGIS Function Support Matrix

Below is an alphabetical listing of spatial specific functions in PostGIS and the kinds of spatial types they work with or OGC/SQL
compliance they try to conform to.

* A ‘i’(‘ means the function works with the type or subtype natively.

« A " means it works but with a transform cast built-in using cast to geometry, transform to a "best srid" spatial ref and
then cast back. Results may not be as expected for large areas or areas at poles and may accumulate floating point junk.

c A H' means the function works with the type because of a auto-cast to another such as to box3d rather than direct type
support.

Function geometry geography 3D (2.5D) Curves SQL MM
Box2D

Box3D
Find_SRID
GeometryType

v

bk W b T S

ST Accum

ST_AddMeasure

ST AddPoint

WNNS

ST_Affine

ST Area

ST_AsBinary

ST_ASsEWKB

ST_ASEWKT

S
SAENN S
YN

ST_AsGML

ST_AsGeoJSON

ST_AsHEXEWKB

CWENNSNNSNSNNYNYNN ISS

e
AN
“

PostGIS 1.5.5 Manual

291 /322
Function geometry geography 3D (2.5D) Curves SQL MM
ST_AsKML Vi
ST_AsSVG v
ST_AsText "1'/ g"’ "f’
ST_Azimuth

ST_BdMPolyFrom[Text

ST_BdPolyFromText

ST_Boundary

ST Buffer

ST BuildArea

ST_Centroid

ST ClosestPoint

ST_Collect

ST_CollectionExtract

ST Contains

ST_ContainsPropetly

ST ConvexHull

NS
N

ST _CoordDim

ST_CoveredBy

NS

ST Covers

ST_Crosses

ST_CurveToLine

™~
™
e Y

ST_DFullyWithin

ST_DWithin

ST Difference

ST_Dimension

ST_Disjoint

NSNS

ST Distance

ST_Distance_Sphetre

ST_Distance_Spheroid

ST_Dump

b .

ST_DumpPoints

ST_DumpRings

YNNSAS

ST_EndPoint

NANANNSNANNASYNNSASSNASNSSNSSSANNASYSNSSNOYNNSAS

e Y

ST_Envelope

PostGIS 1.5.5 Manual

292 /322
Function geometry geography 3D (2.5D) Curves SQL MM
ST_Equals .'1"’

ST_Estimated_Ext

ent

v

ST_Expand

ST Extent

ST_Extent3D

N

ST_ExteriorRing

ST _ForceRHR

ST_Force_2D

ST Force_3D

ST Force_3DM

ST_Force_3DZ

ST Force_4D

ST _Force_Collecti

Nl

SN (N NS

ST_GMLToSQL

ST_GeoHash

NSNS NNAYNANNANNSRS

ST_GeogFromTex(

ST_GeogFromWK

B

NN ISNASNSA

ST_GeographyFroanext

NSNS

ST_GeomCollFron]lText

e

ST_GeomFromEW

KB

ST_GeomFromEW

KT

b .

ST GeomFromGM

L

ST_GeomFromKM

L

YNNSAS

ST_GeomFromTex|

t

ST_GeomFromWK

(B

g .Y

ST_GeometryFrom

Text

ST_GeometryN

-~

ST_GeometryType

NENSNA

[»

«

SANASNSANASNSNAOYNANA

PostGIS 1.5.5 Manual

293 /322
Function geometry geography 3D (2.5D) Curves SQL MM
|&>
&<l V"’
&& v'/ v"’
&<
&>
»
ST _HasArc -.'1"’ v"’

ST_HausdorffDistance

ST_InteriorRingN

ST Intersection

ST_Intersects

ST_IsClosed

ST_IsEmpty

ST_IsRing

ST_IsSimple

ST IsValid

ST_IsValidReason

N INSSNASSNNAS

ST_Length

ST_Length2D

ST_Length2D_Spheroid

ST_Length3D

ST_Length3D_Spheroid

ST_Length_Spherdid

ST_LineCrossingDijirection

NOINSA

ST_LineFromMult{Point

ST LineFromText

ST_LineFromWKH

-~

ST_LineMerge

ST_LineToCurve

NESSANASSSSNNASSNSASSSNSYNSSAOSNSASASNAUSNA
™~

g . ¥

ST_Line_Interpolate_Point -.‘('

ST Line_Locate_Point

NS

ST_Line_Substring

ST_LinestringFroanKB v"’ .,"I"

PostGIS 1.5.5 Manual

294 /322

Function

geometry

geography

3D (2.5D)

Curves

SQL MM

ST LocateBetween

Elevatimv"’

v

ST_Locate_Along |

Measure v"’

ST_Locate_Betweg

n_Measu

ST_LongestLine

ST_M

ST MLineFromTe}

Kt

ST_MPointFromTe

ST_MPolyFromTe}

Kt

NENNS

ST MakeBox2D

ST _MakeBox3D

ST_MakeEnvelope

ST MakeLine

ST_MakePoint

ST MakePointM

ST_MakePolygon

ST_MaxDistance

ST MemUnion

ST _Mem_Size

N IN NS K

ST MinimumBoun

dingCirc

ST_Multi

ST_NDims

ST _NPoints

ST_NRings

NENS

NS

ST_NumGeometrig

2]

ST _NumlnteriorRi

ng

ST_NumlnteriorRi

ngs

ST NumPoints

ST_OrderingEqual$

ST_Overlaps

ST Perimeter

NSNANSNAS

ST_Perimeter2D

ST Perimeter3D

ST Point

ST_PointFromText|

CSAEANASNSASNASSNAOSNSASNSNSSASASNASNSNSAOSNANSNSSNA

e .

PostGIS 1.5.5 Manual
295 /322

Function geometry geography 3D (2.5D) Curves SQL MM

ST_PointFromWKB ,'('

ST PointN

v

ST_PointOnSurface

ST_Point_Inside_(ircle

NOINNS

ST_Polygon

ST_PolygonFromText

ST_Polygonize

NSNS (NSNS

ST_Relate

ST_RemovePoint

ST Reverse

ST_Rotate

ST RotateX

ST RotateY

ST_RotateZ

ST_SRID

NENS
=

ST_Scale

ST_Segmentize

ST _SetPoint

ST_SetSRID

(@)

Y IN N ISKSNNS IS

ST_Shift_Longitud

ST_ShortestLine

ST_Simplify

ST_SimplifyPreseryeTopolo

ST_SnapToGrid

ST StartPoint

ST_Summary

ST_SymbDifference|

ST Touches

ST_TransScale

ST_Transform

NN (SNAKS

ST Translate

ST_Union

ST_WKBToSQL

NESSANASNSNSASSNSASSNNSSASSNASASS NSNS ONSNSAS

A
N U N b N b N N e N

ST_WKTToSQL

PostGIS 1.5.5 Manual

296 / 322

Function geometry geography 3D (2.5D) Curves SQL MM
ST_Within v v
ST_X v v v
ST_XMax W v v

ST_XMin W v v

ST_Y v v v
ST_YMax W " o

ST_YMin 124 v ¥

ST_Z v v v
ST_ZMax 124 v ¥

ST_ZMin W v v

ST_Zmflag wf‘ \"; \"’

8.9 New PostGIS Functions

8.9.1 PostGIS Functions new, behavior changed, or enhanced in 1.5

The functions given below are PostGIS functions that were introduced or enhanced in this major release.

* PostGIS_LibXML_Version - Availability: 1.5 Returns the version number of the libxml2 library.

e ST_AddMeasure - Availability: 1.5.0 Return a derived geometry with measure elements linearly interpolated between the start
and end points. If the geometry has no measure dimension, one is added. If the geometry has a measure dimension, it is
over-written with new values. Only LINESTRINGS and MULTILINESTRINGS are supported.

* ST_AsBinary - Availability: 1.5.0 geography support was introduced. Return the Well-Known Binary (WKB) representation
of the geometry/geography without SRID meta data.

e ST_AsGeoJSON - Availability: 1.5.0 geography support was introduced. Return the geometry as a GeoJSON element.

* ST_AsText - Availability: 1.5 - support for geography was introduced. Return the Well-Known Text (WKT) representation of
the geometry/geography without SRID metadata.

e ST Buffer - Availability: 1.5 - ST_Buffer was enhanced to support different endcaps and join types. These are useful for
example to convert road linestrings into polygon roads with flat or square edges instead of rounded edges. Thin wrapper for ge-
ography was added. - requires GEOS >= 3.2 to take advantage of advanced geometry functionality. (T) For geometry: Returns
a geometry that represents all points whose distance from this Geometry is less than or equal to distance. Calculations are in the
Spatial Reference System of this Geometry. For geography: Uses a planar transform wrapper. Introduced in 1.5 support for dif-
ferent end cap and mitre settings to control shape. buffer_style options: quad_segs=#,endcap=roundl|flatisquare,join=roundimitrelbevel,

* ST_ClosestPoint - Availability: 1.5.0 Returns the 2-dimensional point on gl that is closest to g2. This is the first point of the
shortest line.

* ST_CollectionExtract - Availability: 1.5.0 Given a GEOMETRYCOLLECTION, returns a MULTT* geometry consisting only
of the specified type. Sub-geometries that are not the specified type are ignored. If there are no sub-geometries of the right
type, an EMPTY collection will be returned. Only points, lines and polygons are supported. Type numbers are 1 == POINT, 2
== LINESTRING, 3 == POLYGON.

* ST _Covers - Availability: 1.5 - support for geography was introduced. Returns 1 (TRUE) if no point in Geometry B is outside
Geometry A. For geography: if geography point B is not outside Polygon Geography A

PostGIS 1.5.5 Manual
297 /322

ST_DFullyWithin - Availability: 1.5.0 Returns true if all of the geometries are within the specified distance of one another

ST_DWithin - Availability: 1.5.0 support for geography was introduced Returns true if the geometries are within the specified
distance of one another. For geometry units are in those of spatial reference and For geography units are in meters and
measurement is defaulted to use_spheroid=true (measure around spheroid), for faster check, use_spheroid=false to measure
along sphere.

ST_Distance - Availability: 1.5.0 geography support was introduced in 1.5. Speed improvements for planar to better handle
large or many vertex geometries For geometry type Returns the 2-dimensional cartesian minimum distance (based on spatial
ref) between two geometries in projected units. For geography type defaults to return spheroidal minimum distance between
two geographies in meters.

ST_Distance_Sphere - Availability: 1.5 - support for other geometry types besides points was introduced. Prior versions only
work with points. Returns minimum distance in meters between two lon/lat geometries. Uses a spherical earth and radius of
6370986 meters. Faster than ST_Distance_Spheroid, but less accurate. PostGIS versions prior to 1.5 only implemented for
points.

ST_Distance_Spheroid - Availability: 1.5 - support for other geometry types besides points was introduced. Prior versions
only work with points. Returns the minimum distance between two lon/lat geometries given a particular spheroid. PostGIS
versions prior to 1.5 only support points.

ST_DumpPoints - Availability: 1.5.0 Returns a set of geometry_dump (geom,path) rows of all points that make up a geometry.

ST_Envelope - Availability: 1.5.0 behavior changed to output double precision instead of float4 Returns a geometry represent-
ing the double precision (float8) bounding box of the supplied geometry.

ST_GMLToSQL - Availability: 1.5 Return a specified ST_Geometry value from GML representation. This is an alias name
for ST_GeomFromGML

ST_GeomFromGML - Availability: 1.5 Takes as input GML representation of geometry and outputs a PostGIS geometry
object

ST_GeomFromKML - Availability: 1.5 Takes as input KML representation of geometry and outputs a PostGIS geometry
object

&& - Availability: 1.5.0 support for geography was introduced. Returns TRUE if A’s bounding box overlaps B’s.
~= - Availability: 1.5.0 changed behavior Returns TRUE if A’s bounding box is the same as B’s.

ST_HausdorffDistance - Availability: 1.5.0 - requires GEOS >= 3.2.0 Returns the Hausdorff distance between two geometries.
Basically a measure of how similar or dissimilar 2 geometries are. Units are in the units of the spatial reference system of the
geometries.

ST_Intersection - Availability: 1.5 support for geography data type was introduced. (T) Returns a geometry that represents the
shared portion of geomA and geomB. The geography implementation does a transform to geometry to do the intersection and
then transform back to WGS84.

ST_Intersects - Availability: 1.5 support for geography was introduced. Returns TRUE if the Geometries/Geography "spatially
intersect” - (share any portion of space) and FALSE if they don’t (they are Disjoint). For geography -- tolerance is 0.00001
meters (so any points that close are considered to intersect)

ST_Length - Availability: 1.5.0 geography support was introduced in 1.5. Returns the 2d length of the geometry if it is a
linestring or multilinestring. geometry are in units of spatial reference and geography are in meters (default spheroid)

ST_LongestLine - Availability: 1.5.0 Returns the 2-dimensional longest line points of two geometries. The function will only
return the first longest line if more than one, that the function finds. The line returned will always start in gl and end in g2.
The length of the line this function returns will always be the same as st_maxdistance returns for gl and g2.

ST_MakeEnvelope - Availability: 1.5 Creates a rectangular Polygon formed from the given minimums and maximums. Input
values must be in SRS specified by the SRID.

ST_MaxDistance - Availability: 1.5.0 Returns the 2-dimensional largest distance between two geometries in projected units.

ST_ShortestLine - Availability: 1.5.0 Returns the 2-dimensional shortest line between two geometries

PostGIS 1.5.5 Manual
298 /322

8.9.2 PostGIS Functions new, behavior changed, or enhanced in 1.4

The functions given below are PostGIS functions that were introduced or enhanced in the 1.4 release.

Populate_Geometry_Columns - Ensures geometry columns have appropriate spatial constraints and exist in the geometry_columns

table. Availability: 1.4.0

ST_AsSVG - Returns a Geometry in SVG path data given a geometry or geography object. Availability: 1.2.2 . Availability:

1.4.0 Changed in PostGIS 1.4.0 to include L command in absolute path to conform to http://www.w3.0org/TR/SVG/paths.html#PathDat:

ST_Collect - Return a specified ST_Geometry value from a collection of other geometries. Availability: 1.4.0 - ST_Collect(geomarray)

was introduced. ST_Collect was enhanced to handle more geometries faster.

ST_ContainsProperly - Returns true if B intersects the interior of A but not the boundary (or exterior). A does not contain
properly itself, but does contain itself. Availability: 1.4.0 - requires GEOS >= 3.1.0.

ST_Extent - an aggregate function that returns the bounding box that bounds rows of geometries. Availability: 1.4.0 As of
1.4.0 now returns a box3d_extent instead of box2d object.

ST_GeoHash - Return a GeoHash representation (geohash.org) of the geometry. Availability: 1.4.0

ST_IsValidReason - Returns text stating if a geometry is valid or not and if not valid, a reason why. Availability: 1.4 - requires
GEOS >=3.1.0.

ST_LineCrossingDirection - Given 2 linestrings, returns a number between -3 and 3 denoting what kind of crossing behavior.
0 is no crossing. Availability: 1.4

ST_LocateBetweenElevations - Return a derived geometry (collection) value with elements that intersect the specified range
of elevations inclusively. Only 3D, 4D LINESTRINGS and MULTILINESTRINGS are supported. Availability: 1.4.0

ST_MakeLine - Creates a Linestring from point geometries. Availability: 1.4.0 - ST_MakeLine(geomarray) was introduced.
ST_MakeLine aggregate functions was enhanced to handle more points faster.

ST_MinimumBoundingCircle - Returns the smallest circle polygon that can fully contain a geometry. Default uses 48 segments
per quarter circle. Availability: 1.4.0 - requires GEOS

ST_Union - Returns a geometry that represents the point set union of the Geometries. Availability: 1.4.0 - ST_Union was
enhanced. ST_Union(geomarray) was introduced and also faster aggregate collection in PostgreSQL. If you are using GEOS
3.1.0+ ST_Union will use the faster Cascaded Union algorithm described in http://blog.cleverelephant.ca/2009/01/must-faster-
unions-in-postgis-14.html

8.9.3 PostGIS Functions new in 1.3

The functions given below are PostGIS functions that were introduced in the 1.3 release.

* ST_AsGeoJSON - Return the geometry as a GeoJSON element. Availability: 1.3.4

o ST_SimplifyPreserveTopology - Returns a "simplified" version of the given geometry using the Douglas-Peucker algorithm.
Will avoid creating derived geometries (polygons in particular) that are invalid. Availability: 1.3.3

PostGIS 1.5.5 Manual
299 /322

Chapter 9

Reporting Problems

9.1 Reporting Software Bugs

Reporting bugs effectively is a fundamental way to help PostGIS development. The most effective bug report is that enabling
PostGIS developers to reproduce it, so it would ideally contain a script triggering it and every information regarding the envi-
ronment in which it was detected. Good enough info can be extracted running SELECT postgis_full_version () [for
postgis] and SELECT version () [for postgresql].

If you aren’t using the latest release, it’s worth taking a look at its release changelog first, to find out if your bug has already been
fixed.

Using the PostGIS bug tracker will ensure your reports are not discarded, and will keep you informed on its handling process.
Before reporting a new bug please query the database to see if it is a known one, and if it is please add any new information you
have about it.

You might want to read Simon Tatham’s paper about How to Report Bugs Effectively before filing a new report.

9.2 Reporting Documentation Issues

The documentation should accurately reflect the features and behavior of the software. If it doesn’t, it could be because of a
software bug or because the documentation is in error or deficient.

Documentation issues can also be reported to the PostGIS bug tracker.
If your revision is trivial, just describe it in a new bug tracker issue, being specific about its location in the documentation.

If your changes are more extensive, a Subversion patch is definitely preferred. This is a four step process on Unix (assuming you
already have Subversion installed):

1. Check out a copy of PostGIS’ Subversion trunk. On Unix, type:
svn checkout http://svn.osgeo.org/postgis/trunk/
This will be stored in the directory ./trunk

2. Make your changes to the documentation with your favorite text editor. On Unix, type (for example):
vim trunk/doc/postgis.xml
Note that the documentation is written in SGML rather than HTML, so if you are not familiar with it please follow the
example of the rest of the documentation.

3. Make a patch file containing the differences from the master copy of the documentation. On Unix, type:

svn diff trunk/doc/postgis.xml > doc.patch

4. Attach the patch to a new issue in bug tracker.

http://svn.osgeo.org/postgis/trunk/NEWS
http://trac.osgeo.org/postgis/
http://www.chiark.greenend.org.uk/~sgtatham/bugs.html
http://trac.osgeo.org/postgis
http://subversion.tigris.org/

PostGIS 1.5.5 Manual
300/ 322

Appendix A

Appendix

A.1 Release 1.5.5

Release date: 2012/06/xx

This is a bug fix release, addressing issues that have been filed since the 1.5.4 release.

A.1.1 Bug Fixes

#1825, containsproperly fix in prepared geometry.
#1832, Crash when updating GIST index on geography column

#1865, don’t strip comments COPY data from dumps on restore

A.2 Release 1.5.4

Release date: 2012/05/06

This is a bug fix release, addressing issues that have been filed since the 1.5.3 release.

A.2.1 Bug Fixes

#547, ST_Contains memory problems (Sandro Santilli)

#621, Problem finding intersections with geography (Paul Ramsey)

#627, PostGIS/PostgreSQL process die on invalid geometry (Paul Ramsey)

#810, Increase accuracy of area calculation (Paul Ramsey)

#852, improve spatial predicates robustness (Sandro Santilli, Nicklas Avén)

#877, ST_Estimated_Extent returns NULL on empty tables (Sandro Santilli)

#1028, ST_AsSVG kills whole postgres server when fails (Paul Ramsey)

#1056, Fix boxes of arcs and circle stroking code (Paul Ramsey)

#1121, populate_geometry_columns using deprecated functions (Regin Obe, Paul Ramsey)
#1135, improve testsuite predictability (Andreas ’ads’ Scherbaum)

#1146, images generator crashes (bronaugh)

PostGIS 1.5.5 Manual

301 /322

#1170, North Pole intersection fails (Paul Ramsey)

#1179, ST_AsText crash with bad value (kjurka)

#1184, honour DESTDIR in documentation Makefile (Bryce L Nordgren)
#1227, server crash on invalid GML

#1252, SRID appearing in WKT (Paul Ramsey)

#1264, st_dwithin(g, g, 0) doesn’t work (Paul Ramsey)

#1344, allow exporting tables with invalid geometries (Sandro Santilli)
#1389, wrong proj4text for SRID 31300 and 31370 (Paul Ramsey)
#1406, shp2pgsql crashes when loading into geography (Sandro Santilli)
#1595, fixed SRID redundancy in ST_Line_SubString (Sandro Santilli)
#1596, check SRID in UpdateGeometrySRID (Mike Toews, Sandro Santilli)
#1602, fix ST_Polygonize to retain Z (Sandro Santilli)

#1697, fix crash with EMPTY entries in GiST index (Paul Ramsey)
#1772, fix ST_Line_Locate_Point with collapsed input (Sandro Santilli)
#1799, Protect ST_Segmentize from max_length=0 (Sandro Santilli)
Alter parameter order in 900913 (Paul Ramsey)

Support builds with "gmake" (Greg Troxel)

A.3 Release 1.5.3

Release date: 2011/06/25

This is a bug fix release, addressing issues that have been filed since the 1.5.2 release.

A.3.1 Bug Fixes

#1007, ST_IsValid crash fix requires GEOS 3.3.0+ or 3.2.3+ (Sandro Santilli, reported by Birgit Laggner)
#940, support for PostgreSQL 9.1 beta 1 (Regina Obe, Paul Ramsey, patch submitted by stl)
#845, ST_Intersects precision error (Sandro Santilli, Nicklas Avén) Reported by cdestigter

#884, Unstable results with ST_Within, ST_Intersects (Chris Hodgson)

#779, shp2pgsql -S option seems to fail on points (Jeff Adams)

#666, ST_DumpPoints is not null safe (Regina Obe)

#631, Update NZ projections for grid transformation support (jpalmer)

#630, Peculiar Null treatment in arrays in ST_Collect (Chris Hodgson) Reported by David Bitner
#624, Memory leak in ST_GeogFromText (ryang, Paul Ramsey)

#609, Bad source code in manual section 5.2 Java Clients (simoc, Regina Obe)

#604, shp2pgsql usage touchups (Mike Toews, Paul Ramsey)

#573 ST_Union fails on a group of linestrings Not a PostGIS bug, fixed in GEOS 3.3.0

#457 ST_CollectionExtract returns non-requested type (Nicklas Avén, Paul Ramsey)

#441 ST_AsGeoJson Bbox on GeometryCollection error (Olivier Courtin)

#411 Ability to backup invalid geometries (Sando Santilli) Reported by Regione Toscana

#409 ST_AsSVG - degraded (Olivier Courtin) Reported by Sdikiy

#373 Documentation syntax error in hard upgrade (Paul Ramsey) Reported by psvensso

PostGIS 1.5.5 Manual
302 /322

A.4 Release 1.5.2

Release date: 2010/09/27

This is a bug fix release, addressing issues that have been filed since the 1.5.1 release.

A.4.1 Bug Fixes

Loader: fix handling of empty (0-verticed) geometries in shapefiles. (Sandro Santilli)

#536, Geography ST_Intersects, ST_Covers, ST_CoveredBy and Geometry ST_Equals not using spatial index (Regina Obe,
Nicklas Aven)

#573, Improvement to ST_Contains geography (Paul Ramsey)

Loader: Add support for command-q shutdown in Mac GTK build (Paul Ramsey)

#393, Loader: Add temporary patch for large DBF files (Maxime Guillaud, Paul Ramsey)

#507, Fix wrong OGC URN in GeoJSON and GML output (Olivier Courtin)

spatial_ref sys.sql Add datum conversion for projection SRID 3021 (Paul Ramsey)

Geography - remove crash for case when all geographies are out of the estimate (Paul Ramsey)
#469, Fix for array_aggregation error (Greg Stark, Paul Ramsey)

#532, Temporary geography tables showing up in other user sessions (Paul Ramsey)

#562, ST_Dwithin errors for large geographies (Paul Ramsey)

#513, shape loading GUI tries to make spatial index when loading DBF only mode (Paul Ramsey)
#527, shape loading GUI should always append log messages (Mark Cave-Ayland)

#504, shp2pgsql should rename xmin/xmax fields (Sandro Santilli)

#458, postgis_comments being installed in contrib instead of version folder (Mark Cave-Ayland)
#474, Analyzing a table with geography column crashes server (Paul Ramsey)

#581, LWGEOM-expand produces inconsistent results (Mark Cave-Ayland)

#513, Add dbf filter to shp2pgsql-gui and allow uploading dbf only (Paul Ramsey)

Fix further build issues against PostgreSQL 9.0 (Mark Cave-Ayland)

#572, Password whitespace for Shape File

#603, shp2pgsql: "-w" produces invalid WKT for MULTI* objects. (Mark Cave-Ayland)

A.5 Release 1.5.1

Release date: 2010/03/11

This is a bug fix release, addressing issues that have been filed since the 1.4.1 release.

A.5.1 Bug Fixes

#410, update embedded bbox when applying ST_SetPoint, ST_AddPoint ST_RemovePoint to a linestring (Paul Ramsey)
#411, allow dumping tables with invalid geometries (Sandro Santilli, for Regione Toscana-SIGTA)
#414, include geography_columns view when running upgrade scripts (Paul Ramsey)

#419, allow support for multilinestring in ST_Line_Substring (Paul Ramsey, for Lidwala Consulting Engineers)

PostGIS 1.5.5 Manual
303 /322

#421, fix computed string length in ST_AsGML() (Olivier Courtin)

#441, fix GML generation with heterogeneous collections (Olivier Courtin)

#443, incorrect coordinate reversal in GML 3 generation (Olivier Courtin)

#450, #451, wrong area calculation for geography features that cross the date line (Paul Ramsey)

Ensure support for upcoming 9.0 PgSQL release (Paul Ramsey)

A.6 Release 1.5.0

Release date: 2010/02/04

This release provides support for geographic coordinates (lat/lon) via a new GEOGRAPHY type. Also performance enhance-
ments, new input format support (GML,KML) and general upkeep.

A.6.1 API Stability

The public API of PostGIS will not change during minor (0.0.X) releases.

The definition of the =~ operator has changed from an exact geometric equality check to a bounding box equality check.

A.6.2 Compatibility

GEOS, Proj4, and LibXML?2 are now mandatory dependencies

The library versions below are the minimum requirements for PostGIS 1.5
PostgreSQL 8.3 and higher on all platforms

GEOS 3.1 and higher only (GEOS 3.2+ to take advantage of all features)
LibXML2 2.5+ related to new ST_GeomFromGML/KML functionality
Proj4 4.5 and higher only

A.6.3 New Features

Section 8.9.1
Added Hausdorff distance calculations (#209) (Vincent Picavet)
Added parameters argument to ST_Buffer operation to support one-sided buffering and other buffering styles (Sandro Santilli)

Addition of other Distance related visualization and analysis functions (Nicklas Aven)

* ST_ClosestPoint
e ST_DFullyWithin
* ST_LongestLine
* ST_MaxDistance

e ST ShortestLine

PostGIS 1.5.5 Manual
304 /322

ST_DumpPoints (Maxime van Noppen)

KML, GML input via ST_GeomFromGML and ST_GeomFromKML (Olivier Courtin)
Extract homogeneous collection with ST_CollectionExtract (Paul Ramsey)

Add measure values to an existing linestring with ST_AddMeasure (Paul Ramsey)
History table implementation in utils (George Silva)

Geography type and supporting functions

* Spherical algorithms (Dave Skea)
* Object/index implementation (Paul Ramsey)
 Selectivity implementation (Mark Cave-Ayland)

e Serializations to KML, GML and JSON (Olivier Courtin)

ST_Area, ST_Distance, ST_DWithin, ST_GeogFromText, ST_GeogFromWKB, ST_Intersects, ST_Covers, ST_Buffer (Paul
Ramsey)

A.6.4 Enhancements

Performance improvements to ST_Distance (Nicklas Aven)

Documentation updates and improvements (Regina Obe, Kevin Neufeld)
Testing and quality control (Regina Obe)

PostGIS 1.5 support PostgreSQL 8.5 trunk (Guillaume Lelarge)

Win32 support and improvement of core shp2pgsql-gui (Mark Cave-Ayland)

In place 'make check’ support (Paul Ramsey)

A.6.5 Bug fixes

http://trac.osgeo.org/postgis/query ?status=closed&milestone=postgis+1.5.0&order=priority

A.7 Release 1.4.0

Release date: 2009/07/24

This release provides performance enhancements, improved internal structures and testing, new features, and upgraded docu-
mentation.

A.7.1 API Stability

As of the 1.4 release series, the public API of PostGIS will not change during minor releases.

A.7.2 Compatibility

The versions below are the *minimum* requirements for PostGIS 1.4
PostgreSQL 8.2 and higher on all platforms

GEOS 3.0 and higher only

PROJ4 4.5 and higher only

PostGIS 1.5.5 Manual
305 /322

A.7.3 New Features

ST_Union() uses high-speed cascaded union when compiled against GEOS 3.1+ (Paul Ramsey)

ST_ContainsProperly() requires GEOS 3.1+

ST_Intersects(), ST_Contains(), ST_Within() use high-speed cached prepared geometry against GEOS 3.1+ (Paul Ramsey)
Vastly improved documentation and reference manual (Regina Obe & Kevin Neufeld)

Figures and diagram examples in the reference manual (Kevin Neufeld)

ST_IsValidReason() returns readable explanations for validity failures (Paul Ramsey)

ST_GeoHash() returns a geohash.org signature for geometries (Paul Ramsey)

GTK+ multi-platform GUI for shape file loading (Paul Ramsey)

ST_LineCrossingDirection() returns crossing directions (Paul Ramsey)

ST_LocateBetweenElevations() returns sub-string based on Z-ordinate. (Paul Ramsey)

Geometry parser returns explicit error message about location of syntax errors (Mark Cave-Ayland)

ST_AsGeoJSON() return JSON formatted geometry (Olivier Courtin)

Populate_Geometry_Columns() -- automatically add records to geometry_columns for TABLES and VIEWS (Kevin Neufeld)

ST_MinimumBoundingCircle() -- returns the smallest circle polygon that can encompass a geometry (Bruce Rindahl)

A.7.4 Enhancements

Core geometry system moved into independent library, liblwgeom. (Mark Cave-Ayland)

New build system uses PostgreSQL "pgxs" build bootstrapper. (Mark Cave-Ayland)

Debugging framework formalized and simplified. (Mark Cave-Ayland)

All build-time #defines generated at configure time and placed in headers for easier cross-platform support (Mark Cave-Ayland)
Logging framework formalized and simplified (Mark Cave-Ayland)

Expanded and more stable support for CIRCULARSTRING, COMPOUNDCURVE and CURVEPOLYGON, better parsing,
wider support in functions (Mark Leslie & Mark Cave-Ayland)

Improved support for OpenSolaris builds (Paul Ramsey)

Improved support for MSVC builds (Mateusz Loskot)

Updated KML support (Olivier Courtin)

Unit testing framework for liblwgeom (Paul Ramsey)

New testing framework to comprehensively exercise every PostGIS function (Regine Obe)

Performance improvements to all geometry aggregate functions (Paul Ramsey)

Support for the upcoming PostgreSQL 8.4 (Mark Cave-Ayland, Talha Bin Rizwan)

Shp2pgsql and pgsql2shp re-worked to depend on the common parsing/unparsing code in liblwgeom (Mark Cave-Ayland)
Use of PDF DbLatex to build PDF docs and preliminary instructions for build (Jean David Techer)

Automated User documentation build (PDF and HTML) and Developer Doxygen Documentation (Kevin Neufeld)
Automated build of document images using ImageMagick from WKT geometry text files (Kevin Neufeld)

More attractive CSS for HTML documentation (Dane Springmeyer)

A.7.5 Bug fixes

http://trac.osgeo.org/postgis/query ?status=closed&milestone=postgis+1.4.0&order=priority

PostGIS 1.5.5 Manual
306 /322

A.8 Release 1.3.6

Release date: 2009/05/04

This release adds support for PostgreSQL 8.4, exporting prj files from the database with shape data, some crash fixes for
shp2pgsql, and several small bug fixes in the handling of "curve" types, logical error importing dbf only files, improved er-
ror handling of AddGeometryColumns.

A.9 Release 1.3.5

Release date: 2008/12/15

This release is a bug fix release to address a failure in ST_Force_Collection and related functions that critically affects using
Mapserver with LINE layers.

A.10 Release 1.3.4

Release date: 2008/11/24

This release adds support for GeoJSON output, building with PostgreSQL 8.4, improves documentation quality and output
aesthetics, adds function-level SQL documentation, and improves performance for some spatial predicates (point-in-polygon
tests).

Bug fixes include removal of crashers in handling circular strings for many functions, some memory leaks removed, a linear
referencing failure for measures on vertices, and more. See the NEWS file for details.

A.11 Release 1.3.3
Release date: 2008/04/12

This release fixes bugs shp2pgsql, adds enhancements to SVG and KML support, adds a ST_SimplifyPreserveTopology function,
makes the build more sensitive to GEOS versions, and fixes a handful of severe but rare failure cases.

A.12 Release 1.3.2
Release date: 2007/12/01

This release fixes bugs in ST_EndPoint() and ST_Envelope, improves support for JDBC building and OS/X, and adds better
support for GML output with ST_AsGMLY(), including GML3 output.

A.13 Release 1.3.1

Release date: 2007/08/13

This release fixes some oversights in the previous release around version numbering, documentation, and tagging.

A.14 Release 1.3.0

Release date: 2007/08/09

This release provides performance enhancements to the relational functions, adds new relational functions and begins the migra-
tion of our function names to the SQL-MM convention, using the spatial type (SP) prefix.

PostGIS 1.5.5 Manual
307 /322

A.14.1 Added Functionality

JDBC: Added Hibernate Dialect (thanks to Norman Barker)

Added ST_Covers and ST_CoveredBy relational functions. Description and justification of these functions can be found at
http://lin-ear-th-inking.blogspot.com/2007/06/subtleties-of-ogc-covers-spatial.html

Added ST_DWithin relational function.

A.14.2 Performance Enhancements

Added cached and indexed point-in-polygon short-circuits for the functions ST_Contains, ST_Intersects, ST_Within and ST_Disjoint

Added inline index support for relational functions (except ST_Disjoint)

A.14.3 Other Changes

Extended curved geometry support into the geometry accessor and some processing functions
Began migration of functions to the SQL-MM naming convention; using a spatial type (ST) prefix.

Added initial support for PostgreSQL 8.3

A.15 Release 1.2.1

Release date: 2007/01/11

This release provides bug fixes in PostgreSQL 8.2 support and some small performance enhancements.

A.15.1 Changes

Fixed point-in-polygon shortcut bug in Within().
Fixed PostgreSQL 8.2 NULL handling for indexes.
Updated RPM spec files.

Added short-circuit for Transform() in no-op case.

JDBC: Fixed JTS handling for multi-dimensional geometries (thanks to Thomas Marti for hint and partial patch). Additionally,
now JavaDoc is compiled and packaged. Fixed classpath problems with GCJ. Fixed pgjdbc 8.2 compatibility, losing support for
jdk 1.3 and older.

A.16 Release 1.2.0

Release date: 2006/12/08

This release provides type definitions along with serialization/deserialization capabilities for SQL-MM defined curved geome-
tries, as well as performance enhancements.

A.16.1 Changes

Added curved geometry type support for serialization/deserialization

Added point-in-polygon shortcircuit to the Contains and Within functions to improve performance for these cases.

PostGIS 1.5.5 Manual
308 /322

A.17 Release 1.1.6

Release date: 2006/11/02

This is a bugfix release, in particular fixing a critical error with GEOS interface in 64bit systems. Includes an updated of the SRS
parameters and an improvement in reprojections (take Z in consideration). Upgrade is encouraged.

A.17.1 Upgrading

If you are upgrading from release 1.0.3 or later follow the soft upgrade procedure.

If you are upgrading from a release between 1.0.0RC6 and 1.0.2 (inclusive) and really want a live upgrade read the upgrade
section of the 1.0.3 release notes chapter.

Upgrade from any release prior to 1.0.0RC6 requires an hard upgrade.

A.17.2 Bug fixes

fixed CAPI change that broke 64-bit platforms
loader/dumper: fixed regression tests and usage output

Fixed setSRID() bug in JDBC, thanks to Thomas Marti

A.17.3 Other changes

use Z ordinate in reprojections

spatial_ref_sys.sql updated to EPSG 6.11.1

Simplified Version.config infrastructure to use a single pack of version variables for everything.
Include the Version.config in loader/dumper USAGE messages

Replace hand-made, fragile JDBC version parser with Properties

A.18 Release 1.1.5

Release date: 2006/10/13

This is an bugfix release, including a critical segfault on win32. Upgrade is encouraged.

A.18.1 Upgrading

If you are upgrading from release 1.0.3 or later follow the soft upgrade procedure.

If you are upgrading from a release between 1.0.0RC6 and 1.0.2 (inclusive) and really want a live upgrade read the upgrade
section of the 1.0.3 release notes chapter.

Upgrade from any release prior to 1.0.0RC6 requires an hard upgrade.

A.18.2 Bug fixes

Fixed MingW link error that was causing pgsql2shp to segfault on Win32 when compiled for PostgreSQL 8.2
fixed nullpointer Exception in Geometry.equals() method in Java

Added EJB3Spatial.odt to fulfill the GPL requirement of distributing the "preferred form of modification"
Removed obsolete synchronization from JDBC Jts code.

Updated heavily outdated README files for shp2pgsql/pgsql2shp by merging them with the manpages.
Fixed version tag in jdbc code that still said "1.1.3" in the "1.1.4" release.

PostGIS 1.5.5 Manual
309 /322

A.18.3 New Features

Added -S option for non-multi geometries to shp2pgsql

A.19 Release 1.14

Release date: 2006/09/27

This is an bugfix release including some improvements in the Java interface. Upgrade is encouraged.

A.19.1 Upgrading

If you are upgrading from release 1.0.3 or later follow the soft upgrade procedure.

If you are upgrading from a release between 1.0.0RC6 and 1.0.2 (inclusive) and really want a live upgrade read the upgrade
section of the 1.0.3 release notes chapter.

Upgrade from any release prior to 1.0.0RC6 requires an hard upgrade.

A.19.2 Bug fixes

Fixed support for PostgreSQL 8.2

Fixed bug in collect() function discarding SRID of input
Added SRID match check in MakeBox2d and MakeBox3d
Fixed regress tests to pass with GEOS-3.0.0

Improved pgsql2shp run concurrency.

A.19.3 Java changes

reworked JTS support to reflect new upstream JTS developers’ attitude to SRID handling. Simplifies code and drops build depend
on GNU trove.

Added EJB2 support generously donated by the "Geodetix s.r.l. Company" http://www.geodetix.it/

Added EJB3 tutorial / examples donated by Norman Barker <nbarker @ittvis.com>

Reorganized java directory layout a little.

A.20 Release 1.1.3

Release date: 2006/06/30

This is an bugfix release including also some new functionalities (most notably long transaction support) and portability enhance-
ments. Upgrade is encouraged.

A.20.1 Upgrading

If you are upgrading from release 1.0.3 or later follow the soft upgrade procedure.

If you are upgrading from a release between 1.0.0RC6 and 1.0.2 (inclusive) and really want a live upgrade read the upgrade
section of the 1.0.3 release notes chapter.

Upgrade from any release prior to 1.0.0RC6 requires an hard upgrade.

PostGIS 1.5.5 Manual
310/322

A.20.2 Bug fixes / correctness

BUGFIX in distance(poly,poly) giving wrong results.
BUGFIX in pgsql2shp successful return code.
BUGFIX in shp2pgsql handling of MultiLine WKT.
BUGFIX in affine() failing to update bounding box.

WKT parser: forbidden construction of multigeometries with EMPTY elements (still supported for GEOMETRYCOLLEC-
TION).

A.20.3 New functionalities

NEW Long Transactions support.
NEW DumpRings() function.
NEW AsHEXEWKB(geom, XDRINDR) function.

A.20.4 JDBC changes

Improved regression tests: MultiPoint and scientific ordinates
Fixed some minor bugs in jdbc code

Added proper accessor functions for all fields in preparation of making those fields private later

A.20.5 Other changes

NEW regress test support for loader/dumper.

Added --with-proj-libdir and --with-geos-libdir configure switches.
Support for build Tru64 build.

Use Jade for generating documentation.

Don’t link pgsql2shp to more libs then required.

Initial support for PostgreSQL 8.2.

A.21 Release 1.1.2

Release date: 2006/03/30

This is an bugfix release including some new functions and portability enhancements. Upgrade is encouraged.

A.21.1 Upgrading

If you are upgrading from release 1.0.3 or later follow the soft upgrade procedure.

If you are upgrading from a release between 1.0.0RC6 and 1.0.2 (inclusive) and really want a live upgrade read the upgrade
section of the 1.0.3 release notes chapter.

Upgrade from any release prior to 1.0.0RC6 requires an hard upgrade.

PostGIS 1.5.5 Manual
311/322

A.21.2 Bug fixes

BUGFIX in SnapToGrid() computation of output bounding box
BUGFIX in EnforceRHR()

jdbc2 SRID handling fixes in JTS code

Fixed support for 64bit archs

A.21.3 New functionalities

Regress tests can now be run *before* postgis installation

New affine() matrix transformation functions

New rotate{,X,Y,Z}() function

Old translating and scaling functions now use affine() internally

Embedded access control in estimated_extent() for builds against pgsql >= 8.0.0

A.21.4 Other changes

More portable ./configure script

Changed ./run_test script to have more sane default behaviour

A.22 Release 1.1.1

Release date: 2006/01/23

This is an important Bugfix release, upgrade is highly recommended. Previous version contained a bug in postgis_restore.pl
preventing hard upgrade procedure to complete and a bug in GEOS-2.2+ connector preventing GeometryCollection objects to be
used in topological operations.

A.22.1 Upgrading

If you are upgrading from release 1.0.3 or later follow the soft upgrade procedure.

If you are upgrading from a release between 1.0.0RC6 and 1.0.2 (inclusive) and really want a live upgrade read the upgrade
section of the 1.0.3 release notes chapter.

Upgrade from any release prior to 1.0.0RC6 requires an hard upgrade.

A.22.2 Bug fixes

Fixed a premature exit in postgis_restore.pl

BUGFIX in geometrycollection handling of GEOS-CAPI connector
Solaris 2.7 and MingW support improvements

BUGEFIX in line_locate_point()

Fixed handling of postgresql paths

BUGFIX in line_substring()

Added support for localized cluster in regress tester

PostGIS 1.5.5 Manual
312/322

A.22.3 New functionalities

New Z and M interpolation in line_substring()
New Z and M interpolation in line_interpolate_point()

added NumlInteriorRing() alias due to OpenGIS ambiguity

A.23 Release 1.1.0

Release date: 2005/12/21

This is a Minor release, containing many improvements and new things. Most notably: build procedure greatly simplified;
transform() performance drastically improved; more stable GEOS connectivity (CAPI support); lots of new functions; draft
topology support.

It is highly recommended that you upgrade to GEOS-2.2.x before installing PostGIS, this will ensure future GEOS upgrades
won’t require a rebuild of the PostGIS library.

A.23.1 Credits

This release includes code from Mark Cave Ayland for caching of proj4 objects. Markus Schaber added many improvements in
his JDBC2 code. Alex Bodnaru helped with PostgreSQL source dependency relief and provided Debian specfiles. Michael Fuhr
tested new things on Solaris arch. David Techer and Gerald Fenoy helped testing GEOS C-API connector. Hartmut Tschauner
provided code for the azimuth() function. Devrim GUNDUZ provided RPM specfiles. Carl Anderson helped with the new area
building functions. See the credits section for more names.

A.23.2 Upgrading
If you are upgrading from release 1.0.3 or later you DO NOT need a dump/reload. Simply sourcing the new Iwpostgis_upgrade.sql
script in all your existing databases will work. See the soft upgrade chapter for more information.

If you are upgrading from a release between 1.0.0RC6 and 1.0.2 (inclusive) and really want a live upgrade read the upgrade
section of the 1.0.3 release notes chapter.

Upgrade from any release prior to 1.0.0RC6 requires an hard upgrade.

A.23.3 New functions

scale() and transscale() companion methods to translate()
line_substring()

line_locate_point()

M(point)

LineMerge(geometry)

shift_longitude(geometry)

azimuth(geometry)
locate_along_measure(geometry, float8)
locate_between_measures(geometry, float8, float8)
SnapToGrid by point offset (up to 4d support)
BuildArea(any_geometry)

OGC BdPolyFromText(linestring_wkt, srid)

PostGIS 1.5.5 Manual
313/322

OGC BdMPolyFromText(linestring_wkt, srid)
RemovePoint(linestring, offset)

ReplacePoint(linestring, offset, point)

A.23.4 Bug fixes

Fixed memory leak in polygonize()
Fixed bug in lwgeom_as_anytype cast functions

Fixed USE_GEOS, USE_PROJ and USE_STATS elements of postgis_version() output to always reflect library state.

A.23.5 Function semantic changes

SnapToGrid doesn’t discard higher dimensions

Changed Z() function to return NULL if requested dimension is not available

A.23.6 Performance improvements

Much faster transform() function, caching proj4 objects

Removed automatic call to fix_geometry_columns() in AddGeometryColumns() and update_geometry_stats()

A.23.7 JDBC2 works

Makefile improvements

JTS support improvements

Improved regression test system

Basic consistency check method for geometry collections
Support for (Hex)(E)wkb

Autoprobing DriverWrapper for HexWKB / EWKT switching
fix compile problems in ValueSetter for ancient jdk releases.
fix EWKT constructors to accept SRID=4711; representation

added preliminary read-only support for java2d geometries

A.23.8 Other new things

Full autoconf-based configuration, with PostgreSQL source dependency relief
GEOS C-API support (2.2.0 and higher)

Initial support for topology modelling

Debian and RPM specfiles

New lwpostgis_upgrade.sql script

PostGIS 1.5.5 Manual
314 /322

A.23.9 Other changes

JTS support improvements

Stricter mapping between DBF and SQL integer and string attributes
Wider and cleaner regression test suite

old jdbc code removed from release

obsoleted direct use of postgis_proc_upgrade.pl

scripts version unified with release version

A.24 Release 1.0.6

Release date: 2005/12/06

Contains a few bug fixes and improvements.

A.24.1 Upgrading

If you are upgrading from release 1.0.3 or later you DO NOT need a dump/reload.

If you are upgrading from a release between 1.0.0RC6 and 1.0.2 (inclusive) and really want a live upgrade read the upgrade
section of the 1.0.3 release notes chapter.

Upgrade from any release prior to 1.0.0RC6 requires an hard upgrade.

A.24.2 Bug fixes

Fixed palloc(0) call in collection deserializer (only gives problem with --enable-cassert)
Fixed bbox cache handling bugs

Fixed geom_accum(NULL, NULL) segfault

Fixed segfault in addPoint()

Fixed short-allocation in Iwcollection_clone()

Fixed bug in segmentize()

Fixed bbox computation of SnapToGrid output

A.24.3 Improvements

Initial support for postgresql 8.2
Added missing SRID mismatch checks in GEOS ops

A.25 Release 1.0.5

Release date: 2005/11/25

Contains memory-alignment fixes in the library, a segfault fix in loader’s handling of UTF8 attributes and a few improvements
and cleanups.

N;"R’! Note

Return code of shp2pgsqgl changed from previous releases to conform to unix standards (return 0 on success).

PostGIS 1.5.5 Manual
315/322

A.25.1 Upgrading

If you are upgrading from release 1.0.3 or later you DO NOT need a dump/reload.

If you are upgrading from a release between 1.0.0RC6 and 1.0.2 (inclusive) and really want a live upgrade read the upgrade
section of the 1.0.3 release notes chapter.

Upgrade from any release prior to 1.0.0RC6 requires an hard upgrade.

A.25.2 Library changes

Fixed memory alignment problems

Fixed computation of null values fraction in analyzer
Fixed a small bug in the getPoint4d_p() low-level function
Speedup of serializer functions

Fixed a bug in force_3dm(), force_3dz() and force_4d()

A.25.3 Loader changes

Fixed return code of shp2pgsql
Fixed back-compatibility issue in loader (load of null shapefiles)
Fixed handling of trailing dots in dbf numerical attributes

Segfault fix in shp2pgsql (utf8 encoding)

A.25.4 Other changes

Schema aware postgis_proc_upgrade.pl, support for pgsql 7.2+

New "Reporting Bugs" chapter in manual

A.26 Release 1.0.4

Release date: 2005/09/09

Contains important bug fixes and a few improvements. In particular, it fixes a memory leak preventing successful build of GiST
indexes for large spatial tables.

A.26.1 Upgrading

If you are upgrading from release 1.0.3 you DO NOT need a dump/reload.

If you are upgrading from a release between 1.0.0RC6 and 1.0.2 (inclusive) and really want a live upgrade read the upgrade
section of the 1.0.3 release notes chapter.

Upgrade from any release prior to 1.0.0RC6 requires an hard upgrade.

PostGIS 1.5.5 Manual
316 /322

A.26.2 Bug fixes

Memory leak plugged in GiST indexing

Segfault fix in transform() handling of proj4 errors

Fixed some proj4 texts in spatial_ref_sys (missing +proj)

Loader: fixed string functions usage, reworked NULL objects check, fixed segfault on MULTILINESTRING input.
Fixed bug in MakeLine dimension handling

Fixed bug in translate() corrupting output bounding box

A.26.3 Improvements

Documentation improvements
More robust selectivity estimator
Minor speedup in distance()
Minor cleanups

GiST indexing cleanup

Looser syntax acceptance in box3d parser

A.27 Release 1.0.3

Release date: 2005/08/08

Contains some bug fixes - including a severe one affecting correctness of stored geometries - and a few improvements.

A.27.1 Upgrading
Due to a bug in a bounding box computation routine, the upgrade procedure requires special attention, as bounding boxes cached
in the database could be incorrect.

An hard upgrade procedure (dump/reload) will force recomputation of all bounding boxes (not included in dumps). This is
required if upgrading from releases prior to 1.0.0RC6.

If you are upgrading from versions 1.0.0RC6 or up, this release includes a perl script (utils/rebuild_bbox_caches.pl) to force
recomputation of geometries’ bounding boxes and invoke all operations required to propagate eventual changes in them (ge-
ometry statistics update, reindexing). Invoke the script after a make install (run with no args for syntax help). Optionally run
utils/postgis_proc_upgrade.pl to refresh postgis procedures and functions signatures (see Soft upgrade).

A.27.2 Bug fixes

Severe bugfix in lwgeom’s 2d bounding box computation
Bugfix in WKT (-w) POINT handling in loader

Bugfix in dumper on 64bit machines

Bugfix in dumper handling of user-defined queries

Bugfix in create_undef.pl script

PostGIS 1.5.5 Manual

317 /322

A.27.3 Improvements

Small performance improvement in canonical input function
Minor cleanups in loader

Support for multibyte field names in loader

Improvement in the postgis_restore.pl script

New rebuild_bbox_caches.pl util script

A.28 Release 1.0.2

Release date: 2005/07/04

Contains a few bug fixes and improvements.

A.28.1 Upgrading

If you are upgrading from release 1.0.0RC6 or up you DO NOT need a dump/reload.

Upgrading from older releases requires a dump/reload. See the upgrading chapter for more informations.

A.28.2 Bug fixes

Fault tolerant btree ops
Memory leak plugged in pg_error
Rtree index fix

Cleaner build scripts (avoided mix of CFLAGS and CXXFLAGS)

A.28.3 Improvements

New index creation capabilities in loader (-I switch)

Initial support for postgresql 8.1dev

A.29 Release 1.0.1

Release date: 2005/05/24

Contains a few bug fixes and some improvements.

A.29.1 Upgrading

If you are upgrading from release 1.0.0RC6 or up you DO NOT need a dump/reload.

Upgrading from older releases requires a dump/reload. See the upgrading chapter for more informations.

A.29.2 Library changes

BUGFIX in 3d computation of length_spheroid()

BUGFIX in join selectivity estimator

PostGIS 1.5.5 Manual
318 /322

A.29.3 Other changes/additions

BUGFIX in shp2pgsql escape functions

better support for concurrent postgis in multiple schemas
documentation fixes

jdbc2: compile with "-target 1.2 -source 1.2" by default

NEW -k switch for pgsql2shp

NEW support for custom createdb options in postgis_restore.pl
BUGFIX in pgsql2shp attribute names unicity enforcement
BUGEFIX in Paris projections definitions

postgis_restore.pl cleanups

A.30 Release 1.0.0

Release date: 2005/04/19

Final 1.0.0 release. Contains a few bug fixes, some improvements in the loader (most notably support for older postgis versions),
and more docs.

A.30.1 Upgrading

If you are upgrading from release 1.0.0RC6 you DO NOT need a dump/reload.

Upgrading from any other precedent release requires a dump/reload. See the upgrading chapter for more informations.

A.30.2 Library changes

BUGEFIX in transform() releasing random memory address
BUGFIX in force_3dm() allocating less memory then required

BUGEFIX in join selectivity estimator (defaults, leaks, tuplecount, sd)

A.30.3 Other changes/additions

BUGFIX in shp2pgsql escape of values starting with tab or single-quote
NEW manual pages for loader/dumper

NEW shp2pgsql support for old (HWGEOM) postgis versions

NEW -p (prepare) flag for shp2pgsql

NEW manual chapter about OGC compliancy enforcement

NEW autoconf support for JTS lib

BUGEFIX in estimator testers (support for LWGEOM and schema parsing)

A.31 Release 1.0.0RC6

Release date: 2005/03/30

Sixth release candidate for 1.0.0. Contains a few bug fixes and cleanups.

PostGIS 1.5.5 Manual
319/322

A.31.1 Upgrading

You need a dump/reload to upgrade from precedent releases. See the upgrading chapter for more informations.

A.31.2 Library changes

BUGFIX in multi()

early return [when noop] from multi()

A.31.3 Scripts changes

dropped {x,y}{min,max }(box2d) functions

A.31.4 Other changes

BUGEFIX in postgis_restore.pl scrip
BUGFIX in dumper’s 64bit support

A.32 Release 1.0.0RC5

Release date: 2005/03/25

Fifth release candidate for 1.0.0. Contains a few bug fixes and a improvements.

A.32.1 Upgrading

If you are upgrading from release 1.0.0RC4 you DO NOT need a dump/reload.

Upgrading from any other precedent release requires a dump/reload. See the upgrading chapter for more informations.

A.32.2 Library changes

BUGFIX (segfaulting) in box3d computation (yes, another!).
BUGFIX (segfaulting) in estimated_extent().

A.32.3 Other changes

Small build scripts and utilities refinements.

Additional performance tips documented.

A.33 Release 1.0.0RC4

Release date: 2005/03/18

Fourth release candidate for 1.0.0. Contains bug fixes and a few improvements.

A.33.1 Upgrading

You need a dump/reload to upgrade from precedent releases. See the upgrading chapter for more informations.

PostGIS 1.5.5 Manual
320/ 322

A.33.2 Library changes

BUGFIX (segfaulting) in geom_accum().

BUGFIX in 64bit architectures support.

BUGFIX in box3d computation function with collections.
NEW subselects support in selectivity estimator.

Early return from force_collection.

Consistency check fix in SnapToGrid().

Box2d output changed back to 15 significant digits.

A.33.3 Scripts changes

NEW distance_sphere() function.
Changed get_proj4_from_srid implementation to use PL/PGSQL instead of SQL.

A.33.4 Other changes

BUGEFIX in loader and dumper handling of MultiLine shapes
BUGEFIX in loader, skipping all but first hole of polygons.
jdbc2: code cleanups, Makefile improvements

FLEX and YACC variables set *after* pgsql Makefile.global is included and only if the pgsql *stripped* version evaluates to the
empty string

Added already generated parser in release
Build scripts refinements
improved version handling, central Version.config

improvements in postgis_restore.pl

A.34 Release 1.0.0RC3

Release date: 2005/02/24

Third release candidate for 1.0.0. Contains many bug fixes and improvements.

A.34.1 Upgrading

You need a dump/reload to upgrade from precedent releases. See the upgrading chapter for more informations.

A.34.2 Library changes

BUGFIX in transform(): missing SRID, better error handling.

BUGFIX in memory alignment handling

BUGEFIX in force_collection() causing mapserver connector failures on simple (single) geometry types.
BUGFIX in GeometryFromText() missing to add a bbox cache.

reduced precision of box2d output.

prefixed DEBUG macros with PGIS_ to avoid clash with pgsql one

plugged a leak in GEOS2POSTGIS converter

Reduced memory usage by early releasing query-context palloced one.

PostGIS 1.5.5 Manual
321/322

A.34.3 Scripts changes

BUGFIX in 72 index bindings.

BUGFIX in probe_geometry_columns() to work with PG72 and support multiple geometry columns in a single table
NEW bool::text cast

Some functions made IMMUTABLE from STABLE, for performance improvement.

A.34.4 JDBC changes

jdbc2: small patches, box2d/3d tests, revised docs and license.

jdbc2: bug fix and testcase in for pgjdbc 8.0 type autoregistration

jdbc2: Removed use of jdk1.4 only features to enable build with older jdk releases.
jdbc2: Added support for building against pg72jdbc2.jar

jdbc2: updated and cleaned makefile

jdbc2: added BETA support for jts geometry classes

jdbe2: Skip known-to-fail tests against older PostGIS servers.

jdbc2: Fixed handling of measured geometries in EWKT.

A.34.5 Other changes

new performance tips chapter in manual

documentation updates: pgsql72 requirement, Iwpostgis.sql

few changes in autoconf

BUILDDATE extraction made more portable

fixed spatial_ref_sys.sql to avoid vacuuming the whole database.

spatial_ref_sys: changed Paris entries to match the ones distributed with 0.x.

A.35 Release 1.0.0RC2

Release date: 2005/01/26

Second release candidate for 1.0.0 containing bug fixes and a few improvements.

A.35.1 Upgrading

You need a dump/reload to upgrade from precedent releases. See the upgrading chapter for more informations.

A.35.2 Library changes

BUGEFIX in pointarray box3d computation

BUGFIX in distance_spheroid definition

BUGFIX in transform() missing to update bbox cache

NEW jdbc driver (jdbc2)

GEOMETRYCOLLECTION(EMPTY) syntax support for backward compatibility
Faster binary outputs

Stricter OGC WKB/WKT constructors

PostGIS 1.5.5 Manual
322 /322

A.35.3 Scripts changes

More correct STABLE, IMMUTABLE, STRICT uses in Iwpostgis.sql
stricter OGC WKB/WKT constructors

A.35.4 Other changes

Faster and more robust loader (both i18n and not)

Initial autoconf script

A.36 Release 1.0.0RC1

Release date: 2005/01/13

This is the first candidate of a major postgis release, with internal storage of postgis types redesigned to be smaller and faster on
indexed queries.

A.36.1 Upgrading

You need a dump/reload to upgrade from precedent releases. See the upgrading chapter for more informations.

A.36.2 Changes

Faster canonical input parsing.

Lossless canonical output.

EWKB Canonical binary 10 with PG>73.

Support for up to 4d coordinates, providing lossless shapefile->postgis->shapefile conversion.

New function: UpdateGeometrySRID(), AsGML(), SnapToGrid(), ForceRHR(), estimated_extent(), accum().
Vertical positioning indexed operators.

JOIN selectivity function.

More geometry constructors / editors.

PostGIS extension API.

UTF8 support in loader.

	Introduction
	Project Steering Committee
	Contributors Past and Present
	More Information

	Installation
	Short Version
	Requirements
	Getting the Source
	Installation
	Configuration
	Building
	Testing
	Installation

	Create a spatially-enabled database
	Create a spatially-enabled database from a template
	Upgrading
	Soft upgrade
	Hard upgrade

	Common Problems
	JDBC
	Loader/Dumper

	Frequently Asked Questions
	Using PostGIS: Data Management and Queries
	GIS Objects
	OpenGIS WKB and WKT
	PostGIS EWKB, EWKT and Canonical Forms
	SQL-MM Part 3

	PostGIS Geography Type
	Geography Basics
	When to use Geography Data type over Geometry data type
	Geography Advanced FAQ

	Using OpenGIS Standards
	The SPATIAL_REF_SYS Table and Spatial Reference Systems
	The GEOMETRY_COLUMNS Table
	Creating a Spatial Table
	Manually Registering Geometry Columns in geometry_columns
	Ensuring OpenGIS compliancy of geometries
	Dimensionally Extended 9 Intersection Model (DE-9IM)
	Theory

	Loading GIS Data
	Using SQL
	Using the Loader

	Retrieving GIS Data
	Using SQL
	Using the Dumper

	Building Indexes
	GiST Indexes
	Using Indexes

	Complex Queries
	Taking Advantage of Indexes
	Examples of Spatial SQL

	Using PostGIS: Building Applications
	Using MapServer
	Basic Usage
	Frequently Asked Questions
	Advanced Usage
	Examples

	Java Clients (JDBC)
	C Clients (libpq)
	Text Cursors
	Binary Cursors

	Performance tips
	Small tables of large geometries
	Problem description
	Workarounds

	CLUSTERing on geometry indices
	Avoiding dimension conversion
	Tuning your configuration
	Startup
	Runtime

	PostGIS Reference
	PostgreSQL PostGIS Types
	box2d
	box3d
	box3d_extent
	geometry
	geometry_dump
	geography

	Management Functions
	AddGeometryColumn
	DropGeometryColumn
	DropGeometryTable
	PostGIS_Full_Version
	PostGIS_GEOS_Version
	PostGIS_LibXML_Version
	PostGIS_Lib_Build_Date
	PostGIS_Lib_Version
	PostGIS_PROJ_Version
	PostGIS_Scripts_Build_Date
	PostGIS_Scripts_Installed
	PostGIS_Scripts_Released
	PostGIS_Uses_Stats
	PostGIS_Version
	Populate_Geometry_Columns
	Probe_Geometry_Columns
	UpdateGeometrySRID

	Geometry Constructors
	ST_BdPolyFromText
	ST_BdMPolyFromText
	ST_GeogFromText
	ST_GeographyFromText
	ST_GeogFromWKB
	ST_GeomCollFromText
	ST_GeomFromEWKB
	ST_GeomFromEWKT
	ST_GeometryFromText
	ST_GeomFromGML
	ST_GeomFromKML
	ST_GMLToSQL
	ST_GeomFromText
	ST_GeomFromWKB
	ST_LineFromMultiPoint
	ST_LineFromText
	ST_LineFromWKB
	ST_LinestringFromWKB
	ST_MakeBox2D
	ST_MakeBox3D
	ST_MakeLine
	ST_MakeEnvelope
	ST_MakePolygon
	ST_MakePoint
	ST_MakePointM
	ST_MLineFromText
	ST_MPointFromText
	ST_MPolyFromText
	ST_Point
	ST_PointFromText
	ST_PointFromWKB
	ST_Polygon
	ST_PolygonFromText
	ST_WKBToSQL
	ST_WKTToSQL

	Geometry Accessors
	GeometryType
	ST_Boundary
	ST_CoordDim
	ST_Dimension
	ST_EndPoint
	ST_Envelope
	ST_ExteriorRing
	ST_GeometryN
	ST_GeometryType
	ST_InteriorRingN
	ST_IsClosed
	ST_IsEmpty
	ST_IsRing
	ST_IsSimple
	ST_IsValid
	ST_IsValidReason
	ST_M
	ST_NDims
	ST_NPoints
	ST_NRings
	ST_NumGeometries
	ST_NumInteriorRings
	ST_NumInteriorRing
	ST_NumPoints
	ST_PointN
	ST_SRID
	ST_StartPoint
	ST_Summary
	ST_X
	ST_Y
	ST_Z
	ST_Zmflag

	Geometry Editors
	ST_AddPoint
	ST_Affine
	ST_Force_2D
	ST_Force_3D
	ST_Force_3DZ
	ST_Force_3DM
	ST_Force_4D
	ST_Force_Collection
	ST_ForceRHR
	ST_LineMerge
	ST_CollectionExtract
	ST_Multi
	ST_RemovePoint
	ST_Reverse
	ST_Rotate
	ST_RotateX
	ST_RotateY
	ST_RotateZ
	ST_Scale
	ST_Segmentize
	ST_SetPoint
	ST_SetSRID
	ST_SnapToGrid
	ST_Transform
	ST_Translate
	ST_TransScale

	Geometry Outputs
	ST_AsBinary
	ST_AsEWKB
	ST_AsEWKT
	ST_AsGeoJSON
	ST_AsGML
	ST_AsHEXEWKB
	ST_AsKML
	ST_AsSVG
	ST_GeoHash
	ST_AsText

	Operators
	&&
	&<
	&<|
	&>
	<<
	<<|
	=
	>>
	@
	|&>
	|>>
	~
	~=

	Spatial Relationships and Measurements
	ST_Area
	ST_Azimuth
	ST_Centroid
	ST_ClosestPoint
	ST_Contains
	ST_ContainsProperly
	ST_Covers
	ST_CoveredBy
	ST_Crosses
	ST_LineCrossingDirection
	ST_Disjoint
	ST_Distance
	ST_HausdorffDistance
	ST_MaxDistance
	ST_Distance_Sphere
	ST_Distance_Spheroid
	ST_DFullyWithin
	ST_DWithin
	ST_Equals
	ST_HasArc
	ST_Intersects
	ST_Length
	ST_Length2D
	ST_Length3D
	ST_Length_Spheroid
	ST_Length2D_Spheroid
	ST_Length3D_Spheroid
	ST_LongestLine
	ST_OrderingEquals
	ST_Overlaps
	ST_Perimeter
	ST_Perimeter2D
	ST_Perimeter3D
	ST_PointOnSurface
	ST_Relate
	ST_ShortestLine
	ST_Touches
	ST_Within

	Geometry Processing Functions
	ST_Buffer
	ST_BuildArea
	ST_Collect
	ST_ConvexHull
	ST_CurveToLine
	ST_Difference
	ST_Dump
	ST_DumpPoints
	ST_DumpRings
	ST_Intersection
	ST_LineToCurve
	ST_MemUnion
	ST_MinimumBoundingCircle
	ST_Polygonize
	ST_Shift_Longitude
	ST_Simplify
	ST_SimplifyPreserveTopology
	ST_SymDifference
	ST_Union

	Linear Referencing
	ST_Line_Interpolate_Point
	ST_Line_Locate_Point
	ST_Line_Substring
	ST_Locate_Along_Measure
	ST_Locate_Between_Measures
	ST_LocateBetweenElevations
	ST_AddMeasure

	Long Transactions Support
	AddAuth
	CheckAuth
	DisableLongTransactions
	EnableLongTransactions
	LockRow
	UnlockRows

	Miscellaneous Functions
	ST_Accum
	Box2D
	Box3D
	ST_Estimated_Extent
	ST_Expand
	ST_Extent
	ST_Extent3D
	Find_SRID
	ST_Mem_Size
	ST_Point_Inside_Circle
	ST_XMax
	ST_XMin
	ST_YMax
	ST_YMin
	ST_ZMax
	ST_ZMin

	Exceptional Functions
	PostGIS_AddBBox
	PostGIS_DropBBox
	PostGIS_HasBBox

	PostGIS Special Functions Index
	PostGIS Aggregate Functions
	PostGIS SQL-MM Compliant Functions
	PostGIS Geography Support Functions
	PostGIS Geometry Dump Functions
	PostGIS Box Functions
	PostGIS Functions that support 3D
	PostGIS Curved Geometry Support Functions
	PostGIS Function Support Matrix
	New PostGIS Functions
	PostGIS Functions new, behavior changed, or enhanced in 1.5
	PostGIS Functions new, behavior changed, or enhanced in 1.4
	PostGIS Functions new in 1.3

	Reporting Problems
	Reporting Software Bugs
	Reporting Documentation Issues

	Appendix
	Release 1.5.5
	Bug Fixes

	Release 1.5.4
	Bug Fixes

	Release 1.5.3
	Bug Fixes

	Release 1.5.2
	Bug Fixes

	Release 1.5.1
	Bug Fixes

	Release 1.5.0
	API Stability
	Compatibility
	New Features
	Enhancements
	Bug fixes

	Release 1.4.0
	API Stability
	Compatibility
	New Features
	Enhancements
	Bug fixes

	Release 1.3.6
	Release 1.3.5
	Release 1.3.4
	Release 1.3.3
	Release 1.3.2
	Release 1.3.1
	Release 1.3.0
	Added Functionality
	Performance Enhancements
	Other Changes

	Release 1.2.1
	Changes

	Release 1.2.0
	Changes

	Release 1.1.6
	Upgrading
	Bug fixes
	Other changes

	Release 1.1.5
	Upgrading
	Bug fixes
	New Features

	Release 1.1.4
	Upgrading
	Bug fixes
	Java changes

	Release 1.1.3
	Upgrading
	Bug fixes / correctness
	New functionalities
	JDBC changes
	Other changes

	Release 1.1.2
	Upgrading
	Bug fixes
	New functionalities
	Other changes

	Release 1.1.1
	Upgrading
	Bug fixes
	New functionalities

	Release 1.1.0
	Credits
	Upgrading
	New functions
	Bug fixes
	Function semantic changes
	Performance improvements
	JDBC2 works
	Other new things
	Other changes

	Release 1.0.6
	Upgrading
	Bug fixes
	Improvements

	Release 1.0.5
	Upgrading
	Library changes
	Loader changes
	Other changes

	Release 1.0.4
	Upgrading
	Bug fixes
	Improvements

	Release 1.0.3
	Upgrading
	Bug fixes
	Improvements

	Release 1.0.2
	Upgrading
	Bug fixes
	Improvements

	Release 1.0.1
	Upgrading
	Library changes
	Other changes/additions

	Release 1.0.0
	Upgrading
	Library changes
	Other changes/additions

	Release 1.0.0RC6
	Upgrading
	Library changes
	Scripts changes
	Other changes

	Release 1.0.0RC5
	Upgrading
	Library changes
	Other changes

	Release 1.0.0RC4
	Upgrading
	Library changes
	Scripts changes
	Other changes

	Release 1.0.0RC3
	Upgrading
	Library changes
	Scripts changes
	JDBC changes
	Other changes

	Release 1.0.0RC2
	Upgrading
	Library changes
	Scripts changes
	Other changes

	Release 1.0.0RC1
	Upgrading
	Changes

