PostgreSQL 11.4 Documentation

The PostgreSQL Global Development Group



PostgreSQL 11.4 Documentation

The PostgreSQL Global Development Group
Copyright © 1996-2019 The PostgreSQL Global Development Group

Legal Notice
PostgreSQL is Copyright © 1996-2019 by the PostgreSQL Global Development Group.
Postgres95 is Copyright © 1994-5 by the Regents of the University of California.

Permission to use, copy, modify, and distribute this software and its documentation for any purpose, without fee, and without a written
agreement is hereby granted, provided that the above copyright notice and this paragraph and the following two paragraphs appear in al copies.

IN NO EVENT SHALL THE UNIVERSITY OF CALIFORNIA BE LIABLE TO ANY PARTY FOR DIRECT, INDIRECT, SPECIAL,
INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING LOST PROFITS, ARISING OUT OF THE USE OF THIS SOFTWARE
AND ITS DOCUMENTATION, EVEN IF THE UNIVERSITY OF CALIFORNIA HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

THEUNIVERSITY OF CALIFORNIA SPECIFICALLY DISCLAIMSANY WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE SOFTWARE PROVIDED
HEREUNDER ISON AN “AS-IS’ BASIS, AND THE UNIVERSITY OF CALIFORNIA HASNO OBLIGATIONS TO PROVIDE MAIN-
TENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR MODIFICATIONS.




Table of Contents

PrEFBCE . e et XXX
1. What 1S POSIGrE@SQL? ...ttt ettt e XXX
2. A Brief History of POSIGreSQL .......uuiiiiiiiieieiii et XXX

2.1. The Berkeley POSTGRES Project .......cccvuieiiiiiiieiiiiiieecci e XXXIi
2.2, POSIOrESOS ... XXXIi
2.3, POSIOrESQL ..ottt XXXil
3. CONVENTIONS ...ttt ettt et e et et e et et e e e e et e e e ere s XXXil
4. Further InfOrmation ..........coouuuiiiiiii e XXXil
5. Bug Reporting GUIEIINES ........uuniiiiiiie e XXXl
5.1 1dentifying BUGS ....ccevvneiiiiiiee ettt XXXl
5.2. WHEt t0 REDPOIT ...ttt e XXXIV
5.3. Where t0 REPOIT BUGS ... .cevveiiiiiiii et XXXV
O N0 1o = TSP UP PP PPPPPTR PPN 1
L GEtING SEAEA .....veneeeei et 3
I 10 = ] = (o EO ST SOP PP UPPPTTRUPPPIN 3
1.2. Architectural FUNDamMENtalS ..........ccouvuiiiiiiiee e 3
1.3. Creating @ Dal@hase ........oceevuiiiiii e 3
1.4, ACCESSING 8 DaADESE ....ccvvneiiiii e 5
2. The SQL LBNGUBGE ....eevueeeeiiiieeeee ettt et e e e e 7
2.1 INEFOQUCTION ..ttt et e et e e 7
2.2, CONCEPLS ..eveeiet ettt ettt ettt 7
2.3. Creating aNew Talle ....oovunii e 7
2.4. Populating @ Table With ROWS .........ccoiiiiiiiiiiieii e 8
25, QUEYING A TaADIE ...eiii e e 9
2.6. J0iNS BEWEEN TabIES ..ooviiiiiii e 11
2.7. AQOregate FUNCLIONS .......cuuuneiiiii ettt e e e e 13
2.8 UPELES ...t 15
2.9, DEBLIONS ....eeiieieeeeie e 15
3. AGVANCED FEAIUMNES ....c.vei ettt ettt et e e s 16
130 B [ L oo (8 1o o EO PP TOP PP 16
B2, VIBINS ettt 16
3.3 FOrEIgN KEBYS ..ot 16
B4 THANSACHIONS ...eeiti et ettt ettt ettt e e e e e e et e eene 17
3.5, WINAOW FUNCHIONS ......uiiiiii et 19
3.6, INNEITEANCE ...t e 22
7. CONCIUSION ..ttt et e e et eeena e 23
[1. The SQL LBNQUAJE ... eeeitieeeeite ettt ettt et e et e et e e e e et eeenaa s 24
4. SQL SYNEBX +evteeeetiee ettt e ettt e et e et et et e et e et e e e e e e e e aean 32
A1, LeXiCal SHUCKUME ....cevveeieii ettt eaeas 32
4.2, ValUE EXPIrESSIONS ... eeieiieeeeiti e ettt ettt e et e e e 41
4.3. CaliNg FUNCLIONS ...ttt 55
5. Data DEFINITION ...ceeviiiiii e et et e 58
5.1 TADIE BASICS vt 58
5.2. DEFAUIT VAIUBS ...t 59
5.3, CONSITAINTS ..ttt ettt et e e e e e e 60
5.4, SysStemM COIUMNS ...ttt 67
5.5. MOdifying TableS .....coiiiiieii e 68
5.6, PrIVIIEOES ... e 71
5.7. ROW SeCUrity POIICIES ...ccevuniiiiii e 72
5.8, SCREMAS ... 78
5.9, INNEITTANCE ... e e e 82
5.10. Table Partitioning .........ccuuuiiiiiiieiiii e 86
511, FOrEIGN DB ... cieeei ettt 99
5.12. Other Datahase ODJECES .......ccevuiiiiiiii et 99
5.13. DependenCy TraCKing ..........oeeeeueieiiiii et 100




PostgreSQL 11.4 Documentation

6. Data ManipUlation ..........cccouuieiiiieii e e e e e e e e e 102
Lo 1 == g To [ - - PN 102
(S 1o = 1] oo J T - L 103
(SRR D= 1= (] ool D - LN 104
6.4. Returning Data From Modified ROWS .........c.ccooiiiiiiiiiiicii e 104

2O N = 1= P 106
48 T @ = 4T 1 PP 106
7.2. Tahle EXPrESSIONS .....civiieiii e et e e e e e e e e e eaa s 106
7.3, SEIECE LISIS 1iiiiiiieiiiii ettt 121
7.4. CombiNiNG QUETES ....c.uuiiiiiieiiie e e e e e e e e e e e e aaaas 123
7.5. SOMING ROWS ...t e e e e e e e e e e ees 123
T76. LIM T and OFFSET ..oovniiiiiiiiieeiiie e e e et e eeeai e 124
T.7. VALUES LISES ittt e et e e s 125
7.8. W TH Queries (Common Table EXPreSSioNS) .....cc.uvevvnieiiiieeiiieeiiieeeieeeinns 126

S T DT = T Y/ o1 PP 132
8.1 NUMEIIC TYPES . tttiitiiee i ettt et et e e e e e e e e e e e e et e e et e e ean e eaes 133
8.2, MONEAY Ty DS ittt ittt 138
LI @ o= = Tot (= G Y/ o= PPN 139
8.4. BiNary Dafa TYPES c.uuuiiiieiii e et et e e e e e e e e e e e e e eeaens 141
8.5, DaAE/TIME TYPES civtuiiiieiii et et et e e e e e e e e et e et e et eeaanas 143
S = T To = g N Y/ o 152
8.7. ENUMEIAEd TYPES oovuiiiiieiii et ettt e e e e e e e e e e e e aans 153
8.8. GEOMELNIC TYPES ... civtneiiieiiii e et e et e e e e e e e e e e e e e e e et e et e e aaeeaens 155
8.9. NEtWOrK AdAreSS TYPES ..ovuueiiieiii i eeiiee et e e e e e e e e e e e e e e e aneees 157
8.10. Bit SIHNG TYPES .nniiveieii ettt et e e e e e e e e e eees 160
8.11. TeXt SEACH TYPES . oeen ittt e e 161
B.12. UUID TYPE - ieiitiieeeiit ettt ettt ettt e e et e e e et e e e eaanaeeees 163
ST Q1 R 1Y/ o= PP 164
ST N S @ N Y/ o=~ ST 166
S I N = Y P 173
8.16. COMPOSITE TYPES vvuteiitneeiieeei e eie e e e e et e e et e e et e e et e et e e et e e e aaeeeaneeeen 182
8.17. RANGE TYPES ..ttt 189
8.18. DOMAIN TYPES ..vuiitiieiii e et e e e e e et e e e e e e e et e et e e st e e e e e eaneeees 194
8.19. Object 1dentifier TYPES ..vuiiiii e e e e 195
8.20. PO SN TYP oottt 197
ST T e =0 (o 0l N o1 PN 197

9. FUNCLIONS @N0 OPEIAIOIS ... cvvueiiiieieiee e ee e e e e e e e e e e e e et e et e et e e e eeens 199
1< I oo [or= B @ o= = (] £ 199
9.2. Comparison FUNctions and OPErators ...........vevvuneeiineeiiiieeiieeeie e e e eeens 199
9.3. Mathematical Functions and OPErators ..........cccuveevieeiiieeiieeeiiee e eeaeeeens 202
9.4. String FUNCtions and OPEratorsS ..........ccuueeriieiiieeiiiee e e e e e eeaneeeees 205
9.5. Binary String Functions and OPErators ..........cccuvevieeiiieeiieeeiieeeeieeeaneeeens 220
9.6. Bit String Functions and OPErators .............eveeuuieeriieeiiieeeiieeeieeeeeeaneeaens 222
A = 1 (= ¢ TN\ (o 11 o P 223
9.8. Data Type Formatting FUNCLIONS ..........ccoviiiiiiiiin e 238
9.9. Date/Time Functions and OPErators .........c..oveveueeeiieiiiieeiie e e e eeaeeeees 245
9.10. Enum SUpPOrt FUNCLIONS .....ccuuiiiiieeiiecee e e e e e e 258
9.11. Geometric FUNCtions and OPEratorsS ..........ceevvuieeiiieeiieeiii e e e e e eaanaes 259
9.12. Network Address Functions and OPErators ..........eeevuvevuiieeiiieeiiiieeiieeeaneens 263
9.13. Text Search Functions and OPErators ..........coovvvveiiieeiiiieeiieeeeieeeei e eieeeen 265
9.14. XML FUNCLIONS ....eiiiii ettt e et e e e e e e 272
9.15. JSON Functions and OPErators ........cuueeeuuieiiiieeiieeeiieeeiee e e eee e e e eannas 285
9.16. Sequence Manipulation FUNCLIONS ...........coovviiiiiiiieiiiieceee e 294
9.17. Conditional EXPreSSIONS ... ...uueviviiiiieiiieeeieee e ee e e e e s e e e e 297
9.18. Array FUNCtions and OPEratorsS .........cc.ueeuueeiinierieeriiieeiee e eaieeeaneeeens 299
9.19. Range FUNctions and OPErators ........cc.uveivieeiieeiii e e e e e e e eaen 303
9.20. AQQregate FUNCLIONS ......ccuuiiii i e e e e 305
9.21. WINAOW FUNCLIONS ....uuieeiiiii e e e e 312




PostgreSQL 11.4 Documentation

9.22. SUDQUENY EXPrESSIONS ...vuuciiineeeieiii e e et e e et ee e e e e s et e e et e e st e e eeaneenen 314

9.23. Row and Array COMPAIiSONS .......evuuieiiieeiiieeeieesteesieeestneeatneeeteesanaaees 316

9.24. Set RetUrNing FUNCLIONS ........uiiii i e e e 319

9.25. System Information FUNCLIONS ..........cccovuiiiiiiiiiii e 322

9.26. System Administration FUNCLIONS .........couuiiiiiieiieeii e 339

9.27. Trigger FUNCHIONS .. .ouuiii et e e e e e e e et eeaaeees 357

9.28. Event Trigger FUNCLIONS .......couuiiiii e e e e 357

O Y oL o017/ = o] o PN 361
FO. 1. OVEIVIBIW Luueiiiii ettt e e et s e e et s e e e et a e e e et aeeeeatnaeaeees 361

J0.2. OPEIAIONS ittt ittt 362

10.3. FUNCLIONS ...ttt e et e e e et e e e e et e e e eetaaeeeee 366

O R 1 oI (o] - o = 370

10.5. UNI ON, CASE, and Related CONSIIUCES ........uuveviiiiieiiiiieeceiie e 370

10.6. SELECT OULPUL COIUMNS ....vvueeiiiieeeeeii e et e ettt e et e e 372

T o (== USSP 373
00 O 1 oo 0 1o ISP 373

2 1 o L= G Y/ o === 374

11.3. MUItiCOIUMN INAEXES .. .ceveiiieeiei e 376

11.4. Indexes and ORDER  BY ....cicvuiiiiiiiiiiieiiiii ettt e s 377

11.5. Combining MUltiple INAEXES .........oiivnieiie e 378

12.6. UNIQUE INAEXES ...vneeeeeei et e e e e e e e e e e e e 378

11.7. INAEXES ON EXPrESSIONS ...vuieiieeiiiieiii e e e e ete e e e e e e e e e e e e e eaneeeanees 379

11.8. Partial INAEXES .. .ceevviieeiiii e eaens 379
11.9. Index-Only Scans and Covering INdeXES ...........coevvvieiiiiieiiieeiie e eeais 382
11.10. Operator Classes and Operator FamilieS ..........ccceevviiiiiiiciiin e, 384
11.11. Indexes and CollationS ..........oovvuuiiiiiiiiiiee e 386
11.12. Examining INdeX USAQgE ......uviuniiiiieiii e e e e e e e e 386

N T L = A= o 388
2 O 1 1 oo (0 1o SO SUPPTTRSPP 388

12.2. TablesS @and INAEXES ....cocvvuiiiiiiie e 392

12.3. Controlling TexXt SEarch .........ccuviiiiiiiii e 394

12.4. Additional FEAIUMES .......uuiiiiiiii e 401

D25, PaISErS .. ettt ettt ettt ettt 406

12.6. DICHONAITES ...ueieiiii et e ettt e e e e e et e e et e eeera s 408

12.7. Configuration EXamMPIE .......couiiiiiiiiii e 418

12.8. Testing and Debugging Text SEarch .........cooovviveiiiiiiii e, 419

12.9. GIN and GiST INAEX TYPES .evvuneiiiiiiietiiiie et et et e et eenenes 424
2250 O T 1= o ST o) oo o 424
2 T R 1] = o) PP 427

13. ConCUrrenCy CONLIOl ......ccee e e r e e e e e aaas 429
G35 I 1 11 oo [0 1o PP 429

13.2. Transaction ISOIAON ... .ccvuvnieiiiii e e 429

13.3. EXPlICIt LOCKING «.cvvueiiieeii e e e e e e e e e e eeen 435

13.4. Data Consistency Checks at the Application Level ..........cccccocoviviiiiinnn. 440

T O (V= PP 442

13.6. Locking and INAEXES ......vvvniei e 442

14, P OIMANCE TIPS coivniiiieii ettt e e e e e e e e e e e e e et e e et e et e e aa e eens 444
14.1. USING EXPLAIL N Looi e 444

14.2. Statistics Used by the Planner ... 455

14.3. Controlling the Planner with Explicit JO N ClauseS ........cc.oeevvvieviinieennnnnns 459

14.4. Populating @ Database .......cc.ueiinieiiiieeie e e e e e e 461

14.5. NON-DUrable SEttiNGS ......cvvvniiiieeii e e e e e e 464

15, Parallel QUETY ...ouniiiiii e e 465
15.1. How Parallel QUEry WOrKS ........covviiiiii e 465

15.2. When Can Parallel Query Be USed? ......ocuvviiiiiiiiiiiiiiiec e 466

15.3. Parallel PIans .....cocovuniiiiiiie et 467

15.4. Parallel SEfEtY ....ooveeeiiieiiis e 469

RIS o V7= g AN 41T o T (= (o o SO 471




PostgreSQL 11.4 Documentation

16. Installation from SOUrCE COUE ........uuiiiiiiii e e e 477
T S o g Y= £ o] o PP 477
16.2. REQUITEIMENES ..uuiii e e e e e e e e e e e e e e e et e e aaeeeanas a77
16.3. GELtNG ThE SOUICE .....ciiiciii e e e e e 479
16.4. InStallation ProCeAUME .........ivieeiiiee e 479
16.5. Post-INstallation SEIUP ... .c.ueiveicii e 491
16.6. Supported Platforms ...........oiiiiiiiii e 493
16.7. Platform-specific NOES ... .ccvuiiii e e 493
17. Installation from Source Code 0N WINAOWS ..........oveiiiiiiieiiiiiie e 501
17.1. Building with Visual C++ or the Microsoft Windows SDK ....................... 501
18. Server Setup and OPEratioN ........ocvuueiiiierii e e e e e 507
18.1. The PostgreSQL USEr ACCOUNL ....cvuuiiieiiieeeieeeiee e e e et e e e e eaaeeaens 507
18.2. Creating a Datahase CIUSLEY .........ovvviiiiiieciie e 507
18.3. Starting the Database SErVEr .......ccouviiiiii e 509
18.4. Managing Kernel RESOUICES ........covviiii i e e e e e e 512
18.5. Shutting DOWN the SEIVEr ......covuiiiiiic e 521
18.6. Upgrading a POStgreSQL CIUSLEr ......cccvueiiieiiiieeii e ee e e e 522
18.7. Preventing Server SPOOfiNg .....uuevereeiiieeiii e e e 525
18.8. ENCryptioN OPtiONS ....ccvuiiiiiieii e e e e e e e e eaas 525
18.9. Secure TCP/IP Connections with SSL ........ccoviiiiiiiiiiieceeee e, 526
18.10. Secure TCP/IP Connections with SSH Tunnels ..........ccovvvveviiiiiiiinneeenn, 530
18.11. Registering Event Log on WINOWS ...........oveiiieiiiieiiii e eeeeaiees 531
19. Server ConfigUIAtion ..........iiiiieii e e e e e 532
19.1. SEtting ParamMeterS ......ivvi e e 532
19.2. Fil@ LOCAIIONS ...uueeeieie et ettt e et e et e e et a e e eeaaneeeees 535
19.3. Connections and AUtNENtICALTION ........viiiiiiieiie e 536
19.4. Resource CoNSUMPLION ....covuiiiii e eeei e e e e e e e e e e e et e e e eanas 542
19.5. WrIt€ ANEAH LOQ ..vviviiiii e 548
RS S = o) 1 o o 554
19.7. QUENY Planning .....ccouniiiii i 559
19.8. Error Reporting and LOGGiNG ....cvuuvernieeiieeiieeiieeeiieeeieeeaeesinneeenneeennnas 565
19.9. RUN-TIME SEALISHICS ..oevevvieeeeii e e s 575
19.10. AULtOMALIC VACUUMING .....ivveeiieeiiiieeie e e e e e e e e e et e s e e et e eeaneees 577
19.11. Client Connection DEfALIS ........ocvevuiieiiiiiii e 578
19.12. LOCK MaNagemeNt .........oviinieiiieeiieeieee e e e e e et e e e e e e e e st e e et eeaneens 587
19.13. Version and Platform Compatibility ..........cccoeeiiiiiiiiiiiiiiicin e, 588
e e o T P | o 590
19.15. Presat OPtiONS ...ccuuuiiiiieiiiieeiie e e e e e e et e e e e e e e e e et e e et e e et e e e eeanns 590
19.16. CUStOMIZEA OPLIONS .....ivviieieei e e e eaa s 592
19.17. DEVEIOPEr OPLIONS ....vuuiiiieiiiieiiii e e e e e e e e e e e e e e e eaeans 592
19.18. SN0t OPLIONS . .cvvueei e e e e e e e e e e e e e e e e e e e aaaaes 595
20. Client AUtNENLICALION ......uueieiiis e e e e e 597
20.1. The pg_hba. conf File ....cccooiiiiii e 597
20.2. USEr NAIME MBS ..ottt et 604
20.3. Authentication MethOS ...........viiiiiiiiiii e 605
20.4. Trust AULNENEICAEION ....vvuiiieii e 606
20.5. Password AUtNentiCation ...........couuuiieiiiiiie e 606
20.6. GSSAPI AUtNENLICALION ...cevvviieiiiii e 607
20.7. SSPI AUNENtICALION ...eevviieeeiii e 608
20.8. Ident AULhENTICAION ... .ccevveeeeeii et e e e e eei e eaens 609
20.9. Peer AULNENLICALION ....cvieviiieiieii e 610
20.10. LDAP AULhENtiCALION ....eiiveiieieiise ettt e e 610
20.11. RADIUS AUtNENtICALION ...ivvveieiiiie e 613
20.12. Certificate AUENICALION .......uiiiiiiie e 614
20.13. PAM AUtNENLICAION ...ceiiviieeieis e 614
20.14. BSD AULNENLICAION ....eeeeviiieeiiii et e et e e e e e et e e eenenaeeees 615
20.15. Authentication Problems ............viiiiiiiiiiiiii e 615
21, DAtahase ROIES .....civeiiiee e 617

Vi



PostgreSQL 11.4 Documentation

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

21.1. Datahase ROIES ......uuvviiieeiiiiicee et 617
21.2. ROIE ALIDULES ... et eaees 618
21.3. ROIE MEMDBErSNIP . ive i 619
21.4. Dropping ROIES ......ieiiee e 621
21.5. DEFAUIT ROIES ..uvuiiiiceiieeeee et e e e e e e e e aanee 621
21.6. FUNCLION SECUMLY .uuuiiiiieii e e e e e e e e e e e e e et e e aa e eens 622
Managing Databases .......ccvueiiii i 624
22,1, OVEIVIBIW vttt e e et e e e e e e e e et s e e e e e e e e saaa e e aaeeaeeannnes 624
22.2. Creating @ Database .......cccvuieiii i 624
22.3. Template Databases ..........vevvnieiiiccie e 625
22.4. Database COonfiguration .........cc..eeiiiiieiieeii e e e e e e et e e e aes 626
22.5. Destroying a DatabhaSe .........cccvuiiiiiiiiiie e 627
A T I o = o o = S 627
(oo 112 1o PP 630
PG T I o oz L= IS o] oo o AP 630
23.2. Coll@tion SUPPOIT «....cieieeiiee e et e e e e e e et e et e e aaeeeens 632
23.3. CharaCter Set SUPPOIT ......ciii e e e e e e eees 638
Routine Database MaintenanCe TasKS ........veeeeurieriiiiiieeeiinee e et e e eein e e eeineeeeens 645
24.1. ROULINE VACUUMING ..uuiiitieii e ee e et s e e e e et e e et s e e eeeaaaeeat e eeaneaennas 645
24.2. ROULINE REINAEXING ©..cvvueiiiieiii e e e e e e e e e e e e e eeaens 652
24.3. Log File MaNteNanCe .........uuevieeiiii e e e e e e e e e e eeen 653
Backup and RESIOIE ... cuuu i e 655
25. 1. SOL DUIMIP .otttiiiieeeie ettt s s e e e ettt e e e e e e e e et e s e e e e e e e aaaaan s e eeeeaeaenes 655
25.2. File System Level Backup ........oevuiiiiiiiiiiicie e 658
25.3. Continuous Archiving and Point-in-Time Recovery (PITR) ...........cccvveenn.. 659
High Availability, Load Balancing, and Replication ..............cccoeevviiiiiiieiiinecinens 671
26.1. Comparison of Different SOIUtiONS ..........cccuiviiiiieiiii e 671
26.2. Log-Shipping Standby SErVErS .......cccuiiiiiieiii e 674
26.3. FallOVEL ..oiiiiiiiii e e aaaaaaae 683
26.4. Alternative Method for Log Shipping .....cccvveviiiieiiiicii e, 684
26.5. HOt StANADY ..vvvviieeiiiiiiiee e e e e e e e e e e e e e e aaaae 685
RECOVErY CONfIQUIAION .....civeciii e e e e e e e e e e e e 693
27.1. Archive RECOVENY SELINGS ...uovvvniiiie e 693
27.2. Recovery Target SEtNGS ....u.evvrneeiiieiiii e e e e e e e e e e e e e eeans 694
27.3. Standby Server SELNGS ...vuvev e 695
Monitoring Database ACHIVITY ....couvneiiicii e 697
28.1. Standard UnNiX TOOIS ..euuuuieeiiiieeiiii ettt 697
28.2. The StatisticsS COHECON ......uiiiiii e 698
28.3. VIEeWING LOCKS ....couiiiiiiii e e 729
28.4. Progress REPOMING ....uvvvuieiii e e e e e e e e e e e e e e e e aaeees 729
28.5. DYNAMIC TIaCiNG ...vuueiiieiiiieiiiie e e e e e e et e e e e e e e e e e e e e e aaeeanns 731
MONItOriNG DisSK USBOE ....civviiiiii e e e e e e e e e et e eeanaees 742
29.1. Determining DiSK USAQE ......uiivniiiiieiiieeie e ee e e e e e et e e 742
29.2. Disk FUIl FaIlUI .....ccceeiieiiie e eeeaaaaes 743
Reliability and the Write-AhEad LOg ....ccvuiiiiiiiiiii e 744
O = = T ] 1 YRR 744
30.2. Write-Ahead Logging (WAL) ...oouiiiiii e 746
30.3. ASynchronous COMMIT ..........veiinieiiiieei e e e e e e e e e e e e e 746
30.4. WAL Configuration ........ccuueeiuuieiiieeiiie e ie e e e e e e e e e et e e et e e eanaeeens 747
30.5. WAL INEEIMEIS ..vuiiiiii ettt e e et e et e e et e eeees 750
oo Torz I == o) Lo 1 Lo o RN 752
T . o o= 1o o PP 752
G IS U 1= v ] o)1 Lo o P 753
3 G I 0o 1T £ PP 754
G I (== Ao o LS P 754
315, ATChITECIUIE ...t 755
13 ST 1 o g (o oo [ 755
S o ) Y SSPPPRRN 756

vii



PostgreSQL 11.4 Documentation

31.8. Configuration SEINGS .......ocvuniiiiieiiie e e e e e 756

31.9. QUICK SELUP ..ueieeiii et 756

32. Just-in-Time Compilation (JIT) ...cuueeeeniiiii e e e e e e 758
32.1. What is JIT COMPIHEHONT ....oeiniiiiiciie e e e e e 758

32.2. WHEN 10 JIT 2 oottt e e e et eeaees 758

IC2C T @0 011 To 1= 1 (o] o U 760

324, EXEENSIDIITY ooeeveieeeii e 760

T B L= | (= o T 1= = 761
33.1. RUNNING the TESES ...iviiciii e e e e e e 761

33.2. TSt EVAIUBLION ..vuieeiiiieeee et 764

33.3. Variant Comparison FilES .......ccouiiiiiiiiiiici e 767

T A e = £ S 768

33.5. Test Coverage EXaminalion ........cc.uvveiuiieiiieiiii e e e e e e e eanaeeeen 768

IV, Clent INEEIACES ...vu i e 769
34, 1HDPG = C LIBrary ..ooveii i 774
34.1. Database Connection Control FUNCLIONS .........cccvviiiiiiiiiieiiie e, 774

34.2. Connection StatuS FUNCLIONS ........uuiiiiiiiieeeiii e e e 787

34.3. Command EXeCUtion FUNCLIONS .........ooeviiiiieieiiiieeeeiiie e 793

34.4. Asynchronous Command ProCESSING ... .cuuevrrieiiieriiieeeiieeeiieesiieeaieeannens 809

34.5. Retrieving Query Results ROW-BY-ROW .........ccccoieviiiiiiiici e, 813

34.6. Canceling QUENES IN ProgresS .......uuevuuneiiiiieeiieeeieeee e e eie e e e e e e eeens 814

34.7. The Fast-Path Interface .........coouviiiiiiiii e 815

34.8. Asynchronous NOEIfICatioN .........cccuviiiiiiiii e, 816

34.9. Functions Associated with the COPY Command ..........ccccvvveveiiieeeiiinnnennns 817
34.10. CONLIOl FUNCHIONS ...vuieeiiiiieee et e e et e e e e e e eea e e eenes 821
34.11. Miscellaneous FUNCLIONS ... ...c.uuiiiiiiiiee e e e e e 823
34.12. NOLICE PrOCESSING ©..cvvtuiiineeiieeeie e e e e e e et e e et e e st e e et e e et e s e eaneenens 826
34.13. EVENE SYSLOIM ..uuiiiiiiii et e e e e e aee 827
34.14. Environment VariableS ..........viiiiiiiiiiii e 833
34.15. The Password FIle .......coovuuiiiii e 835
34.16. The Connection Service File ..........oviiiiiiiii e 835
34.17. LDAP Lookup of Connection Parameters .........cceceuvveviiieeiiieeiiieeeiieeeineens 836
3418, SSL SUPPOIT ..ttt 837
34.19. Behavior in Threaded Programs ...........coceuieiiiieeiiiiiiii e e e 840
34.20. Building [ibpg Programs ..........couiiiiiiiiii e 841
34.21. EXAMPIE PrOQramS ......uueiiiieiiiieeii e e e e e e e e e e e e et e e e e eans 842

LS T IR (0 (=l @) o[ ox P 854
11300 I g1 o (8o ' o PP 854
35.2. Implementation FEAIUIES ..........ccvvviiiii e 854

35.3. ClENt INtEIfACES . .cevvviieeeii e eees 854

35.4. Server-Side FUNCLIONS .........uuiiiiiiii e e et e e e e eees 858

35.5. EXAMPIE Program ... .c.uuiiiiieiii e e e e e 860

36. ECPG - Embedded SQL iNC ..ouvuiiiiiiii e 866
G T N I =T o o= o | 866

36.2. Managing Database CONNECLIONS ..........ccvuuiiiiiieiiiieiii e e e e e e e 866

36.3. Running SQL CoMMANGS .........ccouuieiiiieiiiie e e e e e eeens 869

36.4. Using HOSt VariableS ........covuiiiiiiii e 872

36.5. DYNAMIC SQL .oeviiiiiiiiiie e 886

36.6. POLYPES LIbrary ......oeeeeiiii i 888

36.7. USING DESCIIPLOr ATEBS ....civvieiiieiiiiee e ee e e e e e e e e e e e e e e eeaes 902

36.8. Error Handling ......ccoueiiniiiii e e e e e e e 915

36.9. PreproCessor DITECHIVES ... ...u.iii i e e e e e e e 922
36.10. Processing Embedded SQL Programs .........cc.uvevuieiiiieiiieeeiiieeiieeeeieeennn 924
36.11. Library FUNCLIONS .........uiiiiicii e e e 925
36.12. Large ObJECES ....cvueiiieeii e et e e e e e e e e 926
36.13. CH+ APPHCALIONS .. cevveiii e e 927
36.14. Embedded SQL ComMMandS ..........couuieiiiieiiiieeiieeci e e e e e 931
36.15. Informix Compatibility MOde ..........coeeviiiiiiiii e, 955

viii



PostgreSQL 11.4 Documentation

TS S 101 1= 11 7= SRR 970
37. The INformation SChEMA .. ......uiiiiii e 973
37.1. The SChEMA ... e 973
7.2, DAA TYPES .en ettt ettt ettt 973
37.3.informati on_schema _catal og name .........ccoocceveiiiiinieiee e, 974
374.adm nistrable role authorizations .........ccooeeiiiiiiiiiincnnnnn, 974
37.5.applicabl @ rol €S .o 974
7.6, At LT T DUL ES oo 975
37.7. Char @Ct BF _SEL S it 978
37.8.check_constraint_routine_usage ......ccooccoeveviiieiiincciiniecieeeinnn 979
37.9. CheCK_CONSErai NES .o 979
37.10. COI T @t T ONS coviiieiiiii e 980
37.11.col lation_character_set _applicability .....cccooriiiniinninnnnn. 980
37.12. cOl UM_dOMBI N_USAQE ..eeevniiiiiieiiie e e e e et e e 981
37.13. COl UNM_OPL i ONS oiiiiii e 981
37.14. Ol UMM_Pri Vil €0ES i 981
37.15. COl UNM_UAL _USAQE .uiiiiiieiiii e e e e e e et e e e e 982
37.16. COl UNMMIS Lottt e e 983
37.17.constrai Nt _COl UNTM_USAQE ...uuiiivniiiiiieiiie e e e e e e e eaaee s 987
37.18.constrai nt_tabl e _USage .....cocceviiiiiiiiiii e 987
37.09.data_type priVvil €0es .o 988
37.20. dOMBI N_CONSE T A NE'S touiiiii i e e e 989
37.21. dOMBI N_UAL _USAQE .iiiiiieiii e e e e e 989
I 2 s [o] 11 U o E- SO 990
37.23. €l EIMENE L Y PES i 992
37.24. enabl €d_ 0l €S ..o 995
37.25.forei gn_data wrapper_OptiONS ...ccooceieiiiiiiiiii e 995
37.26. forei gn_dat @ W apPer'S .uiiiiiiiii e 995
37.27.FT0orei gn_Server_OpPti ONS ..ociiiiiiiiiiii i 996
37.28. f OF €I gN Sl VI S 1itiiiiiieiii et e e et e e e e e e et e e ees 996
37.29.foreign_tabl e Options ...ccooiiiiiiiii i 997
37.30. forei gn_tabl €S ..o 997
37.3L KEY_COl UM _USAQE ..iiveiiiiieiiie e e e e e e e e et e e e e e 997
37,32, Par AR B S ittt 998
37.33. referential _constrainNts .....cccooeiiiiiiiiin i 1000
37.34. 10l €_Col UM _grant's ..ooooiiiiiiiiii e 1001
37.35. 10l € _routine_grants ...cooeiiiiiiiiii i 1002
37.36.r0l e tabl e grants ....occooiiiiiiiii 1002
37.37. 10l €_UAL _grant'S ..oooiiiiiiiiii e 1003
37.38. 10l €_USAQE _grant S ..oiiiiiiiiiiie e e 1004
37.30. 10Ut i NE_PriVil BOES i 1004
A o U o 1= PP 1005
3741, SCREMAL @ ooievei i 1010
Y T =To [ DT =] [ o =3 R PP 1010
37.43. Sl _F AL UIMNES iriiii i 1011
3744.sql _inmplenmentation info ..o, 1012
37.45. SOl | @NQUAGES .euiiviiiiiii e 1012
37.46. SOl _PACKAGES ovviiiiiiii e 1013
B7A47. SOl PAIt S oo 1013
37.48. SOl ST ZI N i 1014
37.49.5ql _Si Zing Profiles i 1014
37.50.tabl e CoNStrai NtS ..o 1015
3751 tabl @ Pri Vil @0ES . 1015
752, 1AD] €S v 1016
3753 tFANST OF ITB oo e 1017
3754.triggered _update Col UMS ..ooccoiiiiiiiiiiec e 1018
A ST A g e [0 =] =T 1018
37.56. Udt _Pri Vil €0ES oo 1020




PostgreSQL 11.4 Documentation

37.57. USAQE_Pri Vil BOES i 1020
37.58. user _defined _tYPeS .o 1021
37.59. user _mappi NG_OPLi ONS ...iiiiii e 1022
37.60. USEI IMBPPI NUS tuueiitiiiiieeii et e et e e e e e e e e e e e e st eeaneeaanaees 1023
37.61. Vi W _COl UMMN_USAQE .ivvniiiiiiiiiie e e e e e e e e 1023
37.62. Vi EBW T OUL i NE_USAQE ..vuiiiiiiiii e e e e e e e e e e 1024
37.63. view tabl @ USAQge ..occoiiii i 1024
704, Vi BWS ooiiiieiiii ettt e 1025

AV = L= . 0o = 0 1 411 oo P 1027
38. EXIENAING SQL ...evviiiiiiii ettt 1032
38.1. How Extensibility WOrksS .........c.cooiiiiiiiiiiici e 1032

38.2. The PostgreSQL TYPe SYSEM ...ouuiiiiiiii e 1032

38.3. User-defined FUNCLIONS .........uuiieiiiiiiciiiis e 1034

38.4. User-defined ProCEAUIES ..........uiiiiiiiiieiiiii e 1034

38.5. Query Language (SQL) FUNCLIONS .......ccvvuieiiiieii e ee e e, 1034

38.6. Function Overloading ...........cooveviiiiiiieiie e 1050

38.7. Function Volatility CategOori€s .........uieiiuieiiiiieiiieeeiieeeie e e e e e 1051

38.8. Procedural Language FUNCLIONS ...........uveiiiieiiiieeii e ee e e e 1053

38.9. INternal FUNCLIONS ........uuiiiiiiiiiiii et 1053
38.10. C-Language FUNCLIONS .........ccuuieiiii e e e e e e eanes 1053
38.11. User-defined AQQregates .......cvuniiiii e e e e aas 1074
38.12. USer-defiNed TYPES ..u.iven it e e e e e e 1081
38.13. User-defined OPEratorsS ........ccvuuieiiiieeeiieeiiiie e e e e e e e e e e e eanes 1085
38.14. Operator Optimization INfOrmMation ...........cceceviieiiiieiii e, 1086
38.15. Interfacing EXtensSions TO INAEXES .........cvvvnieiiiiiii e 1090
38.16. Packaging Related Objects into an EXteNSion ...........cccovevvveviiiieiineennnn. 1103
38.17. Extension Building INfrastruCture ...........cocooveeiiiiiiiiecie e, 1110

11 T I o (o = N 1114
39.1. Overview of Trigger BEhavior ..........ccoceviiiiiiiiiinci e 1114

39.2. Visibility of Data ChangeS .........vvvuniiiiieiiieee e 1117

39.3. Writing Trigger FUNCLIONS IN C ....ovviiiiiiii e 1117

39.4. A Complete Trigger EXample .....ccoeuneiiiiiiiii e 1120

O V= o | T (o (= N 1124
40.1. Overview of Event Trigger BENaVIor ............ccoiviiiiiiiiieie e 1124

40.2. Event Trigger Firing MatriX .......ooovvuiiiiiiiiiiii e 1125

40.3. Writing Event Trigger FUNCEIONS IN C .....ovviiiiiieccieece e, 1129

40.4. A Complete Event Trigger EXample .........ooviiiiiiiiiiiiiiece e 1130

40.5. A Table Rewrite Event Trigger EXample .......cccoovviiiiiiiiieeiiieceeeeeeen, 1131

A1, The RUIE SYSLEIM ...ttt e e et e e e et e e e eaa e eeeees 1133
A1.1. ThE QUENY TIEE .uuiiiiiieii et e e e e e e e e e e e et e e e e aaeees 1133

41.2. Views and the RUIE SYSIEM .....oovniiiiiii e 1134

41.3. MAEriaiZed VIBWS ....oieeiiiieeii et e e 1141

41.4. Rules on | NSERT, UPDATE, and DELETE .........cccviiiiiiiiinieiiiieeeceii, 1144
41.5. RUIES aNd PrIVIIEES .. .ccvneii e 1155
41.6. Rules and Command SEALUS ........c.uuveriiiiieeieiiii e e e 1157

41.7. RUIES VErSUS TIIQOENS covueiinieeiiieeeieeee e e e e e eae e et e e e et e e ete e et aesaaeeaanaees 1157

42. Procedural LanQUABOES ........u.evvunieeieeiiieeie e et eeeeteeeae e st s e et e e st e estnaesanesannaens 1160
42.1. Installing Procedural LangUagEeS ..........ccuovvviieiieeiiieciineee e e e 1160

43. PL/pgSQL - SQL Procedural LangUage .........cccuuvviinieiiieeiiiieciieeeeeei e e e 1163
T I @Y= VPSPPSR 1163
43.2. Structure of PL/PGSQL ....vvviieiieeie e 1164
A3.3. DECIArAHONS .. e 1166
B d o (== 0] 1 1171
43.5. BASIC SEALEIMENES ....uieiieiiiiee it e et e et et e e e e e e e eaeens 1172

43.6. CONLTOl SITUCLUMNES ... iieeii ettt e e e eanans 1180
A O 1 o = T PP PTP TP 1194
43.8. TransaCtion Management ...........ceeiuieeiiieeiiiiee e e e e e e e eanes 1200

43.9. Errors ant MESSAgES ....uuuevvneiiieeiiiee e et e e e e e e e e e et e e et e e e e aanaes 1201




PostgreSQL 11.4 Documentation

43.10. Trigger FUNCLIONS .....ccuuiiii e e et e e e e e e e e eaaeeees 1203
43.11. PL/pgSQL Under the HOOd ..........ccoviiiiiiiiiicicc e, 1212
43.12. Tips for Developing in PL/PGSQL ....uovvvniiiiiciieee e, 1215
43.13. Porting from Oracle PL/SQL .......ccovuiiiiiieiieeeee e 1218

44, PL/Tcl - Tcl Procedural LanQUagE .........cceuueiiieeiiieeiii e e e e e e e e eaae e 1228
Y I @Y= VPSPPSR 1228
44.2. PL/Tcl Functions and ArgumeNtS .........ccuuveviiieiineeiiiieeiiee e eeei e eaeeeens 1228

44.3. Data Values in PLITCl ..o 1230
44.4. Globa Datain PLITCl ..ouuiiiiii e 1230

44.5. Database AcCeSS From PL/TCl ....iviiiiiiiiii e 1231

44.6. Trigger FUNCLiONS iN PLITCl c.vnciinc e 1233

44.7. Event Trigger FUNCtions in PL/TCl ...vvivviiii e, 1235

44.8. Error Handling in PL/TCl ...oovniiiii e e 1235

44.9. Explicit Subtransactions in PL/TCl .....ccovviiiiiiiii e 1236
44.10. Transaction ManagemeNt ..........ooiviiieiiiieii e e 1237
44.11. PL/Tcl CONfigUIation ........oveueieiiiieeieeeei e e e e e e e e e e e e eeeen 1238
44.12. Tcl Procedure NEMES ........viiiiiieeiiii et e e e e e e e e 1238

45, PL/Perl - Perl Procedural Language ..........evvueeiinieiiiieeiieeeieee e e e e e e eeens 1239
45.1. PL/Perl Functions and ArgumMENES ..........ccuuieiuiieiiiieeeiieeeiieeeiieeaineenieens 1239

45.2. Data Values in PLIPErl ..o 1243

45.3. BUIlt-iN FUNCHIONS ...coeviiccc e 1243
45.4. Globa Values in PLIPEN ......ooiiiiiiiciei e 1248

45.5. Trusted and Untrusted PL/Per| ...........oiviiiiiiiiiiiiiiie e 1249

N T o I = 4 B I T o L= 1250
45.7. PL/Perl EVENt TIIQOEIS . cvvueiiii e e e et e e et e s e e e e e e eens 1252
45.8. PL/Perl Under the HOO .........ooviiiiiiiiiii e 1252

46. PL/Python - Python Procedural Language .........c.oveviieiiieiiiiecieeeeeeeeeeaie e 1255
46.1. Python 2 vS. PYthOn 3 ....ooii e 1255

46.2. PL/Python FUNCHIONS ......uuiiiiici e 1256
46.3. DAA VAIUBS ...t e 1257

46.4. ShaNG Dalal .. .ccvuiiiiieiiii e e 1263

46.5. Anonymous Code BIOCKS .........ovvuuiiiiiiiii e e 1263

46.6. Trigger FUNCHIONS ......ivviiii e e e e aaa s 1263

46.7. DAADASE ACCESS ....vvuieieiiiie et e et e e e e e e et e et eaaas 1264

46.8. EXplicit SUDLraNSaCioNS ..........oovvunieiiieeii e e 1268

46.9. Transaction Management ...........oveiiiieeiiieeiiie e ee e e e e eanes 1269
46.10. Utility FUNCLIONS .....ciiviiiii e e e e e 1270
46.11. Environment VariableS .........cooviuiiiiiiiiii 1271

47. Server Programming INtErface ........ooovviiiiiii e e 1273
47.1. Interface FUNCLIONS ... coieiii et eeeae e eees 1273

47.2. Interface SUPPOrt FUNCLIONS ........civieiii e e e 1307

47.3. Memory Management ........c.vvuviuiiiiiieei e 1316

47.4. TransaCtion Management ...........veiuiieeeiieeiiie e e e e e e eanes 1326

47.5. Visibility of Data Changes .........ccuuviiiiiiiiiiiii e 1329

A7.6. EXAMPIES ..ot 1329

48. Background WOTKEr PrOCESSES ......c.uuiiiiieiiiiieiii e e e e e e e e e e e e et e e e e aanas 1333
L R T o= I D= wo o [ o [P 1336
49.1. Logical Decoding EXampleS ......cc.uiiiiiiiiiiicii e 1336

49.2. Logical Decoding CONCEPLS ......uueivuneeiiieiiiiieiiieeeii e e e e e e e e e eaaeens 1338

49.3. Streaming Replication Protocol Interface .........cccoeevviiiiiiiiiiiiiiieeeieeenn, 1340

49.4. Logical Decoding SQL INtErface ......cc.uveviiiiiiiiieiiiecie e 1340
49.5. System Catalogs Related to Logical Decoding .........cooeevvevvnieiiiieiinneennnn. 1340

49.6. Logical Decoding OUtpUt PIUGINS ........covviiiiieiiieciii e eei e 1340

49.7. Logical Decoding OUtPULt WIHLEIS .......uevviiiiii e 1345

49.8. Synchronous Replication Support for Logical Decoding ............ccoccvvneennnn. 1345

50. Replication Progress TraCKing .........ciueieiiii i e e e e e e e e e eanee e 1346
VL REFEIBNCE ... ettt ettt et e e e e e e e 1347
S @ I o 410170 1352

Xi



PostgreSQL 11.4 Documentation

ABORT 1356
ALTER AGGREGATE ....oiiiiii e 1357
ALTER COLLATION ...ttt 1359
ALTER CONVERSION .....ciiiiiiiiiiiiiiic e 1361
ALTER DATABASE ... 1363
ALTER DEFAULT PRIVILEGES ..., 1366
ALTER DOMAIN .o 1369
ALTER EVENT TRIGGER ..ot 1372
ALTER EXTENSION ...oiiiiiiiiii e 1373
ALTER FOREIGN DATA WRAPPER ... 1377
ALTER FOREIGN TABLE ...t 1379
ALTER FUNCTION ....ooiiiiiiiiiii et 1384
ALTER GROUP .....oiiiiiiiii e 1388
ALTER INDEX ..ot 1390
ALTER LANGUAGE ...t 1393
ALTER LARGE OBJECT ..ottt 1394
ALTER MATERIALIZED VIEW ....oiiiiiiiiii e 1395
ALTER OPERATOR ....oiiiiiiii e 1397
ALTER OPERATOR CLASS ... 1399
ALTER OPERATOR FAMILY ..o 1400
ALTER POLICY oo 1404
ALTER PROCEDURE .......ocoiiiiiiiiii e 1406
ALTER PUBLICATION ..ottt 1409
ALTER ROLE .. .o 1411
ALTER ROUTINE ..ot 1415
ALTER RULE ... 1417
ALTER SCHEMA ..o 1418
ALTER SEQUENCE ..o 1419
ALTER SERVER ....cooii 1422
ALTER STATISTICS ... 1424
ALTER SUBSCRIPTION ....coiiiiiiiiiiiiii e 1425
ALTER SYSTEM ..o 1427
ALTER TABLE ..o 1429
ALTER TABLESPACE ... 1445
ALTER TEXT SEARCH CONFIGURATION .....c.oiiviiiiiiiiiiiinciineci e, 1447
ALTER TEXT SEARCH DICTIONARY ..o 1449
ALTER TEXT SEARCH PARSER .......cociiiiiiii e, 1451
ALTER TEXT SEARCH TEMPLATE ...t 1452
ALTER TRIGGER ......ciiiiiii e 1453
ALTER TYPE .o 1455
ALTER USER ..o 1459
ALTER USER MAPPING .....ooiiiiiiiiii e 1460
ALTER VIEW .o 1461
ANALYZE ... o 1463
BEGIN ..o 1466
CALL 1468
CHECKPOINT .ot 1469
LS .o 1470
CLUSTER ..o 1471
COMMENT Lo 1473
COMMIT e 1478
COMMIT PREPARED ......cooviiiiiiiii e 1479
GO Y 1480
CREATE ACCESS METHOD .....ccuiiiiiiiiiiiici e 1490
CREATE AGGREGATE ...t 1491
CREATE CAST o 1499
CREATE COLLATION L..uiiiiiiiiiiiii e 1503
CREATE CONVERSION ....ouiiiiiiiiiiii e 1505

Xii



PostgreSQL 11.4 Documentation

CREATE DATABASE ..o 1507
CREATE DOMAIN ..ot 1510
CREATE EVENT TRIGGER ......ooiiiiiiiiii e 1513
CREATE EXTENSION ....ooiiiiiiii e 1515
CREATE FOREIGN DATA WRAPPER ......ccooiiii 1517
CREATE FOREIGN TABLE ... 1519
CREATE FUNCTION L..ooiiiiiiiiii e 1523
CREATE GROUP ..ottt 1531
CREATE INDEX ...t 1532
CREATE LANGUAGE ... 1540
CREATE MATERIALIZED VIEW ... 1543
CREATE OPERATOR ...t 1545
CREATE OPERATOR CLASS ...t 1548
CREATE OPERATOR FAMILY .o 1551
CREATE POLICY .o 1552
CREATE PROCEDURE ..ot 1558
CREATE PUBLICATION ...ttt 1561
CREATE ROLE ...ooiiii e 1563
CREATE RULE ..o 1568
CREATE SCHEMA ..o 1571
CREATE SEQUENCE .......coiiiiiiiiiiic e 1574
CREATE SERVER ... 1578
CREATE STATISTICS ... 1580
CREATE SUBSCRIPTION ....ouiiiiiiiii e 1582
CREATE TABLE ... 1585
CREATE TABLE AS L. o 1606
CREATE TABLESPACE ......oiiiiii e 1609
CREATE TEXT SEARCH CONFIGURATION ......cooviiiiiiiiiinciie e, 1611
CREATE TEXT SEARCH DICTIONARY ....ooiiiiiiiiiiiiii e 1612
CREATE TEXT SEARCH PARSER ...t 1614
CREATE TEXT SEARCH TEMPLATE ..., 1616
CREATE TRANSFORM ..ottt 1617
CREATE TRIGGER ...t 1619
CREATE TYPE ..o 1626
CREATE USER ...coiiiiii 1635
CREATE USER MAPPING ......oiiiiiiiiiii e 1636
CREATE VIEW Lo 1638
DEALLOCATE ..o 1643
DECLARE ..o 1644
DELETE . o 1647
DISCARD ...t 1650
DO 1651
DROP ACCESS METHOD .....coviiiiiiiiiiiiicii e 1653
DROP AGGREGATE ...t 1654
DROP CAST oo 1656
DROP COLLATION .ottt 1657
DROP CONVERSION ....couiiiiiiiiiiiii et 1658
DROP DATABASE ..o 1659
DROP DOMAIN .ot 1660
DROP EVENT TRIGGER .......cciiiiiiiiiiii e 1661
DROP EXTENSION ...coiiiiiiiiiic e 1662
DROP FOREIGN DATA WRAPPER .......ccocoiiiiiii e, 1663
DROP FOREIGN TABLE ....ooiiiii e 1664
DROP FUNCTION ..ottt 1665
DROP GROUP .....ciiiiiiii e 1667
DROP INDEX ..ottt 1668
DROP LANGUAGE ... oot 1670
DROP MATERIALIZED VIEW ... 1671

Xiii



PostgreSQL 11.4 Documentation

DROP OPERATOR ...ttt 1672
DROP OPERATOR CLASS ..o 1674
DROP OPERATOR FAMILY oiiiiiiiii e 1676
DROP OWNED .....coiiiiiiiiiiiii e 1678
DROP POLICY ottt 1679
DROP PROCEDURE ........iiiiiiiiici e 1680
DROP PUBLICATION ..ottt 1682
DROP ROLE ..ot 1683
DROP ROUTINE ...coiiiiiiiii et 1684
DROP RULE ...t 1685
DROP SCHEMA ... 1686
DROP SEQUENCE ........coiiiiiiiiii 1687
DROP SERVER ...t 1688
DROP STATISTICS ... 1689
DROP SUBSCRIPTION ..ottt 1690
DROP TABLE ... 1692
DROP TABLESPACE ... 1693
DROP TEXT SEARCH CONFIGURATION ......ooiviiiiiiiiiiiiii e 1694
DROP TEXT SEARCH DICTIONARY ..o, 1695
DROP TEXT SEARCH PARSER ..o 1696
DROP TEXT SEARCH TEMPLATE ..o, 1697
DROP TRANSFORM ...ttt 1698
DROP TRIGGER .......ouiiiiiiiiiiii e 1699
DROP TYPE ..o 1700
DROP USER ... oot 1701
DROP USER MAPPING .....ouiiiiiiiiin e 1702
DROP VIEW ..ot 1703
END oo 1704
EXECUTE . 1705
EXPLAIN Lo 1706
FET CH 1711
GRAIN T 1715
IMPORT FOREIGN SCHEMA ...t 1722
INSERT .o 1724
LISTEN Lo 1731
LOAD o 1733
LOCK i 1734
MOVE .o 1737
NOTIFY e 1739
PREPARE ... 1742
PREPARE TRANSACTION ....civiiiiiiiiii e 1745
REASSIGN OWNED ....cocviiiiiii e 1747
REFRESH MATERIALIZED VIEW ..o 1748
REINDEX ... 1750
RELEASE SAVEPOINT ..ot 1753
RESE T e 1755
REVOKE ..o 1756
ROLLBACK o 1760
ROLLBACK PREPARED ........oiiiiiiiiiiiic e 1761
ROLLBACK TO SAVEPOINT ..ot 1762
SAVEPOINT ..o 1764
SECURITY LABEL ..ooi e 1766
SE L ECT e 1769
SELECT INTO .oiiiiiiii e 1790
SE T e 1792
SET CONSTRAINTS ..o 1795
SET ROLE ..o 1796
SET SESSION AUTHORIZATION ..ot 1798

Xiv



PostgreSQL 11.4 Documentation

SET TRANSACTION ..ttt e e e e et e eeenaaeeees 1800
SHOW e 1803
START TRANSACTION ...ouiiiiiiiiieeeei e e s 1805
TRUNCATE ..ottt et e e e e e e e e e aaa s 1806
UNLISTEN L.t e e e et e e e e aa s 1808
L N I PP 1810
VACUUM L. e et e et e e e et e e e eatnaeeens 1815
VALUES ..ot e et aaae 1818
I1. PostgreSQL Client APPlICAIONS .......uuieiiiieeii e e e e 1821
CIUSLEIAD ..o e 1822
(o= 1= | o ISP 1825
(0= (S T PP 1828
01 0] 0o | o S 1832
(01 0] 11 P 1835
1< 0: oo PP PRPRPR 1838
PG _DESEDACKUD ... 1840
0701070 o TSN 1847
o700 ) o P 1863
o700 L0 o TP 1866
PO AUMPAIL ..o 1878
[T TS (== |V N 1884
[T T = o= AV L=V 1886
[oTo T (= o1/ oo o 1890
10 (== (0] (PP PPRPPPIPRN 1894
0 o | 1903
=T 070 1= | o TP 1942
(2= e U1 1o o PP 1945
[11. PostgreSQL Server APPliCaliONS .......ccvvuiiiiiieeiie e e e e e e e e e e 1949
TNTEAD e 1950
PY_arChiVECIEaNUD .........iiii e 1954
[oTo T w0011 0] [ =1 - PN 1956
oo N o | P 1957
Lo T =5 = A1 | 1963
o To T (=111 o 1966
L0 T (=S )Y 1 1969
[oTo T === A (142 Vo P 1970
o100 oo =" [ TP 1974
PY_VENify ChECKSUMS ... iviciii e 1982
o To T1V2= o L1 3o o 1983
105 0 === PPN 1985
POSIMIBSEE ...ttt 1992
RV I 1 1= 0= £ PP 1993
51. Overview of PoStgreSQL INtENElS ... .covuiiiiiiiiecic e 1999
51.1. The Path Of @ QUETNY ....uuiiiniiiii e 1999
51.2. How Connections are Established ...........ccoooviiiiiiiiiniiiiiieeeeci, 1999
51.3. ThE Parser StAgE ...uuivvnieiie et e e e e eens 2000
51.4. The PostgreSQL RUIE SYStEM ....ccvvuiiiiiiiiieeiiii e 2001
51.5. Planner/OptiMizZEer .......ccuuiiiii e e eaaaes 2001
Y I = o U (o P 2003
YISV (= 1 (I OF - [0 o 2004
521, OVEIVIBIW ...ttt e et e ettt e ettt e e e et e e e et s e e e et n e e e et aeeeesenaeaeees 2004
52.2. PO_B0GI €A & ..ttt 2005
Y2 T o Lo - 1o ¢ [P 2008
Y2 N o Lo T = 11 £ 0] o H TP 2008
2.5, PU NPT OC ittt 2009
52.6. PO _at trdef o 2010
B2.7.pg_attribut @ .o 2010
52.8. PO _AUL NI 0 oeieiii 2014

XV



PostgreSQL 11.4 Documentation

52.9. pg_aut h_mMBNDErsS ..o 2015
52,00, PO LS ittt 2015
5211 PO _Cl @SS it 2016
52.12. PG _COl L At i ON coveiiii e 2020
LSy K T o To T X o] 1 11 A G- Y I o | PN 2021
Sy S o To T o1 o] 0 VA=Y G =Y o ] o PN 2024
52.15. pg_dat @DaSE ..ccvuiiiiiiii 2024
52.16. pg_db rol e Setting .coociiiiiiiiii e 2026
52.17. pg_defaul t _acl ..o 2027
LSy S I o To o =Y 01T o [o [P 2027
Y228 K N o To o (Y=Y of g I o) A o o [ 2029
Y20 A o To T =1 0 16 1 o PP 2029
Sy B o T T =AVA =1 0 | G A o Lo [ 2030
52.22. PY_EXE ENST ON civiiiiiiiciii e et e e e 2031
52.23. pg_foreign_data W apper ...cccccooiiiiiiiiiii e 2031
52.24. PG _fOr €I N _SEI VeI ittt 2032
52.25. pg foreign tabl @ .o 2033
A T o T T o 13 N 2033
52.27. PO I NNEI T 1S it e e 2036
Sy T o 1o T o VI S ] YA TP 2036
e I o T T B Y 1o [V = Vo = PN 2037
52.30. pg_l argeobj Ct ... 2038
52.31. pg_l argeobject_netadata .......ccooeeiviiiiniiiiii e 2039
52,32, PO _NAIMBSPACE ottt 2039
52.33. PO _OPCl @SS .uuiiiiiiiiii i 2039
52.34. PO 0PI AL OF ouiiiiiiiie e 2040
52.35. PG _OPf ami [ Y oo 2041
52.36. pg_partitioned tabl e ......ccooiiiiiiiiii 2041
52.37. pg_Pltenpl at @ .o 2043
52.38. PO PO i CY crrriiiii e 2043
52,30, PO Pl OC ittt 2044
52.40. pg_PUbl i Cati ON oo 2048
52.41. pg_publicati on_rel . 2049
D242, PO T AN ittt 2049
5243.pg_replicati on_Ori giN .o 2050
YAV o To T =X I A = TN 2050
52.45. pg_secl abel ... 2051
52.46. PO _SEUUEBNCE .uituiiiiie e e e 2051
52.47. pg_ShAepend ..o 2052
52.48. pg_ShAeSCri PtiON oo 2053
52.49. pg_shsecl abel ... 2054
52.50. PO ST AT ST C civrieiiiiiiii e 2054
5251 PG St ati STi C_ X it 2056
52.52. PG _SUDSCIi PLI ON coviiiii e e 2057
52.53. pg_SUDbSCription_rel . 2058
52.54. pg tabl ESPACE ..civviiiii e 2058
B52.55. PG _transSt OFr M. 2059
Y T o To TR O I [ 1= N 2059
B52.57. PG 1S _CONT I § cirriiiiiiiiii e 2061
52.58. pg tS _CONFi g IMBP ooiiiiiii e 2061
52.59. PO 1S i Cl orriiiiiiii e 2062
52,60, PO L S PaI ST ittt 2062
52.61L. PG tS tEMPl At @ covvriii i 2063
Y2 2 o To T VA o 1 PP 2063
52.63. PG _USEI _IMAPPI NQ torniiiiieiiiieiie e e e e e e e e e e e e e e e e aanees 2070
52.64. SYSIEM VIBWS .. ittt e et e e et eeeera e eees 2070
52.65. pg_avai l abl €_ext enNSi ONS ...cocciiiiiiiiiiie e 2071
52.66. pg_avai | abl e_ext ensi on_Versi ons .......c.ccccceeeeviiieiiineeinneennn, 2072

XVi



PostgreSQL 11.4 Documentation

Y Y A o To T o1 o 1 1 1 N« TP 2072
2GS A oo T o1 U1 oY o ] g TP 2073
52.69. PG fil € SEttiNGS ciiiiiiiii i 2073
L2 (O A o To T o | e 1 U1 o R PP 2074
52.71. pg_hba file rul @S . 2074
A o o T T 4 Lo 123 €= N 2075
B52.73. PO | OCKS it 2076
A o o To T .- VA = 1PN 2078
B52.75. PG _POI I Cl 8BS iiiriiiii i 2079
52.76. pg_prepared_Stat EMBNES ...cooiiiiiiiiiii i 2080
52.77. pg_prepar €d_XaCl S ..ociiiiiiiiiiiiii e e 2080
52.78. pg_publication_tabl s ....cccoooiiiiiiiiiii 2081
52.79.pg_replication_origin_status ......cccooeeiiiiiiiniiin i, 2081
52.80. pg_replicati on_SIotsS .oooiiiiiiiiii i 2082
YR o To T o1 =TT 2083
YR v o T T GV 1 =TSN 2084
52.83. pg_SeCl @bel S oo 2085
52.84. PO _SEUUEBNCES ouiiiiiiiie ittt 2085
ST o T =X =) O A [ PN 2086
52.86. P _SAUOW .....iiiiiii e 2088
2,87, PO ST AL S ittt 2089
52.88. PO 1 Abl €S iriiiiii i 2091
52.89. pg_timezone _abbrevs ..., 2092
52.90. PG _ti MBZONE _NAIMES ..iiuiiiiieiiii e e e e e e e e e e e e e eaaes 2092
Y2 R o To T U =1 = PP 2093
Sy e 2 oTo RV EST=1 N 1Y o] o L o 1T 2093
e I o T T VA I =1 SN 2094
53. Frontend/Backend ProtOCOI ............oveiiiiiiiiiiiiieeiii e 2095
53,1, OVEIVIBIW ..ttt ettt e et e et e e e e et n e e e et s e e e et aeeeesenaeeeees 2095
53.2. MESSAPE FIOW ...vveiiiiiii e 2096
53.3. SASL AULNENTICAION .....iiieviieieei e 2108
53.4. Streaming Replication ProtoCol ............cccouiieiiiieiiiieiiiieeie e e 2110
53.5. Logical Streaming Replication Protocol ............ccoooeviiiiiiiiiniiece, 2117
53.6. MESSAgE Dala TYPES ..vuiviiiiiieie et 2118
53.7. MESSA0E FOIMMELS . .vuiveii e 2118
53.8. Error and Notice Message FieldS ..........ooevviiiiiiiiiiin e 2135
53.9. Logical Replication Message FOrMAELS ..........cevueeiiieiiiieeiiieeiiiieeieeeaneens 2137
53.10. Summary of Changes since Protocol 2.0 ..........cccoveviiiiiiiiiiiiiiecieeeiees 2141
54. PostgreSQL Coding CONVENLIONS ......cc.uuiiiiiieiiieiiieeie e e e e e et e e e e e eeanees 2143
oY o 4 0= 1] o 2143
54.2. Reporting Errors Within the Server ........cccovvviiiiiiii e 2143
54.3. Error Message Style GUIAE ......cc.vviviiiiiii e 2146
54.4. Miscellaneous Coding CONVENLIONS .........cceuuieiieeiiiieeie e e eanes 2150
55. Native Language SUPPOIT .......uuuiiii e e e e e e e e e e e e e e et e e eaeesaneee 2153
55.1. FOr the TranSator .........uieiieiiieieiiis e 2153
55.2. FOr the Programimer .........ociuniiiii e e s 2155
56. Writing A Procedural Language Handler ............cooovviiiiiiiiiiiin e, 2159
57. Writing A Foreign Data WIapPESr ......coouiiiiieii e e e e e e 2162
57.1. Foreign Data Wrapper FUNCHIONS ........ccovviiiiiiiiiec e 2162
57.2. Foreign Data Wrapper Callback ROULINES ...........oevvviiiiiiiciiie e, 2162
57.3. Foreign Data Wrapper Helper FUNCLioNS ...........cccoveviiiiiiin e 2175
57.4. Foreign Data Wrapper Query Planning ..........cccocevieiiiiiiinecin e 2176
57.5. Row Locking in Foreign Data WIrapperS ........oevvveviiiieiiieeiieeeieeeaaeeeaenns 2179
58. Writing A Table Sampling Method ...........ccoooiiiiiiiii e 2181
58.1. Sampling Method Support FUNCLIONS ..........ccvvieiieeiiiiecece e, 2181
59. Writing A Custom SCan ProVider ..........oovuiiiiiiiiiii e 2184
59.1. Creating Custom Scan Paths ...........ccccoviiiiiiiiiii e 2184
59.2. Creating Custom SCan PlanS ...........oeiiiiiiiiiiciie e e e 2185

XVii



PostgreSQL 11.4 Documentation

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

59.3. EXECUiNG CUSLOM SCANS ....uvvvieiiiiieiieeii i e e e e e e e e e e e e e e eeees 2186
GeNEtiC QUENY OPLIMIZEN ....iiiiieiie e e e e e aens 2189
60.1. Query Handling as a Complex Optimization Problem ..................cceeeennn. 2189
60.2. GENELIC AlQOMItNMS ...t 2189
60.3. Genetic Query Optimization (GEQO) in PostgreSQL ........cccvvvvvvvievinnnnnn. 2190
60.4. Further REAING .......oovvuiiii e e e 2191
Index Access Method Interface Definition .........cccuviviiiiiiiiiiiiii e 2193
61.1. Basic APl Structure for INAeXes .........ccuvveiiiiiiiieiiieee e 2193
61.2. Index Access Method FUNCLIONS ........oovvvviiiiiiiicc e 2195
B1.3. INAEX SCANNING +..evvneieinieeie et et e e e e e e e e e e e e e e et e e e eeaen 2200
61.4. Index Locking Considerations .............oeevuieiiieeiiiiecii e eeie e e 2202
61.5. Index Uniqueness ChECKS .........ocvuuiiiiiiiiiii i 2203
61.6. Index Cost EStimation FUNCHIONS ..........uuieiiiiiieiiiiiie e 2204
GENEiC WAL RECOIUS .....uniiiiiiie ettt e 2207
B-TrEE INUEXES ..eu et e e et e e et e e e eatn e eeees 2209
L2C 700 1 1 oo (8o 1o o SRR 2209
63.2. Behavior of B-Tree Operator ClasseS .......cvvvieviiiiiiii e, 2209
63.3. B-Tree SUppOort FUNCLIONS ...........viiiiieiiieci e e e e eeaes 2210
63.4. IMPIEMENTBEION ....evuiiii e e e e e e e e e eaaeens 2211
GIST INOEXES ..ottt e et e et e e e et e e e eaa e 2212
o7 0 1 oo (8o [ o o ST 2212
64.2. BUilt-in Operator ClasseS ......ccvuuieiiii e 2212
64.3. EXENSIDIILY ooeeeeniieei e 2213
64.4. IMPIEMENTBEION .. .evuiiii e e e e e e e e e e e et e eaaeees 2222
B4.5. EXBMPIES ..eeiii et 2222
SP-GIST INEXES ...eevtieeeiiie ettt e et e e aa e e enees 2224
L0 g1 oo (8o 1o o SRR 2224
65.2. BUilt-in Operator ClasseS .......ccuuieiiiieeiii e e e 2224
65.3. EXENSIDIILY oeeeveiieii e 2224
65.4. IMPIEMENTBEION .....uuiiiii e e e e e e e e eaaeens 2233
B5.5. EXAMPIES ..uiiiiiii e 2234
GIN TNOEXES ...ttt e et e e e e e 2235
ST g1 oo (8o [ o o SRR 2235
66.2. BUilt-in Operator ClasseS .......ccuuiiiiii i 2235
66.3. EXENSIDIILY ooveevneeie e 2235
66.4. IMPIEMENTBEION .. ..vuiii e e e e e e e eeaaeees 2238
66.5. GIN TipS and THICKS ..uuuiiii i e e e e e e e e eeas 2239
L o I I T 1] = 1 o) PR 2240
B6.7. EXAMPIES ...t 2240
BRIN INOEXES ..ottt et e et e e et 2241
% 1 oo (8o 1o o TP 2241
67.2. BUilt-iN Operator ClasseS .......ciuuieiiiieeii e 2242
67.3. EXENSIDIILY ooeeeeiieei e 2243
Database PhySICal SOrage .....uuivvviieii e e e e e e e eaanns 2246
68.1. Datahase FIle LayOut ...........cccouuiiiiiieiiii e e 2246
B8.2. TOAST ettt ittt ettt e et e et e et e et e et a e ae 2248
68.3. Free SPaCe Map ....ovuiiiiiie e 2251
68.4. VISIDIlIY MaD ..o 2251
68.5. The Initidization FOrK ..........coooiiiiiiiiiiiie e 2251
68.6. Datahase Page LayOul ...........cocuuieiiiieiiieeiieee e e e e 2252
System Catalog Declarations and Initial Contents ............cccovvvviiiiiiiieiineeie e, 2255
69.1. System Catalog Declaration RUIES ...........ccvviiiiiiiiiiccii e, 2255
69.2. System Catalog INitial Data .........ccuueeiiiiiiiiieiieeei e 2256
69.3. BKI File FOIMEL ......uuiiiiiiiieeiii e 2260
69.4. BKI COMMENGS ... .coevvieeiiiiieee e e s 2260
69.5. Structure of the Bootstrap BKI File .........c.ooviiiiiiiiii e, 2261
69.6. BKI EXAMPIE ...vuiiiiiii et 2262
How the Planner USeS SEatiStiCS .....vvuieiiiiiiieeiiiiie e 2263

XViii



PostgreSQL 11.4 Documentation

70.1. Row EStimation EXamMPIES ......ccuviiiiieiiiciieee e 2263

70.2. Multivariate Statistics EXamples ........c.ooevviiiiiiiiiie e 2268

70.3. Planner Statistics and SECUNLY ......covvniviiieiiiiicii e e 2270

RV LY o) = o [ =S 2272
A. POSIOreSQL Error COUES ....uuiiiiieiii i ei et e e e e e e e e e e e e e et e e eaaeaees 2278
B. Dat€/Time SUPPOIT ....iitiieii et e e e e e e e e e e e e e et e e e e e st e e et e eaanaees 2287
B.1. Date/Time Input INterpretation ...........eevvvieiiiieii e 2287

B.2. Handling of Invalid or Ambiguous TimeStamps ..........ccocvveeiiiieviineeennennn, 2288

B.3. Date/Time K&y WOrAS ......covviiiiiiiiic e 2289

B.4. Date/Time Configuration Fil€S ..........coevviiiiiiiii e, 2290

B.5. HIiStory Of UNItS .......ociiiiiiii i e e 2291

C. SOL KEBY WOIAS ... cevueiiiieiie et e e e e e e e e e e et e e e eaaees 2293
D. SQL CONfOIMMANCE .....ietiei et e e e e e e et e eaaeanas 2316
D.1. SUPPOIEd FEAUIES .....covuiiii e e e e e e e e e e 2317

D.2. UNSUPPOrtEd FEAIUIES ......uuiiiiieeei e ee e e e e e e e eaaas 2332

E. REIEASE NOES ...oevviieiiii e e et e et e e e et e e e earaaeeees 2345
E.L REEESE 114 ...t 2345

E.2. REEASE 11.3 ..o 2347

E.3. REEESE 11.2 ..o 2352

B4 REEBSE 111 ..ot 2358

ED5. REIEESE 11 ..ot e 2360

E.B. Prior REIEASES ...t 2379

F. Additional Supplied MOAUIES ........ccuuiiiiiiii e 2380
F.L adminpack ......covneiiiiii e 2381

F.2. @MCNECK ..t 2382

F.3. @UEN_AEIAY ..neeeeeiieee e 2385

O 0| (o T = o] =1 o N 2385

FLB. BIOOM Lo e 2387

FLB. DB GiN oo 2391

A o 1 (==Y o [ 2391

RS T o) (=4 PP 2392

FiO. CUDE e 2395
FLL0. dBIINK Lo 2400
Nt I o [ T | PP 2431

L 2o ([ D 6/ PPN 2432
F.13. €arthdiStanCe .....vvneeiii e 2433
N 1T = o PP 2435

F.A5. fUZZYSIIMAECH «.evecc e 2437

S 01 o = PP 2440
T 17 o o R 2446
S T 17 1 - Y 2448
Nt L T = o ST R 2450
Fo20. 10 ottt e 2454
L T | == ST 2455
F.22. PAgEINSDECE . ovvuiii e 2461
F.23. passWOrdChECK .......ciuiiiii e e 2468
F.24. pg bUFfEIrCaChe ...c.ve i 2469
FL25, POCIYPLO ettt 2471
F.26. PO_freeSpaCceMa . .c.u e e 2482
e R oo [ o (= V7= 1 [P PRPRIN 2483
F.28. POrOWIOCKS ... ittt e e e e e e e 2484
F.20. pO_stal StatBmMENTS .. .. 2485
G O oo = 0o TN 2490
[ I oo [ 1 (0 [ 0 2494
F.32. PO_VISIDIHILY oo 2500
F.33. POSIOrES FOW ..ovvnciiic i 2501
7 PP 2507

[ ST oo o | 2510

XiX



PostgreSQL 11.4 Documentation

T o ISP 2518

Fo37. SSIINTO it 2520

F.38. taDIEFUNC ..ot 2522

1S T (o S PSPP 2531

IO I (== o =0 o ] oo [P 2533

F.AL tSM_SYSIEIM TOWS L.ttt e e e e e en 2533

F.A2. tSM_SYSIEM TIME ..ovniiiii e e e e 2533

FLA3. UNBCCENT ...ttt e e e e e e ees 2534

Y TH T K0S o ISP 2536

L 41 ] PP 2538

G. Additional SUpPlied Programs .........cccuuiiiiiiieii e 2543
G.1. Client APPlICAIONS .....cvveciii e e e 2543

G.2. Server ApPlICALIONS ......cvvi i 2549

L T (= g = I (0= o £ 2554
H.L CHeNt INtErTaCES ....oiiieii e 2554

H.2. AdMINIStration TOOIS ........uuiiiiiiiiieiiiiis et e e 2554

H.3. Procedural LanQUAagES .........cuuveiuniiiiiieiiie et e e e e e e e 2555

[ I g (= =T PP 2555

I. The Source Code REPOSITONY ....ccuuiiiiiieiii e e e e e e e e e e e e e e aaeees 2556
I.1. Getting The SOUrCe VIa Git ......ccvvuiiiiicii e aa s 2556

I B o o109 01 - 1o PP 2557
J. L DOCBOOK ...ttt 2557

B o] B <SP 2557

J.3. Building The Documentation ............ccoeeiiiiiiiieiiin e 2559

J.4. Documentation AULNOIING .......oovuiieiii e 2560

J5. SEYIE GUITE ...evviiiiii e 2561

N N 001/ 0 PP 2563
(23] o] oo r="o] /0P 2569
g0 1= PP 2571

XX



List of Figures

9.1. XSLT Stylesheet for Converting SQL/XML Output to HTML ........oveiiiiiiiiiiiieeeceiin,

60.1. Structured Diagram of a Genetic Algorithm

XXi



List of Tables

4.1. BaCkslash ESCAPE SEOUENCES .......ciieriieeieiieeeeeti e ettt e ettt e et et e ettt e e e b e e enea s 35
4.2. Operator Precedence (highest tO TOWESE) ......couuuuiiiiiiiiiiii e 40
I DT r= R Y o= T PSPPI 132
8.2, INUMENIC TYPIES ..ttt ettt ettt et e e et e et e et et e e e e aba s 133
8.3, MONELAIY TIPS ..ottt ettt ettt et e e e 138
8.4, CAIACLES TYPES ..ottt ettt ettt ettt e e et et e e e 139
8.5. SpeCial CharaCler TYPES ....uuu ittt ettt ettt e e et e r e e e e ennans 141
8.6. BINAIY Daa TYPES ....vueeiiiti ettt ettt ettt e et et e e e e eaaas 141
8.7. byt ea Literal ESCAPEd OCLELS .......uuiiiiiiiieeiiii ettt e e e e 142
8.8. byt ea Output ESCAPEd OCLELS ........ciieeiieiiiii ettt enees 142
8.9. DAE/TIME TYPES ..ttt e ettt et e e et ettt e e e et e e e eaa s 143
8.10. DB INPUL ..ottt ettt et e e e 144
8. L1, THME INPUL .ttt ettt e ettt e et e e et e e et e e e e et e e e e eaa s 145
8.12. TiME ZONE INPUL ...ttt ettt ettt ettt ettt et e e et e e e b e e era s 145
8.13. Special Date/TIME INPUES ....coeviieieiiieee et e s 147
8.14. Date/TIime OULPUL SEYIES ... .ot 147
8.15. Date Order CONVENTIONS .....u.eieerteeeiii et eeti et e e et e e et e e e e e e eana e eeneas 148
8.16. 1SO 8601 Interval Unit ADDreviationS .........c..uuiiiiiiiiiiiii e 150
8.L7. INEIVEl INPUL ...t ettt e et e e 151
8.18. Interval Output Style EXaMPIES .......couuiiiiiiieeee e 152
8.19. BOOIEAN DaLA TYPE ... eeeeei ettt ettt ettt ettt ettt e e e e 152
8.20. GEOMELNIC TS .. ettt e ettt ettt ettt e e ettt e ettt e ettt e e et et e e e eeaaaeeees 155
8.21. NEtWOrK AQArESS TYPES ... eeeeiiieeeetie ettt ettt e e et e e e e e e 157
8.22. ci dr Type INPut EXAMPIES ... .cciiiiiiiii e 158
8.23. JSON primitive types and corresponding POstgreSQL tYPES .....ccvvuveviriinieiiiiiieeeeiinee, 167
8.24. ODJeCt IdeNtifier TYPES ...t 196
8.25. PSEUTO-TYPES ...ttt ettt et 197
9.1. COMPATSON OPEIAIOIS ...e.vueeeiti ettt e et ettt e et et et e et r e e e et e e e e et e e e eaea s 199
9.2. COMPATISON PraEdiCALES .......uuueiiiie ettt et e e e e e e e 200
9.3. COomMPAriSON FUNCLIONS ...ttt et e 202
9.4. MathematiCal OPEIALOrS .......ceeueieieeii ettt ettt e e e e e b 202
9.5. MathematiCal FUNCHIONS ........ccuuiiiiiii et e e e 203
9.6. RANAOM FUNCLIONS ......ceeitieieiie ettt ettt et e et e e 205
9.7. TrigONOMELNIC FUNCLIONS ... ..eeeiit ettt ettt et e e e neens 205
9.8. SQL String FUNCLiONS 8Nd OPEIELOIS .......u.eiiiiiieeeeiii ettt e et e et e e e e e e e e eens 206
9.9. Other StNG FUNCLIONS ....couuiiiiiii et et e e e eanans 207
9.10. BUIt-IN CONVEISIONS ....cevtieiiiii ettt ettt ettt et e et e e enai e e ennens 214
9.11. SQL Binary String FUNCtions and OPErators .........cccuuueeeirinieeieiieeeeeiie e e eeeies 220
9.12. Other Binary String FUNCLIONS ..........uuuiiiiiiiieiii et 221
9.13. Bit SING OPEIEIOIS ....vvueeeetie ettt ettt ettt e et e ettt e e et e e e eaa s 222
9.14. Regular EXpression MatCh OPEraOrS ........cuuuueieeuieiiiii it e e e e e eeeees 226
9.15. Regular EXPression ATOIMS .........uu ittt e et e e et e e e eab e e eeeta e eeenns 230
9.16. Regular EXpression QUENTITIENS .........uuuiieiii et 230
9.17. Regular EXpression CONSIIAINTS ........eiiirieeiiii et e et 231
9.18. Regular Expression Character-entry ESCapES ........ccvvvunieiiiiiieeiiiie e 233
9.19. Regular Expression Class-shorthand ESCaPES ...........c.uuviiiiiiiieiiiiieeeci e 234
9.20. Regular Expression Constraint ESCAPES ..........uuiiiiiiiieiiiii e 234
9.21. Regular Expression Back REFEIENCES ........ccuuuiiiiiiiicie e 234
9.22. ARE Embedded-0ption LEErS .........uiiiiiiieiei e 235
9.23. FOrMatting FUNCLIONS ......ccuuuiiiiiii ettt et e et e e e e e ena e eeees 238
9.24. Template Patterns for Date/Time FOrmatting ..........cc.uuveeiiiiiiiiiiiiiieeecie e 239
9.25. Template Pattern Modifiers for Date/Time FOrmatting ............cccuvvveviiiinneieiiinneeenennnn. 241
9.26. Template Patterns for NUMeric FOrmatting ..........c..uoveiiiiiiiiiiiiiiieeeii e 243
9.27. Template Pattern Modifiers for Numeric FOrmatting ............ccoeuvviveiiiinieiiiiiieeeeiineees 244
9.28. 1 0_Char EXAMPIES .....uuiiiiiiii e 244

XXii



PostgreSQL 11.4 Documentation

A R DT (= A N1 1O o= = (0] £ T 245
9.30. Date/TIME FUNCHIONS ...cevviiiei ittt e e et e e et e e et e e e e aaa s 246
9.3L AT TIME ZONE VATAMES ..euueiiiiiieeiiiiiee et e et e et e e et e e e et e e e et eeeeaen s 255
9.32. ENUM SUPPOIt FUNCHIONS .....iieiiiiicii e e e e e e e e e e et e e e e aaa s 258
0.33. GEOMELIIC OPEIALONS . .evuueiiieeiti e et e et et e e e et e e et e e e e et e e et e e et e e st e eaa e eanneaaens 259
9.34. GEOMELNIC FUNCHIONS ...ttt ettt e et e e e e e et e e et eeeeaa e 261
9.35. Geometric Type Conversion FUNCLIONS ...........oovvuiriiiiii e e e 261
9.36. Ci dr and i NEt OPEIEIOIS .....vveiiiiiieeie e e ee e e e et e e e e e e e e et e e et e e e e e aanaaees 263
9.37.Cidr and i Net FUNCHIONS ......uiiiiiiii i e s 264
9.38. MBCAAAr FUNCHIONS ..evvieiiiii et e e e e e 265
9.39. MBCAAAr 8 FUNCHIONS . ..uiiiiii ettt e et et e e e et e e e e ae e 265
9.40. Text SEArCh OPEralOrS ....uuiiieeii e et e et e e e e e e e e et e e et e e et e e et e e s e eanaees 265
9.41. TexXt SEACH FUNCHIONS ....ueiieii ettt e et e e et e e et e e e e aanaeas 266
9.42. Text Search Debugging FUNCLIONS ..........iiiiiiiiic e 271
9.43. ) S0N aNd | SOND OPEIAIOIS ....ccvuiiiii it e ee e et e e e e e e e e e e e e e aaaes 286
9.44. Additional | SOND OPEIAOrS ... ..uuiiiiiieiiie et e e e e e e e e e e aa e 286
9.45. JSON Creation FUNCLIONS ......coiuviieiiii e e et e e et e e e et e e e eet e e e eaan e eeenes 288
9.46. JSON Processing FUNCLIONS ........ciuuuiiiiieiiii e eiiee e e e e e e e e e e e e e et e e e e eanaeeeen 289
9.47. SEQUENCE FUNCLIONS .. ..uuiiiieii et e e e et e e e e e e e e et e e et e e et e e aaeeaenas 294
.48, ATTAY OPEIEIONS ..ttt ettt e e et et e e et e e 299
9.49. ArTay FUNCHIONS ....uuiiiiicii et e e e e e e et e e e et e e e e ean s 300
O0.50. RANGE OPBIALOIS . ..euiiiitiee ettt e s e e e e e e anas 303
9.51. RANGE FUNCLIONS .....iiiiiii e e e e e e e e e e et e e e eanaas 304
9.52. General-Purpose Aggregate FUNCHIONS .........couuieiiiieiii e e e e e 305
9.53. Aggregate FUNCLIONS TOF SEAtiStICS ....cvvuiviiieii i e 307
9.54. Ordered-Set AgQregate FUNCLIONS .........iiiiiieii e e e e e e e e e e eaas 309
9.55. Hypothetical-Set Aggregate FUNCLIONS .........ccovuiiiiiieiiiii e e e 310
9.56. GroupiNg OPEIatiONS .......uuiiieueiiieiiee et e e e e e e e et e et e e et e e st e e et eeat e eatneeeaaaetnaes 311
9.57. General-Purpose Window FUNCLIONS ..........ocouuiiiiiiii e e 312
9.58. Series Generating FUNCHIONS .........ccuuiiiii e e e e e e e e e e e e e e ees 319
9.59. Subscript Generating FUNCLIONS .........ccuuiiiiiiiiii e e e e e e e eees 321
9.60. Session INformation FUNCHIONS ........iiiiiiiiei e 323
9.61. Access Privilege INquiry FUNCLIONS ..........oiiiiiiii e e 325
9.62. Schema Visibility INQUINY FUNCLIONS .........covuiiiiiic e e 329
9.63. System Catalog Information FUNCLIONS .........cccuiiiiiiiiiiiciie e e e e e 330
9.64. IndexX ColUMN PrOPEITIES ....u.iiii e e e et e e e e e e e e e e e aanas 333
9.65. INAEX PrOPEITIES .. ..iiti it e e e e e e e e e e e e e e e e ee 333
9.66. Index Access Method PropeErties .........viiiieii e 333
9.67. Object Information and Addressing FUNCHIONS ..........ccooviiiiiiieiiiiccin e e 335
9.68. Comment INformation FUNCLIONS ........covvuiieiiiiieeei e 336
9.69. Transaction IDS and SNaPShOLS .......cvvvniiiiiei e 336
9.70. SNaPSNOt COMPONENES .. .evuueieieeeieeei e et e et e et e e et e e st e e et e et e eeta e e et e e etn e eanneeennnas 337
9.71. Committed transaction iNfOrMALION .........covviiiiiiiii e e 337
9.72. CONtrol Data FUNCHIONS .....ueiieiie ettt e e e et e e e e e e eaa e e eeaenns 338
9.73. pg_control _checkpoi nt ColuMNS ..........ccoeiiiiiiiiiiiiii e, 338
9.74. pg_control _SYySt @MCOIUMNS ........iiiiiiiiiieii e e e e 339
9.75. pg_control _iNit COolUMNS ......ccouiiiiii e e 339
9.76. pg_control _recovery COlUMNS ........ccooviiiiiiiieii e 339
9.77. Configuration Settings FUNCLIONS ..........ciiiiiiiiii e e 340
9.78. Server SIgnaling FUNCLIONS ........ovuiiiiiee e e e e e e aaaes 340
9.79. Backup Control FUNCLIONS ........uiiiiieii e e e e e e e e e e eaens 341
9.80. Recovery Information FUNCHIONS ........cocvuiiiiiiii e e e e e e e e eaa e 344
9.81. Recovery Control FUNCHIONS ........cciuuiiiiecie e e e e e e e e e e eaae e 344
9.82. Snapshot Synchronization FUNCHIONS .........c.uuiiiiiciiie e ee e e e e 345
9.83. Replication SQL FUNCHIONS ... .c.uuiiiiieiii e e e e e e e e e e e e e e eees 346
9.84. Database Object Size FUNCLIONS ..........iiiiiiii e 349
9.85. Database Object Location FUNCLIONS .........couuiiiiieii e e e e e e 351
9.86. Collation Management FUNCLIONS ..........coouiiiiiieii e e e e e 352

XXiii



PostgreSQL 11.4 Documentation

9.87. Index MaintenancCe FUNCHIONS ........ooiiiiiieiiiii et eees 352
9.88. GeneriC File ACCESS FUNCLIONS ... ..ccuviiiiiiiie et e e e e e e s 353
9.89. AdVISOry LOCK FUNCHIONS .....uuiiieiii e e e e e e e e e e e e e st e e e e e e e eeen 355
9.90. Table ReWNIte INFOMMELION ... .ccvevt i e e e et e eeeetenaeeees 359
12.1. Default Parser's TOKEN TYPES c.uuuiuueiiiieiie e e e e e e e e e e e e e e e e et e e aa e aanns 407
13.1. Transaction ISOlation LEVEIS ......c.uuuiiiiiiiieeiii et et e e e e e e e 430
13.2. Conflicting LOCK MOES ... ...uuiiiiiiiii e e e e e e e 437
13.3. Conflicting ROW-IEVEl LOCKS .......civiiiiiii e 438
18.1. System V IPC PalramEtarsS ... ..vuiieiieiiie ettt eas 513
18.2. SSL SerVEr FIlE USAQE «.uvuiiiiiiieiiiii ettt ettt e et eeeaa s 528
19.1. MesSsage SEVErity LEVEIS ...ouiii i 569
19.2. ShOrt OptioN KEY ...oveeiiiiici e e e e e e e e e e 595
201, DEFAUIT ROIES ...ttt e et e et a e e e et e e e eataaeeaees 621
23.1. PoStgreSQL Charalter SELS .....cuuuiiiiieiii e e e e e e e e e e e et e e e e eeees 638
23.2. Client/Server Character Set CONVEISIONS ... ..c.uuuieiiiiieeeeiiineeeeiise e et eeeiin e eeainns 642
26.1. High Availability, Load Balancing, and Replication Feature Matrix .............ccooeevvnnennnnn. 673
28.1. DYNAMIC StAISHCS VIBWS . oovniiiceii et e e e et e e e e e s e e e e eeees 699
28.2. Collected SEAISHCS VIBWS ....veeeeieieiiii ettt e et e et e et e e e ena s 700
283.pg_Stat _aCti Vity VIBW oo e e e 701
28.4. Wait_eVENE DESCIHPLION . .uuiii i e e e e e e e e e e e e e ees 705
285.pg_stat _replicati ON VIBW ..o 715
28.6. pg_stat_Wal reCei VEI VIiBW ...iiiiiiciiii i 718
28.7.pg_stat _SUDSCription VIieW ...cocoeiiiiiiiiie e 719
28.8. PO St At _SSI ViBW coouiiiiiii e 720
28.9. pg_stat _arChi VEI VIBW ..o e 720
28.10. pg_Stat _bgWrit €5 VIieW .oouiiiiiiii e e e e 721
28.11. pg_stat_dat abase VIieW ......c.ooiiiiiiiiii e 721
28.12. pg_stat _database_confliCts VIEW ....cccoeeiiiiiiiiiiiiii e, 723
28.13. pg_stat_all _tabl @S VIeW ..o 723
28.14. pg_stat _all i NdeXES VIBW ... e 724
28.15.pg_statio_all _tabl €S VIEW ..o 725
28.16. pg_statio_all 1 NAdeXES VIBW ..cccuiiiiiiiiiie e 726
28.17.pg_stati o _all _SeqUENCES VIBW ...ccccuuiiiiii i 726
28.18. pg_stat_user _fUuNCti ONS VIBW ....cocovviiiiiiicii e 727
28.19. Additional StatistiCS FUNCHIONS ......vuuiiiiiiieiiei et e e 727
28.20. Per-Backend Statistics FUNCHIONS .......uiiiiiiiieicii e e e 728
28.21. pg_stat _progress _VAaCUUMVIBW ....cc.uviiiieiiiieeiiieeeii e e e e e e e e e eaens 730
28.22. VACUUM PRhESES ... ittt e e e e e et e e e et e e eenanns 731
28.23. BUIlt-iN DTTaCe PrODES .. .cceviieeeii et 732
28.24. Defined Types Used in Probe Parameters ..........oceviviiiiiiciii e 738
34.1. SSL MOOE DESCIIPLIONS ....ivvieiiie e e e e e e e e e e e e e e et e e e e et e e et e e eaneees 839
34.2. Libpg/Client SSL FilE@ USAQE ... cvvniiiii it e e e e e e e e e aae e 839
35.1. SQL-oriented Large ObjeCt FUNCLIONS .......ccvviiiiiiieii e e e e e e e e e e e 858
36.1. Mapping Between PostgreSQL Data Typesand C Variable Types .......ccocevvevivevinnnnnn. 874
36.2. Valid Input Formats for PGTYPESdat € from asc .......coccceeeviiiiiiiiiiin e, 892
36.3. Vadid Input Formats for PGTYPESdat € fnt_asC ......cccooevviveiiiiiiiiiiciecccec e, 894
36.4. Valid Input Formats for rdef mtdat € ......ccociviiiii i 895
36.5. Valid Input Formats for PGTYPESt i mest anp_from asc ........ccoevevvieeviineiinneennnnn, 895
37.1.informati on_schema_catal og name Columns............coooeviieiiiieiin e, 974
37.2.adm ni strabl e _rol e_authori zations Columns.............ccoeevviiiiiiieiinnennnnn. 974
37.3. applicabl e rol €5 ColumMNS ........ooiiiiiiii e 975
37.4. At tri DUt €S COIUMNS ..euuiiiiiii e eeaees 975
37.5.charact er _Sets COlUMNS .......uoiiiiieiiii e e e e anes 978
37.6. check _constraint_routine_usage Columns.........cccceeviiiiiieiiineiiineeiieeennnn, 979
37.7.check_constrai NtS ColUMNS .......cociuuiiiiiieiii e e aans 980
37.8. COl 1 @t i ONS COIUMNS ....uuiiiiiiii e a e e eeees 980
37.9.col lation_character_set _applicability Coumns.............c..coeieiinnn. 980
37.10. col um_domai N_usage COlUMNS ........oeiuiieiiieei e ee e e e e e e 981

XXiV



PostgreSQL 11.4 Documentation

37.11. col uMm_opt i ONS COlUMNS ....cvuuiiii e e e e e e e e e e e eaen
37.12. col um_privil eges ColUMNS ........cciiiiiiiiiiii e e
37.13. col umMm_udt _uSage COlUMNS .....c.uiiiieiie e e e eaens
37.14. COl UMMS COIUMNS ....eiiiiieieii et e et e e et e e e et e e e aaaneeeeeens
37.15. constrai nt _col unm_usage ColuMNS ..........ccoeveiiiiiiiieiiiiecin e e e
37.16.constraint _table_usage ColumNS ..........ccoeeviiiiiiiiieiii i
37.17.data_type privileges ColumMNS.......cccooeiiiiiiiiiiiiii e
37.18. domai n_constrai Nts ColUMNS ........coovviiiiiiii e
37.19. domai Nn_udt _uSaQge COIUMNS .....couuiiii e e e e e aens
37.20. dOMBI NS COIUMNS ....eeitiieiiii ettt e et e et e e e et s e e e aaa e eeeeens
37.21. el ement _tyPes COIUMNS .....ciuniiiie e e e e e eees
37.22. enabl €d_r 0l €S COIUMNS ........uiiiiii e
37.23.foreign_data wrapper_opti ons ColumNS .........cccoveviiiiiiiiieiiineeiineceee e,
37.24.foreign_data wappers ColUMNS ........ccoeceuiiiiiiiiiiii e
37.25. foreign_server_options ColUMNS .......cocouuiiiiiiiiiiiieiiieeciie e e e
37.26. forei gn_servers COlUMNS .......c.iiiiiiiiiie e e
37.27.foreign_table options ColUMNS ........c..ccuiiiiiiiiiii e
37.28.foreign_tabl €S ColUMNS .......cccouuiiiiiiiiiie e e
37.29. key_col umm_usSage COlUMNS ........oeiiiieiiii e e e e e e e aens
37.30. par anBt €S COIUMNS ....ceiniiii e e e e e e e e e e e eaens

373Lreferential _constraints ColUmMNS.........ccooouiiiiiiiiiiiiieiin e
37.32.role_col um_grants ColUMNS .........oeiiiiiiiiiiie e e
37.33.role_routine _grants ColUMNS .......cccouuiiiiiiiiiiiieiii e e e
37.34.role_table grants ColUMNS ..........cooviiiiiiiiiiiii e
37.35.r0l e_udt _grants ColUMNS .........iiiiiiiiii e e e
37.36.r0l e_usage _grants COolUMNS ..........oiiiiiiiiiiieiii e e e
37.37.routine_privileges ColUMNS ........cooeiuiiiiiiiiiii e
37.38. T OUL T NES COIUMNS ...coiiiieiii et e et e e e et e e e et s e e eeatnneaaees
37.39. SChemBt @ COIUMNS .....ouuiiiiii e e e e e et e e et e eeeatn e aeee
37.40. SEqUENCES COIUMNS ....uuiiiiiiiii e e e e e e e e et e ean e eees
3741 sql _features COlUMNS ......co.iiiiiiiii e e
3742.sql _inplementation_info Columns.........ccoooviiiiiiiiii e
37.43. sl _| anguages COlUMNS ........iciiiiiii e e e e e e e aens
37.44. sql _packages COlUMNS ......cc.iiiiiiiiiii e e
37.45. 51 _Part s COIUMNS ......ccouniiiiii e e e e e e e e eaes
37.46. 51 _Si Zi NG COIUMNS .....iiiiieiii e e e e e e e e e aes
3747.sql _sizing profiles ColUumMNS .......c.couiiiiiiiiiiiiiii e
3748. tabl e _constrai Nts COolUMNS .......cccuiiiiiiiiiiiic e
3749.tabl e privileges ColUMNS .....cccocouiiiiiiiiii e e
37.50. t @bl €S COIUMNS ....iiiiii e e e et e eeeaa e eeee
3751 t ransSf Or B COIUMNS ....uiiiiii et e e e e e eera e eees
37.52.triggered _update_col ums ColuMNS ........ccocvuiiiiiiiiiiiiee e
37.53. 111 gQEI'S COlUMNS .. .cetiiiiii e e e e e e e e e e e et e et e e aa e eeas
37.54. udt _privil eges COolUMNS ......ccccuiiiiiiiiii e e eaas
37.55. usage_priVvil eges ColUMNS .......coeiiiiiiiiiiii e e
37.56. user _defined _types ColUMNS .........ccoeviiiiiiiiiiii e
37.57. user _mappi Ng_0opti ONS COlUMNS .......covviiiiiieiii e e e
37.58. user _mBappPi NQS COIUMNS .......uiiiiiee e e e e e e e aeas
37.59. vi ew_col um_usage ColUMNS ........ccuiiiiiiiiiiiici e e e e
37.60. vi ew routine_usage COlUMNS .........oeeiiiiiiiiiiiii e
37.61L. view tabl e_usage ColumNS .......c.cooiiiiiiiiiii e
37.62. Vi €WS COIUMNS ..ttt ettt s e et r e e e st e e e eaaaaeeeneen
38.1. Equivalent C Types for Built-in SQL TYPES ....cvvvniiiiiiiiiiieeieeee e e
I I S (= TS 1 - (= o [P
G R T o s T 1 1o [ ==
38.4. GIST Two-Dimensional “R-treg” StrategieS .........oeivuieiiiiieiiieeiiiieein e e e
38.5. SP-GiST POINt SIAEgIES ..vuevviieiiiieeee e e e e e e e e e e e e e s e e e e e st e eaneens
38.6. GIN AITAY SHTAEgIES ...vuiieiieii i eeie e et e e e e e e e e e e et e et e e st e e et e e eaneeanaees

XXV



PostgreSQL 11.4 Documentation

38.7. BRIN MiNMaX SIralEOIES .. cevuiiineiiiieiiiieeie e e e e e e e e e e e e e e e e e et eeaa e e eanas 1092
38.8. B-tree SUPPOIt FUNCHIONS ... .ouuiiiicii e e e e e e e e e e e e e aanas 1093
38.9. Hash SUPPOrt FUNCHIONS ........cuuiiiiieii e e e e e e e e e eaaas 1093
38.10. GiST SUPPOIt FUNCLIONS .....iivieiii e e e e e e e e e e e e e e e e eaa e eees 1094
38.11. SP-GiST SUPPOIt FUNCHIONS ... .cvuiiiiieii e e e e e e e e e e e e aaaas 1094
38.12. GIN SUPPOIt FUNCLIONS .....iieeiiiice e e e e e et e et e e e e eens 1094
38.13. BRIN SUPPOIt FUNCLIONS .. ..uuiiiiiiiii e e ee e e e e e e e s e e et e e e e e e eeaens 1095
40.1. Event Trigger Support by Command Tag .......oeeveeiinieiiiieeiiieeeiieee e eean e e e 1125
43.1. Available DIiagnoSstiCS ItEMS .......iiuiiiiie e e e e e e e 1178
43.2. Error DIiagnoStiCS [TEIMS . ..uuiiii i e e e e e e eaas 1192
240. Policies Applied by Command TYPE ...c.uueiiiiiiiiiieie e e e e 1555
241, AULOMALIC VariahDlES ... 1854
242. pgbench Operators by inCreasing PreCEAENCE .. ...uuvvviiiiii e e 1856
243. PYENCH FUNCLIONS .....iieici e e e e e e e e e e e e aaas 1857
52.1. SYSEEM CalAlOOS ... vvvneeiteiii e ee e et e e e e e e e e e e e e e et e e et e e et e e e e e e anaaes 2004
52.2. pg_aggregat @ COlUMNS ........couuiiiiiieiiii e e e e e e e e e e e e et eeaaeens 2006
LSy T o o T -1 41 ] 1070 T 2008
YA o o[-V 0] o I Oo [ 49 1 2008
52.5. Pg_anPr OC COlUMNS ....cuuuiiiiieiiii e e e e e e e e e e e e e e e e st e e et e ean e eaes 2009
52.6. pg_attrdef COolUMNS ......cc.iiiiiiii e e 2010
52.7.pg_attribut @ ColUMNS .......cccouuiiiii i e 2011
52.8. pg_aut hi d COlUMNS .......eiiiiiiiie e e e e e e e e aen 2014
52.9. pg_aut h_menbers ColUMNS ........cc.iiiiiiiiiii e e e e 2015
52.10. PG_CASt COIUMNS ....uiiiiciii e e e e et e e et e e e e e e eaens 2015
52.11. PG _Cl @SS COlUMNS .. .ceuuiiiiiiii e e e e e e e et e et e e eeas 2016
52.12. pg_col 1 ati on COlUMNS ......couuiiiiiiiii e e 2020
52.13. pg_constrai Nt COUMNS .......uiiiiiiiii e e e e eeas 2021
52.14. pg_CONVETr Si ON COIUMNS ....outiiiiiieei e e e e e e e e e e e e e e e aens 2024
52.15. pg_dat abase COolUMNS ........co.uiiiiiiiiii e e e e e 2025
52.16. pg_db _role_setting ColUmMNS ........ccoovuiiiiiiiiiiii e 2026
52.17. pg_defaul t _acl ColUMNS ........ccoiiiiiiiiii e 2027
52.18. pg_depend COlUMNS .......ccuiiiiiiieiiie e e e e e e e e eees 2027
52.19. pg_descCription COlUMNS ......ccouuuiiiiiiii e e e e e e eaas 2029
52.20. PG_ENUMECOIUMNS ....uiiiieii e e e e e e e e e e e e e et e e st e e et e e e eeeens 2030
52.21. pg_event _trigger ColUMNS .......ccociiiiiiiiiieii e e e e 2030
52.22. pg_ext ensi 0N COIUMNS ......couuiiiiiiiii e e e e e aeas 2031
52.23. pg_foreign_data wapper ColUmMNS .........cccoovuiiiiiiiiiiiiierii e e 2031
52.24. pg_forei gn_server COolUMNS ........ccooiiiiiiiiiiie e e e 2032
52.25. pg _foreign_tabl @ ColumMNS ......ccocouuiiiiiiiiiii e 2033
52.26. PG i NAEX COIUMNS .. .couuiiiieiiii e e e e e e e e e e e et e et e e aan e eeas 2033
52.27. pg_ 1 NNEritS COlUMNS ....cuuiiiiiiiii e e e e e e e e e een 2036
52.28. pg 1 Nit _Privs COUMNS ....couuiiiiiii e e e e e e e eens 2037
52.29. pg_| anguage COlUMNS ........couuuiiiiieiii e e e e e e e e e e e e e e e anaeeeen 2037
52.30. pg_| ar geobj €Ct COlUMNS .......cocuuiiiiiii e 2038
52.31. pg_l argeobj ect _netadat a ColumNS ..........cooovuiiiiiiiiiiiieiie e 2039
52.32. pg_NamESPACE COIUMNS ......coviiiiiiei e e e e e aans 2039
52.33. PG_0PCI @SS COIUMNS .....iiiiiiiii e e e e e e e e aes 2040
52.34. pg_oper at Or COlUMNS .......ciuiiiiie e e e e e e e e e e e e et e e e e aneeeen 2040
52.35. pg_opfam |y COlUMNS .......cciuiiiiiieeii e e e e e e e e e een 2041
52.36. pg_partitioned tabl e ColUMNS .........ccooeiiiiiiiii e 2042
52.37. pg_pltenpl at @ ColUMNS ........ociiiiiiii e 2043
52.38. Pg_POI i CY COIUMNS ....ouiiiiiii e e e eaes 2044
52.39. PG _PrOC COIUMNS ....uiiiieiie e e e e e e e e e st e e e e e e e eaens 2044
52.40. pg_publicati on ColUMNS .......cccuiiiiiiiiiii e e eaas 2048
52.41. pg_publication_rel Columns.......cccccoiiiiiiiiiiiii e 2049
52.42. PG _range COlUMNS ......uuiiiiiiiiie e e et e e e e e e e e e e e et e st e et e e saneeeeas 2049
5243.pg_replication_originColumns .......cccocouiiiiiiiiiiiiiiii e 2050
52.44. PG reWr i t € COIUMNS .....iiiiiiii et e e e e e e e e eeen 2050

XXVi



PostgreSQL 11.4 Documentation

52.45. pg_secl abel ColUMNS ........couuiiiiiiiiii e e 2051
52.46. pg_SEQUENCE COUMNS ....cuuiiiiieiii e et e e e e e e e e e e e e e et e e et e e e eaneeeen 2052
52.47. pg_shdepend ColUMNS ........co.uiiiiiiiiiiii e e e e e een 2052
52.48. pg_shdescri pti on ColUMNS ........ccouuiiiiiiiiii e e 2053
52.49. pg_shsecl abel Columns ..........coiiiiiiiiii e 2054
52.50. pg_stati StiC COUMNS .....ccoviiiiii i e 2055
52.51. pg_statistic_ext ColUMNS ......ccoeiuuiiiiiiiiii e e e 2056
52.52. pg_subscri ption ColUMNS .......c.iiiiiiiii e e 2057
52.53. pg_subscription_rel ColumNS .......c.cccoiiiiiiiiiiiicii e 2058
52.54. pg_tabl espace COlUMNS ........cciuiiiiiiieii e e e aens 2058
52.55. pg_transf or MCOIUMNS ......coouiiiiiii e 2059
52.56. PG _tri gger COIUMNS .....couuiiiii e e e e e e e e e e eaen 2059
52.57.pg ts _config ColUMNS .....ccouuiiiiiiiii e e 2061
52.58. pg_ts _confi g mBp ColUMNS ........ooiiiiiiiii e e 2062
52.59. PG t'S_di Ct COIUMNS ....uiiiiiiiii e e e e e e e e aes 2062
52.60. pg_ts_parser COIUMNS ......co.iiiiiiiiii e e e e e 2063
52.61. pg ts tenpl at @ ColUMNS .......cccuuiiiiiiiiii e e 2063
52.62. PG _tYPE COIUMNS ...uuiiiiiiii e e e e et e e e e e eaens 2064
Y S IR ] o Tox- A= To [o ] YA ©r0 o == RN 2069
52.64. pg_user _mappi NG COIUMNS .........oiiiiii e e e 2070
52.65. SYSEIM VIBIWS ...ttt e e ettt e e ettt e e e e et r e e e eab s e e e eatnaeaaees 2071
52.66. pg_avai | abl e_ext ensi ons ColUMNS ..........ccoovviiiiiiiiiiii e 2071
52.67. pg_avai | abl e_extensi on_versi ons ColumNS ...........ccooeevveeiiieviineeennennn. 2072
52.68. pg_CONFi g COIUMNS ....ouiiiiiiii e e e eaes 2072
52.69. PG _CUISOI'S COIUMNS ..uuiiiiiiiii e e e e e e e e e e e e e e eaen 2073
52.70. pg _fil e _settings ColUMNS .....cccocouiiiiiiiiiii e e e 2074
LSy 4 o To e [ o 10 o @] 1N 1 410 TP 2074
52.72. pg_hba file rul es ColumNS.........ccoooiiiiiiiiiii e 2075
52.73. PG_1 NAEXES COIUMNS .....iiiiiiiiiie e e e e e e e ean e eaes 2075
52.74. PG | OCKS COlUMNS .. .couuiiiiciii e e e e e e e e e e et e e et e e aa e aeas 2076
52.75. pg_MBAt Vi WS COIUMNS ....cutiiiiii i e e e e e e e e e e e e e e e e e aneeeen 2079
52.76. Pg_POI i Ci €S COlUMNS ....cuuiiiiiieii e e e e e e e e e e eeen 2079
52.77. pg_prepared_stat ement's ColUMNS .......cccouieiiiiiiiiiiiiii e 2080
52.78. pg_prepared _Xact s COlUMNS ........c.oiiiiiiiiiiiieiii e e e e 2081
52.79. pg_publication_tabl es Columns.........c.cccoieiiiiiiiiiii e 2081
52.80.pg_replication_origin_status ColUmnS.........cccoeeviiiiiiiieeiiiieciineeieeeeenn, 2081
52.81L.pg replication_slots ColUMNS .......cccoeviiiiiiiiiieiiie e e e 2082
52.82. PG I 0l €S COlUMNS .. .couuiiiieiiii e e e e e e e e e e e e et e eaa e eaas 2083
52.83. PG T Ul €S COIUMNS .. .ouvniiieiii e e e e e e e e e e e e et e et e e aan e eeas 2084
52.84. pg_secl abel s COlUMNS .......c.oiiiiiiiii e 2085
52.85. pg_SequUENCES COIUMNS ......couiiiiiieiii e e e e e aeas 2085
52.86. pg_SettiNGS COIUMNS ....couiiiiiiiiii e e e e e e e e e eeen 2086
52.87. pg_Shadow COlUMNS .......ccuuiiiiii e e 2088
52.88. PG ST At'S COIUMNS .. .cuvuiiiiiiii e e e e e e et e e e e ea e aeas 2089
52.89. pg_tabl €5 COlUMNS .......couuiiiiiiii e 2092
52.90. pg_ti mezone_abbrevs ColUMNS .........cc.oviiiiiiiii i 2092
52.91. pg_timezone _Nanmes COlUMNS .......cc.iiiiiiiiiiiie e e e 2092
52.92. PG _USEI COIUMNS ....uiiiiieiii e e e e e e e e e e e st e e e e e e eeaens 2093
52.93. pg_user _nmappi NGS COlUMNS ........oiiii e e e e 2093
52.94. PG Vi €WS COUMNS .. .cuuuiiieiiiie e e e e e e e e e e e e e et e et e et e e aan e eeas 2094
64.1. BUilt-iN GIST OPErator ClaSSES .......uuiiiuueeiiieiiiiieiiieeee e e e e e e e et e e e eaaeeaanaaes 2212
65.1. BUilt-in SP-GIST OpEerator ClaSSES .......uicvutiiiieeiiieeiiieeeiieeerie e et eseeeeeesnaeannaes 2224
66.1. BUilt-iN GIN OpErator ClaSSES .......uuiiiiiieiiiieiiii e e e e e e e e e e e e e et e e st eraneens 2235
67.1. BUilt-in BRIN Operator ClaSSES .......cvvuuiiiiiieiiiieiiii et e e e ee e s e e e e e e et e e eanaeens 2242
67.2. Function and Support Numbers for Minmax Operator ClasseS .........coeevvveviiiieiineennnnn. 2244
67.3. Function and Support Numbers for Inclusion Operator Classes .........cccvvevvvviiineeninnnns 2244
68.1. CONENES Of PCDATA ...ttt ittt et e e e e et e e et e e e et e e e et neeeanans 2246
B8.2. PAgE LAYOUL .....uiieiiiiiieee ettt 2252

XXVii



PostgreSQL 11.4 Documentation

68.3. PageHeaderData LayOUL .........c..uiiiiiiiiii e e e e e e e e e e et e e e eaaes 2252
68.4. HeapTupleHeaderData LayOuL ...........ceeeuniiiiieiiii e e e e e e e e e e e e e 2253
A.L POSIOreSQL Error COUES .....uuiiiiieiiii e et ee et e e e e e e e e e e e e e e e e e eaes 2278
230 Vo0 11 I = 0 1= <SP SPPN 2289
B.2. Day Of the Week NAMES .......cciiiiiii e e e 2289
B.3. Date/Time Field MOGIfIErS ...ccouuiiiiiiii e 2289
C.L. SOL KEBY WOIAS ....ieiiiii et e e et e e e e e e e et e e et e e et e e et e e et e eeanaes 2293
F.1 adm NPacK FUNCHIONS ..o e e e e e e e e e een 2381
F.2. Cube External REPreSeNtationsS .........ccuuiiiiniiiiii e e e e e e e e e e eaens 2395
[ R 0 oL @ o= - o] ¢ TP 2395
Fod. CUDE FUNCLIONS ... ittt e e et e e e et e e e e et s e e e eatnneaeees 2397
F.5. Cube-based Earthdistance FUNCLIONS .........ccuuuiiiiiiiiieii e 2434
F.6. Point-based EarthdiStance OPErafors .......c.uuiviinieiie e e e e e e e e e e e e eaens 2435
O 1 TSY o T @ o= = o) £ P 2441
F.8. NSt Or @ FUNCHONS ..oiiiiicic e e 2442
FO. intarray FUNCHONS ..o e e e e e e e e aes 2448
[ (ORI oL = L = | VA @ o= = o) £ 2448
L Y I I 7 = W Y/ o= PP 2450
[ A =Y o I ¥ o PP 2452
[ T I B YT @ o= (o) £ 2456
[ N I O T W o PP 2458
F.15. pg_buffercache Columns .........ccoooiiiiiiiiii i 2469
F.16. Supported Algorithms fOr Crypt () oeeeeeeieiie e 2472
F.17. Iteration Counts fOr CrYPL () covnieiiiiiiiie e e s 2472
F.18. Hash AlQOrithm SPEEAS ......iveiii e e e 2473
F.19. Summary of Functionality with and without OpenSSL ...........cccoovvviieiiii i, 2480
F.20. pgr oW 0cks OULPUL COIUMNS ......ccvuiiiiii e e e e e aens 2484
F.21. pg stat_statenments COlUMNS .........ccooiiiiiiiii e 2486
F.22. pgstatt upl @ OUtpUt COIUMNS .....c.uuiiiiieiii e e e e e e eees 2491
F.23. pgst at t upl e_appr ox Output ColUMNS ........ccuuiiiiiiiiiii e e e 2494
F.24. pg t FgMEUNCHONS .. couuiiii e e e e e e e e e e e e eanees 2495
F.25. PO_t I OMOPEIEIOIS ....euiiiie et eas 2496
F.26. seg External REPreSentationsS .........ccuueiiuiieiiii e e e e e e e e 2508
F.27. Examples of Valid SEQ INPUL .....o.uuiiiiiiii e e 2508
F.28. SEO GiST OPErAlONS . .cvueiiiieiitieeiie ettt et ie e e e e e e et e e et e e et e e st s e et e e aa e eateeraneaenns 2509
[ IS= oo = | I 1 Tox ) 2517
F.30. t abl €f UNC FUNCHONS ......cuiiiiiiiii e 2522
F.31L. CONNECt DY Palrameters .......couuiiiiiiii e e e e e 2529
F.32. FUNCtioNS fOr UUID GENEION ... ccvvvviieieiiiieeeiii e et s e e et e e et eeeeai e e eeriaeeees 2536
F.33. Functions Returning UUID CONStANES .........ccuueiiiieiiiiieiiieeciieeeie e e e e e eanaeeaen 2537
7 A 0 1 PP 2538
F.35. xpat h_t abl @ Parameters ........ccouiiiiiiiiiii e 2539
H.1. Externally Maintained Client INterfaces .........cc.oveiiiiiiiiiiiii e 2554
H.2. Externally Maintained Procedural LangUages ............coevuuieiiieiiiiieiieec e e 2555

XXVili



List of Examples

8.1. USING the CharaCter TYPES ... eiieiii ittt ettt e et e e et e e e et eeeees 140
8.2. USING the DOOI €8N TYPE ... 153
8.3. USING the Bit SIHNG TYPES ... eeeiiieieii ettt et et e e e eaeens 160
10.1. Factorial Operator TYPe RESOIULION .....c.uuiiiiiiiieeiiii et 363
10.2. String Concatenation Operator Type RESOIULION .........veeeiiiiiiiiiiieeiiii e 364
10.3. Absolute-Vaue and Negation Operator Type ReSOIULION .........cccuvuveiiiiinieiiiiieeeeiinn, 364
10.4. Array Inclusion Operator Type RESOIULION ..........veiiiiiieiiiiieeiiii e 365
10.5. Custom Operator 0N @ DOmMaiN TYPE .....ueiiiiiieiiiiii e 365
10.6. Rounding Function Argument Type ReSOIULION ..........coeiviviiiiiiiiiiieeciie e 368
10.7. Variadic FUNCtioN RESOIULION .......cviiieieiiiii e e 368
10.8. Substring FUNCtion Type RESOIULION ..........iiiiiiiiiiiiie e 369
10.9. char act er Storage TYPE CONVEISION .....ccevuuneieiiieeeeti e eeeti e e eetia e e eeni e eeernaeeees 370
10.10. Type Resolution with Underspecified Typesin @ Union .............oeeeevviveieiiiieeiiiinnenes 371
10.11. Type Resolution in @ SImMple UNion .........ooooiiiiiiii e 371
10.12. Type Resolution in @ Transposed UNION .........coouuuuiiiiiiiieiiiii e e 371
10.13. Type Resolution in @ Nested UNION ........cc.uuuieiiiiiieiiiiiieeeeei et 372
11.1. Setting up a Partial Index to Exclude Common ValUES ...........cc.ovviiiiiiiiiiiiiiieeiiiieees 380
11.2. Setting up a Partial Index to Exclude Uninteresting Values ............cocoeviviiiiiineeiinnnnnn. 380
11.3. Setting up a Partial Unique INAEX .......coouuiiiiiiiieiii e 381
20.1. Example pg_hba. coNf ENtrES ... ... 602
20.2. An Example pg_i dent . conf File ......oooiiiiiii 605
34.1. libpg EXample Program L .........uuoeiiiieieei et 843
34.2. 1ibpg EXample Program 2 ...........oiiiiiieeei e 845
34.3. libpg EXample Program 3 ... ..c.oue e 848
35.1. Large Objects with libpg Example Program ............ooceeuviiiiiiiiineeeieeei e 860
36.1. Example SQLDA PrOQraM .......cieeieieeeiiie et ettt e e et e e et eeaaa s 912
36.2. ECPG Program Accessing Large ODJECES .......uuuiviiiiiieiiiiiiee e 926
42.1. Manua Installation of PLIPEIT .......coiiiiiiiiii e 1161
43.1. Quoting Vaues IN DYNamiC QUETTES ........ccuuuuiiiiiiieeiiii et e et e eeeni e 1176
43.2. Exceptions With UPDATE/I NSERT ........oiiiiiiiieiiii e ettt 1191
43.3. A PL/PgSQL Trigger FUNCHION ......uuuiiiiiieecei et 1205
43.4. A PL/pgSQL Trigger Function FOor AUditing ..........cc.uuieiiiiinieiiiii e 1206
43.5. A PL/pgSQL View Trigger Function For Auditing ............oveieriineiiiiinieeeiiieeeeeiien 1207
43.6. A PL/pgSQL Trigger Function For Maintaining A Summary Table ..............ccccoeeeeeee 1208
43.7. Auditing with Transition Tables ........ccoeuiiiii e 1210
43.8. A PL/pgSQL Event Trigger FUNCLION ........ooviiiiieiiiiieeee e 1212
43.9. Porting a Simple Function from PL/SQL t0 PL/PGSQL ......uuiiiiiiiieiiiiiieeciieeeeeiiee 1219
43.10. Porting a Function that Creates Another Function from PL/SQL to PL/pgSQL ............ 1220
43.11. Porting a Procedure With String Manipulation and OUT Parameters from PL/SQL to

[ 0TSO RSO PPTPTTRR 1221
43.12. Porting a Procedure from PL/SQL to PL/PGSQL ......uvviiiiiiiiiiiiie e 1223
F.1. Create a Foreign Table for POSIgreSQL CSV LOGS ... civvvvneiiiiiieeeeiiieeeeiieeeeeiineees 2436

XXiX



Preface

Thisbook isthe official documentation of PostgreSQL. It has been written by the PostgreSQL devel-
opers and other volunteersin parallel to the development of the PostgreSQL software. It describes all
the functionality that the current version of PostgreSQL officially supports.

To makethelarge amount of information about PostgreSQL manageabl e, thisbook has been organized
in several parts. Each part istargeted at adifferent class of users, or at usersin different stages of their
PostgreSQL experience:

e Part | isaninformal introduction for new users.

 Part 1l documentsthe SQL query language environment, including datatypes and functions, aswell
as user-level performance tuning. Every PostgreSQL user should read this.

 Part 111 describestheinstallation and administration of the server. Everyone who runs a PostgreSQL
server, beit for private use or for others, should read this part.

 Part IV describes the programming interfaces for PostgreSQL client programs.

» Part V contains information for advanced users about the extensibility capabilities of the server.
Topics include user-defined data types and functions.

» Part VI contains reference information about SQL commands, client and server programs. This part
supports the other parts with structured information sorted by command or program.

» Part VII contains assorted information that might be of use to PostgreSQL developers.

1. What is PostgreSQL?

PostgreSQL is an object-relational database management system (ORDBMS) based on POSTGRES,
Version 4.2, developed at the University of California at Berkeley Computer Science Department.
POSTGRES pioneered many concepts that only became available in some commercial database sys-
tems much later.

PostgreSQL is an open-source descendant of this original Berkeley code. It supports a large part of
the SQL standard and offers many modern features:

» complex queries

« foreign keys

* triggers

 updatable views

* transactional integrity

» multiversion concurrency control

Also, PostgreSQL can be extended by the user in many ways, for example by adding new

o datatypes

* functions

* operators
 aggregate functions
* index methods
 procedural languages

And because of the liberal license, PostgreSQL can be used, modified, and distributed by anyone free
of charge for any purpose, beit private, commercial, or academic.

2. A Brief History of PostgreSQL

L hitp://dio.cs.berkel ey.edu/postgres.htm

XXX


http://db.cs.berkeley.edu/postgres.html
http://db.cs.berkeley.edu/postgres.html
http://db.cs.berkeley.edu/postgres.html

Preface

The object-relational database management system now known as PostgreSQL is derived from the
POSTGRES package written at the University of Californiaat Berkeley. With over two decades of de-
velopment behind it, PostgreSQL is now the most advanced open-source database available anywhere.

2.1. The Berkeley POSTGRES Project

The POSTGRES project, led by Professor Michael Stonebraker, was sponsored by the Defense Ad-
vanced Research Projects Agency (DARPA), the Army Research Office (ARO), the National Science
Foundation (NSF), and ESL, Inc. The implementation of POSTGRES began in 1986. Theinitial con-
cepts for the system were presented in [ston86], and the definition of the initial data model appeared
in [rowe87]. The design of the rule system at that time was described in [ston87a]. The rationale and
architecture of the storage manager were detailed in [ston87h].

POSTGRES has undergone several major releases since then. The first “demoware” system became
operational in 1987 and was shown at the 1988 ACM-SIGMOD Conference. Version 1, described in
[ston90a], was released to afew external usersin June 1989. In response to a critique of the first rule
system ([ston89]), the rule system was redesigned ([ston90b]), and Version 2 was released in June
1990 with the new rule system. Version 3 appeared in 1991 and added support for multiple storage
managers, an improved query executor, and a rewritten rule system. For the most part, subsegquent
releases until Postgres95 (see bel ow) focused on portability and reliability.

POSTGRES has been used to implement many different research and production applications. These
include: a financial data analysis system, a jet engine performance monitoring package, an aster-
oid tracking database, a medical information database, and several geographic information systems.
POSTGRES has a so been used as an educational tool at several universities. Finaly, Illustra Infor-
mation Technologies (later merged into Informix?, which is now owned by | BM3) picked up the code
and commercialized it. In late 1992, POST GRES became the primary data manager for the Sequoia
2000 scientific computing project®.

The size of the external user community nearly doubled during 1993. It became increasingly obvious
that maintenance of the prototype code and support was taking up large amounts of time that should
have been devoted to database research. In an effort to reduce this support burden, the Berkeley POST -
GRES project officially ended with Version 4.2.

2.2. Postgres95

In 1994, Andrew Y u and Jolly Chen added an SQL language interpreter to POSTGRES. Under anew
name, Postgres95 was subsequently released to the web to find its own way in the world as an open-
source descendant of the original POSTGRES Berkeley code.

Postgres95 code was completely ANSI C and trimmed in size by 25%. Many internal changes im-
proved performance and maintainability. Postgres95 release 1.0.x ran about 30-50% faster onthe Wis-
consin Benchmark compared to POSTGRES, Version 4.2. Apart from bug fixes, the following were
the major enhancements:

» The query language PostQUEL was replaced with SQL (implemented in the server). (Interface li-
brary libpg was named after PostQUEL .) Subqueries were not supported until PostgreSQL (see be-
low), but they could be imitated in Postgres95 with user-defined SQL functions. Aggregate func-
tions were re-implemented. Support for the GROUP BY query clause was also added.

* A new program (psqgl) was provided for interactive SQL queries, which used GNU Readline. This
largely superseded the old monitor program.

« A new front-end library, | i bpgt cl , supported Tcl-based clients. A sample shell, pgt cl sh, pro-
vided new Tcl commands to interface Tcl programs with the Postgres95 server.

2 https://www.ibm.com/anal ytics/informix
3 https://www.ibm.com/
4 http://meteora.ucsd.edu/s2k/s2k_home.html

XXXIi


https://www.ibm.com/analytics/informix
https://www.ibm.com/
http://meteora.ucsd.edu/s2k/s2k_home.html
http://meteora.ucsd.edu/s2k/s2k_home.html
https://www.ibm.com/analytics/informix
https://www.ibm.com/
http://meteora.ucsd.edu/s2k/s2k_home.html

Preface

» The large-object interface was overhauled. The inversion large objects were the only mechanism
for storing large objects. (The inversion file system was removed.)

» Theinstance-level rule system was removed. Rules were still available as rewrite rules.

» A short tutorial introducing regular SQL features as well as those of Postgres95 was distributed
with the source code

* GNU make (instead of BSD make) was used for the build. Also, Postgres95 could be compiled with
an unpatched GCC (data alignment of doubles was fixed).

2.3. PostgreSQL

By 1996, it became clear that the name “ Postgres95” would not stand the test of time. We chose anew
name, PostgreSQL, to reflect the relationship between the original POSTGRES and the more recent
versions with SQL capability. At the same time, we set the version numbering to start at 6.0, putting
the numbers back into the sequence originally begun by the Berkeley POSTGRES project.

Many people continue to refer to PostgreSQL as “Postgres’ (now rarely in all capital letters) because
of tradition or because it is easier to pronounce. This usage is widely accepted as a nickname or alias.

The emphasis during devel opment of Postgres95 was on identifying and understanding existing prob-
lemsin the server code. With PostgreSQL , the emphasi s has shifted to augmenting features and capa-
bilities, although work continuesin all areas.

Details about what has happened in PostgreSQL since then can be found in Appendix E.

3. Conventions

Thefollowing conventionsare used in the synopsis of acommand: brackets([ and] ) indicate optional
parts. (In the synopsis of a Tcl command, question marks (?) are used instead, as is usual in Tcl.)
Braces({ and} ) and vertical lines(| ) indicate that you must choose one dternative. Dots(. . . ) mean
that the preceding element can be repeated.

Where it enhances the clarity, SQL commands are preceded by the prompt =>, and shell commands
are preceded by the prompt $. Normally, prompts are not shown, though.

An administrator is generally a person who is in charge of installing and running the server. A user
could be anyone who is using, or wants to use, any part of the PostgreSQL system. These terms
should not be interpreted too narrowly; this book does not have fixed presumptions about system
administration procedures.

4. Further Information

Besides the documentation, that is, this book, there are other resources about PostgreSQL :
Wiki

The PostgreSQL wiki® contains the project's FAQ® (Frequently Asked Questions) list, TODO’
list, and detailed information about many more topics.

Web Site

The PostgreSQL web site® carries details on the | atest release and other information to make your
work or play with PostgreSQL more productive.

5 https://wiki.postgresql.org

5 https://wiki.postgresql.org/wiki/Frequently Asked Questions
7 https://wiki.postgresgl.org/wiki/Todo

8 https://www.postgresgl.org

XXXii


https://wiki.postgresql.org
https://wiki.postgresql.org/wiki/Frequently_Asked_Questions
https://wiki.postgresql.org/wiki/Todo
https://www.postgresql.org
https://wiki.postgresql.org
https://wiki.postgresql.org/wiki/Frequently_Asked_Questions
https://wiki.postgresql.org/wiki/Todo
https://www.postgresql.org

Preface

Mailing Lists

The mailing lists are a good place to have your questions answered, to share experiences with
other users, and to contact the developers. Consult the PostgreSQL web site for details.

Y ourself!

PostgreSQL is an open-source project. As such, it depends on the user community for ongoing
support. As you begin to use PostgreSQL, you will rely on others for help, either through the
documentation or through the mailing lists. Consider contributing your knowledge back. Read
the mailing lists and answer questions. If you learn something which is not in the documentation,
write it up and contribute it. If you add features to the code, contribute them.

5. Bug Reporting Guidelines

When you find abug in PostgreSQL we want to hear about it. Y our bug reports play an important part
in making PostgreSQL more reliable because even the utmost care cannot guarantee that every part
of PostgreSQL will work on every platform under every circumstance.

The following suggestions are intended to assist you in forming bug reports that can be handled in an
effective fashion. No oneis required to follow them but doing so tends to be to everyone's advantage.

We cannot promiseto fix every bug right away. If the bug is obvious, critical, or affectsalot of users,
chances are good that someone will 1ook into it. It could also happen that we tell you to update to
a newer version to see if the bug happens there. Or we might decide that the bug cannot be fixed
before some major rewrite we might be planning isdone. Or perhapsit issimply too hard and there are
more important things on the agenda. If you need help immediately, consider obtaining a commercial
support contract.

5.1. Identifying Bugs

Before you report a bug, please read and re-read the documentation to verify that you can realy do
whatever it isyou are trying. If it is not clear from the documentation whether you can do something
or not, please report that too; it is a bug in the documentation. If it turns out that a program does
something different from what the documentation says, that is a bug. That might include, but is not
limited to, the following circumstances:

» A program terminates with afatal signal or an operating system error message that would point to
a problem in the program. (A counterexample might be a “disk full” message, since you have to
fix that yourself.)

» A program produces the wrong output for any given input.
» A program refuses to accept valid input (as defined in the documentation).

A program acceptsinvalid input without a notice or error message. But keep in mind that your idea
of invalid input might be our idea of an extension or compatibility with traditional practice.

» PostgreSQL failsto compile, build, or install according to the instructions on supported platforms.
Here “program” refers to any executable, not only the backend process.

Being slow or resource-hogging is not necessarily a bug. Read the documentation or ask on one of
the mailing lists for help in tuning your applications. Failing to comply to the SQL standard is not
necessarily a bug either, unless compliance for the specific feature is explicitly claimed.

Before you continue, check on the TODO list and in the FAQ to see if your bug is aready known.
If you cannot decode the information on the TODO list, report your problem. The least we cando is
make the TODO list clearer.

XXXl



Preface

5.2. What to Report

The most important thing to remember about bug reporting is to state all the facts and only facts. Do
not speculate what you think went wrong, what “it seemed to do”, or which part of the program has a
fault. If you are not familiar with the implementation you would probably guess wrong and not help
us a bit. And even if you are, educated explanations are a great supplement to but no substitute for
facts. If we are going to fix the bug we still have to see it happen for ourselves first. Reporting the
bare facts is relatively straightforward (you can probably copy and paste them from the screen) but
all too often important details are left out because someone thought it does not matter or the report
would be understood anyway.

The following items should be contained in every bug report:

» Theexact sequence of stepsfrom program start-up necessary to reproduce the problem. This should
be self-contained; it is not enough to send in abare SELECT statement without the preceding CRE-
ATE TABLE and | NSERT statements, if the output should depend on the data in the tables. We
do not have the time to reverse-engineer your database schema, and if we are supposed to make up
our own data we would probably miss the problem.

The best format for atest case for SQL-related problems is afile that can be run through the psgl
frontend that shows the problem. (Be sure to not have anything inyour ~/ . psql r ¢ start-up file))
An easy way to createthisfileisto use pg_dump to dump out the table declarations and data needed
to set the scene, then add the problem query. You are encouraged to minimize the size of your
example, but thisis not absolutely necessary. If the bug is reproducible, we will find it either way.

If your application uses some other client interface, such as PHP, then please try to isolate the
offending queries. We will probably not set up aweb server to reproduce your problem. In any case
remember to provide the exact input files; do not guess that the problem happens for “large files’
or “midsize databases’, etc. since thisinformation istoo inexact to be of use.

» Theoutput you got. Please do not say that it “didn't work” or “crashed”. If thereisan error message,
show it, even if you do not understand it. If the program terminates with an operating system error,
say which. If nothing at all happens, say so. Even if the result of your test case is a program crash
or otherwise obvious it might not happen on our platform. The easiest thing is to copy the output
from the terminal, if possible.

Note

If you are reporting an error message, please obtain the most verbose form of the
message. In psgl, say \ set VERBOSI TY ver bose beforehand. If you are ex-
tracting the message from the server log, set the run-time parameter log_error_ver-
bosity tover bose so that all details are logged.

Note

In case of fatal errors, the error message reported by the client might not contain all
theinformation available. Please also |ook at thelog output of the database server. I
you do not keep your server'slog output, thiswould be agood timeto start doing so.

» The output you expected is very important to state. If you just write “This command gives me that
output.” or “Thisis not what | expected.”, we might run it ourselves, scan the output, and think it
looks OK and is exactly what we expected. We should not have to spend the time to decode the
exact semantics behind your commands. Especialy refrain from merely saying that “This is not
what SQL says/Oracle does.” Digging out the correct behavior from SQL is not a fun undertaking,

XXXIV



Preface

nor do we al know how all the other relational databases out there behave. (If your problem is a
program crash, you can obviously omit thisitem.)

» Any command line options and other start-up options, including any relevant environment variables
or configuration files that you changed from the default. Again, please provide exact information.
If you are using a prepackaged distribution that starts the database server at boot time, you should
try to find out how that is done.

» Anything you did at al differently from the installation instructions.

» ThePostgreSQL version. Y ou canrunthecommand SELECT ver si on() ; tofindouttheversion
of the server you are connected to. Most executable programs also support a- - ver si on option;
at least postgres --version and psql --version should work. If the function or the
options do not exist then your version is more than old enough to warrant an upgrade. If you run a
prepackaged version, such as RPMs, say so, including any subversion the package might have. If
you are talking about a Git snapshot, mention that, including the commit hash.

If your version is older than 11.4 we will almost certainly tell you to upgrade. There are many bug
fixes and improvementsin each new release, so it is quite possible that a bug you have encountered
in an older release of PostgreSQL has already been fixed. We can only provide limited support
for sites using older releases of PostgreSQL ; if you require more than we can provide, consider
acquiring a commercial support contract.

 Platform information. This includes the kernel name and version, C library, processor, memory
information, and so on. In most cases it is sufficient to report the vendor and version, but do not
assume everyone knowswhat exactly “ Debian” containsor that everyone runsoni386s. If you have
installation problems then information about the toolchain on your machine (compiler, make, and
S0 on) is also necessary.

Do not be afraid if your bug report becomes rather lengthy. That is afact of life. It is better to report
everything the first time than us having to squeeze the facts out of you. On the other hand, if your
input files are huge, it isfair to ask first whether somebody isinterested in looking into it. Hereis an
article” that outlines some more ti ps on reporting bugs.

Do not spend all your time to figure out which changes in the input make the problem go away. This
will probably not help solving it. If it turns out that the bug cannot be fixed right away, you will still
have timeto find and share your work-around. Also, once again, do not waste your time guessing why
the bug exists. We will find that out soon enough.

When writing a bug report, please avoid confusing terminology. The software package in total is
called “PostgreSQL ", sometimes“ Postgres” for short. If you are specifically talking about the backend
process, mention that, do not just say “PostgreSQL crashes’. A crash of a single backend process
is quite different from crash of the parent “postgres’ process; please don't say “the server crashed”
when you mean asingle backend process went down, nor vice versa. Also, client programs such asthe
interactive frontend “psgl” are completely separate from the backend. Please try to be specific about
whether the problem is on the client or server side.

5.3. Where to Report Bugs

In general, send bug reports to the bug report mailing list at <pgsql - bugs@ i sts. post -
gresql . or g>. You arerequested to use a descriptive subject for your email message, perhaps parts
of the error message.

Another method is to fill in the bug report web-form available at the project's web site™®. Entering
a bug report this way causes it to be mailed to the <pgsql - bugs@i st s. post gresql . or g>
mailing list.

9 https://www.chiark.greenend.org.uk/~sgtatham/bugs.html
10 https:/iwww. postgresal.org/

XXXV


https://www.chiark.greenend.org.uk/~sgtatham/bugs.html
https://www.postgresql.org/
https://www.chiark.greenend.org.uk/~sgtatham/bugs.html
https://www.postgresql.org/

Preface

If your bug report has security implications and you'd prefer that it not become immediately visible
in public archives, don't send it to pgsql - bugs. Security issues can be reported privately to <se-
curity@ostgresql.org>.

Do not send bug reports to any of the user mailing lists, such as <pgsql -sql @i st s. post -
gresgl . org>or<pgsql -general @i sts. postgresql.org>. Thesemailing listsarefor
answering user questions, and their subscribers normally do not wish to receive bug reports. More
importantly, they are unlikely to fix them.

Also, please do not send reports to the developers mailing list <pgsql - hackers@i st s. post -

gresql . or g>. Thislistisfor discussing the development of PostgreSQL, and it would be niceif we
could keep the bug reports separate. We might choose to take up a discussion about your bug report
onpgsql - hacker s, if the problem needs more review.

If you have a problem with the documentation, the best place to report it is the documentation mailing
list <pgsql -docs@i sts. post gresql . or g>. Please be specific about what part of the docu-
mentation you are unhappy with.

If your bug is a portability problem on a non-supported platform, send mail to <pgsql - hacker -
s@i sts. postgresql . or g>,sowe(andyou) canwork on porting PostgreSQL to your platform.

Note

Due to the unfortunate amount of spam going around, al of the above lists will be
moderated unless you are subscribed. That means there will be some delay before the
email is delivered. If you wish to subscribe to the lists, please visit https://lists.post-
gresgl.org/ for instructions.

XXXVi


https://lists.postgresql.org/
https://lists.postgresql.org/

Part I. Tutorial

Welcome to the PostgreSQL Tutorial. The following few chapters are intended to give a simple introduction to
PostgreSQL, relational database concepts, and the SQL |anguage to those who are new to any one of these aspects.
We only assume some general knowledge about how to use computers. No particular Unix or programming ex-
perience is required. This part is mainly intended to give you some hands-on experience with important aspects
of the PostgreSQL system. It makes no attempt to be a complete or thorough treatment of the topicsit covers.

After you have worked through this tutorial you might want to move on to reading Part Il to gain a more formal
knowledge of the SQL language, or Part 1V for information about devel oping applications for PostgreSQL . Those
who set up and manage their own server should also read Part 1.




Table of Contents

L. GEIING SEAMEA .....eeieeie ettt ettt 3
0 T 1 = = = 1o o [P 3
1.2. Architectural FUNDamENtalS ......c.oiviiniii i 3
1.3. Creating @ Datahase ........cccuuuiiiiii e 3
1.4, ACCESSING 8 DAIANESE ..ottt 5
2. The SQL LBNGUBGE ...ccevn ittt e et et e et e e e eae s 7
b2 I 1 11 (0o (U (o 1 o I PP 7
A O 04 /= o = PP PT PP 7
2.3. Creating @aNew Table ...o.uuiiii e 7
2.4. Populating @ Table With ROWS ........coouuiiiiiii e 8
25, QUENYING A TADIE ... 9
2.6. J0INS BEIWEEN TaADIES ...uiviiiie i 11
2.7. AQOregate FUNCLIONS ......ccuuuieiiiii ettt ettt e e et eeeaaa s 13
2.8 UPUELES ...ttt 15
2.9, DEIBHIONS ....viieiee et e aaaaas 15
I Y0 (V7= o= s (1 = 16
G I 111 (oo (U o 1 o [PPSR 16
I VAT = YRS USPRPRP 16
3.3 FOrEIgN KBYS ..ttt 16
I I =01 o o 1 17
3.5, WINAOW FUNCLIONS ....cviiviiiiii e ans 19
I ST 101015 g1 7= ot PSP 22
G I o o Tox 11 Lo o T 23




Chapter 1. Getting Started
1.1. Installation

Before you can use PostgreSQL you need to install it, of course. It is possible that PostgreSQL is
already installed at your site, either because it was included in your operating system distribution
or because the system administrator already installed it. If that is the case, you should obtain infor-
mation from the operating system documentation or your system administrator about how to access

PostgreSQL .

If you are not sure whether PostgreSQL is already available or whether you can useit for your exper-
imentation then you can install it yourself. Doing so is not hard and it can be a good exercise. Post-
greSQL can beinstalled by any unprivileged user; no superuser (root) accessis required.

If you are installing PostgreSQL yourself, then refer to Chapter 16 for instructions on installation,
and return to this guide when the installation is complete. Be sure to follow closely the section about
setting up the appropriate environment variabl es.

If your site administrator has not set things up in the default way, you might have some more work to
do. For example, if the database server machine is aremote machine, you will need to set the PGHOST
environment variable to the name of the database server machine. The environment variable PGPORT
might also have to be set. The bottom line is this: if you try to start an application program and it
complains that it cannot connect to the database, you should consult your site administrator or, if
that is you, the documentation to make sure that your environment is properly set up. If you did not
understand the preceding paragraph then read the next section.

1.2. Architectural Fundamentals

Before we proceed, you should understand the basic PostgreSQL system architecture. Understanding
how the parts of PostgreSQL interact will make this chapter somewhat clearer.

In database jargon, PostgreSQL uses a client/server model. A PostgreSQL session consists of the
following cooperating processes (programs):

A server process, which manages the database files, accepts connections to the database from client
applications, and performs database actions on behalf of the clients. The database server program
iscaled post gres.

» The user's client (frontend) application that wants to perform database operations. Client applica-
tions can be very diverse in nature: a client could be atext-oriented tool, a graphical application, a
web server that accesses the database to display web pages, or a specialized database maintenance
tool. Some client applications are supplied with the PostgreSQL distribution; most are devel oped
by users.

Asistypical of client/server applications, the client and the server can be on different hosts. In that
case they communicate over a TCP/IP network connection. Y ou should keep this in mind, because
the filesthat can be accessed on a client machine might not be accessible (or might only be accessible
using adifferent file name) on the database server machine.

The PostgreSQL server can handle multiple concurrent connections from clients. To achieve this it
starts (“forks’) a new process for each connection. From that point on, the client and the new serv-
er process communicate without intervention by the original post gr es process. Thus, the master
server process is always running, waiting for client connections, whereas client and associated server
processes come and go. (All of thisis of course invisible to the user. We only mention it here for
completeness.)

1.3. Creating a Database




Getting Started

Thefirst test to see whether you can access the database server isto try to create adatabase. A running
PostgreSQL server can manage many databases. Typically, a separate database is used for each project
or for each user.

Possibly, your site administrator has already created a database for your use. In that case you can omit
this step and skip ahead to the next section.

To create a new database, in this example named mydb, you use the following command:

$ createdb nydb

If this produces no response then this step was successful and you can skip over the remainder of
this section.

If you see a message similar to:

creat edb: command not found

then PostgreSQL was not installed properly. Either it was not installed at all or your shell's search path
was not set to includeit. Try calling the command with an absol ute path instead:

$ /usr/local/pgsqgl/bin/createdb nmydb

The path at your site might be different. Contact your site administrator or check the installation in-
structions to correct the situation.

Another response could be this:

createdb: could not connect to database postgres: could not connect
to server: No such file or directory

Is the server running locally and accepting

connections on Uni x donain socket "/tnp/.s.PGSQL. 5432"?

This means that the server was not started, or it was not started where cr eat edb expected it. Again,
check the installation instructions or consult the administrator.

Another response could be this:

createdb: could not connect to database postgres: FATAL: role
"joe" does not exi st

where your own login name is mentioned. This will happen if the administrator has not created a
PostgreSQL user account for you. (PostgreSQL user accounts are distinct from operating system user
accounts.) If you are the administrator, see Chapter 21 for help creating accounts. Y ou will need to
become the operating system user under which PostgreSQL was installed (usualy post gr es) to
create the first user account. It could also be that you were assighed a PostgreSQL user name that is
different from your operating system user name; in that case you need to use the - U switch or set the
PGUSER environment variable to specify your PostgreSQL user name.

If you have a user account but it does not have the privileges required to create a database, you will
see the following:

creat edb: database creation failed: ERROR pernission denied to
create dat abase




Getting Started

Not every user has authorization to create new databases. If PostgreSQL refuses to create databases
for you then the site administrator needs to grant you permission to create databases. Consult your
site administrator if this occurs. If you installed PostgreSQL yourself then you should log in for the
purposes of thistutorial under the user account that you started the server as. !

You can aso create databases with other names. PostgreSQL allows you to create any number of
databases at a given site. Database names must have an alphabetic first character and are limited to
63 bytes in length. A convenient choice is to create a database with the same name as your current
user name. Many tools assume that database name as the default, so it can save you some typing. To
create that database, smply type:

$ createdb

If you do not want to use your database anymore you can removeit. For example, if you arethe owner
(creator) of the database ny db, you can destroy it using the following command:

$ dropdb nydb

(For this command, the database name does not default to the user account name. Y ou always need to
specify it.) Thisaction physically removesall files associated with the database and cannot be undone,
so this should only be done with a great deal of forethought.

More about cr eat edb and dr opdb can be found in createdb and dropdb respectively.

1.4. Accessing a Database

Once you have created a database, you can accessit by:

* Running the PostgreSQL interactive terminal program, called psqgl, which alows you to interac-
tively enter, edit, and execute SQL commands.

» Using an existing graphical frontend tool like pgAdmin or an office suite with ODBC or JDBC
support to create and manipulate a database. These possibilities are not covered in this tutorial.

» Writing a custom application, using one of the several available language bindings. These possihil-
ities are discussed further in Part 1V,

You probably want to start up psql to try the examples in this tutorial. It can be activated for the
nmy db database by typing the command:

$ psqgl nydb

If you do not supply the database name then it will default to your user account name. Y ou already
discovered this scheme in the previous section using cr eat edb.

Inpsql , you will be greeted with the following message:
psql (11.4)

Type "hel p" for help.

mydb=>

Thelast line could also be:

1 As an explanation for why this works: PostgreSQL user names are separate from operating system user accounts. When you connect to a
database, you can choose what PostgreSQL user name to connect as; if you don't, it will default to the same name as your current operating
system account. Asit happens, there will always be a PostgreSQL user account that has the same name as the operating system user that started
the server, and it also happens that that user always has permission to create databases. Instead of logging in as that user you can also specify
the - U option everywhere to select a PostgreSQL user name to connect as.




Getting Started

nydb=#

That would mean you are a database superuser, which is most likely the case if you instaled the
PostgreSQL instance yourself. Being a superuser means that you are not subject to access controls.
For the purposes of thistutorial that is not important.

If you encounter problems starting psql then go back to the previous section. The diagnostics of
creat edb and psql aresimilar, and if the former worked the latter should work as well.

Thelast line printed out by psql isthe prompt, and it indicatesthat psql islistening to you and that
you can type SQL queries into awork space maintained by psql . Try out these commands:

nydb=> SELECT version();
ver si on

PostgreSQ. 11.4 on x86_64-pc-I|inux-gnu, conpiled by gcc (Debian
4.9.2-10) 4.9.2, 64-bit
(1 row

nmydb=> SELECT current _date;
dat e

2016- 01- 07
(1 row

nmydb=> SELECT 2 + 2;
?col um?

(1 row

Thepsql program hasanumber of internal commands that are not SQL commands. They begin with
the backslash character, “\ . For example, you can get help on the syntax of various PostgreSQL SQL
commands by typing:

nydb=> \ h

To get out of psql , type:

nmydb=> \q

and psql will quit and return you to your command shell. (For more internal commands, type\ ? at
the psqgl prompt.) The full capabilities of psql are documented in psgl. In this tutorial we will not
use these features explicitly, but you can use them yourself when it is helpful.




Chapter 2. The SQL Language

2.1. Introduction

This chapter provides an overview of how to use SQL to perform simple operations. This tutorial is
only intended to give you an introduction and is in no way a complete tutorial on SQL. Numerous
books have been written on SQL, including [melt93] and [date97]. Y ou should be aware that some
PostgreSQL language features are extensions to the standard.

In the examples that follow, we assume that you have created a database named mydb, as described
in the previous chapter, and have been able to start psql.

Examples in this manual can also be found in the PostgreSQL source distribution in the directory
src/tutorial/.(Binary distributions of PostgreSQL might not compile thesefiles.) To use those
files, first change to that directory and run make:

$cd..../src/tutorial
$ make

This creates the scripts and compiles the C files containing user-defined functions and types. Then,
to start the tutorial, do the following:

$cd..../tutorial
$ psql -s mydb

nydb=> \i basi cs. sql

The\'i command readsin commandsfrom the specified file. psql 's- s option putsyou in single step
mode which pauses before sending each statement to the server. The commands used in this section
areinthefilebasi cs. sql .

2.2. Concepts

PostgreSQL isarelational database management system (RDBMS). That meansit is a system for
managing data stored in relations. Relation is essentially a mathematical term for table. The notion
of storing data in tables is so commonplace today that it might seem inherently obvious, but there
are anumber of other ways of organizing databases. Files and directories on Unix-like operating sys-
tems form an example of ahierarchical database. A more modern development is the object-oriented
database.

Each table is a named collection of rows. Each row of a given table has the same set of named
columns, and each column is of a specific datatype. Whereas columns have afixed order in each row,
it isimportant to remember that SQL does not guarantee the order of the rows within the table in any
way (although they can be explicitly sorted for display).

Tables are grouped into databases, and a collection of databases managed by a single PostgreSQL
server instance constitutes a database cluster.

2.3. Creating a New Table

Y ou can create anew table by specifying the table name, along with all column names and their types:




The SQL Language

CREATE TABLE weat her (

city var char ( 80),

temp_lo int, -- low tenperature
t enmp_hi int, -- high tenperature
prcp real, -- precipitation
dat e dat e

)

You can enter this into psqgl with the line breaks. psql will recognize that the command is not
terminated until the semicolon.

White space (i.e., spaces, tabs, and newlines) can be used freely in SQL commands. That means you
can type the command aligned differently than above, or even al on one line. Two dashes (“- - ")
introduce comments. Whatever follows them is ignored up to the end of the line. SQL is case insen-
sitive about key words and identifiers, except when identifiers are double-quoted to preserve the case
(not done above).

var char (80) specifies a data type that can store arbitrary character strings up to 80 characters
inlength. i nt isthe normal integer type. r eal isatype for storing single precision floating-point
numbers. dat e should be self-explanatory. (Y es, the column of typedat e isalso named dat e. This
might be convenient or confusing — you choose.)

PostgreSQL  supports the standard SQL typesi nt, smal | i nt, real , doubl e precision,
char (N),varchar(N),date,time,tinestanp, andi nt erval , aswell as other types of
genera utility and a rich set of geometric types. PostgreSQL can be customized with an arbitrary
number of user-defined data types. Consequently, type names are not key words in the syntax, except
where required to support special casesin the SQL standard.

The second example will store cities and their associated geographical |ocation:

CREATE TABLE cities (
nane var char ( 80),
| ocation poi nt

)
Thepoi nt typeisan example of a PostgreSQL -specific data type.

Finally, it should be mentioned that if you don't need atable any longer or want to recreateit differently
you can remove it using the following command:

DROP TABLE t abl enane;

2.4. Populating a Table With Rows

The | NSERT statement is used to populate a table with rows:

| NSERT | NTO weat her VALUES (' San Francisco', 46, 50, 0.25,
'1994- 11-27");

Notethat all datatypes use rather obviousinput formats. Constantsthat are not simple numeric values
usually must be surrounded by single quotes (' ), asin the example. The dat e typeisactualy quite
flexiblein what it accepts, but for thistutorial we will stick to the unambiguous format shown here.

The poi nt type requires a coordinate pair asinput, as shown here:




The SQL Language

I NSERT I NTO cities VALUES (' San Francisco', '(-194.0, 53.0)");

The syntax used so far requiresyou to remember the order of the columns. An alternative syntax allows
you to list the columns explicitly:

| NSERT | NTO weat her (city, tenp_lo, tenp_hi, prcp, date)
VALUES (' San Francisco', 43, 57, 0.0, '1994-11-29');

You can list the columns in a different order if you wish or even omit some columns, e.g., if the
precipitation is unknown:

| NSERT | NTO weat her (date, city, tenp_hi, tenp_|l o)
VALUES (' 1994-11-29', 'Hayward', 54, 37);

Many devel opers consider explicitly listing the columns better style than relying on the order implic-
itly.

Please enter al the commands shown above so you have some data to work with in the following
sections.

You could also have used COPY to load large amounts of data from flat-text files. This is usualy
faster because the COPY command is optimized for this application while allowing lessflexibility than
I NSERT. An example would be:

COPY weat her FROM '/ hone/ user/weat her.txt';
where the file name for the source file must be available on the machine running the backend process,

not the client, since the backend process reads the file directly. Y ou can read more about the COPY
command in COPY.

2.5. Querying a Table

Toretrieve datafrom atable, thetableisqueried. An SQL SELECT statement is used to do this. The
statement is divided into a select list (the part that lists the columns to be returned), atable list (the
part that lists the tables from which to retrieve the data), and an optiona qualification (the part that
specifies any restrictions). For example, to retrieve all the rows of tableweat her , type:

SELECT * FROM weat her;

Here* isashorthand for “all columns’. * So the same result would be had with:

SELECT city, tenp_lo, temp_hi, prcp, date FROM weat her;

The output should be:

city | tenp_lo | tenmp_hi | prcp | dat e
--------------- T T T gy
San Franci sco | 46 | 50 | 0.25 | 1994-11-27
San Franci sco | 43 | 57 | 0 | 1994-11-29
Haywar d | 37 | 54 | | 1994-11-29
(3 rows)

L \While SELECT * isuseful for off-the-cuff queries, it is widely considered bad style in production code, since adding a column to the table
would change the results.




The SQL Language

Y ou can write expressions, not just simple column references, in the select list. For example, you can
do:

SELECT city, (tenp_hi+tenp lo)/2 AS tenp_avg, date FROM weat her;

This should give:

city | tenmp_avg | dat e
_______________ e
San Franci sco | 48 | 1994-11-27
San Franci sco | 50 | 1994-11-29
Haywar d | 45 | 1994-11-29
(3 rows)

Notice how the AS clause is used to relabel the output column. (The AS clauseis optional.)

A query can be “qualified” by adding a WHERE clause that specifies which rows are wanted. The
VWHERE clause contains a Boolean (truth value) expression, and only rows for which the Boolean
expression is true are returned. The usual Boolean operators (AND, OR, and NOT) are allowed in the
qualification. For example, the following retrieves the weather of San Francisco on rainy days:

SELECT * FROM weat her
WHERE city = 'San Franci sco’ AND prcp > 0.0;

Resullt:

city | tenp_lo | tenmp_hi | prcp | dat e
--------------- T T T gy
San Franci sco | 46 | 50 | 0.25 | 1994-11-27
(1 row

Y ou can request that the results of a query be returned in sorted order:

SELECT * FROM weat her
ORDER BY city;

city | temp_lo | tenp_hi | prcp | dat e
--------------- T T T L L I e
Haywar d | 37 | 54 | | 1994-11-29
San Franci sco | 43 | 57 | 0 | 1994-11-29
San Franci sco | 46 | 50 | 0.25 | 1994-11-27

In this example, the sort order isn't fully specified, and so you might get the San Francisco rows in
either order. But you'd always get the results shown above if you do:

SELECT * FROM weat her
ORDER BY city, tenp_lo;
Y ou can request that duplicate rows be removed from the result of a query:

SELECT DI STINCT city
FROM weat her ;

10



The SQL Language

Haywar d
San Franci sco
(2 rows)

Here again, theresult row ordering might vary. Y ou can ensure consistent resultsby using DI STI NCT
and ORDER BY together:

SELECT DI STINCT city
FROM weat her
ORDER BY city;

2.6. Joins Between Tables

Thus far, our queries have only accessed one table at a time. Queries can access multiple tables at
once, or access the same table in such away that multiple rows of the table are being processed at the
sametime. A query that accesses multiple rows of the same or different tables at onetimeiscaled a
join query. As an example, say you wish to list al the weather records together with the location of
the associated city. To do that, we need to compare the ci t y column of each row of the weat her
table with the namre column of al rowsintheci t i es table, and select the pairs of rows where these
values match.

Note

This is only a conceptual model. The join is usualy performed in a more efficient
manner than actually comparing each possible pair of rows, but thisisinvisible to the
user.

This would be accomplished by the following query:

SELECT *
FROM weat her, cities
WHERE city = nane;

city | temp_lo | tenp_hi | prcp | dat e | nane
| location
--------------- T LT T gy
o e e e e oo - - T ——
San Franci sco | 46 | 50 | 0.25 | 1994-11-27 | San
Francisco | (-194, 53)
San Franci sco | 43 | 57 | 0 | 1994-11-29 | San
Francisco | (-194, 53)
(2 rows)

Observe two things about the result set:

e Thereis no result row for the city of Hayward. This is because there is no matching entry in the
ci ti es table for Hayward, so the join ignores the unmatched rows in the weat her table. We
will see shortly how this can be fixed.

2 |n some database systems, including older versions of PostgreSQL, the implementation of DI STI NCT automatically orders the rows and
so ORDER BY is unnecessary. But this is not required by the SQL standard, and current PostgreSQL does not guarantee that DI STI NCT
causes the rows to be ordered.

11



The SQL Language

» There are two columns containing the city name. Thisis correct because the lists of columns from
theweat her andci ti es tablesare concatenated. In practice thisis undesirable, though, so you
will probably want to list the output columns explicitly rather than using * :

SELECT city, tenp_lo, tenp_hi, prcp, date, location
FROM weat her, cities
WHERE city = nane;

Exercise:  Attempt to determine the semantics of this query when the WHERE clause is omitted.

Since the columns all had different names, the parser automatically found which table they belong
to. If there were duplicate column names in the two tables you'd need to qualify the column names
to show which one you meant, asin:

SELECT weather.city, weather.tenp_ | o, weather.tenp_hi,
weat her. prcp, weather.date, cities.location
FROM weat her, cities
WHERE cities. name = weather.city;

It iswidely considered good style to qualify all column namesin ajoin query, so that the query won't
fail if aduplicate column nameis later added to one of the tables.

Join queries of the kind seen thus far can also be written in this alternative form:

SELECT *
FROM weat her I NNER JO N cities ON (weather.city = cities.nane);

This syntax is not as commonly used as the one above, but we show it here to help you understand
the following topics.

Now we will figure out how we can get the Hayward records back in. What we want the query to do
isto scan theweat her table and for each row to find the matching ci t i es row(s). If no matching
row is found we want some “empty values’ to be substituted for the ci t i es table's columns. This
kind of query is called an outer join. (The joins we have seen so far are inner joins.) The command
looks like this:

SELECT *
FROM weat her LEFT QUTER JO N cities ON (weather.city
cities.nane);

city | temp_lo | tenp_hi | prcp | dat e | nane
| location
--------------- T S LT Jpeppp
Fom e e e e o oo Fom e e e e o -
Haywar d | 37 | 54 | | 1994-11-29 |
I
San Franci sco | 46 | 50 | 0.25 | 1994-11-27 | San
Francisco | (-194, 53)
San Franci sco | 43 | 57 | 0 | 1994-11-29 | San
Francisco | (-194, 53)
(3 rows)

This query is called aleft outer join because the table mentioned on the left of the join operator will
have each of its rows in the output at |east once, whereas the table on the right will only have those
rows output that match some row of the left table. When outputting aleft-table row for which thereis
no right-table match, empty (null) values are substituted for the right-table columns.

12



The SQL Language

Exercises  Thereare aso right outer joins and full outer joins. Try to find out what those do.

We can also join atable against itself. Thisis called a self join. As an example, suppose we wish to
find all the weather records that are in the temperature range of other weather records. So we need to
comparethet enp_| o andt enp_hi columns of each weat her row tothetenp_| o andt em
p_hi columnsof al other weat her rows. We can do this with the following query:

SELECT WL.city, WiL.tenp_lo AS | ow, WL.tenp_hi AS hi gh,
W.city, W2.tenp_lo AS low, W.tenp_hi AS high
FROM weat her WL, weat her W2
WHERE Wi.tenp_ o < W2.tenp_l o
AND WL. tenmp_hi > W2.tenp_hi;

city | lTow | high | city | low | high
--------------- T T T e I
San Francisco | 43 | 57 | San Francisco | 46 | 50
Haywar d | 37 | 54 | San Francisco | 46 | 50
(2 rows)

Here we have relabeled the weather table as WL and W2 to be able to distinguish the left and right side
of thejoin. You can aso use these kinds of aliasesin other queriesto save some typing, e.g.:

SELECT *
FROM weat her w, cities ¢
WHERE w. city = c.nane;

Y ou will encounter this style of abbreviating quite frequently.

2.7. Aggregate Functions

Like most other relational database products, PostgreSQL supports aggregate functions. An aggregate
function computes asingle result from multipleinput rows. For example, there are aggregatesto com-
putethe count , sum avg (average), max (maximum) and m n (minimum) over a set of rows.

As an example, we can find the highest |low-temperature reading anywhere with:

SELECT nmax(tenp_l o) FROM weat her;

If we wanted to know what city (or cities) that reading occurred in, we might try:

SELECT city FROM weat her WHERE tenp_| o = max(tenp_l 0); VRONG

but this will not work since the aggregate max cannot be used in the WHERE clause. (This restriction
exists because the WHERE clause determineswhich rowswill beincluded in the aggregate cal cul ation;
so obviously it hasto be eval uated before aggregate functions are computed.) However, asis often the
case the query can be restated to accomplish the desired result, here by using a subquery:

SELECT city FROM weat her

13



The SQL Language

WHERE tenp_| o = (SELECT max(tenp_l o) FROM weat her);

San Franci sco

(1 row

This is OK because the subquery is an independent computation that computes its own aggregate
separately from what is happening in the outer query.

Aggregates are also very useful in combination with GROUP BY clauses. For example, we can get
the maximum low temperature observed in each city with:

SELECT city, max(tenp_| o)
FROM weat her
GROUP BY city;

city | max
_______________ [ S,
Haywar d | 37
San Francisco | 46
(2 rows)

which givesusone output row per city. Each aggregate result iscomputed over thetablerows matching
that city. We can filter these grouped rows using HAVI NG

SELECT city, max(tenp_| 0)
FROM weat her
GROUP BY city
HAVI NG max(tenp_l o) < 40;

city | max
_________ [ I,
Hayward | 37
(1 row)

which gives us the same results for only the cities that have all t enp_| o values below 40. Finally,
if we only care about cities whose names begin with “S”, we might do:

SELECT city, max(tenp_l o)
FROM weat her
WHERE city LIKE ' S% --
GROUP BY city
HAVI NG max(tenp_l o) < 40;

The LI KE operator does pattern matching and is explained in Section 9.7.

Itisimportant to understand the interaction between aggregates and SQL 's WHERE and HAVI NGclaus-
es. Thefundamental difference between WHERE and HAVI NGisthis: WHERE selectsinput rowsbefore
groups and aggregates are computed (thus, it controlswhich rows go into the aggregate computation),
whereas HAVI NG selects group rows after groups and aggregates are computed. Thus, the WHERE
clause must not contain aggregate functions; it makes no senseto try to use an aggregate to determine
which rows will be inputs to the aggregates. On the other hand, the HAVI NG clause aways contains
aggregate functions. (Strictly speaking, you are allowed to write a HAVI NG clause that doesn't use

14



The SQL Language

aggregates, but it's seldom useful. The same condition could be used more efficiently at the WHERE

stage.)

In the previous example, we can apply the city name restriction in WHERE, sinceit needs no aggregate.
This is more efficient than adding the restriction to HAVI NG, because we avoid doing the grouping

and aggregate calculations for al rows that fail the WHERE check.

2.8. Updates

You can update existing rows using the UPDATE command. Suppose you discover the temperature
readings are all off by 2 degrees after November 28. Y ou can correct the data as follows:

UPDATE weat her

SET tenp_hi = temp_hi - 2, tenp_lo =temp_lo - 2

WHERE date > '1994-11-28";
Look at the new state of the data:
SELECT * FROM weat her;

city | temp_lo | tenp_hi | prcp | dat e
--------------- T T L e
San Franci sco | 46 | 50 | 0.25 | 1994-11-27
San Franci sco | 41 | 55 | 0 | 1994-11-29
Haywar d | 35 | 52 | | 1994-11-29
(3 rows)

2.9. Deletions

Rows can be removed from atable using the DEL ETE command.
in the weather of Hayward. Then you can do the following to delete those rows from the table:

DELETE FROM weat her WHERE city = 'Hayward';

All weather records belonging to Hayward are removed.

SELECT * FROM weat her;

city | temp_lo | tenp_hi | prcp |
--------------- T e T T Ty S
San Franci sco | 46 | 50 | 0.25 |
San Franci sco | 41 | 55 | 0 |

(2 rows)

One should be wary of statements of the form

DELETE FROM t abl enane;

Without a qualification, DELETE will remove all rows from the given table, leaving it empty. The

system will not request confirmation before doing this!

Supposeyou are no longer interested

1994-11- 27
1994-11-29

15



Chapter 3. Advanced Features

3.1. Introduction

In the previous chapter we have covered the basics of using SQL to store and access your data in
PostgreSQL . We will now discuss some more advanced features of SQL that simplify management
and prevent loss or corruption of your data. Finally, we will look at some PostgreSQL extensions.

This chapter will on occasion refer to examples found in Chapter 2 to change or improve them, so
it will be useful to have read that chapter. Some examples from this chapter can also be found in
advanced. sql inthetutoria directory. Thisfile also contains some sample datato load, which is
not repeated here. (Refer to Section 2.1 for how to use thefile.)

3.2. Views

Refer back to the queriesin Section 2.6. Suppose the combined listing of weather records and city
location is of particular interest to your application, but you do not want to type the query each time
you need it. Y ou can create a view over the query, which gives aname to the query that you can refer
to like an ordinary table:

CREATE VI EW nyvi ew AS
SELECT city, tenp_lo, tenp_hi, prcp, date, |ocation
FROM weat her, cities
WHERE city = nane;

SELECT * FROM nyvi ew,

Making liberal use of views is a key aspect of good SQL database design. Views allow you to en-
capsulate the details of the structure of your tables, which might change as your application evolves,
behind consistent interfaces.

Views can be used in almost any place areal table can be used. Building views upon other views is
not uncommon.

3.3. Foreign Keys

Recall theweat her andci ti es tablesfrom Chapter 2. Consider the following problem: Y ou want
to make sure that no one can insert rows in the weat her table that do not have a matching entry
intheci ti es table. Thisis called maintaining the referential integrity of your data. In simplistic
database systems this would be implemented (if at al) by first looking at theci t i es table to check
if amatching record exists, and then inserting or rejecting the new weat her records. This approach
has a number of problems and is very inconvenient, so PostgreSQL can do this for you.

The new declaration of the tables would look like this:

CREATE TABLE cities (
city varchar (80) primary key,
| ocation point

)

CREATE TABLE weat her (
city varchar (80) references cities(city),
tenmp_lo int,

16



Advanced Features

t enmp_hi int,
prcp real,
dat e date

)

Now try inserting an invalid record:
| NSERT | NTO weat her VALUES (' Berkeley', 45, 53, 0.0, '1994-11-28");

ERROR: insert or update on table "weather" violates foreign key
constraint "weather_city_fkey"
DETAIL: Key (city)=(Berkeley) is not present in table "cities".

Thebehavior of foreign keys can befinely tuned to your application. Wewill not go beyond thissimple
example in thistutorial, but just refer you to Chapter 5 for more information. Making correct use of
foreign keys will definitely improve the quality of your database applications, so you are strongly
encouraged to learn about them.

3.4. Transactions

Transactions are afundamental concept of all database systems. The essential point of atransactionis
that it bundles multiple steps into a single, all-or-nothing operation. The intermediate states between
the steps are not visible to other concurrent transactions, and if some failure occurs that prevents the
transaction from completing, then none of the steps affect the database at al.

For example, consider abank database that contains balancesfor various customer accounts, aswell as
total deposit balancesfor branches. Suppose that we want to record a payment of $100.00 from Alice's
account to Bab's account. Simplifying outrageously, the SQL commands for this might ook like:

UPDATE accounts SET bal ance = bal ance - 100. 00

VWHERE nanme = 'Alice';
UPDATE branches SET bal ance = bal ance - 100. 00

WHERE nane = ( SELECT branch_name FROM accounts WHERE nane
"Alice');
UPDATE accounts SET bal ance = bal ance + 100. 00

VWHERE nanme = ' Bob';
UPDATE branches SET bal ance = bal ance + 100. 00

WHERE nane = ( SELECT branch_name FROM accounts WHERE nane
' Bob' ) ;

The details of these commands are not important here; the important point is that there are several
separate updates involved to accomplish this rather simple operation. Our bank's officers will want to
be assured that either al these updates happen, or none of them happen. It would certainly not do for
asystem failure to result in Bob receiving $100.00 that was not debited from Alice. Nor would Alice
long remain a happy customer if she was debited without Bob being credited. We need a guarantee
that if something goes wrong partway through the operation, none of the steps executed so far will
take effect. Grouping the updates into atransaction gives usthis guarantee. A transactionissaid to be
atomic: from the point of view of other transactions, it either happens completely or not at all.

We also want a guarantee that once a transaction is completed and acknowledged by the database
system, it has indeed been permanently recorded and won't be lost even if a crash ensues shortly
thereafter. For example, if we are recording a cash withdrawal by Bob, we do not want any chance that
the debit to his account will disappear in acrash just after he walks out the bank door. A transactional
database guarantees that all the updates made by a transaction are logged in permanent storage (i.e.,
on disk) before the transaction is reported compl ete.

17



Advanced Features

Another important property of transactional databases is closely related to the notion of atomic up-
dates: when multiple transactions are running concurrently, each one should not be able to see the
incomplete changes made by others. For example, if one transaction is busy totalling all the branch
balances, it would not do for it to include the debit from Alice's branch but not the credit to Bob's
branch, nor vice versa. So transactions must be all-or-nothing not only in terms of their permanent
effect on the database, but also in terms of their visibility asthey happen. The updates made so far by
an open transaction are invisible to other transactions until the transaction completes, whereupon all
the updates become visible simultaneously.

In PostgreSQL, a transaction is set up by surrounding the SQL commands of the transaction with
BEGQ Nand COVMM T commands. So our banking transaction would actually look like:

BEG N;

UPDATE accounts SET bal ance = bal ance - 100. 00
VWHERE nanme = 'Alice';

-- etc etc

COW T;

If, partway through the transaction, we decide we do not want to commit (perhaps we just noticed that
Alice's balance went negative), we can issue the command ROLLBACK instead of COVM T, and all
our updates so far will be canceled.

PostgreSQL actually treats every SQL statement as being executed within atransaction. If you do not
issue a BEG N command, then each individual statement has an implicit BEG N and (if successful)
COWM T wrapped around it. A group of statements surrounded by BEG Nand COVM T is sometimes
called atransaction block.

Note

Someclient librariesissue BEG Nand COMM T commands automatically, so that you
might get the effect of transaction blocks without asking. Check the documentation
for the interface you are using.

It's possible to control the statements in a transaction in a more granular fashion through the use of
savepoints. Savepoints allow you to selectively discard parts of the transaction, while committing the
rest. After defining a savepoint with SAVEPQO NT, you can if needed roll back to the savepoint with
ROLLBACK TO. All the transaction's database changes between defining the savepoint and rolling
back to it are discarded, but changes earlier than the savepoint are kept.

After rolling back to a savepoint, it continues to be defined, so you can roll back to it several times.
Conversely, if you are sure you won't need to roll back to a particular savepoint again, it can be
released, so the system can free some resources. Keep in mind that either releasing or rolling back to
asavepoint will automatically release all savepoints that were defined after it.

All this is happening within the transaction block, so none of it is visible to other database sessions.
When and if you commit the transaction block, the committed actions become visible asaunit to other
sessions, while the rolled-back actions never become visible at all.

Remembering the bank database, suppose we debit $100.00 from Alice's account, and credit Bob's
account, only to find later that we should have credited Wally's account. We could do it using save-
points like this:

BEG N,

UPDATE accounts SET bal ance = bal ance - 100. 00
VWHERE nane = 'Alice';

SAVEPQO NT ny_savepoi nt;

18



Advanced Features

UPDATE accounts SET bal ance = bal ance + 100. 00
VWHERE nanme = ' Bob';

-- oops ... forget that and use Wally's account

ROLLBACK TO ny_savepoi nt;

UPDATE accounts SET bal ance = bal ance + 100. 00
WHERE nane = 'Vally';

COW T;

Thisexampleis, of course, oversimplified, but there's alot of control possible in a transaction block
through the use of savepoints. Moreover, ROLLBACK TO s the only way to regain control of a
transaction block that was put in aborted state by the system due to an error, short of rolling it back
completely and starting again.

3.5. Window Functions

A window function performs a calculation across a set of table rows that are somehow related to the
current row. Thisis comparable to the type of calculation that can be done with an aggregate function.
However, window functions do not cause rows to become grouped into a single output row like non-
window aggregate calls would. Instead, the rows retain their separate identities. Behind the scenes,
the window function is able to access more than just the current row of the query result.

Here is an example that shows how to compare each employee's salary with the average salary in his
or her department:

SELECT depnane, enpno, salary, avg(salary) OVER ( PARTI TI ON BY
depnane) FROM enpsal ary;

depnane | enmpno | salary | avg
----------- T
devel op | 11 | 5200 | 5020. 0000000000000000
devel op | 7| 4200 | 5020.0000000000000000
devel op | 9 | 4500 | 5020. 0000000000000000
devel op | 8 | 6000 | 5020. 0000000000000000
devel op | 10 | 5200 | 5020. 0000000000000000
personnel | 5| 3500 | 3700. 0000000000000000
personnel | 2| 3900 | 3700. 0000000000000000
sal es | 3| 4800 | 4866.6666666666666667
sal es | 1] 5000 | 4866.6666666666666667
sal es | 4 | 4800 | 4866.6666666666666667
(10 rows)

Thefirst three output columns come directly from the tableenpsal ar y, and there is one output row
for each row in the table. The fourth column represents an average taken across all the table rows
that have the same depnane value as the current row. (This actually is the same function as the
non-window avg aggregate, but the OVER clause causes it to be treated as a window function and
computed across the window frame.)

A window function call aways contains an OVER clause directly following the window function's
name and argument(s). This is what syntactically distinguishes it from a normal function or non-
window aggregate. The OVER clause determines exactly how the rows of the query are split up for
processing by the window function. The PARTI Tl ON BY clause within OVER divides the rows into
groups, or partitions, that share the same values of the PARTI TI ON BY expression(s). For each row,
the window function is computed across the rows that fall into the same partition as the current row.

You can aso control the order in which rows are processed by window functions using ORDER BY
within OVER. (The window ORDER BY does not even have to match the order in which the rows are
output.) Hereis an example:

19



Advanced Features

SELECT depnane, enpno, salary,
rank() OVER ( PARTI TI ON BY depnane ORDER BY sal ary DESC)
FROM enpsal ary;

depnanme | enmpno | salary | rank
----------- T e Y
devel op | 8 | 6000 | 1
devel op | 10 | 5200 | 2
devel op | 11 | 5200 | 2
devel op | 9 | 4500 | 4
devel op | 7 | 4200 | 5
per sonnel | 2 | 3900 | 1
personnel | 5] 3500 | 2
sal es | 1| 5000 | 1
sal es | 4 | 4800 | 2
sal es | 3| 4800 | 2
(10 rows)

As shown here, the r ank function produces a numerical rank for each distinct ORDER BY valuein
the current row's partition, using the order defined by the ORDER BY clause. r ank needs no explicit
parameter, because its behavior is entirely determined by the OVER clause.

The rows considered by a window function are those of the “virtual table” produced by the query's
FROMclause asfiltered by its WHERE, GROUP BY, and HAVI NG clausesif any. For example, arow
removed because it does not meet the WHERE condition is not seen by any window function. A query
can contain multiple window functions that slice up the data in different ways using different OVER
clauses, but they all act on the same collection of rows defined by this virtual table.

We aready saw that ORDER BY can be omitted if the ordering of rows is not important. It is also
possible to omit PARTI TI ON BY, in which case there is asingle partition containing al rows.

There is another important concept associated with window functions: for each row, there is a set of
rows within its partition called its window frame. Some window functions act only on the rows of the
window frame, rather than of the whole partition. By default, if ORDER BY is supplied then the frame
consists of all rows from the start of the partition up through the current row, plus any following rows
that are equal to the current row according to the ORDER BY clause. When ORDER BY is omitted the
default frame consists of all rows in the partition. 'Hereisan exampleusing sum

SELECT sal ary, sun{salary) OVER () FROM enpsal ary;

salary | sum

________ .
5200 | 47100
5000 | 47100
3500 | 47100
4800 | 47100
3900 | 47100
4200 | 47100
4500 | 47100
4800 | 47100
6000 | 47100
5200 | 47100

(10 rows)

! There are options to define the window frame in other ways, but this tutorial does not cover them. See Section 4.2.8 for details.

20



Advanced Features

Above, sincethereisno ORDER BY inthe OVER clause, the window frameisthe same asthe partition,
which for lack of PARTI TI ON BY is the whole table; in other words each sum is taken over the
whole table and so we get the same result for each output row. But if we add an ORDER BY clause,
we get very different results:

SELECT sal ary, sun{salary) OVER (ORDER BY sal ary) FROM enpsal ary;

salary | sum

________ Fom e oo -
3500 | 3500
3900 | 7400
4200 | 11600
4500 | 16100
4800 | 25700
4800 | 25700
5000 | 30700
5200 | 41100
5200 | 41100
6000 | 47100

(10 rows)

Herethe sumistaken from thefirst (lowest) salary up through the current one, including any duplicates
of the current one (notice the results for the duplicated salaries).

Window functions are permitted only in the SELECT list and the ORDER BY clause of the query.
They are forbidden el sewhere, such asin GROUP BY, HAVI NG and WHERE clauses. Thisis because
they logically execute after the processing of those clauses. Also, window functions execute after
non-window aggregate functions. This means it is valid to include an aggregate function call in the
arguments of awindow function, but not vice versa.

If there is a need to filter or group rows after the window calculations are performed, you can use a
sub-select. For example:

SELECT depnane, enpno, salary, enroll _date
FROM

( SELECT depnane, enpno, salary, enroll _date,

rank() OVER (PARTI TI ON BY depnane ORDER BY sal ary DESC,
enpno) AS pos
FROM enpsal ary

) AS ss

WHERE pos < 3;

The above query only shows the rows from the inner query having r ank less than 3.

When a query involves multiple window functions, it is possible to write out each one with a separate
OVER clause, but this is duplicative and error-prone if the same windowing behavior is wanted for
several functions. Instead, each windowing behavior can be named in a W NDOWclause and then
referenced in OVER. For example:

SELECT sun{sal ary) OVER w, avg(salary) OVER w
FROM enpsal ary
W NDOW w AS ( PARTI TI ON BY depnanme ORDER BY sal ary DESC);

More details about window functions can be found in Section 4.2.8, Section 9.21, Section 7.2.5, and
the SELECT reference page.

21



Advanced Features

3.6. Inheritance

Inheritance is a concept from object-oriented databases. It opens up interesting new possibilities of
database design.

Let's create two tables. A tableci ti es and atable capi t al s. Naturaly, capitals are aso cities,

S0 you want some way to show the capitals implicitly when you list all cities. If you're really clever
you might invent some scheme like this:

CREATE TABLE capitals (

name t ext,
popul ati on real,
al titude i nt, -- (in ft)
state char (2)
)
CREATE TABLE non_capitals (
name t ext,
popul ati on real,
al titude i nt -- (in ft)
)

CREATE VIEWcities AS
SELECT nane, popul ation, altitude FROM capitals
UNI ON
SELECT nane, popul ation, altitude FROM non_capitals;

Thisworks OK as far as querying goes, but it gets ugly when you need to update severa rows, for
onething.

A better solution isthis;

CREATE TABLE cities (

nane t ext,

popul ati on real,

altitude i nt -- (in ft)
);

CREATE TABLE capitals (
state char (2)
) INHERITS (cities);

Inthiscase, arow of capi t al s inheritsal columns (nane, popul ati on,andal tit ude) from
its parent, ci ti es. The type of the column nane ist ext, a native PostgreSQL type for variable
length character strings. State capitals have an extra column, st at e, that shows their state. In Post-
greSQL, atable can inherit from zero or more other tables.

For example, the following query finds the names of al cities, including state capitals, that are located
at an altitude over 500 feet:

SELECT nane, altitude
FROM citi es
VWHERE al titude > 500;

which returns;

22



Advanced Features

nane | altitude
___________ .
Las Vegas | 2174
Mari posa | 1953
Madi son | 845
(3 rows)

On the other hand, the following query finds all the cities that are not state capitals and are situated
at an altitude over 500 feet:

SELECT nane, altitude
FROM ONLY cities
VWHERE al titude > 500;

nane | altitude
___________ .
Las Vegas | 2174
Mari posa | 1953
(2 rows)

Herethe ONLY beforeci t i es indicatesthat the query should berun over only theci t i es table, and
not tablesbelow ci t i es in the inheritance hierarchy. Many of the commands that we have aready
discussed — SELECT, UPDATE, and DELETE — support this ONLY notation.

Note

Although inheritance is frequently useful, it has not been integrated with unique con-
straints or foreign keys, which limitsits usefulness. See Section 5.9 for more detail.

3.7. Conclusion

PostgreSQL has many features not touched upon in thistutorial introduction, which has been oriented
toward newer users of SQL. These features are discussed in more detail in the remainder of this book.

If you feel you need more introductory material, please visit the PostgreSQL web site? for links to
more resources.

2 https://www.postgresgl.org

23


https://www.postgresql.org
https://www.postgresql.org

Part Il. The SQL Language

This part describes the use of the SQL language in PostgreSQL . We start with describing the general syntax of
SQL, then explain how to create the structures to hold data, how to popul ate the database, and how to query it. The
middle part lists the available data types and functions for use in SQL commands. The rest treats several aspects
that are important for tuning a database for optimal performance.

Theinformation in this part is arranged so that a novice user can follow it start to end to gain afull understanding
of the topics without having to refer forward too many times. The chapters are intended to be self-contained, so
that advanced users can read the chapters individually asthey choose. The information in this part is presented in
a narrative fashion in topical units. Readers looking for a complete description of a particular command should
see Part V1.

Readers of this part should know how to connect to a PostgreSQL database and issue SQL commands. Readers
that are unfamiliar with these issues are encouraged to read Part | first. SQL commands aretypically entered using
the PostgreSQL interactive terminal psgl, but other programs that have similar functionality can be used as well.




Table of Contents

A, SQL SYNEBX +.tueeeeeti ettt ettt e e et e e ettt ettt et e e e et e et e e e e e e e e eabn e eene 32
A1, LeXiCal SIUCTUME ...ttt ettt e e 32
4.1.1. Identifiers and Ky WOIAS ..........uieiiiiiieiiiiiieceei et 32
.02, CONSLANES ....eeree ettt ettt 34
40,3, OPEIELOIS ....eieeeeei ettt ettt et 38
4.1.4. SPECial CharaCler'S ... oceeeei ettt et 39
.05, COMMENES ...eetiieiti ettt ettt e e et e e e e e e e eaa s 39
4.1.6. OPErator PrECEOBNCE ... .cceiti ettt ettt e e e eeees 40

4.2, VAlUE EXPIESSIONS ... .ceiitieetiiti ettt e ettt e ettt e et e ettt e e et e et eab e e eennaaaaees 41
4.2.1. ColUMN REFEIEINCES ....covviieiiii e 42
4.2.2. POSItiONal PalraMELErS .......uiiiiiiiieieii et 42
4.2.3. SUDSCIIPES ettt ettt e 42
424, Field SEIECHON ...t 43
4.2.5. OPErator INVOCAHONS ... ..cevuueiiitiieieiii ettt e e e eenees 43
4.2.6. FUNCHON CallS .. .ceiiiiiiiiii e 44
4.2.7. AQOregate EXPIESSIONS ... .cccuuuieiiitiieeiiti e ee ettt e et e ettt eeeeti e e eeaiaeeees 44
4.2.8. Window FUNCLION CallS .........uiiiiiiiieiiiie e 46
4.2.9. TYPR CaASLS ..cvtiiiieeet et 49
4.2.10. Collation EXPreESSIONS ......ocieueeeieiiieee ettt 50
4.2.11. SCAlAr SUDQUENTES ... .eeeeieieei ettt 51
4.2.12. Array CONSIIUCLOIS .....ccvuiieieieie ettt et e e e e 51
4.2.13. ROW CONSITUCTONS ...eeuiieieiei et ettt e e e 52
4.2.14. Expression Evaluation RUIES .............coouviiiiiiiii e 54

4.3, CalliNg FUNCLIONS ...ttt e e e 55
4.3.1. Using Positional NOEHION .......ccceuuuieiiiiiieeiii et 56
4.3.2. Using Named NOLAION .......uuiiiiiiiiiieiiii e e e 56
4.3.3. USINg MiXed NOLALION ......uuiiiiiiiieiiiii e 57

5. Dat@ DEFINITION ..ottt et e aaas 58
5.1 TADIE BASICS ..ttt ettt 58
5.2, DEFAUIT VAIUBS ...t 59
5.3, CONSITAINTS ..ttt ettt e et e et e e e e e 60
5.3.1. Check CONSIIAINTS ....cevuueiiiiiiee ettt e e e e et e e eeri e e e 60
5.3.2. NO-NUIT CONSIFAINES ...ceveieieiie et 62
5.3.3. UNIQUE CONSITAINES ....eevtieieiiie ettt 63
534, PrIMAIY KEYS ...ttt 63
5.3.5. FOrEIgN KEBYS ...t 64
5.3.6. EXCIUSION CONSITAINTS ....cevvieiiiiiieeiei ettt et e e e 67

5.4, SYySteM COIUMNS ...ttt e et e e e et e e eat e eees 67
5.5. MOAIfyiNg TabIES ...t 68
55.1. AddiNg @ COIUMN ....oouuiiiiiii e 69
5.5.2. ReMOVING @ COIUMN ...coouiiiiiiii ettt 69
5.5.3. AddiNg @ CONSIFAINT .....ccevvuiiiiiiiee e 69
5.5.4. RemMOVING @ CONSIIAINT .....ccevuiieiiiiieee ittt 70
5.5.5. Changing a Column's Default Value ...........ccovvviiieiiiiiiieiiii e 70
5.5.6. Changing a Column'S Data TYPE ....c.uuuieiiiiiiieiiiii e 70
55.7. Renaming @ COIUMIN .......coouiiiiiiiii e 71
55.8. RENaMINg @ TaDI€ .....ceeviiiiiii e 71

5.6, PrIVIIEOES ...t 71
5.7. ROW SeCUrity POIICIES .....uuiiiiii e 72
5.8, SCREMAS ... 78
5.8.1. Creating @ SCNEMA ....ccouuiieiiiii e 79
5.8.2. The PUBIIC SChemMa ........coooviiii e 79
5.8.3. The Schema Search Path ...........ooooiiiiiiiii e 80
5.8.4. Schemas and PrivilEgES .........ooiiiiiiiiiii e 81
5.8.5. The System Catalog SChEMa. ......cccvvuiiiiiiiieeie e 81

25



The SQL Language

5.8.6. USAQE PalerNS ....viiiiii et 82
5.8.7. POrabIlITY ....uieiiiiiiee i 82

L [ 10T g1 = (ot TSRS 82
N O = P 85

5.10. Table Partitioning ........oceuuiiiiieiiiie e e e e e e e e e e aaas 86
B5.10. 1. OVEIVIEIW .ottt ettt e e ettt e e e et e e e e et neeeeebe s e eaeatnneeaees 86
5.10.2. Declarative Partitioning ..........ccocuuiiiiiiiiiiicii e e 87
5.10.3. Implementation Using INeritanCe ...........ccooevieeiiiiiii e 91
5.10.4. Partition Pruning .........oouuuieiiiieiii e e e e e e e e e e e e e aanas 96
5.10.5. Partitioning and Constraint EXCIUSION ..........cc.cooevviiiiiiiiiiiecc e, 97
5.10.6. Declarative Partitioning Best PractiCes ..........cccoeeviiiiiiiiiiiieciie e 98

LI o (= o | B I - L 99
5.12. Other Datahase ODJECES ......ivvniiii i e e e e e 99
5.13. DePpendency TraCKing ... .c..eeuuiiiieeii e e e ee e e e e e e e e st e e e e et e e st e e eaneeees 100
6. Data ManipUIAioN ..........oiiiiiiiii e e e e e e e e e e e e e e e e e e ee 102
L 1S g To [ D - - Y 102
S UL o = (] o I T - L 103
SRR D= I (] oo - - P 104
6.4. Returning Data From Modified ROWS .........c.ooiiiiiiiiiiici e 104
2O 0 = 1= N 106
T L OVEIVIBIW L.ttt et e e ettt et e i r e e e et e e e e et n e e e et e e eaaanns 106
7.2. TahIE EXPIrESSIONS ....ivviiiiie e e e e e e e e e e e e e e e e et e e e e e e aens 106
7.2.1. TRE FROMCIBLISE .. .eevvieeeeii ettt 107
7.2.2. TREVWHERE ClalSE ...ccvviieiiiiiieeeeeie ettt 115
7.2.3. The GROUP BY and HAVI NG ClaUSES .......oevvvvieeeiiiiieeeeiiiieeeeiia e e e 116
7.2.4. GROUPI NG SETS, CUBE, and ROLLUP .......coiiiiiiiiiiiii e 118
7.2.5. Window FUNCEION ProCESSING .....ccvuiiiieiiiiecii e e e e e e 121

SRS = < ox B I £ PR 121
7.3. 1. SEECE-LiSt ItOMS coevviieiieii e 121
7.3.2. COlUMN LADEIS ..oeviieiiii et 122
7.3.3. DESTINCT it e e e et eeeaanns 122

7.4. CombBINING QUEES .. .cuuieiii i e et e e e e e e e e e e e et e et e e aaa e eeas 123
7.5, SOMING ROWS ...t e e e e e e e e e eaens 123
T76. LIM T N OFFSET ..oviiiiiiiiieeei et et e e e e e et e e eees 124
TV A/ O S R I £ PSP 125
7.8. W TH Queries (Common Table EXPreSSions) .......cvevuueeeuiieeiiieiiieeeiiesiineesneenenns 126
7.8.1L SELECT INW TH .ot 126
7.8.2. Data-Modifying Statements in W TH .........ocoiiiiii i, 129

S T D= = T Y/ 0 P 132
300 O N[0 0= o Y = 133
e I R 1 011 o = Y/ o1 PPN 134
8.1.2. Arbitrary Precision NUMDBErS ........c.oooiiiiiiiiii e 134
8.1.3. Floating-POINt TYPES ..ovvniiii e e e e 136

8. LA SEIA TYPES ittt 137

e I o g1 = 1Y o< T PPN 138
G I O == ot (= G Y/ o= P 139
8.4. BINAry Dala TYPES ..uuciiiieii ettt et e e e e e e e e e e et e eaen 141
8.4.1. byt €a HEX FOIMa ........uiiiiiiiii i e 141
8.4.2. byt ea ESCape FOrMAL .......ccvvuiiiiiieii e 141

LR = (=l T2 1T Y/ o= P 143
8.5.1. Date/TimeE INPUL ....evvneiiii e e e e e e e e e eaneees 144
8.5.2. DAE/TIME OULPUL .....ueieiiieeeeiiie et et e e et e e et e e e eat e e e eaan e eeeenns 147
8.5.3. TIME ZONES ... ittt e e e e e e aaens 148
8.5.4. Interval INPUL .....covtiiii e e 150
8.5.5. INTEIVAl OULPUL .....uvieiiiii e e e 152

S = T To = Y/ o= P 152
A 1000 = =0 I Y/ o= 153
8.7.1. Declaration of Enumerated TYPES ....ccuuiviiiiiii e 153

26



The SQL Language

A @ (o[ 41 o PN 154
B.7.3. TYPE SAFELY eeeveieeieii ettt 154
8.7.4. Implementation DELalS ........c..veiiiiiiii e 155
R CTc o0 0= (o Y o1 155
B.8.L. POINES ...uiiiiii ettt 155
882, LINES ittt 156
8.8.3. LiNE SEgMENLS ... cevuiiiii i e 156
8.8, BOXES ...ttt ettt ettt 156
B.8.5. PalNS ...t 156
8.8.6. POIYQONS .. .oviiii e 157
B.8.7. CICIES ittt 157
8.9. NEtWOIK AdOreSS TYPES .evuiiiiieiiiiee et e e e e e e e e e e e e e e e e eaaas 157
S I R T 1= PP 158
S o3 i | PP 158
e e A I 1= VA o3 o | PP 159
8.9.4, MBCAUAN iitiiiiiii et 159
8.9.5. MACAUAN 8 .ouiiiiiiii e 159
8.10. Bit SIHNG TYPES . iittiiiie et e e e e e e e e e e e e e e e an s 160
8.11. TeXt SEArCh TYPES evn it e 161
00 0 O A= VT o3 A o TP 161
S I 2 A=Y o [ 1= P 162
ST 2 U1 1 T Y/ o U PTRSPN 163
ST Q1 I 1Y/ o= PP 164
8.13.1. Creating XML ValUES ......oiiiiiieiiiiii e 164
8.13.2. Encoding Handling ..........covuniiiiiiiiiii e 165
8.13.3. AcCeSSING XML ValUES ......cvvniiiii e 166
ST N S O N Y/ o=~ P 166
8.14.1. JSON Input and OULPUE SYNEAX ......eevneiiiieiiiieeiie e e e e e 167
8.14.2. Designing JSON documents effectively ........ooevvveiiiiiiiiiiiii e, 168
8.14.3. ] sonb Containment and EXIStENCE ........ccvvviiiiiiiiiii e 169
8.14.4. | SOND INUEXING ..uvviiiiiee e e e 171
8.14.5. TraNSfOMIS .. ettt e 173
8L, AT A S ettt ittt 173
8.15.1. Declaration Of Array TYPES ...cuvuiiiiieiiieeeie e e e e e e e e e eanees 173
8.15.2. Array ValUB INPUL ......covviiii e 174
8.15.3. ACCESSING ATTAYS .vueeuteeiieeeiiie et e ettt e et e e e e e st e e e ae e e e e st e e st e eanaeenes 175
8.15.4. MOAITYING ATTAYS ...uieiieii et e e e e e e e e e aaeees 177
8.15.5. SEarChiNG IN ATTAYS «.ouu it e e e e eeas 180
8.15.6. Array Input and OULPUL SYNEAX .....ceevneeeinieiiiieeiieeineee e e e e e eeens 181
8.16. COMPOSITE TYPES ..vvueiiteiiiietitie et e et e e et e et e et e e et e e et e e et e eanaeeateesaneeetnaes 182
8.16.1. Declaration of COmMPOSItE TYPES ...cvvvniiiieiii e eeei e e e e e e 183
8.16.2. Constructing Composite ValUES .........cceuviiiiiiiiiiieiiii e e 184
8.16.3. AccesSiNg COMPOSIEE TYPES ...vvvuiiiiieiiieiiie e e e e e e e et e e e e e e aanas 184
8.16.4. Modifying COmMPOSItE TYPES ....cvvvieiiieiiii e e e e e e e e aens 185
8.16.5. Using Composite TYPes iN QUENES ......couuuieiineeiiiieiiii e e e e e e eaen 185
8.16.6. Composite Type Input and Output SYNtax ..........cceeevveeeiieeiieeiiieeiineennn. 188
8.7, RANGE TYPES .ottt e 189
8.17.1. BUIIt-IN RANGE TYPES ..uiitiiii et e e e e e e aens 189
8.17.2. EXAMPIES ...t 189
8.17.3. Inclusive and EXCIUSIVE BOUNGS ............vieiiiiiieiiiiiieecie e 190
8.17.4. Infinite (Unbounded) RaNGES .........ocvvviiiiiiiii e 190
8.17.5. Range INPUL/OULPUL .......covuiiieeii e e e e e e e e e e 190
8.17.6. CoNSIrUCtiNg RANGES ....uviiiiieeie e e e e e e e e 191
8.17.7. DISCrete RANGE TYPES .. vvvieiii it et e et e e e e e e e e e et e e e eanns 192
8.17.8. Defining New RaNGE TYPES ....cvvviiiii e e e e 192
8.17.9. INAEXING ...vniii i e 193
8.17.10. ConstraintS 0N RANGES .....u.ivvnieiiieiie e e e e e e e e et e eaeeees 193
TR0 T I T4 F= T Y/ 0 1= 194

27



The SQL Language

8.19. ObjeCt 1AENtifIEr TYPES c.vuiiii e e e eaaas 195
ST 0 oo [ £ o 1 1Y L= 2P 197
ST T s =0 (o 0l I o1 197
LI 0 g Tex [0 g 5= 0 1o @ o= = o TP 199
1o I oo Tor= I @ o= = (o) £ S 199
9.2. Comparison FUNCtions and OPEratOrS ..........eeeuueeiinieiiieeeiiee e e e e e eiee e e eaneenes 199
9.3. Mathematical Functions and OPEratorS ............uevvuiieiiieeeiii e e e ea e 202
9.4. String FUNCLioNS and OPEIAtOrS .......u.cvuuieiiiieeiiieeii e e e e e e e e e e et e eaneens 205
1S T o o 11 PRSP PTR PPN 218

9.5. Binary String FUNctions and OPEratorsS ..........ccuuveeruieiiineeiiieeeiiee e eeiieraineesnnens 220
9.6. Bit String FUNCtions and OPErators ..........uuveiuiieiiiieeiiieeee e e e e e e e e e 222
A = (= 1 T\ (11 o P 223
S O I PP 224
9.7.2. SIM LAR TORegular EXPreSSIONS .......cvvvuieiiieeeiiieeiiieeeiieesineesineesaneens 224
9.7.3. POSIX ReguIar EXPreSSIONS ... ..uuiiiueiiiieiiiieeiieeeinesieeeiaeeaineesaneesens 225

9.8. Data Type Formatting FUNCLIONS .........ccovuiiiii i e e e 238
9.9. Date/Time FUNCtions and OPEratorS .........c.uveiuuieeiiieiiiiee e e ee e e e e e e eees 245
9.9.1. EXTRACT, dat € _Part ..ciiiiiiiiiiiiiii e e e e 250
0.9.2. At @ LT UNC .iiiiiii e e 254
9.9.3. AT TIME ZONE ..ottt ittt e e e s 255
9.9.4, CUITENt DA/ TIME ...cvvnieiiiii et e et e e e 256
9.9.5. Delaying EXECULION .......ciiviieiiie e e e e e e e e e e e e e e e eees 257

9.10. ENUM SUPPOIt FUNCLIONS .....ivticiiiecii e e e e e e e e e e eens 258
9.11. Geometric FUNCtions and OPEratOrS ..........cvvuueiiiieiieeeiieee e e e e e e e e eaaeeeens 259
9.12. Network Address Functions and OPErators ..........cc.uveevuieiiiieeiieeeiieeeneeeieeaenns 263
9.13. Text Search FUNCioNS and OPEratOrS ..........oevvuieiiiieiiiieeiie e e e e e e eeaneees 265
.14, XML FUNCLIONS ... eiieiiieee ettt e e et e e et e e e e et e e e e et e 272
9.14.1. Producing XML CONENE .....ccouuiiiiieiieeii e e e e e e e e e e eeen 272
9.14.2. XML PrediCates .....uuueeiiiiieeeii ettt e et e e e e 276
9.14.3. ProcessiNg XML ...uuuiiiiiiiiiiii et 278
9.14.4. Mapping TableSto XML ....ccoviiiiiiiii e 282

9.15. JSON FUNCLIONS aNd OPEraIOrS ......cvvvieiiieeiieeeieeeie e e e e et e e e et e e et e e eeens 285
9.16. Sequence Manipulation FUNCLIONS ...........ooviiiiiiiiiii e 294
9.17. Conditional EXPreSSIONS .......uuiiiiuiiiiiieiii e e e e e e e e e e e e e e e aens 297
O.17. 1. CASE ...t 297

N A O I S P 298
0 2 U I PP 299
9.17.4. GREATEST and LEAST ..ottt 299

9.18. Array FUNCtioNS and OPEIralOrS ........cccuuieiiuieiiiieeiiie e e e e e e e e et e e e eeenes 299
9.19. Range FUNCLioNSs and OPEratorS .......cvuueiiiieeiiieeeeeeeiee et e e sat e e e e et e e et eeaneens 303
9.20. AQQregate FUNCLIONS ......ccue i e e e e e e e e eaes 305
9.21. WINAOW FUNCHIONS ...ttt et e et e e e et e e e eatn e eeees 312
9.22. SUDQUENY EXPrESSIONS ...vuueiiiiiiiiieeiiees e et e e e e e e e et e e e e e et e e et e e st e eanaeeanaas 314
.22 1. EXI STS ittt ettt 314
0.22.2. I N ettt 314
9.22.3. NOT | N Lo e e e e e e 315
9.22.4. ANY/ISOME .....uiiiiiiiiieeeee ettt et e e et s e et e e e e e eaaen 315
0.22.5. ALL ottt 316
9.22.6. SINGIE-TOW COMPANISON ...uvuieteeiieeeieeeieeee e e e eata e e et e st e e eeaneenes 316

9.23. Row and Array COMPAISONS .....uivuuieiiieriieeeeiieeeieeetie e st re st e eaneeetreeaneeennes 316
0,23, L. I N ettt 317
9.23.2. NOT | N Lot e e e e e 317
SRS A NN 7AST0 1Y Sl - - 1Y) PP 317
9.23.4. ALL (BITAY) +eevtnieeiiiiiee et e e ettt e e ettt e e et e e et e e ettt a e e e et e e e eai e aae 318
9.23.5. Row Constructor COMPariSON .........ceeeuueerinieriiieriiieeeiee e esieeeaneeannnns 318
9.23.6. Composite Type COMPAiSON .......cevuneeiiieeieeeiiee e e e e e e e eaenns 319

9.24. Set RetUrNiNg FUNCHIONS .......uuiiii e e e e e aens 319
9.25. System Information FUNCLIONS ..........cccuuiiiiiieiii e e 322

28



The SQL Language

9.26. System Administration FUNCHIONS .........ccuuiiiiiieiiiie e e e 339
9.26.1. Configuration SettingS FUNCLIONS .........ccviviiiieiiiecie e 339
9.26.2. Server SIgnaling FUNCLIONS ........oovviiciiicce e 340
9.26.3. Backup Control FUNCLIONS ...........ieiiiieiiicci e 341
9.26.4. Recovery Control FUNCLIONS .........ocovveiiiiiiiii e 343
9.26.5. Snapshot Synchronization FUNCLIONS ...........c.oveviieiiiieiieee e, 345
9.26.6. RePlication FUNCLIONS ........cvuuieiiiiei e ee e e e e e e e e e eees 346
9.26.7. Database Object Management FUNCLIONS .........cc.ooevvieiiinieiii e, 349
9.26.8. Index Maintenance FUNCLIONS ...........oveviuiiieieiin e e e eeeenns 352
9.26.9. Generic File ACCESS FUNCHIONS ........iiiiiiiciiiii e 353
9.26.10. Advisory LOCK FUNCLIONS .......ccuuiiiieeii e e 355

S I o o = Gl U o (o) P 357

9.28. Event Trigger FUNCLIONS .......ooviiiiiie e e e e e e eae e 357
9.28.1. Capturing Changes at Command End ............ccoccoiviiiiiiiiiiiiinecieeeees 357
9.28.2. Processing Objects Dropped by a DDL Command ............ccocevvvviiinnennnnnns 358
9.28.3. Handling a Table ReWrite EVENt ..........ccoviiiieiiii e, 359

O Y/ oL @0 517/ = T o P 361

FO. L. OVEIVIBIW ©uueieiiiie ettt e e ettt e e e et e e e e et e e e e ett e e e eett e e e aetaaeeeees 361

B0.2, O AIONS ittt ettt ettt e 362

L0 R g o ] 0 LSRR 366

O R U TR (o] - o =S 370

10.5. UNI ON, CASE, and Related CONSITUCES ......uuieviviiieiiiiie e 370

10.6. SELECT OUPUL COIUMNS ...uvueeiiiie ettt e et e et e e et e e e eeaaaaeeees 372

T o (== S UPPP 373

0 O oo (0 1o PSSP 373

2 1 o L= G Y/ o === P 374

11.3. MUItICOIUMN INAEXES ....eeevviee et e e e e eaeen 376

11.4. Indexes and ORDER  BY ...cicuuiiiiiiiiiiiiiiiin e e et e et e e 377

11.5. Combining MUItiple INAEXES .........ciiiieeii e 378

12.6. UNIQUE INAEXES ....uieiieii et e e e e e e e e e e e e e e e eaens 378

11.7. INAEXES ON EXPrESSIONS ....uiviiieiii e e e e e e e e e e e e e e e et e et e e e e eens 379

11.8. Partial INOEXES .. eeevviieieeii et e et e e e e e e aaens 379

11.9. Index-Only Scans and Covering INAEXES .......cc.uvvviiieiiiieiii e 382

11.10. Operator Classes and Operator FamilieS .........ccooevvieiiiiiiiiii e, 384

11.11. Indexes and COl@tioNS ..........viiieiiiee e 386

11.12. EXamining INAeX USAQE .....uucvvunieiiiiiii e e e e e e e e e e e e e 386

12, FUIL TEXE SEAICH .o 388

2 O 1 oo (0 1o USSP 388
12.1.1. What 1S @ DOCUMENE? ...euueiiiii et e e 389
12.1.2. Basic Text MatChing ..........ooeviiiiiiii e 389
12.1.3. CONfiQUIBLIONS .. .euuiiiieeii e e e e e e e e e e e e e e et e e e eaens 391

12.2. TAhleS @A INOEXES .. .cevviieieii et e et 392
12.2.1. Searching @ Table .. couvnii e 392
12.2.2. Creating INAEXES ... covueiiiciie et e e e e e e e 393

12.3. Controlling TeXt SEarCh .......ccovviiii e 394
12.3.1. ParSiNg DOCUMENES .....uiiiiiiiii e ee e e e e e e e e e e et e e e e eens 394
12.3.2. ParSiNG QUETTES .. .cvuiiiii it e e e e e e e e e e e e 395
12.3.3. Ranking Search RESUILS .........iiiiiiiii e 398
12.3.4. Highlighting RESUILS .....ccvviiiiiicei e 400

12,4, AdAItioNal FEAIUMES ......vuiieeeii et e e 401
12.4.1. Manipulating DOCUMENES .........uiiiiiieiieeii e e e e e e e e e e 401
12.4.2. Manipulating QUENIES .......ccuuiiiiiiei e e e e 402
12.4.3. Triggers for Automatic Updates ..........ceevvieiiiieiiiieiiiieeie e eeie e 404
12.4.4. Gathering DocUmMENt StatiStiCS ...vvuvvvneiiieii e e 406

T o T TP 406

T B T Lo g = =P 408
12.6.1. SOP WOIAS .. ccvnieiiieii e ee et e e e e e e e et e e e e e aanaees 409
12.6.2. SIMPIE DICHIONAIY .vuuiiiiieii e e e e e e e eaees 410

29



The SQL Language

12.6.3. SYNONYM DICHIONANY .....vuieiiieeiiieiie e ee e e e e e e e e e e e eaa s 411
12.6.4. TheSaUrus DiCtONANY .......cccuuiiiiiiiiiieei e e e e e e 413
12.6.5. ISPEI DICHONAIY ...ovviiiiiicie e e e e e e 415
12.6.6. SNOWDaEll DICHIONAIY .....cvvveiiiieei e e e aens 417

12.7. Configuration EXaMPIE ......couuniii e 418
12.8. Testing and Debugging Text Search ........ccocoviiiiiiiiii e, 419
12.8.1. Configuration TESLNG ......cvvueiiiieiiii e e e e e e e e e e eanas 419
12.8.2. ParSer TESHNG «.ovvvvvvvreneieeeeeeeiiiiiesseeeeeeeestta s e e e e e eeaaaatn e e s eeeeeeannennnas 422
12.8.3. DICioNary TESHMNG ....vueevneiiiieiiie e e et e e e e e e e e e e e e e e e e e e aens 423

12.9. GIN and GiST INAEX TYPES ..vvvvvrrniiieeeieieriiiiieeeeeeeeertiaassaeeeeeassennnaaaeaeeannnes 424
2250 O T 1= o [T o) oo o 424
2 T T 1] = o) PP 427
13. ConCUIrENCY CONLIOI ...uuiit it e e e e e e e e e et e et e e e e e et e e e e eaaeeees 429
30 O 1 oo (0 1o USRS 429
13.2. TransaCtion I1SOIAHON ... ..ccuvuieiiii e e e 429
13.2.1. Read Committed ISOlation LEVE! ...........uveiiiiiiiiiiiiee e 430
13.2.2. Repeatable Read 1S0lation LEVEl .........ccovviiiiiiiiiiicieceeeeee e, 432
13.2.3. Serializable [S0lation LEVE! .......oovvviiiiiiiiii e 433

I CTC I (o[ T I o Vo PN 435
13.3.1. TaDIETEVE LOCKS ... cveiiiieiieii et 435
13.3.2. ROW-IEVE LOCKS ....ciieeiieiiis ettt 437
13.3.3. Pagelevel LOCKS ....ccvuiiiii e 438
13.3.4. DEBAIOCKS ...t 438
13.3.5. AQVISONY LOCKS ..uuiiiiiiii e e e e e e e e eeens 439

13.4. Data Consistency Checks at the Application Level .........ccocooviviiiiiiiiiiiieecee, 440
13.4.1. Enforcing Consistency With Serializable Transactions ...............c.cc.uueeeen. 441
13.4.2. Enforcing Consistency With Explicit Blocking LOcks ............cccoeevvnnnannn. 441

ST 0 Y= S 442
13.6. LOCKiNg and INAEXES ....u.eveniiii e e e e e e e e 442
I (o0 7= o= T T =P 444
14.2. USING EXPLAIL N Looiiiiiiiii oot e e s e e e e e e e et e e e e e e aaeennnnes 444
I (o Y Y I AV 27 T o 444
14.2.2. EXPLAI N ANALYZE ....coviiiiiiiee e e e e e 450
I O = £ 454

14.2. Statistics Used by the Planner ...........cooiiiiiiii e 455
14.2.1. SINgle-Column SEAiSHiCS . .ovvueiiiiiii e e 455
I A = 00 (= S - S (oSSR 457

14.3. Controlling the Planner with Explicit JO N ClaUSES ......cccvveiviiiiiiieeiiiccieeeiees 459
14.4. Populating @ Database ...........oevuniiiiieiie e 461
14.4.1. Disable AULOCOMIMIL ....vuuiiiiiii e e e e e e eaenns 461
14.4.2. USE COPY ouiiiiiiieeieeeiete e et e e ettt s e e e e et e et e s e e e e e e e aaaa e e e eeeaeeaennes 461
14.4.3. REMOVE INAEXES ...cevvvnieeeiii ettt 462
14.4.4. Remove Foreign Key CONSITaiNtS ........cccuuveiiieiiiieiiiieeiineeineeeieeeaneeeens 462
14.4.5. Increase mai Nt enance_WOr K _IMBM.......cciveiiiieiiiiieieee e, 462
14.4.6. Increase MBaX_Wal _Si Z€ ..iiiiiiiiiii 462
14.4.7. Disable WAL Archival and Streaming Replication .............ccc.ccovveinnn. 462
14.4.8. RuN ANALYZE AFtErWardsS ........covvvuvuiiinieeeeeeeiiiiienseeeeeseesiiinseaeeeeannes 463
14.4.9. Some Notes AbBOUL PG AUMP ...evvniiiicii e 463

14.5. NON-DUrable SEtlNGS ....vuieeiiiiieiiie e e e e e e e e e e 464
15, Parallel QUENY ...uueieeeiieietiie ettt e e e e e et e e e e e e et et e e e e e e et e et aaaaeaaaaaes 465
15.1. How Parallel QUENY WOTKS .......uiiiiiiiii i 465
15.2. When Can Parallel Query Be USed? ........covvviiiiiiieiiiiiiiiee e e e 466
15.3. Parallel PLanS ... .coovueiieii e 467
15.3.1. Parallel SCaNS ......ccvvviiiiieeeeeeieee et e e e 467
15.3.2. Parallel JOINS ....ccvvvviiieieiiiieiie e e e 467
15.3.3. Parallel AQQregation .........ocvuuiiiiiiiiie e 468
15.3.4. Parallel APPENG .......covniiiii e 468
15.3.5. Parallel Plan TIPS ..uccuuiiiiiiiii e e e e e 468

30



The SQL Language

15.4. Parallel SafElY ....ciieeeeieeiiie e
15.4.1. Parallel Labeling for Functions and Aggregates .......oocvvvvevveeviiiieeinennnnn.

31



Chapter 4. SQL Syntax

This chapter describes the syntax of SQL. It forms the foundation for understanding the following
chapters which will go into detail about how SQL commands are applied to define and modify data.

We aso advise users who are already familiar with SQL to read this chapter carefully because it
contains several rules and concepts that are implemented inconsistently among SQL databases or that
are specific to PostgreSQL.

4.1. Lexical Structure

4.1.1.

SQL input consists of a sequence of commands. A command is composed of a sequence of tokens,
terminated by asemicolon (“;”). Theend of theinput stream al so terminates acommand. Which tokens
are valid depends on the syntax of the particular command.

A token can beakey word, anidentifier, aquoted identifier, aliteral (or constant), or aspecial character
symbol. Tokens are normally separated by whitespace (space, tab, newline), but need not be if there
isno ambiguity (which is generally only the case if aspecia character is adjacent to some other token

type).

For example, the following is (syntactically) valid SQL input:

SELECT * FROM MY_TABLE;
UPDATE MY_TABLE SET A = 5;
| NSERT | NTO MY_TABLE VALUES (3, 'hi there');

This is a sequence of three commands, one per line (although this is not required; more than one
command can be on aline, and commands can usefully be split across lines).

Additionally, comments can occur in SQL input. They are not tokens, they are effectively equivalent
to whitespace.

The SQL syntax is not very consistent regarding what tokens identify commands and which are
operands or parameters. The first few tokens are generally the command name, so in the above exam-
ple we would usualy speak of a“SELECT”, an “UPDATE”, and an “INSERT” command. But for
instance the UPDATE command always requires a SET token to appear in a certain position, and this
particular variation of | NSERT also requires a VALUES in order to be complete. The precise syntax
rules for each command are described in Part V1.

Identifiers and Key Words

Tokens such as SELECT, UPDATE, or VALUES in the example above are examples of key words,
that is, words that have a fixed meaning in the SQL language. The tokens MY_TABLE and A are
examples of identifiers. They identify names of tables, columns, or other database objects, depending
on the command they are used in. Therefore they are sometimes simply called “names’. Key words
and identifiers have the same lexical structure, meaning that one cannot know whether a token is an
identifier or a key word without knowing the language. A complete list of key words can be found
in Appendix C.

SQL identifiers and key words must begin with a letter (a-z, but also letters with diacritical marks
and non-L atin letters) or an underscore (_). Subsequent charactersin an identifier or key word can be
letters, underscores, digits(0-9), or dollar signs($). Notethat dollar signsarenot allowed inidentifiers
according to the letter of the SQL standard, so their use might render applications less portable. The
SQL standard will not define a key word that contains digits or starts or ends with an underscore, so
identifiers of this form are safe against possible conflict with future extensions of the standard.

32



SQL Syntax

The system uses no more than NAMEDATAL EN-1 bytes of an identifier; longer names can be written
in commands, but they will be truncated. By default, NAMEDATALEN is 64 so the maximum identifier
lengthis63 bytes. If thislimitisproblematic, it can beraised by changing the NAMEDATAL EN constant
insrc/include/ pg _config_nmanual . h.

Key words and unquoted identifiers are case insensitive. Therefore:

UPDATE MY_TABLE SET A = 5;
can equivalently be written as:
uPDaTE ny_TabLE SeT a = 5;

A convention often used is to write key wordsin upper case and names in lower case, e.g.:

UPDATE ny_table SET a = 5;

There is a second kind of identifier: the delimited identifier or quoted identifier. It is formed by
enclosing an arbitrary sequence of characters in double-quotes (" ). A delimited identifier is aways
an identifier, never a key word. So " sel ect " could be used to refer to a column or table named
“select”, whereas an unquoted sel ect would be taken as a key word and would therefore provoke
aparse error when used where atable or column name is expected. The example can be written with
guoted identifierslike this:

UPDATE "ny_table" SET "a" = 5;

Quoted identifiers can contain any character, except the character with code zero. (To include adouble
guote, write two double quotes.) This allows constructing table or column names that would otherwise
not be possible, such as ones containing spaces or ampersands. The length limitation still applies.

A variant of quoted identifiers allows including escaped Unicode characters identified by their code
points. Thisvariant startswith U& (upper or lower case U followed by ampersand) immediately before
the opening double quote, without any spaces in between, for example U&" f 00" . (Note that this
creates an ambiguity with the operator &. Use spaces around the operator to avoid thisproblem.) Inside
the quotes, Unicode characters can be specified in escaped form by writing a backsash followed by
the four-digit hexadecimal code point number or alternatively a backslash followed by a plus sign
followed by a six-digit hexadecimal code point number. For example, the identifier " dat a" could
be written as

U&" d\ 0061t \ +000061"

Thefollowing lesstrivial example writes the Russian word “slon” (elephant) in Cyrillic |etters:

U&"\ 0441\ 043B\ 043E\ 043D"

If adifferent escape character than backslash is desired, it can be specified using the UESCAPE clause
after the string, for example:

U&"d! 0061t ! +000061" UESCAPE ' !

The escape character can be any single character other than ahexadecimal digit, the plussign, asingle
guote, a double quote, or a whitespace character. Note that the escape character is written in single
guotes, not double quotes.

33



SQL Syntax

To include the escape character in the identifier literally, write it twice.

The Unicode escape syntax works only when the server encoding is UTF8. When other server en-
codings are used, only code points in the ASCII range (up to \ 007F) can be specified. Both the 4-
digit and the 6-digit form can be used to specify UTF-16 surrogate pairs to compose characters with
code points larger than U+FFFF, although the availability of the 6-digit form technically makes this
unnecessary. (Surrogate pairs are not stored directly, but combined into asingle code point that isthen
encoded in UTF-8.)

Quoting an identifier al so makesit case-sensitive, whereas ungquoted names are alwaysfolded to lower
case. For example, theidentifiers FOO, f 0o, and " f 00" are considered the same by PostgreSQL, but
"Foo" and" FOO' are different from these three and each other. (The folding of unquoted namesto
lower case in PostgreSQL is incompatible with the SQL standard, which says that unquoted names
should be folded to upper case. Thus, f 00 should be equivalent to " FOO' not " f 00" according to
the standard. If you want to write portable applications you are advised to always quote a particular
name or never quoteit.)

4.1.2. Constants

There are three kinds of implicitly-typed constants in PostgreSQL.: strings, bit strings, and numbers.
Constants can also be specified with explicit types, which can enable more accurate representation and
more efficient handling by the system. These alternatives are discussed in the following subsections.

4.1.2.1. String Constants

A string constant in SQL is an arbitrary sequence of characters bounded by single quotes (' ), for
example' This is a string' . Toinclude asingle-quote character within a string constant,
write two adjacent single quotes, e.g.,' Di anne' ' s hor se' . Note that this is not the same as a
double-quote character (*).

Two string constants that are only separated by whitespace with at |east one newline are concatenated
and effectively treated as if the string had been written as one constant. For example:

SELECT ' f o0

"bar';

is equivaent to:

SELECT ' f oobar' ;

but:

SELECT ' f o0’ "bar';

is not valid syntax. (This slightly bizarre behavior is specified by SQL; PostgreSQL is following the
standard.)

4.1.2.2. String Constants with C-style Escapes

PostgreSQL also accepts “escape’ string constants, which are an extension to the SQL standard. An
escape string constant is specified by writing the letter E (upper or lower case) just before the opening
single quote, e.g., E' f 00" . (When continuing an escape string constant across lines, write E only
before the first opening quote.) Within an escape string, a backslash character (\ ) begins a C-like
backslash escape sequence, in which the combination of backslash and following character(s) repre-
sent a special byte value, as shown in Table 4.1.

34



SQL Syntax

Table 4.1. Backslash Escape Sequences

Backslash Escape Sequence Interpretation

\b backspace

\ f form feed

\n newline

\r carriage return

\t tab

\o,\00,\000(0=0-7) octal byte value

\xh,\xhh (h=0-9,A-F) hexadecimal byte value

\UxX XXX, \ UXXXXXXXX (X =0-9,A-F) 16 or 32-bit hexadecimal Unicode character value

Any other character following a backslash is taken literally. Thus, to include a backslash character,
write two backslashes (\ \ ). Also, a single quote can be included in an escape string by writing\ ',
in addition to the normal way of ' ' .

It is your responsibility that the byte sequences you create, especially when using the octal or hexa-
decimal escapes, compose valid charactersin the server character set encoding. When the server en-
coding is UTF-8, then the Unicode escapes or the aternative Unicode escape syntax, explained in
Section 4.1.2.3, should be used instead. (The alternative would be doing the UTF-8 encoding by hand
and writing out the bytes, which would be very cumbersome.)

The Unicode escape syntax works fully only when the server encoding is UTF8. When other server
encodings are used, only code points in the ASCII range (up to \ u0O07F) can be specified. Both the
4-digit and the 8-digit form can be used to specify UTF-16 surrogate pairs to compose characters
with code points larger than U+FFFF, although the availability of the 8-digit form technically makes
this unnecessary. (When surrogate pairs are used when the server encoding is UTF8, they are first
combined into a single code point that is then encoded in UTF-8.)

Caution

If the configuration parameter standard_conforming_stringsisof f , then PostgreSQL
recognizes backs ash escapesin both regular and escape string constants. However, as
of PostgreSQL 9.1, the default is on, meaning that backslash escapes are recognized
only in escape string constants. This behavior is more standards-compliant, but might
break applicationswhichrely onthe historical behavior, where backsl ash escapeswere
alwaysrecognized. Asaworkaround, you can set this parameter to of f , but it isbetter
to migrate away from using backslash escapes. If you need to use a backslash escape
to represent a specia character, write the string constant with an E.

In addition to st andar d_conf or m ng_stri ngs, the configuration parameters
escape_string_warning and backslash_quote govern treatment of backslashesin string
constants.

The character with the code zero cannot be in a string constant.

4.1.2.3. String Constants with Unicode Escapes

PostgreSQL also supports another type of escape syntax for strings that allows specifying arbitrary
Unicode characters by code point. A Unicode escape string constant starts with U& (upper or lower
case letter U followed by ampersand) immediately before the opening quote, without any spaces in
between, for example U&' f 00" . (Note that this creates an ambiguity with the operator & Use spaces
around the operator to avoid this problem.) Inside the quotes, Unicode characters can be specified

35



SQL Syntax

in escaped form by writing a backslash followed by the four-digit hexadecimal code point number
or alternatively a backslash followed by a plus sign followed by a six-digit hexadecimal code point
number. For example, the string' dat a' could be written as

U&' d\ 0061t \ +000061'

The following less trivial example writes the Russian word “slon” (elephant) in Cyrillic letters:

U&' \ 0441\ 043B\ 043E\ 043D

If adifferent escape character than backslash isdesired, it can be specified using the UESCAPE clause
after the string, for example:

U& d! 0061t! +000061'" UESCAPE '!'

The escape character can be any single character other than a hexadecimal digit, the plussign, asingle
guote, a double quote, or a whitespace character.

The Unicode escape syntax works only when the server encoding is UTF8. When other server encod-
ings are used, only code points in the ASCII range (up to \ 007F) can be specified. Both the 4-digit
and the 6-digit form can be used to specify UTF-16 surrogate pairs to compose characters with code
pointslarger than U+FFFF, although the availability of the 6-digit form technically makes this unnec-
essary. (When surrogate pairs are used when the server encoding is UTF8, they are first combined into
asingle code point that is then encoded in UTF-8.)

Also, the Unicode escape syntax for string constants only works when the configuration parameter
standard_conforming_stringsisturned on. Thisis because otherwise this syntax could confuse clients
that parse the SQL statements to the point that it could lead to SQL injections and similar security
issues. If the parameter is set to off, this syntax will be rejected with an error message.

To include the escape character in the string literally, writeit twice.

4.1.2.4. Dollar-quoted String Constants

While the standard syntax for specifying string constants is usually convenient, it can be difficult to
understand when the desired string contains many single quotes or backslashes, since each of those
must be doubled. To allow more readable queries in such situations, PostgreSQL provides another
way, called “dollar quoting”, to write string constants. A dollar-quoted string constant consists of a
dollar sign ($), an optional “tag” of zero or more characters, another dollar sign, an arbitrary sequence
of characters that makes up the string content, adollar sign, the same tag that began this dollar quote,
and adollar sign. For example, here are two different waysto specify the string “ Dianne's horse” using
dollar quoting:

$$Di anne' s hor se$$
$SoneTag$hi anne' s hor se$SoneTag$

Notice that inside the dollar-quoted string, single quotes can be used without needing to be escaped.
Indeed, no charactersinside adollar-quoted string are ever escaped: the string content isalwayswritten
literally. Backslashes are not special, and neither are dollar signs, unless they are part of a sequence
matching the opening tag.

It is possible to nest dollar-quoted string constants by choosing different tags at each nesting level.
Thisis most commonly used in writing function definitions. For example:

$f uncti on$

36



SQL Syntax

BEG N

RETURN ($1 ~ $g$[\t\r\n\v\\]$q$);
END;
$f uncti on$

Here, the sequence $q$[ \ t\ r\ n\ vi \ ] $g$ represents a dollar-quoted literal string [\ t\r\n\v
\'\ ], which will be recognized when the function body is executed by PostgreSQL. But since the
sequence does not match the outer dollar quoting delimiter $f unct i on$, itisjust some more char-
acters within the constant so far as the outer string is concerned.

Thetag, if any, of adollar-quoted string follows the same rules as an unquoted identifier, except that it
cannot contain adollar sign. Tagsare case sensitive, so $t ag$St ri ng cont ent $t ag$ iscorrect,
but STAGSSt ri ng cont ent $t ag$ isnot.

A dollar-quoted string that follows a keyword or identifier must be separated from it by whitespace;
otherwise the dollar quoting delimiter would be taken as part of the preceding identifier.

Dollar quoting is not part of the SQL standard, but it is often a more convenient way to write com-
plicated string literals than the standard-compliant single quote syntax. It is particularly useful when
representing string constants inside other constants, as is often needed in procedural function defini-
tions. With single-quote syntax, each backslash in the above example would have to be written asfour
backslashes, which would be reduced to two backslashes in parsing the original string constant, and
then to one when the inner string constant is re-parsed during function execution.

4.1.2.5. Bit-string Constants

Bit-string constants look like regular string constants with a B (upper or lower case) immediately
before the opening quote (no intervening whitespace), e.g., B' 1001' . The only characters allowed
within bit-string constantsare 0 and 1.

Alternatively, hit-string constants can be specified in hexadecimal notation, using a leading X (upper
or lower case), e.qg., X' 1FF' . Thisnotationisequivalent to abit-string constant with four binary digits
for each hexadecimal digit.

Both forms of bit-string constant can be continued across lines in the same way as regular string
constants. Dollar quoting cannot be used in a bit-string constant.

4.1.2.6. Numeric Constants

Numeric constants are accepted in these general forms:

digits
digits.[digits][e[+-]digits]
[digits].digits[e[+-]digits]
digitse[+-]digits

wheredi gi t s isoneor moredecimal digits(0through 9). Atleast onedigit must bebeforeor after the
decimal point, if oneisused. At least one digit must follow the exponent marker (e), if oneis present.
There cannot be any spaces or other characters embedded in the constant. Note that any leading plus
or minus sign is not actually considered part of the constant; it is an operator applied to the constant.

These are some examples of valid numeric constants;

42
35
4.
.001

37



SQL Syntax

5e2
1.925e-3

A numeric constant that contains neither a decimal point nor an exponent isinitially presumed to be
typei nt eger if itsvaluefitsintypei nt eger (32hits); otherwiseit ispresumed to betypebi gi nt
if its value fitsin type bi gi nt (64 bits); otherwise it is taken to be type nuner i c. Constants that
contain decimal points and/or exponents are always initially presumed to betypenuneri c.

The initially assigned data type of a numeric constant is just a starting point for the type resolution
algorithms. In most cases the constant will be automatically coerced to the most appropriate type de-
pending on context. When necessary, you can force anumeric valueto beinterpreted as aspecific data
type by casting it. For example, you can force anumeric value to be treated astyper eal (f| oat 4)
by writing:

REAL '1.23" -- string style
1.23:: REAL -- PostgreSQL (historical) style

These are actually just special cases of the general casting notations discussed next.

4.1.2.7. Constants of Other Types

4.1.3.

A constant of an arbitrary type can be entered using any one of the following notations:

type 'string'
"string' ::type
CAST ( 'string' AS type )

The string constant'stext is passed to the input conversion routine for thetypecalledt ype. Theresult
isaconstant of the indicated type. The explicit type cast can be omitted if there is no ambiguity asto
the type the constant must be (for example, when it is assigned directly to atable column), in which
caseit isautomatically coerced.

The string constant can be written using either regular SQL notation or dollar-quoting.

It is also possible to specify atype coercion using a function-like syntax:

typenane ( 'string' )
but not all type names can be used in this way; see Section 4.2.9 for details.

The : :, CAST(), and function-call syntaxes can also be used to specify run-time type conver-
sions of arbitrary expressions, as discussed in Section 4.2.9. To avoid syntactic ambiguity, thet ype
"string' syntax canonly beusedto specify thetype of asimpleliteral constant. Another restriction
onthet ype ' string' syntaxisthatitdoesnotwork for array types, use: : or CAST() to specify
the type of an array constant.

The CAST() syntax conformsto SQL. Thetype 'string' syntax is a generalization of the

standard: SQL specifies this syntax only for afew data types, but PostgreSQL allowsiit for all types.
The syntax with : : ishistorical PostgreSQL usage, asis the function-call syntax.

Operators

An operator name is a sequence of up to NAMEDATALEN-1 (63 by default) characters from the fol-
lowing list:

38



SQL Syntax

4.1.4.

4.1.5.

+-*[<>=~1@DHW& | ?
There are afew restrictions on operator names, however:

e -- and/* cannot appear anywhere in an operator name, since they will be taken as the start of
acomment.

» A multiple-character operator name cannot end in + or -, unless the name also contains at least
one of these characters:

~1@#%" & | ?

For example, @ isan alowed operator name, but * - is not. This restriction allows PostgreSQL to
parse SQL-compliant queries without requiring spaces between tokens.

When working with non-SQL -standard operator names, you will usualy need to separate adjacent
operatorswith spacesto avoid ambiguity. For example, if you have defined aleft unary operator named
@ you cannot write X* @; you must write X* @Y to ensure that PostgreSQL reads it as two operator
names not one.

Special Characters

Some charactersthat are not al phanumeric have aspecial meaning that is different from being an oper-
ator. Details on the usage can be found at thelocation where the respective syntax element isdescribed.
This section only exists to advise the existence and summarize the purposes of these characters.

» A dollar sign ($) followed by digits is used to represent a positional parameter in the body of a
function definition or a prepared statement. In other contexts the dollar sign can be part of an iden-
tifier or adollar-quoted string constant.

 Parentheses (( ) ) have their usual meaning to group expressions and enforce precedence. In some
cases parentheses are required as part of the fixed syntax of a particular SQL command.

» Brackets ([ ] ) are used to select the elements of an array. See Section 8.15 for more information
on arrays.

» Commas (, ) are used in some syntactical constructs to separate the elements of alist.

» The semicolon (; ) terminates an SQL command. It cannot appear anywhere within a command,
except within a string constant or quoted identifier.

e The colon (: ) is used to select “dlices” from arrays. (See Section 8.15.) In certain SQL dialects
(such as Embedded SQL ), the colon is used to prefix variable names.

e Theasterisk (*) isused in some contexts to denote all the fields of atable row or composite value.
It also has a special meaning when used as the argument of an aggregate function, namely that the
aggregate does not require any explicit parameter.

» Theperiod (. ) isused in numeric constants, and to separate schema, table, and column names.
Comments

A comment is a sequence of characters beginning with double dashes and extending to the end of
theline, eg.:

-- This is a standard SQ. conment

Alternatively, C-style block comments can be used:

39



SQL Syntax

4.1.6.

/* multiline coment
* with nesting: /* nested block coment */
*/

where the comment beginswith / * and extends to the matching occurrence of */ . These block com-
ments nest, as specified in the SQL standard but unlike C, so that one can comment out larger blocks
of code that might contain existing block comments.

A comment isremoved from theinput stream before further syntax analysisand is effectively replaced
by whitespace.

Operator Precedence

Table 4.2 shows the precedence and associativity of the operators in PostgreSQL. Most operators
have the same precedence and are left-associative. The precedence and associativity of the operators
is hard-wired into the parser.

Y ou will sometimes need to add parentheses when using combinations of binary and unary operators.
For instance:

SELECT 5! - 6;

will be parsed as:

SELECT 5! (- 6);

because the parser has no idea— until it istoo late — that ! is defined as a postfix operator, not an
infix one. To get the desired behavior in this case, you must write:

SELECT (5 !) - 6;

Thisisthe price one pays for extensibility.

Table4.2. Operator Precedence (highest to lowest)

Oper ator/Element Associativity Description
left table/column name separator
| eft PostgreSQL -style typecast
[] left array element selection
+ - right unary plus, unary minus
n left exponentiation
* | % | eft multiplication, division, modulo
+ - left addition, subtraction
(any other operator) left al other native and user-defined
operators
BETVWEEN I N LIKE |ILIKE range containment, set member-
SIM LAR ship, string matching
<>=<=>=<> comparison operators
I ST SNULL NOTNULL IS TRUE IS FALSE, IS
NULL, IS DI STI NCT FROM
etc

40



SQL Syntax

Operator/Element Associativity Description

NOT right logical negation
AND left logical conjunction
oR left logical digunction

Note that the operator precedence rules al so apply to user-defined operators that have the same names
asthe built-in operators mentioned above. For example, if you definea” +” operator for some custom
datatypeit will have the same precedence as the built-in “+” operator, no matter what yours does.

When a schema-qualified operator name is used in the OPERATOR syntax, as for examplein:

SELECT 3 OPERATOR(pg_catal og. +) 4;

the OPERATOR construct is taken to have the default precedence shown in Table 4.2 for “any other
operator”. Thisistrue no matter which specific operator appears inside OPERATOR( ) .

Note

PostgreSQL versions before 9.5 used dightly different operator precedence rules. In
particular, <= >= and <> used to be treated as generic operators; | S tests used to have
higher priority; and NOT BETWEEN and related constructs acted inconsi stently, being
taken in some cases as having the precedence of NOT rather than BETWEEN. These
rules were changed for better compliance with the SQL standard and to reduce con-
fusion from inconsistent treatment of logically equivalent constructs. In most cases,
these changes will result in no behavioral change, or perhaps in “no such operator”
failures which can be resolved by adding parentheses. However there are corner cases
in which a query might change behavior without any parsing error being reported. If
you are concerned about whether these changes have silently broken something, you
can test your application with the configuration parameter operator_precedence warn-
ing turned on to seeif any warnings are logged.

4.2. Value Expressions

Value expressionsare used in avariety of contexts, such asin thetarget list of the SELECT command,
asnew column vauesin | NSERT or UPDATE, or in search conditionsin anumber of commands. The
result of a value expression is sometimes called a scalar, to distinguish it from the result of a table
expression (which isatable). Value expressions are therefore also called scalar expressions (or even
simply expressions). The expression syntax allowsthe calculation of valuesfrom primitive parts using
arithmetic, logical, set, and other operations.

A value expression is one of the following:
* A constant or literal value

* A column reference

A positional parameter reference, in the body of afunction definition or prepared statement

A subscripted expression
» A field selection expression
» An operator invocation

A function call

41



SQL Syntax

4.2.1.

4.2.2.

4.2.3.

» An aggregate expression

* A window function call

» A typecast

* A collation expression

A scalar subquery

* An array constructor

* A row constructor

» Another value expression in parentheses (used to group subexpressions and override precedence)

In addition to this list, there are a number of constructs that can be classified as an expression but do
not follow any general syntax rules. These generally have the semantics of afunction or operator and
are explained in the appropriate location in Chapter 9. An exampleisthel S NULL clause.

We have already discussed constants in Section 4.1.2. The following sections discuss the remaining
options.

Column References

A column can be referenced in the form:

correl ati on. col utmnane

correl at i on isthe name of atable (possibly qualified with a schemaname), or an aliasfor atable
defined by means of a FROMclause. The correlation name and separating dot can be omitted if the
column name is unique across all the tables being used in the current query. (See also Chapter 7.)

Positional Parameters

A positional parameter referenceisused to indicate avaluethat is supplied externally to an SQL state-
ment. Parameters are used in SQL function definitions and in prepared queries. Some client libraries
also support specifying data values separately from the SQL command string, in which case parame-
ters are used to refer to the out-of-line data values. The form of a parameter referenceis:

$nunber

For example, consider the definition of afunction, dept , as:

CREATE FUNCTI ON dept (text) RETURNS dept

AS $$ SELECT * FROM dept WHERE narme = $1 $$
LANGUAGE SQL;

Herethe $1 references the value of the first function argument whenever the function is invoked.

Subscripts

If an expression yields a value of an array type, then a specific element of the array value can be
extracted by writing

expressi on[ subscri pt]

42



SQL Syntax

4.2.4.

4.2.5.

or multiple adjacent elements (an “array dice”) can be extracted by writing

expressi on[ | ower _subscri pt: upper_subscri pt]

(Here, the brackets [ ] are meant to appear literally.) Each subscri pt isitself an expression,
which must yield an integer value.

In general the array expr essi on must be parenthesized, but the parentheses can be omitted when
the expression to be subscripted is just a column reference or positional parameter. Also, multiple
subscripts can be concatenated when the original array is multidimensional. For example:

nyt abl e. arraycol um| 4]

nyt abl e. two_d_col umm[ 17] [ 34]
$1[ 10: 42]

(arrayfunction(a, b))[42]

The parentheses in the last example are required. See Section 8.15 for more about arrays.

Field Selection

If an expression yields a value of a composite type (row type), then a specific field of the row can
be extracted by writing

expression. fiel dname

In general therow expr essi on must be parenthesized, but the parentheses can be omitted when the
expression to be selected from is just atable reference or positional parameter. For example:

nyt abl e. mycol um
$1. sonecol um
(rowfunction(a,b)).col 3

(Thus, a qualified column reference is actually just a specia case of the field selection syntax.) An
important special caseis extracting afield from atable column that is of a composite type:
(conposi tecol ). sonefield

(myt abl e. conposi tecol ). sonefield

The parentheses are required here to show that conposi t ecol isacolumn name not atable name,
or that myt abl e isatable name not a schemaname in the second case.

Y ou can ask for all fields of a composite value by writing . *:

(conpositecol).*

This notation behaves differently depending on context; see Section 8.16.5 for details.

Operator Invocations

There are three possible syntaxes for an operator invocation:

expr essi on oper at or expr essi on (binary infix operator)
oper at or expr essi on (unary prefix operator)

43



SQL Syntax

4.2.6.

4.2.7.

expr essi on oper at or (unary postfix operator)

wheretheoper at or token followsthe syntax rules of Section 4.1.3, or isone of the key words AND,
OR, and NOT, or isaqualified operator name in the form:

OPERATOR( schenma. oper at or nane)

Which particular operators exist and whether they are unary or binary depends on what operators have
been defined by the system or the user. Chapter 9 describes the built-in operators.

Function Calls

The syntax for a function call is the name of a function (possibly qualified with a schema name),
followed by its argument list enclosed in parentheses:

function_nane ([expression [, expression ... ]] )

For example, the following computes the square root of 2:

sqrt(2)
Thelist of built-in functionsisin Chapter 9. Other functions can be added by the user.

When issuing queriesin adatabase where some users mistrust other users, observe security precautions
from Section 10.3 when writing function calls.

The arguments can optionally have names attached. See Section 4.3 for details.

Note

A function that takes a single argument of composite type can optionally be called
using field-selection syntax, and conversely field selection can be written in functional
style. Thatis, thenotationscol (t abl e) andt abl e. col areinterchangeable. This
behavior is not SQL-standard but is provided in PostgreSQL because it allows use of
functions to emulate “computed fields’. For more information see Section 8.16.5.

Aggregate Expressions

An aggregate expression represents the application of an aggregate function across the rows selected
by aquery. An aggregate function reduces multiple inputsto a single output value, such asthe sum or
average of theinputs. The syntax of an aggregate expression is one of the following:

aggregate _nane (expression [ , ... ] [ order_by clause ] ) [ FILTER
( WHERE filter _clause ) ]

aggregate _nane (ALL expression [ , ... ] [ order_by clause ] )

[ FILTER ( WHERE filter_clause ) ]

aggregate_nane (DI STINCT expression [ , ... ] [ order_by clause ] )

[ FILTER ( WHERE filter_clause ) ]
aggregate nane ( * ) [ FILTER ( WHERE filter _clause ) ]
aggregate nane ( [ expression [ , ... 1 ] ) WTH N GROUP
( order_by clause ) [ FILTER ( WHERE filter_clause ) ]

whereaggr egat e_nane isapreviously defined aggregate (possibly qualified with aschemaname)
and expr essi on is any value expression that does not itself contain an aggregate expression or

44



SQL Syntax

a window function call. The optional order _by cl ause andfilter_cl ause are described
below.

The first form of aggregate expression invokes the aggregate once for each input row. The second
form is the same as the first, since ALL is the default. The third form invokes the aggregate once for
each distinct value of the expression (or distinct set of values, for multiple expressions) found in the
input rows. The fourth form invokes the aggregate once for each input row; since no particular input
valueis specified, it is generally only useful for the count (*) aggregate function. The last formis
used with ordered-set aggregate functions, which are described below.

Most aggregate functions ignore null inputs, so that rows in which one or more of the expression(s)
yield null are discarded. This can be assumed to be true, unless otherwise specified, for al built-in

aggregates.

For example, count ( *) yields the total number of input rows; count (f 1) yields the number of
input rowsinwhichf 1 isnon-null, sincecount ignoresnulls; andcount (di sti nct f1) yields
the number of distinct non-null valuesof f 1.

Ordinarily, the input rows are fed to the aggregate function in an unspecified order. In many cases
this does not matter; for example, m n produces the same result no matter what order it receives the
inputs in. However, some aggregate functions (such as array_agg and st ri ng_agg) produce
results that depend on the ordering of the input rows. When using such an aggregate, the optional
order by cl ause can be used to specify the desired ordering. The or der _by cl ause has
the same syntax as for a query-level ORDER BY clause, as described in Section 7.5, except that its
expressionsare alwaysjust expressions and cannot be output-column names or numbers. For example:

SELECT array_agg(a ORDER BY b DESC) FROM t abl e;

When dealing with multiple-argument aggregate functions, note that the ORDER BY clause goes after
all the aggregate arguments. For example, write this:

SELECT string agg(a, ',' ORDER BY a) FROMtabl e;
not this:
SELECT string agg(a ORDER BY a, ',') FROMtable; -- incorrect

The latter is syntactically valid, but it represents a call of a single-argument aggregate function with
two ORDER BY keys (the second one being rather useless since it's a constant).

If DI STI NCT isspecifiedinadditiontoanor der _by cl ause, thenall the ORDER BY expressions
must match regular arguments of the aggregate; that is, you cannot sort on an expression that is not
included in the DI STI NCT list.

Note

The ability to specify both DI STI NCT and ORDER BY in an aggregate function is
a PostgreSQL extension.

Placing ORDER BY within the aggregate's regular argument list, as described so far, is used when
ordering the input rows for general-purpose and statistical aggregates, for which ordering is op-
tional. There is a subclass of aggregate functions called ordered-set aggregates for which an or -
der by cl ause isrequired, usually because the aggregate's computation isonly sensible in terms
of a specific ordering of its input rows. Typical examples of ordered-set aggregates include rank
and percentile calculations. For an ordered-set aggregate, the or der _by _cl ause iswritten inside

45



SQL Syntax

4.2.8.

WTH N GROUP (...), asshown in thefina syntax aternative above. The expressions in the
order by _cl ause are evaluated once per input row just like regular aggregate arguments, sorted
aspertheor der by cl ause'srequirements, and fed to the aggregate function asinput arguments.
(Thisis unlike the case for anon-W THI N GROUP or der _by_cl ause, which is not treated as
argument(s) to the aggregate function.) The argument expressions preceding W THI N  GROUP, if
any, are called direct arguments to distinguish them from the aggregated argumentslisted in the or -
der by cl ause. Unlike regular aggregate arguments, direct arguments are evaluated only once
per aggregate call, not once per input row. This means that they can contain variables only if those
variables are grouped by GROUP BY; thisrestriction is the same as if the direct arguments were not
inside an aggregate expression at all. Direct arguments are typically used for things like percentile
fractions, which only make sense as a single value per aggregation calculation. The direct argument
list can be empty; in this case, writejust () not (*) . (PostgreSQL will actually accept either spelling,
but only the first way conforms to the SQL standard.)

An example of an ordered-set aggregate call is:

SELECT percentile_cont(0.5) WTH N GROUP (ORDER BY incone) FROM
househol ds;
percentil e_cont

which obtains the 50th percentile, or median, value of thei nconme columnfromtablehousehol ds.
Here, 0. 5 isadirect argument; it would make no sensefor the percentile fraction to beavauevarying
across rows.

If FI LTER s specified, then only the input rows for which thef i | t er _cl ause evaluates to true
are fed to the aggregate function; other rows are discarded. For example:

SELECT

count (*) AS unfiltered,

count (*) FILTER (WHERE i < 5) AS filtered
FROM generate_series(1,10) AS s(i);
unfiltered | filtered

(1 row

The predefined aggregate functions are described in Section 9.20. Other aggregate functions can be
added by the user.

An aggregate expression can only appear in the result list or HAVI NGclause of a SELECT command.
It isforbidden in other clauses, such as WHERE, because those clauses are logically evaluated before
the results of aggregates are formed.

When an aggregate expression appears in a subquery (see Section 4.2.11 and Section 9.22), the aggre-
gate is normally evaluated over the rows of the subquery. But an exception occurs if the aggregate's
arguments (and f i | t er _cl ause if any) contain only outer-level variables: the aggregate then be-
longs to the nearest such outer level, and is evaluated over the rows of that query. The aggregate ex-
pression asawholeisthen an outer reference for the subquery it appearsin, and acts as a constant over
any one evaluation of that subquery. The restriction about appearing only in the result list or HAVI NG
clause applies with respect to the query level that the aggregate belongs to.

Window Function Calls

A window function call represents the application of an aggregate-like function over some portion of
the rows selected by a query. Unlike non-window aggregate calls, thisis not tied to grouping of the

46



SQL Syntax

selected rows into a single output row — each row remains separate in the query output. However the
window function has access to all the rows that would be part of the current row's group according
to the grouping specification (PARTI TI ON BY list) of the window function call. The syntax of a
window function call is one of the following:

function_name ([expression [, expression ... ]]) [ FILTER
( WHERE filter_clause ) ] OVER wi ndow_name
function_name ([expression [, expression ... ]]) [ FILTER

( WHERE filter_clause ) ] OVER ( w ndow definition )
function_name ( * ) [ FILTER ( WHERE filter_clause ) ]
OVER wi ndow_nane
function_name ( * ) [ FILTER ( WHERE filter_clause ) ] OVER
( wi ndow definition)

wherewi ndow_def i ni t i on hasthe syntax

[ existing_w ndow _nane ]

[ PARTITION BY expression [, ...] ]
[ ORDER BY expression [ ASC | DESC | USING operator ] [ NULLS
{ FIRST | LAST} ] [, ...]11

[ frane_cl ause ]

The optional f r amre_cl ause can be one of

{ RANGE | RON5 | GROUPS } frane_start [ frame_exclusion ]
{ RANGE | ROAS | GROUPS } BETVEEN frane_start AND frane_end
[ frane_exclusion ]

wherefranme_start andfranme_end can be one of

UNBOUNDED PRECEDI NG
of f set PRECEDI NG
CURRENT ROW

of fset FOLLOW NG
UNBOUNDED FOLLOW NG

and f r ame_excl usi on can be one of

EXCLUDE CURRENT ROW
EXCLUDE GROUP
EXCLUDE TI ES
EXCLUDE NO OTHERS

Here, expr essi on represents any value expression that does not itself contain window function
cals.

wi ndow_narne isareferenceto anamed window specification defined in the query's W NDOWtl ause.
Alternatively, afull Wi ndow_def i ni ti on can be given within parentheses, using the same syntax
asfor defining anamed window in the W NDOWCclause; seethe SEL ECT reference pagefor details. It's
worth pointing out that OVER wnare is not exactly equivalent to OVER (wnane . . .);thelatter
implies copying and modifying the window definition, and will be rejected if the referenced window
specification includes a frame clause.

The PARTI TI ON BY clause groups the rows of the query into partitions, which are processed sepa-
rately by the window function. PARTI TI ON BY works similarly to aquery-level GROUP BY clause,

47



SQL Syntax

except that its expressions are always just expressions and cannot be output-column names or num-
bers. Without PARTI TI ON BY, al rows produced by the query are treated as a single partition. The
ORDER BY clause determines the order in which the rows of a partition are processed by the window
function. It workssimilarly to aquery-level ORDER BY clause, but likewise cannot use output-column
names or numbers. Without ORDER BY, rows are processed in an unspecified order.

The f r ame_cl ause specifies the set of rows constituting the window frame, which is a subset of
the current partition, for those window functions that act on the frame instead of the whole partition.
The set of rows in the frame can vary depending on which row is the current row. The frame can be
specified in RANGE, ROAS5 or GROUPS mode; in each case, it runs from the f r ane_st art to the
frame_end. If f rame_end isomitted, the end defaults to CURRENT ROW

A frame_start of UNBOUNDED PRECEDI NG means that the frame starts with the first row of
the partition, and similarly af r ame_end of UNBOUNDED FOLLOW NG means that the frame ends
with the last row of the partition.

In RANGE or GROUPS mode, af rane_st art of CURRENT ROWmeans the frame starts with the
current row's first peer row (arow that the window's ORDER BY clause sorts as equivalent to the
current row), while af r ame_end of CURRENT ROWmMmeans the frame ends with the current row's
last peer row. In ROAS mode, CURRENT ROWsimply means the current row.

In the of f set PRECEDI NG and of f set FOLLOW NG frame options, the of f set must be an
expression not containing any variables, aggregate functions, or window functions. The meaning of
the of f set depends on the frame mode:

* In ROAS mode, the of f set must yield anon-null, non-negative integer, and the option means that
the frame starts or ends the specified number of rows before or after the current row.

* In GROUPS mode, the of f set again must yield a non-null, non-negative integer, and the option
means that the frame starts or ends the specified number of peer groups before or after the current
row's peer group, where a peer group isaset of rowsthat are equivalent inthe ORDER BY ordering.
(There must be an ORDER BY clause in the window definition to use GROUPS mode.)

* In RANGE mode, these options require that the ORDER BY clause specify exactly one column. The
of f set specifiesthe maximum difference between the value of that columnin the current row and
itsvaluein preceding or following rows of theframe. The datatypeof theof f set expressionvaries
depending on the data type of the ordering column. For numeric ordering columns it is typicaly
of the same type as the ordering column, but for datetime ordering columnsit isani nt er val .
For example, if the ordering column is of type dat e or ti mest anp, one could write RANGE
BETVEEN '1 day' PRECEDI NG AND '10 days' FOLLOW NG Theof fset istill
required to be non-null and non-negative, though the meaning of “non-negative” depends on its
data type.

In any case, the distance to the end of the frame is limited by the distance to the end of the partition,
so that for rows near the partition ends the frame might contain fewer rows than elsewhere.

Notice that in both ROAE and GROUPS mode, 0 PRECEDI NGand 0 FOLLOW NGare equivaent to
CURRENT ROW This normally holds in RANGE mode as well, for an appropriate data-type-specific
meaning of “zero”.

Thef r anme_excl usi on option allows rows around the current row to be excluded from the frame,
even if they would be included according to the frame start and frame end options. EXCLUDE CUR-
RENT ROWexcludesthe current row from the frame. EXCLUDE GROUP excludesthe current row and
its ordering peers from the frame. EXCLUDE TI ES excludes any peers of the current row from the
frame, but not the current row itself. EXCLUDE NO OTHERS simply specifies explicitly the default
behavior of not excluding the current row or its peers.

The default framing option is RANGE UNBOUNDED PRECEDI NG, which is the same as RANGE
BETVEEN UNBOUNDED PRECEDI NG AND CURRENT ROWWith ORDER BY, thissetsthe frame
to be all rows from the partition start up through the current row's last ORDER BY peer. Without

48



SQL Syntax

4.2.9.

ORDER BY, this means all rows of the partition are included in the window frame, since al rows
become peers of the current row.

Restrictions are that f rane_st art cannot be UNBOUNDED FOLLOW NG, f r ane_end cannot
be UNBOUNDED PRECEDI NG, and the f r ane_end choice cannot appear earlier in the above list
of frame_start andfrane_end optionsthan the f rame_st art choice does — for example
RANGE BETWEEN CURRENT ROW AND of f set PRECEDI NGisnot allowed. But, for example,
ROAS BETWEEN 7 PRECEDI NG AND 8 PRECEDI NGis allowed, even though it would never
select any rows.

If FI LTER s specified, then only the input rows for which thef i | t er _cl ause evaluates to true
are fed to the window function; other rows are discarded. Only window functions that are aggregates
accept aFl LTER clause.

The built-in window functions are described in Table 9.57. Other window functions can be added by
the user. Also, any built-in or user-defined general-purpose or statistical aggregate can be used as a
window function. (Ordered-set and hypothetical-set aggregates cannot presently be used as window
functions.)

Thesyntaxesusing * are used for calling parameter-less aggregate functions as window functions, for
examplecount (*) OVER (PARTI TI ON BY x ORDER BY vy). Theasterisk (*) is customar-
ily not used for window-specific functions. Window-specific functions do not allow DI STI NCT or
ORDER BY to be used within the function argument list.

Window function calls are permitted only in the SELECT list and the ORDER BY clause of the query.

Moreinformation about window functions can befound in Section 3.5, Section 9.21, and Section 7.2.5.

Type Casts

A type cast specifies a conversion from one data type to another. PostgreSQL accepts two equivalent
syntaxes for type casts:

CAST ( expression AS type )
expression: :type

The CAST syntax conforms to SQL ; the syntax with : : ishistorical PostgreSQL usage.

When acast is applied to avalue expression of aknown type, it represents arun-time type conversion.
The cast will succeed only if a suitable type conversion operation has been defined. Notice that this
is subtly different from the use of casts with constants, as shown in Section 4.1.2.7. A cast applied
to an unadorned string literal represents the initial assignment of a type to a literal constant value,
and so it will succeed for any type (if the contents of the string literal are acceptable input syntax for
the data type).

An explicit type cast can usually be omitted if there is no ambiguity as to the type that a value expres-
sion must produce (for example, when it is assigned to atable column); the system will automatically
apply atype cast in such cases. However, automatic casting isonly donefor caststhat are marked “ OK
to apply implicitly” in the system catalogs. Other casts must be invoked with explicit casting syntax.
Thisrestriction isintended to prevent surprising conversions from being applied silently.

It isalso possible to specify atype cast using a function-like syntax:

typenane ( expression )

However, thisonly worksfor typeswhose names are also valid as function names. For example, dou-
bl e preci si on cannot be used this way, but the equivalent f | oat 8 can. Also, the namesi n-

49



SQL Syntax

terval ,time,andti mest anp canonly beusedinthisfashion if they are double-quoted, because
of syntactic conflicts. Therefore, the use of the function-like cast syntax leads to inconsistencies and
should probably be avoided.

Note

The function-like syntax isin fact just a function call. When one of the two standard
cast syntaxesis used to do arun-time conversion, it will internally invoke aregistered
function to perform the conversion. By convention, these conversion functions have
the same name astheir output type, and thusthe “function-like syntax” is nothing more
than a direct invocation of the underlying conversion function. Obviously, thisis not
something that a portable application should rely on. For further details see CREATE
CAST.

4.2.10. Collation Expressions

The COLLATE clause overrides the collation of an expression. It is appended to the expression it
appliesto:

expr COLLATE coll ation

wherecol | at i onisapossibly schema-qualified identifier. The COLLATE clause bindstighter than
operators; parentheses can be used when necessary.

If no collation is explicitly specified, the database system either derives a collation from the columns
involved inthe expression, or it defaultsto the default collation of the databaseif no columnisinvolved
in the expression.

The two common uses of the COLLATE clause are overriding the sort order in an ORDER BY clause,
for example:

SELECT a, b, ¢ FROMtbl WHERE ... ORDER BY a COLLATE "C';

and overriding the collation of afunction or operator call that haslocal e-sensitive results, for example:

SELECT * FROM tbl WHERE a > 'foo' COLLATE "C';

Note that in the latter case the COLLATE clause is attached to an input argument of the operator we
wishto affect. It doesn't matter which argument of the operator or function call the COLLATE clauseis
attached to, because the collation that is applied by the operator or function is derived by considering
all arguments, and an explicit COLLATE clause will override the collations of all other arguments.
(Attaching non-matching COLLATE clauses to more than one argument, however, is an error. For
more details see Section 23.2.) Thus, this gives the same result as the previous example:

SELECT * FROM t bl WHERE a COLLATE "C' > 'foo0';

But thisisan error:

SELECT * FROM tbl WHERE (a > 'foo') COLLATE "C';

because it attempts to apply a collation to the result of the > operator, which is of the non-collatable
datatypebool ean.

50



SQL Syntax

4.2.11. Scalar Subqueries

A scalar subquery isan ordinary SELECT query in parentheses that returns exactly one row with one
column. (See Chapter 7 for information about writing queries.) The SELECT query is executed and
the single returned value is used in the surrounding value expression. It is an error to use a query that
returns more than one row or more than one column as a scalar subquery. (But if, during a particular
execution, the subguery returns no rows, there is no error; the scalar result is taken to be null.) The
subquery can refer to variables from the surrounding query, which will act as constants during any
one evaluation of the subquery. See also Section 9.22 for other expressions involving subqueries.

For example, the following finds the largest city population in each state:

SELECT nane, (SELECT max(pop) FROM cities WHERE cities.state =
st at es. nane)
FROM st at es;

4.2.12. Array Constructors

Anarray constructor isan expression that buildsan array value using valuesfor itsmember el ements. A
simple array constructor consists of the key word ARRAY, aleft square bracket [ , alist of expressions
(separated by commas) for the array element values, and finally aright square bracket | . For example:

SELECT ARRAY[ 1, 2, 3+4] ;
array

By default, the array element type is the common type of the member expressions, determined using
thesamerulesasfor UNI ON or CASE constructs (see Section 10.5). Y ou can override thisby explicitly
casting the array constructor to the desired type, for example:

SELECT ARRAY[1,2,22.7]::integer[];
array

This has the same effect as casting each expression to the array element type individually. For more
on casting, see Section 4.2.9.

Multidimensional array values can be built by nesting array constructors. In theinner constructors, the
key word ARRAY can be omitted. For example, these produce the same resullt:

SELECT ARRAY[ ARRAY[ 1, 2], ARRAY[3,4]];
array

{{1,2},{3, 4}}
(1 row

SELECT ARRAY[[1,2],[3,4]];
array

{{1,2},{3, 4}}
(1 row

51



SQL Syntax

Since multidimensional arrays must be rectangular, inner constructors at the same level must produce
sub-arrays of identical dimensions. Any cast applied to the outer ARRAY constructor propagates au-
tomatically to all the inner constructors.

Multidimensional array constructor elements can be anything yielding an array of the proper kind, not
only asub-ARRAY construct. For example:

CREATE TABLE arr(f1 int[], f2 int[]);
I NSERT | NTO arr VALUES (ARRAY[[1,2],[3,4]], ARRAY[[5,6],[7,8]1);

SELECT ARRAY[f1, f2, '{{9,10},{11,12}} ::int[]] FROMarr
array

{{{1,2},{3,4}},{{5,6},{7, 8}, {{9,10},{11,12}}}
(1 row

Y ou can construct an empty array, but since it's impossible to have an array with no type, you must
explicitly cast your empty array to the desired type. For example:

SELECT ARRAY[]::integer[];
array

{}
(1 row

Itisalso possibleto construct an array from the results of asubquery. In thisform, the array construc-
tor is written with the key word ARRAY followed by a parenthesized (not bracketed) subquery. For
example:

SELECT ARRAY( SELECT oi d FROM pg_proc WHERE pronane LIKE 'bytea%);
array

{2011, 1954, 1948, 1952, 1951, 1244, 1950, 2005, 1949, 1953, 2006, 31, 2412, 2413}
(1 row

SELECT ARRAY( SELECT ARRAY[i, i*2] FROM generate_series(1,5) AS
a(i));

{{1,2},{2,4},{3,6},{4,8},{5,10}}
(1 row)

The subquery must return a single column. If the subquery's output column is of a non-array type,
the resulting one-dimensional array will have an element for each row in the subquery result, with an
element type matching that of the subquery's output column. If the subquery's output column is of an
array type, the result will be an array of the same type but one higher dimension; in this case all the
subquery rows must yield arrays of identical dimensionality, else the result would not be rectangular.

The subscripts of an array value built with ARRAY aways begin with one. For more information about
arrays, see Section 8.15.

4.2.13. Row Constructors

A row constructor isan expression that builds arow value (also called acomposite value) using values
for its member fields. A row constructor consists of the key word ROW a left parenthesis, zero or

52



SQL Syntax

more expressions (separated by commas) for the row field values, and finally aright parenthesis. For
example:

SELECT RON1,2.5,'this is a test');

The key word ROWis optional when there is more than one expression in the list.

A row constructor can include the syntax r owval ue. *, which will be expanded to a list of the
elements of the row value, just as occurswhen the . * syntax isused at the top level of a SELECT list
(see Section 8.16.5). For example, if tablet hascolumnsf 1 and f 2, these are the same:

SELECT ROW(t.*, 42) FROMt;
SELECT ROWt.f1, t.f2, 42) FROMt;

Note

Before PostgreSQL 8.2, the . * syntax was not expanded in row constructors, so that
writing RONt . *, 42) created atwo-field row whose first field was another row
value. The new behavior isusually more useful. If you need the old behavior of nested
row values, write the inner row value without . *, for instance RON t, 42).

By default, the value created by a ROWNexpression is of an anonymous record type. If necessary, it can
be cast to a named composite type — either the row type of atable, or acomposite type created with
CREATE TYPE AS. An explicit cast might be needed to avoid ambiguity. For example:

CREATE TABLE nytable(fl int, f2 float, f3 text);

CREATE FUNCTI ON getf 1(nytabl e) RETURNS int AS ' SELECT $1.f1'
LANGUAGE SQL;

-- No cast needed since only one getfl() exists
SELECT getf1(RON1,2.5,'this is a test'));
getfl

CREATE TYPE nyrowtype AS (fl1 int, f2 text, f3 nuneric);

CREATE FUNCTI ON get f 1(myr owt ype) RETURNS int AS ' SELECT $1.f1'
LANGUAGE SQL;

-- Now we need a cast to indicate which function to call:
SELECT getf1(RON1,2.5,'this is a test'));
ERROR: function getfl(record) is not unique

SELECT getf1(ROWN1,2.5,'this is a test')::nmytable);
getfl

SELECT getf1(CAST(ROW 11,'this is a test',2.5) AS nmyrowtype));
getfl

53



SQL Syntax

11
(1 row

Row constructors can be used to build composite valuesto be stored in acomposite-type table column,
or to be passed to a function that accepts a composite parameter. Also, it is possible to compare two
row valuesor test arow with | S NULL or I S NOT NULL, for example:

SELECT RON1,2.5,'this is a test') = RON1, 3, 'not the sane');
SELECT RONtable.*) IS NULL FROMtable; -- detect all-null rows

For more detail see Section 9.23. Row constructors can aso be used in connection with subqueries,
as discussed in Section 9.22.

4.2.14. Expression Evaluation Rules

The order of evaluation of subexpressions is not defined. In particular, the inputs of an operator or
function are not necessarily evaluated left-to-right or in any other fixed order.

Furthermore, if the result of an expression can be determined by evaluating only some parts of it, then
other subexpressions might not be evaluated at all. For instance, if one wrote:

SELECT true OR sonefunc();

then sonef unc() would (probably) not be called at all. The same would be the case if one wrote;

SELECT sonefunc() OR true;

Note that thisis not the same as the left-to-right “ short-circuiting” of Boolean operators that is found
in some programming languages.

As aconsequence, it is unwise to use functions with side effects as part of complex expressions. It is
particularly dangerousto rely on side effects or eval uation order in WHERE and HAVI NGclauses, since
those clauses are extensively reprocessed as part of devel oping an execution plan. Boolean expressions
(ANDYOR/NOT combinations) in those clauses can be reorganized in any manner alowed by the laws
of Boolean algebra.

When it is essential to force evaluation order, a CASE construct (see Section 9.17) can be used. For
example, thisis an untrustworthy way of trying to avoid division by zero in a WHERE clause:

SELECT ... WHERE x > 0 AND y/x > 1.5;
But thisis safe:
SELECT ... WHERE CASE WHEN x > 0 THEN y/x > 1.5 ELSE fal se END;

A CASE construct used in this fashion will defeat optimization attempts, so it should only be done
when necessary. (In this particular example, it would be better to sidestep the problem by writing y
> 1.5*x instead.)

CASE is not a cure-all for such issues, however. One limitation of the technique illustrated above is
that it does not prevent early evaluation of constant subexpressions. As described in Section 38.7,
functions and operators marked | MMUTABLE can be evaluated when the query is planned rather than
when it is executed. Thus for example




SQL Syntax

SELECT CASE WHEN x > 0 THEN x ELSE 1/0 END FROM t ab;

islikely to result in adivision-by-zero failure due to the planner trying to simplify the constant subex-
pression, even if every row in the table hasx > 0 so that the ELSE arm would never be entered
at runtime.

While that particular example might seem silly, related cases that don't obviously involve constants
can occur in queries executed within functions, since the values of function arguments and local vari-
ables can beinserted into queries as constants for planning purposes. Within PL/pgSQL functions, for
example, using an | F-THEN-EL SE statement to protect a risky computation is much safer than just
nesting it in a CASE expression.

Another limitation of the same kind is that a CASE cannot prevent evaluation of an aggregate expres-
sion contained within it, because aggregate expressions are computed before other expressionsin a
SELECT list or HAVI NG clause are considered. For example, the following query can cause a divi-
sion-by-zero error despite seemingly having protected against it:

SELECT CASE WHEN mi n( enpl oyees) > 0
THEN avg(expenses / enpl oyees)
END
FROM depart ment s;

Them n() andavg() aggregates are computed concurrently over all the input rows, so if any row
has enpl oyees equal to zero, the division-by-zero error will occur before there is any opportunity
to test the result of mi n() . Instead, use a WHERE or FI LTER clause to prevent problematic input
rows from reaching an aggregate function in the first place.

4.3. Calling Functions

PostgreSQL allowsfunctionsthat have named parametersto be called using either positional or named
notation. Named notation is especially useful for functions that have a large number of parameters,
since it makes the associations between parameters and actual arguments more explicit and reliable.
In positional notation, a function call is written with its argument values in the same order as they
are defined in the function declaration. In named notation, the arguments are matched to the function
parameters by name and can be written in any order. For each notation, also consider the effect of
function argument types, documented in Section 10.3.

In either notation, parameters that have default values given in the function declaration need not be
written in the call at all. But thisis particularly useful in named notation, since any combination of
parameters can be omitted; while in positional notation parameters can only be omitted from right
to left.

PostgreSQL al so supports mixed notation, which combines positional and named notation. Inthiscase,
positional parameters are written first and named parameters appear after them.

The following examples will illustrate the usage of all three notations, using the following function
definition:

CREATE FUNCTI ON concat | ower _or _upper(a text, b text, uppercase
bool ean DEFAULT fal se)
RETURNS t ext
AS
$$
SELECT CASE
VWHEN $3 THEN UPPER($1 || ' ' || $2)
ELSE LONER(S$1 || " " || $2)

55



SQL Syntax

4.3.1.

4.3.2.

END;
$$
LANGUAGE SQL | MMUTABLE STRI CT;

Function concat _| ower _or _upper hastwo mandatory parameters, a and b. Additionally there
isone optional parameter upper case which defaultstof al se. Thea and b inputswill be concate-
nated, and forced to either upper or lower case depending on theupper case parameter. Theremain-
ing details of this function definition are not important here (see Chapter 38 for more information).

Using Positional Notation

Positional notation is the traditional mechanism for passing arguments to functions in PostgreSQL.
Anexampleis:

SELECT concat | ower _or_upper('Hello', '"Wrld, true);
concat _| ower _or _upper

HELLO WORLD
(1 row

All arguments are specified in order. Theresult isupper casesinceupper case isspecified ast r ue.
Another exampleis:

SELECT concat _| ower _or_upper(' Hello', "Wrld');
concat _| ower _or _upper

hell o worl d

(1 row

Here, the upper case parameter is omitted, so it receives its default value of f al se, resulting in
lower case output. In positional notation, arguments can be omitted from right to left so long as they
have defaults.

Using Named Notation

In named notation, each argument's name is specified using => to separate it from the argument ex-
pression. For example:

SELECT concat | ower_or_upper(a => "Hello', b => "Wrld);
concat _| ower _or _upper

hello world

(1 row

Again, the argument upper case was omitted so it is set to f al se implicitly. One advantage of
using named notation is that the arguments may be specified in any order, for example:

SELECT concat | ower_or_upper(a => "Hello', b => "Wrld', uppercase
=> true);
concat _| ower _or _upper

HELLO WORLD
(1 row

56



SQL Syntax

4.3.3.

SELECT concat _| ower _or _upper(a => 'Hell o', uppercase => true, b =>
"World');
concat _| ower _or _upper

HELLO WORLD
(1 row

An older syntax based on ":=" is supported for backward compatibility:

SELECT concat _| ower _or_upper(a := "Hello', uppercase :=true, b :=
"World');
concat _| ower _or _upper
HELLO WORLD

(1 row)

Using Mixed Notation

The mixed notation combines positional and named notation. However, as already mentioned, named
arguments cannot precede positional arguments. For example:

SELECT concat | ower _or_upper('Hello', 'Wrld', uppercase => true);
concat _| ower _or _upper

HELLO WORLD
(1 row

In the above query, the arguments a and b are specified positionally, while upper case is specified
by name. In thisexample, that addsittle except documentation. With amore complex function having
numerous parametersthat have default val ues, named or mixed notation can save agreat deal of writing
and reduce chances for error.

Note

Named and mixed call notations currently cannot be used when calling an aggregate
function (but they do work when an aggregate function is used as awindow function).

57



Chapter 5. Data Definition

This chapter covers how one creates the database structures that will hold one's data. In a relational
database, the raw datais stored in tables, so the majority of this chapter is devoted to explaining how
tables are created and modified and what features are available to control what data is stored in the
tables. Subsequently, we discuss how tables can be organized into schemas, and how privileges can
be assigned to tables. Finally, we will briefly look at other features that affect the data storage, such
as inheritance, table partitioning, views, functions, and triggers.

5.1. Table Basics

A tablein arelational database is much like a table on paper: It consists of rows and columns. The
number and order of the columnsisfixed, and each column hasaname. The number of rowsisvariable
— it reflects how much data is stored at a given moment. SQL does not make any guarantees about
the order of the rowsin atable. When a table is read, the rows will appear in an unspecified order,
unless sorting is explicitly requested. Thisis covered in Chapter 7. Furthermore, SQL does not assign
unique identifiersto rows, so it is possible to have several completely identical rows in atable. This
is a consequence of the mathematical model that underlies SQL but is usually not desirable. Later in
this chapter we will see how to deal with thisissue.

Each column has adatatype. The datatype constrainsthe set of possible valuesthat can be assigned to
acolumn and assigns semanticsto the data stored in the column so that it can be used for computations.
For instance, a column declared to be of a numerical type will not accept arbitrary text strings, and
the data stored in such a column can be used for mathematical computations. By contrast, a column
declared to be of a character string type will accept almost any kind of data but it does not lend itself
to mathematical calculations, although other operations such as string concatenation are available.

PostgreSQL includes a sizable set of built-in data types that fit many applications. Users can also
define their own data types. Most built-in data types have obvious names and semantics, so we defer
adetailed explanation to Chapter 8. Some of the frequently used datatypes arei nt eger for whole
numbers, nuner i ¢ for possibly fractional numbers, t ext for character strings, dat e for dates,
t i me for time-of-day values, and t i mest anp for values containing both date and time.

To create atable, you use the aptly named CREATE TABLE command. In this command you specify
at least a name for the new table, the names of the columns and the data type of each column. For
example:

CREATE TABLE ny _first_table (
first_colum text,
second_col um i nt eger

)

This creates a table named nmy_fi r st _t abl e with two columns. The first column is named
first_col um and has adatatype of t ext ; the second column has the name second_col um
and the type i nt eger . The table and column names follow the identifier syntax explained in Sec-
tion 4.1.1. The type names are usually aso identifiers, but there are some exceptions. Note that the
column list is comma-separated and surrounded by parentheses.

Of course, the previous example was heavily contrived. Normally, you would give names to your
tables and columns that convey what kind of datathey store. So let'slook at amore realistic example:

CREATE TABLE products (
product _no i nteger,
name text,

58



Data Definition

price nunmeric

)

(Thenurer i c type can store fractional components, as would be typical of monetary amounts.)

Tip

When you create many interrelated tables it is wise to choose a consistent naming
pattern for the tables and columns. For instance, there is a choice of using singular or
plural nouns for table names, both of which are favored by some theorist or other.

There is a limit on how many columns a table can contain. Depending on the column types, it is
between 250 and 1600. However, defining a table with anywhere near this many columns is highly
unusual and often a questionable design.

If you no longer need atable, you can remove it using the DROP TABLE command. For example:

DROP TABLE ny first _table;
DROP TABLE products;

Attempting to drop atable that does not exist isan error. Nevertheless, itiscommonin SQL script files
to unconditionally try to drop each table before creating it, ignoring any error messages, so that the
script works whether or not the table exists. (If you like, you can usethe DROP TABLE | F EXI STS
variant to avoid the error messages, but thisis not standard SQL .)

If you need to modify atable that already exists, see Section 5.5 later in this chapter.

With the tools discussed so far you can create fully functional tables. The remainder of this chapter is
concerned with adding featuresto the tabl e definition to ensure dataintegrity, security, or convenience.
If you are eager to fill your tables with data now you can skip ahead to Chapter 6 and read the rest
of this chapter later.

5.2. Default Values

A column can be assigned a default value. When a new row is created and no values are specified
for some of the columns, those columns will be filled with their respective default values. A data
manipulation command can also request explicitly that a column be set to its default value, without
having to know what that value is. (Details about data manipulation commands are in Chapter 6.)

If no default value is declared explicitly, the default valueis the null value. This usually makes sense
because a null value can be considered to represent unknown data.

In atable definition, default values are listed after the column data type. For example:

CREATE TABLE products (
product _no i nteger,
name text,
price numeric DEFAULT 9. 99

)

The default value can be an expression, which will be evaluated whenever the default valueisinserted
(not when thetableis created). A common exampleisfor at i nest anp column to have adefault of
CURRENT _TI MESTAMP, so that it gets set to the time of row insertion. Another common exampleis
generating a“serial number” for each row. In PostgreSQL thisistypically done by something like:

59



Data Definition

CREATE TABLE products (
product _no i nteger DEFAULT nextval (' products_product_no_seq'),

)
wherethenext val () function suppliessuccessive valuesfrom asequence object (see Section 9.16).

This arrangement is sufficiently common that there's a specia shorthand for it:

CREATE TABLE products (
product _no SERI AL,

)
The SERI AL shorthand is discussed further in Section 8.1.4.

5.3. Constraints

5.3.1.

Data types are a way to limit the kind of data that can be stored in a table. For many applications,
however, the constraint they provide istoo coarse. For example, a column containing a product price
should probably only accept positive values. But there is no standard data type that accepts only pos-
itive numbers. Another issue is that you might want to constrain column data with respect to other
columns or rows. For example, in a table containing product information, there should be only one
row for each product number.

To that end, SQL allows you to define constraints on columns and tables. Constraints give you as
much control over the data in your tables as you wish. If a user attempts to store data in a column
that would violate a constraint, an error is raised. This applies even if the value came from the default
value definition.

Check Constraints

A check constraint isthe most generic constraint type. It allows you to specify that the value in a cer-
tain column must satisfy a Boolean (truth-value) expression. For instance, to require positive product
prices, you could use:

CREATE TABLE products (
product _no i nteger,
name text,
price nuneric CHECK (price > 0)

)

As you see, the constraint definition comes after the data type, just like default value definitions.
Default values and constraints can be listed in any order. A check constraint consists of the key word
CHECK followed by an expression in parentheses. The check constraint expression should involve the
column thus constrained, otherwise the constraint would not make too much sense.

Y ou can also give the constraint a separate name. This clarifies error messages and allowsyou to refer
to the constraint when you need to change it. The syntax is:

CREATE TABLE products (
product _no i nteger,
name text,
price numeri c CONSTRAI NT positive price CHECK (price > 0)

60



Data Definition

)

So, to specify anamed constraint, use the key word CONSTRAI NT followed by an identifier followed
by the constraint definition. (If you don't specify a constraint name in this way, the system chooses
anamefor you.)

A check constraint can also refer to several columns. Say you store a regular price and a discounted
price, and you want to ensure that the discounted price is lower than the regular price:

CREATE TABLE products (
product _no i nteger,
name text,
price numeric CHECK (price > 0),
di scounted_price nunmeric CHECK (discounted price > 0),
CHECK (price > discounted price)

)

The first two constraints should look familiar. The third one uses a new syntax. It is not attached to a
particular column, instead it appears as a separate item in the commarseparated column list. Column
definitions and these constraint definitions can be listed in mixed order.

We say that thefirst two constraints are column constraints, whereas the third one isatable constraint
becauseit iswritten separately from any one column definition. Column constraints can a so bewritten
astable constraints, whilethereverseisnot necessarily possible, since acolumn constraint is supposed
to refer to only the column it is attached to. (PostgreSQL doesn't enforce that rule, but you should
follow it if you want your table definitions to work with other database systems.) The above example
could also be written as:

CREATE TABLE products (
product _no i nteger,
name text,
price nuneric,
CHECK (price > 0),
di scounted _price numeric,
CHECK (di scounted _price > 0),
CHECK (price > discounted price)

or even:

CREATE TABLE products (
product _no i nteger,
name text,
price nuneric CHECK (price > 0),
di scounted_price nuneric,
CHECK (di scounted_price > 0 AND price > discounted_price)

)
It's a matter of taste.

Names can be assigned to table constraints in the same way as column constraints:

CREATE TABLE products (
product _no i nteger,
name text,
price nuneric,

61



Data Definition

5.3.2.

CHECK (price > 0),

di scounted_price nuneric,

CHECK (di scounted_price > 0),

CONSTRAI NT val i d_di scount CHECK (price > discounted_price)

)

It should be noted that a check constraint is satisfied if the check expression evaluates to true or the
null value. Since most expressions will evaluate to the null value if any operand is null, they will not
prevent null values in the constrained columns. To ensure that a column does not contain null values,
the not-null constraint described in the next section can be used.

Not-Null Constraints

A not-null constraint simply specifiesthat acolumn must not assumethe null value. A syntax example:

CREATE TABLE products (
product _no i nteger NOT NULL,
name text NOT NULL,
price nuneric

)

A not-null constraint is always written as a column constraint. A not-null constraint is functionally
equivalent to creating a check constraint CHECK (col unm_nane |'S NOT NULL), but in Post-
greSQL creating an explicit not-null constraint is more efficient. The drawback isthat you cannot give
explicit names to not-null constraints created this way.

Of course, a column can have more than one constraint. Just write the constraints one after another:

CREATE TABLE products (
product _no i nteger NOT NULL,
nanme text NOT NULL,
price numeric NOT NULL CHECK (price > 0)

);
The order doesn't matter. It does not necessarily determine in which order the constraints are checked.

The NOT NULL constraint has an inverse: the NULL constraint. This does not mean that the column
must be null, which would surely be useless. Instead, this simply selects the default behavior that the
column might be null. The NULL constraint is not present in the SQL standard and should not be used
in portable applications. (It was only added to PostgreSQL to be compatible with some other database
systems.) Some users, however, likeit because it makesit easy to toggle the constraint in ascript file.
For example, you could start with:

CREATE TABLE products (
product _no integer NULL,
name text NULL,
price nuneric NULL

);
and then insert the NOT key word where desired.

Tip

In most database designs the majority of columns should be marked not null.

62



Data Definition

5.3.3. Unique Constraints

Unique constraints ensure that the data contained in acolumn, or agroup of columns, is unique among
all therowsin the table. The syntax is:

CREATE TABLE products (
product no integer UN QUE
name text,
price nunmeric

)

when written as a column constraint, and:

CREATE TABLE products (
product _no i nteger,
name text,
price nuneric,

UNI QUE ( product _no)

);
when written as a table constraint.
To define a unique constraint for a group of columns, write it as a table constraint with the column

names separated by commas:

CREATE TABLE exanpl e (

a i nteger,
b integer,
c integer,

UNI QUE (a, c¢)
)

This specifiesthat the combination of valuesin theindicated columnsis unique acrossthe wholetable,
though any one of the columns need not be (and ordinarily isn't) unique.

Y ou can assign your own name for a unique constraint, in the usual way:

CREATE TABLE products (
product _no i nteger CONSTRAINT nust be different UN QUE
name text,
price nuneric

)

Adding a unique constraint will automatically create a unique B-tree index on the column or group of
columns listed in the constraint. A uniqueness restriction covering only some rows cannot be written
asaunique constraint, but it is possible to enforce such arestriction by creating a unique partial index.

In general, aunique constraint isviolated if thereis more than one row in the table where the val ues of
all of the columnsincluded in the constraint are equal. However, two null values are never considered
equal in this comparison. That means even in the presence of a unique constraint it is possible to
store duplicate rowsthat contain anull valuein at least one of the constrained columns. This behavior
conformsto the SQL standard, but we have heard that other SQL databases might not follow thisrule.
So be careful when devel oping applications that are intended to be portable.

5.3.4. Primary Keys

63



Data Definition

5.3.5.

A primary key constraint indicates that a column, or group of columns, can be used as a unique iden-
tifier for rowsin the table. Thisrequires that the values be both unique and not null. So, the following
two table definitions accept the same data:

CREATE TABLE products (
product _no i nteger UN QUE NOT NULL,
name text,
price nuneric

)

CREATE TABLE products (
product _no integer PRI MARY KEY,
name text,
price nuneric

)

Primary keys can span more than one column; the syntax is similar to unique constraints:

CREATE TABLE examnpl e (

a integer,
b integer,
c integer,

PRI MARY KEY (a, c)
)

Adding a primary key will automatically create a unique B-tree index on the column or group of
columns listed in the primary key, and will force the column(s) to be marked NOT NULL.

A tablecan have at most one primary key. (There can beany number of unique and not-null constraints,
which are functionally almost the same thing, but only one can be identified as the primary key.)
Relational database theory dictatesthat every table must have aprimary key. Thisruleis not enforced
by PostgreSQL, but it is usually best to follow it.

Primary keys are useful both for documentation purposes and for client applications. For example, a
GUI application that allows modifying row values probably needs to know the primary key of atable
to be able to identify rows uniquely. There are also various ways in which the database system makes
use of aprimary key if one has been declared; for example, the primary key defines the default target
column(s) for foreign keysreferencing its table.

Foreign Keys

A foreign key constraint specifies that the valuesin acolumn (or agroup of columns) must match the
values appearing in some row of another table. We say this maintainsthe referential integrity between
two related tables.

Say you have the product table that we have used several times already:

CREATE TABLE products (
product _no integer PRI MARY KEY,
name text,
price nuneric

)

Let's also assume you have atable storing orders of those products. We want to ensure that the orders
table only contains orders of products that actually exist. So we define aforeign key constraint in the
orders table that references the products table:

64



Data Definition

CREATE TABLE orders (
order _id integer PRI MARY KEY,
product _no i nteger REFERENCES products (product_no),
guantity integer

)

Now it is impossible to create orders with non-NULL pr oduct no entries that do not appear in
the products table.

We say that in this situation the orders table is the referencing table and the products table is the
referenced table. Similarly, there are referencing and referenced columns.

Y ou can a'so shorten the above command to:

CREATE TABLE orders (
order _id integer PRI MARY KEY,
product _no i nteger REFERENCES products,
qgquantity integer

)

because in absence of a column list the primary key of the referenced table is used as the referenced
column(s).

A foreign key can also constrain and reference agroup of columns. Asusual, it then needsto bewritten
in table constraint form. Here is a contrived syntax example:

CREATE TABLE t1 (

a integer PRI MARY KEY,

b integer,

c integer,

FOREI GN KEY (b, c) REFERENCES other_table (cl, c2)
)

Of course, the number and type of the constrained columns need to match the number and type of
the referenced columns.

Y ou can assign your own name for aforeign key constraint, in the usual way.

A table can have more than one foreign key constraint. This is used to implement many-to-many
relationships between tables. Say you have tables about products and orders, but now you want to
allow one order to contain possibly many products (which the structure above did not allow). You
could use this table structure:

CREATE TABLE products (
product no integer PRI MARY KEY,
name text,
price nunmeric

)

CREATE TABLE orders (
order _id integer PRI MARY KEY,
shi ppi ng_addr ess text,

)

CREATE TABLE order _itens (

65



Data Definition

product _no i nteger REFERENCES products,
order _id integer REFERENCES orders,
guantity integer,
PRI MARY KEY (product_no, order_id)

)

Notice that the primary key overlaps with the foreign keysin the last table.

We know that the foreign keys disallow creation of ordersthat do not relate to any products. But what
if aproduct is removed after an order is created that references it? SQL allows you to handle that as
well. Intuitively, we have afew options:

» Disdlow deleting a referenced product
» Delete the orders aswell
* Something else?

To illustrate this, let's implement the following policy on the many-to-many relationship exam-
ple above: when someone wants to remove a product that is till referenced by an order (via or -
der _i t ens), wedisallow it. If someone removes an order, the order items are removed as well:

CREATE TABLE products (
product no integer PRI MARY KEY,
name text,
price nuneric

)

CREATE TABLE orders (
order _id integer PRI MARY KEY,
shi ppi ng_addr ess text,

)

CREATE TABLE order _itens (
product _no i nteger REFERENCES products ON DELETE RESTRI CT,
order _id integer REFERENCES orders ON DELETE CASCADE,
guantity integer,
PRI MARY KEY (product_no, order _id)

)

Restricting and cascading del etes are the two most common options. RESTRI CT prevents del etion of
areferenced row. NO ACTI ON means that if any referencing rows still exist when the constraint is
checked, an error is raised; thisis the default behavior if you do not specify anything. (The essential
difference between these two choicesisthat NO ACTI ON alows the check to be deferred until later
in the transaction, whereas RESTRI CT does not.) CASCADE specifies that when a referenced row is
deleted, row(s) referencing it should be automatically deleted as well. There are two other options:
SET NULL and SET DEFAULT. These cause the referencing column(s) in the referencing row(s) to
be set to nulls or their default values, respectively, when the referenced row is deleted. Note that these
do not excuse you from observing any constraints. For example, if an action specifiesSET DEFAULT
but the default value would not satisfy the foreign key constraint, the operation will fail.

Analogousto ON DELETE thereisalso ON UPDATE which isinvoked when areferenced columnis
changed (updated). The possible actions are the same. In this case, CASCADE means that the updated
values of the referenced column(s) should be copied into the referencing row(s).

Normally, a referencing row need not satisfy the foreign key constraint if any of its referencing
columnsare null. If MATCH FULL isadded to the foreign key declaration, areferencing row escapes
satisfying the constraint only if all its referencing columns are null (so a mix of null and non-null

66



Data Definition

5.3.6.

valuesisguaranteed to fail aMATCH FULL constraint). If you don't want referencing rowsto be able
to avoid satisfying the foreign key constraint, declare the referencing column(s) as NOT NULL.

A foreign key must reference columns that either are a primary key or form a unique constraint. This
meansthat the referenced columns alwayshave anindex (the one underlying the primary key or unique
constraint); so checks on whether a referencing row has a match will be efficient. Since a DELETE
of arow from the referenced table or an UPDATE of a referenced column will require a scan of the
referencing table for rows matching the old value, it is often a good idea to index the referencing
columns too. Because this is not always needed, and there are many choices available on how to
index, declaration of aforeign key constraint does not automatically create an index on thereferencing
columns.

More information about updating and deleting dataisin Chapter 6. Also see the description of foreign
key constraint syntax in the reference documentation for CREATE TABLE.

Exclusion Constraints

Exclusion constraintsensurethat if any two rowsare compared on the specified columnsor expressions
using the specified operators, at |east one of these operator comparisons will return false or null. The
syntax is.

CREATE TABLE circles (
c circle,
EXCLUDE USI NG gist (c WTH &&)

)
See also CREATE TABLE ... CONSTRAINT ... EXCLUDE for details.

Adding an exclusion constraint will automatically create anindex of the type specified in the constraint
declaration.

5.4. System Columns

Every table has severa system columns that are implicitly defined by the system. Therefore, these
names cannot be used as names of user-defined columns. (Notethat these restrictions are separate from
whether the nameisakey word or not; quoting anamewill not allow you to escape these restrictions.)
Y ou do not really need to be concerned about these columns; just know they exist.

oid

The object identifier (object ID) of arow. This column isonly present if the table was created
using W TH QO DS, or if the default_with_oids configuration variable was set at the time. This
column is of type oi d (same name as the column); see Section 8.19 for more information about
the type.

t abl eoi d

The OID of thetable containing thisrow. This columnis particularly handy for queriesthat select
frominheritance hierarchies (see Section 5.9), sincewithout it, it's difficult to tell which individual
table arow came from. The t abl eoi d can be joined against the oi d column of pg_cl ass
to obtain the table name.

xm n
Theidentity (transaction D) of theinserting transaction for thisrow version. (A row versionisan
individual state of arow; each update of arow createsanew row version for the samelogical row.)

cmn

67



Data Definition

The command identifier (starting at zero) within the inserting transaction.
Xmax

Theidentity (transaction D) of the deleting transaction, or zero for an undeleted row version. It
is possible for this column to be nonzero in avisible row version. That usually indicates that the
deleting transaction hasn't committed yet, or that an attempted del etion was rolled back.

cnax
The command identifier within the deleting transaction, or zero.
ctid

The physical location of the row version within its table. Note that although the cti d can be
used to locate the row version very quickly, arow'sct i d will change if it is updated or moved
by VACUUM FULL. Thereforect i d is useless as along-term row identifier. The OID, or even
better a user-defined serial number, should be used to identify logical rows.

OlDs are 32-bit quantities and are assigned from a single cluster-wide counter. In alarge or long-lived
database, it is possible for the counter to wrap around. Hence, it is bad practice to assume that OIDs
are unique, unless you take steps to ensure that this is the case. If you need to identify the rows in
atable, using a sequence generator is strongly recommended. However, OIDs can be used as well,
provided that afew additional precautions are taken:

* A unique constraint should be created on the OID column of each table for which the OID will be
used to identify rows. When such aunique constraint (or unique index) exists, the system takes care
not to generate an OID matching an already-existing row. (Of course, this is only possible if the
table contains fewer than 2% (4 billion) rows, and in practice the table size had better be much less
than that, or performance might suffer.)

 OIDs should never be assumed to be unique across tables; use the combination of t abl eoi d and
row OID if you need a database-wide identifier.

» Of course, the tables in question must be created W TH O DS. As of PostgreSQL 8.1, W THOUT
O DS isthe defaullt.

Transaction identifiers are also 32-hit quantities. In along-lived database it is possible for transaction
IDstowrap around. Thisisnot afatal problem given appropriate maintenance procedures; see Chap-
ter 24 for details. It is unwise, however, to depend on the uniqueness of transaction | Ds over the long
term (more than one billion transactions).

Command identifiers are also 32-bit quantities. This creates a hard limit of 2% (4 billion) SQL com-
mands within a single transaction. In practice this limit is not a problem — note that the limit is on
the number of SQL commands, not the number of rows processed. Also, only commandsthat actually
modify the database contents will consume a command identifier.

5.5. Modifying Tables

When you create atable and you realize that you made amistake, or the requirements of the application
change, you can drop the table and create it again. But thisis not a convenient option if the table is
already filled with data, or if thetableisreferenced by other database objects (for instance aforeign key
constraint). Therefore PostgreSQL provides afamily of commands to make modifications to existing
tables. Note that thisis conceptually distinct from altering the data contained in the table: herewe are
interested in altering the definition, or structure, of the table.

You can:

* Add columns
* Remove columns

68



Data Definition

5.5.1.

5.5.2.

5.5.3.

» Add constraints

* Remove constraints

» Change default values

» Change column datatypes
* Rename columns

* Renametables

All these actions are performed using the ALTER TABLE command, whose reference page contains
details beyond those given here.

Adding a Column

To add a column, use acommand like:

ALTER TABLE products ADD COLUMWN descri ption text;

The new column isinitialy filled with whatever default value is given (null if you don't specify a
DEFAULT clause).

Y ou can a'so define constraints on the column at the same time, using the usual syntax:

ALTER TABLE products ADD COLUMWN description text CHECK (description

<)
Infact all the optionsthat can be applied to acolumn descriptionin CREATE TABLE can be used here.
Keep in mind however that the default value must satisfy the given constraints, or the ADD will fail.
Alternatively, you can add constraints | ater (see below) after you'vefilled in the new column correctly.

Tip

Adding a column with a default requires updating each row of the table (to store the
new column value). However, if no default is specified, PostgreSQL is able to avoid
the physical update. So if you intend to fill the column with mostly nondefault values,
it's best to add the column with no default, insert the correct values using UPDATE,
and then add any desired default as described below.

Removing a Column

To remove a column, use acommand like:

ALTER TABLE products DROP CCOLUWN descri ption;

Whatever datawasin the column disappears. Table constraintsinvolving the column are dropped, too.
However, if the column is referenced by a foreign key constraint of another table, PostgreSQL will
not silently drop that constraint. Y ou can authorize dropping everything that depends on the column
by adding CASCADE:

ALTER TABLE products DROP COLUWN descri pti on CASCADE;

See Section 5.13 for a description of the general mechanism behind this,

Adding a Constraint

69



Data Definition

5.5.4.

5.5.5.

5.5.6.

To add a constraint, the table constraint syntax is used. For example:

ALTER TABLE products ADD CHECK (nane <> '');

ALTER TABLE products ADD CONSTRAI NT sone_name UN QUE ( product_no);

ALTER TABLE products ADD FOREI GN KEY (product _group_i d) REFERENCES
product _groups;

To add a not-null constraint, which cannot be written as a table constraint, use this syntax:

ALTER TABLE products ALTER COLUWN product _no SET NOT NULL;

The constraint will be checked immediately, so the table data must satisfy the constraint before it can
be added.

Removing a Constraint

To remove a constraint you need to know its name. If you gave it a name then that's easy. Otherwise
the system assigned a generated name, which you need to find out. The psgl command\ d t abl e-
nanme can be helpful here; other interfaces might also provide a way to inspect table details. Then
the command is:

ALTER TABLE products DROP CONSTRAI NT sone_nane;

(If you are dealing with a generated constraint name like $2, don't forget that you'll need to dou-
ble-quote it to make it avalid identifier.)

Aswith dropping acolumn, you need to add CASCADE if you want to drop a constraint that something
else depends on. An example is that a foreign key constraint depends on a unique or primary key
constraint on the referenced column(s).

This works the same for all constraint types except not-null constraints. To drop anot null constraint
use:

ALTER TABLE products ALTER COLUWN product no DROP NOT NULL;

(Recdll that not-null constraints do not have names.)

Changing a Column's Default Value

To set anew default for a column, use acommand like:

ALTER TABLE products ALTER COLUW price SET DEFAULT 7. 77,

Notethat thisdoesn't affect any existing rowsinthetable, it just changesthe default for futurel NSERT
commands.

To remove any default value, use:

ALTER TABLE products ALTER COLUWN price DROP DEFAULT;

This is effectively the same as setting the default to null. As a consequence, it is not an error to drop
a default where one hadn't been defined, because the default isimplicitly the null value.

Changing a Column's Data Type

70



Data Definition

5.5.7.

5.5.8.

To convert acolumn to a different data type, use acommand like:

ALTER TABLE products ALTER COLUWN price TYPE nureric(10, 2);

This will succeed only if each existing entry in the column can be converted to the new type by an
implicit cast. If amore complex conversion is needed, you can add a USI NG clause that specifies how
to compute the new values from the old.

PostgreSQL will attempt to convert the column's default value (if any) to the new type, as well as
any constraints that involve the column. But these conversions might fail, or might produce surprising
results. It's often best to drop any constraints on the column before altering its type, and then add back
suitably modified constraints afterwards.

Renaming a Column

To rename a column:

ALTER TABLE products RENAME COLUWN product _no TO product nunber;

Renaming a Table

To rename atable:

ALTER TABLE products RENAMVE TO iterns;

5.6. Privileges

When an object is created, it is assigned an owner. The owner is normally the role that executed the
creation statement. For most kinds of objects, the initial state is that only the owner (or a superuser)
can do anything with the object. To allow other rolesto use it, privileges must be granted.

There are different kinds of privileges: SELECT, | NSERT, UPDATE, DELETE, TRUNCATE, REF-

ERENCES, TRI GGER, CREATE, CONNECT, TEMPORARY, EXECUTE, and USAGE. The privileges
applicable to a particular object vary depending on the object's type (table, function, etc). For com-
plete information on the different types of privileges supported by PostgreSQL, refer to the GRANT
reference page. The following sections and chapters will aso show you how those privileges are used.

Theright to modify or destroy an object is always the privilege of the owner only.

An object can be assigned to a new owner with an ALTER command of the appropriate kind for the
object, eg. ALTER TABLE. Superusers can always do this; ordinary roles can only do it if they are
both the current owner of the object (or a member of the owning role) and a member of the new
owning role.

To assign privileges, the GRANT command is used. For example, if j oe isan existing role, and ac-
count s isan existing table, the privilege to update the table can be granted with:

GRANT UPDATE ON accounts TO j oe;

Writing ALL in place of a specific privilege grants all privileges that are relevant for the object type.

The specia “role’ name PUBLI C can be used to grant a privilege to every role on the system. Also,
“group” roles can be set up to help manage privileges when there are many users of a database —
for details see Chapter 21.

71



Data Definition

To revoke aprivilege, use the fittingly named REVOKE command:

REVOKE ALL ON accounts FROM PUBLI C;

The special privileges of the object owner (i.e., the right to do DROP, GRANT, REVCKE, etc.) are
alwaysimplicit in being the owner, and cannot be granted or revoked. But the object owner can choose
to revoke their own ordinary privileges, for example to make a table read-only for themselves as well
as others.

Ordinarily, only the object's owner (or a superuser) can grant or revoke privileges on an object. How-
ever, it ispossible to grant a privilege “with grant option”, which gives the recipient the right to grant
itinturnto others. If the grant option is subsequently revoked then all who received the privilege from
that recipient (directly or through achain of grants) will losethe privilege. For details seethe GRANT
and REV OKE reference pages.

5.7. Row Security Policies

In addition to the SQL-standard privilege system available through GRANT, tables can have row
security policies that restrict, on a per-user basis, which rows can be returned by normal queries or
inserted, updated, or deleted by data modification commands. Thisfeatureisalso known as Row-Level
Security. By default, tables do not have any policies, so that if a user has access privileges to atable
according to the SQL privilege system, all rowswithinit areequally availablefor querying or updating.

When row security is enabled on atable (with ALTER TABLE ... ENABLE ROW LEVEL SECURI-
TY), all normal access to the table for selecting rows or modifying rows must be allowed by a row
security policy. (However, the table's owner is typically not subject to row security policies.) If no
policy exists for the table, a default-deny policy is used, meaning that no rows are visible or can be
modified. Operations that apply to the whole table, such as TRUNCATE and REFERENCES, are not
subject to row security.

Row security policies can be specific to commands, or to roles, or to both. A policy can be specified
to apply to ALL commands, or to SELECT, | NSERT, UPDATE, or DELETE. Multiple roles can be
assigned to agiven policy, and normal role membership and inheritance rules apply.

To specify which rows are visible or modifiable according to a policy, an expression is required that
returns a Boolean result. This expression will be evaluated for each row prior to any conditions or
functions coming from the user's query. (The only exceptionsto thisruleare | eakpr oof functions,
which are guaranteed to not leak information; the optimizer may choose to apply such functions ahead
of the row-security check.) Rowsfor which the expression doesnot returnt r ue will not be processed.
Separate expressions may be specified to provide independent control over the rowswhich are visible
and the rows which are allowed to be modified. Policy expressions are run as part of the query and
with the privileges of the user running the query, although security-definer functions can be used to
access data not available to the calling user.

Superusers and roles with the BYPASSRLS attribute always bypass the row security system when
accessing atable. Table ownersnormally bypass row security aswell, though atable owner can choose
to be subject to row security with ALTER TABLE ... FORCE ROW LEVEL SECURITY.

Enabling and disabling row security, as well as adding policies to atable, is aways the privilege of
the table owner only.

Policies are created using the CREATE POLICY command, altered using the ALTER POLICY com-
mand, and dropped using the DROP POLICY command. To enable and disable row security for a
given table, use the ALTER TABLE command.

Each policy has aname and multiple policies can be defined for atable. As policies are table-specific,
each policy for atable must have a unique name. Different tables may have policies with the same
name.

72



Data Definition

When multiple policies apply to a given query, they are combined using either OR (for permissive
policies, which are the default) or using AND (for restrictive policies). Thisissimilar to therulethat a
given role has the privileges of al roles that they are amember of. Permissive vs. restrictive policies
are discussed further below.

Asasimple example, hereishow to create apolicy ontheaccount relation to allow only members
of the manager s role to access rows, and only rows of their accounts:

CREATE TABLE accounts (nanager text, conpany text, contact_emil
text);

ALTER TABLE accounts ENABLE ROW LEVEL SECURITY,

CREATE POLI CY account _nanagers ON accounts TO managers
USI NG (manager = current _user);

The policy above implicitly providesaW TH CHECK clause identical to its USI NG clause, so that
the constraint applies both to rows selected by a command (so a manager cannot SELECT, UPDATE,
or DELETE existing rows belonging to a different manager) and to rows modified by a command (so
rows belonging to a different manager cannot be created vial NSERT or UPDATE).

If no role is specified, or the special user name PUBLI Cis used, then the policy appliesto all users
on the system. To allow all users to access only their own row in a user s table, a simple policy
can be used:

CREATE POLI CY user _policy ON users
USI NG (user_name = current_user);

Thisworks similarly to the previous example.

To use a different policy for rows that are being added to the table compared to those rows that are
visible, multiple policies can be combined. This pair of policieswould allow all usersto view all rows
intheuser s table, but only modify their own:

CREATE PCLI CY user _sel _policy ON users
FOR SELECT
USI NG (true);

CREATE PCLI CY user _nmod_policy ON users
USI NG (user_name = current_user);

In a SELECT command, these two policies are combined using OR, with the net effect being that all
rows can be selected. In other command types, only the second policy applies, so that the effects are
the same as before.

Row security can also be disabled with the ALTER TABLE command. Disabling row security does
not remove any policies that are defined on the table; they are simply ignored. Then all rows in the
table are visible and modifiable, subject to the standard SQL privileges system.

Below is a larger example of how this feature can be used in production environments. The table
passwd emulates a Unix password file:

-- Sinple passwd-file based exanpl e
CREATE TABLE passwd (

user _nane text UNI QUE NOT NULL,
pwhash t ext,
ui d int PRI MARY KEY,

73



Data Definition

gid int NOT NULL,
real nane text NOT NULL,
hone_phone t ext,
extra_info t ext,
home_dir text NOT NULL,
shel | t ext NOT NULL
)
CREATE ROLE adnmin; -- Admnistrator
CREATE ROLE bob; -- Normal user
CREATE ROLE alice; -- Normal user

-- Popul ate the table
| NSERT | NTO passwd VALUES
(*admn','xxx',0,0," Adm n',"'111-222-3333"' ,null,"'/root',"'/bin/
dash');
| NSERT | NTO passwd VALUES
("bob','xxx"',1,1,"Bob',"' 123-456-7890', null,"'/honme/bob',"/bin/
zsh');
| NSERT | NTO passwd VALUES
("alice',"xxx"',2,1,"Alice','098-765-4321" ,null,'/hone/alice' "'/
bi n/ zsh');

-- Be sure to enable row | evel security on the table
ALTER TABLE passwd ENABLE ROW LEVEL SECURI TY;

-- Create policies
-- Adm nistrator can see all rows and add any rows
CREATE PCLI CY admin_all ON passwd TO admin USING (true) WTH CHECK
(true);
-- Nornmal users can view all rows
CREATE POLI CY al | _view ON passwd FOR SELECT USI NG (true);
-- Normal users can update their own records, but
-- limt which shells a normal user is allowed to set
CREATE PCLI CY user _nmod ON passwd FOR UPDATE
USI NG (current _user = user_nane)
W TH CHECK (
current _user = user_nanme AND
shell IN ('/bin/bash','/bin/sh','/bin/dash','/bin/zsh',"'/bin/
tcsh')

)

-- Allow admin all normal rights
GRANT SELECT, | NSERT, UPDATE, DELETE ON passwd TO admi n;
-- Users only get select access on public col ums
GRANT SELECT
(user_name, uid, gid, real_name, honme_phone, extra_info,
hone_dir, shell)
ON passwd TO public;
-- Allow users to update certain col ums
GRANT UPDATE
(pwhash, real name, home_phone, extra_info, shell)
ON passwd TO public;

Aswith any security settings, it'simportant to test and ensure that the system is behaving as expected.
Using the example above, this demonstrates that the permission system is working properly.

74



Data Definition

-- admin can view all rows and fields
post gres=> set role adm n;

SET
post gres=> t abl e passwd;
user_nane | pwhash | uid | gid | real _name | home_phone
extra_info | home_dir | shel
----------- T T T I ppup R
o m e o - - o m e e e oo - T ——
adm n | xxx | 0 | 0| Admn | 111-222-3333
| /root | /bin/dash
bob | xxx | 1] 1| Bob | 123-456-7890
| /hone/ bob | /bin/zsh
alice | xxx | 2| 1| Aice | 098-765-4321
| /hone/alice | /bin/zsh
(3 rows)

-- Test what Alice is able to do
postgres=> set role alice;
SET
post gres=> t abl e passwd;
ERROR: permi ssion denied for relation passwd
post gres=> sel ect
user _nane, real _name, home_phone, extra_i nfo, hone_dir, shel |l from

passwd;

user_nane | real _name | honme_phone | extra_info | hone_dir |

shel |
----------- Ty
.

adm n | Admin | 111-222-3333 | | /root

| /bin/dash

bob | Bob | 123-456-7890 | | /hone/ bob

| /bin/zsh

alice | Alice | 098-765-4321 | | /hone/alice
| /bin/zsh
(3 rows)
post gr es=> update passwd set user_nane = 'joe'

ERROR: permi ssion denied for relation passwd
-- Alice is allowed to change her own real nanme, but no others

post gr es=> update passwd set real _nane = 'Alice Doe';

UPDATE 1

post gres=> update passwd set real _nane = 'John Doe' where user_nane
= "admin';

UPDATE 0

post gr es=> update passwd set shell = '/bin/xx";

ERROR: new row vi ol ates WTH CHECK OPTION for "passwd”

post gres=> del ete from passwd;

ERROR: permi ssion denied for relation passwd

postgres=> insert into passwd (user_nane) values ('xxx');

ERROR: permi ssion denied for relation passwd

-- Alice can change her own password; RLS silently prevents
updati ng ot her rows

post gr es=> updat e passwd set pwhash = 'abc’
UPDATE 1

All of the policies constructed thus far have been permissive policies, meaning that when multiple
policies are applied they are combined using the “OR” Boolean operator. While permissive policies
can be constructed to only allow access to rows in the intended cases, it can be simpler to combine

75



Data Definition

permissive policies with restrictive policies (which the records must pass and which are combined
using the “AND” Boolean operator). Building on the example above, we add a restrictive policy to
requirethe administrator to be connected over alocal Unix socket to accesstherecords of thepasswd
table:

CREATE PCLI CY admin_local _only ON passwd AS RESTRI CTI VE TO admi n
USI NG (pg_catal og.inet_client_addr() IS NULL);

We can then see that an administrator connecting over a network will not see any records, due to the
restrictive policy:

=> SELECT current _user;
current _user

=> sel ect inet_client_addr();
i net _client_addr

127.0.0.1
(1 row)

=> SELECT current _user;
current _user

=> TABLE passwd;
user_nane | pwhash | uid | gid | real _nane | hone_phone |
extra_info | hone_dir | shell

=> UPDATE passwd set pwhash = NULL;
UPDATE 0

Referential integrity checks, such as unique or primary key constraints and foreign key references,
always bypass row security to ensure that data integrity is maintained. Care must be taken when de-
veloping schemas and row level policiesto avoid “covert channel” leaks of information through such
referential integrity checks.

In some contexts it isimportant to be sure that row security is not being applied. For example, when
taking a backup, it could be disastrous if row security silently caused some rows to be omitted from
the backup. In such a situation, you can set the row_security configuration parameter to of f . This
does not in itself bypass row security; what it does is throw an error if any query's results would get
filtered by a policy. The reason for the error can then be investigated and fixed.

In the examples above, the policy expressions consider only the current values in the row to be ac-
cessed or updated. Thisisthe simplest and best-performing case; when possible, it's best to design row
security applications to work thisway. If it is necessary to consult other rows or other tables to make
apolicy decision, that can be accomplished using sub-SELECTS, or functions that contain SELECTS,
in the policy expressions. Be aware however that such accesses can create race conditions that could
alow information leakage if care is not taken. As an example, consider the following table design:

76



Data Definition

-- definition of privilege groups
CREATE TABLE groups (group_id int PRI MARY KEY,
group_name text NOT NULL);

I NSERT | NTO gr oups VALUES

(1, "low),
(2, 'medium),
(5, "high");
GRANT ALL ON groups TO alice; -- alice is the administrator

GRANT SELECT ON groups TO public;

-- definition of users' privilege |levels
CREATE TABLE users (user_nane text PRI MARY KEY,
group_id int NOT NULL REFERENCES groups);

| NSERT | NTO users VALUES
("alice', 5),
(" bob', 2),
("mallory', 2);

GRANT ALL ON users TO alice;
GRANT SELECT ON users TO public;

-- table holding the information to be protected
CREATE TABLE information (info text
group_id int NOT NULL REFERENCES groups);

I NSERT | NTO i nf or mati on VALUES
('barely secret', 1),
("slightly secret', 2),
('very secret', 5);

ALTER TABLE i nf ormati on ENABLE ROW LEVEL SECURI TY;

-- a row shoul d be visible to/updatable by users whose security
group_id is
-- greater than or equal to the row s group_id
CREATE PCLICY fp_s ONinformation FOR SELECT

USI NG (group_id <= (SELECT group_id FROM users WHERE user _nane
current _user));
CREATE POLICY fp_u ON information FOR UPDATE

USI NG (group_id <= (SELECT group_id FROM users WHERE user _nane
current _user));

-- we rely only on RLS to protect the information table
GRANT ALL ON i nformation TO public;

Now suppose that al i ce wishesto change the “dlightly secret” information, but decides that mal -
| or y should not be trusted with the new content of that row, so she does:

BEG N;

UPDATE users SET group_id =
UPDATE i nformati on SET info
:2;

COW T;

1 WHERE user_nane = 'mallory’
= "secret frommallory' WHERE group_id

77



Data Definition

That looks safe; thereisno window whereinmal | or y should be ableto seethe secret from mallory”
string. However, there isarace condition here. If mal | or y is concurrently doing, say,

SELECT * FROM i nformati on WHERE group_id = 2 FOR UPDATE;

and her transactionisin READ COVM TTED mode, it ispossible for her to see “ secret from mallory”.
That happens if her transaction reaches the i nf or nat i on row just after al i ce's does. It blocks
waiting for al i ce'stransaction to commit, then fetches the updated row contents thanks to the FOR
UPDATE clause. However, it does not fetch an updated row for the implicit SELECT from user s,
because that sub-SELECT did not have FOR UPDATE; instead the user s row is read with the snap-
shot taken at the start of the query. Therefore, the policy expression teststhe old value of mal | ory's
privilege level and allows her to see the updated row.

There are several ways around this problem. One simple answer is to use SELECT ... FOR
SHARE in sub-SELECTSsin row security policies. However, that requires granting UPDATE privilege
on the referenced table (here user s) to the affected users, which might be undesirable. (But another
row security policy could be applied to prevent them from actually exercising that privilege; or the
sub-SEL ECT could be embedded into a security definer function.) Also, heavy concurrent use of row
share locks on the referenced table could pose a performance problem, especially if updates of it are
frequent. Another solution, practical if updates of the referenced table are infrequent, is to take an ex-
clusive lock on the referenced table when updating it, so that no concurrent transactions could be ex-
amining old row values. Or one could just wait for all concurrent transactionsto end after committing
an update of the referenced table and before making changes that rely on the new security situation.

For additional details see CREATE POLICY and ALTER TABLE.

5.8. Schemas

A PostgreSQL database cluster contains one or more named databases. Users and groups of users are
shared acrossthe entire cluster, but no other datais shared across databases. Any given client connec-
tion to the server can access only the data in a single database, the one specified in the connection
request.

Note

Users of acluster do not necessarily have the privilege to access every database in the
cluster. Sharing of user names means that there cannot be different users named, say,
j oe in two databases in the same cluster; but the system can be configured to allow
j oe accessto only some of the databases.

A database contains one or more named schemas, which in turn contain tables. Schemas also contain
other kinds of named objects, including data types, functions, and operators. The same object name
can be used in different schemas without conflict; for example, both schenal and myschena can
containtablesnamed myt abl e. Unlike databases, schemasarenot rigidly separated: auser can access
objectsin any of the schemas in the database they are connected to, if they have privileges to do so.

There are several reasons why one might want to use schemas:
» To alow many usersto use one database without interfering with each other.
» To organize database objects into logical groupsto make them more manageable.

» Third-party applications can be put into separate schemas so they do not collide with the names
of other objects.

Schemas are analogous to directories at the operating system level, except that schemas cannot be
nested.

78



Data Definition

5.8.1.

5.8.2.

Creating a Schema

To create a schema, use the CREATE SCHEMA command. Give the schema a name of your choice.
For example:

CREATE SCHENA nyschenm;

To create or access objects in a schema, write a qualified name consisting of the schema name and
table name separated by a dot:

schema. t abl e

This works anywhere a table name is expected, including the table modification commands and the
data access commands discussed in the following chapters. (For brevity we will speak of tables only,
but the same ideas apply to other kinds of named objects, such as types and functions.)

Actualy, the even more general syntax

dat abase. schenn. t abl e

can be used too, but at present thisis just for pro forma compliance with the SQL standard. If you
write a database name, it must be the same as the database you are connected to.

So to create atable in the new schema, use:

CREATE TABLE nyschema. nytabl e (

)

To drop aschemaif it'sempty (all objectsin it have been dropped), use:

DROP SCHEMA nyschens;

To drop a schemaincluding all contained objects, use:

DROP SCHEMA nyschena CASCADE;
See Section 5.13 for a description of the general mechanism behind this.

Often you will want to create a schema owned by someone else (since thisis one of the waysto restrict
the activities of your users to well-defined namespaces). The syntax for that is:

CREATE SCHENMA schema_nane AUTHORI ZATI ON user _nane;

Y ou can even omit the schema name, in which case the schema name will be the same as the user
name. See Section 5.8.6 for how this can be useful.

Schema names beginning with pg_ are reserved for system purposes and cannot be created by users.

The Public Schema

In the previous sections we created tables without specifying any schema names. By default such
tables (and other objects) are automatically put into a schema named “public’. Every new database
contains such a schema. Thus, the following are equivalent:

79



Data Definition

5.8.3.

CREATE TABLE products ( ... );
and:
CREATE TABLE public. products ( ... );

The Schema Search Path

Qualified names are tedious to write, and it's often best not to wire a particular schema name into
applications anyway. Therefore tables are often referred to by unqualified names, which consist of
just the table name. The system determines which table is meant by following a search path, whichis
alist of schemasto look in. The first matching table in the search path is taken to be the one wanted.
If thereis no match in the search path, an error isreported, even if matching table names exist in other
schemas in the database.

The ability to create like-named objects in different schemas complicates writing a query that refer-
ences precisely the same objects every time. It aso opens up the potential for users to change the be-
havior of other users' queries, maliciously or accidentally. Dueto the prevalence of unqualified names
inqueriesand their usein PostgreSQL internals, adding aschemato sear ch_pat h effectively trusts
all users having CREATE privilege on that schema. When you run an ordinary query, amalicious user
able to create objects in a schema of your search path can take control and execute arbitrary SQL
functions as though you executed them.

The first schema named in the search path is called the current schema. Aside from being the first
schema searched, it is aso the schema in which new tables will be created if the CREATE TABLE
command does not specify a schema name.

To show the current search path, use the following command:

SHOW sear ch_pat h;

In the default setup this returns:

search_path

"$user", public

The first element specifies that a schema with the same name as the current user is to be searched.
If no such schema exists, the entry is ignored. The second element refers to the public schema that
we have seen aready.

The first schema in the search path that exists is the default location for creating new objects. That
is the reason that by default objects are created in the public schema. When objects are referenced
in any other context without schema qualification (table modification, data modification, or query
commands) the search path is traversed until a matching object is found. Therefore, in the default
configuration, any unqualified access again can only refer to the public schema.

To put our new schemain the path, we use:

SET search_path TO nyschens, publi c;

(We omit the $user here because we have no immediate need for it.) And then we can access the
table without schema qualification:

80



Data Definition

5.8.4.

5.8.5.

DROP TABLE mnyt abl e;
Also, since nyschena isthefirst element in the path, new objects would by default be created in it.

We could also have written:

SET search_path TO nyschens;

Then we no longer have access to the public schema without explicit qualification. There is nothing
special about the public schema except that it exists by default. It can be dropped, too.

See also Section 9.25 for other ways to manipulate the schema search path.

The search path works in the same way for data type names, function names, and operator names as it
does for table names. Data type and function names can be qualified in exactly the same way astable
names. If you need to write a qualified operator name in an expression, there is a special provision:
you must write

OPERATOR( schenma. oper at or)

Thisis needed to avoid syntactic ambiguity. An exampleis:

SELECT 3 OPERATOR(pg_catal og. +) 4;

In practice one usually relies on the search path for operators, so as not to have to write anything so
ugly asthat.

Schemas and Privileges

By default, users cannot access any objects in schemas they do not own. To alow that, the owner of
the schema must grant the USAGE privilege on the schema. To allow users to make use of the objects
in the schema, additional privileges might need to be granted, as appropriate for the object.

A user can also be allowed to create objects in someone else's schema. To alow that, the CREATE
privilege on the schema needs to be granted. Note that by default, everyone has CREATE and USAGE
privileges on the schema publ i c. Thisallows all users that are able to connect to a given database
to create objectsin itspubl i ¢ schema. Some usage patterns call for revoking that privilege:

REVOKE CREATE ON SCHEMA public FROM PUBLI C

(Thefirst “public” is the schema, the second “public” means “every user”. In the first sense it is an
identifier, in the second senseit is a key word, hence the different capitalization; recall the guidelines
from Section 4.1.1.)

The System Catalog Schema

In addition to publ i ¢ and user-created schemas, each database contains apg_cat al og schema,
which contains the system tables and all the built-in data types, functions, and operators. pg_cat -

al og is aways effectively part of the search path. If it is not named explicitly in the path then it is
implicitly searched before searching the path's schemas. This ensures that built-in names will always
be findable. However, you can explicitly place pg_cat al og at the end of your search path if you
prefer to have user-defined names override built-in names.

Since system table namesbeginwithpg_, it isbest to avoid such namesto ensure that you won't suffer
aconflict if some future version defines a system table named the same asyour table. (With the default
search path, an unqualified reference to your table name would then be resolved as the system table

81



Data Definition

5.8.6.

5.8.7.

instead.) System tables will continue to follow the convention of having names beginning with pg_,
so that they will not conflict with unqualified user-table names so long as users avoid the pg__ prefix.

Usage Patterns

Schemas can be used to organize your data in many ways. There are a few usage patterns easily
supported by the default configuration, only one of which suffices when database users mistrust other
database users:

» Constrain ordinary usersto user-private schemas. To implement this, issue REVOKE CREATE ON
SCHEMA public FROM PUBLI C, and create a schema for each user with the same name as
that user. If affected users had logged in before this, consider auditing the public schemafor objects
named like objectsin schemapg_cat al og. Recall that the default search path startswith $user
which resolves to the user name. Therefore, if each user has a separate schema, they access their
own schemas by default.

» Remove the public schemafrom each user's default search path using ALTER ROLE user SET
search_path = "$user" . Everyoneretainsthe ability to create objectsin the public schema,
but only qualified nameswill choose those objects. While qualified tablereferencesarefine, callsto
functionsin the public schemawill be unsafe or unreliable. Also, auser holding the CREATEROLE
privilege can undo this setting and issue arbitrary queries under the identity of usersrelying on the
setting. If you create functions or extensions in the public schema or grant CREATEROLE to users
not warranting this almost-superuser ability, use the first pattern instead.

* Remove the public schemafrom sear ch_pat h in post gr esql . conf . The ensuing user ex-
perience matches the previous pattern. In addition to that pattern's implications for functions and
CREATERQLE, this trusts database owners like CREATERCLE. If you create functions or exten-
sionsin the public schema or assign the CREATEROLE privilege, CREATEDB privilege or individ-
ual database ownership to users not warranting almost-superuser access, usethefirst pattern instead.

» Keep the default. All users access the public schemaimplicitly. This simulates the situation where
schemas are not available at al, giving a smooth transition from the non-schema-aware world.
However, any user can issue arbitrary queries under the identity of any user not electing to protect
itself individually. This pattern is acceptable only when the database has a single user or a few
mutually-trusting users.

For any pattern, to install shared applications (tablesto be used by everyone, additional functions pro-
vided by third parties, etc.), put them into separate schemas. Remember to grant appropriate privileges
to alow the other users to access them. Users can then refer to these additional objects by qualifying
the names with a schema name, or they can put the additional schemas into their search path, as they
choose.

Portability

In the SQL standard, the notion of objects in the same schema being owned by different users does
not exist. Moreover, some implementations do not allow you to create schemas that have a different
name than their owner. In fact, the concepts of schema and user are nearly equivalent in a database
system that implements only the basic schemasupport specified in the standard. Therefore, many users
consider qualified namesto really consist of user _name. t abl e_nane. Thisis how PostgreSQL
will effectively behave if you create a per-user schemafor every user.

Also, there is no concept of apubl i ¢ schemain the SQL standard. For maximum conformance to
the standard, you should not use the publ i ¢ schema.

Of course, some SQL database systems might not implement schemas at all, or provide namespace
support by alowing (possibly limited) cross-database access. If you need to work with those systems,
then maximum portability would be achieved by not using schemas at all.

5.9. Inheritance

82



Data Definition

PostgreSQL implements table inheritance, which can be a useful tool for database designers.
(SQL:1999 and later define atypeinheritancefeature, which differsin many respectsfrom thefeatures
described here.)

Let's start with an example: suppose we aretrying to build adatamodel for cities. Each state has many
cities, but only one capital. We want to be able to quickly retrieve the capital city for any particular
state. This can be done by creating two tables, one for state capitals and one for cities that are not
capitals. However, what happens when we want to ask for data about acity, regardless of whether itis
acapital or not? The inheritance feature can help to resolve this problem. We definethecapi t al s
table so that it inheritsfromci ti es:

CREATE TABLE cities (

nane t ext,
popul ati on fl oat,
al titude i nt -- in feet

)

CREATE TABLE capitals (
state char (2)
) INHERI TS (cities);

Inthis case, the capi t al s tableinheritsall the columns of its parent table, ci t i es. State capitals
also have an extracolumn, st at e, that shows their state.

In PostgreSQL, a table can inherit from zero or more other tables, and a query can reference either
all rows of atable or all rows of atable plus al of its descendant tables. The latter behavior is the
default. For example, the following query finds the names of all cities, including state capitals, that
are located at an altitude over 500 feet:

SELECT nane, altitude
FROM cities
VWHERE al titude > 500;

Given the sample data from the PostgreSQL tutorial (see Section 2.1), this returns:

nane | altitude
___________ N,
Las Vegas | 2174
Mari posa | 1953
Madi son | 845

On the other hand, the following query finds all the cities that are not state capitals and are situated
at an altitude over 500 feet:

SELECT nane, altitude
FROM ONLY cities
VWHERE al titude > 500;

nane | altitude
___________ .
Las Vegas | 2174
Mari posa | 1953

Here the ONLY keyword indicates that the query should apply only to ci ti es, and not any tables
below ci ti es in the inheritance hierarchy. Many of the commands that we have already discussed
— SELECT, UPDATE and DELETE — support the ONLY keyword.

83



Data Definition

You can also write the table name with a trailing * to explicitly specify that descendant tables are
included:

SELECT nane, altitude
FROM ci ti es*
WHERE al titude > 500;

Writing * is not necessary, since this behavior is always the default. However, this syntax is till
supported for compatibility with older releases where the default could be changed.

In some cases you might wish to know which table aparticular row originated from. Thereisasystem
column called t abl eoi d in each table which can tell you the originating table:

SELECT c.tableoid, c.nane, c.altitude
FROM cities c
VWHERE c. altitude > 500;

which returns;

tabl eoid | nane | altitude
__________ o
139793 | Las Vegas | 2174
139793 | Mariposa | 1953
139798 | Madi son | 845

(If you try to reproduce this example, you will probably get different numeric OIDs.) By doing ajoin
with pg_cl ass you can see the actual table names:

SELECT p.rel nane, c.nane, c.altitude
FROM cities ¢, pg _class p
WHERE c. altitude > 500 AND c.tabl eoid = p.oid,;

which returns;

rel name | name | altitude
__________ B
cities | Las Vegas | 2174
cities | Mariposa | 1953
capitals | Madi son | 845

Another way to get the same effect isto usether egcl ass diastype, which will print the table OID
symbolically:

SELECT c.tabl eoid::regclass, c.nanme, c.altitude
FROM cities ¢
WHERE c. altitude > 500;

Inheritance does not automatically propagate data from | NSERT or COPY commands to other tables
in the inheritance hierarchy. In our example, the following | NSERT statement will fail:

I NSERT I NTO cities (name, popul ation, altitude, state)
VALUES (' Al bany', NULL, NULL, 'NY');

We might hope that the data would somehow be routed to the capi t al s table, but this does not
happen: | NSERT alwaysinsertsinto exactly the table specified. In some casesit ispossible to redirect
the insertion using a rule (see Chapter 41). However that does not help for the above case because

84



Data Definition

5.9.1.

theci ti es table does not contain the column st at e, and so the command will be rejected before
the rule can be applied.

All check constraints and not-null constraints on a parent table are automatically inherited by its chil-
dren, unless explicitly specified otherwise with NO | NHERI T clauses. Other types of constraints
(unique, primary key, and foreign key constraints) are not inherited.

A table can inherit from more than one parent table, in which case it has the union of the columns
defined by the parent tables. Any columns declared in the child table's definition are added to these.
If the same column name appears in multiple parent tables, or in both a parent table and the child's
definition, then these columns are“ merged” so that thereisonly one such columninthechildtable. To
be merged, columns must have the same datatypes, elsean error israi sed. I nheritable check constraints
and not-null constraints are merged in asimilar fashion. Thus, for example, amerged column will be
marked not-null if any one of the column definitionsit came fromismarked not-null. Check constraints
are merged if they have the same name, and the merge will fail if their conditions are different.

Table inheritanceistypically established when the child table is created, using thel NHERI TS clause
of the CREATE TABLE statement. Alternatively, a table which is already defined in a compatible
way can have anew parent relationship added, using thel NHERI T variant of ALTER TABLE. Todo
this the new child table must already include columns with the same names and types as the columns
of the parent. It must also include check constraints with the same names and check expressions as
those of the parent. Similarly aninheritance link can be removed from achild usingthe NO | NHERI T
variant of ALTER TABLE. Dynamically adding and removing inheritance linkslike this can be useful
when the inheritance relationship is being used for table partitioning (see Section 5.10).

One convenient way to create a compatible table that will later be made a new child is to use the
LI KE clausein CREATE TABLE. Thiscreatesanew table with the same columns as the source table.
If there are any CHECK constraints defined on the source table, the | NCLUDI NG CONSTRAI NTS
option to LI KE should be specified, as the new child must have constraints matching the parent to
be considered compatible.

A parent table cannot be dropped while any of its children remain. Neither can columns or check
constraints of child tables be dropped or altered if they are inherited from any parent tables. If you
wish to remove a table and all of its descendants, one easy way is to drop the parent table with the
CASCADE option (see Section 5.13).

ALTER TABLE will propagate any changes in column data definitions and check constraints down
the inheritance hierarchy. Again, dropping columns that are depended on by other tablesis only pos-
sible when using the CASCADE option. ALTER TABLE follows the same rules for duplicate column
merging and rejection that apply during CREATE TABLE.

Inherited queries perform access permission checks on the parent table only. Thus, for example, grant-
ing UPDATE permission ontheci ti es table implies permission to update rowsinthecapi tal s
table as well, when they are accessed through ci t i es. This preserves the appearance that the data
is (also) in the parent table. But the capi t al s table could not be updated directly without an addi-
tional grant. In asimilar way, the parent table's row security policies (see Section 5.7) are applied to
rows coming from child tables during an inherited query. A child table's policies, if any, are applied
only when it is the table explicitly named in the query; and in that case, any policies attached to its
parent(s) are ignored.

Foreign tables (see Section 5.11) can also be part of inheritance hierarchies, either as parent or child
tables, just as regular tables can be. If aforeign table is part of an inheritance hierarchy then any
operations not supported by the foreign table are not supported on the whole hierarchy either.

Caveats

Note that not all SQL commands are able to work on inheritance hierarchies. Commands that are used
for dataquerying, datamodification, or schemamaodification (e.g., SELECT, UPDATE, DELETE, most
variants of ALTER TABLE, but not | NSERT or ALTER TABLE ... RENAME) typicaly default
to including child tables and support the ONLY notation to exclude them. Commands that do database

85



Data Definition

maintenance and tuning (e.g., REI NDEX, VACUUM) typically only work onindividual, physical tables
and do not support recursing over inheritance hierarchies. The respective behavior of each individual
command is documented in its reference page (SQL Commands).

A seriouslimitation of theinheritancefeatureisthat indexes (including unique constraints) and foreign
key constraints only apply to single tables, not to their inheritance children. Thisis true on both the
referencing and referenced sides of aforeign key constraint. Thus, in the terms of the above example:

» If wedeclared ci ti es.nane to be UNI QUE or a PRI MARY KEY, thiswould not stop the cap-
i tal s tablefrom having rowswith namesduplicatingrowsinci t i es. And those duplicate rows
would by default show up in queriesfromci t i es. Infact, by default capi t al s would have no
unique constraint at all, and so could contain multiple rows with the same name. Y ou could add a
unique constraint to capi t al s, but thiswould not prevent duplication comparedtoci ti es.

» Similarly, if wewereto specify that ci t i es.name REFERENCES some other table, thisconstraint
would not automatically propagatetocapi t al s. Inthiscaseyou couldwork around it by manually
adding the same REFERENCES constraint to capi t al s.

 Specifying that another table's column REFERENCES ci ti es(nane) would alow the other
table to contain city names, but not capital names. There is no good workaround for this case.

Some functionality not implemented for inheritance hierarchies is implemented for declarative parti-
tioning. Considerable care is needed in deciding whether partitioning with legacy inheritance is useful
for your application.

5.10. Table Partitioning

PostgreSQL supports basic table partitioning. This section describes why and how to implement par-
titioning as part of your database design.

5.10.1. Overview

Partitioning refersto splitting what islogically onelargetableinto smaller physical pieces. Partitioning
can provide several benefits:

* Query performance can be improved dramatically in certain situations, particularly when most of
the heavily accessed rows of the table are in a single partition or a small number of partitions. The
partitioning substitutes for leading columns of indexes, reducing index size and making it more
likely that the heavily-used parts of the indexes fit in memory.

» When queries or updates access a large percentage of a single partition, performance can be im-
proved by taking advantage of sequential scan of that partition instead of using anindex and random
access reads scattered across the whole table.

 Bulk loads and del etes can be accomplished by adding or removing partitions, if that requirement is
planned into the partitioning design. Doing ALTER TABLE DETACH PARTI TI ON or dropping
an individual partition using DROP TABLE is far faster than a bulk operation. These commands
aso entirely avoid the VACUUMoverhead caused by abulk DELETE.

» Seldom-used data can be migrated to cheaper and slower storage media.

The benefits will normally be worthwhile only when atable would otherwise be very large. The exact
point at which a table will benefit from partitioning depends on the application, although a rule of
thumb is that the size of the table should exceed the physical memory of the database server.

PostgreSQL offers built-in support for the following forms of partitioning:
Range Partitioning

Thetableispartitioned into “ranges’ defined by akey column or set of columns, with no overlap
between the ranges of values assigned to different partitions. For example, one might partition by
date ranges, or by ranges of identifiers for particular business objects.

86



Data Definition

List Partitioning
Thetableis partitioned by explicitly listing which key values appear in each partition.
Hash Partitioning

Thetableis partitioned by specifying amodulus and aremainder for each partition. Each partition
will hold the rows for which the hash value of the partition key divided by the specified modulus
will produce the specified remainder.

If your application needs to use other forms of partitioning not listed above, alternative methods such
asinheritance and UNI ON ALL views can be used instead. Such methods offer flexibility but do not
have some of the performance benefits of built-in declarative partitioning.

5.10.2. Declarative Partitioning

PostgreSQL offers away to specify how to divide a table into pieces called partitions. The table that
isdivided is referred to as a partitioned table. The specification consists of the partitioning method
and alist of columns or expressions to be used as the partition key.

All rowsinserted into a partitioned table will be routed to one of the partitions based on the value of
the partition key. Each partition has a subset of the data defined by its partition bounds. The currently
supported partitioning methods are range, list, and hash.

Partitions may themselves be defined as partitioned tables, using what is called sub-partitioning. Par-
titions may have their own indexes, constraints and default values, distinct from those of other parti-
tions. See CREATE TABLE for more details on creating partitioned tables and partitions.

It is not possible to turn aregular table into a partitioned table or vice versa. However, it is possible
to add aregular or partitioned table containing data as a partition of a partitioned table, or remove a
partition from a partitioned table turning it into a standalone table; see ALTER TABLE to learn more
about the ATTACH PARTI TI ONand DETACH PARTI TI ON sub-commands.

Individual partitions are linked to the partitioned table with inheritance behind-the-scenes; however, it
is not possible to use some of the generic features of inheritance (discussed below) with declaratively
partitioned tables or their partitions. For example, a partition cannot have any parents other than the
partitioned table it is a partition of, nor can a regular table inherit from a partitioned table making
the latter its parent. That means partitioned tables and their partitions do not participate in inheritance
with regular tables. Since a partition hierarchy consisting of the partitioned table and its partitions is
till an inheritance hierarchy, all the normal rules of inheritance apply as described in Section 5.9 with
some exceptions, most notably:

e Both CHECK and NOT NULL constraints of a partitioned table are always inherited by all its par-
titions. CHECK constraints that are marked NO | NHERI T are not allowed to be created on parti-
tioned tables.

e Using ONLY to add or drop a constraint on only the partitioned table is supported as long as there
are no partitions. Once partitions exist, using ONLY will result in an error as adding or dropping
constraints on only the partitioned table, when partitions exist, is not supported. Instead, constraints
on the partitions themselves can be added and (if they are not present in the parent table) dropped.

» As a partitioned table does not have any data directly, attempts to use TRUNCATE ONLY on a
partitioned table will always return an error.

* Partitions cannot have columnsthat are not present in the parent. It isnot possibleto specify columns
when creating partitions with CREATE TABLE, nor is it possible to add columns to partitions
after-the-fact using ALTER TABLE. Tablesmay be added asapartitionwith ALTER TABLE . . .
ATTACH PARTI TI ONonly if their columns exactly match the parent, including any oi d column.

87



Data Definition

* You cannot drop the NOT NULL constraint on a partition's column if the constraint is present in
the parent table.

Partitions can also be foreign tables, although they have some limitations that normal tables do not;
see CREATE FOREIGN TABLE for more information.

Updating the partition key of a row might cause it to be moved into a different partition where this
row satisfies the partition bounds.

5.10.2.1. Example

Suppose we are constructing a database for alarge ice cream company. The company measures peak
temperatures every day aswell asice cream salesin each region. Conceptually, we want atable like:

CREATE TABLE neasurement (

city id int not null,
| ogdat e date not null,
peakt enp int,

uni tsal es i nt

)

We know that most queries will access just the last week's, month's or quarter's data, since the main
use of this table will be to prepare online reports for management. To reduce the amount of old data
that needs to be stored, we decide to only keep the most recent 3 years worth of data. At the beginning
of each month we will remove the oldest month's data. In this situation we can use partitioning to help
us meet al of our different requirements for the measurementstable.

To use declarative partitioning in this case, use the following steps:

1. Create measur enent table as a partitioned table by specifying the PARTI TI ON BY clause,
which includes the partitioning method (RANCE in this case) and the list of column(s) to use as
the partition key.

CREATE TABLE neasur enent (

city_ id int not null,
| ogdat e date not null,
peakt enp int,

uni t sal es i nt

) PARTI TI ON BY RANGE (| ogdate);

You may decide to use multiple columns in the partition key for range partitioning, if desired.
Of course, this will often result in a larger number of partitions, each of which is individually
smaller. On the other hand, using fewer columns may lead to a coarser-grained partitioning criteria
with smaller number of partitions. A query accessing the partitioned table will have to scan fewer
partitions if the conditions involve some or al of these columns. For example, consider a table
range partitioned using columns| ast nanme and f i r st nane (in that order) asthe partition key.

2. Create partitions. Each partition's definition must specify the bounds that correspond to the parti-
tioning method and partition key of the parent. Note that specifying bounds such that the new parti-
tion'svalueswill overlap with those in one or more existing partitionswill cause an error. Inserting
datainto the parent table that does not map to one of the existing partitions will cause an error; an
appropriate partition must be added manually.

Partitions thus created are in every way normal PostgreSQL tables (or, possibly, foreign tables). It
is possible to specify atablespace and storage parameters for each partition separately.

It is not necessary to create table constraints describing partition boundary condition for partitions.
Instead, partition constraints are generated implicitly from the partition bound specification when-
ever there is need to refer to them.

88



Data Definition

CREATE TABLE neasurenment _y2006nD2 PARTI TI ON OF neasur ement
FOR VALUES FROM (' 2006-02-01") TO (' 2006-03-01");

CREATE TABLE neasurenment _y2006nD3 PARTI TI ON OF nmeasur ement
FOR VALUES FROM (' 2006-03-01") TO (' 2006-04-01");

CREATE TABLE neasurenment _y2007mL1l PARTI TI ON OF neasur ement
FOR VALUES FROM (' 2007-11-01") TO ('2007-12-01");

CREATE TABLE neasurenment _y2007mi2 PARTI TI ON OF neasur ement
FOR VALUES FROM (' 2007-12-01') TO ('2008-01-01")
TABLESPACE f astt abl espace;

CREATE TABLE neasurenment _y2008nD1 PARTI TI ON OF neasur ement
FOR VALUES FROM (' 2008-01-01') TO ('2008-02-01")
WTH (parall el _workers = 4)
TABLESPACE f astt abl espace;

Toimplement sub-partitioning, specify the PARTI TI ON BY clausein the commands used to create
individual partitions, for example:

CREATE TABLE neasurenment _y2006nD2 PARTI TI ON OF neasur ement
FOR VALUES FROM (' 2006-02-01') TO (' 2006-03-01")
PARTI TI ON BY RANGE ( peaktenp);

After creating partitions of measur ement _y2006n02, any datainserted into neasur enment
that is mapped to neasur erent _y2006n02 (or datathat is directly inserted into neasur e-
ment _y2006n02, provided it satisfiesits partition constraint) will be further redirected to one of
its partitions based on the peakt enp column. The partition key specified may overlap with the
parent's partition key, although care should be taken when specifying the bounds of a sub-partition
such that the set of data it accepts constitutes a subset of what the partition's own bounds allows;
the system does not try to check whether that's really the case.

3. Create an index on the key column(s), as well as any other indexes you might want, on the par-
titioned table. (The key index is not strictly necessary, but in most scenarios it is helpful.) This
automatically creates one index on each partition, and any partitions you create or attach later will
also contain the index.

CREATE | NDEX ON neasurenent (| ogdate);
4. Ensure that the enable partition pruning configuration parameter is not disabled in post -
gresql . conf . Ifitis, querieswill not be optimized as desired.

In the above example we would be creating a new partition each month, so it might be wise to write
a script that generates the required DDL automatically.

5.10.2.2. Partition Maintenance

Normally the set of partitions established when initially defining the table are not intended to remain
static. It is common to want to remove old partitions of data and periodically add new partitions for
new data. One of the most important advantages of partitioning is precisely that it allowsthis otherwise
painful task to be executed nearly instantaneously by manipulating the partition structure, rather than
physically moving large amounts of data around.

The simplest option for removing old data is to drop the partition that is no longer necessary:

89



Data Definition

DROP TABLE neasurenment _y2006n02;

This can very quickly delete millions of records because it doesn't have to individually delete every
record. Note however that the above command requires taking an ACCESS EXCLUSI VE lock on
the parent table.

Another option that is often preferable is to remove the partition from the partitioned table but retain
accesstoit asatableinitsownright:

ALTER TABLE neasur enent DETACH PARTI TI ON nmeasur enent _y2006nD2;

This alows further operations to be performed on the data before it is dropped. For example, thisis
often auseful timeto back up the datausing COPY, pg_dump, or similar tools. It might also be auseful
time to aggregate data into smaller formats, perform other data manipulations, or run reports.

Similarly we can add a new partition to handle new data. We can create an empty partition in the
partitioned table just as the original partitions were created above:

CREATE TABLE neasurenent _y2008nD2 PARTI TI ON OF neasur enent
FOR VALUES FROM (' 2008-02-01') TO ('2008-03-01")
TABLESPACE f astt abl espace;

Asan dternative, it is sometimes more convenient to create the new table outside the partition struc-
ture, and make it a proper partition later. This allows the data to be loaded, checked, and transformed
prior to it appearing in the partitioned table:

CREATE TABLE neasur enent _y2008n02
(LI KE nmeasur enment | NCLUDI NG DEFAULTS | NCLUDI NG CONSTRAI NTS)
TABLESPACE f astt abl espace;

ALTER TABLE neasur enment _y2008nD2 ADD CONSTRAI NT y2008nmD2
CHECK ( | ogdate >= DATE '2008-02-01' AND | ogdate < DATE
' 2008-03-01" );

\ copy neasurenent _y2008n02 from ' measurenent _y2008nD2'
-- possibly sone other data preparati on work

ALTER TABLE neasurenment ATTACH PARTI TI ON nmeasur enment _y2008n02
FOR VALUES FROM (' 2008-02-01") TO ('2008-03-01' );

Beforerunning the ATTACH PARTI TI ONcommand, it isrecommended to create a CHECK constraint
on the table to be attached describing the desired partition constraint. That way, the system will be
able to skip the scan to validate the implicit partition constraint. Without such a constraint, the table
will be scanned to validate the partition constraint while holding an ACCESS EXCLUSI VE lock on
the parent table. One may then drop the constraint after ATTACH PARTI Tl ONis finished, because
it isno longer necessary.

Asexplained above, it is possible to create indexes on partitioned tables and they are applied automat-
ically to the entire hierarchy. Thisis very convenient, as not only the existing partitions will become
indexed, but also any partitionsthat are created in the futurewill. Onelimitation isthat it's not possible
to use the CONCURRENTLY qualifier when creating such a partitioned index. To overcome long lock
times, itis possibleto use CREATE | NDEX ON ONLY the partitioned table; such an index is marked
invalid, and the partitions do not get the index applied automatically. The indexes on partitions can be
created separately using CONCURRENTLY, and | ater attached to the index on the parent using ALTER
| NDEX .. ATTACH PARTI TI ON. Onceindexesfor al partitions are attached to the parent index,
the parent index is marked valid automatically. Example:

90



Data Definition

CREATE | NDEX measur enent _usls_idx ON ONLY measurenent (unitsales);

CREATE | NDEX neasurenent _usls 200602 _i dx
ON neasur enment _y2006n02 (unitsal es);
ALTER | NDEX neasurenent _usls_idx
ATTACH PARTI TI ON neasur ement _usls_200602_i dx;

Thistechnique can be used with UNI QUE and PRI MARY KEY constraintstoo; theindexes are created
implicitly when the constraint is created. Example:

ALTER TABLE ONLY neasurenent ADD UNIQUE (city_id, |ogdate);

ALTER TABLE neasur enent _y2006n02 ADD UNIQUE (city id, |ogdate);
ALTER | NDEX neasurenent _city id_| ogdate_key
ATTACH PARTI TI ON neasur enent _y2006n02_city id_| ogdate_key;

5.10.2.3. Limitations

The following limitations apply to partitioned tables:

e Thereisno way to create an exclusion constraint spanning al partitions; it is only possible to con-
strain each leaf partition individually.

» While primary keys are supported on partitioned tables, foreign keys referencing partitioned tables
are not supported. (Foreign key references from a partitioned table to some other table are support-
ed.)

* BEFORE ROWtriggers, if necessary, must be defined on individua partitions, not the partitioned
table.

» Mixing temporary and permanent relations in the same partition tree is not allowed. Hence, if the
partitioned table is permanent, so must be its partitions and likewise if the partitioned table is tem-
porary. When using temporary relations, all members of the partition tree have to be from the same
Session.

5.10.3. Implementation Using Inheritance

While the built-in declarative partitioning is suitable for most common use cases, there are some
circumstances where a more flexible approach may be useful. Partitioning can be implemented using
table inheritance, which allowsfor several features not supported by declarative partitioning, such as:

* For declarative partitioning, partitions must have exactly the same set of columns asthe partitioned
table, whereas with table inheritance, child tables may have extra columns not present in the parent.

» Tableinheritance allows for multiple inheritance.

» Declarative partitioning only supports range, list and hash partitioning, whereas table inheritance
allows data to be divided in a manner of the user's choosing. (Note, however, that if constraint
exclusion is unable to prune child tables effectively, query performance might be poor.)

» Some operations require a stronger lock when using declarative partitioning than when using table
inheritance. For example, adding or removing a partition to or from a partitioned table requires tak-
ing an ACCESS EXCLUSI VE lock on the parent table, whereasa SHARE UPDATE EXCLUSI VE
lock is enough in the case of regular inheritance.

91



Data Definition

5.10.3.1. Example

We use the same measur enent table we used above. To implement partitioning using inheritance,
use the following steps:

1. Create the “master” table, from which al of the “child” tables will inherit. This table will contain
no data. Do not define any check constraints on this table, unless you intend them to be applied
equally to al child tables. There is no point in defining any indexes or unique constraints on it,
either. For our example, the master table isthe measur enent table as originally defined.

2. Create severa “child” tablesthat each inherit from the master table. Normally, these tableswill not
add any columns to the set inherited from the master. Just as with declarative partitioning, these
tables arein every way normal PostgreSQL tables (or foreign tables).

CREATE TABLE mneasur enent _y2006n02 () | NHERI TS (rnmeasurenent);
CREATE TABLE measur enent _y2006n03 () |INHERI TS (rmeasurenent);

CREATE TABLE measur enent _y2007nill () |INHERI TS (rmeasurenent);
CREATE TABLE mneasur enent _y2007nil2 () |INHERI TS (rmeasurenent);
CREATE TABLE measur enent _y2008n01 () |INHERI TS (rnmeasurenent);

3. Add non-overlapping table constraints to the child tables to define the allowed key valuesin each.

Typical examples would be:

CHECK ( x = 1)

CHECK ( county IN ( 'Oxfordshire', 'Buckinghanshire',
"Warwi ckshire' ))

CHECK ( outletID >= 100 AND outletID < 200 )

Ensure that the constraints guarantee that there is no overlap between the key values permitted in
different child tables. A common mistakeis to set up range constraints like:

CHECK ( outlet! D BETWEEN 100 AND 200 )
CHECK ( outlet| D BETWEEN 200 AND 300 )

Thisiswrong sinceit is not clear which child table the key value 200 belongsin.

It would be better to instead create child tables as follows:

CREATE TABLE neasur ement _y2006n02 (
CHECK ( | ogdate >= DATE '2006-02-01' AND | ogdate < DATE
' 2006- 03-01' )
) INHERI TS (rneasurenent);

CREATE TABLE measur enent _y2006n03 (
CHECK ( | ogdate >= DATE ' 2006-03-01' AND | ogdate < DATE
' 2006- 04-01' )
) INHERI TS (neasurenent);

CREATE TABLE neasurement _y2007nll (
CHECK ( | ogdate >= DATE ' 2007-11-01'" AND | ogdate < DATE
'2007-12-01" )
) INHERI TS (neasurenent);

CREATE TABLE neasurement _y2007nil2 (

92



Data Definition

CHECK ( | ogdate >= DATE '2007-12-01' AND | ogdate < DATE
'2008-01-01' )
) INHERI TS (neasurenent);

CREATE TABLE measur enent _y2008n01 (
CHECK ( | ogdate >= DATE ' 2008-01-01' AND | ogdate < DATE
' 2008- 02-01' )
) INHERI TS (neasurenent);
. For each child table, create an index on the key column(s), as well as any other indexes you might
want.

CREATE | NDEX neasur enent _y2006n02_| ogdat e ON neasur enment _y2006n02
(1 ogdate);

CREATE | NDEX neasur enent _y2006n03_| ogdat e ON nmeasur enment _y2006n03
(1 ogdate);

CREATE | NDEX neasur enent _y2007nll_| ogdat e ON nmeasurenment y2007nil
(1 ogdate);

CREATE | NDEX neasur enent _y2007nl2_| ogdat e ON neasur enment y2007ni2
(1 ogdate);

CREATE | NDEX neasur enent _y2008n01_| ogdat e ON neasur enment _y2008n01
(1 ogdate);

. Wewant our applicationto beabletosay | NSERT | NTO neasur enent ... and havethedata

be redirected into the appropriate child table. We can arrange that by attaching a suitable trigger

function to the master table. If datawill be added only to the latest child, we can use avery simple

trigger function:

CREATE OR REPLACE FUNCTI ON nmeasurenent _i nsert _trigger()

RETURNS TRI GGER AS $%

BEG N
| NSERT | NTO neasur enent _y2008n01 VALUES (NEW *);
RETURN NULL;

END;

$$

LANGUAGE pl pgsdl ;

After creating the function, we create atrigger which calls the trigger function:

CREATE TRI GGER i nsert_measurenent _tri gger
BEFORE | NSERT ON neasur enment
FOR EACH ROW EXECUTE FUNCTI ON rmeasurenent _i nsert _trigger();

We must redefine the trigger function each month so that it always pointsto the current child table.
The trigger definition does not need to be updated, however.

We might want to insert data and have the server automatically locate the child table into which
the row should be added. We could do this with a more complex trigger function, for example:

CREATE OR REPLACE FUNCTI ON neasurenment _insert _trigger()
RETURNS TRI GGER AS $$
BEG N

IF ( NEW I ogdate >= DATE ' 2006- 02-01' AND

NEW | ogdat e < DATE ' 2006-03-01' ) THEN
I NSERT | NTO neasur enent _y2006n02 VALUES (NEW *);
ELSIF ( NEW I ogdate >= DATE ' 2006- 03-01'" AND
NEW | ogdat e < DATE ' 2006- 04-01' ) THEN

93



Data Definition

I NSERT | NTO neasur enment _y2006n03 VALUES ( NEW *);

ELSIF ( NEW | ogdat e >= DATE ' 2008-01-01' AND
NEW | ogdat e < DATE ' 2008-02-01' ) THEN
| NSERT | NTO nmeasur enent _y2008nmD1 VALUES ( NEW *);
ELSE
RAI SE EXCEPTION 'Date out of range. Fix the
measurenent _insert_trigger() function!';
END | F;
RETURN NULL;
END;
$$
LANGUAGE pl pgsdl ;

Thetrigger definition is the same as before. Note that each | F test must exactly match the CHECK
constraint for its child table.

While this function is more complex than the single-month case, it doesn't need to be updated as
often, since branches can be added in advance of being needed.

Note

In practice, it might be best to check the newest child first, if most inserts go into
that child. For simplicity, we have shown the trigger's tests in the same order asin
other parts of this example.

A different approach to redirecting inserts into the appropriate child table isto set up rules, instead
of atrigger, on the master table. For example:

CREATE RULE neasurenent _i nsert_y2006nmD2 AS
ON I NSERT TO measur enment WHERE
( logdate >= DATE ' 2006-02-01'" AND | ogdate < DATE
' 2006- 03-01" )
DO | NSTEAD
| NSERT | NTO neasur enment _y2006n02 VALUES ( NEW *);

CREATE RULE neasurenent _i nsert_y2008nmD1 AS
ON I NSERT TO measur enment WHERE
( | ogdate >= DATE ' 2008-01-01" AND | ogdate < DATE
' 2008- 02-01' )
DO | NSTEAD
| NSERT | NTO neasur enent _y2008n01 VALUES ( NEW *);

A rulehas significantly more overhead than atrigger, but the overhead is paid once per query rather
than once per row, so this method might be advantageous for bulk-insert situations. In most cases,
however, the trigger method will offer better performance.

Be aware that COPY ignoresrules. If you want to use COPY to insert data, you'll need to copy into
the correct child table rather than directly into the master. COPY does fire triggers, so you can use
it normally if you use the trigger approach.

Another disadvantage of the rule approach is that thereis no simple way to force an error if the set
of rules doesn't cover the insertion date; the data will silently go into the master table instead.

. Ensure that the constraint_exclusion configuration parameter is not disabled in post -
gr esqgl . conf ; otherwise child tables may be accessed unnecessarily.

94



Data Definition

As we can see, a complex table hierarchy could require a substantial amount of DDL. In the above
example we would be creating a new child table each month, so it might be wise to write a script that
generates the required DDL automatically.

5.10.3.2. Maintenance for Inheritance Partitioning

To remove old data quickly, simply drop the child table that is no longer necessary:

DROP TABLE neasurenent _y2006n02;

To remove the child table from the inheritance hierarchy table but retain accessto it asatablein its
own right:

ALTER TABLE neasur enent _y2006n02 NO | NHERI T nmeasur enent ;

To add a new child table to handle new data, create an empty child table just as the original children
were created above:

CREATE TABLE neasur ement _y2008n02 (
CHECK ( | ogdate >= DATE '2008-02-01' AND | ogdate < DATE
' 2008- 03-01' )
) INHERI TS (neasurenent);

Alternatively, one may want to create and populate the new child table before adding it to the table
hierarchy. This could allow data to be loaded, checked, and transformed before being made visible
to queries on the parent table.

CREATE TABLE neasur enment _y2008nm02
(LI KE measur ement | NCLUDI NG DEFAULTS | NCLUDI NG CONSTRAI NTS) ;
ALTER TABLE neasur enment _y2008nmD2 ADD CONSTRAI NT y2008nmD2
CHECK ( | ogdate >= DATE ' 2008-02- 01" AND | ogdate < DATE
' 2008-03-01" );
\ copy neasurenent _y2008n02 from ' measurenent _y2008nD2'
-- possibly sone other data preparation work
ALTER TABLE neasur ement _y2008nD2 | NHERI T nmeasur enent ;

5.10.3.3. Caveats

The following caveats apply to partitioning implemented using inheritance:

» Thereis no automatic way to verify that all of the CHECK constraints are mutually exclusive. It is
safer to create code that generates child tables and creates and/or modifies associated objects than
to write each by hand.

» Theschemes shown here assumethat the values of arow'skey column(s) never change, or at least do
not change enough to requireit to moveto another partition. An UPDATE that attemptsto do that will
fail because of the CHECK constraints. If you need to handle such cases, you can put suitable update
triggers on the child tables, but it makes management of the structure much more complicated.

* If you are using manual VACUUMor ANAL YZE commands, don't forget that you need to run them
on each child table individually. A command like:
ANALYZE neasur enent ;

will only process the master table.

95



Data Definition

e | NSERT statements with ON CONFLI CT clauses are unlikely to work as expected, as the ON
CONFLI CT action is only taken in case of unique violations on the specified target relation, not
its child relations.

» Triggers or rules will be needed to route rows to the desired child table, unless the application is
explicitly aware of the partitioning scheme. Triggers may be complicated to write, and will be much
slower than the tuple routing performed internally by declarative partitioning.

5.10.4. Partition Pruning

Partition pruning is a query optimization technique that improves performance for declaratively par-
titioned tables. As an example:

SET enabl e_partition_pruning = on; -- the default
SELECT count (*) FROM nmeasur enent WHERE | ogdat e >= DATE
' 2008-01-01';

Without partition pruning, the above query would scan each of the partitions of the measur enent

table. With partition pruning enabled, the planner will examine the definition of each partition and
prove that the partition need not be scanned because it could not contain any rows meeting the query's
WHERE clause. When the planner can provethis, it excludes (prunes) the partition from the query plan.

By using the EXPLAIN command and the enable_partition_pruning configuration parameter, it's pos-
sible to show the difference between a plan for which partitions have been pruned and one for which
they have not. A typical unoptimized plan for thistype of table setup is:

SET enabl e_partition_pruning = off;
EXPLAI N SELECT count (*) FROM neasur enent WHERE | ogdat e >= DATE
' 2008-01-01';
QUERY PLAN
Aggregate (cost=188.76..188.77 rows=1 wi dt h=8)
-> Append (cost=0.00..181.05 rows=3085 wi dt h=0)
-> Seq Scan on neasurenent_y2006n0D2 (cost=0.00..33.12
rows=617 wi dt h=0)
Filter: (logdate >= '2008-01-01'::date)
-> Seq Scan on neasurenent_y2006n03 (cost=0.00..33.12
rows=617 wi dt h=0)
Filter: (logdate >= '2008-01-01'::date)

-> Seq Scan on neasurenent_y2007nll (cost=0.00..33.12
rows=617 wi dt h=0)
Filter: (logdate >= '2008-01-01'::date)
-> Seq Scan on neasurenent_y2007nl2 (cost=0.00..33.12
rows=617 wi dt h=0)
Filter: (logdate >= '2008-01-01'::date)
-> Seq Scan on neasurenent_y2008nD1 (cost=0.00..33.12
rows=617 wi dt h=0)
Filter: (logdate >= '2008-01-01'::date)

Some or all of the partitions might use index scansinstead of full-table sequential scans, but the point
here is that there is no need to scan the older partitions at all to answer this query. When we enable
partition pruning, we get a significantly cheaper plan that will deliver the same answer:

SET enabl e_partition_pruning = on;
EXPLAI N SELECT count (*) FROM neasur enent WHERE | ogdat e >= DATE
'2008-01-01';

96



Data Definition

QUERY PLAN
Aggregate (cost=37.75..37.76 rows=1 wi dt h=8)
-> Append (cost=0.00..36.21 rows=617 w dt h=0)
-> Seq Scan on neasurenent_y2008nD1 (cost=0.00..33.12
rows=617 wi dt h=0)
Filter: (logdate >= '2008-01-01'::date)

Note that partition pruning is driven only by the constraints defined implicitly by the partition keys,
not by the presence of indexes. Therefore it isn't necessary to define indexes on the key columns.
Whether an index needsto be created for agiven partition depends on whether you expect that queries
that scan the partition will generally scan a large part of the partition or just a small part. An index
will be helpful in the latter case but not the former.

Partition pruning can be performed not only during the planning of a given query, but also during its
execution. Thisisuseful asit can allow more partitionsto be pruned when clauses contain expressions
whose values are not known at query planning time; for example, parameters defined in a PREPARE
statement, using a value obtained from a subquery or using a parameterized value on the inner side of
anested loop join. Partition pruning during execution can be performed at any of the following times:

 Duringinitialization of the query plan. Partition pruning can be performed herefor parameter values
which are known during the initialization phase of execution. Partitions which are pruned during
this stage will not show up in the query's EXPLAI N or EXPLAI N ANALYZE. It is possible to de-
termine the number of partitions which were removed during this phase by observing the “ Subplans
Removed” property in the EXPLAI N output.

 During actual execution of the query plan. Partition pruning may also be performed here to remove
partitions using values which are only known during actual query execution. This includes values
from subqueries and val ues from execution-time parameters such as those from parameterized nest-
ed loop joins. Since the value of these parameters may change many times during the execution of
the query, partition pruning is performed whenever one of the execution parameters being used by
partition pruning changes. Determining if partitions were pruned during this phase requires careful
inspection of the |l oops property in the EXPLAI N ANAL YZE output. Subplans corresponding to
different partitions may have different values for it depending on how many times each of them
was pruned during execution. Some may be shown as ( never execut ed) if they were pruned
every time.

Partition pruning can be disabled using the enable_partition_pruning setting.

Note

Execution-time partition pruning currently only occursfor the Append nodetype, not
for Mer geAppend or Modi f yTabl e nodes. That islikely to be changed in afuture
release of PostgreSQL.

5.10.5. Partitioning and Constraint Exclusion

Constraint exclusion isaquery optimization technique similar to partition pruning. Whileit is primar-
ily used for partitioning implemented using the legacy inheritance method, it can be used for other
purposes, including with declarative partitioning.

Constraint exclusion worksin avery similar way to partition pruning, except that it uses each table's
CHECK constraints — which gives it its name — whereas partition pruning uses the tabl€e's partition
bounds, which exist only in the case of declarative partitioning. Another difference is that constraint
exclusionisonly applied at plan time; thereis no attempt to remove partitions at execution time.

Thefact that constraint exclusion uses CHECK constraints, which makesit slow compared to partition
pruning, can sometimes be used as an advantage: because constraints can be defined even on declar-

97



Data Definition

atively-partitioned tables, in addition to their internal partition bounds, constraint exclusion may be
ableto elide additional partitions from the query plan.

The default (and recommended) setting of constraint_exclusion is neither on nor of f , but an inter-
mediate setting called par t i t i on, which causes the technique to be applied only to queriesthat are
likely to be working on inheritance partitioned tables. The on setting causes the planner to examine
CHECK constraintsin al queries, even simple ones that are unlikely to benefit.

The following caveats apply to constraint exclusion:

» Constraint exclusionisonly applied during query planning, unlike partition pruning, which can also
be applied during query execution.

» Congtraint exclusion only works when the query's WHERE clause contains constants (or externally
supplied parameters). For example, a comparison against a non-immutable function such as CUR-
RENT_TI MESTAMP cannot be optimized, since the planner cannot know which child table the
function's value might fall into at run time.

» Keep the partitioning constraints simple, el se the planner may not be able to prove that child tables
might not need to be visited. Use simple equality conditions for list partitioning, or simple range
tests for range partitioning, as illustrated in the preceding examples. A good rule of thumb is that
partitioning constraints should contain only comparisons of the partitioning column(s) to constants
using B-tree-indexable operators, because only B-tree-indexable column(s) are allowed in the par-
tition key.

 All constraints on all children of the parent table are examined during constraint exclusion, so large
numbers of children are likely to increase query planning time considerably. So the legacy inheri-
tance based partitioning will work well with up to perhaps a hundred child tables; don't try to use
many thousands of children.

5.10.6. Declarative Partitioning Best Practices

The choice of how to partition a table should be made carefully as the performance of query planning
and execution can be negatively affected by poor design.

One of the most critical design decisions will be the column or columns by which you partition your
data. Often the best choice will be to partition by the column or set of columns which most commonly
appear in WHERE clauses of queries being executed on the partitioned table. WHERE clause items that
match and are compatible with the partition key can be used to prune unneeded partitions. However,
you may be forced into making other decisions by requirementsfor the PRI MARY KEY or a UNI QUE
constraint. Removal of unwanted data is also a factor to consider when planning your partitioning
strategy. An entire partition can be detached fairly quickly, so it may be beneficial to design the par-
tition strategy in such away that all datato be removed at onceislocated in asingle partition.

Choosing the target number of partitionsthat the table should be divided into isalso acritical decision
to make. Not having enough partitions may mean that indexes remain too large and that data locality
remains poor which could result in low cache hit ratios. However, dividing the table into too many
partitions can also cause issues. Too many partitions can mean longer query planning times and higher
memory consumption during both query planning and execution. When choosing how to partition your
table, it's also important to consider what changes may occur in the future. For example, if you choose
to have one partition per customer and you currently have asmall number of large customers, consider
theimplicationsif in several yearsyou instead find yourself with alarge number of small customers. In
thiscase, it may be better to choose to partition by HASH and choose areasonable number of partitions
rather than trying to partition by LI ST and hoping that the number of customers does not increase
beyond what it is practical to partition the data by.

Sub-partitioning can be useful to further divide partitionsthat are expected to become larger than other
partitions, although excessive sub-partitioning can easily lead to large numbers of partitions and can
cause the same problems mentioned in the preceding paragraph.

98



Data Definition

5.11

5.12

Itisalso important to consider the overhead of partitioning during query planning and execution. The
query planner is generally able to handle partition hierarchies with up to a few hundred partitions
fairly well, provided that typical queries allow the query planner to prune all but a small number of
partitions. Planning times become longer and memory consumption becomes higher as more partitions
are added. Thisis particularly true for the UPDATE and DELETE commands. Another reason to be
concerned about having a large number of partitions is that the server's memory consumption may
grow significantly over aperiod of time, especially if many sessionstouch large numbers of partitions.
That's because each partition requires its metadata to be loaded into the local memory of each session
that touchesit.

With data warehouse type workloads, it can make sense to use alarger number of partitions than with
an OLTP type workload. Generally, in data warehouses, query planning time is less of a concern as
the majority of processing time is spent during query execution. With either of these two types of
workload, it isimportant to make the right decisions early, as re-partitioning large quantities of data
can be painfully slow. Simulations of the intended workload are often beneficial for optimizing the
partitioning strategy. Never assumethat more partitions are better than fewer partitions and vice-versa

Foreign Data

PostgreSQL implements portions of the SQL/MED specification, allowing you to access data that
resides outside PostgreSQL using regular SQL queries. Such datais referred to asforeign data. (Note
that this usage is not to be confused with foreign keys, which are a type of constraint within the
database.)

Foreign data is accessed with help from a foreign data wrapper. A foreign data wrapper is a library
that can communicate with an external data source, hiding the details of connecting to the data source
and obtaining datafrom it. There are someforeign datawrappersavailableascont r i b modules; see
Appendix F. Other kinds of foreign data wrappers might be found as third party products. If none of
the existing foreign data wrappers suit your needs, you can write your own; see Chapter 57.

To access foreign data, you need to create a foreign server object, which defines how to connect to
a particular external data source according to the set of options used by its supporting foreign data
wrapper. Then you need to create one or more foreign tables, which define the structure of the remote
data. A foreign table can be used in queries just like anormal table, but aforeign table has no storage
inthe PostgreSQL server. Whenever it is used, PostgreSQL asksthe foreign datawrapper to fetch data
from the external source, or transmit datato the external source in the case of update commands.

Accessing remote data may require authenticating to the external data source. This information can
be provided by a user mapping, which can provide additional data such as user names and passwords
based on the current PostgreSQL role.

For additional information, see CREATE FOREIGN DATA WRAPPER, CREATE SERVER, CRE-
ATE USER MAPPING, CREATE FOREIGN TABLE, and IMPORT FOREIGN SCHEMA.

Other Database Objects

Tables are the central objectsin arelational database structure, because they hold your data. But they
are not the only objectsthat exist in adatabase. Many other kinds of objects can be created to makethe
use and management of the data more efficient or convenient. They are not discussed in this chapter,
but we give you alist here so that you are aware of what is possible:

* Views

Functions, procedures, and operators
» Datatypes and domains

 Triggers and rewrite rules

99



Data Definition

Detailed information on these topics appearsin Part V.

5.13. Dependency Tracking

When you create complex database structures involving many tables with foreign key constraints,
views, triggers, functions, etc. you implicitly create a net of dependencies between the objects. For
instance, atable with aforeign key constraint depends on the table it references.

To ensure the integrity of the entire database structure, PostgreSQL makes sure that you cannot drop
objects that other objects still depend on. For example, attempting to drop the products table we con-
sidered in Section 5.3.5, with the orders table depending on it, would result in an error message like
this:

DROP TABLE products;

ERROR: cannot drop table products because ot her objects depend on
it

DETAIL: constraint orders_product_no_fkey on table orders depends
on table products

H NT: Use DROP ... CASCADE to drop the dependent objects too.

Theerror message containsauseful hint: if you do not want to bother deleting all the dependent objects
individually, you can run:

DROP TABLE products CASCADE;

and all the dependent objects will be removed, as will any objects that depend on them, recursively.
In this case, it doesn't remove the orders table, it only removes the foreign key constraint. It stops
there because nothing depends on the foreign key constraint. (If you want to check what DROP . . .
CASCADE will do, run DROP without CASCADE and read the DETAI L output.)

Almost all DROP commands in PostgreSQL support specifying CASCADE. Of course, the nature of
the possible dependencies varies with the type of the object. Y ou can also write RESTRI CT instead
of CASCADE to get the default behavior, which is to prevent dropping objects that any other objects
depend on.

Note

According to the SQL standard, specifying either RESTRI CT or CASCADE isrequired
in a DROP command. No database system actually enforces that rule, but whether the
default behavior is RESTRI CT or CASCADE varies across systems.

If a DROP command lists multiple objects, CASCADE is only required when there are dependencies
outside the specified group. For example, when saying DROP TABLE t abl, tab2 theexistence
of aforeign key referencingt ab1 fromt ab2 would not mean that CASCADE is needed to succeed.

For user-defined functions, PostgreSQL tracks dependencies associated with a function's external-
ly-visible properties, such as its argument and result types, but not dependencies that could only be
known by examining the function body. As an example, consider this situation:

CREATE TYPE rai nbow AS ENUM ('red', 'orange', 'vyellow,
"green', 'blue', 'purple');

CREATE TABLE ny_col ors (col or rai nbow, note text);

100



Data Definition

CREATE FUNCTI ON get _col or _note (rai nbow) RETURNS text AS
' SELECT note FROM ny_col ors WHERE col or = $1'
LANGUACE SQL;

(See Section 38.5 for an explanation of SQL-language functions.) PostgreSQL will be aware that the
get _col or _not e function dependsonther ai nbowtype: dropping thetype would force dropping
the function, because its argument type would no longer be defined. But PostgreSQL will not consider
get _col or _not e todependontheny_col or s table, and sowill not drop thefunctionif thetable
isdropped. While there are disadvantages to this approach, there are also benefits. The function is still
valid in some sense if the table is missing, though executing it would cause an error; creating a new
table of the same name would allow the function to work again.

101



Chapter 6. Data Manipulation

The previous chapter discussed how to create tables and other structures to hold your data. Now it is
time to fill the tables with data. This chapter covers how to insert, update, and delete table data. The
chapter after thiswill finally explain how to extract your long-lost data from the database.

6.1. Inserting Data

When atableis created, it contains no data. The first thing to do before a database can be of much use
isto insert data. Data is conceptually inserted one row at atime. Of course you can aso insert more
than one row, but there is no way to insert less than one row. Even if you know only some column
values, a complete row must be created.

To create anew row, use the INSERT command. The command requires the table name and column
values. For example, consider the products table from Chapter 5:

CREATE TABLE products (
product _no i nteger,
name text,
price nuneric

)

An example command to insert arow would be:

I NSERT | NTO products VALUES (1, 'Cheese', 9.99);

The datavalues are listed in the order in which the columns appear in the table, separated by commas.
Usually, the data values will be literals (constants), but scalar expressions are also allowed.

The above syntax has the drawback that you need to know the order of the columnsin the table. To
avoid thisyou can asolist the columns explicitly. For example, both of the following commands have
the same effect as the one above:

I NSERT | NTO products (product_no, nane, price) VALUES (1, 'Cheese',

9.99);
I NSERT | NTO products (name, price, product_no) VALUES (' Cheese',
9.99, 1);

Many users consider it good practice to always list the column names.

If you don't have valuesfor all the columns, you can omit some of them. In that case, the columns will
be filled with their default values. For example;

| NSERT | NTO products (product_no, name) VALUES (1, 'Cheese');

I NSERT | NTO products VALUES (1, 'Cheese');

The second form is a PostgreSQL extension. It fills the columns from the left with as many values as
are given, and the rest will be defaulted.

For clarity, you can also request default values explicitly, for individual columnsor for the entire row:

I NSERT | NTO products (product_no, nanme, price) VALUES (1, 'Cheese',
DEFAULT) ;

102



Data Manipulation

I NSERT | NTO products DEFAULT VALUES,;

Y ou can insert multiple rowsin a single command:

I NSERT | NTO products (product_no, nane, price) VALUES
(1, 'Cheese', 9.99),
(2, 'Bread', 1.99),
(3, "MIk', 2.99);

It isalso possible to insert the result of a query (which might be no rows, one row, or many rows):

I NSERT | NTO products (product_no, name, price)
SELECT product_no, name, price FROM new_products
WHERE r el ease_date = 'today';

This provides the full power of the SQL query mechanism (Chapter 7) for computing the rows to be
inserted.

Tip

When inserting alot of data at the same time, consider using the COPY command. It
isnot asflexible asthe INSERT command, but is more efficient. Refer to Section 14.4
for more information on improving bulk loading performance.

6.2. Updating Data

The modification of data that is already in the database is referred to as updating. Y ou can update
individual rows, al therowsin atable, or asubset of all rows. Each column can be updated separately;
the other columns are not affected.

To update existing rows, use the UPDATE command. This requires three pieces of information:

1. The name of the table and column to update
2. The new value of the column
3. Which row(s) to update

Recall from Chapter 5 that SQL does nat, in general, provide aunique identifier for rows. Thereforeit
is not always possible to directly specify which row to update. Instead, you specify which conditions
arow must meet in order to be updated. Only if you have a primary key in the table (independent
of whether you declared it or not) can you reliably address individual rows by choosing a condition
that matches the primary key. Graphical database access toolsrely on thisfact to allow you to update
rows individually.

For example, this command updates all products that have a price of 5 to have a price of 10:

UPDATE products SET price = 10 WHERE price = 5;

This might cause zero, one, or many rows to be updated. It is not an error to attempt an update that
does not match any rows.

Let'slook at that command in detail. First is the key word UPDATE followed by the table name. As
usual, the table name can be schema-qualified, otherwise it is looked up in the path. Next is the key
word SET followed by the column name, an equal sign, and the new column value. The new column
value can be any scalar expression, not just a constant. For example, if you want to raise the price of
all products by 10% you could use:

103



Data Manipulation

UPDATE products SET price = price * 1.10;

Asyou see, the expression for the new value can refer to the existing value(s) in the row. We also left
out the WHERE clause. If it is omitted, it means that all rows in the table are updated. If it is present,
only those rows that match the WHERE condition are updated. Note that the equals sign in the SET
clauseisan assignment while the onein the WHERE clause isacomparison, but thisdoes not create any
ambiguity. Of course, the WHERE condition does not have to be an equality test. Many other operators
are available (see Chapter 9). But the expression needs to evaluate to a Boolean result.

Y ou can update more than one column in an UPDATE command by listing more than one assignment
in the SET clause. For example:

UPDATE nytable SET a =5, b =3, ¢ =1 WHERE a > 0;

6.3. Deleting Data

So far we have explained how to add datato tables and how to change data. What remainsisto discuss
how to remove data that is no longer needed. Just as adding datais only possible in whole rows, you
can only remove entire rows from atable. In the previous section we explained that SQL does not
provide a way to directly address individual rows. Therefore, removing rows can only be done by
specifying conditionsthat the rowsto be removed haveto match. If you haveaprimary key inthetable
then you can specify the exact row. But you can also remove groups of rows matching a condition,
or you can remove all rows in the table at once.

Y ou use the DEL ETE command to remove rows; the syntax isvery similar to the UPDATE command.
For instance, to remove all rows from the products table that have a price of 10, use:

DELETE FROM products WHERE price = 10;

If you simply write:

DELETE FROM product s;

then all rows in the table will be deleted! Caveat programmer.

6.4. Returning Data From Modified Rows

Sometimes it is useful to obtain data from modified rows while they are being manipulated. The
| NSERT, UPDATE, and DELETE commands all have an optional RETURNI NG clause that supports
this. Use of RETURNI NG avoids performing an extra database query to collect the data, and is espe-
cialy valuable when it would otherwise be difficult to identify the modified rows reliably.

The allowed contents of a RETURNI NG clause are the same as a SELECT command's output list (see
Section 7.3). It can contain column names of the command's target table, or value expressions using
those columns. A common shorthand is RETURNI NG * , which selects all columns of the target table
in order.

Inan | NSERT, the dataavailable to RETURNI NGistherow asit wasinserted. Thisisnot so useful in
trivial inserts, sinceit would just repeat the data provided by the client. But it can be very handy when
relying on computed default values. For example, when using aser i al column to provide unique
identifiers, RETURNI NG can return the ID assigned to a new row:

CREATE TABLE users (firstnane text, |lastnanme text, id serial
primary key);

104



Data Manipulation

I NSERT | NTO users (firstnane, |astnanme) VALUES ('Joe', 'Cool")
RETURNI NG i d;

The RETURNI NGclauseis also very useful with | NSERT ... SELECT.

Inan UPDATE, thedataavailableto RETURNI NGisthe new content of the modified row. For example:

UPDATE products SET price = price * 1.10
WHERE price <= 99.99
RETURNI NG nane, price AS new price;

In a DELETE, the data available to RETURNI NGis the content of the deleted row. For example:

DELETE FROM product s
WHERE obsol eti on_date = 'today'
RETURNI NG *;

If there are triggers (Chapter 39) on the target table, the data available to RETURNI NGis the row as
modified by the triggers. Thus, inspecting columns computed by triggersis another common use-case
for RETURNI NG,

105



Chapter 7. Queries

The previous chapters explained how to createtables, how tofill themwith data, and how to manipulate
that data. Now we finally discuss how to retrieve the data from the database.

7.1. Overview

The process of retrieving or the command to retrieve data from a database is called a query. In SQL
the SELECT command is used to specify queries. The general syntax of the SELECT command is

[WTH wi th_queries] SELECT select |ist FROMtabl e_expression
[sort_specification]

The following sections describe the details of the select list, the table expression, and the sort specifi-
cation. W TH queries are treated last since they are an advanced feature.

A simple kind of query has the form:

SELECT * FROM t abl el;

Assuming that there is atable called t abl el, this command would retrieve al rows and all user-
defined columns from t abl el. (The method of retrieval depends on the client application. For ex-
ample, the psgl program will display an ASCII-art table on the screen, while client libraries will offer
functions to extract individual values from the query result.) The select list specification * means all
columnsthat the table expression happensto provide. A select list can al so select asubset of the avail-
able columns or make calculations using the columns. For example, if t abl el has columns named
a, b, and ¢ (and perhaps others) you can make the following query:

SELECT a, b + ¢ FROM t abl el;
(assuming that b and ¢ are of anumerical datatype). See Section 7.3 for more details.

FROM t abl el isasimple kind of table expression: it reads just one table. In general, table expres-
sions can be complex constructs of base tables, joins, and subqueries. But you can also omit the table
expression entirely and use the SELECT command as a calculator:

SELECT 3 * 4;

Thisis more useful if the expressions in the select list return varying results. For example, you could
call afunction thisway:

SELECT random();

7.2. Table Expressions

A table expression computes a table. The table expression contains a FROMclause that is optionally
followed by WHERE, GROUP BY, and HAVI NG clauses. Trivia table expressions simply refer to a
table on disk, a so-called base table, but more complex expressions can be used to modify or combine
base tables in various ways.

The optional WHERE, GROUP BY, and HAVI NG clauses in the table expression specify a pipeline of
successive transformations performed on the table derived in the FROMclause. All these transforma-

106



Queries

7.2.1.

tions produce a virtual table that provides the rows that are passed to the select list to compute the
output rows of the query.

The FROMClause

The FROM Clause derives a table from one or more other tables given in a comma-separated table
reference list.

FROM tabl e_reference [, table_reference [, ...]]

A table reference can be a table name (possibly schema-qualified), or a derived table such as a sub-
guery, aJO N construct, or complex combinations of these. If more than one table referenceislisted
in the FROMclause, the tables are cross-joined (that is, the Cartesian product of their rows is formed,;
see below). Theresult of the FROMIist isan intermediate virtual table that can then be subject to trans-
formations by the WHERE, GROUP BY, and HAVI NG clauses and is finally the result of the overall
table expression.

When a table reference names a table that is the parent of a table inheritance hierarchy, the table
reference produces rows of not only that table but al of its descendant tables, unless the key word
ONLY precedes the table name. However, the reference produces only the columns that appear in the
named table — any columns added in subtables are ignored.

Instead of writing ONLY before the table name, you can write * after the table name to explicitly
specify that descendant tables are included. There is no real reason to use this syntax any more, be-
cause searching descendant tables is now always the default behavior. However, it is supported for
compatibility with older releases.

7.2.1.1. Joined Tables

A joined table is a table derived from two other (real or derived) tables according to the rules of the
particular join type. Inner, outer, and cross-joins are available. The general syntax of ajoined tableis

Tl join_type T2 [ join_condition ]

Joins of al types can be chained together, or nested: either or both T1 and T2 can be joined tables.
Parentheses can be used around JO N clauses to control thejoin order. In the absence of parentheses,
JO Nclauses nest | eft-to-right.

Join Types

Crossjoin

Tl CROSS JAO N T2

For every possible combination of rows from T1 and T2 (i.e., a Cartesian product), the joined
table will contain a row consisting of all columnsin T1 followed by al columnsin T2. If the
tables have N and M rows respectively, the joined table will have N * M rows.

FROM T1 CROSS JO N T2 isequivalentto FROM T1 | NNER JO N T2 ON TRUE (see
below). Itisalso equivalent to FROM T1, T2.

Note

This latter equivalence does not hold exactly when more than two tables appear,
because JO N binds more tightly than comma. For example FROM T1 CROSS
JON T2 INNER JON T3 ON condition isnotthe same as FROM

107



Queries

T1, T2 INNER JO N T3 ON conditi on becausethecondi ti on can
reference T1 in the first case but not the second.

Qualified joins

TL { [INNER] | { LEFT | RIGHT | FULL } [QUTER] } JON T2

ON bool ean_expressi on

TL { [INNER] | { LEFT | RIGHT | FULL } [QUTER] } JO N T2 USI NG
( join colum list )

T1 NATURAL { [INNER] | { LEFT | RIGHT | FULL } [QUTER] } JON T2

The words | NNER and OQUTER are optional in all forms. | NNER is the default; LEFT, Rl GHT,
and FULL imply an outer join.

Thejoin condition is specified in the ON or USI NG clause, or implicitly by the word NATURAL.
Thejoin condition determines which rows from the two source tables are considered to “match”,
as explained in detail below.

The possible types of qualified join are:
I NNER JO N

For each row R1 of T1, the joined table has arow for each row in T2 that satisfies the join
condition with R1.

LEFT OQUTER JO N

First, an inner join is performed. Then, for each row in T1 that does not satisfy the join
condition with any row in T2, ajoined row is added with null valuesin columns of T2. Thus,
the joined table always has at least one row for each row in T1.

Rl GHT QUTER JAO N

First, an inner join is performed. Then, for each row in T2 that does not satisfy the join
condition with any row in T1, ajoined row is added with null valuesin columns of T1. This
isthe converse of aleft join: the result table will always have arow for each row in T2.

FULL OQUTER JAO N

First, an inner join is performed. Then, for each row in T1 that does not satisfy the join
condition with any row in T2, ajoined row is added with null valuesin columns of T2. Also,
for each row of T2 that does not satisfy the join condition with any row in T1, ajoined row
with null valuesin the columns of T1 is added.

The ON clause is the most general kind of join condition: it takes a Boolean value expression of
the same kind as is used in a WHERE clause. A pair of rows from T1 and T2 match if the ON
expression evaluates to true.

The USI NGclauseisashorthand that allows you to take advantage of the specific situation where
both sides of the join use the same name for the joining column(s). It takes a comma-separated
list of the shared column names and forms ajoin condition that includes an equality comparison
for each one. For example, joining T1 and T2 with USI NG (a, b) producesthejoin condition
ON Tl.a = T2.a AND Tl.b = T2.b.

Furthermore, the output of JO N USI NG suppresses redundant columns: thereis no need to print
both of the matched columns, since they must have equal values. While JO N ON produces all
columns from T1 followed by al columnsfrom T2, JO N USI NG produces one output column
for each of the listed column pairs (in the listed order), followed by any remaining columns from
T1, followed by any remaining columns from T2.

108



Queries

Finally, NATURAL isashorthand form of USI NG it formsaUSI NGlist consisting of all column
names that appear in both input tables. As with USI NG, these columns appear only once in the
output table. If there are no common column names, NATURAL JO N behaveslikeJO N . . .
ON TRUE, producing a cross-product join.

Note

USI NGisreasonably safe from column changes in the joined relations since only
the listed columns are combined. NATURAL is considerably more risky since any
schema changes to either relation that cause a new matching column name to be
present will cause the join to combine that new column as well.

To put this together, assume we have tablest 1:

num | nane

then we get the following results for the various joins:

=> SELECT * FROMt1l CRCSS JO N t2;
num | nane | num| val ue

GQWkFRFUOOWERE OWwPRk

+
|
|
| zzz
|
|
|
|
|
|

T WWWNNNRP, R PP

7
~ 0 00T TUTO9 9O

(9

=> SELECT * FROMt1l INNER JON t2 ONt1l.num= t2. num
num | nane | num| val ue

----- s
1] a | 1] xxx
31 ¢ | 31 yyy

(2 rows)

=> SELECT * FROMt1l INNER JO N t2 USING (nun;
num | nane | val ue

109



Queries

3| ¢ | yyy
(2 rows)

=> SELECT * FROM t1 NATURAL | NNER JO N t 2;
num | nane | val ue

_____ Fmm e e e e e - - -
1| a | xxx
31 ¢ | yyy

(2 rows)

=> SELECT * FROMt1 LEFT JON t2 ON t1. num = t2. num
num| name | num| val ue

yyy

=> SELECT * FROMt1 LEFT JO N t2 USING (nun;

=> SELECT * FROMt1l RIGHT JON t2 ON t1. num = t2. num
num| name | num| val ue

----- B e L
1| a | 1| xxx
31 ¢ | 31 yyy

| | 5| zzz
(3 rows)

=> SELECT * FROMt1 FULL JON t2 ON t1. num = t2. num
num| name | num| val ue

----- B e L
1| a | 1| xxx
2] b | |
31 ¢ | 31 yyy

| | 51| zzz
(4 rows)

The join condition specified with ON can al so contain conditions that do not relate directly to thejoin.
This can prove useful for some queries but needs to be thought out carefully. For example:

=> SELECT * FROMt1 LEFT JONt2 ONtl.num= t2.num AND t 2. val ue =

XXX ;
num| name | num| val ue
----- Ty U
1| a | 1| xxx
2| b | |
3] c | |
(3 rows)

Notice that placing the restriction in the WHERE clause produces a different result:

110



Queries

=> SELECT * FROMt1 LEFT JON t2 ON t1.num = t2. num WHERE t 2. val ue

= " Xxx";

num| name | num| val ue

----- Ty
1| a | 1| xxx

(1 row

This is because a restriction placed in the ON clause is processed before the join, while a restriction
placed in the WHERE clause is processed after the join. That does not matter with inner joins, but it
meatters alot with outer joins.

7.2.1.2. Table and Column Aliases

A temporary name can be given to tables and complex table references to be used for references to
the derived table in the rest of the query. Thisiscalled atable alias.

To create atable alias, write

FROM t abl e_reference AS ali as

or

FROM t abl e_reference alias
The AS key word is optional noise. al i as can be any identifier.
A typical application of table aliasesis to assign short identifiers to long table names to keep the join

clauses readable. For example:

SELECT * FROM sone_very long table name s JON
another fairly long nane a ON s.id = a.num

The alias becomes the new name of the table reference so far as the current query is concerned — it
isnot allowed to refer to the table by the original name elsewhere in the query. Thus, thisis not valid:

SELECT * FROM ny_table AS m WHERE ny_table.a > 5; -- wong

Table aliases are mainly for notational convenience, but it is necessary to use them when joining a

tableto itself, e.g.:

SELECT * FROM people AS nmother JO N people AS child ON nother.id =
chi l d. mot her _i d;

Additionally, an aliasisrequired if the table reference is a subquery (see Section 7.2.1.3).

Parentheses are used to resolve ambiguities. In the following example, the first statement assigns the

alias b to the second instance of my_t abl e, but the second statement assigns the alias to the result
of thejoin:

SELECT * FROM ny_table AS a CROSS JON ny table AS b ...
SELECT * FROM (my_table AS a CROSS JON ny_table) AS b ...

Another form of table aliasing gives temporary hames to the columns of the table, aswell asthetable
itself:

111



Queries

FROM t abl e_reference [AS] alias ( columl [, colum2 [, ...]] )

If fewer column aliases are specified than the actual table has columns, the remaining columns are not
renamed. This syntax is especially useful for self-joins or subqueries.

When an diasis applied to the output of aJA N clause, the alias hides the original name(s) within
the JA N. For example:

SELECT a.* FROM ny_table AS a JO N your _table AS b ON ...

isvalid SQL, but:

SELECT a.* FROM (ny_table AS a JO N your_table AS b ON...) AS c

isnot valid; thetable alias a is not visible outside the dlias c.

7.2.1.3. Subqueries

Subqueries specifying a derived table must be enclosed in parentheses and must be assigned a table
aliasname (asin Section 7.2.1.2). For example:

FROM ( SELECT * FROM tabl el) AS alias_nane

This example is equivalent to FROM t abl el AS al i as_nane. More interesting cases, which
cannot be reduced to a plain join, arise when the subquery involves grouping or aggregation.

A subquery can also be a VALUES list:

FROM (VALUES ('anne', 'smith'), ('bob', '"jones'), ('joe', "blow))
AS nanes(first, |ast)

Again, atable aliasisrequired. Assigning alias names to the columns of the VALUES list is optional,
but is good practice. For more information see Section 7.7.

7.2.1.4. Table Functions

Table functions are functions that produce a set of rows, made up of either base data types (scalar
types) or composite data types (table rows). They are used like atable, view, or subquery in the FROM
clause of aquery. Columnsreturned by table functions can beincluded in SELECT, JO N, or WHERE
clauses in the same manner as columns of atable, view, or subquery.

Table functions may also be combined using the ROANS FROM syntax, with the results returned in
parallel columns; the number of result rows in this case is that of the largest function result, with
smaller results padded with null values to match.

function_call [WTH ORDI NALITY] [[AS] table_ alias [(columm_alias
[, ... DII

ROAS FROM function_call [, ... ] ) [WTH ORDI NALI TY]

[[AS] table alias [(colum_alias [, ... ])11]

If theW TH ORDI NALI TY clauseis specified, an additional column of typebi gi nt will be added
to the function result columns. This column numbers the rows of the function result set, starting from
1. (Thisis ageneraization of the SQL-standard syntax for UNNEST ... W TH ORDI NALI TY.)

112



Queries

By default, the ordinal columniscalled or di nal i t y, but adifferent column name can be assigned
toit using an AS clause.

The special table function UNNEST may be called with any number of array parameters, and it returns
a corresponding number of columns, asif UNNEST (Section 9.18) had been called on each parameter
separately and combined using the ROAS FROMconstruct.

UNNEST( array_expression [, ... ] ) [WTH ORDI NALI TY]
[[AS] table alias [(colum_alias [, ... 1)11]

If not abl e_al i as isspecified, the function nameis used as the table name; in the case of a ROAS
FROM ) construct, the first function's name is used.

If column aliases are not supplied, then for afunction returning a base data type, the column nameis
also the same as the function name. For a function returning a composite type, the result columns get
the names of the individual attributes of the type.

Some examples:

CREATE TABLE foo (fooid int, foosubid int, foonane text);

CREATE FUNCTI ON getfoo(int) RETURNS SETOF foo AS $$
SELECT * FROM foo WHERE fooid = $1;
$$ LANGUACE SQ.;

SELECT * FROM getfoo(1l) AS t1;

SELECT * FROM f oo
WHERE f oosubid IN (
SELECT f oosubi d
FROM get f oo(foo.fooid) z
WHERE z.fooid = foo.fooid

) y
CREATE VI EW vw getfoo AS SELECT * FROM getfoo(1l);
SELECT * FROM vw_get f o0;

In some cases it is useful to define table functions that can return different column sets depending on
how they areinvoked. To support this, the table function can be declared as returning the pseudo-type
r ecor d. When such afunctionisused in aquery, the expected row structure must be specified in the
guery itself, so that the system can know how to parse and plan the query. This syntax looks like:

function_call [AS] alias (colum_definition [, 1)
function_call AS [alias] (columm_definition [, ... ])
ROAS FROM ... function_call AS (colum_definition [, 1)

[, ... 1)

When not using the RO FROM) syntax, the col umm_def i ni ti on list replaces the column
aliaslist that could otherwise be attached to the FROMitem; the namesin the column definitions serve
as column aliases. When using the ROAS FROM ) syntax, acol urm_defi ni ti on list can be
attached to each member function separately; or if there is only one member function and no W TH
ORDI NALI TY clause, acol utrm_def i ni ti on list can be written in place of a column alias list
following ROAS FROM ) .

Consider this example:

113



Queries

SELECT *
FROM dbl i nk(' dbname=nydb', ' SELECT pronane, prosrc FROM
pg_proc’)
AS t 1(pronane nane, prosrc text)
WHERE pronane LIKE ' bytea% ;

The dblink function (part of the dblink module) executes a remote query. It is declared to return
r ecor d since it might be used for any kind of query. The actual column set must be specified in the
calling query so that the parser knows, for example, what * should expand to.

7.2.1.5. LATERAL Subqueries

Subqueries appearing in FROMcan be preceded by the key word LATERAL. This allows them to ref-
erence columns provided by preceding FROMitems. (Without LATERAL, each subquery is evauated
independently and so cannot cross-reference any other FROMitem.)

Table functions appearing in FROMcan al so be preceded by the key word LATERAL, but for functions
the key word is optional; the function's arguments can contain references to columns provided by
preceding FROMitems in any case.

A LATERAL item can appear at top level in the FROMIist, or withinaJO Ntree. In the latter case it
can also refer to any itemsthat are on the left-hand side of aJO Nthat it is on the right-hand side of.

When a FROMitem contains LATERAL cross-references, evaluation proceeds as follows:. for each
row of the FROMitem providing the cross-referenced column(s), or set of rows of multiple FROM
items providing the columns, the LATERAL item is evaluated using that row or row set's values of
the columns. The resulting row(s) are joined as usual with the rows they were computed from. Thisis
repeated for each row or set of rows from the column source table(s).

A trivial example of LATERAL is

SELECT * FROM foo, LATERAL (SELECT * FROM bar WHERE bar.id =
foo. bar _id) ss;

Thisisnot especially useful since it has exactly the same result as the more conventional

SELECT * FROM foo, bar WHERE bar.id = foo.bar_id;

LATERAL isprimarily useful when the cross-referenced columnis necessary for computing the row(s)
to be joined. A common application is providing an argument value for a set-returning function. For
example, supposing that vert i ces( pol ygon) returns the set of vertices of a polygon, we could
identify close-together vertices of polygons stored in atable with:

SELECT pl.id, p2.id, vl, v2
FROM pol ygons pl, pol ygons p2,
LATERAL vertices(pl. poly) vi,
LATERAL vertices(p2.poly) v2
WHERE (v1 <-> v2) < 10 AND pl.id != p2.id;

This query could also be written

SELECT pl.id, p2.id, vl, v2

FROM pol ygons pl CROSS JO N LATERAL vertices(pl.poly) vi,
pol ygons p2 CRCSS JO N LATERAL vertices(p2.poly) v2

WHERE (vl <-> v2) < 10 AND pl.id != p2.id;

114



Queries

[1.2.2.

or in several other equivalent formulations. (As aready mentioned, the LATERAL key word is unnec-
essary in this example, but we use it for clarity.)

Itisoften particularly handy to LEFT JO NtoalLATERAL subquery, so that source rowswill appear
intheresult even if the LATERAL subqguery produces no rowsfor them. For example, if get _pr od-
uct _names() returnsthe names of products made by a manufacturer, but some manufacturersin
our table currently produce no products, we could find out which ones those are like this:

SELECT m name

FROM nanufacturers m LEFT JO N LATERAL get product _nanmes(m i d)
pname ON true

VWHERE pnane |'S NULL;

The WHERE Clause

The syntax of the WHERE Clauseis

WHERE sear ch_condition

where sear ch_condi ti on isany value expression (see Section 4.2) that returns a value of type
bool ean.

After the processing of the FROM clause is done, each row of the derived virtua table is checked
against the search condition. If the result of the condition is true, the row is kept in the output table,
otherwise (i.e, if the result is false or null) it is discarded. The search condition typically references
at least one column of the table generated in the FROMclause; thisis not required, but otherwise the
VWHERE clause will be fairly useless.

Note

Thejoin condition of an inner join can be written either in the WHERE clause or in the
JA Nclause. For example, these table expressions are equivalent:

FROM a, b WHERE a.id = b.id AND b.val > 5

and:

FROM a INNER JON b ON (a.id = b.id) WHERE b.val > 5

or perhaps even:

FROM a NATURAL JO N b WHERE b.val > 5

Which one of these you use is mainly amatter of style. The JO N syntax in the FROM
clause is probably not as portable to other SQL database management systems, even
though it isinthe SQL standard. For outer joins there is no choice: they must be done
in the FROMclause. The ON or USI NG clause of an outer join is not equivalent to a
WHERE condition, becauseit resultsin the addition of rows (for unmatched input rows)
aswell asthe removal of rowsin thefina result.

Here are some examples of WHERE clauses:

115



Queries

7.2.3.

SELECT ... FROMfdt WHERE c1 > 5
SELECT ... FROMfdt WHERE c1 IN (1, 2, 3)

SELECT ... FROM fdt WHERE c1 IN (SELECT c1 FROMt2)

SELECT ... FROM fdt WHERE c1 IN (SELECT ¢3 FROM t2 WHERE c2 =
fdt.cl + 10)

SELECT ... FROM fdt WHERE c1 BETWEEN ( SELECT ¢3 FROM t2 WHERE c2 =
fdt.cl + 10) AND 100

SELECT ... FROM fdt WHERE EXI STS (SELECT c1 FROMt2 WHERE c2 >
fdt.cl)

f dt isthetable derived in the FROMclause. Rows that do not meet the search condition of the WHERE
clauseare eliminated from f dt . Notice the use of scalar subqueries as value expressions. Just like any
other query, the subgueries can employ complex table expressions. Notice also how f dt isreferenced
in the subqueries. Qualifying c1 asf dt. c1 isonly necessary if c1 is aso the name of a column
in the derived input table of the subquery. But qualifying the column name adds clarity even when
it is not needed. This example shows how the column naming scope of an outer query extends into
itsinner queries.

The GROUP BY and HAVI NG Clauses

After passing the WHERE filter, the derived input table might be subject to grouping, using the GROUP
BY clause, and elimination of group rows using the HAVI NG clause.

SELECT sel ect _|i st
FROM . ..
[ WHERE . . .]
GROUP BY groupi ng_col unmm_r ef erence
[, grouping_columm_reference]...

The GROUP BY Clause is used to group together those rows in a table that have the same values
in all the columns listed. The order in which the columns are listed does not matter. The effect isto
combine each set of rows having common values into one group row that represents al rows in the
group. This is done to eliminate redundancy in the output and/or compute aggregates that apply to
these groups. For instance:

=> SELECT * FROM test1;

x|y
[ S
al| 3
c| 2
b|] 5
al| 1
(4 rows)

=> SELECT x FROM test1l GROUP BY x;
X

a

b

c

(3 rows)

116



Queries

In the second query, we could not have written SELECT * FROM t est 1 GROUP BY x, because
there is no single value for the column y that could be associated with each group. The grouped-by
columns can be referenced in the select list since they have a single value in each group.

In general, if atableisgrouped, columnsthat are not listed in GROUP BY cannot be referenced except

in aggregate expressions. An example with aggregate expressionsis:

=> SELECT x, sum(y) FROMtestl GROUP BY x;
X | sum

c |
(3 rows

o
~ N 01~

Here sumisan aggregate function that computesasinglevalue over theentiregroup. Moreinformation
about the available aggregate functions can be found in Section 9.20.

Tip

Grouping without aggregate expressions effectively calculatesthe set of distinct values
inacolumn. Thiscan also beachieved usingthe DI STI NCT clause (see Section 7.3.3).

Here is another example: it calculates the total sales for each product (rather than the total sales of
all products):

SELECT product_id, p.nanme, (sun{s.units) * p.price) AS sales
FROM products p LEFT JO N sal es s USI NG (product _id)
GROUP BY product _id, p.nane, p.price;

In this example, the columns pr oduct _i d, p. nane, and p. pri ce must be in the GROUP BY
clause since they are referenced in the query select list (but see below). The column s. uni t s does
not have to be in the GROUP BY list since it is only used in an aggregate expression (sun( . . . ) ),
which represents the sales of a product. For each product, the query returns a summary row about all
sales of the product.

If the productstableis set up sothat, say, pr oduct _i d istheprimary key, then it would be enough to
group by pr oduct _i d inthe above example, since name and price would be functionally dependent
on the product ID, and so there would be no ambiguity about which name and price value to return
for each product 1D group.

In strict SQL, GROUP BY can only group by columns of the source table but PostgreSQL extends
thisto also allow GROUP BY to group by columns in the select list. Grouping by value expressions
instead of simple column namesis also allowed.

If atable has been grouped using GROUP BY, but only certain groups are of interest, the HAVI NG
clause can be used, much like a WHERE clause, to eliminate groups from the result. The syntax is:

SELECT select_list FROM... [WHERE ...] GROUP BY ...
HAVI NG bool ean_expressi on

Expressionsinthe HAVI NGclause can refer both to grouped expressions and to ungrouped expressions
(which necessarily involve an aggregate function).

117



Queries

7.2.4.

Example:

=> SELECT x, sum(y) FROM test1l GROUP BY x HAVI NG sum(y) > 3;
X | sum

T
a | 4
b | 5
(2 rows)

=> SELECT x, sum(y) FROM testl GROUP BY x HAVING x < 'c';
X | sum

T
a | 4
b | 5
(2 rows)

Again, amorerealistic example:

SELECT product_id, p.nanme, (sun{(s.units) * (p.price - p.cost)) AS
profit
FROM products p LEFT JO N sales s USI NG (product _id)
WHERE s. date > CURRENT_DATE - | NTERVAL ' 4 weeks'
GROUP BY product _id, p.nane, p.price, p.cost
HAVI NG sum(p. price * s.units) > 5000;

In the example above, the WHERE clause is selecting rows by a column that is not grouped (the ex-
pressionisonly truefor salesduring the last four weeks), while the HAVI NGclause restricts the output
to groupswith total gross sales over 5000. Note that the aggregate expressions do not necessarily need
to be the same in all parts of the query.

If aquery contains aggregate function calls, but no GROUP BY clause, grouping still occurs: the result
is a single group row (or perhaps no rows at all, if the single row is then eliminated by HAVI NG).
The sameistrueif it contains a HAVI NG clause, even without any aggregate function calls or GROUP
BY clause.

GROUPI NG SETS, CUBE, and ROLLUP

M ore complex grouping operationsthan those described above are possi bl e using the concept of group-
ing sets. The data selected by the FROMand WHERE clauses is grouped separately by each specified
grouping set, aggregates computed for each group just as for simple GROUP BY clauses, and then
the results returned. For example:

=> SELECT * FROM itens_sol d;
brand | size | sales

_______ e
Foo | L | 10
Foo | M | 20
Bar | M | 15
Bar | L | 5
(4 rows)

=> SELECT brand, size, sun{sales) FROMitens_sold GROUP BY GROUPI NG
SETS ((brand), (size), ());
brand | size | sum

118



Queries

Foo | | 30
Bar | | 20
| L | 15
| M | 35
| | 50
(5 rows)

Each sublist of GROUPI NG SETS may specify zero or more columnsor expressions and isinterpreted
the same way as though it were directly in the GROUP BY clause. An empty grouping set means that
all rows are aggregated down to asingle group (which is output even if no input rows were present),
as described above for the case of aggregate functions with no GROUP BY clause.

References to the grouping columns or expressions are replaced by null values in result rows for
grouping setsin which those columns do not appear. To distinguish which grouping a particular output
row resulted from, see Table 9.56.

A shorthand notation is provided for specifying two common types of grouping set. A clause of the
form

ROLLUP ( el, e2, e3, ... )

represents the given list of expressions and al prefixes of the list including the empty list; thus it is

equivalent to

GROUPI NG SETS (

(el, e2, e3, ... ),
(el, e2),
(el),

()
)

Thisis commonly used for analysis over hierarchical data; e.g. total salary by department, division,
and company-wide total.

A clause of the form

CUBE ( el, e2, ... )

represents the given list and all of its possible subsets (i.e. the power set). Thus

CUBE (a, b, c)

isequivalent to

GROUPI NG SETS (
(a b, c),
(a b ),
( a, c),
(a ),
( b, ¢ ),
( b ),
( c)
( )

~

119



Queries

Theindividual elementsof a CUBE or ROLLUP clause may beeither individual expressions, or sublists
of elements in parentheses. In the latter case, the sublists are treated as single units for the purposes
of generating the individual grouping sets. For example:

CUBE ( (a, b), (c, d) )

isequivalent to

GROUPI NG SETS (
(a b, c, d),

(a b )
( c, d),
( )
)
and

ROLLUP ( a, (b, c), d)

isequivalent to

GROUPI NG SETS (

(a b, c, d),
(a b, c ),
(a )
( )

)

The CUBE and ROLLUP constructs can be used either directly in the GROUP BY clause, or nested
inside a GROUPI NG SETS clause. If one GROUPI NG SETS clause is nested inside another, the
effect isthe same asif all the elements of the inner clause had been written directly in the outer clause.

If multiple grouping items are specified in asingle GROUP BY clause, then the final list of grouping
setsis the cross product of the individual items. For example:

GROUP BY a, CUBE (b, c), GROUPING SETS ((d), (e))

is equivalent to

GROUP BY GROUPI NG SETS (
(a, b, ¢, d, (a, b, c, e),

(a, b, d), (a, b, e),
(a, ¢, d), (a, ¢, e),
(a, d), (a, e)

Note

The construct (a, b) isnormally recognized in expressions as a row constructor.
Within the GROUP BY clause, this does not apply at the top levels of expressions, and
(a, b) isparsedasalist of expressions as described above. If for some reason you
need arow constructor in agrouping expression, use RON a, b).

120



Queries

7.2.5.

Window Function Processing

If the query contains any window functions (see Section 3.5, Section 9.21 and Section 4.2.8), these
functions are evaluated after any grouping, aggregation, and HAVI NGfiltering isperformed. That is, if
the query uses any aggregates, GROUP BY, or HAVI NG then the rows seen by the window functions
are the group rows instead of the original table rows from FROMWHERE.

When multiple window functions are used, all the window functions having syntactically equivalent
PARTI TI ON BY and ORDER BY clausesin their window definitions are guaranteed to be evaluated
in asingle pass over the data. Therefore they will see the same sort ordering, even if the ORDER BY
does not uniquely determine an ordering. However, no guarantees are made about the evaluation of
functions having different PARTI TI ON BY or ORDER BY specifications. (In such casesasort step is
typically required between the passes of window function evaluations, and the sort is not guaranteed
to preserve ordering of rowsthat its ORDER BY sees as equivalent.)

Currently, window functions aways require presorted data, and so the query output will be ordered
according to one or another of the window functions' PARTI TI ON BY/ORDER BY clauses. It is not
recommended to rely on this, however. Use an explicit top-level ORDER BY clause if you want to be
sure the results are sorted in a particular way.

7.3. Select Lists

7.3.1.

As shown in the previous section, the table expression in the SELECT command constructs an inter-
mediate virtual table by possibly combining tables, views, eliminating rows, grouping, etc. Thistable
is finally passed on to processing by the select list. The select list determines which columns of the
intermediate table are actually output.

Select-List Items

The simplest kind of select list is* which emits al columns that the table expression produces. Oth-
erwise, a select list is a comma-separated list of value expressions (as defined in Section 4.2). For
instance, it could be alist of column names:

SELECT a, b, ¢ FROM ...

The columns names a, b, and ¢ are either the actual names of the columns of tables referenced in the
FROMclause, or the aliases given to them as explained in Section 7.2.1.2. The name space available
in the select list is the same as in the WHERE clause, unless grouping is used, in which case it is the
same asin the HAVI NGclause.

If more than one table has a column of the same name, the table name must also be given, asin:

SELECT tbl1l.a, thl2.a, tbll.b FROM...

When working with multiple tables, it can also be useful to ask for all the columns of aparticular table:

SELECT thbhl1.*, thl2.a FROM ...
See Section 8.16.5 for more about thet abl e_nane. * notation.

If an arbitrary value expression is used in the select list, it conceptually adds a new virtual column to
the returned table. The value expression is evaluated once for each result row, with the row's values
substituted for any column references. But the expressions in the select list do not have to reference
any columnsin the table expression of the FROMclause; they can be constant arithmetic expressions,
for instance.

121



Queries

7.3.2.

7.3.3.

Column Labels

The entries in the select list can be assigned names for subsequent processing, such as for usein an
ORDER BY clause or for display by the client application. For example:

SELECT a AS value, b + ¢ AS sum FROM . ..

If no output column nameis specified using AS, the system assigns adefault column name. For simple
column references, this is the name of the referenced column. For function calls, this is the name of
the function. For complex expressions, the system will generate a generic name.

The AS keyword is optional, but only if the new column name does not match any PostgreSQL key-
word (see Appendix C). To avoid an accidental match to akeyword, you can double-quote the column
name. For example, VALUE is a keyword, so this does not work:

SELECT a value, b + ¢ AS sum FROM . ..

but this does:

SELECT a "value", b + ¢ AS sum FROM . ..

For protection against possible future keyword additions, it is recommended that you always either
write AS or double-quote the output column name.

Note

The naming of output columns hereisdifferent from that donein the FROMclause (see
Section 7.2.1.2). It is possible to rename the same column twice, but the name assigned
in the select list is the one that will be passed on.

DI STI NCT

After the select list has been processed, the result table can optionally be subject to the elimination of
duplicate rows. The DI STI NCT key word iswritten directly after SELECT to specify this:

SELECT DI STI NCT sel ect _|i st

(Instead of DI STI NCT the key word ALL can be used to specify the default behavior of retaining
al rows.)

Obviously, two rows are considered distinct if they differ in at least one column value. Null values
are considered equal in this comparison.

Alternatively, an arbitrary expression can determine what rows are to be considered distinct:

SELECT DI STI NCT ON (expression [, expression ...]) select list

Here expr essi on is an arbitrary value expression that is evaluated for al rows. A set of rows for
which al the expressions are equal are considered duplicates, and only the first row of the set is kept
in the output. Note that the “first row” of a set is unpredictable unless the query is sorted on enough
columns to guarantee a unique ordering of the rows arriving at the DI STI NCT filter. (DI STI NCT
ON processing occurs after ORDER BY sorting.)

122



Queries

The DI STI NCT ON clause is not part of the SQL standard and is sometimes considered bad style
because of the potentially indeterminate nature of its results. With judicious use of GROUP BY and
subqueriesin FROM this construct can be avoided, but it is often the most convenient alternative.

7.4. Combining Queries

Theresults of two queries can be combined using the set operations union, intersection, and difference.
The syntax is

queryl UNION [ ALL] query?2
queryl | NTERSECT [ ALL] query2
queryl EXCEPT [ ALL] query2

qgueryl and quer y2 are queries that can use any of the features discussed up to this point. Set
operations can also be nested and chained, for example

queryl UNI ON query2 UNI ON query3

which is executed as;

(queryl UNION query2) UNI ON query3

UNI ON effectively appendsthe result of quer y2 to theresult of quer y1 (although thereis no guar-
anteethat thisisthe order in which therows are actually returned). Furthermore, it eliminatesduplicate
rows from its result, in the sasmeway as DI STI NCT, unless UNI ON ALL is used.

| NTERSECT returns al rows that are both in the result of quer y1 and in the result of quer y2.
Duplicate rows are eliminated unless| NTERSECT ALL isused.

EXCEPT returns all rows that are in the result of quer y1 but not in the result of quer y2. (Thisis
sometimes called the difference between two queries.) Again, duplicates are eliminated unless EX-
CEPT ALL isused.

In order to calculate the union, intersection, or difference of two queries, the two queries must be
“union compatible”, which meansthat they return the same number of columnsand the corresponding
columns have compatible data types, as described in Section 10.5.

7.5. Sorting Rows

After a query has produced an output table (after the select list has been processed) it can optionally
be sorted. If sorting is not chosen, the rows will be returned in an unspecified order. The actual order
in that case will depend on the scan and join plan types and the order on disk, but it must not berelied
on. A particular output ordering can only be guaranteed if the sort step is explicitly chosen.

The ORDER BY clause specifies the sort order:

SELECT sel ect _|i st
FROM t abl e_expressi on
ORDER BY sort_expressionl [ASC | DESC] [NULLS { FIRST | LAST }]
[, sort_expression2 [ASC | DESC] [NULLS { FIRST |
LAST }] ...]

The sort expression(s) can be any expression that would be valid in the query's select list. An example
is:

123



Queries

SELECT a, b FROM tabl el ORDER BY a + b, c;

When more than one expression is specified, the later values are used to sort rows that are equal
according to the earlier values. Each expression can befollowed by an optional ASC or DESC keyword
to set the sort direction to ascending or descending. ASC order is the default. Ascending order puts
smaller valuesfirst, where“smaller” isdefined in terms of the < operator. Similarly, descending order
is determined with the > operator. *

TheNULLS FI RST and NULLS LAST options can be used to determine whether nulls appear before
or after non-null values in the sort ordering. By default, null values sort asif larger than any non-null
value; that is, NULLS FI RST isthe default for DESC order, and NULLS LAST otherwise.

Notethat the ordering optionsare considered independently for each sort column. For example ORDER
BY x, y DESCmeans ORDER BY x ASC, y DESC, which isnot the same as ORDER BY
x DESC, y DESC.

A sort_expressi on can aso be the column label or number of an output column, asin:

SELECT a + b AS sum ¢ FROM tabl el ORDER BY sum
SELECT a, max(b) FROM tabl el GROUP BY a ORDER BY 1;

both of which sort by the first output column. Note that an output column name has to stand alone,
that is, it cannot be used in an expression — for example, thisis not correct:

SELECT a + b AS sum ¢ FROMtabl el ORDER BY sum + c; - -
Wr ong

Thisrestriction is made to reduce ambiguity. Thereisstill ambiguity if an ORDER BY itemisasimple
name that could match either an output column name or a column from the table expression. The
output column is used in such cases. This would only cause confusion if you use AS to rename an
output column to match some other table column's name.

ORDER BY can be applied to the result of a UNI ON, | NTERSECT, or EXCEPT combination, but in
this caseit isonly permitted to sort by output column names or numbers, not by expressions.

7.6.LIM T and OFFSET

LI M T and OFFSET allow you to retrieve just a portion of the rows that are generated by the rest
of the query:

SELECT select |i st
FROM t abl e_expr essi on
[ ORDER BY ... ]
[ LIMT { number | ALL } ] [ OFFSET number ]

If alimit count is given, no more than that many rows will be returned (but possibly fewer, if the
query itself yields fewer rows). LI M T ALL isthe same asomittingtheLl M T clause, asisLIM T
with aNULL argument.

OFFSET says to skip that many rows before beginning to return rows. OFFSET O is the same as
omitting the OFFSET clause, asis OFFSET with aNULL argument.

If both OFFSET and LI M T appear, then OFFSET rows are skipped before starting to count the
LI M T rowsthat are returned.

L Actually, PostgreSQL uses the default B-tree operator class for the expression's data type to determine the sort ordering for ASC and DESC.
Conventionally, data types will be set up so that the < and > operators correspond to this sort ordering, but a user-defined data type's designer
could choose to do something different.

124



Queries

Whenusing LI M T, it isimportant to use an ORDER BY clause that constrains the result rows into a
unique order. Otherwise you will get an unpredictable subset of the query'srows. Y ou might be asking
for the tenth through twentieth rows, but tenth through twentieth in what ordering? The ordering is
unknown, unless you specified ORDER BY.

The query optimizer takes LI M T into account when generating query plans, so you are very likely
to get different plans (yielding different row orders) depending on what you give for LI M T and
OFFSET. Thus, using different LI M T/OFFSET values to select different subsets of a query result
will give inconsistent results unless you enforce a predictable result ordering with ORDER BY. This
isnot abug; it isan inherent consegquence of the fact that SQL does not promise to deliver the results
of aquery in any particular order unless ORDER BY is used to constrain the order.

The rows skipped by an OFFSET clause still have to be computed inside the server; therefore alarge
OFFSET might be inefficient.

7.7. VALUES Lists

VALUES provides away to generate a “constant table” that can be used in a query without having to
actually create and populate atable on-disk. The syntax is

VALUES ( expression [, ...]1 ) [, ...]

Each parenthesized list of expressions generates arow in the table. The lists must al have the same
number of elements (i.e., the number of columns in the table), and corresponding entries in each
list must have compatible data types. The actual data type assigned to each column of the result is
determined using the same rules as for UNI ON (see Section 10.5).

Asan example:

VALUES (1, 'one'), (2, 'two'), (3, '"three');

will return atable of two columns and three rows. It's effectively equivalent to:

SELECT 1 AS columil, 'one' AS colum?2
UNI ON ALL

SELECT 2, 'two'

UNI ON ALL

SELECT 3, 'three';

By default, PostgreSQL assigns the names col umrm1, col uim2, etc. to the columns of a VALUES
table. The column names are not specified by the SQL standard and different database systems do it
differently, soit's usually better to override the default names with atable aliaslist, like this:

=> SELECT * FROM (VALUES (1, 'one'), (2, '"tw'), (3, '"three')) AS't
(numletter);
num | letter

3| three
(3 rows)

Syntactically, VALUES followed by expression listsis treated as equivalent to:

125



Queries

SELECT sel ect _|ist FROM tabl e_expression

and can appear anywhere a SELECT can. For example, you can use it as part of aUNI ON, or attach a
sort_speci ficati on (ORDER BY, LI M T, and/or OFFSET) to it. VALUES is most commonly
used asthe data source in an | NSERT command, and next most commonly as a subquery.

For more information see VALUES.

7.8. W THQueries (Common Table Expres-
sions)

7.8.1.

W TH provides away to write auxiliary statements for usein alarger query. These statements, which
are often referred to as Common Table Expressions or CTEs, can be thought of as defining temporary
tables that exist just for one query. Each auxiliary statement in a W TH clause can be a SELECT,
| NSERT, UPDATE, or DELETE; and the W TH clause itself is attached to a primary statement that
can also be a SELECT, | NSERT, UPDATE, or DELETE.

SELECT in WTH

The basic value of SELECT in W TH is to break down complicated queries into simpler parts. An
exampleis:

W TH regi onal _sal es AS (
SELECT regi on, SUM anount) AS total sales
FROM or ders
GROUP BY region
), top_regions AS (
SELECT region
FROM r egi onal _sal es
WHERE total sales > (SELECT SUMtotal sales)/ 10 FROM
regi onal _sal es)
)
SELECT regi on,
product,
SUM quantity) AS product _units,
SUM anmount) AS product _sal es
FROM or ders
WHERE regi on I N (SELECT regi on FROM top_r egi ons)
GROUP BY region, product;

which displays per-product sales totals in only the top sales regions. The W TH clause defines two
auxiliary statementsnamedr egi onal _sal es andt op_r egi ons, wherethe output of r egi on-
al _sal es isusedintop_regi ons and the output of t op_r egi ons is used in the primary
SELECT query. Thisexample could have been written without W TH, but we'd have needed two levels
of nested sub-SELECTS. It's abit easier to follow this way.

The optional RECURSI VE modifier changes W TH from a mere syntactic convenience into afeature
that accomplishes things not otherwise possiblein standard SQL . Using RECURSI VE, aW TH query
canrefer toitsown output. A very simple exampleisthisquery to sum theintegersfrom 1 through 100:

W TH RECURSI VE t (n) AS (
VALUES (1)
UNI ON ALL
SELECT n+1 FROMt WHERE n < 100

126



Queries

SELECT sunm{n) FROMt;

The general form of arecursive W TH query is always a non-recursive term, then UNI ON (or UNI ON
ALL), then arecursive term, where only the recursive term can contain a reference to the query's own
output. Such a query is executed as follows:

Recursive Query Evaluation

1. Evaluate the non-recursive term. For UNI ON (but not UNI ON ALL), discard duplicate rows.
Include al remaining rowsin theresult of the recursive query, and al so place them in atemporary
working table.

2. Solong asthe working tableis not empty, repeat these steps:

a. Evaluate the recursive term, substituting the current contents of the working table for the
recursive self-reference. For UNI ON (but not UNI ON ALL), discard duplicate rows and
rows that duplicate any previous result row. Include al remaining rows in the result of the
recursive query, and also place them in atemporary intermediate table.

b. Replace the contents of the working table with the contents of the intermediate table, then
empty the intermediate table.

Note

Strictly speaking, this processisiteration not recursion, but RECURSI VE isthe termi-
nology chosen by the SQL standards committee.

In the exampl e above, the working table has just a single row in each step, and it takes on the values
from 1 through 100 in successive steps. In the 100th step, there is no output because of the WHERE
clause, and so the query terminates.

Recursive queries are typically used to deal with hierarchical or tree-structured data. A useful example
is this query to find all the direct and indirect sub-parts of a product, given only a table that shows
immediate inclusions:

W TH RECURSI VE i ncl uded_parts(sub_part, part, quantity) AS (
SELECT sub_part, part, quantity FROM parts WHERE part =
'our _product'
UNI ON ALL
SELECT p.sub_part, p.part, p.quantity
FROM i ncl uded_parts pr, parts p
WHERE p. part = pr.sub_part
)
SELECT sub_part, SUMquantity) as total quantity
FROM i ncl uded_parts
GROUP BY sub_part

When working with recursive queriesit isimportant to be sure that the recursive part of the query will
eventually return no tuples, or else the query will loop indefinitely. Sometimes, using UNI ONinstead
of UNI ON ALL can accomplish thisby discarding rowsthat duplicate previous output rows. However,
often acycle does not involve output rows that are completely duplicate: it may be necessary to check
just one or a few fields to see if the same point has been reached before. The standard method for
handling such situations is to compute an array of the already-visited values. For example, consider
the following query that searches atable gr aph using al i nk field:

W TH RECURSI VE search_graph(id, link, data, depth) AS (

127



Queries

SELECT g.id, g.link, g.data, 1
FROM graph g
UNI ON ALL
SELECT g.id, g.link, g.data, sg.depth + 1
FROM graph g, search_graph sg
WHERE g.id = sg.link
)
SELECT * FROM search_graph;

This query will loop if thel i nk relationships contain cycles. Because we require a* depth” output,
just changing UNI ON' ALL to UNI ON'would not eliminate the looping. Instead we need to recognize
whether we have reached the same row again while following a particular path of links. We add two
columnspat h and cycl e to the loop-prone query:

W TH RECURSI VE search_graph(id, link, data, depth, path, cycle) AS
(
SELECT g.id, g.link, g.data, 1,
ARRAY[ g. i d],
fal se
FROM gr aph g
UNI ON ALL
SELECT g.id, g.link, g.data, sg.depth + 1,
path || g.id,
g.id = ANY(path)
FROM graph g, search_graph sg
WHERE g.id = sg.link AND NOT cycle

)
SELECT * FROM sear ch_graph;

Asidefrom preventing cycles, the array valueis often useful initsown right as representing the * path”
taken to reach any particular row.

In the general case where more than one field needs to be checked to recognize a cycle, use an array
of rows. For example, if we needed to compare fieldsf 1 and f 2:

W TH RECURSI VE search_graph(id, link, data, depth, path, cycle) AS
(
SELECT g.id, g.link, g.data, 1,
ARRAY[ RONg.f1, g.f2)],
fal se
FROM graph ¢
UNI ON ALL
SELECT g.id, g.link, g.data, sg.depth + 1,
path || RONg.f1, g.f2),
RONg.f1, g.f2) = ANY(path)
FROM graph g, search_graph sg
WHERE g.id = sg.link AND NOT cycle

)
SELECT * FROM search_graph;

Tip

Omit the RON() syntax in the common case where only one field needs to be checked
to recognize acycle. This allows asimple array rather than a composite-type array to
be used, gaining efficiency.

128



Queries

7.8.2.

Tip

The recursive query evaluation algorithm produces its output in breadth-first search
order. Y ou can display theresultsin depth-first search order by making the outer query
ORDER BY a“path” column constructed in thisway.

A helpful trick for testing queries when you are not certain if they might loop isto placeaLl M T in
the parent query. For example, this query would loop forever without the LI M T:

W TH RECURSI VE t (n) AS (
SELECT 1
UNI ON ALL
SELECT n+1 FROM t

)
SELECT n FROMt LIM T 100;

This works because PostgreSQL 's implementation evaluates only as many rows of a W TH query as
are actually fetched by the parent query. Using this trick in production is not recommended, because
other systems might work differently. Also, it usualy won't work if you make the outer query sort the
recursive query's results or join them to some other table, because in such cases the outer query will
usually try to fetch all of the W TH query's output anyway.

A useful property of W TH queriesis that they are evaluated only once per execution of the parent
guery, even if they are referred to more than once by the parent query or sibling W TH queries. Thus,
expensive calculations that are needed in multiple places can be placed within aW TH query to avoid
redundant work. Another possible application is to prevent unwanted multiple evaluations of func-
tions with side-effects. However, the other side of this coin is that the optimizer is less able to push
restrictions from the parent query down into a W TH query than an ordinary subquery. The W TH
query will generally be evaluated as written, without suppression of rows that the parent query might
discard afterwards. (But, as mentioned above, evaluation might stop early if the reference(s) to the
guery demand only alimited number of rows.)

The examples above only show W TH being used with SELECT, but it can be attached in the same
way to | NSERT, UPDATE, or DELETE. In each case it effectively provides temporary table(s) that
can be referred to in the main command.

Data-Modifying Statements in W TH

Y ou can use data-modifying statements (I NSERT, UPDATE, or DELETE) in W TH. Thisallows you
to perform several different operations in the same query. An exampleis:

W TH noved_rows AS (
DELETE FROM product s
VWHERE
"date" >= '2010-10-01'" AND
"date" < '2010-11-01'
RETURNI NG *
)
| NSERT | NTO products_I og
SELECT * FROM noved rows;

This query effectively moves rows from pr oduct s to products_| og. The DELETE in W TH
deletes the specified rows from pr oduct s, returning their contents by means of its RETURNI NG
clause; and then the primary query reads that output and insertsit into pr oduct s_| og.

129



Queries

A fine point of the above example is that the W TH clause is attached to the | NSERT, not the sub-
SELECT within the | NSERT. Thisis necessary because data-modifying statements are only allowed
in W TH clauses that are attached to the top-level statement. However, normal W TH visibility rules
apply, so it is possible to refer to the W TH statement's output from the sub-SELECT.

Data-modifying statements in W TH usually have RETURNI NG clauses (see Section 6.4), as shown
in the example above. It isthe output of the RETURNI NG clause, not the target table of the data-mod-
ifying statement, that forms the temporary table that can be referred to by the rest of the query. If a
data-modifying statement in W TH lacks a RETURNI NG clause, then it forms no temporary table and
cannot be referred to in the rest of the query. Such a statement will be executed nonetheless. A not-
particularly-useful exampleis:

WTHt AS (
DELETE FROM f 00

)
DELETE FROM bar;

Thisexamplewould removeall rowsfromtablesf oo and bar . The number of affected rowsreported
to the client would only include rows removed from bar .

Recursive self-references in data-modifying statements are not allowed. In some cases it is possible
to work around this limitation by referring to the output of arecursive W TH, for example:

W TH RECURSI VE i ncl uded_parts(sub_part, part) AS (
SELECT sub_part, part FROM parts WHERE part = 'our_product’
UNI ON ALL
SELECT p. sub_part, p.part
FROM i ncl uded_parts pr, parts p
WHERE p. part = pr.sub_part
)
DELETE FROM parts
WHERE part |IN (SELECT part FROM i ncl uded_parts);

This query would remove al direct and indirect subparts of a product.

Data-modifying statements in W TH are executed exactly once, and always to completion, indepen-
dently of whether the primary query reads all (or indeed any) of their output. Notice that thisis differ-
ent from the rule for SELECT in W TH: as stated in the previous section, execution of a SELECT is
carried only asfar asthe primary query demands its output.

The sub-statements in W TH are executed concurrently with each other and with the main query.
Therefore, when using data-modifying statements in W TH, the order in which the specified updates
actually happen is unpredictable. All the statements are executed with the same snapshot (see Chap-
ter 13), so they cannot “see” one another's effects on the target tables. This alleviates the effects of the
unpredictability of the actual order of row updates, and means that RETURNI NGdatais the only way
to communicate changes between different W TH sub-statements and the main query. An example of
thisisthat in

WTH t AS (
UPDATE products SET price = price * 1.05
RETURNI NG *

)
SELECT * FROM products;

the outer SELECT would return the original prices before the action of the UPDATE, whilein

130



Queries

WTH t AS (
UPDATE products SET price = price * 1.05
RETURNI NG *

)
SELECT * FROM t;

the outer SELECT would return the updated data.

Trying to update the same row twice in asingle statement is not supported. Only one of the modifica-
tionstakesplace, but it isnot easy (and sometimes not possible) to reliably predict which one. Thisalso
appliesto deleting arow that was already updated in the same statement: only the updateis performed.
Therefore you should generally avoid trying to modify a single row twice in a single statement. In
particular avoid writing W TH sub-statements that could affect the same rows changed by the main
statement or a sibling sub-statement. The effects of such a statement will not be predictable.

At present, any table used as the target of a data-modifying statement in W TH must not have a con-
ditional rule, nor an ALSOrule, nor an | NSTEAD rule that expands to multiple statements.

131



Chapter 8. Data Types

PostgreSQL has arich set of native data types available to users. Users can add new types to Post-
greSQL using the CREATE TY PE command.

Table 8.1 shows al the built-in general-purpose data types. Most of the alternative names listed in
the“Aliases’ column are the names used internally by PostgreSQL for historical reasons. In addition,
some internally used or deprecated types are available, but are not listed here.

Table8.1. Data Types

Name Aliases Description

bi gi nt int8 signed eight-byte integer

bi gseri al serial8 autoincrementing eight-byte in-
teger

bit [ (n) ] fixed-length bit string

bit varying [ (n) ] varbit [ (n) ] variable-length bit string

bool ean bool logical Boolean (true/false)

box rectangular box on aplane

byt ea binary data (“byte array”)

character [ (n) ] char [ (n) ] fixed-length character string

character varying|varchar [ (n) ] variable-length character string

[ (n) ]

cidr IPv4 or |Pv6 network address

circle circleon aplane

dat e calendar date (year, month, day)

doubl e precision float8 double precision floating-point
number (8 bytes)

i net IPv4 or |Pv6 host address

i nteger int,int4 signed four-byte integer

interval [ fields ] time span

[ (p) ]

json textual JSON data

jsonb binary JSON data, decomposed

l'ine infinite line on a plane

| seg line segment on a plane

macaddr MAC (Media Access Control)
address

macaddr 8 MAC (Media Access Control)
address (EUI-64 format)

noney currency amount

nuneric [ (p, S) ] decimal [ (p, s) ] exact numeric of selectable pre-
cision

pat h geometric path on aplane

pg_l sn PostgreSQL  Log  Seguence
Number

poi nt geometric point on aplane

132



Data Types

Name Aliases Description

pol ygon closed geometric path on aplane

r eal float4 single precision floating-point
number (4 bytes)

smal | i nt int2 signed two-byte integer

smal | seri al serial 2 autoincrementing two-byte inte-
ger

seri al serial4 autoi ncrementing four-byte inte-
ger

t ext variable-length character string

time [ (p) ] [ wthout
tinme zone ]

time of day (no time zone)

time [ (p) 1] with timejtinetz
zone

time of day, including time zone

timestanp [ (p) |
[ without tine zone ]

date and time (no time zone)

timestanp [ (p) ] withitinestanptz

date and time, including time

tinme zone zone
t squery text search query
t svect or text search document

t xi d_snapshot

user-level transaction ID snap-
shot

uui d

universally unique identifier

xm

XML data

time zone), xm .

Compatibility

The following types (or spellings thereof) are specified by SQL: bi gi nt,bi t,bi t
varyi ng, bool ean, char, character
dat e, doubl e precision,integer,interval ,nuneric,decinal,re-
al ,smal lint,tinme (with or without time zone), t i mest anp (with or without

varyi ng, charact er, var char,

Each datatype has an external representation determined by itsinput and output functions. Many of the
built-in types have obvious external formats. However, several types are either unique to PostgreSQL,
such as geometric paths, or have several possible formats, such asthe date and time types. Some of the
input and output functions are not invertible, i.e., the result of an output function might lose accuracy

when compared to the original input.

8.1. Numeric Types

Numeric types consist of two-, four-, and eight-byte integers, four- and eight-byte floating-point num-
bers, and selectable-precision decimals. Table 8.2 lists the available types.

Table 8.2. Numeric Types

Name Storage Size

Description

Range

smal | i nt 2 bytes

small-range integer -32768 to +32767

133




Data Types

8.1.1.

8.1.2.

Name Storage Size Description Range
i nt eger 4 bytes typical choice for inte-|-2147433648 to
ger +2147483647
bi gi nt 8 bytes large-range integer -9223372036854775808
to
+9223372036854775807
deci nal variable user-specified  preci- |up to 131072 digits be-
sion, exact fore the decima point;

up to 16383 digits after
the decimal point

nuneric variable user-specified  preci- |up to 131072 digits be-
sion, exact fore the decimal point;
up to 16383 digits after
the decimal point

r eal 4 bytes variable-precision, in-|6 decimal digits preci-
exact sion

doubl e preci si on|8bytes variable-precision, in-|15 decimal digits preci-
exact sion

smal | seri al 2 bytes small autoincrementing|1 to 32767
integer

seri al 4 bytes autoincrementing inte-| 1 to 2147483647
ger

bi gseri al 8 bytes large autoincrementing|1 to
integer 9223372036854775807

The syntax of constants for the numeric typesis described in Section 4.1.2. The numeric types have a
full set of corresponding arithmetic operators and functions. Refer to Chapter 9 for moreinformation.
The following sections describe the typesin detail.

Integer Types

Thetypessmal | i nt,i nt eger, andbi gi nt store whole numbers, that is, numbers without frac-
tional components, of various ranges. Attemptsto store values outside of the allowed range will result
inan error.

Thetypei nt eger isthecommon choice, asit offersthe best balance between range, storagesize, and
performance. Thesmal | i nt typeisgenerally only used if disk spaceisat apremium. Thebi gi nt
type is designed to be used when the range of thei nt eger typeisinsufficient.

SQL only specifiesthe integer typesi nt eger (ori nt),smal | i nt,andbi gi nt . Thetype names
int2,int4,andi nt 8 are extensions, which are also used by some other SQL database systems.

Arbitrary Precision Numbers

Thetypenuner i ¢ can store numberswith avery large number of digits. It is especialy recommend-
ed for storing monetary amounts and other quantities where exactness is required. Calculations with
numer i ¢ valuesyield exact results where possible, e.g. addition, subtraction, multiplication. How-
ever, calculations on numer i ¢ values are very slow compared to the integer types, or to the float-
ing-point types described in the next section.

We use thefollowing termsbelow: The precision of anuner i ¢ isthetotal count of significant digits
in the whole number, that is, the number of digits to both sides of the decimal point. The scale of a
nuner i ¢ isthe count of decimal digitsin the fractional part, to the right of the decimal point. So the
number 23.5141 hasaprecision of 6 and ascale of 4. Integers can be considered to have ascale of zero.

134



Data Types

Both the maximum precision and the maximum scale of anuner i ¢ column can be configured. To
declare acolumn of type nuner i ¢ use the syntax:

NUMERI C( pr eci si on, scal e)

The precision must be positive, the scale zero or positive. Alternatively:

NUMERI C( pr eci si on)

selects ascale of 0. Specifying:

NUMERI C

without any precision or scale creates a column in which numeric values of any precision and scale
can be stored, up to the implementation limit on precision. A column of thiskind will not coerce input
values to any particular scale, whereas nuner i ¢ columns with a declared scale will coerce input
valuesto that scale. (The SQL standard requires adefault scale of 0, i.e., coercion to integer precision.
Wefind thisabit useless. If you're concerned about portability, always specify the precision and scale
explicitly.)

Note

The maximum allowed precision when explicitly specified in the type declaration is
1000; NUMERI C without a specified precision is subject to the limits described in
Table 8.2.

If the scale of a value to be stored is greater than the declared scale of the column, the system will
round the value to the specified number of fractional digits. Then, if the number of digitsto the left of
the decimal point exceeds the declared precision minus the declared scale, an error is raised.

Numeric values are physically stored without any extraleading or trailing zeroes. Thus, the declared
precision and scale of a column are maximums, not fixed allocations. (In this sense the nuneri ¢
typeismore akin to var char (n) thanto char ( n).) The actual storage requirement is two bytes
for each group of four decimal digits, plus three to eight bytes overhead.

In addition to ordinary numeric values, the nurrer i ¢ type allows the special value NaN, meaning
“not-a-number”. Any operation on NaN yields another NaN. When writing this value as a constant in
an SQL command, you must put quotes around it, for example UPDATE t abl e SET x = ' NaN .
On input, the string NaN is recognized in a case-insensitive manner.

Note

In most implementations of the “not-a-number” concept, NaNis not considered equal
to any other numeric value (including NaN). In order to alow nuneri ¢ values to
be sorted and used in tree-based indexes, PostgreSQL treats NaN values as equal, and
greater than all non-NaN values.

Thetypesdeci mal and nuneri ¢ are equivalent. Both types are part of the SQL standard.

When rounding values, the nuner i ¢ type roundsties away from zero, while (on most machines) the
real anddoubl e preci si on typesround tiesto the nearest even number. For example:

135



Data Types

8.1.3.

SELECT x,

round(x: : numeric) AS numround,

round(x: : doubl e precision) AS dbl_round
FROM generate_series(-3.5, 3.5, 1) as x;

X | numround | dbl _round
______ e,
-3.5 | -4 | -4
-2.5 | -3 | -2
-1.5 | -2 | -2
-0.5 | -1 | -0

0.5 | 1] 0

1.5 | 2| 2

2.5 | 3 2

3.5 | 4 | 4
(8 rows)

Floating-Point Types

The datatypesr eal and doubl e preci si on are inexact, variable-precision numeric types. In
practice, these types are usualy implementations of |IEEE Standard 754 for Binary Floating-Point
Arithmetic (single and double precision, respectively), to the extent that the underlying processor,
operating system, and compiler support it.

Inexact means that some values cannot be converted exactly to the internal format and are stored as
approximations, so that storing and retrieving aval ue might show slight discrepancies. Managing these
errors and how they propagate through calculations is the subject of an entire branch of mathematics
and computer science and will not be discussed here, except for the following points:

« If you require exact storage and calculations (such as for monetary amounts), use the nurreri c
typeinstead.

« If you want to do complicated calculations with these types for anything important, especiadly if
you rely on certain behavior in boundary cases (infinity, underflow), you should evaluate the im-
plementation carefully.

» Comparing two floating-point values for equality might not always work as expected.

On most platforms, ther eal type has arange of at least 1E-37 to 1E+37 with aprecision of at least
6 decimal digits. Thedoubl e pr eci si on typetypicaly has arange of around 1E-307 to 1E+308
withaprecision of at least 15 digits. Vauesthat aretoo large or too small will cause an error. Rounding
might take place if the precision of an input number is too high. Numbers too close to zero that are
not representable as distinct from zero will cause an underflow error.

Note

The extra float_digits setting controls the number of extra significant digits included
when afloating point valueis converted to text for output. With the default value of O,
the output is the same on every platform supported by PostgreSQL . Increasing it will
produce output that more accurately representsthe stored value, but may be unportable.

In addition to ordinary numeric values, the floating-point types have several specia values:

Infinity
-Infinity
NaN

136



Data Types

8.1.4.

These represent the IEEE 754 special values “infinity”, “negative infinity”, and “not-a-number”, re-
spectively. (On a machine whose floating-point arithmetic does not follow |EEE 754, these values
will probably not work as expected.) When writing these values as constants in an SQL command,
you must put quotes around them, for example UPDATE table SET x = '-Infinity'.On
input, these strings are recognized in a case-insensitive manner.

Note

| EEE754 specifiesthat NaN should not compare equal to any other floating-point value
(including NaN). In order to allow floating-point values to be sorted and used in tree-
based indexes, PostgreSQL treats NaN values as equal, and greater than all non-NaN
values.

PostgreSQL also supports the SQL -standard notationsf | oat andf | oat (p) for specifying inexact
numeric types. Here, p specifies the minimum acceptable precision in binary digits. PostgreSQL ac-
ceptsfl oat (1) tofl oat (24) asselecting ther eal type, whilef | oat (25) tofl oat (53)
select doubl e preci si on. Vauesof p outside the allowed range draw an error. f | oat with no
precision specified is taken to mean doubl e pr eci si on.

Note

Theassumptionthat r eal anddoubl e preci si on have exactly 24 and 53 bitsin
the mantissarespectively is correct for IEEE-standard floating point implementations.
On non-1EEE platforms it might be off a little, but for simplicity the same ranges of
p are used on al platforms.

Serial Types

Note

This section describes a PostgreSQL -specific way to create an autoincrementing col-
umn. Another way is to use the SQL-standard identity column feature, described at
CREATE TABLE.

Thedatatypessnual | seri al ,seri al andbi gseri al arenot truetypes, but merely anotation-
al convenience for creating unique identifier columns (similar to the AUTO | NCREMENT property
supported by some other databases). In the current implementation, specifying:

CREATE TABLE t abl enane (
col nane SERI AL

)

is equivalent to specifying:

CREATE SEQUENCE t abl enanme_col nanme_seq AS i nteger;
CREATE TABLE t abl enane (

col nanme i nteger NOT NULL DEFAULT
nextval (' tabl enanme_col nane_seq')

) y
ALTER SEQUENCE t abl enane_col nane_seq OANED BY t abl enane. col nane;

137



Data Types

Thus, we have created an integer column and arranged for its default values to be assigned from a
sequence generator. A NOT NULL constraint is applied to ensure that a null value cannot be inserted.
(In most cases you would also want to attach a UNI QUE or PRI MARY KEY constraint to prevent
duplicate values from being inserted by accident, but this is not automatic.) Lastly, the sequence is
marked as “owned by” the column, so that it will be dropped if the column or tableis dropped.

Note

Because smal | seri al, serial and bi gseri al are implemented using se-
guences, there may be "holes" or gaps in the sequence of values which appearsin the
column, even if no rows are ever deleted. A value allocated from the sequence is still
"used up" even if arow containing that value is never successfully inserted into the
table column. This may happen, for example, if the inserting transaction rolls back.
Seenext val () in Section 9.16 for details.

To insert the next value of the sequence into theseri al column, specify that theseri al column
should be assigned its default value. This can be done either by excluding the column from the list of
columnsin the | NSERT statement, or through the use of the DEFAULT key word.

The type names seri al and seri al 4 are equivalent; both create i nt eger columns. The type
names bi gseri al andseri al 8 work the same way, except that they create abi gi nt column.
bi gseri al should be used if you anticipate the use of more than 23t identifiers over the lifetime of

the table. Thetype namessnal | seri al andseri al 2 also work the same way, except that they
createasmal | i nt column.

The sequence created for aseri al column is automatically dropped when the owning column is

dropped. Y ou can drop the sequence without dropping the column, but this will force removal of the
column default expression.

8.2. Monetary Types

The noney type stores a currency amount with a fixed fractional precision; see Table 8.3. The frac-
tional precision is determined by the database's Ic_monetary setting. The range shown in the table
assumes there are two fractional digits. Input is accepted in a variety of formats, including integer
and floating-point literals, as well astypical currency formatting, suchas' $1, 000. 00" . Output is
generaly in the latter form but depends on the locale.

Table8.3. Monetary Types

Name Storage Size Description Range

noney 8 bytes currency amount -92233720368547758.08
to
+92233720368547758.07

Since the output of this data type is locale-sensitive, it might not work to load noney data into a
database that has a different setting of | ¢_nonet ar y. To avoid problems, before restoring a dump
into a new database make sure |l ¢_nonet ar y has the same or equivaent value as in the database
that was dumped.

Vadues of thenuneri c, i nt, and bi gi nt datatypes can be cast to mroney. Conversion from the
real anddoubl e preci si on datatypes can be done by castingto nuner i c first, for example:
SELECT ' 12.34'::float8::nuneric::noney;

However, thisis not recommended. Floating point numbers should not be used to handle money due
to the potential for rounding errors.

138



Data Types

A noney value can be cast to nurnrer i ¢ without loss of precision. Conversion to other types could
potentially lose precision, and must also be done in two stages:

SELECT ' 52093. 89' : : noney: : nuneric::fl oat8;

Division of a noney value by an integer value is performed with truncation of the fractional part
towards zero. To get a rounded result, divide by a floating-point value, or cast the noney value to
nuner i ¢ before dividing and back to noney afterwards. (The latter is preferable to avoid risking
precisionloss.) When anoney valueisdivided by another noney value, theresultisdoubl e pr e-
ci si on (i.e, apure number, not money); the currency units cancel each other out in the division.

8.3. Character Types

Table 8.4. Character Types

Name Description

character varying(n),varchar(n) variable-length with limit
character(n),char(n) fixed-length, blank padded
t ext variable unlimited length

Table 8.4 shows the general -purpose character types available in PostgreSQL .

SQL definestwo primary character types. char act er varyi ng(n) andchar act er ( n) , where
n isapositive integer. Both of these types can store strings up to n characters (not bytes) inlength. An
attempt to store alonger string into a column of these types will result in an error, unless the excess
characters are all spaces, in which case the string will be truncated to the maximum length. (This
somewhat bizarre exception is required by the SQL standard.) If the string to be stored is shorter than
the declared length, values of type char act er will be space-padded; values of type char act er

varyi ng will simply store the shorter string.

If one explicitly casts avalue to char act er varyi ng(n) or character(n), then an over-
length value will be truncated to n characters without raising an error. (This too is required by the
SQL standard.)

Thenotationsvar char (n) andchar (n) areaiasesfor char act er varyi ng(n) andchar -
act er (n), respectively. char act er without length specifier is equivalent to character(1).
If charact er varyi ng isused without length specifier, the type accepts strings of any size. The
latter is a PostgreSQL extension.

In addition, PostgreSQL providesthet ext type, which storesstrings of any length. Although thetype
t ext isnotinthe SQL standard, severa other SQL database management systems have it as well.

Valuesof typechar act er arephysicaly padded with spacesto the specified width n, and are stored
and displayed that way. However, trailing spaces are treated as semantically insignificant and disre-
garded when comparing two values of type char act er . In collations where whitespace is signifi-
cant, this behavior can produce unexpected results; for example SELECT 'a ' :: CHAR(2) col -

late "C' < FE a\n'::CHAR(2) returns true, even though C locale would consider a space
to be greater than a newline. Trailing spaces are removed when converting a char act er value to
one of the other string types. Note that trailing spaces are semantically significant in char act er

varyi ng andt ext values, and when using pattern matching, that isL1 KE and regular expressions.

The storage requirement for a short string (up to 126 bytes) is 1 byte plus the actual string, which
includesthe space paddinginthe caseof char act er . Longer stringshave4 bytes of overhead instead
of 1. Long strings are compressed by the system automatically, so the physical requirement on disk
might be less. Very long values are also stored in background tables so that they do not interfere with
rapid access to shorter column values. In any case, the longest possible character string that can be

139



Data Types

stored isabout 1 GB. (The maximum valuethat will beallowed for n inthe datatype declarationisless
than that. It wouldn't be useful to change this because with multibyte character encodings the number
of characters and bytes can be quite different. If you desire to store long strings with no specific upper
limit, use t ext or character varyi ng without a length specifier, rather than making up an
arbitrary length limit.)

Tip

Thereisno performance difference among these three types, apart from increased stor-
age space when using the blank-padded type, and afew extra CPU cyclesto check the
length when storing into a length-constrained column. While char act er (n) has
performance advantages in some other database systems, there is no such advantage
in PostgreSQL; in fact char act er ( n) isusually the slowest of the three because
of its additional storage costs. In most situationst ext or char act er varyi ng
should be used instead.

Refer to Section 4.1.2.1 for information about the syntax of string literals, and to Chapter 9 for infor-
mation about available operators and functions. The database character set determines the character
set used to store textual values; for more information on character set support, refer to Section 23.3.

Example 8.1. Using the Character Types

CREATE TABLE testl (a character(4));
| NSERT | NTO test1 VALUES ('ok');

SELECT a, char_length(a) FROMtestl; --
a | char_length

______ I,

ok | 2

CREATE TABLE test2 (b varchar(5));

| NSERT | NTO test2 VALUES ('ok');

| NSERT | NTO test2 VALUES (' good ")

I NSERT I NTO test2 VALUES ('too long');

ERROR: value too long for type character varying(5)

I NSERT I NTO test2 VALUES ('too long' ::varchar(5)); -- explicit
truncation

SELECT b, char_length(b) FROMtest2;

b | char_length
_______ I,
ok | 2
good | 5
too | | 5

Thechar _| engt h function is discussed in Section 9.4.

There are two other fixed-length character types in PostgreSQL, shown in Table 8.5. The nane type
exists only for the storage of identifiers in the internal system catalogs and is not intended for use
by the general user. Itslength is currently defined as 64 bytes (63 usable characters plus terminator)
but should be referenced using the constant NAMEDATALEN in C source code. The length is set at
compiletime (and is therefore adjustable for specia uses); the default maximum length might change
inafuturerelease. Thetype" char " (notethe quotes) isdifferent fromchar ( 1) inthat it only uses
one byte of storage. It isinternally used in the system catalogs as a simplistic enumeration type.

140



Data Types

Table 8.5. Special Character Types

Name Storage Size Description
"char" 1 byte single-byte interna type
nane 64 bytes internal type for object names

8.4. Binary Data Types

8.4.1.

8.4.2.

The byt ea datatype allows storage of binary strings; see Table 8.6.

Table 8.6. Binary Data Types

Name Storage Size Description
byt ea 1 or 4 bytesplusthe actual binary | variable-length binary string
string

A binary string is a sequence of octets (or bytes). Binary strings are distinguished from character
stringsin two ways. First, binary strings specifically allow storing octets of value zero and other “non-
printable” octets (usually, octets outside the decimal range 32 to 126). Character strings disallow zero
octets, and also disallow any other octet values and sequences of octet valuesthat areinvalid according
to the database's selected character set encoding. Second, operations on binary strings process the
actual bytes, whereas the processing of character strings depends on locale settings. In short, binary
strings are appropriatefor storing datathat the programmer thinks of as*“raw bytes’, whereas character
strings are appropriate for storing text.

The byt ea type supports two formats for input and output: “hex” format and PostgreSQL s histori-
cal “escape” format. Both of these are always accepted on input. The output format depends on the
configuration parameter bytea_output; the default is hex. (Note that the hex format was introduced in
PostgreSQL 9.0; earlier versions and some tools don't understand it.)

The SQL standard defines a different binary string type, called BLOB or Bl NARY LARGE OBJECT.
The input format is different from byt ea, but the provided functions and operators are mostly the
same.

byt ea Hex Format

The “hex” format encodes binary data as 2 hexadecimal digits per byte, most significant nibble first.
The entire string is preceded by the sequence\ x (to distinguish it from the escape format). In some
contexts, theinitial backslash may need to be escaped by doubling it (see Section 4.1.2.1). For input,
the hexadecimal digits can be either upper or lower case, and whitespace is permitted between digit
pairs (but not within adigit pair nor inthe starting \ x sequence). The hex format is compatible with a
wide range of external applications and protocols, and it tends to be faster to convert than the escape
format, so itsuse is preferred.

Example:

SELECT ' \ xDEADBEEF' ;

byt ea Escape Format

The“escape” format isthe traditional PostgreSQL format for thebyt ea type. It takesthe approach of
representing abinary string asasequenceof ASCII characters, while converting those bytesthat cannot
be represented as an ASCI| character into special escape sequences. If, from the point of view of the
application, representing bytes as characters makes sense, then this representation can be convenient.
But in practiceit is usually confusing because it fuzzes up the distinction between binary strings and

141



Data Types

character strings, and also the particular escape mechanism that was chosen is somewhat unwieldy.
Therefore, this format should probably be avoided for most new applications.

When entering byt ea values in escape format, octets of certain values must be escaped, while all
octet values can be escaped. In general, to escape an octet, convert it into itsthree-digit octal value and
precede it by a backslash. Backslash itself (octet decimal value 92) can alternatively be represented
by double backslashes. Table 8.7 shows the characters that must be escaped, and gives the alternative
escape sequences where applicable.

Table8.7. byt ea Literal Escaped Octets

Decimal Octet | Description Escaped  Input|Example Hex Representa-
Value Representation tion
0 zero octet "\ 000’ SELECT \ x00
"\ 000':: byt ea]
39 single quote "'t oor'\ 047" |SELECT \ x27
""" byt ea;
92 backslash "\\'" or'\134" |SELECT "\ [\ x5¢c
\'"::bytea;
0 to 31 and 127 to|“non-printable” "\ xxx' (octal | SELECT \ x01
255 octets value) "\ 001" :: byt ea

The requirement to escape non-printable octets varies depending on local e settings. In some instances
you can get away with leaving them unescaped.

The reason that single quotes must be doubled, as shownin Table 8.7, isthat thisistrue for any string
literal in a SQL command. The generic string-literal parser consumes the outermost single quotes and
reduces any pair of single quotes to one data character. What the byt ea input function seesis just
one single quote, which it treats as a plain data character. However, the byt ea input function treats
backsl ashes as special, and the other behaviors shown in Table 8.7 are implemented by that function.

In some contexts, backslashes must be doubled compared to what is shown above, because the generic
string-literal parser will also reduce pairs of backslashes to one data character; see Section 4.1.2.1.

Byt ea octets are output in hex format by default. If you change bytea output to escape, “non-
printable” octets are converted to their equivalent three-digit octal value and preceded by one back-
slash. Most “ printable” octetsare output by their standard representation in the client character set, e.g.:

SET bytea_out put = 'escape';

SELECT ' abc \ 153\ 154\ 155 \ 052\ 251\ 124" : : byt ea;
byt ea

abc kIl m *\251T
The octet with decimal value 92 (backslash) is doubled in the output. Details arein Table 8.8.

Table 8.8. byt ea Output Escaped Octets

Decimal Octet | Description Escaped Output|Example Output Result
Value Representation
92 backslash \\ SELECT \\
"\ 134':: byt ea]
0 to 31 and 127 to|“non-printable” \ xxx (octal value) | SELECT \ 001
255 octets "\ 001':: byt ea;
32t0126 “printable” octets |client character set| SELECT ~
representation "\176' : : byt ea]

142



Data Types

Depending on the front end to PostgreSQL you use, you might have additional work to do in terms of
escaping and unescaping byt ea strings. For example, you might also have to escape line feeds and
carriage returns if your interface automatically trans ates these.

8.5. Date/Time Types

PostgreSQL supports the full set of SQL date and time types, shown in Table 8.9. The operations
available on these datatypes are described in Section 9.9. Dates are counted according to the Gregorian
calendar, even in years before that calendar was introduced (see Section B.5 for more information).

Table 8.9. Date/Time Types

stanp w thout

The SQL standard requires that writing just t i mest anp be equivalent to t i me-
ti me zone, and PostgreSQL honors that behavior. t i me-
St anpt z isaccepted asan abbreviationfort i nestanp with ti me zone;this
is a PostgreSQL extension.

Name Storage Size | Description Low Value High Value Resolution
ti mestanp |8bytes both date and|4713BC 294276 AD 1 microsecond
[ (p) ] time (no time
[ wthout Zone)
tinme zone |
ti mestanp |8bytes both date and|4713BC 294276 AD 1 microsecond
[ (p) ] time, with time
with time zone
zone
date 4 bytes date (notimeof |4713 BC 5874897 AD |1day

day)
time 8 bytes time of day (no|00:00:00 24:00:00 1 microsecond
[ (P ] date)
[ without
time zone |
time 12 bytes time of day (no|00:00:00+1459 |24:00:00-1459 |1 microsecond
[ (p) ] date), with time
with tine zone
zone
i nterval [ |16 bytes timeinterval  |-178000000 178000000 1 microsecond
fields ] years years
[ (p) ]

Note

time,timestanp,andi nt erval acceptanoptional precisionvaluep which specifiesthe number
of fractional digits retained in the seconds field. By default, there is no explicit bound on precision.
The allowed range of p isfrom 0 to 6.

Thei nt er val type has an additional option, which is to restrict the set of stored fields by writing
one of these phrases:

YEAR
MONTH
DAY
HOUR

143




Data Types

8.5.1.

M NUTE

SECOND

YEAR TO MONTH
DAY TO HOUR

DAY TO M NUTE
DAY TO SECOND
HOUR TO M NUTE
HOUR TO SECOND
M NUTE TO SECOND

Notethat if bothf i el ds and p are specified, thef i el ds must include SECOND, sincethe precision
applies only to the seconds.

Thetypetime with time zone isdefined by the SQL standard, but the definition exhibits prop-
erties which lead to questionable usefulness. In most cases, a combination of dat e, ti ne, ti me-
stanmp wi thout tinme zone,andti nmestanp with tine zone should provideacomplete
range of date/time functionality required by any application.

The types absti me and rel ti ne are lower precision types which are used internaly. You are
discouraged from using these types in applications; these internal types might disappear in a future
release.

Date/Time Input

Date and time input is accepted in almost any reasonable format, including 1SO 8601, SQL -compati-
ble, traditional POSTGRES, and others. For some formats, ordering of day, month, and year in date
input is ambiguous and there is support for specifying the expected ordering of these fields. Set the
DateStyle parameter to MDY to select month-day-year interpretation, DMY to select day-month-year
interpretation, or YMD to select year-month-day interpretation.

PostgreSQL is more flexible in handling date/time input than the SQL standard requires. See Appen-
dix B for the exact parsing rules of date/time input and for the recognized text fields including months,
days of the week, and time zones.

Remember that any date or time literal input needs to be enclosed in single quotes, like text strings.
Refer to Section 4.1.2.7 for more information. SQL requires the following syntax

type [ (p) ] 'value

where p is an optiona precision specification giving the number of fractional digits in the seconds
field. Precision can be specified fort i me, ti mest anp, andi nt er val types, and can range from
0to 6. If no precision is specified in a constant specification, it defaults to the precision of the literal
value (but not more than 6 digits).

8.5.1.1. Dates

Table 8.10 shows some possible inputs for the dat e type.

Table 8.10. Date I nput

Example Description

1999-01-08 SO 8601; January 8 in any mode (recommended
format)

January 8, 1999 unambiguousin any dat est yl e input mode

1/8/1999 January 8 in MDY mode; August 1 in DMY mode

1/18/1999 January 18 in MDY mode; rejected in other modes

144



Data Types

8.5.1.2.

Example Description

01/02/03 January 2, 2003 in MDY mode; February 1, 2003
in DMY mode; February 3, 2001 in YMD mode

1999-Jan-08 January 8 in any mode

Jan-08-1999 January 8 in any mode

08-Jan-1999 January 8 in any mode

99-Jan-08 January 8 in YMD mode, else error

08-Jan-99 January 8, except error in YND mode

Jan-08-99 January 8, except error in YND mode

19990108 SO 8601; January 8, 1999 in any mode

990108 ISO 8601; January 8, 1999 in any mode

1999.008 year and day of year

Je451187 Julian date

January 8, 99 BC year 99 BC

Times

Thetime-of-day typesaretime [ (p) ] without tine zoneandtinme [ (p) ] with
time zone.tinme doneisequivalenttoti me wi thout tine zone.

Vadidinput for these types consists of atime of day followed by an optional time zone. (See Table8.11
and Table8.12) If atimezoneisspecifiedintheinputfort i me wi t hout ti me zone,itisslently
ignored. You can also specify a date but it will be ignored, except when you use a time zone name
that involves a daylight-savings rule, such as Amer i ca/ New_Yor k. In this case specifying the date
isrequired in order to determine whether standard or daylight-savings time applies. The appropriate
time zone offset isrecorded intheti me with tine zone vaue.

Table8.11. Time Input

Example Description

04: 05: 06. 789 SO 8601

04: 05: 06 1SO 8601

04: 05 SO 8601

040506 SO 8601

04: 05 AM same as 04:05; AM does not affect value
04: 05 PM same as 16:05; input hour must be <= 12

04: 05: 06. 789-8

1SO 8601

04: 05: 06- 08: 00 SO 8601

04: 05- 08: 00 SO 8601

040506- 08 SO 8601

04: 05: 06 PST time zone specified by abbreviation
2003-04-12 04: 05: 06 Amrer i - |time zone specified by full name
cal/ New_Yor k

Table8.12. Time Zone I nput

Example

Description

PST

Abbreviation (for Pacific Standard Time)

145




Data Types

Example Description

Areri ca/ New_Yor k Full time zone name

PST8PDT POSI X -style time zone specification
-8:00 I1SO-8601 offset for PST

- 800 ISO-8601 offset for PST

-8 ISO-8601 offset for PST

zul u Military abbreviation for UTC

z Short form of zul u

Refer to Section 8.5.3 for more information on how to specify time zones.

8.5.1.3. Time Stamps

Vdlid input for the time stamp types consists of the concatenation of a date and a time, followed by
an optional time zone, followed by an optional AD or BC. (Alternatively, AD/BC can appear before the
time zone, but thisis not the preferred ordering.) Thus:

1999-01-08 04: 05: 06

and:

1999-01-08 04:05:06 -8:00

are valid values, which follow the SO 8601 standard. In addition, the common format:

January 8 04:05:06 1999 PST
is supported.

The SQL standard differentiatest i mestanp without tinme zoneandtinestanp wth
ti me zone literalsby the presence of a“+” or “-" symbol and time zone offset after the time. Hence,
according to the standard,

TI MESTAMP ' 2004- 10- 19 10: 23: 54'
isati nestanp w thout tine zone,while
TI MESTAMP ' 2004- 10-19 10: 23: 54+02'

isatinestanp with tinme zone. PostgreSQL never examines the content of aliteral string
before determining its type, and therefore will treat both of the above asti mest anp wi t hout
ti me zone. Toensurethat aliteral istreated asti mestanp with tinme zone, giveitthe
correct explicit type:

TI MESTAMP WTH TI ME ZONE ' 2004-10-19 10: 23: 54+02'

In aliteral that has been determinedto bet i nest anp wit hout tinme zone, PostgreSQL will
silently ignore any time zoneindication. That is, the resulting valueis derived from the date/timefields
in the input value, and is not adjusted for time zone.

Fortinmestanp with tinme zone, theinternaly stored value is dways in UTC (Universal
Coordinated Time, traditionally known as Greenwich Mean Time, GMT). An input value that has an
explicit time zone specified is converted to UTC using the appropriate offset for that time zone. If
no time zone is stated in the input string, then it is assumed to be in the time zone indicated by the
system's TimeZone parameter, and is converted to UTC using the offset for thet i nezone zone.

146



Data Types

Whenatinestanp with tine zone vaueisoutput, it isaways converted from UTC to the
current t i mezone zone, and displayed as local time in that zone. To see the time in another time
zone, either changet i mezone or usethe AT TI ME ZONE construct (see Section 9.9.3).

Conversionshetweent i mest anp wi t hout time zoneandti mestanp with ti ne zone
normally assume that thet i mest anp wit hout time zone value should be taken or given as
ti mezone loca time. A different time zone can be specified for the conversion using AT Tl MVE
ZONE.

8.5.1.4. Special Values

8.5.2.

PostgreSQL supports several specia date/time input values for convenience, as shown in Table 8.13.
The valuesi nfinity and -infinity are specially represented inside the system and will be
displayed unchanged; but the othersare simply notational shorthandsthat will be converted to ordinary
date/time values when read. (In particular, now and related strings are converted to a specific time
value as soon as they are read.) All of these values need to be enclosed in single quotes when used
as constants in SQL commands.

Table 8.13. Special Date/Time Inputs

Input String Valid Types Description

epoch dat e, ti nest anp 1970-01-01 00:00:00+00 (Unix
system time zero)

infinity dat e, ti nest anp later than all other time stamps

-infinity dat e, ti nest anp earlier than all other time stamps

now date,time,tinestanp current transaction's start time

t oday dat e, ti nest anp midnight today

t onor r ow dat e, ti nest anp midnight tomorrow

yest er day dat e, ti nest anp midnight yesterday

allballs tinme 00:00:00.00 UTC

Thefollowing SQL-compatible functions can also be used to obtain the current time value for the cor-
responding datatype: CURRENT _DATE, CURRENT _TI ME, CURRENT_TI MESTAMP, LOCALTI VE,
LOCALTI MESTANP. The latter four accept an optional subsecond precision specification. (See Sec-
tion 9.9.4.) Note that these are SQL functions and are not recognized in data input strings.

Date/Time Output

The output format of the date/time types can be set to one of the four styles 1SO 8601, SQL (Ingres),
traditional POSTGRES (Unix date format), or German. The default is the ISO format. (The SQL
standard requires the use of the 1 SO 8601 format. The name of the“SQL" output format is a historical
accident.) Table 8.14 shows examples of each output style. The output of thedat e andt i e typesis
generaly only the date or time part in accordance with the given examples. However, the POSTGRES
style outputs date-only valuesin 1SO format.

Table 8.14. Date/Time Output Styles

Style Specification Description Example

| SO SO 8601, SQL standard 1997-12-17
07:37:16-08

SQL traditional style 12/ 17/ 1997
07:37:16. 00 PST

Post gres origina style Wwed Dec 17 07:37:16
1997 PST

147



Data Types

8.5.3.

Style Specification Description Example

Ger man regional style 17.12. 1997
07:37:16.00 PST

Note

SO 8601 specifies the use of uppercase letter T to separate the date and time. Post-
greSQL accepts that format on input, but on output it uses a space rather than T, as
shown above. This is for readability and for consistency with RFC 3339 as well as
some other database systems.

In the SQL and POSTGRES styles, day appears before month if DMY field ordering has been spec-
ified, otherwise month appears before day. (See Section 8.5.1 for how this setting also affects inter-
pretation of input values.) Table 8.15 shows examples.

Table 8.15. Date Order Conventions

dat est yl e Setting Input Ordering Example Output

SQ., Dw day/mont h/year 17/ 12/ 1997
15:37:16. 00 CET

S, MY nmont h/day/year 12/ 17/ 1997
07:37:16. 00 PST

Post gres, DWY day/mont h/year Wwed 17 Dec 07:37:16
1997 PST

The date/time style can be selected by the user using the SET dat est yl e command, the DateStyle
parameter in the post gr esql . conf configuration file, or the PGDATESTYLE environment vari-
able on the server or client.

Theformatting functiont o_char (see Section 9.8) isalso available asamore flexible way to format
date/time outpuit.

Time Zones

Time zones, and time-zone conventions, are influenced by political decisions, not just earth geometry.
Time zones around the world became somewhat standardized during the 1900s, but continue to be
prone to arbitrary changes, particularly with respect to daylight-savings rules. PostgreSQL uses the
widely-used IANA (Olson) time zone database for information about historical time zone rules. For
times in the future, the assumption is that the latest known rules for a given time zone will continue
to be observed indefinitely far into the future.

PostgreSQL endeavorsto be compatiblewith the SQL standard definitionsfor typical usage. However,
the SQL standard has an odd mix of date and time types and capabilities. Two obvious problems are:

« Although the dat e type cannot have an associated time zone, thet i e type can. Time zonesin
the real world have little meaning unless associated with a date as well as a time, since the offset
can vary through the year with daylight-saving time boundaries.

e Thedefault time zoneis specified as a constant numeric offset from UTC. It isthereforeimpossible
to adapt to daylight-saving time when doing date/time arithmetic across DST boundaries.

To address these difficulties, we recommend using date/time types that contain both date and time
when using time zones. We do not recommend using thetypetime with ti me zone (though
it is supported by PostgreSQL for legacy applications and for compliance with the SQL standard).
PostgreSQL assumes your local time zone for any type containing only date or time.

148



Data Types

All timezone-aware dates and times are stored internally in UTC. They are converted to local timein
the zone specified by the TimeZone configuration parameter before being displayed to the client.

PostgreSQL allows you to specify time zones in three different forms:

A full time zone name, for example Arrer i ca/ New_Yor k. The recognized time zone names are
listed inthe pg_t i nezone_names view (see Section 52.90). PostgreSQL uses the widely-used
IANA time zone data for this purpose, so the same time zone names are also recognized by other
software.

» A time zone abbreviation, for example PST. Such a specification merely defines a particul ar offset
from UTC, in contrast to full time zone names which can imply a set of daylight savings transi-
tion-date rules as well. The recognized abbreviations are listed inthepg_t i nezone_abbr evs
view (see Section 52.89). Y ou cannot set the configuration parameters TimeZone or log_timezone
to atime zone abbreviation, but you can use abbreviations in date/time input values and with the
AT TI ME ZONE operator.

* In addition to the timezone names and abbreviations, PostgreSQL will accept POSIX-style time
zone specifications of the form STDof f set or STDof f set DST, where STD is a zone abbrevi-
ation, of f set isanumeric offset in hours west from UTC, and DST is an optional daylight-sav-
ings zone abbreviation, assumed to stand for one hour ahead of the given offset. For example, if
EST5EDT were not aready a recognized zone name, it would be accepted and would be function-
aly equivalent to United States East Coast time. In this syntax, a zone abbreviation can be a string
of letters, or an arbitrary string surrounded by angle brackets (<>). When a daylight-savings zone
abbreviation is present, it is assumed to be used according to the same daylight-savings transition
rules used in the IANA time zone database's posi xr ul es entry. In a standard PostgreSQL in-
stallation, posi xr ul es isthe same as US/ East er n, so that POSI X-style time zone specifica
tions follow USA daylight-savings rules. If needed, you can adjust this behavior by replacing the
posi xr ul es file.

In short, thisisthe difference between abbreviations and full names:. abbreviations represent aspecific
offset from UTC, whereas many of thefull namesimply alocal daylight-savingstimerule, and so have
two possible UTC offsets. Asan example, 2014- 06- 04 12: 00 Aneri ca/ New_Yor k represents
noon local timein New Y ork, which for this particular date was Eastern Daylight Time (UTC-4). So
2014- 06-04 12: 00 EDT specifies that same time instant. But 2014- 06- 04 12: 00 EST
specifies noon Eastern Standard Time (UTC-5), regardless of whether daylight savingswas nominally
in effect on that date.

To complicate matters, somejurisdictions have used the same timezone abbreviation to mean different
UTC offsets at different times; for example, in Moscow MSK has meant UTC+3 in some years and
UTC+4in others. PostgreSQL interprets such abbreviations according to whatever they meant (or had
most recently meant) on the specified date; but, aswith the EST example above, thisis not necessarily
the same aslocal civil time on that date.

One should be wary that the POSI X -style time zone feature can |ead to silently accepting bogusinput,
since there is no check on the reasonableness of the zone abbreviations. For example, SET TI Me-
ZONE TO FOOBARO will work, leaving the system effectively using arather peculiar abbreviation
for UTC. Another issue to keep in mind isthat in POSIX time zone names, positive offsets are used
for locations west of Greenwich. Everywhere el se, PostgreSQL follows the | SO-8601 convention that
positive timezone offsets are east of Greenwich.

In al cases, timezone names and abbreviations are recognized case-insensitively. (This is a change
from PostgreSQL versions prior to 8.2, which were case-sensitive in some contexts but not others.)

Neither timezone names nor abbreviations are hard-wired into the server; they are obtained from con-
figuration files stored under . . . / share/ti mezone/ and.../share/ti mezonesets/ of
the installation directory (see Section B.4).

The TimeZone configuration parameter can be set in the file post gr esql . conf, or in any of the
other standard ways described in Chapter 19. There are also some special waysto set it:

149



Data Types

8.5.4.

e The SQL command SET TI ME ZONE sets the time zone for the session. Thisis an aternative
spelling of SET TI MEZONE TOwith a more SQL-spec-compatible syntax.

e The PGTZ environment variable is used by libpg clientsto send aSET TI ME ZONE command
to the server upon connection.

Interval Input

i nt erval values can be written using the following verbose syntax:

[@ quantity unit [quantity unit...] [direction]

wherequant i ty isanumber (possibly signed); uni t ism crosecond, m | |i second, sec-
ond, m nut e, hour , day, week, nont h,year ,decade,century, m | | enni um or abbrevi-
ations or plurals of these units; di r ect i on can beago or empty. The at sign (@ is optional noise.
The amounts of the different units areimplicitly added with appropriate sign accounting. ago negates
all thefields. This syntax isalso used for interval output, if IntervalStyleis set to post gres_ver -
bose.

Quantities of days, hours, minutes, and seconds can be specified without explicit unit markings. For
example,' 1 12:59: 10" isreadthesameas' 1 day 12 hours 59 min 10 sec'.Also,
a combination of years and months can be specified with a dash; for example' 200- 10" isread the
sameas' 200 years 10 nont hs' . (Theseshorter formsarein fact the only ones allowed by the
SQL standard, and are used for output when | nt er val St yl e issettosql _st andard.)

Interval values can also be written as 1SO 8601 time intervals, using either the “format with designa-
tors’ of the standard's section 4.4.3.2 or the “alternative format” of section 4.4.3.3. The format with
designators looks like this:

P quantity unit [ quantity unit ...] [ T [ quantity unit ...]]

Thestring must start with aP, and may include aT that introduces the time-of-day units. The available
unit abbreviations are given in Table 8.16. Units may be omitted, and may be specified in any order,
but units smaller than a day must appear after T. In particular, the meaning of Mdepends on whether
itisbefore or after T.

Table 8.16. | SO 8601 Interval Unit Abbreviations

Abbreviation Meaning

Years

Months (in the date part)
Weeks

Days

Hours

Minutes (in the time part)
Seconds

nlz[z[ols[z]<

In the alternative format:

P [ years-nonths-days ] [ T hours:m nutes:seconds ]

the string must begin with P, and a T separates the date and time parts of the interval. The values are
given as numbers similar to SO 8601 dates.

150



Data Types

When writing an interval constant with af i el ds specification, or when assigning a string to an in-
terval columnthat wasdefinedwithaf i el ds specification, theinterpretation of unmarked quantities
dependsonthefi el ds. For examplel NTERVAL ' 1' YEARIisread as1 year, whereas| NTER-

VAL ' 1' means1second. Also, field values“totheright” of theleast significant field allowed by the
fi el ds specification aresilently discarded. For example, writingl NTERVAL ' 1 day 2: 03: 04'

HOUR TO M NUTE results in dropping the seconds field, but not the day field.

According to the SQL standard all fields of an interval value must have the same sign, so a leading
negative sign appliesto all fields; for examplethe negativesignintheinterval literal ' - 1 2: 03: 04'
appliesto both the days and hour/minute/second parts. PostgreSQL allows the fields to have different
signs, and traditionally treats each field in the textual representation as independently signed, so that
the hour/minute/second part is considered positive in this example. If | nt er val Styl e is set to
sql _st andar d then aleading sign is considered to apply to all fields (but only if no additional
signs appear). Otherwise the traditional PostgreSQL interpretation is used. To avoid ambiguity, it's
recommended to attach an explicit sign to each field if any field is negative.

In the verbose input format, and in some fields of the more compact input formats, field values can
havefractiona parts; for example' 1. 5 week' or' 01: 02: 03. 45' . Suchinput isconverted to the
appropriate number of months, days, and seconds for storage. When this would result in a fractional
number of months or days, the fraction is added to the lower-order fields using the conversion factors
1 month = 30 days and 1 day = 24 hours. For example, ' 1. 5 nont h' becomes 1 month and 15
days. Only seconds will ever be shown as fractional on output.

Table 8.17 shows some examples of valid i nt er val input.

Table8.17. Interval Input

Example Description

1-2 SQL standard format: 1 year 2 months

3 4:05:06 SQL standard format: 3 days 4 hours 5 minutes 6
seconds

1 year 2 months 3 days 4 hours 5 minutes 6 sec- | Traditional Postgres format: 1 year 2 months 3

onds days 4 hours 5 minutes 6 seconds

P1Y2M3DT4H5M6S SO 8601 “format with designators’: same mean-
ing as above

P0O001-02-03T04:05:06 SO 8601 “aternative format”: same meaning as
above

Internally i nt er val valuesarestored asmonths, days, and seconds. Thisisdone because the number
of daysin amonth varies, and aday can have 23 or 25 hoursif a daylight savings time adjustment is
involved. The months and daysfields are integers while the seconds field can store fractions. Because
intervals are usually created from constant strings or t i mest anp subtraction, this storage method
workswell in most cases, but can cause unexpected results:

SELECT EXTRACT(hours from'80 mnutes'::interval);
dat e_part

SELECT EXTRACT(days from'80 hours'::interval);
dat e_part

Functionsj usti fy days andj ustify_ hours are available for adjusting days and hours that
overflow their normal ranges.

151



Data Types

8.5.5. Interval Output

The output format of the interval type can be set to one of the four stylessql _st andar d, post -
gres, postgres_verbose, ori so_8601, using the command SET i nterval styl e. The
default isthe post gr es format. Table 8.18 shows examples of each output style.

The sql _st andar d style produces output that conforms to the SQL standard's specification for
interval literal strings, if theinterval value meetsthe standard's restrictions (either year-month only or
day-time only, with no mixing of positive and negative components). Otherwise the output |ooks like
a standard year-month literal string followed by a day-time literal string, with explicit signs added to
disambiguate mixed-sign intervals.

The output of the post gr es style matches the output of PostgreSQL releases prior to 8.4 when the
DateStyle parameter was set to | SO.

The output of the post gr es_ver bose style matches the output of PostgreSQL releases prior to
8.4 when the Dat eSt y| e parameter was set to non-1 SOoutput.

Theoutput of thei so_8601 style matchesthe“format with designators’ described in section 4.4.3.2
of the SO 8601 standard.

Table 8.18. Interval Output Style Examples

Style Specification Year-Month Interval |Day-Timelnterval Mixed Interval

sql _standard 1-2 34:05:06 -1-2 +3-4:05:06

post gres 1 year 2 mons 3 days 04:05:06 -1 year -2 mons +3 days
-04:05:06

post gres_ver bose |@ 1 year 2 mons @ 3days4 hours5mins| @ 1 year 2mons-3days

6 secs 4 hours 5 mins 6 secs

ago

i so_8601 P1Y2M P3DT4H5M6S P-1Y-2M3DT-4H-5M-6S

8.6. Boolean Type

PostgreSQL provides the standard SQL typebool ean; see Table 8.19. Thebool ean type can have
several states: “true”, “false”, and athird state, “unknown”, whichisrepresented by the SQL null value.

Table 8.19. Boolean Data Type

Name Storage Size Description
bool ean 1 byte state of true or false

Boolean constants can be represented in SQL queriesby the SQL key words TRUE, FAL SE, and NULL.
Thedatatypeinput function for typebool ean acceptsthese string representationsfor the“true” state:

true
yes
on

1

and these representations for the “false” state:

fal se
no

of f

0

152



Data Types

Unique prefixes of these strings are also accepted, for examplet or n. Leading or trailing whitespace
isignored, and case does not matter.

The datatype output function for typebool ean alwaysemitseithert or f , asshownin Example 8.2.

Example 8.2. Using thebool ean Type

CREATE TABLE testl (a boolean, b text);

| NSERT | NTO test1 VALUES (TRUE, 'sic est');
I NSERT | NTO test1l VALUES (FALSE, 'non est');
SELECT * FROM test1;

a | b

t | sic est
f | non est

SELECT * FROM test1l WHERE a;
a | b

t | sic est

The key words TRUE and FALSE are the preferred (SQL-compliant) method for writing Boolean
constants in SQL queries. But you can also use the string representations by following the generic
string-literal constant syntax described in Section 4.1.2.7, for example' yes' : : bool ean.

Note that the parser automatically understands that TRUE and FALSE are of type bool ean, but this
isnot so for NULL because that can have any type. So in some contexts you might have to cast NULL
to bool ean explicitly, for example NULL: : bool ean. Conversely, the cast can be omitted from a
string-literal Boolean value in contexts where the parser can deduce that the literal must be of type
bool ean.

8.7. Enumerated Types

8.7.1.

Enumerated (enum) types are data types that comprise a static, ordered set of values. They are equiv-
alent to the enumtypes supported in a number of programming languages. An example of an enum
type might be the days of the week, or a set of status values for a piece of data.

Declaration of Enumerated Types

Enum types are created using the CREATE TY PE command, for example:

CREATE TYPE mpod AS ENUM ('sad', 'ok', 'happy');

Once created, the enum type can be used in table and function definitions much like any other type:

CREATE TYPE npbod AS ENUM ('sad', 'ok', 'happy');
CREATE TABLE person (
name text,
current _nood nood
)
| NSERT | NTO person VALUES (' Moe', 'happy');
SELECT * FROM person WHERE current _nood = ' happy';
name | current_nood

153



Data Types

8.7.2.

8.7.3.

(1 row
Ordering

The ordering of the values in an enum type is the order in which the values were listed when the
type was created. All standard comparison operators and related aggregate functions are supported
for enums. For example:

| NSERT | NTO person VALUES ('Larry', 'sad');

| NSERT | NTO person VALUES ('Curly', 'ok');

SELECT * FROM person WHERE current_nood > 'sad';
nane | current_nood

SELECT * FROM person WHERE current _mod > 'sad' ORDER BY
current _nood;
nane | current_nood

Curly | ok
Moe | happy
(2 rows)

SELECT nane

FROM per son

WHERE current_mood = (SELECT M N(current_nood) FROM person);
name

Type Safety

Each enumerated data type is separate and cannot be compared with other enumerated types. See this
example:

CREATE TYPE happi ness AS ENUM (' happy', 'very happy', 'ecstatic');
CREATE TABLE hol i days (

num weeks i nt eger,

happi ness happi ness
)
I NSERT | NTO hol i days( num weeks, happi ness) VALUES (4, 'happy');
I NSERT | NTO hol i days(num weeks, happi ness) VALUES (6, 'very happy');
| NSERT | NTO hol i days(num weeks, happi ness) VALUES (8, 'ecstatic');
I NSERT | NTO hol i days( num weeks, happi ness) VALUES (2, 'sad');
ERROR: invalid input value for enum happi ness: "sad"
SELECT person. nane, holidays. num weeks FROM person, holidays

WHERE person. current _nood = hol i days. happi ness;

ERROR: operator does not exist: npod = happi ness

If you really need to do something like that, you can either write a custom operator or add explicit
casts to your query:

154



Data Types

8.7.4.

8.8. Geometric Types

8.8.1.

SELECT person. nane, holidays. num weeks FROM per son,
WHERE per son. current _nood: : t ext
| num weeks

nane

Implementation Details

hol i days

= hol i days. happi ness: : text;

Enum labels are case sensitive, so ' happy' isnot the sameas' HAPPY' . White space in the labels

is significant too.

Although enum types are primarily intended for static sets of values, there is support for adding new
valuesto an existing enum type, and for renaming values (see ALTER TY PE). Existing values cannot
be removed from an enum type, nor can the sort ordering of such values be changed, short of dropping
and re-creating the enum type.

An enum value occupies four bytes on disk. The length of an enum value's textual label is limited by
the NAMEDATAL EN setting compiled into PostgreSQL ; in standard buildsthis means at most 63 bytes.

Thetrandations from internal enum valuesto textual 1abels are kept in the system catalog pg_enum
Querying this catalog directly can be useful.

Geometric datatypes represent two-dimensional spatial objects. Table 8.20 shows the geometric types

available in PostgreSQL .

Table 8.20. Geometric Types

Name Storage Size Description Representation

poi nt 16 bytes Point on a plane x,y)

line 32 bytes Infiniteline {A,B,C}

| seg 32 bytes Finite line segment ((x1,yD),(x2,y2))

box 32 bytes Rectangular box ((x1,y1),(x2,y2))

pat h 16+16n bytes Closed path (similar to|((x1,y1),...)
polygon)

pat h 16+16n bytes Open path [(x1,y1),..]

pol ygon 40+16n bytes Polygon (similar to|((x1,y1),...)
closed path)

circle 24 bytes Circle <(x,y),r> (center point

and radius)

A rich set of functions and operators is available to perform various geometric operations such as
scaling, translation, rotation, and determining intersections. They are explained in Section 9.11.

Points

Pointsarethefundamental two-dimensional building block for geometrictypes. Valuesof typepoi nt
are specified using either of the following syntaxes:

155




Data Types

8.8.2.

8.8.3.

8.8.4.

8.8.5.

where x and y are the respective coordinates, as floating-point numbers.
Points are output using the first syntax.
Lines

Lines are represented by the linear equation Ax + By + C= 0, where A and B are not both zero. Values
of typel i ne areinput and output in the following form:

{ A B C}

Alternatively, any of the following forms can be used for input:

[ ( x1, y1l) , (x2, y2) ]
((x1,yl) ., (x2,y2))
(x1, yl) , (x2,y2)
x1, yl , X2 , y2

where (x1, y1) and (x2, y2) aretwo different points on theline.

Line Segments

Line segments are represented by pairs of pointsthat are the endpoints of the segment. Values of type
| seg are specified using any of the following syntaxes:

[ ( x1, y1) , (x2,y2) ]
((x1, y1l) , (x2,vy2))
( x1, y1) , ( x2, y2)
x1, yl X2, y2

where (x1, y1) and (x2, y2) arethe end points of the line segment.
Line segments are output using the first syntax.
Boxes

Boxes are represented by pairs of points that are opposite corners of the box. Values of type box are
specified using any of the following syntaxes:

((x1,yl), (x2,y2))
(X1, yl) , (x2,y2)
x1, yl X2, y2

where (x1, y1) and (x2, y2) areany two opposite corners of the box.
Boxes are output using the second syntax.

Any two opposite corners can be supplied on input, but the values will be reordered as needed to store
the upper right and lower |eft corners, in that order.

Paths

Paths are represented by lists of connected points. Paths can be open, where the first and last pointsin
thelist are considered not connected, or closed, wherethefirst and last pointsare considered connected.

156



Data Types

8.8.6.

8.8.7.

Vaues of type pat h are specified using any of the following syntaxes:

[ ( x1, y1) , ..., ( xn, yn) ]
((x¥1,vy1), ... , (xn, yn))
(x1, vy1), ... , ( xn, yn)

( x1, yl v e Xn , yn)
x1, vyl v e Xn , yn

where the points are the end points of the line segments comprising the path. Square brackets ([ ])
indicate an open path, while parentheses (( ) ) indicate a closed path. When the outermost parentheses
are omitted, asin the third through fifth syntaxes, a closed path is assumed.

Paths are output using the first or second syntax, as appropriate.

Polygons

Polygons are represented by lists of points (the vertexes of the polygon). Polygons are very similar to
closed paths, but are stored differently and have their own set of support routines.

Vaues of type pol ygon are specified using any of the following syntaxes:

((x¥1,vy1), ... , (xn, yn))
(x1, y1), ..., ( Xxn, yn)
( x1, y1 v Xn , yn)
x1, yl v e Xn , yn

where the points are the end points of the line segments comprising the boundary of the polygon.
Polygons are output using the first syntax.
Circles

Circles are represented by a center point and radius. Vaues of typeci r cl e are specified using any
of the following syntaxes:

~ A

—~ A~~~

X X X X
<K KKK

~— N —
_~ = = =

where ( X, y) isthe center point and r istheradius of thecircle.

Circles are output using the first syntax.

8.9. Network Address Types

PostgreSQL offers data types to store IPv4, IPv6, and MAC addresses, as shown in Table 8.21. It is
better to use these types instead of plain text types to store network addresses, because these types
offer input error checking and specialized operators and functions (see Section 9.12).

Table 8.21. Network Address Types

Name Storage Size Description
cidr 7 or 19 bytes IPv4 and IPv6 networks

157



Data Types

8.9.1.

8.9.2.

Name Storage Size Description

i net 7 or 19 bytes IPv4 and IPv6 hosts and net-
works

macaddr 6 bytes MAC addresses

macaddr 8 8 bytes MAC addresses (EUI-64 format)

When sorting i net or ci dr datatypes, |Pv4 addresses will always sort before I1Pv6 addresses, in-
cluding IPv4 addresses encapsul ated or mapped to | Pv6 addresses, such as::10.2.3.4 or ::ffff:10.4.3.2.

| net

Thei net typeholdsanPv4 or IPv6 host address, and optionally its subnet, all in onefield. The subnet
is represented by the number of network address bits present in the host address (the “netmask”). If
the netmask is 32 and the addressis | Pv4, then the value does not indicate a subnet, only asingle host.
In IPv6, the address length is 128 bits, so 128 bits specify a unique host address. Note that if you want
to accept only networks, you should usethe ci dr typerather thani net .

The input format for thistypeisaddr ess/ y where addr ess isan IPv4 or IPv6 addressand y is
the number of bits in the netmask. If the / y portion is missing, the netmask is 32 for IPv4 and 128
for IPv6, so the value represents just a single host. On display, the / y portion is suppressed if the
netmask specifies a single host.

cidr

Theci dr typeholdsan IPv4 or IPv6 network specification. Input and output formatsfollow Classless
Internet Domain Routing conventions. The format for specifying networks is addr ess/ y where
addr ess isthe network represented as an IPv4 or IPv6 address, and y is the number of bitsin the
netmask. If y isomitted, it is calculated using assumptions from the older classful network numbering
system, except it will be at |east large enough to include al of the octets written in the input. It isan
error to specify anetwork address that has bits set to the right of the specified netmask.

Table 8.22 shows some exampl es.

Table8.22. ci dr TypelInput Examples

ci dr Input ci dr Output abbrev(cidr)
192.168.100.128/25 192.168.100.128/25 192.168.100.128/25
192.168/24 192.168.0.0/24 192.168.0/24
192.168/25 192.168.0.0/25 192.168.0.0/25
192.168.1 192.168.1.0/24 192.168.1/24
192.168 192.168.0.0/24 192.168.0/24

128.1 128.1.0.0/16 128.1/16

128 128.0.0.0/16 128.0/16

128.1.2 128.1.2.0/24 128.1.2/24

10.1.2 10.1.2.0/24 10.1.2/24

10.1 10.1.0.0/16 10.1/16

10 10.0.0.0/8 10/8

10.1.2.3/32 10.1.2.3/32 10.1.2.3/32
2001:4f8:3:ba::/64 2001:4f8:3:ba::/64 2001:4f8:3:ba::/64
2001:4f8:3:ba:2e0:81f- 2001:4f8:3:ba:2e0:81f- 2001:4f8:3:ba:2e0:81f-
f:fe22:d1f1/128 f.fe22:d1f1/128 f.fe22:d1f1

158




Data Types

8.9.3.

8.9.4.

8.9.5.

ci dr Input ci dr Output abbrev(cidr)
ffff:1.2.3.0/120 +ffff:1.2.3.0/120 =ffff:1.2.3/120
ffff:1.2.3.0/128 ffff:1.2.3.0/128 ffff:1.2.3.0/128

| net vs. ci dr

Theessential differencebetweeni net andci dr datatypesisthati net acceptsvaueswith nonzero
bits to the right of the netmask, whereas ci dr does not. For example, 192. 168. 0. 1/ 24 isvalid
fori net but not for ci dr.

Tip

If you do not like the output format for i net or ci dr values, try thefunctionshost ,
t ext ,and abbr ev.

macaddr

Thenmacaddr typestoresMAC addresses, known for examplefrom Ethernet card hardware addresses
(although MAC addresses are used for other purposes as well). Input is accepted in the following
formats:

' 08: 00: 2b: 01: 02: 03"
' 08- 00- 2b- 01- 02- 03'
' 08002b: 010203’

' 08002b- 010203’

' 0800. 2b01. 0203"

' 0800- 2b01- 0203"

' 08002b010203'

These examples would all specify the same address. Upper and lower case is accepted for the digits
a through f . Output is awaysin the first of the forms shown.

IEEE Std 802-2001 specifies the second shown form (with hyphens) as the canonical form for
MAC addresses, and specifies the first form (with colons) as the bit-reversed notation, so that
08-00-2b-01-02-03 = 01:00:4D:08:04:0C. This convention is widely ignored nowadays, and it isrel-
evant only for obsol ete network protocols (such as Token Ring). PostgreSQL makes no provisionsfor
bit reversal, and all accepted formats use the canonical LSB order.

The remaining five input formats are not part of any standard.

macaddr 8

The macaddr 8 type stores MAC addresses in EUI-64 format, known for example from Ethernet
card hardware addresses (although MAC addresses are used for other purposes as well). This type
can accept both 6 and 8 byte length MAC addresses and stores them in 8 byte length format. MAC
addresses given in 6 byte format will be stored in 8 byte length format with the 4th and 5th bytes set
to FF and FE, respectively. Note that IPv6 uses a modified EUI-64 format where the 7th bit should
be set to one after the conversion from EUI-48. The function macaddr 8_set 7bi t is provided to
make this change. Generally speaking, any input which is comprised of pairs of hex digits (on byte
boundaries), optionally separated consistently by oneof ' : ' ,' -' or' ."',isaccepted. The number
of hex digits must be either 16 (8 bytes) or 12 (6 bytes). Leading and trailing whitespace is ignored.
The following are examples of input formats that are accepted:

' 08: 00: 2b: 01: 02: 03: 04: 05’
' 08- 00- 2b- 01- 02- 03- 04- 05"

159



Data Types

8.10

' 08002b: 0102030405'

' 08002b- 0102030405'

' 0800. 2b01. 0203. 0405’
' 0800- 2b01- 0203- 0405’
' 08002b01: 02030405'

' 08002b0102030405'

These examples would all specify the same address. Upper and lower case is accepted for the digits
a through f . Output is always in the first of the forms shown. The last six input formats that are
mentioned above are not part of any standard. To convert atraditional 48 bit MAC addressin EUI-48
format to modified EUI-64 format to be included as the host portion of an IPv6 address, use macad-
dr 8_set 7bi t asshown:

SELECT nacaddr 8_set 7bi t (' 08: 00: 2b: 01: 02: 03" ) ;

macaddr 8_set 7bi t

Oa: 00: 2b: ff:fe: 01: 02: 03
(1 row

Bit String Types

Bit strings are strings of 1's and 0's. They can be used to store or visualize bit masks. There are two
SQL hit types: bi t (n) andbi t varyi ng(n),wheren isapositive integer.

bi t type data must match the length n exactly; it is an error to attempt to store shorter or longer bit
strings. bit  varyi ng datais of variable length up to the maximum length n; longer strings will
be rejected. Writing bi t without alength is equivalent to bi t (1) , whilebi t varyi ng without
alength specification means unlimited length.

Note

If one explicitly castsabit-string valueto bi t ( n) , it will betruncated or zero-padded
on the right to be exactly n hits, without raising an error. Similarly, if one explicitly
casts a hit-string valueto bi t var yi ng(n), it will be truncated on the right if it
ismorethan n bits.

Refer to Section 4.1.2.5 for information about the syntax of bit string constants. Bit-logical operators
and string manipulation functions are available; see Section 9.6.

Example 8.3. Using the Bit String Types

CREATE TABLE test (a BIT(3), b BIT VARYING5));
| NSERT | NTO test VALUES (B 101', B 00');
| NSERT | NTO test VALUES (B 10', B 101');

ERROR: bit string length 2 does not match type hit(3)

| NSERT | NTO test VALUES (B 10'::bit(3), B 101');
SELECT * FROM test;

160



Data Types

101 | 00
100 | 101

A bit string value requires 1 byte for each group of 8 bits, plus 5 or 8 bytes overhead depending on
the length of the string (but long values may be compressed or moved out-of-line, as explained in
Section 8.3 for character strings).

8.11. Text Search Types

PostgreSQL provides two datatypes that are designed to support full text search, which isthe activity
of searching through a collection of natural-language documents to locate those that best match a
guery. Thet svect or typerepresents adocument in aform optimized for text search; thet squery
type similarly represents atext query. Chapter 12 provides a detailed explanation of this facility, and
Section 9.13 summarizes the related functions and operators.

8.11.1. t svect or

At svect or valueisasorted list of distinct lexemes, which are words that have been normalized
to merge different variants of the same word (see Chapter 12 for details). Sorting and duplicate-elim-
ination are done automatically during input, as shown in this example:

SELECT 'a fat cat sat on a mat and ate a fat rat'::tsvector;
t svect or

To represent lexemes containing whitespace or punctuation, surround them with quotes:

SELECT $$t he | exene ' ' contains spaces$$::tsvector;
t svect or

‘contains' 'lexene' 'spaces' 'the'

(Weusedollar-quoted string literalsin this example and the next one to avoid the confusion of having
to double quote marks within the literals.) Embedded quotes and backsl ashes must be doubled:

SELECT $$the |l exene 'Joe''s' contains a quote$$::tsvector;
t svect or

'contains' 'lexene' 'quote' 'the'

Optionally, integer positions can be attached to lexemes:

SELECT 'a:1 fat:2 cat:3 sat:4 on:5 a:6 mat: 7 and: 8 ate: 9 a: 10
fat:11 rat:12'::tsvector;
t svect or
'a':1,6,10 'and':8 'ate':9 'cat':3 'fat':2,11 'mat':7 'on':5
'rat':12 'sat':4
A position normally indicates the source word's | ocation in the document. Positional information can

be used for proximity ranking. Position values can range from 1 to 16383; larger numbers are silently
set to 16383. Duplicate positions for the same lexeme are discarded.

161



Data Types

Lexemes that have positions can further be labeled with aweight, which can be A, B, C, or D. Disthe
default and hence is not shown on output:

SELECT 'a: 1A fat:2B,4C cat: 5D ::tsvector;
t svect or

Weights are typically used to reflect document structure, for example by marking title words differ-
ently from body words. Text search ranking functions can assign different priorities to the different
weight markers.

It isimportant to understand that thet svect or typeitself does not perform any word normalization;
it assumes the wordsiit is given are normalized appropriately for the application. For example,

SELECT ' The Fat Rats'::tsvector;
t svect or

"Fat' 'Rats' ' The'

For most English-text-searching applications the above words would be considered non-normalized,
but t svect or doesn't care. Raw document text should usually be passed throught o_t svect or
to normalize the words appropriately for searching:

SELECT to_tsvector('english', 'The Fat Rats');
to_tsvector

Again, see Chapter 12 for more detail.

8.11.2. t squery

At squery valuestoreslexemesthat areto be searched for, and can combine them using the Boolean
operators & (AND), | (OR),and! (NOT), aswell asthe phrase search operator <- > (FOLLOWED
BY). Thereisaso avariant <N> of the FOLLOWED BY operator, where Nisan integer constant that
specifies the distance between the two lexemes being searched for. <- > isequivalent to <1>.

Parentheses can be used to enforce grouping of these operators. |nthe absence of parentheses, ! (NOT)
binds most tightly, <- > (FOLLOWED BY) next most tightly, then & (AND), with | (OR) binding
the least tightly.

Here are some examples:

SELECT 'fat & rat'::tsquery;
tsquery

SELECT 'fat & (rat | cat)'::tsquery;
tsquery

SELECT 'fat & rat & ! cat'::tsquery;

162



Data Types

8.12

tsquery

Optionaly, lexemesin at squery can be labeled with one or more weight letters, which restricts
them to match only t svect or lexemes with one of those weights:

SELECT 'fat:ab & cat'::tsquery;
t squery

Also, lexemesin at squery can be labeled with * to specify prefix matching:

SELECT ' super:*'::tsquery;
t squery

This query will match any word inat svect or that beginswith “super”.

Quotingrulesfor lexemesarethe sameasdescribed previoudly for lexemesint svect or ; and, aswith
t svect or, any required normalization of words must be done before converting to the t squery
type. Thet o_t squer y function is convenient for performing such normalization:

SELECT to_tsquery('Fat:ab & Cats');
to_tsquery

Note that t 0_t squery will process prefixes in the same way as other words, which means this
comparison returns true:

SELECT to_tsvector( 'postgraduate' ) @to_tsquery( 'postgres:*' );
?col um?

because post gr es gets stemmed to post gr :

SELECT to_tsvector( 'postgraduate' ), to_tsquery( 'postgres:*' );
to_tsvector | to_tsquery

"postgradu’':1 | 'postgr':*

which will match the stemmed form of post gr aduat e.

UUID Type

The data type uui d stores Universally Unique Identifiers (UUID) as defined by RFC 4122, 1SO/
|EC 9834-8:2005, and related standards. (Some systems refer to this data type as a globally unique
identifier, or GUID, instead.) This identifier is a 128-bit quantity that is generated by an algorithm
chosen to make it very unlikely that the same identifier will be generated by anyone else in the known
universe using the sasme algorithm. Therefore, for distributed systems, theseidentifiers provide abetter
uni queness guarantee than sequence generators, which are only unique within a single database.

163



Data Types

A UUID is written as a sequence of lower-case hexadecimal digits, in several groups separated by
hyphens, specifically agroup of 8 digitsfollowed by three groups of 4 digitsfollowed by agroup of 12
digits, for atotal of 32 digits representing the 128 bits. An example of aUUID inthisstandard formis:

a0eebc99- 9c0Ob- 4ef 8- bb6d- 6bb9bd380all

PostgreSQL also accepts the following aternative forms for input: use of upper-case digits, the stan-
dard format surrounded by braces, omitting some or all hyphens, adding a hyphen after any group of
four digits. Examples are:

AOEEBC99- 9COB- 4EF8- BB6D- 6BB9BD380A11
{a0eebc99- 9cOb- 4ef 8- bb6d- 6bb9bd380a11}
a0eebc999c0Ob4ef 8bb6d6bb9bd380all

alee- bc99- 9cOb- 4ef 8- bb6d- 6bb9- bd38- 0all
{a0eebc99- 9cOb4ef 8- bb6d6bb9- bd380all}

Output is always in the standard form.

PostgreSQL provides storage and comparison functions for UUIDs, but the core database does not
include any function for generating UUIDs, because no single algorithm is well suited for every ap-
plication. The uuid-ossp module provides functions that implement several standard algorithms. The
pgcrypto modul e also provides a generation function for random UUIDs. Alternatively, UUIDs could
be generated by client applications or other libraries invoked through a server-side function.

8.13. XML Type

The xm datatype can be used to store XML data. Its advantage over storing XML datain at ext
field isthat it checks the input values for well-formedness, and there are support functions to perform
type-safe operations on it; see Section 9.14. Use of this data type requiresthe installation to have been
built withconfi gure --with-1ibxm .

Thexm type can store well-formed “documents’, as defined by the XML standard, as well as *“con-
tent” fragments, which are defined by reference to the more permissive “document node’! of the
XQuery and XPath data model. Roughly, this means that content fragments can have more than one
top-level element or character node. The expression xm val ue 1S DOCUMENT can be used to
evaluate whether a particular xm valueisafull document or only a content fragment.

8.13.1. Creating XML Values

To produce avalue of type xnl from character data, use the function xm par se:

XMLPARSE ( { DOCUMENT | CONTENT } val ue)
Examples:
XMLPARSE ( DOCUMENT ' <?xm version="1. 0" ?><book><titl| e>Manual </

titl e><chapter>...</chapter></book>")
XM_LPARSE ( CONTENT ' abc<f oo>bar </ f oo><bar >f oo</ bar >')

Whilethisistheonly way to convert character stringsinto XML values according to the SQL standard,
the PostgreSQL -specific syntaxes:

L hitps://www.w3.0rg/ TR/2010/REC-xpath-datamodel-20101214/#DocumentNode

164


https://www.w3.org/TR/2010/REC-xpath-datamodel-20101214/#DocumentNode
https://www.w3.org/TR/2010/REC-xpath-datamodel-20101214/#DocumentNode

Data Types

xm ' <f oo>bar </ f 0o0>'
' <f oo>bar </ foo>"::xn

can also be used.

Thexm type does not validate input values against a document type declaration (DTD), even when
theinput value specifiesaDTD. Thereisa so currently no built-in support for validating against other
XML schema languages such as XML Schema.

Theinverse operation, producing a character string value from xm , usesthe functionxni seri al -
i ze:

XMLSERI ALl ZE ( { DOCUMENT | CONTENT } val ue AS type )

type canbechar act er,charact er varyi ng,ort ext (or analiasfor oneof those). Again,
according to the SQL standard, thisis the only way to convert between type xm and character types,
but PostgreSQL also allows you to simply cast the value.

When a character string value is cast to or from type xm without going through XM_LPARSE or XMt
LSERI ALI ZE, respectively, the choice of DOCUMENT versus CONTENT is determined by the “ XML
option” session configuration parameter, which can be set using the standard command:

SET XML OPTION { DOCUMENT | CONTENT };

or the more PostgreSQL -like syntax

SET xm option TO { DOCUMENT | CONTENT };

The default is CONTENT, so all forms of XML data are allowed.

8.13.2. Encoding Handling

Care must be taken when dealing with multiple character encodings on the client, server, and in the
XML data passed through them. When using the text mode to pass queries to the server and query
results to the client (which is the norma mode), PostgreSQL converts all character data passed be-
tween the client and the server and vice versa to the character encoding of the respective end; see
Section 23.3. Thisincludes string representations of XML values, such asin the above examples. This
would ordinarily mean that encoding declarations contained in XML data can become invalid as the
character data is converted to other encodings while traveling between client and server, because the
embedded encoding declaration is not changed. To cope with this behavior, encoding declarations
contained in character strings presented for input to the xm type are ignored, and content is assumed
to be in the current server encoding. Consequently, for correct processing, character strings of XML
data must be sent from the client in the current client encoding. It is the responsibility of the client
to either convert documents to the current client encoding before sending them to the server, or to
adjust the client encoding appropriately. On output, values of type xm will not have an encoding
declaration, and clients should assume all dataisin the current client encoding.

When using binary mode to pass query parametersto the server and query results back to the client, no
encoding conversion is performed, so the situation is different. In this case, an encoding declaration
in the XML data will be observed, and if it is absent, the data will be assumed to be in UTF-8 (as
required by the XML standard; note that PostgreSQL does not support UTF-16). On output, data will
have an encoding declaration specifying the client encoding, unless the client encoding is UTF-8, in
which case it will be omitted.

Needlessto say, processing XML data with PostgreSQL will be less error-prone and more efficient if
the XML data encoding, client encoding, and server encoding are the same. Since XML dataisinter-
nally processed in UTF-8, computations will be most efficient if the server encoding isalso UTF-8.

165



Data Types

Caution

Some XML-related functions may not work at all on non-ASCI| data when the server
encodingisnot UTF-8. Thisisknownto beanissuefor xm t abl e() andxpat h()
in particular.

8.13.3. Accessing XML Values

The xm datatype is unusual in that it does not provide any comparison operators. This is because
thereisno well-defined and universally useful comparison algorithm for XML data. One consequence
of thisis that you cannot retrieve rows by comparing an xim column against a search value. XML
values should therefore typically be accompanied by a separate key field such asan ID. An dternative
solution for comparing XML valuesisto convert them to character stringsfirst, but note that character
string comparison has little to do with a useful XML comparison method.

Since there are no comparison operators for the xm data type, it is not possible to create an index
directly on a column of thistype. If speedy searchesin XML data are desired, possible workarounds
include casting the expression to a character string type and indexing that, or indexing an XPath ex-
pression. Of course, the actual query would have to be adjusted to search by the indexed expression.

The text-search functionality in PostgreSQL can also be used to speed up full-document searches of
XML data. The necessary preprocessing support is, however, not yet available in the PostgreSQL
distribution.

JSON Types

JSON data types are for storing JSON (JavaScript Object Notation) data, as specified in RFC 7159,
Such data can also be stored ast ext , but the JSON data types have the advantage of enforcing that
each stored valueisvalid according to the JSON rules. There are al so assorted JSON-specific functions
and operators available for data stored in these data types; see Section 9.15.

8.14

Therearetwo JSON datatypes: j son andj sonb. They accept almost identical setsof valuesasinput.
The major practical difference is one of efficiency. The j son data type stores an exact copy of the
input text, which processing functions must reparse on each execution; whilej sonb datais storedin
a decomposed binary format that makes it slightly slower to input due to added conversion overhead,
but significantly faster to process, since no reparsing isneeded. j sonb also supportsindexing, which
can be a significant advantage.

Becausethej son typestoresan exact copy of theinput text, it will preserve semantically-insignificant
white space between tokens, as well asthe order of keyswithin JSON objects. Also, if a JSON object
within the val ue contai nsthe same key morethan once, al the key/value pairsare kept. (The processing
functions consider the last value as the operative one.) By contrast, j sonb does not preserve white
space, does not preserve the order of object keys, and does not keep duplicate object keys. If duplicate
keys are specified in the input, only the last value is kept.

In general, most applications should prefer to store JSON dataasj sonb, unless there are quite spe-
cialized needs, such as|egacy assumptions about ordering of object keys.

PostgreSQL allows only one character set encoding per database. It is therefore not possible for the
JSON types to conform rigidly to the JSON specification unless the database encoding is UTF8. At-
temptsto directly include charactersthat cannot be represented in the database encoding will fail; con-
versely, characters that can be represented in the database encoding but not in UTF8 will be allowed.

RFC 7159 permits JSON strings to contain Unicode escape sequences denoted by \ uXXXX. Inthein-
put function for thej son type, Unicode escapes are all owed regardl ess of the database encoding, and

2 https://tool s.ietf.org/html/rfc7159

166


https://tools.ietf.org/html/rfc7159
https://tools.ietf.org/html/rfc7159

Data Types

are checked only for syntactic correctness (that is, that four hex digitsfollow \ u). However, the input
function for j sonb isstricter: it disallows Unicode escapes for non-ASCI| characters (those above U
+007F) unless the database encoding is UTF8. Thej sonb type also rejects\ u0000 (because that
cannot be represented in PostgreSQL's t ext type), and it insists that any use of Unicode surrogate
pairs to designate characters outside the Unicode Basic Multilingual Plane be correct. Valid Unicode
escapes are converted to the equivalent ASCII or UTF8 character for storage; this includes folding
surrogate pairs into a single character.

Note

Many of the JSON processing functionsdescribed in Section 9.15will convert Unicode
escapes to regular characters, and will therefore throw the same types of errors just
described even if their input isof typej son notj sonb. Thefact that thej son input
function does not make these checks may be considered a historical artifact, although
it does alow for simple storage (without processing) of JSON Unicode escapesin a
non-UTF8 database encoding. In general, it is best to avoid mixing Unicode escapes
in JSON with anon-UTF8 database encoding, if possible.

When converting textual JSON input into j sonb, the primitive types described by RFC 7159 are
effectively mapped onto native PostgreSQL types, as shown in Table 8.23. Therefore, there are some
minor additional constraints on what constitutesvalidj sonb datathat do not apply tothej son type,
nor to JSON in the abstract, corresponding to limits on what can be represented by the underlying data
type. Notably, j sonb will reject numbers that are outside the range of the PostgreSQL nurmeri ¢
datatype, whilej son will not. Such implementati on-defined restrictions are permitted by RFC 7159.
However, in practice such problems are far more likely to occur in other implementations, asit is
common to represent JISON's nunber primitive type as |EEE 754 double precision floating point
(which RFC 7159 explicitly anticipates and allows for). When using JSON as an interchange format
with such systems, the danger of 1osing numeric precision compared to data originally stored by Post-
greSQL should be considered.

Conversely, as noted in the table there are some minor restrictions on the input format of JSON prim-
itive types that do not apply to the corresponding PostgreSQL types.

Table 8.23. JSON primitive types and corresponding PostgreSQL types

JSON primitive type PostgreSQL type Notes

string t ext \ u0000 is disdlowed, as are
non-ASCIl Unicode escapes if
database encoding isnot UTF8

nunber nuneric NaNandi nfi nity valuesare
disallowed
bool ean bool ean Only lowercase true and

f al se spellings are accepted

nul | (none) SQL NULL isadifferent concept

8.14.1. JSON Input and Output Syntax

The input/output syntax for the JSON datatypesis as specified in RFC 7159.

Thefollowing are al validj son (or j sonb) expressions:

-- Sinple scalar/primtive val ue
-- Primtive values can be nunbers, quoted strings, true, false, or
nul |

167



Data Types

SELECT '5'::json;

-- Array of zero or nore elenents (el enents need not be of sane

type)
SELECT '[1, 2, "foo", null]'::]json;

-- (bject containing pairs of keys and val ues
-- Note that object keys nust always be quoted strings
SELECT ' {"bar": "baz", "balance": 7.77, "active": false}'::]json;

-- Arrays and objects can be nested arbitrarily
SELECT '{"foo": [true, "bar"], "tags": {"a": 1, "b": null}}"::json;

As previously stated, when a JSON valueisinput and then printed without any additional processing,

j son outputsthe same text that wasinput, whilej sonb does not preserve semantically-insignificant
details such as whitespace. For example, note the differences here:

SELECT '{"bar": "baz", "balance": 7.77, "active":false}'::json;

j son

{"bar": "baz", "balance": 7.77, "active":false}

(1 row

SELECT '{"bar": "baz", "balance": 7.77, "active":false}'::jsonb;
j sonb

{"bar": "baz", "active": false, "balance": 7.77}

(1 row

One semantically-insignificant detail worth notingisthatinj sonb, numberswill be printed according
to the behavior of the underlying nuner i ¢ type. In practice this means that numbers entered with E
notation will be printed without it, for example:

SELECT '{"reading": 1.230e-5}'::json, '{"reading":
1.230e-5}"::jsonb;
json | j sonb

{"reading": 1.230e-5} | {"reading": 0.00001230}
(1 row

However, j sonb will preserve trailing fractional zeroes, as seen in this example, even though those
are semantically insignificant for purposes such as equality checks.

8.14.2. Designing JSON documents effectively

Representing dataas JSON can be considerably more flexible than the traditional relational datamod-
el, which is compelling in environments where requirements are fluid. It is quite possible for both
approaches to co-exist and complement each other within the same application. However, even for
applications where maximal flexibility is desired, it is still recommended that JSON documents have
a somewhat fixed structure. The structure is typically unenforced (though enforcing some business
rules declaratively is possible), but having a predictable structure makes it easier to write queries that
usefully summarize a set of “documents’ (datums) in atable.

JSON data is subject to the same concurrency-control considerations as any other data type when
stored in atable. Although storing large documents is practicable, keep in mind that any update ac-
quires a row-level lock on the whole row. Consider limiting JSON documents to a manageable size

168



Data Types

in order to decrease lock contention among updating transactions. Ideally, JSON documents should
each represent an atomic datum that business rules dictate cannot reasonably be further subdivided
into smaller datums that could be modified independently.

8.14.3. ] sonb Containment and Existence

Testing containment is an important capability of j sonb. Thereisno parallel set of facilities for the
j son type. Containment tests whether one j sonb document has contained within it another one.
These examples return true except as noted:

-- Simple scalar/prinmtive values contain only the identical val ue:
SELECT '"foo"'::jsonb @ '"foo"'::jsonb;

-- The array on the right side is contained within the one on the
left:
SELECT '[1, 2, 3]'::jsonb @ '[1, 3]'::jsonb;

-- Order of array elements is not significant, so this is also
true:
SELECT '[1, 2, 3]'::jsonb @ '[3, 1]'::jsonb;

-- Duplicate array elenents don't matter either:
SELECT '[1, 2, 3]'::jsonb @ '[1, 2, 2]'::jsonb;

-- The object with a single pair on the right side is contained
-- within the object on the left side:

SELECT ' {"product": "PostgreSQ.", "version": 9.4, "jsonb":
true}'::jsonb @ '{"version": 9.4}'::jsonb;

-- The array on the right side is not considered contained within

t he

-- array on the left, even though a simlar array is nested within
it:

SELECT '[1, 2, [1, 3]]'::jsonb @ '[1, 3]'::jsonb; -- yields false

-- But with a layer of nesting, it is contained:
SELECT '[1, 2, [1, 3]]'::jsonb @ '[[1, 3]]'::]jsonb;

-- Simlarly, containment is not reported here:
SELECT '{"foo": {"bar": "baz"}}'::jsonb @ '{"bar": "baz"}'::jsonb;
-- yields fal se

-- Atop-level key and an enpty object is contained:
SELECT '{"foo": {"bar": "baz"}}'::jsonb @ '{"foo": {}}'::jsonb;

The general principleisthat the contained object must match the containing object asto structure and
data contents, possibly after discarding some non-matching array elements or object key/value pairs
from the containing object. But remember that the order of array elements is not significant when
doing a containment match, and duplicate array elements are effectively considered only once.

As a specia exception to the genera principle that the structures must match, an array may contain

aprimitive value:

-- This array contains the primtive string val ue:
SELECT '["fo0", "bar"]'::jsonb @ '"bar"'::jsonb;

169



Data Types

-- This exception is not reciprocal -- non-containment is reported
here:
SELECT '"bar"'::jsonb @ '["bar"]'::jsonb; -- yields false

j sonb aso has an existence operator, which is a variation on the theme of containment: it tests
whether astring (given asat ext value) appears as an object key or array element at the top level of
thej sonb value. These examples return true except as noted:

-- String exists as array elenent:
SELECT '["foo0", "bar", "baz"]'::jsonb ? 'bar';

-- String exists as object key:
SELECT '{"foo": "bar"}'::jsonb ? 'foo';

-- (bject values are not considered:

SELECT '{"foo": "bar"}'::jsonb ? 'bar'; -- yields false

-- As with contai nment, existence nmust match at the top |evel:
SELECT '{"foo": {"bar": "baz"}}'::jsonb ? 'bar'; -- yields false
-- Astring is considered to exist if it matches a prinmtive JSON
string:

SELECT '"foo0"'::jsonb ? 'foo';

JSON objects are better suited than arrays for testing containment or existence when there are many
keys or elements involved, because unlike arrays they are internally optimized for searching, and do
not need to be searched linearly.

Tip

Because JSON containment is nested, an appropriate query can skip explicit selection
of sub-objects. As an example, suppose that we have a doc column containing ob-
jects at the top level, with most objects containing t ags fields that contain arrays
of sub-objects. This query finds entries in which sub-objects containing both " t er -
m':"paris" and"ternt:"food" appear, whileignoring any such keys outside
thet ags array:

SELECT doc->'site_nane' FROM websites
VWHERE doc @ '{"tags":[{"terni:"paris"},
{"ternt:"food"}]}";

One could accomplish the same thing with, say,
SELECT doc->'site_nane' FROM websites
VWHERE doc->'tags' @ '[{"ternf:"paris"},
{"term':"food"}]";
but that approach is less flexible, and often less efficient as well.

On the other hand, the JSON existence operator is not nested: it will only look for the
specified key or array element at top level of the JISON value.

The various containment and existence operators, along with all other JSON operators and functions
are documented in Section 9.15.

170



Data Types

8.14.4. ] sonb Indexing

GIN indexes can be used to efficiently search for keys or key/value pairs occurring within a large
number of j sonb documents (datums). Two GIN “operator classes’ are provided, offering different
performance and flexibility trade-offs.

The default GIN operator classfor j sonb supports queries with top-level key-exists operators ?, ?&
and ?| operators and path/value-exists operator @ . (For details of the semantics that these operators
implement, see Table 9.44.) An example of creating an index with this operator classis:

CREATE | NDEX i dxgin ON api USING G N (jdoc);
The non-default GIN operator classj sonb_pat h_ops supports indexing the @ operator only. An
example of creating an index with this operator classis:

CREATE | NDEX i dxgi np ON api USING G N (jdoc jsonb_path_ops);

Consider the example of atable that stores JISON documents retrieved from athird-party web service,
with a documented schema definition. A typical document is:

{
"guid": "9c36adcl- 7f b5- 4d5b- 83b4- 90356a46061a",
"nane": "Angela Barton",
"is_active": true,
"conpany": "Magnafone",
"address": "178 Howard Pl ace, Gulf, Washington, 702",
"regi stered": "2009-11-07T08:53:22 +08: 00",
"latitude": 19.793713,
"l ongi tude": 86.513373,
"tags": [
"enin',
"al i quip",
"qui
]
}

We store these documents in atable named api ,inaj sonb column namedj doc. If aGIN index is
created on this column, queries like the following can make use of the index:

-- Find docunents in which the key "conpany" has val ue "Mgnaf one"
SELECT jdoc->'guid', jdoc->'nane' FROM api WHERE j doc @
"{"conmpany": "Magnafone"}"';

However, theindex could not be used for queries like the following, because though the operator ? is
indexable, it is not applied directly to the indexed column j doc:

-- Find docunents in which the key "tags" contains key or array
el erent "qui"

SELECT jdoc->'guid', jdoc->'nane' FROM api WHERE jdoc -> 'tags' ?
‘qui';

Still, with appropriate use of expression indexes, the above query can use an index. If querying for
particular itemswithinthe"t ags" key is common, defining an index like this may be worthwhile;

171



Data Types

CREATE | NDEX i dxgi ntags ON api USING G N ((jdoc -> "tags'));

Now, the WHERE clausej doc -> 'tags' ? 'qui' will berecognized asan application of the
indexable operator ? to theindexed expressionj doc -> 't ags' . (Moreinformation on expression
indexes can be found in Section 11.7.)

Another approach to querying isto exploit containment, for example:

-- Find docunents in which the key "tags" contains array el ement

"qui n
SELECT jdoc->'guid', jdoc->'nane' FROM api WHERE jdoc @ '{"tags":
[“aui"]}";

A simple GIN index on the j doc column can support this query. But note that such an index will
store copies of every key and valueinthej doc column, whereas the expression index of the previous
example stores only data found under the t ags key. While the simple-index approach is far more
flexible (since it supports queries about any key), targeted expression indexes are likely to be smaller
and faster to search than asimple index.

Although the j sonb_pat h_ops operator class supports only queries with the @ operator, it has
notabl e performance advantages over the default operator classj sonb_ops.Aj sonb_pat h_ops
index is usually much smaller than aj sonb_ops index over the same data, and the specificity of
searchesis better, particularly when queries contain keysthat appear frequently in the data. Therefore
search operations typically perform better than with the default operator class.

The technical difference between aj sonb_ops and aj sonb_pat h_ops GIN index is that the
former creates independent index items for each key and value in the data, while the latter creates
index items only for each value in the data. 3 Basically, each j sonb_pat h_ops index item is a
hash of the value and the key(s) leading to it; for exampletoindex { " f 00" : {"bar": "baz"}},
a single index item would be created incorporating al three of f 0o, bar, and baz into the hash
value. Thus a containment query looking for this structure would result in an extremely specific index
search; but there is no way at all to find out whether f 00 appears as a key. On the other hand, a
j sonb_ops index would creste three index items representing f 0o, bar , and baz separately; then
to do the containment query, it would look for rows containing al three of these items. While GIN
indexes can perform such an AND search fairly efficiently, it will still be less specific and slower
than the equivalent j sonb_pat h_ops search, especidly if there are a very large number of rows
containing any single one of the three index items.

A disadvantage of the j sonb_pat h_ops approach is that it produces no index entries for JSON
structures not containing any values, suchas{"a": {}}.If asearchfor documents containing such
astructure is requested, it will require a full-index scan, which is quite low. j sonb_pat h_ops is
thereforeill-suited for applications that often perform such searches.

j sonb also supports bt r ee and hash indexes. These are usually useful only if it's important to
check equality of complete JISON documents. The bt r ee ordering for j sonb datums is seldom of
great interest, but for completenessit is:

Qoj ect > Array > Bool ean > Nurmber > String > Null
hject with n pairs > object with n - 1 pairs
Array with n elenents > array with n - 1 elenents

Objects with equal numbers of pairs are compared in the order:

3 For this purpose, the term “value’ includes array elements, though JSON terminology sometimes considers array elements distinct from
values within objects.

172



Data Types

key-1, value-1, key-2 ...

Note that object keys are compared in their storage order; in particular, since shorter keys are stored
before longer keys, this can lead to results that might be unintuitive, such as:

{ "aa": 1, "c¢": 1} > {"b": 1, "d": 1}

Similarly, arrays with equal numbers of elements are compared in the order:

el emrent-1, elenent-2 ...

Primitive JSON values are compared using the same comparison rules as for the underlying Post-
greSQL datatype. Strings are compared using the default database collation.

8.14.5. Transforms

Additional extensions are available that implement transforms for the j sonb type for different pro-
cedural languages.

The extensions for PL/Perl are called j sonb_pl per| andj sonb_pl per | u. If you use them,
j sonb values are mapped to Perl arrays, hashes, and scalars, as appropriate.

Theextensionsfor PL/Python arecalledj sonb_pl pyt honu,j sonb_pl pyt hon2u, andj son-
b_pl pyt hon3u (see Section 46.1 for the PL/Python naming convention). If you use them, j sonb
values are mapped to Python dictionaries, lists, and scalars, as appropriate.

8.15. Arrays

PostgreSQL allows columnsof atableto bedefined asvariable-length multidimensional arrays. Arrays
of any built-in or user-defined base type, enum type, composite type, range type, or domain can be
created.

8.15.1. Declaration of Array Types

To illustrate the use of array types, we create this table:

CREATE TABLE sal _enp (

name t ext,
pay_by_quarter integer[],
schedul e text[][]

)

As shown, an array data type is named by appending square brackets ([ ] ) to the data type name of
the array elements. The above command will create atable named sal _enp with a column of type
t ext (nane), aone-dimensiona array of typei nt eger (pay_by_ quart er), which represents
the employee's salary by quarter, and a two-dimensional array of t ext (schedul e), which repre-
sents the employee's weekly schedule.

The syntax for CREATE TABLE alows the exact size of arraysto be specified, for example:
CREATE TABLE tictactoe (

squar es i nteger[3][3]

)

173



Data Types

However, the current implementation ignores any supplied array size limits, i.e., the behavior is the
same as for arrays of unspecified length.

The current implementation does not enforce the declared number of dimensions either. Arrays of
a particular element type are al considered to be of the same type, regardiess of size or number of
dimensions. So, declaring the array size or number of dimensions in CREATE TABLE is simply
documentation; it does not affect run-time behavior.

An aternative syntax, which conformsto the SQL standard by using the keyword ARRAY, can be used
for one-dimensional arrays. pay_by_quart er could have been defined as:

pay_by quarter integer ARRAY[4],

Or, if no array sizeisto be specified:

pay_by quarter integer ARRAY,

As before, however, PostgreSQL does not enforce the size restriction in any case.

8.15.2. Array Value Input

Towriteanarray valueasaliteral constant, enclosethe element valueswithin curly bracesand separate
them by commas. (If you know C, thisis not unlike the C syntax for initializing structures.) Y ou can
put double quotes around any element value, and must do so if it contains commas or curly braces.
(More details appear below.) Thus, the general format of an array constant is the following:

'{ vall delimval2 delim... }'

where del i misthe delimiter character for the type, as recorded initspg_t ype entry. Among the
standard datatypes provided in the PostgreSQL distribution, al useacommaly, ), except for typebox
which uses a semicolon (; ). Each val is either a constant of the array element type, or a subarray.
An example of an array constant is:

"{{1,2,3},{4,5,6},{7,8,9}}'
This constant is atwo-dimensional, 3-by-3 array consisting of three subarrays of integers.

To set an element of an array constant to NULL, write NULL for the element value. (Any upper- or
lower-case variant of NULL will do.) If you want an actual string value“NULL”, you must put double
guotes around it.

(These kinds of array constants are actually only a special case of the generic type constants discussed
in Section 4.1.2.7. The constant isinitially treated as a string and passed to the array input conversion
routine. An explicit type specification might be necessary.)

Now we can show some | NSERT statements:

| NSERT | NTO sal _enp

VALUES ('Bill",
' {10000, 10000, 10000, 10000}',
"{{"neeting", "lunch"}, {"training", "presentation"}}');

| NSERT | NTO sal _enp
VALUES (' Carol ",
' {20000, 25000, 25000, 25000}',

174



Data Types

"{{"breakfast”, "consulting"}, {"neeting”, "lunch"}}");

Theresult of the previous two inserts looks like this:

SELECT * FROM sal _enp;
nane | pay_ by quarter | schedul e

Bill | {10000, 10000, 10000, 10000} | {{neeting,|unch},
{training, presentation}}

Carol | {20000, 25000, 25000, 25000} | {{breakfast, consulting},
{neeting, |l unch}}
(2 rows)

Multidimensional arrays must have matching extentsfor each dimension. A mismatch causes an error,
for example:

| NSERT | NTO sal _enp

VALUES ("Bill",
' {10000, 10000, 10000, 10000}',
"{{"meeting", "lunch"}, {"neeting"}}");

ERROR:  nul tidi nensional arrays nust have array expressions with
mat chi ng di nensi ons

The ARRAY constructor syntax can also be used:

| NSERT | NTO sal _enp

VALUES ('Bill",
ARRAY[ 10000, 10000, 10000, 10000],
ARRAY[[' neeting', 'lunch'], ['training', 'presentation']]);

| NSERT | NTO sal _enp
VALUES (' Carol ",
ARRAY[ 20000, 25000, 25000, 25000],
ARRAY[ [ ' breakfast', 'consulting'], ['neeting', 'lunch']]);

Notice that the array elements are ordinary SQL constants or expressions; for instance, string literals
aresingle quoted, instead of double quoted asthey would bein an array literal. The ARRAY constructor
syntax is discussed in more detail in Section 4.2.12.

8.15.3. Accessing Arrays

Now, we can run some queries on the table. First, we show how to access asingle element of an array.
This query retrieves the names of the employees whose pay changed in the second quarter:

SELECT nane FROM sal _enp WHERE pay_ by quarter[1l] <>
pay by quarter[2];

The array subscript numbers are written within square brackets. By default PostgreSQL uses a one-
based numbering convention for arrays, that is, an array of n elements starts with arr ay[ 1] and
endswitharray[ n] .

175



Data Types

This query retrieves the third quarter pay of all employees:

SELECT pay_by quarter[3] FROM sal _enp;

pay_by_quarter

(2 rows)

We can also access arbitrary rectangular slices of an array, or subarrays. An array dlice is denoted by
writing | ower - bound: upper - bound for one or more array dimensions. For example, this query
retrieves the first item on Bill's schedule for the first two days of the week:

SELECT schedul e[1:2][1:1] FROM sal _enp WHERE nane = 'Bill";

schedul e

{{meeting}, {training})
(1 row

If any dimension is written as a dlice, i.e., contains a colon, then al dimensions are treated as dlices.
Any dimension that has only a single number (no colon) is treated as being from 1 to the number
specified. For example, [ 2] istreated as[ 1: 2] , asin this example:

SELECT schedul e[ 1: 2][2] FROM sal _enp WHERE nanme = 'Bill";

schedul e

{{meeting, lunch}, {traini ng, presentation}}

(1 row

To avoid confusion with the non-slice case, it's best to use slice syntax for al dimensions, e.g., [ 1: 2]
[1:1],not[2][1:1].

It is possible to omit the | ower - bound and/or upper - bound of a slice specifier; the missing
bound is replaced by the lower or upper limit of the array's subscripts. For example:

SELECT schedul e[:2][2:] FROM sal _enp WHERE nanme = 'Bill";
schedul e

{{1 unch} , {pr esent ati on}}

(1 row

SELECT schedul e[:][21:1] FROM sal _enp WHERE nanme = 'Bill";

schedul e

{{meeting}, {training})
(1 row

Anarray subscript expressionwill return null if either thearray itself or any of the subscript expressions
are null. Also, null is returned if a subscript is outside the array bounds (this case does not raise
an error). For example, if schedul e currently has the dimensions[ 1: 3] [ 1: 2] then referencing

176



Data Types

schedul e[ 3] [ 3] yiedldsNULL. Similarly, an array reference with the wrong number of subscripts
yields anull rather than an error.

An array dlice expression likewise yields null if the array itself or any of the subscript expressions are
null. However, in other cases such as selecting an array dlicethat iscompletely outside the current array
bounds, a dice expression yields an empty (zero-dimensional) array instead of null. (This does not
match non-slice behavior and is done for historical reasons.) If the requested slice partially overlaps
the array bounds, then it is silently reduced to just the overlapping region instead of returning null.

The current dimensions of any array value can be retrieved with thear r ay _di ns function:

SELECT array_di ns(schedul e) FROM sal _enp WHERE nanme = 'Carol"';
array_di ns

[1:2][1:2]

(1 row)

array_di nms produces at ext result, which is convenient for people to read but perhaps incon-
venient for programs. Dimensions can also be retrieved with array_upper and array_| ower,
which return the upper and lower bound of a specified array dimension, respectively:

SELECT array_upper (schedule, 1) FROM sal _enp WHERE nanme = 'Carol';

array_upper

(1 row

array_| engt h will return the length of a specified array dimension:

SELECT array_| engt h(schedul e, 1) FROM sal _enp WHERE nane = 'Carol"';

array_l ength

(1 row

car di nal i ty returnsthetotal number of elementsin an array acrossall dimensions. It iseffectively
the number of rowsacall to unnest would yield:

SELECT cardi nality(schedul e) FROM sal _enp WHERE nane = ' Carol';

cardinality

(1 row
8.15.4. Modifying Arrays

An array value can be replaced completely:

UPDATE sal _enp SET pay_by quarter = '{25000, 25000, 27000, 27000}"
VWHERE nanme = 'Carol';

177



Data Types

or using the ARRAY expression syntax:

UPDATE sal _enp SET pay_by quarter = ARRAY[ 25000, 25000, 27000, 27000]
VWHERE nanme = 'Carol';

An array can aso be updated at a single element:

UPDATE sal _enp SET pay_by quarter[4] = 15000
VWHERE nanme = 'Bill";

or updated in adlice:

UPDATE sal _enp SET pay_by quarter[1:2] = '{27000, 27000}’
WHERE nane = 'Carol';

The dlice syntaxes with omitted | ower - bound and/or upper - bound can be used too, but only
when updating an array value that is not NULL or zero-dimensional (otherwise, there is no existing
subscript limit to substitute).

A stored array value can be enlarged by assigning to elements not already present. Any positions be-
tween those previously present and the newly assigned elements will be filled with nulls. For exam-
ple, if array nyar r ay currently has 4 elements, it will have six elements after an update that assigns
tomyarray[ 6] ; myar ray[ 5] will contain null. Currently, enlargement in this fashion isonly al-
lowed for one-dimensional arrays, not multidimensional arrays.

Subscripted assignment allows creation of arrays that do not use one-based subscripts. For example
one might assignto nyar r ay[ - 2: 7] to create an array with subscript values from -2 to 7.

New array values can also be constructed using the concatenation operator, | | :

SELECT ARRAY[1,2] || ARRAY[3,4];
?col um?

(1,234
(1 row

SELECT ARRAY[5,6] || ARRAY[[1,2],[3,4]];
?col um?

{{5,6},{1,2},{3,4}}
(1 row

The concatenation operator alows a single element to be pushed onto the beginning or end of a one-
dimensional array. It also accepts two N-dimensional arrays, or an N-dimensional and an N+1-dimen-
sional array.

When a single element is pushed onto either the beginning or end of a one-dimensional array, the
result is an array with the same lower bound subscript as the array operand. For example:

SELECT array_dinms(1 || '"[0:1]={2,3}'::int[]);
array_di ns

178



Data Types

SELECT array_di ms( ARRAY[1,2] || 3);
array_dins

When two arrays with an equal number of dimensions are concatenated, the result retains the lower
bound subscript of the left-hand operand's outer dimension. The result is an array comprising every
element of the |eft-hand operand followed by every element of the right-hand operand. For example:

SELECT array_di ns( ARRAY[ 1, 2] || ARRAY[3,4,5]);
array_dinms

SELECT array_di ns(ARRAY[[1,2],[3,4]] || ARRAY[[5,6],[7,8],[9,0]1);
array_dinms

[us2
(1 row

When an N-dimensional array is pushed onto the beginning or end of an N+1-dimensional array, the
result is analogous to the element-array case above. Each N-dimensional sub-array is essentialy an
element of the N+1-dimensional array's outer dimension. For example:

SELECT array_di ns(ARRAY[ 1,2] || ARRAY[[3,4],[5,6]]);
array_di ns

(a2
(1 row

An array can also be constructed by using the functions array_pr epend, array_append, or
array_cat . Thefirst two only support one-dimensional arrays, but ar r ay_cat supports multidi-
mensional arrays. Some examples:

SELECT array_prepend(1, ARRAY[2, 3]);
array_prepend

SELECT array_append( ARRAY[ 1, 2], 3);
array_append

SELECT array_cat (ARRAY[ 1, 2], ARRAY[3,4]);
array_cat

{1,234
(1 row

SELECT array_cat (ARRAY[[1,2],[3,4]], ARRAY[5,6]);
array_cat

179



Data Types

{{1,2},{3,4},{5, 6}}
(1 row

SELECT array_cat (ARRAY[ 5, 6], ARRAY[[1,2],[3,4]]);
array_cat

{{5,6},{1,2},{3,4}}

In simple cases, the concatenation operator discussed aboveis preferred over direct use of these func-
tions. However, because the concatenation operator is overloaded to serve al three cases, there are
situations where use of one of the functions is helpful to avoid ambiguity. For example consider:

SELECT ARRAY[1, 2] || '{3, 4}'; ~-- the untyped literal is taken as
an array
?col um?

{1, 2,3, 4}

SELECT ARRAY[1, 2] || '7"; -- so is this one
ERROR: malforned array literal: "7"

SELECT ARRAY[1, 2] || NULL; -- so is an undecorated
NULL
?col um?

SELECT array_append( ARRAY[ 1, 2], NULL); -- this mght have been
meant
array_append

{1, 2, NULL}

In the examples above, the parser sees an integer array on one side of the concatenation operator,
and a constant of undetermined type on the other. The heuristic it uses to resolve the constant's type
is to assume it's of the same type as the operator's other input — in this case, integer array. So the
concatenation operator is presumed to represent ar r ay_cat , notar r ay_append. When that'sthe
wrong choice, it could be fixed by casting the constant to the array's element type; but explicit use of
array_append might be a preferable solution.

8.15.5. Searching in Arrays

Tosearch for avaluein an array, each value must be checked. This can be done manually, if you know
the size of the array. For example:

SELECT * FROM sal _enmp WHERE pay_by quarter[1] = 10000 OR
pay_by quarter[2] = 10000 OR
pay_by quarter[3] = 10000 OR
pay_ by quarter[4] = 10000;

However, this quickly becomes tedious for large arrays, and is not helpful if the size of the array is
unknown. An alternative method is described in Section 9.23. The above query could be replaced by:

180



Data Types

SELECT * FROM sal _enmp WHERE 10000 = ANY (pay_by_quarter);

In addition, you can find rows where the array has all values equal to 10000 with:

SELECT * FROM sal _enmp WHERE 10000 = ALL (pay_by quarter);

Alternatively, thegener at e_subscri pt s function can be used. For example:

SELECT * FROM
( SELECT pay_by quarter,
generate_subscripts(pay_by quarter, 1) AS s
FROM sal _enp) AS foo
WHERE pay_ by quarter[s] = 10000;

Thisfunction is described in Table 9.59.

Y ou can also search an array using the && operator, which checks whether the left operand overlaps
with the right operand. For instance:

SELECT * FROM sal _enp WHERE pay_by quarter && ARRAY[ 10000];

This and other array operators are further described in Section 9.18. It can be accelerated by an ap-
propriate index, as described in Section 11.2.

Y ou can also search for specific valuesin an array usingthear ray_posi ti onandarray_po-
si ti ons functions. The former returns the subscript of the first occurrence of a value in an array;
the latter returns an array with the subscripts of all occurrences of the value in the array. For example:

SELECT

array_position( ARRAY['sun','non','tue','wed' ,'thu,'fri','sat'],
‘mon' ) ;

array_positions

SELECT array_positions(ARRAY[1, 4, 3, 1, 3, 4, 2, 1], 1);
array_positions

Tip

Arrays are not sets; searching for specific array elements can be a sign of database
misdesign. Consider using a separate table with arow for each item that would be an
array element. This will be easier to search, and is likely to scale better for a large
number of elements.

8.15.6. Array Input and Output Syntax

The external text representation of an array value consists of items that are interpreted according to
the 1/O conversion rulesfor the array's element type, plus decoration that indicates the array structure.
The decoration consists of curly braces ({ and }) around the array value plus delimiter characters
between adjacent items. The delimiter character is usually acomma (, ) but can be something else: it

181



Data Types

is determined by thet ypdel i msetting for the array's element type. Among the standard data types
providedin the PostgreSQL distribution, all useacomma, except for typebox, which usesasemicolon
(; ). Inamultidimensional array, each dimension (row, plane, cube, etc.) gets its own level of curly
braces, and delimiters must be written between adjacent curly-braced entities of the same level.

The array output routine will put double quotes around element valuesif they are empty strings, con-
tain curly braces, delimiter characters, double quotes, backs ashes, or white space, or match the word
NULL. Double quotes and backslashes embedded in element values will be backslash-escaped. For
numeric datatypesit is safe to assume that double quotes will never appear, but for textual datatypes
one should be prepared to cope with either the presence or absence of quotes.

By default, the lower bound index value of an array's dimensions is set to one. To represent arrays
with other lower bounds, the array subscript ranges can be specified explicitly beforewriting the array
contents. This decoration consists of square brackets ([ ] ) around each array dimension's lower and
upper bounds, with a colon (: ) delimiter character in between. The array dimension decoration is
followed by an equal sign (=). For example:

SELECT f1[1][-2][3] AS el, f1[1][-1][5] AS e2
FROM (SELECT '[1:1][-2:-1][3:5]={{{1,2,3},{4,5,6}}}' ::int[] AS f1)
AS ss;

el | e2

[
1] 6

(1 row

The array output routine will include explicit dimensionsin itsresult only when there are one or more
lower bounds different from one.

If the value written for an element is NULL (in any case variant), the element is taken to be NULL.
The presence of any quotes or backslashes disables this and allows the literal string value “NULL”
to be entered. Also, for backward compatibility with pre-8.2 versions of PostgreSQL, the array _nulls
configuration parameter can be turned of f to suppress recognition of NULL asaNULL.

As shown previously, when writing an array value you can use double quotes around any individual
array element. You must do so if the element value would otherwise confuse the array-value parser.
For example, elements containing curly braces, commas (or the data type's delimiter character), dou-
ble quotes, backslashes, or leading or trailing whitespace must be double-quoted. Empty strings and
strings matching the word NULL must be quoted, too. To put a double quote or backslash in a quoted
array element value, precede it with a backslash. Alternatively, you can avoid quotes and use back-
dash-escaping to protect all data characters that would otherwise be taken as array syntax.

Y ou can add whitespace before aleft brace or after aright brace. Y ou can also add whitespace before
or after any individual item string. In all of these cases the whitespace will be ignored. However,
whitespace within double-quoted elements, or surrounded on both sides by non-whitespace characters
of an element, is not ignored.

Tip

The ARRAY constructor syntax (see Section 4.2.12) is often easier to work with than
the array-literal syntax when writing array valuesin SQL commands. In ARRAY, indi-
vidual element values are written the same way they would be written when not mem-
bers of an array.

8.16. Composite Types

182



Data Types

A composite type represents the structure of arow or record; it is essentialy just alist of field names
and their data types. PostgreSQL allows composite types to be used in many of the same ways that
simple types can be used. For example, a column of atable can be declared to be of a composite type.

8.16.1. Declaration of Composite Types

Here are two simple examples of defining composite types:

CREATE TYPE conpl ex AS (
r doubl e preci sion,
[ doubl e precision

)

CREATE TYPE inventory_item AS (

nane t ext,
supplier_id i nteger,
price numeri c

)

Thesyntax iscomparableto CREATE TABLE, except that only field namesand types can be specified;
no constraints (such as NOT NULL) can presently be included. Note that the AS keyword is essential;
without it, the system will think a different kind of CREATE TYPE command is meant, and you will
get odd syntax errors.

Having defined the types, we can use them to create tables:

CREATE TABLE on_hand (
item inventory_item
count i nt eger

);
I NSERT | NTO on_hand VALUES (ROW'fuzzy dice', 42, 1.99), 1000);

or functions;

CREATE FUNCTI ON price_extension(inventory item integer) RETURNS
nuneric
AS ' SELECT $1.price * $2' LANGUACE SQ.;

SELECT price_extension(item 10) FROM on_hand;

Whenever you create a table, a composite type is also automatically created, with the same name as
the table, to represent the table's row type. For example, had we said:

CREATE TABLE inventory_item (

nane t ext,
supplier_id i nt eger REFERENCES suppl i ers,
price nuneric CHECK (price > 0)

)

thenthesamei nvent ory_i t emcomposite type shown above would come into being as a byprod-
uct, and could be used just as above. Note however an important restriction of the current implemen-
tation: since no constraints are associated with a composite type, the constraints shown in the table
definition do not apply to values of the composite type outside the table. (To work around this, cre-
ate adomain over the composite type, and apply the desired constraints as CHECK constraints of the
domain.)

183



Data Types

8.16.2. Constructing Composite Values

Towriteacompositevalueasalitera constant, enclosethefield valueswithin parentheses and separate
them by commas. Y ou can put double quotes around any field value, and must do so if it contains
commas or parentheses. (More details appear below.) Thus, the general format of acomposite constant
isthe following:

"(vall, val2 , ... )’

Anexampleis:

"("fuzzy dice", 42, 1.99)"

which would be a valid value of thei nvent ory_i t emtype defined above. To make a field be
NULL, write no charactersat al initspositionin thelist. For example, this constant specifiesaNULL
third field:

"("fuzzy dice",42,)’

If you want an empty string rather than NULL, write double quotes:

L} (IIII,42,)I
Here thefirst field isanon-NULL empty string, the third isNULL.

(These constants are actualy only a special case of the generic type constants discussed in Sec-
tion 4.1.2.7. The constant isinitially treated as a string and passed to the composite-type input con-
version routine. An explicit type specification might be necessary to tell which type to convert the
constant to.)

The ROWexpression syntax can also be used to construct composite values. In most cases this is
considerably simpler to use than the string-literal syntax since you don't have to worry about multiple
layers of quoting. We aready used this method above:

RON ' fuzzy dice', 42, 1.99)
ROWN "', 42, NULL)

The ROW keyword is actually optional as long as you have more than one field in the expression,
so these can be simplified to:

('fuzzy dice', 42, 1.99)
("', 42, NULL)

The ROWexpression syntax is discussed in more detail in Section 4.2.13.

8.16.3. Accessing Composite Types

To access afield of a composite column, one writes a dot and the field name, much like selecting a
field from atable name. In fact, it's so much like selecting from atable name that you often have to use
parentheses to keep from confusing the parser. For example, you might try to select some subfields
from our on_hand example table with something like:

184



Data Types

SELECT item nane FROM on_hand WHERE item price > 9.99;

Thiswill not work sincethe namei t emistaken to be atable name, not acolumn nameof on_hand,
per SQL syntax rules. You must write it like this:

SELECT (item.nane FROM on_hand WHERE (item).price > 9.99;
or if you need to use the table name as well (for instance in a multitable query), like this:
SELECT (on_hand.item . name FROM on_hand WHERE (on_hand.item.price

> 9, 99;

Now the parenthesized object is correctly interpreted as areference to thei t emcolumn, and then the
subfield can be selected from it.

Similar syntactic issues apply whenever you select a field from a composite value. For instance, to
select just one field from the result of afunction that returns a composite value, you'd need to write
something like:

SELECT (my_func(...)).field FROM ...

Without the extra parentheses, thiswill generate a syntax error.

The special field name* means“all fields’, as further explained in Section 8.16.5.

8.16.4. Modifying Composite Types

Here are some examples of the proper syntax for inserting and updating composite columns. First,
inserting or updating a whole column:

| NSERT | NTO nytab (conplex_col) VALUES((1.1,2.2));
UPDATE nytab SET conplex col = RON1.1,2.2) WHERE .. .;

The first example omits ROW the second uses it; we could have done it either way.

We can update an individual subfield of a composite column:

UPDATE nytab SET conplex _col.r = (conplex_col).r + 1 WHERE . ..;

Notice here that we don't need to (and indeed cannot) put parentheses around the column name ap-
pearing just after SET, but we do need parentheses when referencing the same column in the expres-
sion to the right of the equal sign.

And we can specify subfields as targets for | NSERT, too:

| NSERT | NTO nytab (conpl ex_col.r, conmplex_col.i) VALUES(1l.1, 2.2);

Had we not supplied values for all the subfields of the column, the remaining subfields would have
been filled with null values.

8.16.5. Using Composite Types in Queries

Therearevarious special syntax rules and behaviors associated with composite typesin queries. These
rules provide useful shortcuts, but can be confusing if you don't know the logic behind them.

185



Data Types

In PostgreSQL, areference to atable name (or alias) in aquery is effectively areference to the com-
posite value of the tabl€'s current row. For example, if we had atablei nvent ory_i t emas shown
above, we could write;

SELECT ¢ FROM inventory_ itemc;

This query produces a single composite-valued column, so we might get output like:

("fuzzy dice", 42,1.99)
(1 row

Note however that simple names are matched to column names before table names, so this example
works only because there is no column named ¢ in the query's tables.

The ordinary qualified-column-name syntax t abl e_nane. col utm_nane can be understood as
applying field selection to the composite value of the table's current row. (For efficiency reasons, it's
not actually implemented that way.)

When we write

SELECT c.* FROM inventory_item c;

then, according to the SQL standard, we should get the contents of the table expanded into separate
columns:;

nane | supplier_id | price
____________ e
fuzzy dice | 42 | 1.99
(1 row

asif the query were

SELECT c. name, c.supplier_id, c.price FROMinventory_item c;

PostgreSQL will apply this expansion behavior to any composite-valued expression, although as
shown above, you heed to write parentheses around the valuethat . * isapplied to whenever it'snot a
simpletable name. For example, if myf unc() isafunction returning acomposite type with columns
a, b, and ¢, then these two queries have the same result:

SELECT (nmyfunc(x)).* FROM sone_t abl e;
SELECT (nmyfunc(x)).a, (myfunc(x)).b, (nyfunc(x)).c FROM sone_tabl e;

Tip

PostgreSQL handles column expansion by actually transforming the first forminto the
second. So, in this example, myf unc() would get invoked three times per row with
either syntax. If it's an expensive function you may wish to avoid that, which you can
do with aquery like:

SELECT m* FROM sone_table, LATERAL nyfunc(x) AS m

186



Data Types

Placing the function in aLATERAL FROMitem keepsit from being invoked more than
once per row. m * isdtill expandedintom a, m b, m c, but now those variables
arejust referencesto the output of the FROMitem. (The LATERAL keyword is optional
here, but we show it to clarify that the function is getting x fromsone_t abl e.)

Theconposi t e_val ue. * syntax results in column expansion of this kind when it appears at the
top level of a SELECT output list, a RETURNI NG list in | NSERT/UPDATE/DELETE, a VALUES
clause, or a row constructor. In all other contexts (including when nested inside one of those con-
structs), attaching . * to a composite value does not change the value, since it means “all columns’
and so the same composite value is produced again. For example, if sonmef unc() accepts a com-
posite-valued argument, these queries are the same:

SELECT sonefunc(c.*) FROM inventory itemc;
SELECT sonefunc(c) FROMinventory itemc;

In both cases, the current row of i nvent ory_i t emis passed to the function as a single compos-
ite-valued argument. Even though . * does nothing in such cases, using it isgood style, sinceit makes
clear that a composite value is intended. In particular, the parser will consider ¢ inc. * to refer to a
table name or alias, not to a column name, so that there is no ambiguity; whereas without . * , it is not
clear whether ¢ means a table name or a column name, and in fact the column-name interpretation
will be preferred if thereis a column named c.

Another example demonstrating these conceptsisthat all these queries mean the same thing:

SELECT * FROM inventory_item c ORDER BY c;
SELECT * FROM inventory_item c ORDER BY c. *;
SELECT * FROM inventory_item c ORDER BY RONcC. *);

All of these ORDER BY clauses specify the row's composite value, resulting in sorting the rows ac-
cording to therules described in Section 9.23.6. However, if i nvent ory_i t emcontained acolumn
named c, the first case would be different from the others, as it would mean to sort by that column
only. Given the column names previously shown, these queries are also equivalent to those above:

SELECT * FROM inventory_ item c ORDER BY RONc. name, c.supplier_id,
c.price);

SELECT * FROM inventory itemc ORDER BY (c.name, c.supplier_id,
c.price);

(The last case uses arow constructor with the key word ROWomitted.)

Another special syntactical behavior associated with composite values is that we can use functional
notation for extracting afield of acomposite value. The simple way to explain thisisthat the notations
field(table) andtabl e.fi el d are interchangeable. For example, these queries are equiva-
lent:

SELECT c. name FROM i nventory item c WHERE c. price > 1000;
SELECT nane(c) FROM inventory itemc WHERE price(c) > 1000;
Moreover, if we have a function that accepts a single argument of a composite type, we can call it

with either notation. These queries are all equivalent:

SELECT sonefunc(c) FROMinventory itemc;
SELECT sonefunc(c.*) FROM inventory itemc;

187



Data Types

SELECT c. somefunc FROM i nventory_item c;

This equivalence between functional notation and field notation makes it possible to use functions on
composite typesto implement “computed fields’. An application using the last query above wouldn't
need to be directly aware that sonmef unc isn't areal column of the table.

Tip

Because of this behavior, it's unwise to give a function that takes a single compos-
ite-type argument the same name as any of the fields of that composite type. If there
isambiguity, the field-name interpretation will be chosen if field-name syntax is used,
while the function will be chosen if function-call syntax is used. However, Post-
greSQL versions before 11 always chose the field-name interpretation, unlessthe syn-
tax of the call required it to be a function call. One way to force the function in-
terpretation in older versions is to schema-qualify the function name, that is, write
schena. f unc(conposi teval ue).

8.16.6. Composite Type Input and Output Syntax

The external text representation of a composite value consists of items that are interpreted according
to the 1/O conversion rules for the individual field types, plus decoration that indicates the composite
structure. The decoration consists of parentheses (( and) ) around the whole value, plus commas (, )
between adjacent items. Whitespace outside the parentheses is ignored, but within the parentheses it
is considered part of the field value, and might or might not be significant depending on the input
conversion rules for the field data type. For example, in:

] ( 42) ]
the whitespace will beignored if the field type isinteger, but not if it istext.

As shown previously, when writing a composite value you can write double quotes around any indi-
vidual field value. You must do so if the field value would otherwise confuse the composite-value
parser. In particular, fields containing parentheses, commas, double quotes, or backslashes must be
double-quoted. To put adouble quote or backslash in a quoted composite field value, precede it with
a backdash. (Also, apair of double quotes within a double-quoted field value is taken to represent a
double quote character, analogously to therulesfor single quotesin SQL literal strings.) Alternatively,
you can avoid quoting and use backslash-escaping to protect all data characters that would otherwise
be taken as composite syntax.

A completely empty field value (no characters at all between the commas or parentheses) represents
aNULL. To write avalue that is an empty string rather than NULL, write" " .

The composite output routine will put double quotes around field values if they are empty strings or
contain parentheses, commas, double quotes, backslashes, or white space. (Doing so for white space
is not essential, but aids legibility.) Double quotes and backslashes embedded in field values will be
doubled.

Note

Remember that what you write in an SQL command will first be interpreted as astring
literal, and then as a composite. This doubles the number of backslashes you need
(assuming escape string syntax isused). For example, toinsert at ext field containing
adouble guote and a backslash in a composite value, you'd need to write;

I NSERT ... VALUES (' ("\"\\")");

188



Data Types

The string-literal processor removes one level of backdashes, so that what arrives at
the composite-value parser looks like ("\ " \'\ ") . Inturn, the string fed to the t ext
data type's input routine becomes "\ . (If we were working with a data type whose
input routine also treated backslashes specially, byt ea for example, we might need
as many as eight backslashes in the command to get one backslash into the stored
composite field.) Dollar quoting (see Section 4.1.2.4) can be used to avoid the need
to double backslashes.

Tip

The ROWconstructor syntax is usually easier to work with than the composite-literal
syntax when writing composite valuesin SQL commands. In ROWindividual field val-
ues are written the same way they would be written when not members of acomposite.

8.17. Range Types

Range types are data types representing a range of values of some element type (called the range's
subtype). For instance, ranges of t i mest anp might be used to represent the ranges of time that a
meeting room is reserved. In this case the datatypeist sr ange (short for “timestamp range”), and
ti mest anp isthe subtype. The subtype must have a total order so that it is well-defined whether
element values are within, before, or after arange of values.

Range types are useful because they represent many element values in a single range value, and be-
cause concepts such as overlapping ranges can be expressed clearly. The use of time and date ranges
for scheduling purposesisthe clearest example; but price ranges, measurement ranges from an instru-
ment, and so forth can also be useful.

8.17.1. Built-in Range Types

PostgreSQL comes with the following built-in range types:

* i nt4range — Rangeof i nt eger

* i nt 8range — Range of bi gi nt

* nunr ange — Range of nuneri c

* tsrange —Rangeofti nestanp wi thout time zone
* tstzrange — Rangeofti mestanp with time zone
» dat er ange — Range of dat e

In addition, you can define your own range types; see CREATE TY PE for more information.

8.17.2. Examples

CREATE TABLE reservation (roomint, during tsrange);
| NSERT | NTO reservati on VALUES
(1108, '[2010-01-01 14:30, 2010-01-01 15:30)');

-- Cont ai nment
SELECT i nt4range(10, 20) @ 3;

189



Data Types

-- Overl aps
SELECT nunrange(11.1, 22.2) && nunrange(20.0, 30.0);

-- Extract the upper bound
SELECT upper (i nt 8range(15, 25));

-- Compute the intersection
SELECT i nt4range(10, 20) * intd4range(15, 25);

-- |Is the range enpty?
SELECT i senpty(nunrange(1, 5));

See Table 9.50 and Table 9.51 for complete lists of operators and functions on range types.

8.17.3. Inclusive and Exclusive Bounds

Every non-empty range has two bounds, the lower bound and the upper bound. All points between
these values are included in the range. An inclusive bound means that the boundary point itself is
included in the range as well, while an exclusive bound means that the boundary point is not included
in the range.

In the text form of arange, an inclusive lower bound is represented by “[ ” while an exclusive lower
bound is represented by “(”. Likewise, an inclusive upper bound is represented by “] ", while an
exclusive upper bound is represented by “) ”. (See Section 8.17.5 for more details.)

The functions | ower _i nc and upper _i nc test the inclusivity of the lower and upper bounds of
arange value, respectively.

8.17.4. Infinite (Unbounded) Ranges

The lower bound of a range can be omitted, meaning that all points less than the upper bound are
included inthe range. Likewise, if the upper bound of the range is omitted, then all points greater than
the lower bound are included in the range. If both lower and upper bounds are omitted, all values of
the element type are considered to be in the range.

Thisis equivalent to considering that the lower bound is“minusinfinity”, or the upper bound is*“plus
infinity”, respectively. But note that these infinite values are never values of the range's el ement type,
and can never be part of the range. (So there is no such thing as an inclusive infinite bound — if you
try to write one, it will automatically be converted to an exclusive bound.)

Also, some element types have a notion of “infinity”, but that is just another value so far as the range
type mechanisms are concerned. For example, intimestamp ranges, [ t oday, | meansthe samething
as[today, ) .But[t oday, i nfinity] meanssomethingdifferentfrom|[t oday, i nfinity)
— the latter excludesthe special t i nest anp valuei nfinity.

The functions | ower _i nf and upper _i nf test for infinite lower and upper bounds of a range,
respectively.

8.17.5. Range Input/Output

The input for arange value must follow one of the following patterns:

(1 ower - bound, upper - bound)
(1 ower - bound, upper - bound]
[ ower - bound, upper - bound)
[ ower - bound, upper - bound]

190



Data Types

enpty

The parentheses or brackets indicate whether the lower and upper bounds are exclusive or inclusive,
as described previously. Notice that the final pattern is enpt y, which represents an empty range (a
range that contains no points).

The | ower - bound may be either a string that is valid input for the subtype, or empty to indicate
no lower bound. Likewise, upper - bound may be either a string that is valid input for the subtype,
or empty to indicate no upper bound.

Each bound value can be quoted using " (double quote) characters. This is necessary if the bound
value contains parentheses, brackets, commas, double quotes, or backslashes, since these characters
would otherwise be taken as part of the range syntax. To put a double quote or backslash in a quoted
bound value, precede it with abackslash. (Also, apair of double quotes within a double-quoted bound
value istaken to represent a double quote character, analogously to the rules for single quotesin SQL
literal strings.) Alternatively, you can avoid quoting and use backslash-escaping to protect all data
charactersthat would otherwise be taken as range syntax. Also, to write abound value that isan empty
string, write " ", since writing nothing means an infinite bound.

Whitespace is allowed before and after the range value, but any whitespace between the parentheses
or brackets is taken as part of the lower or upper bound value. (Depending on the element type, it
might or might not be significant.)

Note

Theserulesare very similar to those for writing field valuesin composite-type literals.
See Section 8.16.6 for additional commentary.

Examples:

-- includes 3, does not include 7, and does include all points in

bet ween

SELECT '[3,7)'::intd4range;

-- does not include either 3 or 7, but includes all points in
bet ween

SELECT ' (3,7)'::intdrange;

-- includes only the single point 4

SELECT '[4,4]'::intd4range;

-- includes no points (and will be nornalized to 'enpty')

SELECT '[4,4)'::intd4range;

8.17.6. Constructing Ranges

Each range type has a constructor function with the same name asthe range type. Using the constructor
function is frequently more convenient than writing a range literal constant, since it avoids the need
for extra quoting of the bound values. The constructor function accepts two or three arguments. The
two-argument form constructs a range in standard form (lower bound inclusive, upper bound exclu-
sive), while the three-argument form constructs a range with bounds of the form specified by the third
argument. The third argument must be one of the strings“() ", “(]",“[ ) ", or“[ ] . For example:

-- The full formis: |ower bound, upper bound, and text argunent
i ndi cating

191



Data Types

-- inclusivity/exclusivity of bounds.
SELECT nunrange(1.0, 14.0, '(]');

-- If the third argunent is omtted, '[)' is assuned.
SELECT nunr ange(1.0, 14.0);

-- Although '(]" is specified here, on display the value will be
converted to

-- canonical form since int8range is a discrete range type (see
bel ow) .

SELECT int8range(1, 14, '(]');

-- Using NULL for either bound causes the range to be unbounded on
t hat side.
SELECT nunr ange( NULL, 2.2);

8.17.7. Discrete Range Types

A discrete range is one whose element type has a well-defined “step”, such asi nt eger or dat e.
In these types two elements can be said to be adjacent, when there are no valid values between them.
This contrasts with continuous ranges, where it's always (or amost always) possible to identify other
element values between two given values. For example, arange over the nuner i ¢ typeis continu-
ous, asisarangeover t i mest anp. (Eventhought i mest anp has limited precision, and so could
theoretically be treated as discrete, it's better to consider it continuous since the step size is normally
not of interest.)

Another way to think about a discrete range type isthat there isa clear idea of a“next” or “previous’
value for each element value. Knowing that, it is possible to convert between inclusive and exclusive
representations of arange's bounds, by choosing the next or previous element value instead of the one
originally given. For example, in an integer range type [ 4, 8] and ( 3, 9) dencte the same set of
values; but this would not be so for arange over numeric.

A discrete range type should have a canonicalization function that is aware of the desired step size for
the element type. The canonicalization function is charged with converting equivalent values of the
range type to have identical representations, in particular consistently inclusive or exclusive bounds.
If a canonicalization function is not specified, then ranges with different formatting will always be
treated as unequal, even though they might represent the same set of valuesin redlity.

Thebuilt-inrange typesi nt 4r ange, i nt 8r ange, and dat er ange all use a canonical form that
includes the lower bound and excludes the upper bound; that is, [ ) . User-defined range types can use
other conventions, however.

8.17.8. Defining New Range Types

Users can define their own range types. The most common reason to do this is to use ranges over
subtypes not provided among the built-in range types. For example, to define a new range type of
subtypef | oat 8:

CREATE TYPE fl oatrange AS RANGE (
subtype = fl oat8,
subtype_diff = fl oat8m

)
SELECT '[1.234, 5.678]'::floatrange;

Because f | oat 8 has no meaningful “step”, we do not define a canonicalization function in this ex-
ample.

192



Data Types

Defining your own range type also alows you to specify a different subtype B-tree operator class or
collation to use, so asto change the sort ordering that determines which valuesfall into agiven range.

If the subtype is considered to have discrete rather than continuous values, the CREATE TYPE com-
mand should specify acanoni cal function. The canonicalization function takes an input range val-
ue, and must return an equivalent range value that may have different bounds and formatting. The
canonical output for two ranges that represent the same set of values, for example the integer ranges
[1, 7] and[1, 8),mustbeidentical. It doesn't matter which representation you choose to be the
canonical one, so long as two equivalent values with different formattings are always mapped to the
same value with the same formatting. In addition to adjusting the inclusive/exclusive boundsformat, a
canonicalization function might round off boundary values, in case the desired step sizeislarger than
what the subtype is capable of storing. For instance, arangetype overt i nest anp could be defined
to have a step size of an hour, in which case the canonicalization function would need to round off
bounds that weren't a multiple of an hour, or perhaps throw an error instead.

In addition, any rangetypethat ismeant to be used with GiST or SP-Gi ST indexes should define a sub-
type difference, or subt ype_di f f, function. (The index will still work without subt ype_di f f,
but it islikely to be considerably less efficient than if a difference function is provided.) The subtype
difference function takes two input values of the subtype, and returns their difference (i.e., X minus
Y) represented asaf | oat 8 value. In our example above, thefunction f | oat 8 that underliesthe
regular f | oat 8 minus operator can be used; but for any other subtype, some type conversion would
be necessary. Some creative thought about how to represent differences as numbers might be needed,
too. Tothe greatest extent possible, thesubt ype_di f f function should agree with the sort ordering
implied by the selected operator class and collation; that is, its result should be positive whenever its
first argument is greater than its second according to the sort ordering.

A less-oversimplified example of asubt ype_di f f functionis:

CREATE FUNCTI ON tine_subtype_diff(x tine, y tine) RETURNS float8 AS
' SELECT EXTRACT(EPOCCH FROM (x - y))' LANGUAGE sql STRICT | MVUTABLE;

CREATE TYPE tinerange AS RANGE (
subtype = tine,
subtype_diff = tinme_subtype_diff
);

SELECT '[11:10, 23:00]'::tinerange;

See CREATE TY PE for more information about creating range types.

8.17.9. Indexing

GiST and SP-GiST indexes can be created for table columns of range types. For instance, to create
a GiST index:

CREATE | NDEX reservation_idx ON reservation USING G ST (during);

A GiST or SP-GiST index can accelerate queries involving these range operators: =, &&, <@ @, <<,
>> - | -, &<, and &> (see Table 9.50 for more information).

In addition, B-tree and hash indexes can be created for table columns of range types. For these index
types, basically the only useful range operation is equality. Thereis a B-tree sort ordering defined for
range values, with corresponding < and > operators, but the ordering israther arbitrary and not usually
useful in the real world. Range types' B-tree and hash support is primarily meant to allow sorting and
hashing internally in queries, rather than creation of actual indexes.

8.17.10. Constraints on Ranges

193



Data Types

While UNI QUE is a natural constraint for scalar values, it is usually unsuitable for range types. In-
stead, an exclusion constraint is often more appropriate (see CREATE TABLE ... CONSTRAINT ...
EXCLUDE). Exclusion constraints allow the specification of constraints such as “non-overlapping”
on arange type. For example:

CREATE TABLE reservation (

during tsrange,

EXCLUDE USI NG G ST (during WTH &&)
);

That constraint will prevent any overlapping values from existing in the table at the same time:

| NSERT | NTO reservati on VALUES
('[2010-01-01 11:30, 2010-01-01 15:00)');
I NSERT 0 1

| NSERT | NTO reservati on VALUES
('[2010-01-01 14:45, 2010-01-01 15:45)');

ERROR: conflicting key val ue viol ates excl usi on constraint
"reservation_during_excl"

DETAIL: Key (during)=(["2010-01-01 14:45:00", "2010-01-01
15:45:00")) conflicts

with existing key (during)=(["2010-01-01 11:30: 00", "2010-01-01
15: 00: 00")).

You can usethe bt r ee_gi st extension to define exclusion constraints on plain scalar data types,
which can then be combined with range exclusions for maximum flexibility. For example, after
bt r ee_gi st isinstalled, thefollowing constraint will reject overlapping ranges only if the meeting
room numbers are equal:

CREATE EXTENSI ON btree_gi st;
CREATE TABLE room reservation (

room t ext,

during tsrange,

EXCLUDE USING A ST (room WTH =, during WTH &&)
)

I NSERT | NTO room reservati on VALUES
("123A", '[2010-01-01 14:00, 2010-01-01 15:00)');
INSERT 0 1

I NSERT | NTO room reservati on VALUES
("123A", '[2010-01-01 14:30, 2010-01-01 15:30)');
ERROR: conflicting key val ue viol ates exclusi on constraint
"roomreservation_roomduring_excl"
DETAIL: Key (room during)=(123A, ["2010-01-01
14:30: 00", "2010-01-01 15:30:00")) conflicts
with existing key (room during)=(123A, ["2010-01-01
14:00: 00", "2010-01-01 15:00:00")).

I NSERT | NTO room reservati on VALUES

("123B', '[2010-01-01 14:30, 2010-01-01 15:30)');
I NSERT 0 1

8.18. Domain Types

194



Data Types

8.19.

A domain is a user-defined data type that is based on another underlying type. Optionally, it can have
constraintsthat restrict its valid values to a subset of what the underlying type would allow. Otherwise
it behaves like the underlying type — for example, any operator or function that can be applied to the
underlying type will work on the domain type. The underlying type can be any built-in or user-defined
base type, enum type, array type, composite type, range type, or another domain.

For example, we could create a domain over integers that accepts only positive integers:

CREATE DOVAI N posint AS integer CHECK (VALUE > 0);
CREATE TABLE mytable (id posint);

| NSERT | NTO nyt abl e VALUES(1); -- works

| NSERT | NTO nytabl e VALUES(-1); -- fails

When an operator or function of the underlying type is applied to a domain value, the domain is
automatically down-cast to the underlying type. Thus, for example, theresult of myt abl e.id - 1is
considered to be of typei nt eger not posi nt . Wecouldwrite(nytabl e.id - 1)::posint

to cast the result back to posi nt , causing the domain's constraints to be rechecked. In this case, that
would result in an error if the expression had been applied to an i d value of 1. Assigning a value of
the underlying type to a field or variable of the domain type is allowed without writing an explicit
cast, but the domain's constraints will be checked.

For additional information see CREATE DOMAIN.

Object Identifier Types

Object identifiers (OIDs) are used internally by PostgreSQL as primary keysfor various system tables.
OIDs are not added to user-created tables, unlessW TH O DS is specified when the table is created,
or the default_with_oids configuration variable is enabled. Type oi d represents an object identifier.
There are also several alias types for oi d: r egpr oc, r egpr ocedur e, r egoper, r egoper a-
tor,regcl ass, regtype, regrol e,regnanespace, regconfi g,andregdi cti onary.
Table 8.24 shows an overview.

The oi d type is currently implemented as an unsigned four-byte integer. Therefore, it is not large
enough to provide database-wide uniquenessin large databases, or even in large individual tables. So,
using a user-created table's OID column as a primary key is discouraged. OIDs are best used only for
references to system tables.

The oi d type itself has few operations beyond comparison. It can be cast to integer, however, and
then manipulated using the standard integer operators. (Beware of possible signed-versus-unsigned
confusion if you do this.)

The OID alias types have no operations of their own except for specialized input and output routines.
These routines are able to accept and display symbolic names for system objects, rather than the raw
numeric value that type oi d would use. The dlias types alow simplified lookup of OID values for
objects. For example, to examinethe pg_at t ri but e rows related to atable myt abl e, one could
write:

SELECT * FROM pg_attribute WHERE attrelid = 'nmytable'::regcl ass;

rather than:

SELECT * FROM pg_attribute
WHERE attrelid = (SELECT oid FROM pg_cl ass WHERE rel nanme =
"nytable');

While that doesn't look all that bad by itself, it's still oversimplified. A far more complicated sub-
select would be needed to select theright OID if thereare multipletablesnamed nyt abl e indifferent

195



Data Types

schemas. The r egcl ass input converter handles the table lookup according to the schema path
setting, and so it does the “right thing” automatically. Similarly, casting atable's OID tor egcl ass
is handy for symbolic display of anumeric OID.

Table 8.24. Object I dentifier Types

Name References Description Value Example
oid any numeric object identifi- (564182
er
regproc pg_proc function name sum
r egpr ocedur e pg_proc function with argument|sun(i nt 4)
types
regoper pg_oper at or operator name +
regoper at or pg_oper at or operator with argument|* (i nt eger, i nt e-
types ger) or- ( NONE, i n-
t eger)
regcl ass pg_cl ass relation name pg_type
regtype pg_type data type name i nt eger
regrol e pg_aut hid role name smt hee
regnanmespace pg_nanespace namespace hame pg_cat al og
regconfig pg_ts_config text search configura-|engli sh
tion
regdi ctionary pg_ts_dict text search dictionary |si npl e

All of the OID aliastypes for objects grouped by namespace accept schema-qualified names, and will
display schema-qualified names on output if the object would not be found in the current search path
without being qualified. Ther egpr oc andr egoper aiastypeswill only accept input namesthat are
unique (not overloaded), sothey are of limited use; for most usesr egpr ocedur e orr egoper at or

are more appropriate. For r egoper at or, unary operators are identified by writing NONE for the
unused operand.

An additional property of most of the OID dlias types is the creation of dependencies. If a constant
of one of these types appears in a stored expression (such as a column default expression or view),
it creates a dependency on the referenced object. For example, if a column has a default expres-
sionnext val (' ny_seq' ::regcl ass), PostgreSQL understandsthat the default expression de-
pends on the sequence y _seq; the system will not let the sequence be dropped without first remov-
ing the default expression. r egr ol e isthe only exception for the property. Constants of thistype are
not allowed in such expressions.

Note

The OID dlias types do not completely follow transaction isolation rules. The planner
also treats them as simple constants, which may result in sub-optimal planning.

Another identifier type used by the system isxi d, or transaction (abbreviated xact) identifier. Thisis
the data type of the system columns xni n and xmax. Transaction identifiers are 32-bit quantities.

A third identifier type used by the systemisci d, or command identifier. Thisis the data type of the
system columns cm n and cmax. Command identifiers are also 32-bit quantities.

A final identifier type used by the systemist i d, or tuple identifier (row identifier). Thisisthe data
type of the system column cti d. A tuple ID isapair (block number, tuple index within block) that
identifies the physical location of the row within itstable.

196



Data Types

(The system columns are further explained in Section 5.4.)

8.20. pg_Isn Type

The pg_| sn datatype can be used to store LSN (Log Sequence Number) data which is a pointer to
alocation in the WAL. This type is a representation of XLogRecPt r and an internal system type
of PostgreSQL.

Internally, an LSN is a 64-hit integer, representing a byte position in the write-ahead log stream. It is
printed as two hexadecimal numbers of up to 8 digits each, separated by a dash; for example, 16/
B374D848. Thepg_| sn type supports the standard comparison operators, like = and >. Two LSNs
can be subtracted using the - operator; the result is the number of bytes separating those write-ahead
log locations.

8.21. Pseudo-Types

The PostgreSQL type system contains a number of special-purpose entries that are collectively called
pseudo-types. A pseudo-type cannot be used as a column data type, but it can be used to declare a
function's argument or result type. Each of the available pseudo-types is useful in situations where a
function's behavior does not correspond to simply taking or returning a value of a specific SQL data
type. Table 8.25 lists the existing pseudo-types.

Table 8.25. Pseudo-Types

Name Description

any Indicates that a function accepts any input data
type.

anyel enent Indicatesthat afunction acceptsany datatype (see
Section 38.2.5).

anyarray Indicates that a function accepts any array data
type (see Section 38.2.5).

anynonarray Indicatesthat afunction acceptsany non-array da-
tatype (see Section 38.2.5).

anyenum Indicates that a function accepts any enum data
type (see Section 38.2.5 and Section 8.7).

anyr ange Indicates that a function accepts any range data
type (see Section 38.2.5 and Section 8.17).

cstring Indicates that a function accepts or returns a null-
terminated C string.

i nternal Indicates that afunction accepts or returns a serv-
er-internal datatype.

| anguage_handl er A procedural language call handler is declared to
return| anguage_handl er.

f dw_handl er A foreign-data wrapper handler is declared to re-
turnf dw_handl er.

i ndex_am handl er Anindex access method handler isdeclared to re-
turni ndex_am handl er.

t sm_handl er A tablesample method handler is declared to re-
turnt sm_handl er.

record Identifies a function taking or returning an un-
specified row type.

197



Data Types

Name Description

trigger A trigger function is declared to return tri g-
ger.

event trigger An event trigger function is declared to return
event _trigger.

pg_ddl _commrand | dentifiesarepresentation of DDL commandsthat
isavailable to event triggers.

voi d Indicates that a function returns no value.

unknown Identifies a not-yet-resolved type, e.g. of an un-
decorated string literal.

opaque An obsolete type name that formerly served many

of the above purposes.

Functions coded in C (whether built-in or dynamically loaded) can be declared to accept or return any
of these pseudo data types. It is up to the function author to ensure that the function will behave safely
when a pseudo-type is used as an argument type.

Functions coded in procedural languages can use pseudo-types only as allowed by their implemen-
tation languages. At present most procedural languages forbid use of a pseudo-type as an argument
type, and alow only voi d andr ecor d asaresult type (plust ri gger orevent _tri gger when
the function is used as atrigger or event trigger). Some also support polymorphic functions using the
typesanyel ement , anyar r ay, anynonar r ay, anyenum and anyr ange.

Thei nt er nal pseudo-type is used to declare functions that are meant only to be called internally
by the database system, and not by direct invocation in an SQL query. If afunction has at least one
i nt er nal -type argument then it cannot be called from SQL. To preserve the type safety of this
restriction it isimportant to follow this coding rule: do not create any function that isdeclared to return
i nt ernal unlessit hasat least onei nt er nal argument.

198



Chapter 9. Functions and Operators

PostgreSQL provides alarge number of functions and operators for the built-in data types. Users can
also define their own functions and operators, as described in Part V. The psgl commands\ df and
\ do can be used to list all available functions and operators, respectively.

If you are concerned about portability then note that most of the functions and operators described
in this chapter, with the exception of the most trivia arithmetic and comparison operators and some
explicitly marked functions, are not specified by the SQL standard. Some of this extended function-
ality is present in other SQL database management systems, and in many cases this functionality is
compatible and consistent between the various implementations. This chapter is also not exhaustive;
additional functions appear in relevant sections of the manual.

9.1. Logical Operators

The usual logical operators are available:

AND
OR
NOT

SQL uses athree-valued logic system with true, false, and nul | , which represents “ unknown”. Ob-
serve the following truth tables:

a b aAND b aORDb
TRUE TRUE TRUE TRUE
TRUE FALSE FALSE TRUE
TRUE NULL NULL TRUE
FALSE FALSE FALSE FALSE
FALSE NULL FALSE NULL
NULL NULL NULL NULL
a NOT a
TRUE FALSE
FALSE TRUE
NULL NULL

The operators AND and OR are commutative, that is, you can switch the left and right operand without
affecting the result. But see Section 4.2.14 for more information about the order of evaluation of
subexpressions.

9.2. Comparison Functions and Operators

The usua comparison operators are available, as shown in Table 9.1.

Table 9.1. Comparison Operators

Operator Description

< less than

> greater than

<= less than or equal to
>= greater than or equal to

199



Functions and Operators

Operator Description

= equal

<>or!= not equal
Note

The! = operator is converted to <> in the parser stage. It is not possible to implement
I = and <> operators that do different things.

Comparison operators are available for all relevant data types. All comparison operators are binary
operators that return values of type bool ean; expressionslikel < 2 < 3 arenot valid (because
there is no < operator to compare a Boolean value with 3).

There are al so some comparison predicates, as shown in Table 9.2. These behave much like operators,
but have specia syntax mandated by the SQL standard.

Table 9.2. Comparison Predicates

Predicate Description

a BETWEEN X ANDy between

a NOT BETWEENX ANDy not between

a BETWEEN SYMVETRI Cx ANDy between, after sorting the comparison values
a NOT BETVEEN SYMMETRI Cx ANDY not between, after sorting the comparison values
alS DI STINCT FROMb not equal, treating null like an ordinary value
alS NOT DI STI NCT FROMb equal, treating null like an ordinary value
expressionl|S NULL isnull

expression|S NOT NULL isnot null

expressi on | SNULL isnull (nonstandard syntax)

expr essi on NOTNULL isnot null (nonstandard syntax)

bool ean_expression| S TRUE istrue

bool ean_expression| S NOT TRUE isfalse or unknown

bool ean_expression| S FALSE isfalse

bool ean_expression|S NOT FALSE istrue or unknown

bool ean_expressi on | S UNKNOAN is unknown

bool ean_expression| S NOT UNKNOMN |istrue or false

The BETWVEEN predicate simplifies range tests:

a BETWEEN x AND y

is equivalent to

a > x AND a <=y

Notice that BETVIEEEN treats the endpoint values as included in the range. NOT BETWEEN does the

opposite comparison:

a NOT BETWEEN x AND y

200



Functions and Operators

isequivalent to

a<xORa>y

BETWEEN SYMMETRI Cis like BETVEEEN except there is no requirement that the argument to the
left of AND be less than or equal to the argument on the right. If it is not, those two arguments are
automatically swapped, so that a nonempty range is always implied.

Ordinary comparison operatorsyield null (signifying “ unknown™), not true or false, when either input
isnull. For example, 7 = NULL yieldsnull, asdoes7 <> NULL.When thisbehavior isnot suitable,
usethel S [ NOT ] DI STI NCT FROMpredicates:

a |'S DI STINCT FROM b
a |'S NOT DI STINCT FROM b

For non-null inputs, | S DI STI NCT FROMis the same as the <> operator. However, if both inputs
arenull it returns false, and if only one input is null it returns true. Similarly, | S NOT DI STI NCT
FROMisidentical to = for non-null inputs, but it returns true when both inputs are null, and fal se when
only oneinput is null. Thus, these predicates effectively act as though null were anormal data value,
rather than “unknown”.

To check whether avalueis or is not null, use the predicates:

expression |'S NULL
expression |'S NOT NULL

or the equivalent, but nonstandard, predicates:

expression | SNULL
expressi on NOTNULL

Do not write expr essi on = NULL because NULL is not “equal to” NULL. (The null value repre-
sents an unknown value, and it is not known whether two unknown values are equal.)

Tip
Some applicationsmight expect that expr essi on = NULL returnstrueif expr es-
si on evauates to the null value. It is highly recommended that these applications
be modified to comply with the SQL standard. However, if that cannot be done the

transform_null_equals configuration variableisavailable. If it is enabled, PostgreSQL
will convert x = NULL clausestox 'S NULL.

If the expr essi on isrow-valued, then | S NULL is true when the row expression itself is null
or when all the row's fields are null, while | S NOT NULL is true when the row expression itself
is non-null and all the row's fields are non-null. Because of this behavior, | S NULL and | S NOT
NULL do not always return inverse results for row-valued expressions; in particular, a row-valued
expression that contains both null and non-null fields will return false for both tests. In some cases,
it may be preferable to writerow | S DI STINCT FROM NULL orrowl S NOT DI STI NCT
FROM NULL, which will simply check whether the overall row value is null without any additional
tests on the row fields.

Boolean values can also be tested using the predicates

bool ean_expression IS TRUE

201



Functions and Operators

bool ean_expression 1S NOT TRUE
bool ean_expression | S FALSE

bool ean_expression 1S NOT FALSE
bool ean_expression 1S UNKNOAN
bool ean_expressi on 1S NOT UNKNOAN

These will always return true or false, never anull value, even when the operand is null. A null input
is treated as the logical value “unknown”. Noticethat | S UNKNOM and | S NOT UNKNOWN are
effectively thesameas| S NULL and1 S NOT NULL, respectively, except that the input expression
must be of Boolean type.

Some comparison-related functions are also available, as shown in Table 9.3.

Table 9.3. Comparison Functions

Function Description Example Example Result
num _nonnul | - [returns the number of \(num nonnul I s(1, |2
s(VARI ADI C non-null arguments NULL, 2)
“any")
num nul | - returns the number of num nul | s(1, 1
s(VARI ADI C null arguments NULL, 2)
“any")

9.3. Mathematical Functions and Operators

Mathematical operators are provided for many PostgreSQL types. For types without standard mathe-
matical conventions (e.g., date/time types) we describe the actual behavior in subsegquent sections.

Table 9.4 shows the available mathematical operators.

Table9.4. Mathematical Operators

Operator Description Example Result
+ addition 2 +3 5
- subtraction 2 -3 -1
* multiplication 2 * 3
/ division (integer divi-|4 / 2
sion truncatestheresult)
% modulo (remainder) 5 %4
n exponentiation (asso-{2.0 ~ 3.0 8
ciates | eft to right)
|/ sguare root |/ 25.0 5
[/ cube root ||/ 27.0 3
! factorial 5 | 120
I factorial (prefix opera-|!! 5 120
tor)
@ absolute value @-5.0 5
& bitwise AND 91 & 15 11
| bitwise OR 32 | 3 35
# bitwise XOR 17 # 5 20
~ bitwise NOT ~1 -2
<< bitwise shift left 1 << 4 16

202



Functions and Operators

Operator

Description

Example

Result

>>

bitwise shift right

8 >> 2

The bitwise operatorswork only on integral datatypes, whereasthe othersare availablefor all numeric

data types. The bitwise operators are also available for the bit string typesbi t andbit varyi ng,

asshownin Table 9.13.

Table 9.5 shows the available mathematical functions. In the table, dp indicatesdoubl e preci -
si on. Many of these functions are provided in multiple forms with different argument types. Except
where noted, any given form of a function returns the same data type as its argument. The functions
working with doubl e preci si on data are mostly implemented on top of the host system's C
library; accuracy and behavior in boundary cases can therefore vary depending on the host system.

Table 9.5. Mathematical Functions

equal to argument
(sameascei l)

Function Return Type Description Example Result
abs(x) (same asinput) absolute value abs(-17. 4) 17. 4
cbrt (dp) dp cube root cbrt (27.0) 3
ceil (dp or |(sameasinput) nearest integer|cei | (-42.8) |-42
nuneri c) greater than or
equal to argument
cei l i ng(dp|(sameasinput) nearest integer |cei | - -95
or numeric) greater than or|i ng(-95. 3)

412

degrees(dp) |dp radians to degrees |degr ees(0.5) |28. 6478897565
di v(y numer- |nuneric integer quotient of |di v( 9, 4) 2

ic, X numer- y/Ix

ic)

exp(dp or nu-
nmeric)

(same asinput)

exponential

exp(1l.0)

2.71828182845

905

9945

979

floor(dp or |(sameasinput) nearest integer less|f | oor (-42.8) |-43
numeri c) than or equal to ar-
gument
[ n(dp or nu- |(sameasinput) natural logarithm |l n( 2. 0) 0. 69314718055
nmeric)
| og(dp or nu- |(sameasinput) base 10 logarithm |l og(100. 0) 2
nmeric)
| og(b numer- |nuneric logarithmtobaseb |l og( 2. 0, 6. 0000000000
ic, X numer- 64. 0)
ic)
mod(y, x) (same as argument [remainder of y/x |[nod( 9, 4) 1
types)
pi () dp “#" constant pi () 3. 14159265358
power (a dp, b|dp a raised to the|power (9.0, 729
dp) power of b 3.0)
power (a nu- |nuneric a raised to the|power (9.0, 729
meric, b nu- power of b 3.0)
nmeric)
radi ans(dp) |dp degreestoradians |r adi - 0. 78539816339
ans(45.0)

7448

203



Functions and Operators

Function Return Type Description Example Result
round(dp or |(sameasinput) roundtonearestin-|round(42.4) |42
nuneri c) teger
round(v  nu- |nuneric roundtos decimal |r ound(42. 4382,42. 44
meric, s int) places 2)
scal e( numer - |i nt eger scale of the argu-|scal e(8.41) |2
ic) ment (the number
of decimal digitsin
the fractional part)
sign(dp or |(sameasinput) sign of the argu-|si gn(-8. 4) -1
numeri c) ment (-1, 0, +1)
sqrt(dp or |(sameasinput) square root sqrt(2.0) 1. 41421356237
nuneri c)
trunc(dp or |(sameasinput) truncatetoward ze- [t runc(42. 8) |42
nuneri c) ro
trunc(v  nu- |numeric truncate to s deci-|t runc(42. 4382,42. 43
meric, s int) mal places 2)
wi dt h_buck- |i nt return the buck-|wi dt h_buck- |3
et (operand et number tolet (5. 35,
dp, bl dp, which operand|0. 024, 10. 06,
b2 dp, count would be assigned|5)
i nt) in a histogram
having count
equal-width buck-
ets spanning the
range bl to b2;
reeuns O  or
count +1 for an
input outside the
range
wi dt h_buck- i nt return the buck-|wi dt h_buck- |3
et (oper and et number to|et (5. 35,
nuneri c, bl which operand|0. 024, 10. 06,
nuneri c, b2 would be assigned|5)
nuneri c, in a histogram
count int) having count
equal-width buck-
ets spanning the
range bl to b2;
returns O or
count +1 for an
input outside the
range
wi dt h_buck- [|int return the bucket|wi dt h_buck- |2
et (oper and number to which|et (now(), ar-
anyel enent, operand would|ray[' yester-
t hreshol ds be assigned giv-|day’, 'to-
anyarray) en an array listing|day' , 't onor-
the lower bounds|row ]::tine-
of the buckets; re-|st anpt z[])

turns O for an in-
put less than the
first lower bound;
the t hr eshol ds

204



Functions and Operators

Function Return Type Description Example Result

array must be sort-
ed, smalest first,
or unexpected re-
sults will be ob-
tained

Table 9.6 shows functions for generating random numbers.

Table 9.6. Random Functions

Function Return Type Description

random() dp random valueintherange0.0 <=
x<10

set seed(dp) voi d set seed for subsequent r an-
dom() calls(valuebetween-1.0
and 1.0, inclusive)

The characteristics of the values returned by r andon( ) depend on the system implementation. It is
not suitable for cryptographic applications; see pgcrypto module for an aternative.

Finally, Table 9.7 showsthe available trigonometric functions. All trigonometric functions take argu-
ments and return values of type doubl e pr eci si on. Each of the trigonometric functions comes
in two variants, one that measures angles in radians and one that measures angles in degrees.

Table9.7. Trigonometric Functions

Function (radians) Function (degrees) Description
acos(x) acosd(x) inverse cosine
asi n(x) asi nd( x) inverse sine
at an(x) at and( x) inverse tangent
atan2(y, x) atan2d(y, x) inverse tangent of y/ x
cos(x) cosd(x) cosine
cot (x) cot d(x) cotangent
si n(x) si nd( x) sine
tan(x) t and( x) tangent
Note

Another way to work with angles measured in degrees is to use the unit transforma-
tion functionsr adi ans() and degr ees() shown earlier. However, using the de-
gree-based trigonometric functionsis preferred, asthat way avoids round-off error for
specia casessuch assi nd( 30) .

9.4. String Functions and Operators

This section describes functions and operators for examining and manipulating string values. Strings
in this context include values of thetypeschar act er,char act er varyi ng,andt ext . Unless
otherwise noted, al of the functions listed below work on al of these types, but be wary of potential
effects of automatic space-padding when using the char act er type. Some functions also exist na-
tively for the bit-string types.

205



Functions and Operators

SQL defines some string functions that use key words, rather than commas, to separate arguments.
Details are in Table 9.8. PostgreSQL also provides versions of these functions that use the regular

function invocation syntax (see Table 9.9).

10r.

Note

Before PostgreSQL 8.3, these functions would silently accept values of several non-
string datatypesaswell, dueto the presence of implicit coercionsfrom those datatypes
tot ext . Those coercions have been removed because they frequently caused surpris-
ing behaviors. However, the string concatenation operator (| | ) still accepts non-string
input, so long as at least one input is of a string type, as shown in Table 9.8. For other
cases, insert an explicit coerciontot ext if you need to duplicate the previous behav-

Table 9.8. SQL String Functions and Operators

Function Return Type Description Example Result
string | ] [text String concatena-|' Post ' | | |[Post gr eSQL
string tion "gresqQ’
string | ] [text String concatena-|' Val ue: ' || |Val ue: 42
non-string or tion with one non- |42
non-string || string input
string
i nt Number of bitsin|bit | ength('j @)
bit_Il ength(string) string
i nt Number of charac-|char _| engt h(' jdse')
char _l engt h(string) tersin string
or char ac-
ter_length(string)
| ow |t ext Convert string to|l ower (' TOM ) |[tom
er(string) lower case
i nt Number of bytesin|oct et _| engt h({4 ose')
octet | ength(string) string
over - |t ext Replace substring |over - Thonmas
lay(string I ay(" Txxxxas'
pl aci ng pl aci ng ' hom
string from from2 for 4)
i nt [for
int])
posi - |i nt Location of speci-|posi - 3
tion(sub- fied substring tion(‘om in
string in " Thomas')
string)
sub- |t ext Extract substring |sub- hom
string(string string(' Thomas'
[from int] from2 for 3)
[for int])
sub- t ext Extract substring|sub- mas
string(string matching POSIX|string(' Thomas'
frompattern) regular expression.|from ' ... $")
See Section 9.7 for
more information

206




Functions and Operators

Function Return Type Description Example Result
on pattern match-
ing.
sub- t ext Extract substring|sub- onma
string(string matching SQL reg-|stri ng(' Thomas'
from pattern ular  expression.|f rom
for escape) See Section 9.7 for|' %#" o_a#" '
more information|f or ' #')
on pattern match-
ing.
trim([| ead- |text Remove the[t ri m(bot h Tom
ing | trail- longest string con-|' xyz' from
i ng | taining only char-|' yxTomxx' )
both] [char- actersfromchar -
acters] from acters (a space
string) by default) from
the start, end, or
both ends (bot h
is the default) of
string
trim([l ead- [text Non-standard syn-|tri n{ bot h Tom
ing | trail- taxfortrim)) from 'yX-
ing | both] Tonxx' ,
[from string 'xyz')
[, char ac-
ters] )
up- |t ext Convert string to|upper('toni) |TOM
per (string) upper case

Additional string manipulation functions are available and are listed in Table 9.9. Some of them are

used internally to implement the SQL -standard string functions listed in Table 9.8.

Table 9.9. Other String Functions

Function

Return Type

Description

Example

Result

asci -
i (string)

i nt

ASCIl code of
the first charac-
ter of the argu-
ment. For UTF8
returns the Uni-
code code point of
the character. For
other multibyte en-
codings, the argu-
ment must be an
ASCII character.

ascii('x")

120

btrim(string
text [, char-
acters text])

t ext

Remove the
longest string
consisting  only
of characters in
characters (a
space by default)

from the start and

endof string

btrinm(' xyxtri
'xyz')

ryyxh,

207




Functions and Operators

Function

Return Type

Description

Example

Result

chr(int)

t ext

Character with the
given code. For
UTF8 the argu-
ment is treated as
a Unicode code
point. For other
multibyte encod-
ings the argument
must designate an
ASCIl  character.
The NULL (0)
character is not al-
lowed because text
data types cannot
store such bytes.

chr (65)

A

concat (str
any" [ ,
str "any"

[, ...1T 1

t ext

Concatenate  the
text  representa
tions of al the
arguments. NULL
arguments are ig-
nored.

con-
cat (' abcde’

2, NULL, 22)

abcde222

con-
cat_ws(sep

t ext, str
“any” [
str "any"

. ...1 1

t ext

Concatenate al but
the first argu-
ment with sepa
rators. The first
argument is used
as the separator
string. NULL ar-
guments are ig-
nored.

con-
cat_ws(',"',
'abcde',
NULL, 22)

21

abcde, 2, 22

con-
vert(string
byt ea, Sr -
c_encodi ng
namne,

dest _encod-

i ng nane)

byt ea

Convert string
todest encod-
i ng. The origina
encoding is speci-
fied by src_en-
codi ng. The
string must be
valid in this encod-
ing. Conversions
can be defined by
CREATE CON
VERSI ON.  Also
there are some
predefined conver-
sons. See Ta
ble 9.10 for avail-
able conversions.

con-
vert('tex-
t _in_utf8",
" UTF8',

" LATI N1')

text _in_utf8
represented in
Latin-1 encoding
(1SO 8859-1)

con-
vert _fron(str
byt ea, Sr -
c_encodi ng
nane)

t ext
ng

Convert string
to the data
base encoding. The
original encod-
ing is specified
by src_encod-

i ng.Thestring

con-
vert _fron('
t in_ utf8',
" UTF8')

te

text _in_ utf8
Xepresented in the
current  database
encoding

208




Functions and Operators

Function

Return Type

Description

Example

Result

must be valid in
this encoding.

con-
vert _to(strin
t ext,

dest _encod-

i ng nane)

byt ea
g

Convert string
todest _encod-

i ng.

con-
vert _to('sone
text',

" UTF8')

sone text rep-
resented in the
UTF8 encoding

de-
code(string
text, format
text)

byt ea

Decode binary da-
ta from textua
representation in
string. Options
for format are
same as in en-
code.

de-

code(' MTl zA-
AE=',

' base64')

\ x3132330001

encode(data
byt ea, format
text)

t ext

Encode binary da
ta into a textu-
a representation.
Supported for-
matsare: base64,
hex, escape.
escape converts
zero bytes and
high-bit-set  bytes
to octal sequences
(\nnn) and dou-
bles backslashes.

en-
code("' 123\ 000
' base64')

MTT z AAE=
oo1',

format (for-
mat st r t ext
[, for-
matarg "any"

. ...1 1

t ext

Format arguments
according to a for-
mat string. This
function is simi-
lar to the C func-
tion sprintf.
See Section 9.4.1.

format (' Hel -
lo %, %%s',
"World')

Hello World,
Wor | d

init-
cap(string)

t ext

Convert the first
letter of each word
to upper case and
the rest to low-
er case. Words are
sequences of al-
phanumeric char-
acters  separated
by non-aphanu-
meric characters.

i ni tcap(' hi
THOVAS' )

H Thonmmas

left(str

text, n int)

t ext

Return first n char-
actersin the string.
When n is nega
tive, return all but
last |n| characters.

| eft (' abcde',
2)

ab

| ength(string

Number of charac-
tersinstring

| engt h('j ose'

4

| engt h(string|i

byt ea, encod-
i ng nane )

Number of charac-
tersinstringin
the given encod-

| engt h('j ose'
" UTF8')

4

209




Functions and Operators

Function Return Type Description Example Result
i ng.Thestring
must be valid in
this encoding.
| pad(string|text Fill up the(l pad(' hi', 5, |xyxhi
text, length string tolength|' xy')
int [, fill | ength by
text]) prepending the
charactersfil | (a
space by default).
If the string is
aready longer than
| engt h then it is
truncated (on the
right).
Itrim(string|text Remove thell trim(' zzzyt egtést
text [, char- longest string con-|' xyz')
acters text]) taining only char-
actersfromchar -
acters (a space
by default) from
the start of
string
md5(string) |text Calculates the/md5( "' abc') 900150983cd24f b0
MD5 hash of d6963f 7d28el7f 72
string, return-
ing the result in
hexadecimal
parse_iden- [text][] Split qual i - |parse_i den- |{SonmeSchenm, spnet abl e}
t(quali - fied identi- [t('"SonmeScheng".soneTabl €'
fied identi- fier intoanarray
fier t ext of identifiers, re-
[, strictnode moving any quot-
bool ean  DE- ing of individua
FAULT identifiers. By de-
true ] ) fault, extra charac-

ters after the last
identifier are con-
sidered an error;
but if the sec-
ond parameter is
f al se, then such
extracharactersare
ignored. (This be-
havior is useful for
parsing names for
objects like func-
tions) Note that
this function does
not truncate over-
length identifiers.
If you want trun-
cation you can
cast the result to
nane[].

210



Functions and Operators

Function

Return Type

Description

Example

Result

pg_cli en-
t _encodi ng()

name

Current client en-
coding name

pg_cli en-
t _encodi ng()

SQL_ASC! |

quot e_i den-
t(string
text)

t ext

Return the giv-
en string  suit-
ably quoted to be
used as an iden-
tifier in an SQL
statement  string.
Quotes are added
only if necessary
(i.e, if the string
contains non-iden-
tifier characters or
would be case
folded). Embedded
quotes are proper-
ly doubled. See al-
so Example 43.1.

quot e_i den-
t(' Foo bar')

"Foo bar"

quote liter-
al (string
text)

t ext

Return the giv-
en string suitably
quoted to be used
asastring litera in
an SQL statement
string. Embed-
ded single-quotes
and backslashes
are properly dou-
bled. Note that
quote liter-
al returns null
on null input;
if the argument
might be null,
quot e_nul -

| abl e is often
more suitable. See
also Example 43.1.

quote liter-
al (E O'Reil -
ly")

"O'Reilly'

quote_liter-
al (val ue
anyel enent)

t ext

Coerce the given
value to text and
then quote it as
a litera. Embed-
ded single-quotes
and  backslashes
are properly dou-
bled.

quote_liter-
al (42.5)

"42.5'

quot e_nul -
| abl e(string
text)

t ext

Return the giv-
en string suitably
quoted to be used
as a dring lit-
era in an SQL
statement  string;
or, if the argu-
ment is null, return
NULL. Embedded
single-quotes and

quot e_nul -
| abl e( NULL)

NULL

211




Functions and Operators

Function Return Type Description Example Result
backdlashes  are
properly doubled.
See dso Exam-
ple43.1.
quot e_nul - t ext Coerce the giv-|quote_nul - '42.5'
| abl e(val ue en value to text|l abl e(42.5)
anyel enent) and then quote
it as a literd;
or, if the argu-
ment is null, return
NULL. Embedded
single-quotes and
backslashes  are
properly doubled.
regex- |text[] Return  captured|r egex- {bar, beque}
p_match(string substring(s) result-|p_mat ch(' f oo-
text, pattern ing from the first|bar beque-
text [, flags match of a POSIX|baz', ' (bar)
text]) regular expression|( beque) ')
to the string.
See Section 9.7.3
for more informa-
tion.
regex- |setof text[] |Return captured|r egex- {bar}
p_mat ch- substring(s) result-|p_nmat ch-
es(string ing from matching|es(' f oobar- |{ baz}
text, pattern a POSIX regular|bequebaz’,
text [, flags expression to the|' ba.', 'g') |(2rows)
text]) string. See Sec-
tion 9.7.3 for more
information.
regexp_re- |text Replace sub-|r egexp_re- ThM
pl ace(string string(s) matching|pl ace(' Thonas| ,
text, pattern a POSIX regu-|'.[mN\]a.',
t ext, re- lar expression. See|' M)
pl acenent Section 9.7.3 for
text [, flags more information.
text])
regexp_s- [text[] Split string us-|regexp_s- {hel -
plit_to_ar- ing a POSIX reg-|plit_to_ar- |l o,world}
ray(string ular expression as|ray(' hell o
text, pattern the delimiter. Seejworl d', "\'s
text [, flags Section 9.7.3 for|+')
text 1) more information.
regexp_s- [setof text Split string us|regexp_s- hell o
plit_to_ta- ing a POSIX reg-|plit_to_ta-
bl e(string ular expression as|bl e(' hello  |[world
text, pattern the delimiter. Seejworl d', "\'s
text [, flags Section 9.7.3 for|+') (2 rows)
text]) more information.
re-|text Repeat string|repeat (' Pg', |PgPgPgPg
peat (string the specifiednum |4)
ber of times

212




Functions and Operators

Function Return Type Description Example Result
text, nunber
int)
re-|text Replace all occur-|r e- abXXef abXXef
pl ace(string rencesin string|pl ace(' abcde-
t ext, from of substring f r om/f abcdef ',
t ext, to with substringt o |' c¢d', ' XX')
text)
reverse(str) |text Return  reversed|r e- edcbha
string. verse(' abcde’
right(str|text Return last n char-|ri ght (' abcde' |de
text, nint) actersinthe string. | 2)
When n is nega
tive, return al but
first |n| characters.
rpad(string|text Fill up the[rpad(' hi', 5, |hixyx
text, length string tolength|' xy')
int [, fill Il ength by ap-
text]) pending the char-
acters fill (a
space by default).
If the string is
aready longer than
| engt h then it is
truncated.
rtrim(string|text Remove theirtrim('testxxgxest
text [, char- longest string con-|' xyz')
acters text]) taining only char-
actersfromchar -
acters (a space
by default) from
theendof stri ng
t ext Split string on|split_part (' ajmef@de-
split_part(string delimter and|f~@-ghi',
text, delim return the giv-|' ~@-', 2)
iter t ext, en field (counting
field int) from one)
str-|int Location of spec-|str- 2
pos(string, ified substring|pos( "' hi gh',
substring) (same as posi-|'ig")
tion(sub-
string in
string), but
note the reversed
argument order)
sub- |t ext Extract substring|substr('al- |ph
str(string, (same as sub- |phabet’, 3,
from [, string(string|2)
count]) fromfromfor
count))
start - |bool Returns true if|start- t
s_with(string, string starts|s_wi t h("' al -
prefix) with pr ef i x. phabet ',
"al ph')

213




Functions and Operators

Function Return Type Description Example Result
to_asci - |t ext Convert string|to_asci - Kar el

i (string text to ASCIl from|i (' Karel")

[, encodi ng another encod-

text]) ing (only sup-

ports conversion
from LATI N1,
LATI N2,

LATI N9, and
W N1250 encod-

ings)

to_hex(num |t ext

ber int or
bi gi nt)

Convert numnber
to its equivaent
hexadecimal repre-
sentation

to_hex(214748364T) f f f

trans- |t ext

late(string

t ext, from
t ext, to
text)

Any character
in string that
matches a charac-
ter in the from
set is replaced
by the correspond-
ing character in
the to set. If
from is longer
than to, occur-
rences of the extra
charactersinfrom
are removed.

trans- a2x5
| ate(' 12345',
'143', 'ax')

Theconcat,concat _ws andf or mat functionsarevariadic, soit ispossibleto passthe valuesto
be concatenated or formatted as an array marked with the VARI ADI C keyword (see Section 38.5.5).
The array's elements are treated as if they were separate ordinary arguments to the function. If the
variadic array argument is NULL, concat and concat _ws return NULL, but f or mat treats a
NULL as azero-element array.

See also the aggregate function st r i ng_agg in Section 9.20.

Table 9.10. Built-in Conversions

Conversion Name ? Sour ce Encoding Destination Encoding
ascii _to_mc SQ._ASCI | MULE_| NTERNAL
ascii_to utf8 SQL_ASCI | UTF8

bigs to euc tw Bl G5 EUC TW
big5_to_mc Bl G5 MULE_| NTERNAL
big5 to utf8 Bl G5 UTF8

euc_cn_to mc EUC CN MULE | NTERNAL
euc_cn_to utf8 EUC CN UTF8

euc_jp_to mc EUC JP MULE | NTERNAL
euc_jp_to_sjis EUC JP SJI S

euc_jp_to utf8 EUC JP UTF8

euc_kr _to nmic EUC KR MULE | NTERNAL
euc_kr_to utf8 EUC KR UTF8

214




Functions and Operators

Conversion Name ? Sour ce Encoding Destination Encoding
euc_tw to_bigs EUC TW Bl G
euc_twto_nmc EUC_TW MULE_| NTERNAL
euc_twto utf8 EUC TW UTF8
gh18030_to_utf8 GB18030 UTF8
gbk_to_utf8 GBK UTF8
iso_8859 10 _to_utf8 LATI N6 UTF8

iso_ 8859 13 to utf8 LATI N7 UTF8
iso_8859 14 to utf8 LATI N8 UTF8
iso_8859 15 to_utf8 LATI N9 UTF8
iso_8859 16 _to_utf8 LATI N10 UTF8

iso_ 8859 1 to mc LATI N1 MULE_| NTERNAL
iso_ 8859 1 to utf8 LATI N1 UTF8
iso_8859 2 to mc LATI N2 MULE_| NTERNAL
iso 8859 2 to utf8 LATI N2 UTF8

i s0_8859_2 to_win- LATI N2 W N1250
dows_1250

iso_8859 3 to mc LATI N3 MULE_| NTERNAL
iso_8859 3 to utf8 LATI N3 UTF8
is0_8859 4 to_mic LATI N4 MULE_| NTERNAL
iso 8859 4 to utf8 LATI N4 UTF8
iso_8859 5 to_koi8_r |[1SO 8859 5 KO 8R
iso_8859 5 to_mc | SO 8859 _5 MULE_| NTERNAL
iso0_8859 5 to_utf8 | SO 8859 _5 UTF8
iso_8859 5 to win- | SO 8859 5 W N1251
dows_1251

i so_8859 5 to_win- | SO 8859_5 W NB866

dows 866

iso_8859 6 to utf8 | SO 8859 _6 UTF8
is0_8859 7 to_utf8 | SO 8859 _7 UTF8
iso_8859 8 to_utf8 | SO 8859_8 UTF8
iso_8859 9 to utf8 LATI N5 UTF8
johab_to_utf8 JOHAB UTF8

koi8 r to iso 8859 5 |KO 8R | SO 8859 5

koi 8_r_to_mc KA 8R MULE_| NTERNAL
koi8 r to utf8 KA 8R UTF8

koi 8_r_to_wi n- KA 8R W N1251

dows_ 1251

koi 8 r _to wi ndows 866 KO 8R W N866

koi8 u to utf8 KO 8U UTF8
mc_to_ascii MULE_| NTERNAL SQ._ASCI |
mc_to_bigb MULE_| NTERNAL Bl G5

mc to _euc_cn MULE | NTERNAL EUC CN

215




Functions and Operators

Conversion Name?

Sour ce Encoding

Destination Encoding

c_to euc_jp

MULE_| NTERNAL

EUC_JP

m

mc_to_euc_kr MULE | NTERNAL EUC KR

mc to euc_ tw MULE | NTERNAL EUC TW
mc_to_iso_8859 1 MULE_| NTERNAL LATI N1
mc_to_iso 8859 2 MULE_| NTERNAL LATI N2
mc_to_iso_8859 3 MULE_| NTERNAL LATI N3

mc to_ iso 8859 4 MULE_| NTERNAL LATI N4
mc_to_iso_8859 5 MULE_| NTERNAL | SO 8859_5
m c_to_koi8_r MULE_| NTERNAL KO 8R

mc to sjis MULE | NTERNAL SJI S

m c_to_wi ndows_ 1250 MULE | NTERNAL W N1250

m c_to_w ndows_1251 MULE_| NTERNAL W N1251

m c_t o_wi ndows_866 MULE_| NTERNAL W N866
sjis_to euc jp SJI S EUC JP
sjis_to mc SJI S MULE | NTERNAL
sjis_to utf8 SJI S UTF8
tcvn_to utf8 W N1258 UTF8

uhc _to utf8 UHC UTF8

utf8 to_ascii UTF8 SQL_ASCI |
utf8 to_bigs UTF8 Bl Gb

utf8 to_euc_cn UTF8 EUC CN

utf8 to euc jp UTF8 EUC JP

utf8 to_euc kr UTF8 EUC KR

utf8 to euc tw UTF8 EUC TW

utf8 to_ghl18030 UTF8 GB18030

utf8 to_gbk UTF8 GBK

utf8 to iso 8859 1 UTF8 LATI N1

utf8 to iso 8859 10 UTF8 LATI N6

utf8 to_iso 8859 13 UTF8 LATI N7

utf8 to_iso 8859 14 UTF8 LATI N8

utf8 to iso 8859 15 UTF8 LATI N9

utf8 to iso 8859 16 UTF8 LATI N10
utf8 to_iso 8859 2 UTF8 LATI N2

utf8 to iso 8859 3 UTF8 LATI N3

utf8 to iso 8859 4 UTF8 LATI N4

utf8 to_iso 8859 5 UTF8 | SO 8859_5
utf8 to_iso 8859 6 UTF8 | SO 8859 _6
utf8 to_iso 8859 7 UTF8 | SO 8859_7
utf8_ to_iso_8859 8 UTF8 | SO 8859_8
utf8 to iso 8859 9 UTF8 LATI N5
utf8_ to_johab UTF8 JOHAB

216




Functions and Operators

Conversion Name?

Sour ce Encoding

Destination Encoding

utf8 to _koi8 r

UTF8

KA 8R

utf8 to koi8 u UTF8 KA 8U
utf8 to sjis UTF8 SJI S
utf8 to_tcvn UTF8 W N1258
utf8_to_uhc UTF8 UHC

utf8 to_w ndows_ 1250 |UTF8 W N1250
utf8 to wi ndows_ 1251 |UTF8 W N1251
utf8 to_wi ndows_ 1252 |UTF8 W N1252
utf8 to_w ndows_1253 |UTF8 W N1253
utf8 to w ndows_ 1254 |UTF8 W N1254
utf8 to wi ndows_ 1255 |UTF8 W N1255
utf8 to_w ndows_1256 |UTF8 W N1256
utf8 to_w ndows_1257 |UTF8 W N1257
utf8 to_w ndows_ 866 UTF8 W N866
utf8 to wi ndows 874 UTF8 W N874
Wi n- W N1250 LATI N2

dows 1250 to iso 8859 p

wi ndows_1250_to_m ¢ W N1250 MULE_| NTERNAL
wi ndows_ 1250 to utf8 |WN1250 UTF8

Wi n- W N1251 | SO 8859_5
dows_1251 to iso 8859 )5

Wi n- W N1251 KO 8R
dows_1251 to_koi 8 _r

wi ndows_1251 to_mc¢ W N1251 MULE_| NTERNAL
wi ndows_ 1251 to utf8 |WN1251 UTF8

wi ndows_1251 to_wi n- |WN1251 W N866

dows_ 866

wi ndows_1252 to utf8 |WN1252 UTF8

wi ndows_1256_to utf8 |WN1256 UTF8

Wi n- W N866 | SO 8859 _5
dows 866 to iso 8859 5

wi ndows 866 _to_koi 8 r |W N866 KA 8R

wi ndows_866_to_mc W N866 MULE | NTERNAL
wi ndows_866_to_utf8 W N866 UTF8

wi ndows 866 _to_wi n- W N866 W N

dows_ 1251

wi ndows 874 to utf8 W N874 UTF8
euc_jis_2004_to_utf8 |EUC JI'S 2004 UTF8

utf8 to_euc_jis_2004 |UTF8 EUC JI S 2004
shift_jis_2004_to_utf8SH FT_JI S 2004 UTF8

ut -

f8 to_shift_jis_2004

UTF8

SHI FT_JI S_2004

217




Functions and Operators

9.4.1.

Conversion Name ? Sour ce Encoding Destination Encoding
eu- EUC JI S_2004 SHI FT_JI S_2004
C_jis_2004_to_shift_jis_2004

shift_jis_2004_to_eu- |[SH FT_JI S_2004 EUC_JI S_2004
c_jis_2004

&The conversion names follow a standard naming scheme: The official name of the source encoding with all non-alphanumeric
characters replaced by underscores, followed by _t o_, followed by the similarly processed destination encoding name. There-
fore, the names might deviate from the customary encoding names.

f or mat

The function f or mat produces output formatted according to a format string, in a style similar to
the C functionspri nt f .

format (formatstr text [, formatarg "any" [, ...] ])

format st r isaformat string that specifies how the result should be formatted. Text in the format
string is copied directly to the result, except where format specifiers are used. Format specifiers act
as placeholders in the string, defining how subsequent function arguments should be formatted and
inserted into theresult. Each f or mat ar g argument is converted to text according to the usual output
rules for its data type, and then formatted and inserted into the result string according to the format
specifier(s).

Format specifiers are introduced by a %character and have the form

% position][flags][w dth]type
where the component fields are;
posi ti on (optional)

A string of the form n$ where n is the index of the argument to print. Index 1 means the first
argument after f or mat st r . If theposi t i on isomitted, the default isto use the next argument
in sequence.

f 1 ags (optional)

Additional options controlling how the format specifier's output is formatted. Currently the only
supported flagisaminussign (- ) which will cause the format specifier's output to beleft-justified.
This has no effect unlessthewi dt h field is also specified.

wi dt h (optional)

Specifies the minimum number of characters to use to display the format specifier's output. The
output is padded on the left or right (depending on the - flag) with spaces as needed to fill the
width. A too-small width does not cause truncation of the output, but issimply ignored. The width
may be specified using any of the following: a positive integer; an asterisk (*) to use the next
function argument as the width; or a string of the form * n$ to use the nth function argument
as the width.

If the width comes from afunction argument, that argument is consumed before the argument that
isused for the format specifier'svalue. If the width argument is negative, the result isleft aligned
(asif the - flag had been specified) within afield of length abs(wi dt h).

t ype (required)

Thetype of format conversion to useto produce the format specifier's output. Thefollowing types
are supported:

218



Functions and Operators

s formats the argument value as asimple string. A null value istreated as an empty string.

| treatsthe argument value as an SQL identifier, double-quoting it if necessary. It is an error
for the value to be null (equivalent to quot e_i dent ).

L quotes the argument value as an SQL literal. A null value is displayed as the string NULL,
without quotes (equivalent to quot e_nul | abl e).

In addition to the format specifiers described above, the specia sequence %@6may be used to output
aliteral %character.

Here are some examples of the basic format conversions:
SELECT format('Hello %', 'Wrld');
Result: Hello Wrld

SELECT format (' Testing %, %, %, %6, 'one', '"twd', 'three');
Result: Testing one, two, three, %

SELECT format (' I NSERT I NTO %9 VALUES(%.)', 'Foo bar', E O
\"Reilly");

Result: I NSERT I NTO "Foo bar" VALUES(' O 'Reilly")

SELECT format (' I NSERT I NTO %4 VALUES(%.)', 'locations', 'C.\Program
Files');

Result: I NSERT I NTO | ocations VALUES(' C:\Program Files')

Here are examplesusing wi dt h fields and the - flag:

SELECT format ('] %0s|', 'foo');
Result: | f oo|
SELECT format ('|% 10s|', 'foo0');

Result: |foo |

SELECT format('|%s|', 10, 'foo');
Result: | f oo|

SELECT format('|%s|', -10, 'foo');
Result: |foo |

SELECT format('|%*s|', 10, 'foo0');
Result: |foo |

SELECT format('|%*s|', -10, 'foo');
Result: |foo |

These examples show use of posi ti on fields:

SELECT format (' Testing ¥8%s, %®$s, %$s', 'one', 'two', 'three');
Result: Testing three, two, one

SELECT format (' | %2%s|', 'foo', 10, 'bar');
Resul t: | bar |
SELECT fornmat (' | %$*2%s|', 'foo', 10, 'bar');

219



Functions and Operators

Result: | f oo|

Unlike the standard C function spri nt f , PostgreSQL's f or mat function allows format specifiers
with and without posi t i on fieldsto be mixed in the same format string. A format specifier without
aposi ti on field aways uses the next argument after the last argument consumed. In addition, the
f or mat function does not requireall function argumentsto be used in the format string. For example:

SELECT format (' Testing ¥8%s, %®$s, %', 'one', 'two', 'three');
Result: Testing three, two, three

The %4 and % format specifiers are particularly useful for safely constructing dynamic SQL state-
ments. See Example 43.1.

9.5. Binary String Functions and Operators

This section describes functions and operators for examining and manipulating values of typebyt ea.

SQL defines some string functions that use key words, rather than commas, to separate arguments.
Details are in Table 9.11. PostgreSQL aso provides versions of these functions that use the regular
function invocation syntax (see Table 9.12).

Note

The sampleresults shown on this page assumethat the server parameter byt ea_out -
put issettoescape (thetraditional PostgreSQL format).

Table 9.11. SQL Binary String Functions and Operators

Function Return Type Description Example Result
string || [bytea String concatena-|* \ \\ Post' gres
string tion \ Post' :: byt eal\ 000
|| '\047gres
\000' : : bytea
i nt Number of bytesin|oct et _| engt h({5 o
octet |ength(string) binary string \ 000se' : : byt ep)
over - |byt ea Replace substring |over - T\ \ 002\
lay(string I ay(' Th\ 0000nRDQ3rA4 ea
pl aci ng pl aci ng
string from "\ 002\ 003' :: byt ea
i nt [for from2 for 3)
int])
posi - |i nt Location of speci-|posi - 3
tion(sub- fied substring tion('\000oni | : bytea
string in in "Th
string) \ 000onas' : : byt ea)
sub- |byt ea Extract substring |sub- h\ 0000
string(string string(' Th\ 00Pomas' : : byt ea
[from int] from2 for 3)
[for int])
trim([both] bytea Remove the|t ri m(' \ 000\ O0Tambyt ea
byt es from longest string|f rom' \ 000Tom
string) containing  only|\ 001' : : byt ea)

220



Functions and Operators

Function

Return Type

Description

Example

Result

bytes appearing in
byt es from the
start and end of
string

Additional binary string manipulation functions are available and are listed in Table 9.12. Some of
them are used internally to implement the SQL -standard string functionslisted in Table 9.11.

Table 9.12. Other Binary String Functions

Function

Return Type

Description

Example

Result

btrimstring
bytea, bytes
byt ea)

byt ea

Remove the
longest string
containing  only
bytes appearing in
byt es from the
start and end of

string

btrinm(' \000tr
\ 001" : : byt ea,
"\000\001'::b

tmi m

yt ea)

de-
code(string
text, fornmat
text)

byt ea

Decode binary da-
ta from textua
representation in
string. Options
for format are
same as in en-
code.

de-
code("' 123\ 000
' escape')

123\ 000456
456" ,

encode(dat a
byt ea, format
text)

t ext

Encode binary da-
ta into a textu-
a representation.
Supported for-
matsare: base64,
hex, escape.
escape converts
zero bytes and
high-bit-set bytes
to octal sequences
(\nnn) and dou-
bles backslashes.

en-
code(' 123\ 000
' escape')

1231000456
456' : : byt ea,

get _bit(strin
of fset)

Extract bit from
string

get _bit('Th
\ 000ommas' : : by
45)

1
tea,

get _byte(stri
of f set)

Extract byte from
string

get _byte(' Th
\ 000omas' : : by
4)

109
tea,

| ength(string

Length of binary
string

length('jo
\ 000se' : : byte

5
R)

nd5(string)

Calculates the
MD5 hash of
string, return-
ing the result in
hexadecimal

nd5("' Th
\ 000onms' : : by

8ab2d3c9689aa
thek)58c334c82d

f18
8b1l

set_bit(strin
of fset, new
val ue)

byt ea
ga

Set bitin string

set_bit(' Th
\ 000omas' : : by
45, 0)

Th\ 0000mAs
t ea,

221



Functions and Operators

Function

Return Type

Description

Example

Result

set _byte(stri
of fset, new
val ue)

byt ea
ng,

Set bytein string

set _byte(' Th
\ 000ommas' : : by
4, 64)

Th\ 0000@as
t ea,

sha224( byt ea)

byt ea

SHA-224 hash

sha224(' abc')

\ x23097d22340
da2

55b32aad-
bce4b-

daOb3f 7e36¢9d

5d8228642a47

a7

sha256( byt ea)

byt ea

SHA-256 hash

sha256("' abc')

\ xba7816bf 8f 0
b00361a396177
f 61f 20015ad

1cf ead414140d
a9ch410f -

sha384( byt ea)

byt ea

SHA-384 hash

sha384(' abc')

\ xch00753f 45a
b5a03d699ac65
272c32ab0ed-
ed1631a8b605a
f 5bed
8086072bale7c
c2358bae-
cal34c825a7

35e8b-
007

43f -

sha512( byt ea)

byt ea

SHA-512 hash

sha512("' abc')

\ xddaf 3521936
c417349ae2041
12e6f a4e89a97
2192992a274f ¢
454d4423643ce

17abac-

31
ea20a9eeeeb4
1a836ba3c23a
80e2a9ac94f a

get _byte and set byt e number the first byte of a binary string as byte 0. get _bit and
set _bit number bitsfrom the right within each byte; for example bit 0 isthe least significant bit of
the first byte, and bit 15 isthe most significant bit of the second byte.

Note that for historic reasons, the function nd5 returns a hex-encoded value of typet ext whereasthe
SHA-2 functionsreturn type byt ea. Usethefunctionsencode and decode to convert between the
two, for exampleencode(sha256("' abc' ), ' hex') toget ahex-encoded text representation.

See also the aggregate function st ri ng_agg in Section 9.20 and the large object functions in Sec-
tion 35.4.

9.6. Bit String Functions and Operators

This section describes functions and operators for examining and manipulating bit strings, that is
valuesof thetypesbi t andbi t varyi ng. Asidefromtheusual comparison operators, the operators
shown in Table 9.13 can be used. Bit string operands of &, | , and # must be of equal length. When bit

shifting, the original length of the string is preserved, as shown in the examples.

Table 9.13. Bit String Operators

Operator Description Example Result

[ concatenation B' 10001" || |10001011
B' 011

& bitwise AND B' 10001 &|00001
B' 01101

[ bitwise OR B' 10001" | [11101
B' 01101'

222



Functions and Operators

Operator Description Example Result

# bitwise XOR B' 10001" #(11100
B' 01101

~ bitwise NOT ~ B' 10001’ 01110

<< bitwise shift left B' 10001' << 3 01000

>> bitwise shift right B' 10001' >> 2 00100

The following SQL-standard functions work on bit strings as well as character strings: | engt h,
bit | ength,octet |ength,position,substring,overlay.

The following functions work on bit strings as well as binary strings. get _bi t, set _bi t. When
working with abit string, these functions number the first (leftmost) bit of the string as bit 0.

In addition, it is possible to cast integral values to and from type bi t . Some examples:

44: :bit(10) 0000101100
44: : bit(3) 100

cast(-44 as bit(12)) 111111010100
"1110'::bit(4)::integer 14

Note that casting to just “bit” means castingto bi t (1) , and so will deliver only the least significant
bit of the integer.

Note

Casting an integer to bi t ( n) copiesthe rightmost n bits. Casting an integer to a bit
string width wider than the integer itself will sign-extend on the | eft.

9.7. Pattern Matching

There are three separate approaches to pattern matching provided by PostgreSQL : the traditional SQL
LI KE operator, the morerecent SI M LAR TOoperator (added in SQL:1999), and POSIX-style reg-
ular expressions. Aside from the basic “ does this string match this pattern?’ operators, functions are
available to extract or replace matching substrings and to split a string at matching locations.

Tip

If you have pattern matching needsthat go beyond this, consider writing auser-defined
function in Perl or Tcl.

Caution

While most regul ar-expression searches can be executed very quickly, regular expres-
sions can be contrived that take arbitrary amounts of time and memaory to process. Be
wary of accepting regular-expression search patterns from hostile sources. If you must
do s0, it is advisable to impose a statement timeout.

Searches using SIM LAR TO patterns have the same security hazards, since
SI' M LAR TOprovides many of the same capabilities as POSI X -style regular expres-
sions.

223



Functions and Operators

9.7.1.

9.7.2.

L1 KE searches, being much simpler than the other two options, are safer to use with
possibly-hostile pattern sources.

LI KE

string LIKE pattern [ ESCAPE escape-character]
string NOT LIKE pattern [ ESCAPE escape-character]

The LI KE expression returns true if the st r i ng matches the supplied pat t er n. (As expected, the
NOT LI KE expression returns false if LI KE returns true, and vice versa. An equivaent expression
iSNOT (string LIKE pattern).)

If pat t er n does not contain percent signs or underscores, then the pattern only represents the string
itself; in that case LI KE acts like the equals operator. An underscore () in patt er n stands for
(matches) any single character; a percent sign (%9 matches any sequence of zero or more characters.

Some examples:

"abc' LIKE 'abc' true
"abc' LIKE 'a% true
"abc' LIKE' b’ true
"abc' LIKE 'c' fal se

LI KE pattern matching always covers the entire string. Therefore, if it's desired to match a sequence
anywhere within a string, the pattern must start and end with a percent sign.

To match aliteral underscore or percent sign without matching other characters, the respective char-
acterinpat t er n must be preceded by the escape character. The default escape character isthe back-
dash but a different one can be selected by using the ESCAPE clause. To match the escape character
itself, write two escape characters.

Note

If you have standard_conforming_strings turned off, any backslashes you writein lit-
eral string constantswill need to be doubled. See Section 4.1.2.1 for moreinformation.

It's also possible to select no escape character by writing ESCAPE ' ' . This effectively disables
the escape mechanism, which makes it impossible to turn off the special meaning of underscore and
percent signsin the pattern.

The key word | LI KE can be used instead of LI KE to make the match case-insensitive according to
the active locale. Thisis not in the SQL standard but is a PostgreSQL extension.

The operator ~~ is equivalent to LI KE, and ~~* correspondsto | LI KE. Therearealso! ~~ and !
~~* operators that represent NOT LI KE and NOT | LI KE, respectively. All of these operators are
PostgreSQL -specific.

Thereis aso the prefix operator  @and corresponding st art s_wi t h function which covers cases
when only searching by beginning of the string is needed.

SI M LAR TORegular Expressions

string SIMLAR TO pattern [ ESCAPE escape-character]

224



Functions and Operators

9.7.3.

string NOT SIMLAR TO pattern [ ESCAPE escape-character]

The SI M LAR TOoperator returns true or false depending on whether its pattern matches the given
string. Itissimilar to LI KE, except that it interpretsthe pattern using the SQL standard's definition of a
regular expression. SQL regular expressions are a curious cross between L1 KE notation and common
regular expression notation.

Like Ll KE, the SI M LAR TOoperator succeeds only if its pattern matches the entire string; thisis
unlike common regular expression behavior where the pattern can match any part of the string. Also
likeLl KE, SI M LAR TOuses__ and %as wildcard characters denoting any single character and any
string, respectively (these are comparableto . and . * in POSIX regular expressions).

In addition to these facilities borrowed from L1 KE, SI M LAR TO supports these pattern-matching
metacharacters borrowed from POSIX regular expressions:

* | denotes alternation (either of two aternatives).
» * denotes repetition of the previous item zero or more times.
» + denotes repetition of the previous item one or more times.

» ? denotes repetition of the previous item zero or onetime.

{n} denotes repetition of the previous item exactly mtimes.
* {m } denotes repetition of the previous item mor more times.

* {m n} denotes repetition of the previousitem at least mand not more than n times.

Parentheses () can be used to group itemsinto asingle logical item.
» A bracket expression|[ . . .] specifiesacharacter class, just asin POSIX regular expressions.
Notice that the period (. ) is not a metacharacter for SI M LAR TO.

Aswith LI KE, abackslash disables the special meaning of any of these metacharacters; or adifferent
escape character can be specified with ESCAPE.

Some examples:

abc' SIMLAR TO ' abc' true
"abc' SIMLAR TO 'a' fal se
"abc' SIMLAR TO '%b|d)% true
abc’ SIMLAR TO ' (b|c)% fal se

The subst ri ng function with three parameters, subst ri ng(string from pattern for

escape- char act er ), provides extraction of a substring that matches an SQL regular expression
pattern. Aswith SI M LAR TQO, the specified pattern must match the entire data string, or else the
function fails and returns null. To indicate the part of the pattern that should be returned on success,
the pattern must contain two occurrences of the escape character followed by adouble quote (). The
text matching the portion of the pattern between these markersis returned.

Some examples, with #" delimiting the return string:

substring(' foobar' from'%"o b#"'% for '#') oob
substring(' foobar' from'#"o _b#"'% for '#') NULL

POSIX Regular Expressions

Table 9.14 lists the available operators for pattern matching using POSIX regular expressions.

225



Functions and Operators

Table 9.14. Regular Expression Match Operators

Operator Description Example

~ Matchesregular expression, case|' t hormas' ~
sensitive ".*thomas. *'

~* Matchesregular expression, case|' t horas' ~*
insensitive ' . *Thonas. *'

I~ Does not match regular expres-|' t hormas' I~
sion, case sensitive ' . *Thomas. *'

I ~* Does not match regular expres-|' t honas' I ~*
sion, case insensitive ".*vadim *'

POSIX regular expressions provide a more powerful means for pattern matching than the LI KE and
SIM LAR TO operators. Many Unix tools such as egr ep, sed, or awk use a pattern matching
language that is similar to the one described here.

A regular expression is a character sequence that is an abbreviated definition of a set of strings (a
regular set). A string is said to match aregular expression if it isamember of the regular set described
by the regular expression. As with LI KE, pattern characters match string characters exactly unless
they are special charactersin the regular expression language — but regular expressions use different
special characters than LI KE does. Unlike LI KE patterns, a regular expression is allowed to match
anywhere within a string, unless the regular expression is explicitly anchored to the beginning or end
of the string.

Some examples:

"abc' ~ 'abc' true
"abc' ~ '7a’ true
"abc' ~ "(b|d)" true
"abc' ~ "~(bljc)"' false

The POSIX pattern language is described in much greater detail below.

The subst ri ng function with two parameters, subst ri ng(string from pattern), pro-
vides extraction of asubstring that matches a POSI X regular expression pattern. It returns null if there
is no match, otherwise the portion of the text that matched the pattern. But if the pattern contains any
parentheses, the portion of the text that matched the first parenthesized subexpression (the one whose
left parenthesis comes first) is returned. Y ou can put parentheses around the whole expression if you
want to use parentheses within it without triggering this exception. If you need parentheses in the pat-
tern before the subexpression you want to extract, see the non-capturing parentheses described below.

Some examples:

substring(' foobar' from'o.b") oob
substring(' foobar' from'o(.)b") o]

Ther egexp_r epl ace function provides substitution of new text for substrings that match POSIX
regular expression patterns. It hasthe syntax r egexp_r epl ace(sour ce, pattern,repl ace-
nment [, fl ags ]). Thesour ce string isreturned unchanged if there is no match to the pat t er n.
If thereis amatch, the sour ce string isreturned with ther epl acenent string substituted for the
matching substring. Ther epl acenent string cancontain\ n, wheren is1through 9, toindicatethat
the source substring matching the n'th parenthesized subexpression of the pattern should be inserted,
and it can contain \ & to indicate that the substring matching the entire pattern should be inserted.
Write\ \ if you need to put a literal backslash in the replacement text. The f | ags parameter is an
optional text string containing zero or more single-letter flagsthat change the function'sbehavior. Flag
i specifies case-insensitive matching, while flag g specifies replacement of each matching substring
rather than only the first one. Supported flags (though not g) are described in Table 9.22.

226



Functions and Operators

Some examples:

regexp_repl ace(' foobarbaz', '"b.."', 'X)
f ooXbaz
regexp_repl ace(' foobarbaz', 'b..', 'X, 'g")
f ooXX

regexp_replace(' foobarbaz', "b(..)', "X\1Y', 'g")
f ooXar YXazY

The r egexp_mat ch function returns a text array of captured substring(s) resulting from the first
match of aPOSIX regular expression pattern to astring. It hasthe syntax r egexp_mat ch(st ri ng,
pattern[,fl ags]).!f thereisnomatch, theresultisNULL. If amatchisfound, andthepatt ern
contains no parenthesized subexpressions, then the result is a single-element text array containing the
substring matching the whole pattern. If a match is found, and the pat t er n contains parenthesized
subexpressions, then the result is a text array whose n'th element is the substring matching the n'th
parenthesized subexpression of the pat t er n (not counting “non-capturing” parentheses; see below
for details). Thef | ags parameter isan optional text string containing zero or more single-letter flags
that change the function's behavior. Supported flags are described in Table 9.22.

Some examples:

SELECT regexp_mat ch(' f oobar bequebaz’ ,
regexp_mat ch

{barbeque}
(1 row

bar. *que');

SELECT regexp_mat ch(' f oobar bequebaz', ' (bar) (beque)');
regexp_mat ch
{bar, beque}

(1 row

In the common case where you just want the whole matching substring or NULL for no match, write
something like

SELECT (regexp_match('foobarbequebaz', 'bar.*que'))[1];
regexp_match

bar beque

(1 row)

Ther egexp_mat ches function returns a set of text arrays of captured substring(s) resulting from
matching a POSI X regular expression pattern to astring. It has the same syntax asr egexp_rmmat ch.
Thisfunction returnsno rowsif thereisno match, onerow if thereisamatch and theg flagisnot given,
or Nrowsif thereare Nmatches and the g flag isgiven. Each returned row isatext array containing the
whole matched substring or the substrings matching parenthesized subexpressions of the pat t er n,
just as described above for r egexp_mat ch. r egexp_nat ches accepts al the flags shown in
Table 9.22, plusthe g flag which commandsiit to return all matches, not just the first one.

Some examples:

SELECT regexp_matches('foo', 'not there');
regexp_mat ches

227



Functions and Operators

SELECT regexp_mat ches(' f oobar bequebazi | bar f bonk', ' (b[”b]+)
(b["b]+)", "g");
regexp_mat ches

{bar, beque}
{bazil, barf}
(2 rows)

Tip

In most cases r egexp_nat ches() should be used with the g flag, since if you
only want the first match, it's easier and more efficient to use r egexp_nmat ch() .
However, r egexp_mat ch() only exists in PostgreSQL version 10 and up. When
working in older versions, acommon trick isto place ar egexp_nat ches() call
in asub-select, for example:

SELECT col 1, (SELECT regexp_natches(col 2, ' (bar)
(beque)')) FROMt ab;

This produces a text array if there's a match, or NULL if not, the same as r egex-
p_mat ch() would do. Without the sub-select, this query would produce no output
at all for table rows without a match, which istypically not the desired behavior.

Ther egexp_split_to_tabl e function splitsastring using a POSI X regular expression pattern
as adelimiter. It hasthe syntax r egexp_split_to_tabl e(string,pattern[,flags]).If
there is no match to the pat t er n, the function returnsthe st r i ng. If there is at least one match,
for each match it returns the text from the end of the last match (or the beginning of the string) to
the beginning of the match. When there are no more matches, it returns the text from the end of the
last match to the end of the string. The f | ags parameter is an optional text string containing zero or
more single-letter flags that change the function's behavior. r egexp_spl it _t o_t abl e supports
the flags described in Table 9.22.

Theregexp_split_to_array function behaves the sasme asregexp_split_to_tabl e,
except that regexp_split_to_array returnsitsresult as an array of t ext . It has the syntax
regexp_split_to_array(string,pattern[,flags]). Theparametersarethe sameasfor
regexp_split_to_table.

Some examples:

SELECT foo FROM regexp_split _to _table('the quick brown fox junps
over the lazy dog', '\s+') AS foo;
f oo

228



Functions and Operators

SELECT regexp_split_to_array('the quick brown fox junps over the
| azy dog', '\s+');
regexp_split_to_array
{t he, qui ck, br own, f ox, j unps, over, t he, | azy, dog}

(1 row

SELECT foo FROM regexp_split_to_table('the quick brown fox', "\s*")
AS f oo;

As the last example demonstrates, the regexp split functions ignore zero-length matches that occur
at the start or end of the string or immediately after a previous match. This is contrary to the strict
definition of regexp matching that isimplemented by r egexp_nat ch andr egexp_nat ches, but
is usualy the most convenient behavior in practice. Other software systems such as Perl use similar
definitions.

9.7.3.1. Regular Expression Details

PostgreSQL's regular expressions are implemented using a software package written by Henry
Spencer. Much of the description of regular expressions below is copied verbatim from his manual.

Regular expressions (RES), as defined in POSIX 1003.2, come in two forms. extended RES or ERES
(roughly those of egr ep), and basic REs or BREs (roughly those of ed). PostgreSQL supports both
forms, and also implements some extensions that are not in the POSIX standard, but have become
widely used due to their availability in programming languages such as Perl and Tcl. REs using these
non-POSIX extensions are called advanced REs or AREs in this documentation. ARES are amost an
exact superset of EREs, but BRES have several notational incompatibilities (as well as being much
more limited). We first describe the ARE and ERE forms, noting features that apply only to ARES,
and then describe how BREs differ.

Note

PostgreSQL alwaysinitially presumesthat aregular expression followsthe ARE rules.
However, the more limited ERE or BRE rules can be chosen by prepending an embed-
ded option to the RE pattern, as described in Section 9.7.3.4. This can be useful for
compatibility with applications that expect exactly the POSIX 1003.2 rules.

229



Functions and Operators

A regular expression is defined as one or more branches, separated by | . It matches anything that
matches one of the branches.

A branch is zero or more quantified atoms or constraints, concatenated. It matches a match for the
first, followed by amatch for the second, etc; an empty branch matches the empty string.

A quantified atom isan atom possibly followed by asingle quantifier. Without aquantifier, it matches
amatch for the atom. With a quantifier, it can match some number of matches of the atom. An atom
can be any of the possibilities shown in Table 9.15. The possible quantifiers and their meanings are
shown in Table 9.16.

A constraint matches an empty string, but matches only when specific conditionsare met. A constraint

can be used where an atom could be used, except it cannot be followed by a quantifier. The simple
constraints are shown in Table 9.17; some more constraints are described later.

Table 9.15. Regular Expression Atoms

Atom Description

(re) (where r e is any regular expression) matches a
match for r e, with the match noted for possible
reporting

(?:re) as above, but the match is not noted for reporting
(a“non-capturing” set of parentheses) (ARES on-
ly)
matches any single character

[ char s] a bracket expression, matching any one of the
char s (see Section 9.7.3.2 for more detail)
wherek isanon-alphanumeric character) match-

\ k herek i alph icch h

es that character taken as an ordinary character,
e.g.,\\ matches a backslash character

\c where ¢ is aphanumeric (possibly followed by
other characters) is an escape, see Section 9.7.3.3
(AREs only; in EREs and BRES, this matches c)

{ when followed by a character other than a digit,
matchesthe | eft-brace character { ; when followed
by adigit, it isthe beginning of abound (see be-
low)

X where x isasingle character with no other signif-
icance, matches that character

An RE cannot end with abackslash (\ ).

Note

If you have standard_conforming_strings turned off, any backslashes you writein lit-
eral string constantswill need to be doubled. See Section 4.1.2.1 for more information.

Table9.16. Regular Expression Quantifiers

Quantifier M atches
* a sequence of 0 or more matches of the atom
+ a sequence of 1 or more matches of the atom

230



Functions and Operators

Quantifier Matches

? a sequence of 0 or 1 matches of the atom

{n} a sequence of exactly mmatches of the atom

{m} a sequence of mor more matches of the atom

{m n} a sequence of mthrough n (inclusive) matches of
the atom; mcannot exceed n

*? non-greedy version of *

+? non-greedy version of +

?? non-greedy version of ?

{m? non-greedy version of { n}

{m}? non-greedy version of { m }

{mn}? non-greedy version of { m n}

The formsusing { . . . } are known as bounds. The numbers mand n within a bound are unsigned
decimal integers with permissible values from 0 to 255 inclusive.

Non-greedy quantifiers (available in AREs only) match the same possihilities as their corresponding
normal (greedy) counterparts, but prefer the smallest number rather than thelargest number of matches.
See Section 9.7.3.5 for more detail.

Note

A quantifier cannot immediately follow another quantifier, e.g., * * isinvalid. A quan-
tifier cannot begin an expression or subexpression or follow ~ or | .

Table9.17. Regular Expression Constraints

Constraint Description

A matches at the beginning of the string

$ matches at the end of the string

(?=re) positive lookahead matches at any point where a

substring matching r e begins (AREs only)

(?'re) negativelookahead matchesat any point whereno
substring matching r e begins (AREs only)

(?<=re) positive lookbehind matches at any point where a
substring matching r e ends (AREs only)

(?<lre) negative lookbehind matches at any point where
no substring matching r e ends (AREs only)

L ookahead and lookbehind constraints cannot contain back references (see Section 9.7.3.3), and all
parentheses within them are considered non-capturing.

9.7.3.2. Bracket Expressions

A bracket expression is alist of charactersenclosed in [ ] . It normally matches any single character
from the list (but see below). If the list begins with #, it matches any single character not from the
rest of the list. If two characters in the list are separated by -, this is shorthand for the full range of
characters between those two (inclusive) in the collating sequence, e.g., [ 0- 9] in ASCIlI matches
any decimal digit. It isiillegal for two ranges to share an endpoint, e.g., a- c- €. Ranges are very
collating-sequence-dependent, so portable programs should avoid relying on them.

231



Functions and Operators

To include a literal ] in the list, make it the first character (after », if that is used). To include a
literal -, make it the first or last character, or the second endpoint of a range. To use a literal - as
the first endpoint of arange, encloseitin[. and .] to make it a collating element (see below).
With the exception of these characters, some combinationsusing [ (see next paragraphs), and escapes
(AREs only), all other special characters lose their specia significance within a bracket expression.
In particular, \ is not specia when following ERE or BRE rules, though it is special (as introducing
an escape) in AREs.

Within a bracket expression, a collating element (a character, a multiple-character sequence that col-
lates as if it were a single character, or a collating-sequence name for either) enclosed in[ . and . ]
stands for the sequence of characters of that collating element. The sequence is treated as a single
element of the bracket expression's list. This allows a bracket expression containing a multiple-char-
acter collating element to match more than one character, e.g., if the collating sequenceincludesach
collating element, thenthe RE[ [ . ch. ] ] * ¢ matchesthefirst five characters of chchcc.

Note

PostgreSQL currently does not support multi-character collating elements. Thisinfor-
mation describes possible future behavior.

Within abracket expression, acollating element enclosed in[ = and =] isan equivalence class, stand-
ing for the sequences of characters of all collating elements equivalent to that one, including itself. (If
there are no other equivalent collating el ements, thetreatment isasif the enclosing delimiterswere| .
and. ] .) For example, if o and* arethe members of an equivalenceclass, then[ [ =o=] ] ,[ [ ="=]1,
and [ o] areall synonymous. An equivalence class cannot be an endpoint of arange.

Within a bracket expression, the name of acharacter classenclosed in[ : and: ] standsfor thelist of
all characters belonging to that class. Standard character class names are: al num al pha, bl ank,
cntrl,digit,graph,lower,print,punct,space, upper, xdi gi t. These stand for the
character classes defined in ctype. A locale can provide others. A character class cannot be used as
an endpoint of arange.

There are two special cases of bracket expressions: the bracket expressions[[: <:]] and[[: >:1]]
are constraints, matching empty strings at the beginning and end of a word respectively. A word is
defined as a sequence of word charactersthat is neither preceded nor followed by word characters. A
word character is an al numcharacter (as defined by ctype) or an underscore. Thisis an extension,
compatible with but not specified by POSIX 1003.2, and should be used with caution in software
intended to be portableto other systems. The constraint escapes described below are usually preferable;
they are no more standard, but are easier to type.

9.7.3.3. Regular Expression Escapes

Escapesare special sequencesbeginningwith\ followed by an alphanumeric character. Escapescome
in several varieties: character entry, class shorthands, constraint escapes, and back references. A \
followed by an a phanumeric character but not constituting avalid escapeisillegal in AREs. In ERES,
there are no escapes: outside a bracket expression, a\ followed by an alphanumeric character merely
stands for that character as an ordinary character, and inside a bracket expression, \ is an ordinary
character. (The latter isthe one actual incompatibility between EREs and ARES.)

Character-entry escapes exist to make it easier to specify non-printing and other inconvenient char-
actersin REs. They are shown in Table 9.18.

Class-shorthand escapes provide shorthands for certain commonly-used character classes. They are
shown in Table 9.19.

A constraint escape is a constraint, matching the empty string if specific conditions are met, written
as an escape. They are shown in Table 9.20.

232



Functions and Operators

A back reference (\ n) matches the same string matched by the previous parenthesi zed subexpression
specified by the number n (see Table 9.21). For example, ([ bc] )\ 1 matchesbb or cc but not bc
or ch. The subexpression must entirely precede the back reference in the RE. Subexpressions are
numbered in the order of their leading parentheses. Non-capturing parentheses do not define subex-
pressions.

Table 9.18. Regular Expression Character-entry Escapes

Escape Description

\a aert (bell) character, asin C

\b backspace, asin C

\B synonym for backslash (\ ) to help reduce the need
for backslash doubling

\cX (where X is any character) the character whose

low-order 5 bits are the same as those of X, and
whose other bits are adl zero

\e the character whose collating-sequence name is
ESC, or failing that, the character with octal value
033

\ f form feed, asin C

\n newline, asin C

\r carriage return, asin C

\ 't horizontal tab, asin C

\ uwxyz (where wxyz is exactly four hexadecimal dig-
its) the character whose hexadecimal value is
Oxwxyz

\ Ust uvwxyz (where st uvwxyz is exactly eight hexadecimal

digits) the character whose hexadecimal value is
Oxst uvwxyz

\v vertical tab, asin C

\ xhhh (where hhh is any sequence of hexadecimal dig-
its) the character whose hexadecimal value is
Oxhhh (a single character no matter how many
hexadecimal digits are used)

\0 the character whose valueis O (the null byte)

\ xy (where xy is exactly two octal digits, and is not
aback reference) the character whose octal value
isOxy

\ xyz (wherexyz isexactly three octal digits, and isnot
aback reference) the character whose octal value
isOxyz

Hexadecimal digitsare 0-9, a-f , and A-F. Octal digitsare 0-7.

Numeric character-entry escapes specifying values outside the ASCII range (0-127) have meanings
dependent on the database encoding. When the encoding is UTF-8, escape values are equivalent to
Unicode code points, for example\ u1234 meansthe character U+1234. For other multibyte encod-
ings, character-entry escapes usually just specify the concatenation of the byte valuesfor the character.
If the escape value does not correspond to any legal character in the database encoding, no error will
be raised, but it will never match any data.

Thecharacter-entry escapes are alwaystaken asordinary characters. For example,\ 135is] inASCII,
but \ 135 does not terminate a bracket expression.

233



Functions and Operators

Table 9.19. Regular Expression Class-shorthand Escapes

Escape Description

\d [[:digit:]]

\'s [[:space:]]

\'w [[:alnum] _] (noteunderscoreisincluded)
\D [M:digit:]]

\'S [~ :space:]]

\W [~ :al num ] _] (noteunderscoreisincluded)

Within bracket expressions, \ d, \ s, and \ wlose their outer brackets, and\ D,\ S, and\ Wareillegal.
(So, for example, [ a- c\ d] isequivdentto[a-c[:digit:]].Also, [ a-c\D,whichisequiv-
adentto[a-c/[:digit:]],isillegal.)

Table 9.20. Regular Expression Constraint Escapes

Escape Description

\A

matches only at the beginning of the string (see
Section 9.7.3.5 for how this differs from *)

\'m matches only at the beginning of aword

\M matches only at the end of aword

\y matches only at the beginning or end of aword

\'Y matches only at a point that is not the beginning
or end of aword

\Z matches only at the end of the string (see Sec-

tion 9.7.3.5 for how this differs from $)

A word is defined as in the specificationof [[ : <:]] and[[: >:]] above. Constraint escapes are
illegal within bracket expressions.

Table 9.21. Regular Expression Back References

Escape Description

\'m (where mis a nonzero digit) a back reference to
the nith subexpression

\ mn (where misanonzero digit, and nn is some more

digits, and the decima value rmn is not greater
than the number of closing capturing parentheses
seen so far) aback reference to the nmn'th subex-
pression

Note

There is an inherent ambiguity between octal character-entry escapes and back refer-
ences, which isresolved by the following heuristics, as hinted at above. A leading ze-
ro aways indicates an octal escape. A single non-zero digit, not followed by another
digit, is aways taken as a back reference. A multi-digit sequence not starting with a
zero is taken as a back reference if it comes after a suitable subexpression (i.e., the
number isin the legal range for a back reference), and otherwise is taken as octal.

234



Functions and Operators

9.7.3.4. Regular Expression Metasyntax

In addition to the main syntax described above, there are some special forms and miscellaneous syn-
tactic facilities available.

An RE can begin with one of two special director prefixes. If an RE begins with ***: | the rest of
the RE istaken as an ARE. (This normally has no effect in PostgreSQL, since REs are assumed to be
ARES;, but it does have an effect if ERE or BRE mode had been specified by the f | ags parameter
to aregex function.) If an RE beginswith * * * =  the rest of the RE istaken to be alitera string, with
al characters considered ordinary characters.

An ARE can begin with embedded options: a sequence ( ?xyz) (where xyz is one or more alpha-
betic characters) specifies options affecting the rest of the RE. These options override any previously
determined options — in particular, they can override the case-sensitivity behavior implied by aregex
operator, or thef | ags parameter to aregex function. The available option letters are shown in Ta-
ble 9.22. Note that these same option letters are used in the f | ags parameters of regex functions.

Table 9.22. ARE Embedded-option Letters

Option Description

b rest of REisaBRE

c case-sensitive matching (overrides operator type)

e rest of RE isan ERE

i case-insensitive matching (see Section 9.7.3.5)
(overrides operator type)

m historical synonym for n

n newline-sensitive matching (see Section 9.7.3.5)

p partial newline-sensitive matching (see Sec-
tion 9.7.3.5)

o} rest of REisaliteral (“quoted”) string, all ordinary
characters

s non-newline-sensitive matching (default)

t tight syntax (default; see below)

w inverse partiadl  newline-sensitive  (“weird”)
matching (see Section 9.7.3.5)

X expanded syntax (see below)

Embedded options take effect at the) terminating the sequence. They can appear only at the start of
an ARE (after the* * *: director if any).

In addition to the usual (tight) RE syntax, in which al characters are significant, there is an expanded
syntax, available by specifying the embedded x option. In the expanded syntax, white-space characters
in the RE are ignored, as are all characters between a# and the following newline (or the end of the
RE). This permits paragraphing and commenting a complex RE. There are three exceptions to that
basic rule:

» awhite-space character or # preceded by \ isretained
 white space or # within a bracket expression is retained
 white space and comments cannot appear within multi-character symbols, such as ( ?:

For this purpose, white-space characters are blank, tab, newline, and any character that belongs to the
space character class.

235



Functions and Operators

Finally, in an ARE, outside bracket expressions, the sequence ( ?#t tt) (wherettt isany text not
containinga) ) isacomment, completely ignored. Again, thisis not allowed between the characters of
multi-character symbols, like ( ?: . Such comments are more ahistorical artifact than auseful facility,
and their use is deprecated; use the expanded syntax instead.

None of these metasyntax extensionsisavailableif aninitial * * * = director has specified that the user's
input be treated as a literal string rather than as an RE.

9.7.3.5. Regular Expression Matching Rules

In the event that an RE could match more than one substring of a given string, the RE matches the
one starting earliest in the string. If the RE could match more than one substring starting at that point,
either the longest possible match or the shortest possible match will be taken, depending on whether
the RE is greedy or non-greedy.

Whether an RE is greedy or not is determined by the following rules:

* Most atoms, and all constraints, have no greediness attribute (because they cannot match variable
amounts of text anyway).

» Adding parentheses around an RE does not change its greediness.

* A quantified atom with a fixed-repetition quantifier ({ n} or { n} ?) has the same greediness (pos-
sibly none) as the atom itself.

+ A quantified atom with other normal quantifiers (including { m n} with mequal to n) is greedy
(prefers longest match).

» A quantified atom with anon-greedy quantifier (including{ m n} ? with megual to n) isnon-greedy
(prefers shortest match).

» A branch — that is, an RE that has no top-level | operator — has the same greediness as the first
quantified atom in it that has a greediness attribute.

» An RE consisting of two or more branches connected by the | operator is aways greedy.

The above rules associate greediness attributes not only with individual quantified atoms, but with
branches and entire REs that contain quantified atoms. What that meansisthat the matching isdonein
such away that the branch, or whole RE, matches the longest or shortest possible substring asawhole.
Once the length of the entire match is determined, the part of it that matches any particular subexpres-
sion is determined on the basis of the greediness attribute of that subexpression, with subexpressions
starting earlier in the RE taking priority over ones starting later.

An example of what this means:

SELECT SUBSTRI NG&(' XY1234Z', 'Y*([0-9]{1,3})");

Resul t: 123
SELECT SUBSTRI NG(' XY1234Z', 'Y*?([0-9]{1,3})");
Result: 1

In the first case, the RE as awhole is greedy because Y* is greedy. It can match beginning at the Y,
and it matches the longest possible string starting there, i.e., Y123. The output is the parenthesized
part of that, or 123. In the second case, the RE as awhole is non-greedy because Y* ? is non-greedy.
It can match beginning at the Y, and it matches the shortest possible string starting there, i.e., Y1.
The subexpression[ 0- 9] { 1, 3} isgreedy but it cannot change the decision as to the overall match
length; so it isforced to match just 1.

In short, when an RE contains both greedy and non-greedy subexpressions, the total match length is
either as long as possible or as short as possible, according to the attribute assigned to the whole RE.
The attributes assigned to the subexpressions only affect how much of that match they are allowed
to “eat” relative to each other.

236



Functions and Operators

The quantifiers{ 1, 1} and{ 1, 1} ? can be used to force greediness or non-greediness, respectively,
on a subexpression or awhole RE. This is useful when you need the whole RE to have a greediness
attribute different from what's deduced from its elements. As an example, suppose that we are trying
to separate a string containing some digitsinto the digits and the parts before and after them. We might
try to do that like this:

SELECT regexp_match('abc01234xyz', '(.*)(\d+)(.*)");
Resul t: {abc0123, 4, xyz}

That didn't work: thefirst . * isgreedy so it “eats” as much asit can, leaving the\ d+ to match at the
last possible place, the last digit. We might try to fix that by making it non-greedy:

SELECT regexp_mat ch(' abc01234xyz', '(.*?)(\d+)(.*)");
Result: {abc,0,""}

That didn't work either, because now the RE as awholeis non-greedy and so it ends the overall match
as soon as possible. We can get what we want by forcing the RE as awhole to be greedy:

SELECT regexp_mat ch(' abc01234xyz', ' (?2:(.*?)(\d+)(.*)){1,1}");
Resul t: {abc, 01234, xyz}

Controlling the RE's overall greediness separately from its components' greediness allows great flex-
ibility in handling variable-length patterns.

When deciding what isalonger or shorter match, match lengths are measured in characters, not collat-
ing elements. An empty string isconsidered longer than no match at all. For example: bb* matchesthe
three middle characters of abbbc; (week| wee) (ni ght | kni ght s) matches al ten characters
of weekni ght s; when (. *). * ismatched against abc the parenthesized subexpression matches
all three characters; and when (a*) * ismatched against bc both the whole RE and the parenthesized
subexpression match an empty string.

If case-independent matching is specified, the effect is much as if al case distinctions had vanished
from the alphabet. When an alphabetic that exists in multiple cases appears as an ordinary character
outside a bracket expression, it is effectively transformed into a bracket expression containing both
cases, e.g., X becomes|[ xX] . When it appears inside a bracket expression, all case counterparts of it
are added to the bracket expression, e.g., [ Xx] becomes[ xX] and [ *x] becomes|[ *xX] .

If newline-sensitive matching is specified, . and bracket expressions using * will never match the
newline character (so that matches will never cross newlines unless the RE explicitly arrangesit) and
A and $ will match the empty string after and before anewline respectively, in addition to matching at
beginning and end of string respectively. But the ARE escapes\ Aand\ Z continueto match beginning
or end of string only.

If partial newline-sensitive matching is specified, this affects. and bracket expressions as with new-
line-sensitive matching, but not ~ and $.

If inverse partial newline-sensitive matchingis specified, thisaffects” and $ aswith newline-sensitive
matching, but not . and bracket expressions. Thisisn't very useful but is provided for symmetry.

9.7.3.6. Limits and Compatibility

No particular limit is imposed on the length of REs in this implementation. However, programs in-
tended to be highly portable should not employ REs longer than 256 bytes, as a POSIX-compliant
implementation can refuse to accept such REs.

The only feature of AREs that is actually incompatible with POSIX EREsisthat \ does not lose its
specia significance inside bracket expressions. All other ARE features use syntax which isillegal or

237



Functions and Operators

has undefined or unspecified effectsin POSIX ERES; the * * * syntax of directors likewise is outside
the POSIX syntax for both BREs and EREs.

Many of the ARE extensions are borrowed from Perl, but some have been changed to clean them up,
and afew Perl extensions are not present. Incompatibilities of note include \ b, \ B, the lack of spe-
cial treatment for atrailing newline, the addition of complemented bracket expressions to the things
affected by newline-sensitive matching, the restrictions on parentheses and back referencesin looka-
head/l ookbehind constraints, and the longest/shortest-match (rather than first-match) matching seman-
tics.

Two significant incompatibilities exist between AREs and the ERE syntax recognized by pre-7.4 re-
leases of PostgreSQL:

* InAREs,\ followed by an alphanumeric character is either an escape or an error, whilein previous
releases, it wasjust another way of writing the alphanumeric. This should not be much of aproblem
because there was no reason to write such a sequence in earlier releases.

* In AREs, \ remains aspecial character within [ ] , so aliteral \ within a bracket expression must
be written\ \ .

9.7.3.7. Basic Regular Expressions

BREs differ from EREs in several respects. In BREs, | , +, and ? are ordinary characters and there
is no equivalent for their functionality. The delimiters for bounds are\ { and\ }, with { and } by
themselves ordinary characters. The parentheses for nested subexpressionsare\ ( and\ ) , with ( and
) by themselves ordinary characters. ~ is an ordinary character except at the beginning of the RE or
the beginning of a parenthesized subexpression, $ is an ordinary character except at the end of the
RE or the end of a parenthesized subexpression, and * is an ordinary character if it appears at the
beginning of the RE or the beginning of a parenthesized subexpression (after a possible leading ).
Finally, single-digit back references are available, and \ < and \ > are synonymsfor [[: <:]] and
[[:>:]] respectively; no other escapes are available in BREs.

9.8. Data Type Formatting Functions

The PostgreSQL formatting functions provide apowerful set of toolsfor converting various datatypes
(date/time, integer, floating point, numeric) to formatted strings and for converting from formatted
strings to specific data types. Table 9.23 lists them. These functions all follow a common calling
convention: the first argument is the value to be formatted and the second argument is a template that
defines the output or input format.

Table 9.23. Formatting Functions

Function Return Type Description Example
to_char (time- |text convert time stamp to{t o_char (curren-
stanp, text) string t_tinmestanp,

" HH12: M : SS')
to_char(inter- t ext convertinterval tostring|t o_char (i nt er val
val, text) "15h 2m 12s',

"HH24: M : SS')
to_char (int, t ext convert integer to string |t o_char (125,
text) '999')
to_char (doubl e |text convert real/double pre-|t o_char (125. 8: : re-
precision, text) cision to string al, '999D9")
to_char (nureric, |text convert numeric to|to_char(-125. 8,
text) string ' 999DQ9S' )

to_date(text, |date convert stringtodate |t o_dat e(' 0BO0O' ,
t ext) "DD Mon YYYY')

238



Functions and Operators

Function Return Type Description Example
to_nunber (text, [nuneric convert string to numer- |t o_num
text) ic ber (' 12, 454. 8-,
' 99@99D9S' )
to_tinmestam |tinestanp wi t h|convert string to timelt o_ti nmestam
p(text, text) tinme zone stamp p(' 05 Dec 2000,
"DD Mon YYYY')

Note

Thereisaso asingle-argument t o_t i mest anp function; see Table 9.30.

Tip
to_timestanpandt o_dat e exist to handle input formats that cannot be convert-
ed by simple casting. For most standard date/time formats, simply casting the source

string to the required data type works, and is much easier. Similarly, t o_nunber is
unnecessary for standard numeric representations.

Inat o_char output template string, there are certain patterns that are recognized and replaced with
appropriatel y-formatted data based on the given value. Any text that is not atemplate patternissimply
copied verbatim. Similarly, in an input template string (for the other functions), template patterns
identify the valuesto be supplied by the input data string. If there are charactersin the template string
that are not templ ate patterns, the corresponding charactersin the input data string are smply skipped
over (whether or not they are equal to the template string characters).

Table 9.24 shows the template patterns available for formatting date and time values.

Table 9.24. Template Patternsfor Date/Time Formatting

Pattern Description

HH hour of day (01-12)

HH12 hour of day (01-12)

HH24 hour of day (00-23)

M minute (00-59)

SS second (00-59)

VB millisecond (000-999)

us microsecond (000000-999999)

SSSS seconds past midnight (0-86399)

AM am PMor pm meridiem indicator (without periods)

A M,a.m,P.Morp.m meridiem indicator (with periods)

Y, YYY year (4 or more digits) with comma

YYYY year (4 or more digits)

YYY last 3 digits of year

YY last 2 digits of year

Y last digit of year

I YYY I SO 8601 week-numbering year (4 or moredigits)
I YY last 3 digits of 1SO 8601 week-numbering year

239



Functions and Operators

Pattern

Description

Y

last 2 digits of 1SO 8601 week-numbering year

last digit of 1SO 8601 week-numbering year

BC, bc, ADor ad

eraindicator (without periods)

B.C ,b.c.,A D ora.d.

eraindicator (with periods)

MONTH full upper case month name (blank-padded to 9
chars)

Mont h full capitalized month name (blank-padded to 9
chars)

nmont h full lower case month name (blank-padded to 9
chars)

MON abbreviated upper case month name (3 chars in
English, localized lengths vary)

Mon abbreviated capitalized month name (3 chars in
English, localized lengths vary)

non abbreviated lower case month name (3 chars in
English, localized lengths vary)

WY month number (01-12)

DAY full upper case day name (blank-padded to 9
chars)

Day full capitalized day name (blank-padded to 9
chars)

day full lower case day name (blank-padded to 9
chars)

DY abbreviated upper case day name (3 charsin Eng-
lish, localized lengths vary)

Dy abbreviated capitalized day name (3 charsin Eng-
lish, localized lengths vary)

dy abbreviated lower case day name (3 charsin Eng-
lish, localized lengths vary)

DDD day of year (001-366)

| DDD day of 1SO 8601 week-numbering year (001-371,
day 1 of theyear isMonday of thefirst |SO week)

DD day of month (01-31)

D day of the week, Sunday (1) to Saturday (7)

I D SO 8601 day of theweek, Monday (1) to Sunday
(7)

w week of month (1-5) (the first week starts on the
first day of the month)

WV week number of year (1-53) (the first week starts
on thefirst day of the year)

W week number of 1SO 8601 week-numbering year
(01-53; thefirst Thursday of theyear isinweek 1)

CcC century (2 digits) (the twenty-first century starts
on 2001-01-01)

J Julian Day (integer dayssince November 24, 4714

BC at midnight UTC)

240




Functions and Operators

Pattern Description

Q quarter

RM month in upper case Roman numeras (I-XII;
I=January)

rm month in lower case Roman numeras (i-xii;
i=January)

TZ upper case time-zone abbreviation (only support-
edinto_char)

tz lower case time-zone abbreviation (only support-
edint o_char)

TZH time-zone hours

TZM time-zone minutes

OF time-zone offset from UTC (only supported in
to_char)

Modifiers can be applied to any template pattern to ater its behavior. For example, FMVont h isthe
Mont h pattern with the FMmaodifier. Table 9.25 showsthe modifier patterns for date/time formatting.

Table 9.25. Template Pattern M odifiersfor Date/Time Formatting

M odifier Description Example
FMprefix fill mode (suppress leading ze-|FMVbnt h
roes and padding blanks)
TH suffix upper case ordinal number suffix| DDTH, e.g., 12TH
t h suffix lower case ordinal number suffix|DDt h, e.g., 12t h
FX prefix fixed format global option (see|FX Mont h DD Day
usage notes)
TMprefix translation mode (print localized| TMvVbnt h
day and month names based on
Ic_time)
SP suffix spell mode (not implemented) | DDSP

Usage notes for date/time formatting:

» FMsuppresses |eading zeroes and trailing blanks that would otherwise be added to make the output
of apattern be fixed-width. In PostgreSQL , FMmodifies only the next specification, whilein Oracle
FMaffects all subsequent specifications, and repeated FMmaodifierstoggle fill mode on and off.

» TMdoes not include trailing blanks.t 0_t i mest anp andt o_dat e ignore the TMmodifier.

« to_tinestanp andt o_dat e skip multiple blank spaces in the input string unless the FX op-
tion is used. For example, t o_t i mest anp(' 2000 JUN , "YYYY MON ) works, but
to_tinmestanp(' 2000 JUN , ' FXYYYY MON' ) returnsan error becauset o_ti ne-
st anp expects one space only. FX must be specified as the first item in the template.

* Ordinary textisalowedint o_char templatesand will be output literally. Y ou can put asubstring
in double quotes to force it to be interpreted as literal text even if it contains template patterns.
For example, in' "Hel I 0o Year "YYYY', the YYYY will be replaced by the year data, but
thesingle Y in Year will not be. Int o_dat e,t o_nunber,andto_ti nmest anmp, literal text
and double-quoted strings result in skipping the number of characters contained in the string; for
example" XX" skips two input characters (whether or not they are XX).

« If you want to have adouble quote in the output you must precede it with a backslash, for example
"\"YYYY Mont h\"' . Backdashes are not otherwise special outside of double-quoted strings.

241



Functions and Operators

Within adouble-quoted string, a backslash causes the next character to be taken literally, whatever
itis (but this has no special effect unless the next character is a double quote or another backslash).

Into_timestanp andt o_dat e, if the year format specification is less than four digits, e.g.
YYY, and the supplied year is less than four digits, the year will be adjusted to be nearest to the
year 2020, e.g. 95 becomes 1995.

Into_timestanp and t o_dat e, the YYYY conversion has a restriction when process-
ing years with more than 4 digits. You must use some non-digit character or template after
YYYY, otherwise the year is always interpreted as 4 digits. For example (with the year 20000):
to_date(' 200001131', ' YYYYMVDD ) will be interpreted as a 4-digit year; instead use
a non-digit separator after the year, like t o_dat e(' 20000- 1131', ' YYYY-MVDD ) or
t o_dat e(' 20000Nov31', ' YYYYMonDD ).

Into_timestanp andt o_dat e, the CC (century) field is accepted but ignored if there is a
YYY, YYYY or Y, YYY field. If CCis used with YY or Y then the result is computed as that year
in the specified century. If the century is specified but the year is not, the first year of the century
is assumed.

Into_timestanpandt o_dat e, weekday names or numbers (DAY, D, and related field types)
are accepted but are ignored for purposes of computing the result. The same is true for quarter (Q
fields.

Into_tinmestanpandt o_dat e, an SO 8601 week-numbering date (as distinct from a Grego-
rian date) can be specified in one of two ways:

« Year, week number, and weekday: for examplet o_dat e(' 2006-42-4"', '"1YYY-IW
| D') returnsthe date 2006- 10- 19. If you omit the weekday it is assumed to be 1 (Monday).

e Year and day of year: for examplet o_dat e(' 2006-291', '1YYY-1DDD ) alsoreturns
2006- 10- 19.

Attempting to enter a date using a mixture of SO 8601 week-numbering fields and Gregorian date
fieldsis nonsensical, and will cause an error. In the context of an SO 8601 week-numbering year,
the concept of a “month” or “day of month” has no meaning. In the context of a Gregorian year,
the 1SO week has no meaning.

Caution

Whilet o_dat e will reject a mixture of Gregorian and | SO week-numbering date
fields, t o_char will not, since output format specifications like YYYY- M DD
(1'YYY-1DDD) can be useful. But avoid writing something like | YYY- M DD;
that would yield surprising results near the start of the year. (See Section 9.9.1 for
more information.)

Into_tinmestanp, millisecond (MS) or microsecond (US) fields are used as the seconds digits
after the decimal point. For examplet o_ti nestanp(' 12.3', 'SS. M5' ) isnot 3 millisec-
onds, but 300, because the conversion treats it as 12 + 0.3 seconds. So, for the format SS. M, the
input values 12. 3, 12. 30, and 12. 300 specify the same number of milliseconds. To get three
milliseconds, one must write 12. 003, which the conversion treats as 12 + 0.003 = 12.003 seconds.

Here is a more complex example: to_tinestanp('15:12:02.020.001230',
"HH24: M : SS. M5. US' ) is 15 hours, 12 minutes, and 2 seconds + 20 milliseconds + 1230 mi-
croseconds = 2.021230 seconds.

to char(..., 'ID)'s day of the week numbering matches the ext ract (i sodow
from ...) function, but to_char(..., "D )'s does not match extract (dow
from...) 'sday numbering.

242



Functions and Operators

e to_char(interval) formats HH and HH12 as shown on a 12-hour clock, for example zero
hours and 36 hours both output as 12, while HH24 outputs the full hour value, which can exceed
23inani nterval vaue

Table 9.26 shows the template patterns available for formatting numeric values.

Table 9.26. Template Patternsfor Numeric For matting

Pattern Description

9 digit position (can be dropped if insignificant)

0 digit position (will not be dropped, even if in-
significant)

. (period) decimal point

, (comma) group (thousands) separator

PR negative value in angle brackets

S sign anchored to number (uses locale)

L currency symbol (useslocal€)

D decimal point (useslocal€)

G group separator (useslocale)

M minus sign in specified position (if number < Q)

PL plus sign in specified position (if number > 0)

SG plus/minus sign in specified position

RN Roman numeral (input between 1 and 3999)

THorth ordinal number suffix

\% shift specified number of digits (see notes)

EEEE exponent for scientific notation

Usage notes for numeric formatting:

» 0 specifiesadigit position that will always be printed, even if it contains a leading/trailing zero. 9
also specifies a digit position, but if it is aleading zero then it will be replaced by a space, while
if itisatrailing zero and fill mode is specified then it will be deleted. (For t o_nunber (), these
two pattern characters are equivalent.)

e The pattern characters S, L, D, and Grepresent the sign, currency symbol, decimal point, and thou-
sands separator characters defined by the current locale (seelc_monetary and Ic_numeric). The pat-
tern characters period and comma represent those exact characters, with the meanings of decimal
point and thousands separator, regardless of locale.

« If no explicit provision is made for asignint o_char () 's pattern, one column will be reserved
for thesign, and it will be anchored to (appear just left of) the number. If S appearsjust |eft of some
9's, it will likewise be anchored to the number.

» Asignformatted using SG, PL, or M isnot anchored to the number; for example,t o_char (- 12,
"M 9999') produces' - 12' butto_char(-12, 'S9999') produces' -12'.(The
Oracleimplementation doesnot allow theuse of M before 9, but rather requiresthat 9 precedeM )

» THdoes not convert values less than zero and does not convert fractional numbers.
e PL, SG and TH are PostgreSQL extensions.

e Int o_nunber, if non-datatemplate patterns such as L or TH are used, the corresponding number
of input characters are skipped, whether or not they match the template pattern, unlessthey are data
characters (that is, digits, sign, decimal point, or comma). For example, TH would skip two non-
data characters.

243



Functions and Operators

e Vwitht o_char multiplies the input values by 10" n, where n is the number of digits following
V.V witht o_nunber dividesin asimilar manner.t o_char andt o_nunber do not support
the use of V combined with adecimal point (e.g., 99. 9V99 isnot alowed).

» EEEE (scientific notation) cannot be used in combination with any of the other formatting patterns
or modifiers other than digit and decimal point patterns, and must be at the end of the format string
(eg., 9. 99EEEE isavalid pattern).

Certain modifiers can be applied to any template pattern to alter its behavior. For example, FMB9. 99
isthe 99. 99 pattern with the FMmodifier. Table 9.27 shows the modifier patterns for numeric for-
matting.

Table 9.27. Template Pattern M odifiersfor Numeric Formatting

M odifier Description Example

FMprefix fill mode (suppress trailing ze-|FMB9. 99
roes and padding blanks)

TH suffix upper case ordinal number suffix| 999TH

t h suffix lower case ordinal number suffix| 999t h

Table 9.28 shows some examples of the use of thet o_char function.

Table9.28.t o_char Examples

Expression Result
to_char (current _timestanp, ' Tuesday , 06 05:39:18
'Day, DD HH12:M:SS')

to_char(current _tinmestanp, "FM |' Tuesday, 6 05:39:18'
Day, FMDD HH12: M :SS')

to_char(-0.1, '99.99") Y- 10
to_char(-0.1, 'FM.99") BT

to char(-0.1, 'FM0.99") '-0.1

to _char(0.1, '0.9") 0.1
to_char (12, '9990999.9") 0012. 0
to_char (12, 'FWMP990999.9') '0012."
to_char (485, '999') 485’
to_char(-485, '999') ' - 485
to_char (485, '9 9 9') 4 8 5
to_char (1485, '9,999") 1, 485
to_char (1485, '9(999') 1 485’
to_char(148.5, '999.999") 148. 500'
to_char(148.5, 'FWM99.999") '148. 5'
to_char(148.5, 'FMP99.990") ' 148. 500

to _char(148.5, '999D999') 148, 500'
to_char(3148.5, '9(99D999"') 3 148, 500’
to_char (-485, '999S") ' 485-"
to_char(-485, '999M ") ' 485-"
to_char (485, '999M ") '485
to_char (485, ' FMB99M ') ' 485’

244




Functions and Operators

Expression Result

to_char (485, 'PL999') ' +485'

to_char (485, 'S@99') ' +485'
to_char(-485, 'S®99') ' - 485

to_char (-485, '9S®9') ' 4-85'

to_char (-485, '999PR) ' <485>

to_char (485, 'L999') ' DM 485’

to _char (485, 'RN) ' CDLXXXV'
to_char (485, ' FMRN) " CDLXXXV'
to_char (5.2, 'FMRN) 'V

to_char (482, '999th") ' 482nd'

to_char (485, '"Good nunber:"999') |' Good nunber: 485
to_char (485. 8, "Pre: 485 Post: .800
""Pre:"999" Post:" .999")

to_char (12, '99Vv999') ' 12000

to _char(12.4, '99Vv999') ' 12400
to_char(12.45, '99V9') ' 125

to_char (0. 0004859, '9.99EEEE') ' 4.86e-04'

9.9. Date/Time Functions

and Operators

Table 9.30 shows the available functions for date/time value processing, with details appearing in
the following subsections. Table 9.29 illustrates the behaviors of the basic arithmetic operators (+,
* , etc.). For formatting functions, refer to Section 9.8. Y ou should be familiar with the background
information on date/time data types from Section 8.5.

All the functions and operators described below that taket i me ort i mest anp inputsactually come
in two variants: one that takestine with time zoneortinmestanp with tine zone,
and one that takest i me wi t hout time zoneortinmestanp wi thout tine zone.For
brevity, these variants are not shown separately. Also, the + and * operators come in commutative
pairs (for example both date + integer and integer + date); we show only one of each such pair.

Table 9.29. Date/Time Operators

Operator Example Result

+ date '2001-09-28' +|date ' 2001-10- 05
i nteger '7'

+ date '2001-09-28' +|timestanp '2001-09-28
interval '1 hour' 01: 00: 00!

+ date '2001-09-28' +|timestanp '2001-09-28
tinme ' 03: 00 03: 00: 00!

+ interval '1 day' + in-|interval "1 day
terval '1 hour' 01: 00: 00"

+ tinmestanp '2001-09-28|tinmestanp '2001-09-29
01: 00" + interval '23|00:00:00
hour s’

+ time '01:00" + inter-|time '04:00:00
val '3 hours'

245




Functions and Operators

Operator Example Result
- - interval '23 hours' |interval '-23:00:00
- date '2001-10-01' - |[integer '3' (days)
date '2001-09-28'
- date '2001-10-01' - |date '2001-09-24'
integer '7'
- date '2001-09-28' - |tinestanp '2001-09-27
interval '1 hour' 23: 00: 00’
- time '05:00° - timejinterval '02:00: 00
' 03: 00
- tinme '05:00 inter-|(time '03:00: 00
val '2 hours'
- tinmestanp '2001-09-28|tinmestanp '2001-09-28
23: 00" - interval '23|00:00:00
hour s’
- interval '1 day' - in-|interval "1 day
terval "1 hour’ -01: 00: 00
- timestanp '2001-09-29|interval "1 day
03: 00' - ti mestanp|15: 00: 00"
' 2001- 09- 27 12: 00’
* 900 * interval '1 sec-|interval '00:15: 00
ond'
* 21 * interval '1 day' |interval '21 days'
* doubl e precision '3.5" [interval '03:30: 00
* interval '1 hour'
/ interval '1 hour' [/ |interval '00:40:00
doubl e precision '1.5'
Table 9.30. Date/Time Functions
Function Return Type Description Example Result
age(tine- |interval Subtract argu-|age(ti ne- 43 years 9
stanmp, time- ments, producing a|st anp nmons 27 days
st anp) “symbolic” result|' 2001- 04- 10",
that uses yearsand|t i mest anp
months, rather than|' 1957- 06- 13" )
just days
age(tinme- i nterval Subtract from|age(ti me- 43 years 8
st anp) current _date [stanp nmons 3 days
(at midnight) ' 1957- 06-13")
clock_time- |timestanmp Current date and
stanmp() W th ti me |time (changes dur-
zone ing statement ex-
ecution); see Sec-
tion9.9.4
current _date |date Current date; see
Section 9.9.4
current _tinme|tinme wi t h|Current time of
time zone day; see Sec-
tion9.9.4

246




Functions and Operators

Function Return Type Description Example Result
curren- |timestanp Current date and
t_timestanp (with ti me|time (start of cur-
zone rent transaction);
see Section 9.9.4
doubl e preci - |Get subfield{dat e_part (' ho0 ,
date_part (textsi on (equivalent to ex- |t i nmest anp
ti mest anp) tract); see Sec-|' 2001- 02- 16
tion 9.9.1 20: 38:40")
dat e_part (textdoubl e preci - |Get subfield{dat e_part (' nmofg h' ,
i nterval) sion (equivalent to ex- |i nt er val "2
tract); see Sec-|years 3
tion9.9.1 nmont hs' )
ti mestanp Truncate to speci-|dat e_trunc(' h®001-02-16
date_trunc(text, fied precision; see|ti mest anp 20: 00: 00
ti mest anp) also Section 9.9.2 |' 2001- 02- 16
20: 38:40")
dat e_trunc(teptnt erval Truncate to speci-|dat e_trunc(' hgur', days
i nterval) fied precision; see|i nt er val '2]/03: 00: 00
also Section9.9.2 |days 3 hours
40 m nutes')
extrac- |doubl e preci - |Get subfield; see|extract (hour |20
t(field fromsion Section 9.9.1 from time-
ti mest anp) stanp
' 2001- 02- 16
20: 38:40")
extrac- doubl e preci - |Get subfield; see|extrac- 3
t(field fromsion Section 9.9.1 t(nmonth from
i nterval) i nterval "2
years 3
nmont hs' )
i sfi- |bool ean Test for finite date|i sfi - true
nite(date) (not +/-infinity)  |nite(date
' 2001- 02-16')
isfi- bool ean Test for finite time|i sfi - true
nite(tine- stamp (not +/-in-|nite(tinme-
st anp) finity) stanp
' 2001- 02- 16
21:28:30")
isfinite(in- |bool ean Test for finite in-[i sfinite(in- |true
terval) terval terval "4
hours')
justi-|interval Adjust interval so|j usti - 1 non 5 days
fy_days(in- 30-day time peri-|fy_days(i n-
terval) odsarerepresented|t er val '35
as months days')
justi- |interval Adjust interval so|j usti - 1 day
fy_hours(in- 24-hour time peri-|f y_hour s(i n- |03: 00: 00
terval) odsarerepresented|t er val ' 27
asdays hours')
justify_in-|interval Adjust interval [justify_in- |29 days
terval (in- using justi-|terval (in- 23:00: 00
terval) fy_days and

247




Functions and Operators

Function Return Type Description Example Result
justi - terval '1 non
fy_hours, with{-1 hour"')
additional sign ad-
justments
[ ocal tine time Current time of
day; see Sec-
tion9.9.4
| ocal tine-|timestanp Current date and
stanp time (start of cur-
rent transaction);
see Section 9.9.4
date Create date from|nmake_ dat e(2012013-07- 15
make dat e(year year, month and|7, 15)
i nt, nmont h day fields
int, day int)
make_inter- |i nterval Create interval [make_inter- |10 days
val (years int from years,|val (days =>
DEFAULT o, months,  weeks,|10)
nont hs i nt days, hours, min-
DEFAULT 0, utes and seconds
weeks int DE- fields
FAULT 0, days
i nt DEFAULT
0, hours int
DEFAULT 0,
mns int DE-
FAULT 0, secs
doubl e preci -
sion DEFAULT
0.0)
time Create time from|nmake tine(8, |08:15:23.5
make ti ne( hour hour, minute and|15, 23.5)
int, minint, seconds fields
sec doubl e
preci si on)
make_tine- |timestanp Create timestamp|nake_ti me- 2013-07-15
stanp(year from year, month, st anp(2013, 08:15:23.5
i nt, mont h day, hour, minute|7, 15, 8, 15,
int, day int, and secondsfields |23. 5)
hour int, mn
int, sec dou-
bl e preci -
si on)
make _tine- |tinmestanp Create timestamp|nmake_ti me- 2013-07-15
stanptz(year |with ti me|with time zone|stanptz(2013,|08: 15:23.5+01
i nt, nmont h|{zone from year, month,|7, 15, 8, 15,
int, day int, day, hour, minute|23. 5)
hour int, mn and secondsfields;
int, sec dou- if tinmezone is
bl e preci - not specified, the
sion, [ time- current time zone

zone text ])

is used

248




Functions and Operators

Function Return Type Description Example Result
now() ti mestanp Current date and
with ti me|time (start of cur-
zone rent transaction);
see Section 9.9.4
statenen- |ti mestanp Current date and
t timestam |(with ti me|time (start of cur-
p() zone rent statement); see
Section 9.9.4
ti meof day() |text Current date and
time (like

clock _time-
stanp, but as a
text string); see

Section 9.9.4
transac- |ti mestanp Current date and
tion_time- with ti me|time (start of cur-
stanmp() zone rent transaction);
See Section 9.9.4
to_tinmestam |tinestanp Convert Unix{to_timestam |2010-09-13
p(doubl e pre-|w th time|epoch  (seconds|p(1284352323)|04: 32: 03+00
ci si on) zone since 1970-01-01
00:00:00+00) to
timestamp

In addition to these functions, the SQL OVERLAPS operator is supported:

(startl, endl) OVERLAPS (start2, end2)
(startl, lengthl) OVERLAPS (start2, |ength2)

This expression yields true when two time periods (defined by their endpoints) overlap, false when
they do not overlap. The endpoints can be specified as pairs of dates, times, or time stamps; or as a
date, time, or time stamp followed by an interval. When a pair of valuesis provided, either the start or
the end can be written first; OVERLAPS automatically takes the earlier value of the pair as the start.
Each time period is considered to represent the half-open interval st art <=t i me < end, unless
st art and end areequal inwhich caseit representsthat single timeinstant. This meansfor instance
that two time periods with only an endpoint in common do not overlap.

SELECT (DATE ' 2001- 02- 16'
( DATE ' 2001- 10- 30'

Result: true

SELECT (DATE ' 2001- 02- 16'
( DATE ' 2001- 10- 30'

Result: false

SELECT (DATE ' 2001- 10- 29’
( DATE ' 2001- 10- 30'

Result: false

SELECT (DATE ' 2001- 10- 30'
( DATE ' 2001- 10- 30'

Result: true

DATE ' 2001-12-21') OVERLAPS
DATE ' 2002- 10- 30" );

| NTERVAL ' 100 days') OVERLAPS
DATE ' 2002- 10- 30" );

DATE ' 2001-10-30') OVERLAPS
DATE ' 2001-10-31");

DATE ' 2001-10-30') OVERLAPS
DATE ' 2001-10-31");

When adding an i nt er val value to (or subtracting an i nt er val value from) ati nest anp
wi th tine zone vaue, the days component advances or decrements the date of thet i nest anp
with tine zone by theindicated number of days. Across daylight saving time changes (when
the session time zone is set to atime zone that recognizes DST), thismeansi nt erval ' 1 day'

249



Functions and Operators

9.9.1.

does not necessarily equal i nt erval ' 24 hours' . For example, with the session time zone set
to CST7CDT, ti nestanp with tinme zone '2005-04-02 12:00-07' + interval
"1 day' will produceti mestanp with tine zone '2005-04-03 12: 00-06',while
addingi nterval '24 hours' tothesameinitiadti mestanp with time zone produces
timestanp with tinme zone ' 2005- 04-03 13: 00-06' , asthereisachangein daylight
saving time at 2005- 04- 03 02: 00 intime zone CST7CDT.

Note there can be ambiguity in the nont hs field returned by age because different months have
different numbers of days. PostgreSQL's approach uses the month from the earlier of the two dates
when calculating partial months. For example, age(' 2004- 06-01', ' 2004-04-30') uses
April toyield1 non 1 day, whileusing May wouldyield1 non 2 days because May has
31 days, while April has only 30.

Subtraction of dates and timestamps can also be complex. One conceptually simple way to perform
subtraction isto convert each value to a number of seconds using EXTRACT( EPOCH FROM . . . ),
then subtract the results; this produces the number of seconds between the two values. Thiswill adjust
for the number of daysin each month, timezone changes, and daylight saving time adjustments. Sub-
traction of date or timestamp values with the “- " operator returns the number of days (24-hours) and
hours/minutes/seconds between the values, making the same adjustments. The age function returns
years, months, days, and hours/minutes/seconds, performing field-by-field subtraction and then ad-
justing for negative field values. The following queries illustrate the differences in these approaches.
The sample results were produced witht i mezone = ' US/ East ern' ; thereisadaylight saving
time change between the two dates used:

SELECT EXTRACT(EPCCH FROM ti mestanptz '2013-07-01 12:00:00') -
EXTRACT( EPCCH FROM ti mest anptz ' 2013-03-01 12: 00: 00');
Result: 10537200
SELECT ( EXTRACT(EPOCH FROM ti nmestanptz '2013-07-01 12:00:00") -
EXTRACT( EPCCH FROM ti mest anptz ' 2013-03-01 12: 00:00'))
/ 60/ 60 / 24;
Resul t: 121.958333333333
SELECT tinmestanptz '2013-07-01 12:00:00" - tinmestanptz '2013-03-01
12: 00: 00" ;
Result: 121 days 23:00: 00
SELECT age(tinmestanptz '2013-07-01 12:00:00', tinmestanptz
'2013-03-01 12:00: 00");
Result: 4 nons

EXTRACT, dat e_part

EXTRACT(fi el d FROM source)

Theext ract function retrieves subfields such as year or hour from date/time values. sour ce must
be a value expression of typeti nmest anp, ti e, or i nt erval . (Expressions of type dat e are
casttot i mest anp and can therefore be used aswell.) f i el d isan identifier or string that selects
what field to extract from the source value. The ext r act function returns values of type doubl e
preci si on. Thefollowing are valid field names:

century

The century

SELECT EXTRACT( CENTURY FROM TI MESTAMP ' 2000-12-16 12:21:13');
Resul t: 20
SELECT EXTRACT( CENTURY FROM TI MESTAMP ' 2001-02- 16 20: 38:40');
Resul t: 21

250



Functions and Operators

The first century starts at 0001-01-01 00:00:00 AD, although they did not know it at the time.
This definition applies to all Gregorian calendar countries. There is no century number 0, you
go from -1 century to 1 century. If you disagree with this, please write your complaint to: Pope,
Cathedral Saint-Peter of Roma, Vatican.

day
Fort i mest anp values, theday (of themonth) field (1- 31) ; fori nt er val values, the number
of days

SELECT EXTRACT(DAY FROM TI MESTAMP ' 2001-02-16 20: 38:40');
Result: 16

SELECT EXTRACT(DAY FROM | NTERVAL ' 40 days 1 minute');
Result: 40

decade

The year field divided by 10

SELECT EXTRACT( DECADE FROM Tl MESTAMP ' 2001- 02- 16 20: 38:40');
Resul t: 200

dow
The day of the week as Sunday (0) to Saturday (6)
SELECT EXTRACT(DOW FROM TI MESTAMP ' 2001- 02- 16 20: 38:40');
Result: 5

Notethat ext r act 'sday of theweek numbering differsfromthat of thet o_char (..., 'D)
function.

doy
The day of the year (1 - 365/366)
SELECT EXTRACT(DOY FROM TI MESTAMP ' 2001-02-16 20: 38:40');
Result: 47

epoch

For tinmestanp with tine zone vaues, the number of seconds since 1970-01-01
00:00:00 UTC (can be negative); for dat e andt i mest anp values, the number of secondssince
1970-01-01 00:00:00 local time; fori nt er val vaues, thetotal number of secondsintheinterval

SELECT EXTRACT( EPCCH FROM TI MESTAMP W TH TI ME ZONE ' 2001- 02- 16
20: 38:40.12-08");
Resul t: 982384720. 12

SELECT EXTRACT( EPOCH FROM | NTERVAL '5 days 3 hours');
Resul t: 442800

Y ou can convert an epoch value back to atime stamp witht o_t i mest anp:

SELECT to_ti nest anp(982384720. 12) ;

251



Functions and Operators

Resul t: 2001-02-17 04:38:40.12+00
hour

The hour field (0 - 23)

SELECT EXTRACT( HOUR FROM TI MESTAMP ' 2001- 02-16 20: 38:40');
Result: 20

i sodow

The day of the week as Monday (1) to Sunday (7)

SELECT EXTRACT( | SODOW FROM Tl MESTAMP ' 2001- 02- 18 20: 38:40');
Result: 7

Thisisidentical todowexcept for Sunday. Thismatchesthe | SO 8601 day of theweek numbering.
i soyear

The SO 8601 week-numbering year that the date fallsin (not applicable to intervals)

SELECT EXTRACT(| SOYEAR FROM DATE ' 2006-01-01');
Resul t: 2005
SELECT EXTRACT(| SOYEAR FROM DATE ' 2006-01-02');
Resul t: 2006

Each 1SO 8601 week-numbering year begins with the Monday of the week containing the 4th of
January, so in early January or late December the 1SO year may be different from the Gregorian
year. See the week field for more information.

Thisfield is not available in PostgreSQL releases prior to 8.3.
m cr oseconds

The seconds field, including fractional parts, multiplied by 1 000 000; note that thisincludes full
seconds

SELECT EXTRACT(M CROSECONDS FROM TI ME ' 17:12:28.5');
Resul t: 28500000

m || enni um

The millennium

SELECT EXTRACT(M LLENNI UM FROM TI MESTAMP ' 2001-02-16 20: 38:40');
Result: 3

Y ears in the 1900s are in the second millennium. The third millennium started January 1, 2001.
mlliseconds

The seconds field, including fractional parts, multiplied by 1000. Note that thisincludes full sec-
onds.

SELECT EXTRACT(M LLI SECONDS FROM TI ME ' 17:12:28.5");
Resul t: 28500

252



Functions and Operators

m nut e

The minutes field (0 - 59)

SELECT EXTRACT(M NUTE FROM Tl MESTAMP ' 2001- 02- 16 20: 38:40');
Resul t: 38

nont h

Fort i mest anp values, the number of themonthwithintheyear (1-12) ; fori nt er val values,
the number of months, modulo 12 (0 - 11)

SELECT EXTRACT( MONTH FROM Tl MESTAMP ' 2001- 02-16 20:38:40');
Result: 2

SELECT EXTRACT(MONTH FROM I NTERVAL ' 2 years 3 nonths');
Result: 3

SELECT EXTRACT(MONTH FROM I NTERVAL ' 2 years 13 nonths');
Result: 1

quarter

The quarter of the year (1 - 4) that the dateisin

SELECT EXTRACT( QUARTER FROM Tl MESTAMP ' 2001-02-16 20: 38:40');
Result: 1

second

The seconds field, including fractional parts (O - 591)

SELECT EXTRACT( SECOND FROM Tl MESTAMP ' 2001- 02-16 20:38:40');
Resul t: 40

SELECT EXTRACT(SECOND FROM TI ME '17:12:28.5");
Result: 28.5

ti mezone

The time zone offset from UTC, measured in seconds. Positive values correspond to time zones
east of UTC, negative valuesto zoneswest of UTC. (Technically, PostgreSQL does not use UTC
because leap seconds are not handled.)

ti mezone_hour

The hour component of the time zone offset
ti mezone_m nute

The minute component of the time zone offset
week

The number of the ISO 8601 week-numbering week of the year. By definition, SO weeks start
on Mondays and the first week of ayear contains January 4 of that year. In other words, the first
Thursday of ayear isin week 1 of that year.

160 if leap seconds are implemented by the operating system

253



Functions and Operators

9.9.2.

In the ISO week-numbering system, it is possible for early-January dates to be part of the 52nd
or 53rd week of the previous year, and for late-December dates to be part of the first week of the
next year. For example, 2005- 01- 01 ispart of the 53rd week of year 2004, and 2006- 01- 01
is part of the 52nd week of year 2005, while 2012- 12- 31 is part of the first week of 2013. It's
recommended to usethei soyear field together with week to get consistent results.

SELECT EXTRACT(WEEK FROM TI MESTAMP ' 2001- 02-16 20: 38:40');
Result: 7

year
The year field. Keep in mind thereisno O AD, so subtracting BC years from AD years should

be done with care.

SELECT EXTRACT( YEAR FROM TI MESTAMP ' 2001- 02-16 20: 38:40');
Resul t: 2001

Note

When the input value is +/-Infinity, ext r act returns +/-Infinity for monotonical-
ly-increasing fields (epoch, j ul i an, year, i soyear, decade, cent ury, and
m | | enni um). For other fields, NULL is returned. PostgreSQL versions before 9.6
returned zero for all cases of infinite input.

Theext ract functionisprimarily intended for computational processing. For formatting date/time
values for display, see Section 9.8.

Thedat e_part function ismodeled on the traditional Ingres equivalent to the SQL-standard func-
tionextract:

date part('field , source)

Note that herethef i el d parameter needs to be astring value, not aname. The valid field names for
dat e_part arethesameasfor extract.

SELECT date_part (' day', TIMESTAMP '2001-02-16 20: 38:40');

Resul t: 16

SELECT date_part (' hour', INTERVAL '4 hours 3 mnutes');
Result: 4

date _trunc

Thefunctiondat e_t r unc isconceptually similar to thet r unc function for numbers.

date_trunc('field , source)

sour ce isavalueexpression of typet i mest anp ori nt er val . (Vauesof typedat e andt i ne
arecastautomaticallytot i mest anp ori nt er val , respectively.) f i el d selectstowhichprecision
to truncate theinput value. Thereturn valueisof typet i mest anp ori nt er val withal fieldsthat
are less significant than the selected one set to zero (or one, for day and month).

254



Functions and Operators

9.9.8.

Valid valuesfor fi el d are:

m croseconds
mlliseconds
second

nm nut e

hour

day

week

nont h
guarter

year

decade
century

m |l enni um

Examples:
SELECT date_trunc(' hour', TINMESTAWVP '2001-02-16 20:38:40');
Resul t: 2001-02-16 20: 00: 00

SELECT date_trunc('year', TIMESTAWVP '2001-02-16 20:38:40');
Result: 2001-01-01 00: 00: 00

AT TI ME ZONE

The AT TI ME ZONE converts time stamp without time zone to/from time stamp with time zone, and
time values to different time zones. Table 9.31 shows its variants.

Table9.31. AT TI ME ZONE Variants

Expression Return Type Description

timestanp without tinmejtinmestanp wth tinme|Treat given time stamp without
zone AT TI ME ZONE zone|zone time zone as located in the spec-
ified time zone

tinmestanp wth tinmejtinestanp wthout tine|Convert given time stamp with
zone AT TI ME ZONE zone|zone time zone to the new time zone,
with no time zone designation

time with time zone AT|tine with tinme zone Convert given time with time
TI ME ZONE zone zone to the new time zone

In these expressions, the desired time zone zone can be specified either asatext string (e.g., " Arer -
i ca/ Los_Angel es') or asaninterval (e.g., | NTERVAL ' -08: 00'). In the text case, atime
zone name can be specified in any of the ways described in Section 8.5.3.

Examples (assuming the local time zoneis Arrer i ca/ Los_Angel es):

SELECT TI MESTAMP ' 2001-02-16 20:38:40" AT TIME ZONE ' Aneri ca/
Denver' ;
Resul t: 2001-02-16 19:38:40-08

SELECT TI MESTAMP W TH TI ME ZONE ' 2001-02- 16 20: 38:40-05' AT TI ME
ZONE ' Ameri cal/ Denver' ;
Resul t: 2001-02-16 18:38:40

255



Functions and Operators

9.9.4.

SELECT TI MESTAMP ' 2001-02-16 20: 38:40-05' AT TIME ZONE ' Asi a/ Tokyo'
AT TI ME ZONE ' Areri ca/ Chi cago' ;
Resul t: 2001-02-16 05:38:40

The first example adds a time zone to a value that lacks it, and displays the value using the current
Ti meZone setting. The second example shifts the time stamp with time zone value to the specified
time zone, and returns the value without a time zone. This allows storage and display of values dif-
ferent from the current Ti meZone setting. The third example converts Tokyo time to Chicago time.
Converting time values to other time zones uses the currently active time zone rules since no date is
supplied.

The function t i nezone(zone, tinestanp) isequivaent to the SQL-conforming construct
ti mestanmp AT TIME ZONE zone.

Current Date/Time

PostgreSQL provides a number of functions that return values related to the current date and time.
These SQL -standard functions all return values based on the start time of the current transaction:

CURRENT_DATE

CURRENT_TI ME

CURRENT_TI MESTAMP

CURRENT _TI ME( pr eci si on)
CURRENT _TI MESTAMP( pr eci si on)
LOCALTI ME

LOCALTI MESTAMP

LOCALTI ME( pr eci si on)

LOCALTI MESTAMP( pr eci si on)

CURRENT _TI MEand CURRENT _TI MESTAMP deliver valueswithtimezone; LOCALTI MEand LO-
CALTI MESTANP deliver values without time zone.

CURRENT_TI ME, CURRENT_TI MESTAMP, LOCALTI Mg, and LOCALTI MESTAMP can optionally
take a precision parameter, which causes the result to be rounded to that many fractional digitsin the
seconds field. Without a precision parameter, the result is given to the full available precision.

Some examples:

SELECT CURRENT_TI ME;
Resul t: 14:39:53. 662522-05

SELECT CURRENT_DATE;
Resul t: 2001-12-23

SELECT CURRENT_TI MESTANMP;
Resul t: 2001-12-23 14:39:53.662522-05

SELECT CURRENT_TI MESTAMP( 2) ;
Resul t: 2001-12-23 14:39:53.66-05

SELECT LQOCALTI VESTAMP;
Resul t: 2001-12-23 14:39:53.662522

Since these functions return the start time of the current transaction, their values do not change during
the transaction. Thisis considered a feature: the intent is to allow a single transaction to have a con-
sistent notion of the “current” time, so that multiple modifications within the same transaction bear
the same time stamp.

256



Functions and Operators

9.9.5.

Note

Other database systems might advance these values more frequently.

PostgreSQL also provides functions that return the start time of the current statement, as well as the
actua current time at the instant the function is called. The complete list of non-SQL-standard time
functionsis:

transaction_ti nestanp()
statenent _timestanp()
cl ock_ti mestanmp()

ti meof day()

now( )

transaction_tinestanp() isequivaent to CURRENT TI MESTAMP, but is named to clear-
ly reflect what it returns. st at enent _ti mest anp() returns the start time of the current state-
ment (more specifically, the time of receipt of the latest command message from the client). st at e-
nment _tinestanp() andtransacti on_ti mestanp() returnthe same value during the first
command of a transaction, but might differ during subsequent commands. cl ock_t i nest anp()
returns the actual current time, and therefore its value changes even within a single SQL command.
ti meof day() isahistorical PostgreSQL function. Likecl ock_t i nmest anp(), it returnsthe ac-
tual current time, but as aformatted t ext string rather than ati nestanp with tine zone
value. now( ) isatraditional PostgreSQL equivalenttot ransacti on_ti nestanp().

All the date/time datatypesal so accept the special literal value nowto specify the current date and time
(again, interpreted as the transaction start time). Thus, the following three all return the same result:

SELECT CURRENT_TI MESTAMP;
SELECT now() ;
SELECT TI MESTAMP 'now ; -- incorrect for use with DEFAULT

Tip

Y ou do not want to use the third form when specifying a DEFAULT clause while cre-
ating atable. The system will convert nowtoat i mest anp assoon asthe constant is
parsed, so that when the default value is needed, the time of the table creation would be
used! Thefirst two formswill not be evaluated until the default value is used, because
they are function calls. Thus they will give the desired behavior of defaulting to the
time of row insertion.

Delaying Execution

The following functions are available to delay execution of the server process:

pg_sl eep(seconds)
pg_sl eep_for(interval)
pg_sleep_until (tinmestanp with tine zone)

pg_sl eep makes the current session's process sleep until seconds seconds have elapsed. sec-
onds is a value of type doubl e preci sion, so fractional-second delays can be specified.
pg_sl eep_for is a convenience function for larger sleep times specified as an i nt erval .

257



Functions and Operators

pg_sl eep_unti | isaconvenience function for when a specific wake-up time is desired. For ex-

ample:

SELECT pg_sl eep(1.5);

SELECT pg_sl eep_f

or('5 mnutes');

SELECT pg_sleep_until ('tonorrow 03:00');

Note

The effective resolution of the sleep interval is platform-specific; 0.01 seconds is a
common value. The sleep delay will be at least aslong as specified. It might be longer
depending on factors such as server load. In particular, pg_sl eep_unti | isnot
guaranteed to wake up exactly at the specified time, but it will not wake up any earlier.

Warning

Make sure that your session does not hold more locks than necessary when calling
pg_sl eep oritsvariants. Otherwise other sessions might have to wait for your sleep-
ing process, slowing down the entire system.

9.10. Enum Support Functions

For enum types (described in Section 8.7), there are several functionsthat allow cleaner programming
without hard-coding particular values of an enum type. These are listed in Table 9.32. The examples
assume an enum type created as.

CREATE TYPE rai nbow AS ENUM ('red', 'orange', 'yellow ,b 'green',
"blue', '"purple');
Table 9.32. Enum Support Functions
Function Description Example Example Result
Returnsthefirstvalueof lenum first (nul - |red
enum fir st (anyenutie input enum type | ::rai nbow)
Returnsthelast value of lenum | ast ( nul - purpl e
enum | ast (anyenunghe input enum type | ::rai nbow)
Returnsall values of thelenum r ange( nul - [{red, orange, yel -
enum r ange( anyenuimput enum type in an|l : : r ai nbow) | ow, gr een, bl ue, pt

ordered array

pl e}

enum r ange( anyent
anyenum

IReturns the range be-
tween the two given
enum values, as an or-
dered array. The values
must be from the same
enum type. If the first
parameter isnull, there-
sult will start with the
first value of the enum
type. If the second pa
rameter is null, the re-
sult will end with the

enum range("' or-
ange' : :rai nbow,
‘green'::rain-

bow)

{orange, yel -
| ow, gr een}

enum_ r ange( NULL,
‘green'::rain-
bow)

{red, orange, yel -
| ow, gr een}

enum r ange(' or -
ange' : :rai nbow,
NULL)

{orange, yel -
| ow, gr een, bl ue, pt
pl e}

ur -

258



Functions and Operators

9.11.

Function

Description

Example

Example Result

last value of the enum

Noticethat except for the two-argument form of enum _r ange, these functions disregard the specific
value passed to them; they care only about its declared data type. Either null or a specific value of the
type can be passed, with the same result. It is more common to apply these functionsto atable column
or function argument than to a hardwired type name as suggested by the examples.

Geometric Functions and Operators

The geometric typespoi nt , box, | seg, | i ne, pat h, pol ygon, andci r cl e have alarge set of
native support functions and operators, shown in Table 9.33, Table 9.34, and Table 9.35.

Caution

Note that the “same as” operator, ~=, represents the usual notion of equality for the
poi nt, box, pol ygon, and ci r cl e types. Some of these types also have an =
operator, but = compares for equal areas only. The other scalar comparison operators
(<= and so on) likewise compare areas for these types.

Table 9.33. Geometric Operators

Operator Description Example
+ Tranglation box '((0,0),(1,1))" +
point '(2.0,0)'
- Trandation box '((0,0),(1,1))" -
point '(2.0,0)'
* Scaling/rotation box '((0,0),(1,1))" =*
point '(2.0,0)"
/ Scaling/rotation box '((0,0),(2,2))" [/
point '(2.0,0)'
# Point or box of intersection box '((1,-1),(-1,1))"
# box "((1,1),
(-2,-2))"
# Number of points in path or|# path '((1,0),(0,1),
polygon (-1,0))"
@@ Length or circumference @@ path "((0,0),
(1,0))
@ Center @circle '((0,0),10)"
#t Closest point to first operand on|poi nt ' (0,0)" ## | seg
second operand "((2,0),(0,2))"
<-> Distance between circle '((0,0),1)" <->
circle '((5,0),1)"
&& Overlaps? (One point in com-{box ' ((0,0),(1,1))" &&
mon makes this true.) box '((0,0),(2,2))"
<< Is strictly left of ? circle '"((0,0),1)" <<
circle '((5,0),1)"
>> Isstrictly right of ? circle '((5,0),1)" >>

circle '((0,0),1)"

259




Functions and Operators

Operator Description Example

&< Does not extend to theright of? |box ' ((0,0),(1,1))" &<
box '((0,0),(2,2))'

&> Does not extend to the left of? |box ' ((0,0),(3,3))"' &
box ' ((0,0),(2,2))"

<<| Is strictly below? box "((0,0),(3,3))"
<<| box 1((3,4),
(5.5))"

| >> Is strictly above? box '((3,4),(5,5)" |
>> pbox ' ((0,0),(3,3))"'

&<| Does not extend above? box "((0,0),(1,1))"
&<| box "((0,0),
(2,2))

| & Does not extend below? box '((0,0),(3,3))" |
&> box ' ((0,0),(2,2))'

<N Is below (allows touching)? circle '((0,0),1)" <
circle '((0,5),1)"

>N Is above (alows touching)? circle '((0,5),1)" >
circle '((0,0),1)"

ie:: Intersects? | seg "((-1,0),
(1,0))" ?H box
'((-2,-2),(2,2))

?- I's horizontal ? ?- | seg "((-1,0),
(1,0))

?- Are horizontally aligned? point '(1,0)' ?- point
[ (0, 0)|

?| Isvertical? ?| | seg "((-1,0),
(1,0))

?| Arevertically aligned? point '(0,1)" ?| point
[ (0’ 0)|

?- I's perpendicular? | seg "((0,0),
(0,1))" ?- | seg
'((0,0),(1,0))"

?0 Are paralel? | seg "((-1,0),
(1,0))" ?| | | seg
I ((_11 2)1(11 2))I

@ Contains? circle "((0,0),2)' @
point '(1,1)"

<@ Contained in or on? point '(1,1)" <@cir-
cle "((0,0),2)"

= Same as? pol ygon ' ((0,0),
(1,1))" ~= polygon
'((1,1),(0,0))"

Note

Before PostgreSQL 8.2, the containment operators @ and <@were respectively called
~ and @ These names are till available, but are deprecated and will eventually be
removed.

260




Functions and Operators

Table 9.34. Geometric Functions

Function Return Type Description Example

ar ea(obj ect) doubl e precision|area ar ea( box
'((0,0),(1,1)")

cent er (obj ect) poi nt center cent er (box

1((0,0),(1,2))")

di ameter(circle)

doubl e precision

diameter of circle

dianeter(circle
"((0,0),2.0)")

hei ght ( box)

doubl e precision

vertical size of box

hei ght (box
1((0,0),(1,1))")

i scl osed( pat h)

bool ean

aclosed path?

i scl osed(path
"((0,0),(1, 1),
(2,0))")

i sopen( pat h)

bool ean

an open path?

i sopen(path
'[(0,0),(1,1),
(2,001")

| engt h( obj ect)

doubl e precision

length

| engt h(path
“((-1,0),
(1,0))")

npoi nt s( pat h)

number of points

npoi nt s(path
'[(0,0),(1,1),
(2,001")

npoi nt s( pol ygon)

i nt

number of points

npoi nt s( pol ygon
'((1,1),(0,0))")

pcl ose( pat h)

pat h

convert path to closed

pcl ose(path
'[(0,0),(1,1),
(2,001")

popen( pat h)

pat h

convert path to open

popen( path
1((0,0),(1,1),
(2,0))")

radius(circle)

doubl e precision

radius of circle

radi us(circle
"((0,0),2.0)")

wi dt h( box)

doubl e precision

horizontal size of box

wi dt h( box
'((0,0),(1,1))")

Table 9.35. Geometr

ic Type Conversion Functions

box)

Function Return Type Description Example

box(circle) box circle to box box(circle
'((0,0),2.0)")

box(poi nt) box point to empty box box( poi nt
'(0,0)")

box( poi nt, box points to box box( poi nt

poi nt) '(0,0)", poi nt
(1L, 1))

box( pol ygon) box polygon to box box( pol ygon
*((0,0),(1,1),
(2,0))")

bound_box( box, box boxes to bounding box |bound_box( box

1((0,0),(1,1))",

261




Functions and Operators

Function Return Type Description Example
box "((3.3),
(4,4))")

ci rcl e(box) circle box to circle circl e(box
1((0,0),(1,1))")

circl e(point, circle center and radius to cir-|ci r cl e( poi nt

doubl e preci - cle '(0,0)', 2.0)

si on)

circle(polygon) |circle polygon to circle circl e(pol ygon
'((0,0),(1,1),
(2,0))")

i ne(point, I'ine pointsto line | i ne(point

poi nt) "(-1,0)', point
'(1,0)")

| seg( box) | seg box diagonal tolineseg- || seg( box

ment "((-1,0),

(1,0))")

| seg( point, | seg pointsto line segment |l seg( poi nt

poi nt) '(-1,0)', point
'(1,0)")

pat h( pol ygon) pat h polygon to path pat h( pol ygon
'((0,0),(1,1),
(2,0))")

poi nt (doubl e |poi nt construct point poi nt (23. 4,

preci sion, dou- -44.5)

bl e preci sion)

poi nt ( box) poi nt center of box poi nt ( box
“((-1,0),
(1,0))")

point (circle) poi nt center of circle point(circle
'((0,0),2.0)")

poi nt (1 seq) poi nt center of linesegment |poi nt (| seg
"((-1,0),
(1,0))")

poi nt ( pol ygon) poi nt center of polygon poi nt ( pol ygon
'((0,0),(1,1),
(2,0))")

pol ygon( box) pol ygon box to 4-point polygon |pol ygon( box
1((0,0),(1,1))")

pol ygon(circle) |polygon circle to 12-point poly-|pol ygon(circl e

gon "((0,0),2.00")

pol ygon(npt s, pol ygon circle to npts-point|pol ygon(12, cir-

circle) polygon cle
'((0,0),2.0)")

pol ygon( pat h) pol ygon path to polygon pol ygon( pat h

((0,0),(1,1),
(2,0))")

It is possible to access the two component numbersof apoi nt asthough the point were an array with

indexes 0 and 1. For example, if t . p isapoi nt column then SELECT pJ[ 0]

FROM t retrieves

262



Functions and Operators

9.12.
tors

the X coordinate and UPDATE t SET p[ 1] = ... changestheY coordinate. In the same way,
avalue of typebox or | seg can betreated as an array of two poi nt values.

The ar ea function works for the types box, ci r cl e, and pat h. The ar ea function only works
on the pat h data type if the points in the pat h are non-intersecting. For example, the pat h
"((0,0),(0,1),(2,1),(2,2),(12,2),(1,0),(0,0)) "' : : PATH will not work; howev-
er, the following visualy identical path ' ((0,0),(0,1),(1,1),(1,2),(2,2),(2,1),

(1,1),(1,0),(0,0))":: PATHwill work. If the concept of an intersecting versus non-intersect-
ing pat h is confusing, draw both of the above pat hs side by side on a piece of graph paper.

Network Address Functions and Opera-

Table 9.36 shows the operators available for theci dr andi net types. The operators <<, <<=, >>,
>>=, and && test for subnet inclusion. They consider only the network parts of the two addresses
(ignoring any host part) and determine whether one network is identical to or a subnet of the other.

Table9.36.ci dr andi net Operators

Operator Description Example

< islessthan inet '192.168.1.5" <
inet '192.168.1.6'

<= islessthan or equal inet '192.168.1.5" <=
inet '192.168.1.5'

= equals inet '192.168.1.5 =
inet '192.168.1.5'

>= is greater or equal inet '192.168.1.5" >=
inet '192.168.1.5'

> is greater than inet '192.168.1.5" >
inet '192.168.1.4'

<> is not equal inet '192.168.1.5" <>
inet '192.168.1.4'

<< is contained by inet '192.168.1.5" <<
inet '192.168. 1/ 24

<<= is contained by or equals i net '192.168. 1/ 24'
<<= i net
'192. 168. 1/ 24’

>> contains inet '192.168.1/24" >>
inet '192.168.1.5'

>>= contains or equals i net '192.168. 1/ 24’
>>= i net
'192. 168. 1/ 24’

&& contains or is contained by i net '192. 168. 1/ 24'
&& i net
'192. 168. 1. 80/ 28"

~ bitwise NOT ~ inet '192.168.1.6

& bitwise AND inet '192.168.1.6' &
inet '0.0.0.255

[ bitwise OR inet '192.168.1.6" |
inet '0.0.0. 255

263



Functions and Operators

Operator Description Example

+ addition inet '192.168.1.6" +
25

- subtraction inet '192.168.1.43 -
36

- subtraction inet '192.168.1.43" -
inet '192.168.1.19'

Table 9.37 showsthefunctionsavailablefor usewiththeci dr andi net types. Theabbr ev, host ,
andt ext functions are primarily intended to offer alternative display formats.

Table9.37.ci dr and i net Functions

Function Return Type Description Example Result
abbrev(inet) |text abbreviated dis-|abbrev(inet |10.1.0.0/16
play format astext |' 10. 1. 0. 0/ 16’
abbrev(cidr) |text abbreviated dis-|abbrev(cidr |10.1/16
play format astext |' 10. 1. 0. 0/ 16'
br oad- |i net broadcast address|br oad- 192.168. 1. 255
cast (i net) for network cast (' 192.168| 1.5/24")
fam | y(inet) |int extract family of |f am - 6
address; 4 for|ly('::1")
IPv4, 6 for IPv6
host (i net) t ext extract |IP address/host (' 192. 168/ 1095/188.)1. 5
astext
host mask(i n- |i net construct host|host - 0.0.0.3
et) mask for network |mask(' 192. 168| 23. 20/ 30')
maskl en(i n- |i nt extract netmask|maskl en(' 192. [8B. 1. 5/ 24")
et) length
net mask(i n- |i net construct netmask |net - 255.255.255. 0
et) for network mask(' 192. 168} 1. 5/ 24")
net wor k(i n- |ci dr extract  network|net - 192.168. 1.0/ 2
et) part of address wor k(' 192. 168} 1. 5/24")
i net set netmask length|set _nmaskl en(' 192, 168R. 1. B/ 246 ,
set _maskl en(in- fori net value |16)
et, int)
set _nmaskl en( cjadrdr set netmask length|set _nmaskl en(' [192. 168R. 0.@/24 : : ci dr,
int) forci dr value |16)
text (inet) t ext extract 1P address|t ext (i net 192.168.1.5/3
andnetmask length|' 192. 168. 1. 5'
astext
i n- |bool ean are the addresses|i n- fal se
et _sane_fam fromthesamefam-|et _sane_fam
ily(inet, in- ily? i-
et) ly('192.168. 1 5/24",
1Y)
i n-|cidr the smallest net-|i n- 192.168.0.0/2
et _merge(in- work which in-jet _nerge(' 192, 168. 1. 5/ 24",
et, inet) cludes both of the|' 192. 168. 2. 5/ R4")

given networks

264

24



Functions and Operators

Any ci dr value can becasttoi net implicitly or explicitly; therefore, the functions shown above
asoperatingoni net alsowork on ci dr values. (Where there are separate functions for i net and
ci dr, it is because the behavior should be different for the two cases.) Also, it is permitted to cast
ani net vauetoci dr. When thisis done, any bits to the right of the netmask are silently zeroed
to create avalid ci dr value. In addition, you can cast atext valuetoi net or ci dr using normal
casting syntax: for example, i net (expr essi on) or col nane: : ci dr.

Table 9.38 shows the functions available for use with the macaddr type. The function
trunc(nacaddr) returns a MAC address with the last 3 bytes set to zero. This can be used to
associate the remaining prefix with a manufacturer.

Table9.38. nacaddr Functions

Function Return Type Description Example Result
trunc(macad- |macaddr set last 3 bytes to|t runc(macad- |12: 34:56: 00: 00: 00
dr) zero dr

'12:34:56: 78: 90: ab")

The macaddr type aso supports the standard relational operators (>, <=, etc.) for lexicographical
ordering, and the bitwise arithmetic operators (~, & and | ) for NOT, AND and OR.

Table 9.39 shows the functions available for use with the macaddr 8 type. The function
t runc(nacaddr 8) returns a MAC address with the last 5 bytes set to zero. This can be used to
associate the remaining prefix with a manufacturer.

Table9.39. racaddr 8 Functions

Function Return Type Description Example Result
trunc(macad- [macaddr 8 set last 5 bytes to|t runc(rmacad- |12: 34: 56: 00: 00: 00: 00: 00
dr 8) zero dr8
'12: 34:56: 78:90: ab: cd: e-
f)
macad- ([macaddr 8 st 7th bit to|macad- 02: 34:56: ff:fe:ab: cd: ef
dr8_set 7bi t (npcad- one, also known as|dr 8_set 7bi t (npacad-
dr 8) modified EUI-64,|dr 8
for inclusion in an|' 00: 34: 56: ab: cd: e-
IPv6 address f')

Themacaddr 8 type al so supports the standard relational operators (>, <=, etc.) for ordering, and the
bitwise arithmetic operators (~, &and | ) for NOT, AND and OR.

9.13. Text Search Functions and Operators

Table 9.40, Table 9.41 and Table 9.42 summarize the functions and operators that are provided for
full text searching. See Chapter 12 for a detailed explanation of PostgreSQL 's text search facility.

Table 9.40. Text Search Operators

Operator Return Type Description Example Result
@ bool ean t svect or to_tsvec- t
matches ts-|tor('fat cats
query ? ate rats')
(@32) to_ts-
query('cat &
rat')
@D bool ean deprecated syn-|to_t svec- t
onym for @@ tor('fat cats

265



Functions and Operators

Operator Return Type Description Example Result
ate rats')
@aD to ts-
query('cat &
rat')
[ t svect or concatenate "a:l 'a':1'b':2,5
tsvectors b:2"::tsvec- |'c':3 'd':4
tor [ ]
'c:1l d: 2
b:3"::tsvec-
tor
&& tsquery AND tsquerys|' fat [ 1( "fat' |
together rat'::ts- "rat’ ) &
query &&|' cat'
"cat'::ts-
query
[ t squery ORtsquerysto-|' fat | 1( "fat' |
gether rat'::ts- "rat’ ) |
query |]]" cat'
‘cat'::ts-
query
1 tsquery negateat squery|!! 'cat'::ts-|!'cat’
query
<-> t squery t squery fol-|[to_ts- ‘fat' <->
lowed by ts-|query('fat') |'rat’
query <-> to_ts-
query('rat')
@ bool ean tsquery con-|'cat'::ts- f
tains another ? query @ 'cat
& rat'::ts-
query
<@ bool ean tsquery iscon-|'cat'::ts- t
tainedin ? query <@' cat
& rat'::ts-
query
Note

The t squery containment operators consider only the lexemes listed in the two
gueries, ignoring the combining operators.

In addition to the operators shown in the tabl e, the ordinary B-tree comparison operators (=, <, etc) are
defined for typest svect or andt squer y. These are not very useful for text searching but allow,
for example, unique indexes to be built on columns of these types.

Table9.41. Text Search Functions

Function Return Type Description Example Result
ar - [t svector convert array |ar - ‘cat'’ "fat'
ray_to_tsvec- of lexemes tojray to_tsvec-|'rat’
tor(text[]) t svect or tor('{fat,catjrat}'::tex-
t[l])

266



Functions and Operators

Function Return Type Description Example Result
get _curren- [regconfig get default text|get _curren- |english
t _ts_con- search configura-|t _ts_con-
fig() tion fig()
i nteger number of lexemes|l engt h(' fat: 2|3
| engt h(tsvec- int svect or cat:3
tor) rat:5A ::tsvegc-
tor)
nunmode(t s- |i nt eger number of lexemes|numode( ' (fat|5
query) plus operators in|& rat)
t squery | cat'::ts-
query)
pl ai nto_ts- |tsquery producet squery|pl ainto_ts- |'fat' & 'rat’
query([ con- ignoring punctua-|quer y(' eng-
fig regcon- tion l'ish', ' The
fig, ] query Fat Rats')
text)
phraseto_ts- [t squery producet squery|phraseto_ts- |'fat’ <->
query([ con- that searches for|query('eng- |'rat’
fig regcon- a phrase, ignoring|l i sh', ' The
fig, ] query punctuation Fat Rats')
text)
web- |t squery producet squer y |web- "fat' <->
search _to t- from aweb search{search_to t- |'"rat' | 'rat'
squery([ con- style query squery(' eng-
fig regcon- lish', ""fat
fig, ] query rat" or rat')
text)
query- |t ext get indexable part|quer y- "foo'
tree(query of at squery tree('foo &!
t squery) bar'::ts-
query)
t svect or assign wei ght to|set wei ght (' f af':cit4 : 3A
set wei ght (vect each element of|cat:3 "fat':2A 4A
tor tsvec- vect or rat: 5B ::tsvec-rat':5A
tor, wei ght tor, "A)
"char")
t svect or assign wei ght to|set wei ght (' f at':cat4 : 3A
set wei ght (vecr elements of vec- |cat: 3 "fat':2,4
tor tsvec- tor that arelisted|rat: 5B : :tsvec—+at':5A
tor, wei ght inl exenes tor, A
"char", |ex- "{cat,rat}")
enes text[])
strip(tsvec- |tsvector remove positions|strip('fat:2,4cat’ "fat'
tor) and weights from|cat : 3 "rat’
tsvector rat:5A" ::tsver-
tor)
to_tsquery([ |tsquery normalize words|to_t s- ‘fat' & 'rat’
config reg- and converttot s- |query(' eng-
config , ] query lish', 'The &
query text) Fat & Rats')
to_tsvec- [tsvector reduce document|t o_t svec- "fat':2
tor([ con- texttot svect or |tor (' eng- ‘rat':3

267




Functions and Operators

Function

Return Type

Description

Example

Result

figregconfig
, ] docunent
text)

lish', ' The
Fat Rats')

to_tsvec-
tor([ con-
figregconfig
, ] document
json(b))

t svect or

reduce each string
value in the docu-
menttoat svec-
t or , and then con-
catenate those in
document order to
produce a single
t svect or

to_tsvec-
tor (' eng-
lish', '{"a":
"The Fat Rat -
s"}'::json)

N

"fat':
'rat':3

json(b) to_ ts
tor([ con-
fig regcon-
fig, ] docu-
ment j son(b),
filter

j son(b))

Menrect or

reduce each value
in the document,
specified by fil -
ter toatsvec-
tor, and then
concatenate those
in document or-
der to produce
a single t svec-
tor.filter isa
j sonb array, that
enumerates what
kind of elements
need to be in-
cluded into the
resulting t svec-
t or . Possible val-
ues for filter
are"string" (to
include al string
values), " nurmer -
i ¢c" (toincludeall
numeric values in
the string format),
"bool ean" (to
includeall Boolean
valuesin the string
format "true"/
"fal se"),
"key" (to in-
clude al keys) or
"al l" (toinclude
al above). These
values can be com-
bined together to
include, eg. al
string and numeric
values.

json_to_tsvec
tor (' eng-
lish', '

"The Fat
Rat s", "h":
123}' ::j son,
"["string",

"nureric"]")

"a

123" :
"fat':
‘rat':3

N Ol

ts_del ete(vec
tor tsvector,
| exenme text)

t svect or

remove
| exene
vect or

given
from

ts _delete('fa
cat:3

rat:5A ::tsve
tor, 'fat')

t'.catd4 . 3
‘rat':5A
C_

ts_del ete(vec
tor t svec-

H svect or

remove any occur-
rence of lexemes

ts _delete('fa
cat:3

t':cat4: 3

268




Functions and Operators

Function Return Type Description Example Result
tor, |exenes inl exenes from|rat: 5A" ::tsvec-
text[]) vect or tor, AR-
RAY['fat','rat'])
ts fil-|tsvector select only ee|ts fil- ‘cat': 3B
ter(vector ments with giv-{ter('fat:2,4 |"rat':5A
t svector, enwei ght s from|cat : 3b
wei ght s vect or rat:5A ::tsvec-
"char"[]) tor, '{a,b}")
ts_head- |t ext display a query|ts_head- X y <b>z</b>
l'ine([ con- match line('x y
fig regcon- z', 'z'::ts-
fig, ] doc- query)
ument  text,
query tsquery
[, options
text 1)
ts_head- t ext display a query|ts_head- {"a":"x y
line([ con- match line('{"a":"x|<b>z</b>"}
fig regcon- y z"} -
fig, ] docu- son, 'z'::ts-
ment json(b), query)

query tsquery

[, options
text ])

ts_rank([ |float4 rank document for|t s_r ank(t ext sgarglg
wei ght s query query)

float4[], ]
vector tsvec-

tor, qguery
t squery [,
normal i za-
tion integer
1)
ts_rank_cd([ |fl oat4 rank document for|t s_rank_cd(' {(®2.131317
wei ght s query using cover|0. 2, 0.4,
float4[], ] density 1.0}',
vector tsvec- t ext sear ch,
tor, query query)
tsquery [,
normal i za-
tion integer
1)
tsquery replace target|ts_rewite('a'b & ( 'foo

ts_rewite(query with  substi - (& b'::ts-|| "bar' )
tsquery, tar- t ut e withinquery |query,
get ts- 'a'::ts-
query, sub- query, 'foo]
stitute ts- bar'::ts-
query) query)
ts_rewite(qugrsguery replace using tar-| SELECT "b' & ( 'foo
tsquery, se- getsand substitutes|ts_rewrite(' al| 'bar' )
| ect text) from a SELECT|& b'::ts-

command query,

"SELECT t,s

269




Functions and Operators

Function Return Type Description Example Result
FROM ali as-
es')
ts- [tsquery make query that|ts- ‘fat' <->
query_phrase(queryl searches forjquery_phrase(} @at-
t squery, queryl followed|s-
query?2 ts- by query2 (same|query(' fat'),
query) as<->operator) [to_ts-
query('cat'))
ts- tsquery make query that|ts- "fat' <10>
query_phrase(gueryl searches for|query_phrase(' @at-
t squery, queryl followed|s-
query?2 ts- by query?2 at dis-|query(' fat'),
query, di s- tancedi st ance |to_ts-
tance inte- query('cat'),
ger) 10)
tsvec- [text[] convert tsvec- |tsvec- {cat,fat,rat}
tor_to_ar- tor to aray of{tor_to_ar-
ray(tsvec- lexemes ray('fat: 2,4
tor) cat:3
rat:5A ::tsvec-
tor)
tsvector _up- |trigger trigger  function| CREATE TRI G
date trig- for automatic| GER .
ger () tsvector col-[tsvector_up-
umn update date trig-
ger(tsvcol,
' pg_cat a-
| og. swedi sh' ,
title, body)
tsvect or _up- |trigger trigger  function| CREATE TRI G
date_trig- for automatic| GER
ger _col um() tsvector col-|tsvector_up-
umn update date_trig-
ger_colum
n(tsvcol,
configcol,
title, body)
setof record |expand at svec- |unnest (' fat: 2|(4at, {3},
unnest (t svec- tor to a set ofcat:3 {D})
tor, QUT | ex- rows rat:5A ::tsvec-
ene t ext, tor)
out posi -
tions snall-
int[], out
wei ght s text)
Note

All thetext search functionsthat accept an optional r egconf i g argument will usethe
configuration specified by default_text_search config when that argument is omitted.

270




Functions and Operators

The functions in Table 9.42 are listed separately because they are not usually used in everyday text

searching operations. They are helpful for devel opment and debugging of new text search configura-

tions.

Table 9.42. Text Search Debugging Functions

Function

Return Type

Description

Example

Result

ts_debug([
config reg-
config, ]
docunent
t ext, auT
alias text,
QUT descri p-
tion text,
aut to-
ken text,
QJT dictio-
naries reg-
di c-
tionary[],
QJT dictio-
nary regdic-
tionary, OUT
| exenes
text[])

setof record

test aconfiguration

ts_de-

bug(' eng-
l'ish', ' The
Bri ght est su-
per novaes')

(ascii -

wor d, "Wor d,
al |
ASCI 1", The,
{eng-
lish_stent, en
lish_stem({})

ts_ | ex-
i ze(dict reg-
di ctionary,
token text)

text[]

test adictionary

ts_ | ex-

i ze(' eng-
lish stem,
"stars')

{star}

ts_parse(pars
er _nane text,
docunent
text,

tokid inte-
ger, QUT to-
ken text)

aut

set of record

test a parser

ts_parse(' de-
fault', 'foo
- bar')

(1, foo0)

ts_parse(pars
er oid oid,
docunent
text,

tokid inte-
ger, QUT to-
ken text)

aur

rset of record

test a parser

ts_parse(3722
"foo - bar')

(1, foo)

ts_to-
ken_type(pars
er _name text,
QJT tokid in-
t eger, ot
alias text,
QUT descri p-
tion text)

setof record

get token types de-
fined by parser

ts_ to-
ken_type(' de-
fault')

(1, ascii -
wor d, "Word,
al |

ASCI ™)

ts to-
ken_type(pars
er oid oid,

setof record

get token types de-
fined by parser

ts_to-
ken_type(3722

(1,ascii-
wor d, " Wor d,

271



Functions and Operators

Function Return Type Description Example Result

QUT tokid in- al |

t eger, aut ASCI 1)
alias text,

QUT descri p-

tion text)

ts_stat(sql-|setof record |get statistics of{ts_stat('S- |(foo, 10, 15)
query text, atsvector col-|[ELECT vector

[ wei ght s umn from apod')

text, ] OQUT
wor d t ext,

QUT ndoc in-
t eger, ot
nentry inte-
ger)

9.14. XML Functions

The functions and function-like expressions described in this section operate on values of type xm .
Check Section 8.13 for information about the xm type. The function-like expressions xm par se
andxm seri al i ze for converting to and from typexm are not repeated here. Use of most of these
functions requires the installation to have been built withconf i gure --w th-1i bxni .

9.14.1. Producing XML Content

A set of functions and function-like expressions are available for producing XML content from SQL
data. As such, they are particularly suitable for formatting query results into XML documents for
processing in client applications.

9.14.1.1. xnml comrent

xm coment (t ext)

The function xm coment creates an XML value containing an XML comment with the specified
text as content. Thetext cannot contain“- - ” or end witha“- ” so that the resulting construct isavalid
XML comment. If the argument is null, the result is null.

Example:

SELECT xm conment (' hello');

<!--hello-->

9.14.1.2. xnl concat

xm concat (xm [, ...])

Thefunction xm concat concatenates alist of individual XML valuesto create a single value con-
taining an XML content fragment. Null values are omitted; the result is only null if there are no non-
null arguments.

Example:

272



Functions and Operators

SELECT xm concat (' <abc/>', '<bar>foo</bar>");

xm concat

<abc/ ><bar >f oo</ bar >

XML declarations, if present, are combined as follows. If all argument values have the same XML
version declaration, that version is used in the result, else no version is used. If al argument values
have the standal one declaration value “yes’, then that valueisused in theresult. If all argument values
have a standalone declaration value and at least one is “no”, then that is used in the result. Else the
result will have no standal one declaration. If theresult isdetermined to require astandal one declaration
but no version declaration, a version declaration with version 1.0 will be used because XML requires
an XML declaration to contain a version declaration. Encoding declarations are ignored and removed
inall cases.

Example:

SELECT xmi concat (' <?xml version="1.1"?><foo/>", '<?xnm
versi on="1.1" standal one="no"?><bar/>");

xm concat

<?xm version="1.1"?><f oo/ ><bar/ >

9.14.1.3. xnl el ement

xm el enent (name nanme [, xmattributes(value [AS attnane] [, ... ])]
[, content, ...])

Thexm el ement expression producesan XML element with the given name, attributes, and content.

Examples:

SELECT xm el enent (nane f o00);

xm el enent

<f oo/ >
SELECT xm el enent (nane foo, xmattributes(' xyz' as bar));

xm el enent

<f oo bar="xyz"/>

SELECT xm el enent (nane foo, xmattributes(current_date as bar),
‘cont', 'ent');

xm el enent

<f oo bar="2007-01-26">cont ent </ f oo>

Element and attribute names that are not valid XML names are escaped by replacing the offending
characters by the sequence  xHHHH _, where HHHH is the character's Unicode codepoint in hexadec-
imal notation. For example:

273



Functions and Operators

SELECT xml el enent (name "foo$bar", xmattributes('xyz' as "a&b"));

xm el enent

<f o0o_x0024_bar a_x0026_b="xyz"/>

An explicit attribute name need not be specified if the attribute value is a column reference, in which
case the column's name will be used as the attribute name by default. In other cases, the attribute must
be given an explicit name. So this exampleisvalid:

CREATE TABLE test (a xm, b xm);
SELECT xml el ement (nane test, xmattributes(a, b)) FROMtest;

But these are not:

SELECT xml el enent (nane test, xmattributes('constant'), a, b) FROM
test;
SELECT xml el enent (nane test, xmattributes(func(a, b))) FROMtest;

Element content, if specified, will be formatted according to its data type. If the content is itself of
typexm , complex XML documents can be constructed. For example:

SELECT xm el ement (nane foo, xmattributes('xyz' as bar),
xm el enent (nanme abc),
xm comment ("test'),
xm el enent (name xyz));

xm el enent

<f 0o bar="xyz"><abc/><!--test--><xyz/ ></foo>

Content of other types will be formatted into valid XML character data. This means in particular
that the characters <, >, and & will be converted to entities. Binary data (data type byt ea) will
be represented in base64 or hex encoding, depending on the setting of the configuration parameter
xmibinary. The particular behavior for individual datatypesis expected to evolvein order to align the
SQL and PostgreSQL data types with the XML Schema specification, at which point a more precise
description will appear.

9.14.1.4. xnml f or est

xm forest(content [AS nane] [, ...])

Thexni f or est expression produces an XML forest (sequence) of elements using the given names
and content.

Examples:

SELECT xml forest (' abc' AS foo, 123 AS bar);

xm f or est

<f oo>abc</ f oo><bar >123</ bar >

274



Functions and Operators

SELECT xml f orest (tabl e_nane, col unm_nane)
FROM i nf or mati on_schena. col unms
WHERE t abl e_schema = 'pg_catal og";

xm f or est

<t abl e_nane>pg_aut hi d</t abl e_name><col um_nane>r ol nanme</
col utm_nane>

<t abl e_nane>pg_aut hi d</t abl e_nanme><col um_nane>r ol super </
col utm_nane>

As seen in the second example, the element name can be omitted if the content value is a column
reference, in which case the column name is used by default. Otherwise, a name must be specified.

Element names that are not valid XML names are escaped as shown for xim el enent above. Simi-
larly, content datais escaped to make valid XML content, unlessit is already of typexmn .

Note that XML forests are not valid XML documents if they consist of more than one element, so it
might be useful towrap xn f or est expressionsinxni el enent .

9.14.1.5. xni pi

xm pi (nane target [, content])

Thexnml pi expression createsan XML processing instruction. The content, if present, must not con-
tain the character sequence ?>.

Example:

SELECT xml pi (nane php, 'echo "hello world";"');

<?php echo "hello world"; ?>

9.14.1.6. xnl r oot

xm root (xm, version text | no value [, standal one yes|no|no
val ue])

The xm r oot expression alters the properties of the root node of an XML value. If a version is
specified, it replacesthevaluein theroot node's version declaration; if astandalone setting is specified,
it replaces the value in the root node's standal one declaration.

SELECT xml r oot (xm par se(docunent '<?xml version="1.1"7
><cont ent >abc</content>'),
version '1.0', standal one yes);

xm r oot

<?xm version="1.0" standal one="yes"?>
<cont ent >abc</ cont ent >

275



Functions and Operators

9.14.1.7. xm agg

xm agg(xml)

Thefunction xm agg is, unlike the other functions described here, an aggregate function. It concate-
nates the input values to the aggregate function call, much like xm concat does, except that con-
catenation occurs across rows rather than across expressions in a single row. See Section 9.20 for
additional information about aggregate functions.

Example:

CREATE TABLE test (y int, x xm);
| NSERT | NTO test VALUES (1, '<foo>abc</foo>');
I NSERT | NTO test VALUES (2, '<bar/>");
SELECT xml agg(x) FROM test;
xm agg

<f oo>abc</ f oo><bar/ >

To determinethe order of the concatenation, an ORDER BY clause may be added to the aggregate call
as described in Section 4.2.7. For example:

SELECT xml agg(x ORDER BY y DESC) FROM test;
xm agg

<bar/ ><f oo>abc</f 00>
The following non-standard approach used to be recommended in previous versions, and may still be
useful in specific cases:

SELECT xm agg(x) FROM (SELECT * FROM test ORDER BY y DESC) AS tab;
xm agg

<bar/ ><f oo>abc</ f oo>

9.14.2. XML Predicates

The expressions described in this section check properties of xm values.

9.14.2.1.1 S DOCUMENT

xm 'S DOCUMENT

Theexpression| S DOCUMENT returnstrue if the argument XML value is a proper XML document,
faseif itisnot (that is, itisacontent fragment), or null if the argument is null. See Section 8.13 about
the difference between documents and content fragments.

9.14.2.2.1 S NOT' DOCUMENT

xm 'S NOT DOCUMENT

The expression | S NOT DOCUNMENT returns false if the argument XML value is a proper XML
document, trueif it is not (that is, it is a content fragment), or null if the argument is null.

276



Functions and Operators

9.14.2.3. XMLEXI STS

XMLEXI STS(t ext PASSI NG [BY REF] xm [BY REF])

Thefunctionxm exi st s returnstrueif the X Path expression in the first argument returns any nodes,
and false otherwise. (If either argument is null, the result isnull.)

Example:

SELECT xm exists('//town[text() = "'Toronto'']"' PASSI NG BY REF
' <t owns><t own>Tor ont o</t own><t own>Qt t awa</ t own></t owns>');
xm exi sts
t

(1 row)

The BY REF clauses have no effect in PostgreSQL, but are allowed for SQL conformance and com-
patibility with other implementations. Per SQL standard, the first BY REF is required, the second
is optional. Also note that the SQL standard specifies the xm exi st s construct to take an XQuery
expression as first argument, but PostgreSQL currently only supports XPath, which is a subset of
XQuery.

9.14.24.xm is well fornmed

xm _is_well fornmed(text)
xm _is_well fornmed _docunent (text)
xm _is_well _formed content (text)

These functions check whether a t ext string is well-formed XML, returning a Boolean re-
sult. xm _is_well fornmed _docunent checks for a well-formed document, while xnt
I _is_well forned_content checksforwell-formed content. xm i s_wel | _f or med does
the former if the xmloption configuration parameter is set to DOCUMVENT, or the latter if it is set to
CONTENT. Thismeansthat xm _i s_wel | _f or med is useful for seeing whether a simple cast to
typexm will succeed, whereas the other two functions are useful for seeing whether the correspond-
ing variants of XMLPARSE will succeed.

Examples:

SET xm opti on TO DOCUMENT;
SELECT xm _is_well _forned('<>");
xm _is_well forned

SELECT xml _is well forned('<abc/>");
xm _is_well forned

SET xm opti on TO CONTENT;
SELECT xm _is well formed('abc');
xm _is_well forned

277



Functions and Operators

SELECT xm _is_wel |l _forned_docunent (' <pg:foo xm ns:pg="http://
post gresql . org/ st uf f">bar </ pg: f 00>" ) ;
xm _is well formed_docunent

SELECT xm _is_wel | _forned_docunent (' <pg:foo xm ns: pg="http://
post gresql . org/ stuff">bar</my:foo>");
xm _is well formed _docunent

The last example shows that the checks include whether namespaces are correctly matched.

9.14.3. Processing XML

To process values of datatype xmi , PostgreSQL offers the functions xpat h and xpat h_exi st s,
which evaluate X Path 1.0 expressions, and the XML TABLE table function.

9.14.3.1. xpat h

xpat h(xpath, xm [, nsarray])

The function xpat h evaluates the XPath expression xpat h (at ext value) against the XML value
xm . It returns an array of XML values corresponding to the node set produced by the X Path expres-
sion. If the XPath expression returns a scalar value rather than a node set, a single-element array is
returned.

The second argument must be awell formed XML document. In particular, it must have a single root
node element.

The optional third argument of the function is an array of namespace mappings. This array should be
atwo-dimensiona t ext array with the length of the second axis being equal to 2 (i.e., it should be
an array of arrays, each of which consists of exactly 2 elements). Thefirst element of each array entry
is the namespace name (alias), the second the namespace URI. It is not required that aliases provided
in this array be the same as those being used in the XML document itself (in other words, both in the
XML document and in the xpat h function context, aliases are local).

Example:

SELECT xpath('/ny:al/text()', '<my:a xmns:my="http://
exanpl e. con' >t est </ my: a>' ,
ARRAY[ ARRAY[ ' ny', 'http://exanple.com]]);

To deal with default (anonymous) namespaces, do something like this:

278



Functions and Operators

SELECT xpath('//nmydefns:b/text()', '<a xm ns="http://
exanpl e. cont ><b>t est </ b></ a>",
ARRAY[ ARRAY[ ' nydefns', 'http://exanple.com]]);

{test}
(1 row

9.14.3.2. xpat h_exi st s

xpat h_exi sts(xpath, xm [, nsarray])

Thefunction xpat h_exi st s isaspecialized form of the xpat h function. Instead of returning the
individual XML values that satisfy the XPath, this function returns a Boolean indicating whether the
guery was satisfied or not. This function is equivalent to the standard XMLEXI STS predicate, except
that it also offers support for a namespace mapping argument.

Example:

SELECT xpath_exists('/ny:altext()', '<ny:a xmns:nmy="http://
exanpl e. con' >t est </ ny: a>',
ARRAY[ ARRAY[ ' ny', 'http://exanple.com]]);

xpat h_exi sts

9.14.3.3. xnl t abl e

xm tabl e( [ XMLNAMESPACES( nanespace uri AS nanmespace name[, ...]), |
row_expressi on PASSI NG [ BY REF] docunent _expression [ BY
REF]
COLUWNS name { type [ PATH col umm_expr essi on]
[ DEFAULT defaul t _expression] [NOT NULL | NULL]
| FOR ORDI NALI TY }
[, ...]
)

The xm t abl e function produces a table based on the given XML value, an XPath filter to extract
rows, and an optional set of column definitions.

The optional XMLNAMESPACES clauseisacomma-separated list of namespaces. It specifiesthe XML
namespaces used in the document and their aliases. A default namespace specification is not currently
supported.

Therequiredr ow_expr essi on argument isan XPath expression that is evaluated against the sup-
plied XML document to obtain an ordered sequence of XML nodes. Thissequenceiswhat xm t abl e
transforms into output rows.

docunent _expr essi on provides the XML document to operate on. The BY REF clauses have
no effect in PostgreSQL, but are allowed for SQL conformance and compatibility with other imple-
mentations. The argument must be awell-formed XML document; fragments/forests are not accepted.

279



Functions and Operators

The mandatory COLUMNS clause specifies the list of columns in the output table. If the COLUMNS
clause is omitted, the rows in the result set contain a single column of type xm containing the data
matched by r ow_expr essi on. If COLUMNS is specified, each entry describes asingle column. See
the syntax summary above for the format. The column name and type are required; the path, default
and nullability clauses are optional.

A column marked FOR ORDI NALI TY will be populated with row numbers matching the order in
which the output rows appeared in the original input XML document. At most one column may be
marked FOR ORDI NALI TY.

The col unm_expr essi on for a column is an XPath expression that is evaluated for each row,
relative to the result of ther ow_expr essi on, to find the value of the column. If nocol um_ex-
pr essi on isgiven, then the column nameis used as an implicit path.

If acolumn's X Path expression returns multiple elements, an error israised. If the expression matches
an empty tag, the result is an empty string (not NULL). Any xsi : ni | attributes are ignored.

The text body of the XML matched by the col urm_expr essi on is used as the column value.
Multiplet ext () nodeswithin an element are concatenated in order. Any child elements, processing
instructions, and comments are ignored, but the text contents of child elements are concatenated to the
result. Note that the whitespace-only t ext () node between two non-text elementsis preserved, and
that leading whitespace on at ext () nodeis not flattened.

If the path expression does not match for agiven row but def aul t _expr essi on is specified, the
value resulting from eval uating that expression isused. If no DEFAULT clauseisgiven for the column,
the field will be set to NULL. It ispossible for adef aul t _expr essi on to reference the value of
output columns that appear prior to it in the column list, so the default of one column may be based
on the value of another column.

Columns may be marked NOT NULL. If thecol unm_expr essi on foraNOT NULL column does
not match anything and thereisno DEFAULT or thedef aul t _expr essi on aso evaluatesto null,
an error isreported.

Unlike regular PostgreSQL functions, col urm_expr essi on and def aul t _expr essi on are
not evaluated to asimple value before calling the function. col unm_expr essi on isnormally eval-
uated exactly once per input row, and def aul t _expr essi on is evaluated each time a default is
needed for a field. If the expression qualifies as stable or immutable the repeat evaluation may be
skipped. Effectively xm t abl e behaves more like a subquery than a function call. This means that
you can usefully use volatile functions like next val in def aul t _expressi on, and col um
n_expr essi on may depend on other parts of the XML document.

Examples:

CREATE TABLE xnl data AS SELECT
xm  $$
<RONG>
<ROWid="1">
<COUNTRY_| D>AU</ COUNTRY_| D>
<COUNTRY_NAME>Aust r al i a</ COUNTRY_NANME>
</ RON
<ROW i d="5">
<COUNTRY_| D>JP</ COUNTRY_I D>
<COUNTRY_NAME>Japan</ COUNTRY_NANME>
<PREM ER NAME>Shi nzo Abe</ PREM ER_NAME>
<SI ZE uni t ="sq_m ">145935</ S| ZE>
</ RON
<ROWi d="6">
<COUNTRY_| D>SG</ COUNTRY_| D>

280



Functions and Operators

<COUNTRY_NAME>Si ngapor e</ COUNTRY_NAME>
<Sl| ZE uni t ="sq_kni' >697</ S| ZE>
</ RON
</ ROAG>
$$ AS dat a;

SELECT xmi table. *
FROM xml dat a,
XMLTABLE( " / / RONS/ ROW
PASSI NG dat a
COLUMNS id int PATH ' @d',
ordinality FOR ORDI NALITY,
" COUNTRY_NAME" text,
country_id text PATH ' COUNTRY_ID ,
size_sq_kmfloat PATH 'SIZEf @nit =
"sq_knt]",
si ze_other text PATH
‘concat (SI ZE[f @nit! ="sq_kni], " ",
SIZE[ @nit! ="sq_kni]/@nit)"’,
prem er_nane text PATH ' PREM ER_NAME
DEFAULT ' not specified') ;

id ]| ordinality | COUNTRY_NAME | country id | size_sq_km|

Size_other | premnier_nane
T T o m e o - - o m e o - -
T o e e e e oo - -

1| 1| Australia | AU | |

| not specified

5| 2 | Japan | JP | | 145935
sg_m | Shinzo Abe

6 | 3 | Singapore | SG | 697 |

| not specified

The following example shows concatenation of multiple text() nodes, usage of the column name as
XPath filter, and the treatment of whitespace, XML comments and processing instructions:

CREATE TABLE xmnl el enents AS SELECT
xm  $$
<r oot >
<el ement > Hello<!-- xyxxz -->2a2<?aaaaa?> <!--x--> Dbbb<x>xxx</
x>CC </el enment>
</root >
$$ AS dat a;

SELECT xni table.*
FROM xm el enents, XM.TABLE('/root' PASSI NG data COLUWNS el enent
text);
el ement

Hel | 02a2 bbbCC

The following example illustrates how the XML NAMESPACES clause can be used to specify alist of
namespaces used in the XML document as well asin the X Path expressions:

W TH xm dat a(data) AS (VALUES ('
<exanpl e xm ns="http://exanple.conlnyns" xmns: B="http://
exanpl e. conf b" >

281



Functions and Operators

<item foo="1" B: bar="2"/>
<item foo="3" B:bar="4"/>
<item foo="4" B:bar="5"/>
</ exampl e>"::xm)
)
SELECT xm table.*
FROM XMLTABLE( XMLNAMESPACES( "' htt p: // exanpl e. com nyns' AS X,
"http://exanple.com b AS "B"),
"I x:exanple/ x:item
PASSI NG ( SELECT data FROM xnl dat a)
COLUWNS foo int PATH ' @oo0',
bar int PATH ' @B: bar');

9.14.4. Mapping Tables to XML

The following functions map the contents of relational tables to XML values. They can be thought
of as XML export functionality:

table to xm (tbl regclass, nulls bool ean, tabl eforest bool ean,
targetns text)

qguery to xm (query text, nulls bool ean, tabl eforest bool ean,
targetns text)

cursor_to_xm (cursor refcursor, count int, nulls bool ean,
t abl ef orest bool ean, targetns text)

The return type of each functionisxm .

tabl e_to_xm maps the content of the named table, passed as parameter t bl . Ther egcl ass
type accepts strings identifying tables using the usual notation, including optional schema qualifi-
cations and double quotes. query_t o_xm executes the query whose text is passed as parameter
guery and maps the result set. cur sor _t o_xm fetches the indicated number of rows from the
cursor specified by the parameter cur sor . This variant is recommended if large tables have to be
mapped, because the result value is built up in memory by each function.

If t abl ef or est isfalse, then theresulting XML document looks like this:

<t abl enanme>
<r ow>
<col umnanel>dat a</ col umnanel>
<col umnane2>dat a</ col utTmnane2>
</ row>
<r ow>
</ row>
</t abl enanme>

If t abl ef or est istrue, theresult isan XML content fragment that looks like this:

282



Functions and Operators

<t abl enane>
<col umnanel>dat a</ col umnanel>
<col umnane2>dat a</ col utmnane2>
</t abl enanme>

<t abl enane>

</ t abl enane>

If no table name is available, that is, when mapping a query or a cursor, the string t abl e isused in
the first format, r owin the second format.

The choice between these formats is up to the user. The first format is a proper XML document,
which will beimportant in many applications. The second format tends to be more useful inthecur -

sor _to_xm function if the result values are to be reassembled into one document later on. The
functions for producing XML content discussed above, in particular xnl el enent , can be used to
alter the results to taste.

The data values are mapped in the same way as described for the function xm el ermrent above.

The parameter nul | s determines whether null values should be included in the output. If true, null
valuesin columns are represented as:

<col umnane xsi:nil="true"/>

where xsi isthe XML namespace prefix for XML Schema Instance. An appropriate namespace de-
claration will be added to the result value. If false, columns containing null values are simply omitted
from the output.

The parameter t ar get ns specifiesthe desired XML namespace of the result. If no particular name-
space is wanted, an empty string should be passed.

The following functions return XML Schema documents describing the mappings performed by the
corresponding functions above:

table to xm schema(tbl regclass, nulls bool ean, tabl eforest
bool ean, targetns text)
guery_to_xm schema(query text, nulls bool ean, tabl eforest bool ean
targetns text)
cursor_to_xm schema(cursor refcursor, nulls bool ean, tableforest
bool ean, targetns text)

It is essential that the same parameters are passed in order to obtain matching XML data mappings
and XML Schema documents.

The following functions produce XML data mappings and the corresponding XML Schema in one
document (or forest), linked together. They can be useful where self-contained and self-describing
results are wanted:

table to xm and_xm schema(tbl regclass, nulls bool ean, tabl eforest
bool ean, targetns text)

guery to xm _and xm schema(query text, nulls bool ean, tabl eforest
bool ean, targetns text)

283



Functions and Operators

In addition, the following functions are available to produce anal ogous mappings of entire schemas
or the entire current database:

schema_t o_xm (schema nane, nulls bool ean, tabl eforest bool ean,
targetns text)
schema_t o_xm schema(schema name, nulls bool ean, tabl ef orest
bool ean, targetns text)
schema_t o_xm _and_xm schema(schena nane, nulls bool ean, tabl eforest
bool ean, targetns text)
dat abase_t o_xm (nul I s bool ean, tabl eforest bool ean, targetns text)
dat abase_t o_xm schema(nul | s bool ean, tabl eforest bool ean, targetns
t ext)
dat abase_to_xm _and_xm schema(nul | s bool ean, tabl eforest bool ean,
targetns text)
Notethat these potentially produce alot of data, which needsto be built up in memory. When request-
ing content mappings of large schemas or databases, it might be worthwhile to consider mapping the
tables separately instead, possibly even through a cursor.

Theresult of a schema content mapping looks like this:

<schemanane>
t abl el- mappi ng

t abl e2- mappi ng

</ schemanane>
where the format of atable mapping dependson thet abl ef or est parameter as explained above.

Theresult of a database content mapping looks like this:

<dbnane>
<schenmalnane>
</ ;s;:Hemalnan’e>
<schenma2nane>

</ schema2nane>

</ dbnane>
where the schema mapping is as above.

Asan example of using the output produced by these functions, Figure 9.1 showsan XSLT stylesheet
that convertstheoutput of t abl e_t o_xm _and_xm schenatoan HTML document containing a
tabular rendition of thetable data. In asimilar manner, theresultsfrom thesefunctions can be converted
into other XML-based formats.

284



Functions and Operators

Figure9.1. XSLT Stylesheet for Converting SQL/XML Output toHTML

<?xm version="1.0"?>

<xsl :styl esheet version="1.0"
xm ns: xsl ="http://ww. w3. org/ 1999/ XSL/ Tr ansf or nf
xm ns: xsd="http://ww. w3. or g/ 2001/ XM_Schema"
xm ns="http://ww. w3. org/ 1999/ xht m "

<xsl : out put net hod="xm "
doct ype-system="http://ww. wW3. or g/ TR/ xht M 1/ DTDY xht m 1-
strict.dtd"
doct ype-public="-//WBC/DTD XHTM. 1.0 Strict//EN'
i ndent ="yes"/ >

<xsl:tenplate match="/*">
<xsl :vari abl e nanme="schem" sel ect="//xsd: schema"/>
<xsl :vari abl e name="t abl et ypenane”
sel ect =" $schema/
xsd: el ement [ @anme=nanme(current())]/ @ype"/ >
<xsl :vari abl e name="r owt ypenane"
sel ect =" $schena/ xsd: conpl exType[ @ane=
$t abl et ypenane] / xsd: sequence/ xsd: el ement [ @ame="row ]/ @ype"/ >

<htm >

<head>

<title><xsl:val ue-of select="name(current())"/></title>
</ head>
<body>

<t abl e>

<tr>
<xsl : for-each sel ect ="$schema/ xsd: conpl exType[ @ane=
$rowt ypenane] / xsd: sequence/ xsd: el ement / @ane" >

<t h><xsl : val ue-of select="."/></th>
</ xsl : for-each>
</[tr>

<xsl :for-each sel ect="row'>

<tr>

<xsl :for-each select="*">
<t d><xsl : val ue-of select="."/></td>

</ xsl :for-each>

</[tr>

</ xsl :for-each>
</t abl e>
</ body>
</htnl >

</ xsl : tenpl at e>

</ xsl : styl esheet >

9.15. JSON Functions and Operators

Table 9.43 shows the operators that are available for use with the two JSON data types (see Sec-
tion 8.14).

285



Functions and Operators

Table9.43.j son and j sonb Operators

Operator Right Operand|Description Example Example Result
Type
-> i nt Get JSON array|'[{"a":"foo"}|{"c":"baz"}
dement (indexed|{"b":"bar"},
from zero, nega-|{"c":"baz"}]'}|:]j-
tive integers count{son- >2
from the end)
-> t ext Get JSON object|' {"a": {"b":"foo0"}
field by key {"b":"foo"}}"[:]-
son->'a'
->> i nt GetJSON array el-{' [ 1, 2, 3] ' : @ j sdh-
ement ast ext >>2
->> t ext Get JSON object|'{"a":1,"b":2})2::j-
field ast ext son->>' b’
#> text[] Get JSON objectat|" {"a": {"b": |{"c "foo"}
specified path {"c":
"foo"}}} ' -
son#>' {a, b}’
#>> text[] Get JSON object|' {"a": 3
at specified pathas|[ 1, 2, 3], " b":
t ext [4,5,6]}' ::jspn#>>"{a, 2}’
Note

There are parallel variants of these operatorsfor both thej son andj sonb types. The
field/element/path extraction operators return the same type as their left-hand input
(either j son orj sonb), except for those specified asreturning t ext , which coerce
thevalueto text. Thefield/element/path extraction operatorsreturn NULL, rather than
failing, if the JSON input does not have the right structure to match the request; for
example if no such element exists. The field/element/path extraction operators that
accept integer JSON array subscripts all support negative subscripting from the end
of arrays.

The standard comparison operators shown in Table 9.1 are available for j sonb, but not for j son.
They follow the ordering rules for B-tree operations outlined at Section 8.14.4.

Some further operators also exist only for j sonb, as shown in Table 9.44. Many of these operators
can beindexed by j sonb operator classes. For afull description of j sonb containment and existence
semantics, see Section 8.14.3. Section 8.14.4 describes how these operators can be used to effectively
index j sonb data.

Table 9.44. Additional | sonb Operators

Operator

@

Right Operand Type |Description

Does the left JSON val-

Example
"{"a":1,

j sonb

ue contain the right
JSON path/value entries
at thetop level ?

"b":2}'::jsonb
@ "{"b":2}" ::]-
sonb

j sonb

Are the left JISON path/
value entries contained

"{"b":2}"::jsonb
<@  {"a"1,
"b":2}'::jsonb

286




Functions and Operators

Operator Right Operand Type |Description Example

at the top level within
the right JSON value?

? t ext Doesthestringexistasa|' {"a": 1,
top-level key within the|"b":2}'::jsonb ?
JSON value? "b’

? text[] Do any of these array|' {"a":1, "b":2,
stringsexist astop-level |"c": 3} 1) -

keys? sonb ?| ar -
ray['b', 'c']

?& text[] Do dl of these array|'["a", "b"]'::j-
stringsexist astop-level [sonb ?2& ar -
keys? ray['a', 'b']

[ j sonb Concatenate twol'["a", "b"]'::]-
j sonb values into ajsonb || '["c",
new j sonb value "d"]'::jsonb

- t ext Delete key/value pair|'{"a": "b"}"'::j-
or string element from{sonb - 'a'

left operand. Key/value
pairs are matched based
on their key value.

- text[] Delete multiple key/|' {"a": "b", "c":
value pairs or string|"d"}'::jsonb -
dements from left]' {a,c}' ::text[]
operand. Keylvalue
pairs are matched based
on their key value.

- i nteger Delete the array ee-|'["a", "b"]'::j-
ment with specified in-|sonb - 1

dex (Negative integers
count from the end).
Throws an error if top
level container is not an
array.

#- text[] Delete the field or ele-|' [ "a",

ment with specified path{{"b": 1}]"' ::j sonb
(for JSON arrays, nega- |#- ' {1, b}'

tive integers count from
the end)

Note

The| | operator concatenates the elements at the top level of each of its operands. It
does not operate recursively. For example, if both operands are objects with acommon
key field name, the value of the field in the result will just be the value from the right
hand operand.

Table 9.45 shows the functions that are available for creatingj son andj sonb values. (There are no
equivaent functionsforj sonb, of therow t o_j sonandarray_t o_j son functions. However,
thet o_j sonb function supplies much the same functionality as these functions would.)

287



Functions and Operators

Table 9.45. JSON Creation Functions

Function

Description

Example

Example Result

to_j son(anyel e-
ment )

to_j sonb(anyel e-
ment )

Returns the value as
json or jsonb. Ar-

rays and composites are|"

converted (recursively)
to arrays and objects;
otherwise, if there is a
cast from the type to
j son, the cast func-
tion will be used to
perform the conversion;
otherwise, a scalar val-
ue is produced. For any
scalar type other than a
number, a Boolean, or a
null value, the text rep-
resentation will be used,
in such a fashion that
it is a valid j son or
j sonb value.

to_json(' Fred
said
H."'::text)

"Fred said \"Hi .
\Illl

array to j-
son( anyarray
pretty bool])

[,

Returns the array as a
JSON array. A Post-
greSQL  multidimen-
sional array becomes
a JSON array of ar-
rays. Line feeds will
be added between di-
mension-1 elements if
pretty_ bool istrue

array to j-
son(' {{1, 5}, {99,

[[1,5],[99, 100]]
100}}" ::int[])

j sonb_obj ec-
t(text[])

exactly one dimension
with an even number of

row to_j- Returns the row as|row_to_j - {"f1":1,"f2":"foo"}
son(record [, |a JSON object. Line|son(row( 1, ' foo")
pretty_bool]) feeds will be added be-
tween level-1 elements
if pretty bool is
true.
json_build_ar- Builds a possibly-het-|j son_buil d_ar - [1, 2, "3", 4, 5]
ray( VARl ADI C erogeneously-typed ray(1,2,'3,4,5)
"any") JSON array out of a
variadic argument list.
jsonb_build_ar-
ray( VAR ADI C
“any")
j son_buil d_ob- Builds a JSON object|j son_buil d_ob- {"foo": 1,
j ect (VARI ADI C out of a variadic argu-|j ec- "bar": 2}
"any") ment list. By conven-|t (' foo', 1, "' bar', 2)
tion, the argument list
j sonb_bui | d_ob- |consists of alternating
ject (VARIADIC  |keysand values.
"any")
j son_obj ect (t ex- [Builds a JSON object|j son_object('{a, |[{"a": "1", "b":
t[1) out of atext array. The|l, b, "def", c, |"def", "c"
array must have either|3. 5} ") "3.5"}

288



Functions and Operators

Function

Description

Example

Example Result

members, in which case
they are taken as alter-
nating key/value pairs,
or two dimensions such
that each inner array has
exactly two eements,
which are taken as a

j son_obj ec-

t(" {{a,

{b, "

3.5}}")

1},
def"},{c,

j sonb_obj ec-

wise from two separate
arrays. In al other re-

key/value pair.
j son_obj ect (keys |This form of|j son_object (' {a, |[{"a": 1", b
text[], val ues|j son_obj ect takeslb}', '{1,2}") "2"}
text[]) keys and vaues pair-

t(keys text[], |spectsit is identica to
val ues text[]) |theone-argument form.
Note

array_to_jsonandrow_ to_j son havethesamebehavior ast o_j son except
for offering a pretty-printing option. The behavior described for t 0_j son likewise
appliesto each individual value converted by the other JSON creation functions.

Note

The hstore extension has a cast from hst or e toj son, so that hst or e values con-
verted via the JSON creation functions will be represented as JSON objects, not as
primitive string values.

Table 9.46 shows the functions that are available for processingj son andj sonb values.

Table 9.46. JSON Processing Functions

Function Return Type Description Example Example Result
j son_ar - i nt Returns the num-|j son_ar - 5
ray_l ength(j - ber of eementsiray length('[,2,3,{"f1":1,"
son) in the outermost|[ 5, 6]},4]")

JSON array.
j sonb_ar-
ray_length(j-
sonb)
j son_each(j- |setof key | Expands the outer- |sel ect *
son) t ext, val ue |most JSON object|f rom key | val ue
_ j son into a set of key/|j son_each(' {"@a"™:-"-f-00",
J son- value pairs. "b":"bar"}') |+-------
b_each(j - set of key a | "foo'
sonb) t ext, val ue b | "bar'

j sonb
j son_each_t extset of key | Expands the outer- |sel ect *
t(j son) t ext, val ue |most JSON object|f rom key | val ue
t ext into a set of key/|j son_each_texF----
valuepairs. There-{t (' {"a":"fo0" |+-------
"b":"bar"}') | a | foo

289

fa2":



Functions and Operators

Function Return Type Description Example Example Result

j son- turned values will b | bar

b_each_tex- be of typet ext .

t (j sonb)

j son_extrac- |json Returns JSON val-|j son_extrac- [{"f5":99,"f6"|"foo0"}

t_path(fromjt ue pointed to|t_path('{"f2";{"f3":1},"f4:

son j son, | sonb by path_elems|{"f5":99,"f6";"foo"}}', f4)

VARI ADI C (equivalent to #>

pat h_el ens operator).

text[])

j sonb_ex-

trac-

t_path(fromjrt

son j sonb,

VARI ADI C

pat h_el ens

text[])

j son_extrac- |text Returns JSON val-|j son_extrac- |foo

t _path_tex- ue pointed to by|t path_tex-

t(fromjson path_elens as|t('{"f2":{"f3[":1},"f4":

j son, text (equivaent|{"f5":99,"f6"}"foo"}}',"'f4],

VARI ADI C to #>> operator). |' f6')

pat h_el ens

text[])

j sonb_ex-

trac-

t _path_tex-

t(fromjson

j sonb,

VARI ADI C

pat h_el ens

text[])

j son_obj ec- |setof text Returns set of keys|j son_obj ec-

t _keys(j son) in the outermost|t keys(' {"f1"| "jedmni ,0jZct{ 'Wed/'s "a
JSON object. "f4":"b"}} ) |--------m--b -

j sonb_obj ec- f1

t_keys(]j - f2

sonb)

j son_popu- anyel enent Expands the object|sel ect *

| at e_record(base in fromjson|from a | b

anyel enent, to a row whose|j son_popu- | c

fromjson columns match the|l at e_r ecor d( nul-—

j son) recordtypedefined|| : : myr ow R
by base (see note|t ype, '{"a": |+------------ -

j sonb_popu- below). 1, "b": ["2",| 1| {2,"a

| at e_record(base "a b"], "c":| b"} | (4,"a

anyel enent, {"d": 4, "e":| b c")

fromjson "abc"}}")

j sonb)

j son_popu- set of anyel e- |Expandsthe outer-|sel ect *

| ate_record- |nent most array of ob-|f rom al| b

set (base jectsin fromj - |j son_popu- R

anyel enent, son to a setflate record- | 1] 2
of rows whose|set (nul - 3| 4

290



Functions and Operators

Function Return Type Description Example Example Result
fromjson columns match the|l : : myr ow
j son) recordtypedefined|t ype,

by base (seenote|' [{"a": 1, "b": R},

j sonb_popu- below). {"a":3,"b":4}]")
| at e_record-
set (base
anyel enent,
fromj son
j sonb)
j son_ar - setof json Expands a JSON|sel ect * from
ray_el e- array to a set of|j son_ar - val ue
ment s(j son) [setof jsonb |JSON values. ray_ele-  |------oo---
ments('[1,true,l
j sonb_ar - [2,false]]') | true
ray_el e- [2, fal se]
ment s(j sonb)
j son_ar - set of text Expands a JSON|sel ect * from
ray_el e- aray to a set of|j son_ar- val ue
ments_tex- t ext values. ray ele-  |-----------
t(json) ments_tex- foo
t('["foo", bar
j sonb_ar - "bar"]")
ray_el e-
nents_t ex-
t (j sonb)
j son_type- t ext Returns the type|j son_t ype- nunber
of (j son) of the outermost|of (' -123.4")
JSON vaue as a
j sonb_t ype- text string. Pos-
of (j sonb) sble types are
obj ect, array,
string, num
ber, bool ean,
andnul | .
j son_to_recorgd(gcord Builds an arbi-|sel ect *
son) trary record from|from a | b
a JSON object|j son_to_record('{"ac1,"H":
j son- (see note be([1,2,3],"c": | d | r
b_to_record(jr low). As with al|[1, 2, 3],"e": "pbar","r
sonb) functions return-|{"a": 123, |[+---------
ing record, the|"b": "a  b+---------
caler must ex-|c"}}') as x(a|+---
plicitly define the|int, b text, |+------------
structure of thelc i