PostgreSQL 10.13 Documentation

The PostgreSQL Global Development Group

PostgreSQL 10.13 Documentation
The PostgreSQL Global Development Group
Copyright © 1996-2020 The PostgreSQL Global Development Group

Legal Notice
PostgreSQL is Copyright © 1996-2020 by the PostgreSQL Global Development Group.
Postgresos is Copyright © 1994-5 by the Regents of the University of California.

Permission to use, copy, modify, and distribute this software and its documentation for any purpose, without fee,
and without a written agreement is hereby granted, provided that the above copyright notice and this paragraph
and the following two paragraphs appear in all copies.

IN NO EVENT SHALL THE UNIVERSITY OF CALIFORNIA BE LIABLE TO ANY PARTY FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING LOST PROFITS,
ARISING OUT OF THE USE OF THIS SOFTWARE AND ITS DOCUMENTATION, EVEN IF THE
UNIVERSITY OF CALIFORNIA HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

THE UNIVERSITY OF CALIFORNIA SPECIFICALLY DISCLAIMS ANY WARRANTIES, INCLUDING,
BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE. THE SOFTWARE PROVIDED HEREUNDER IS ON AN “AS-|S” BASIS, AND
THEUNIVERSITY OF CALIFORNIA HASNO OBLIGATIONSTO PROVIDE MAINTENANCE, SUPPORT,
UPDATES, ENHANCEMENTS, OR MODIFICATIONS.

Table of Contents

PrEFBCE . e et XXX
1. What 1S POSIGrE@SQL? ...ttt ettt e XXX
2. A Brief History of POSIGreSQLuuiiiiiiiieieiii et XXX

2.1. The Berkeley POSTGRES Projectcccvuieiiiiiiieiiiiiieecci e XXXIi
2.2, POSIOrESOS ... XXXIi
2.3, POSIOrESQL ..ottt XXXil
3. CONVENTIONS ...ttt ettt et e et et e et et e e e e et e e e ere s XXXil
4. Further InfOrmationcoouuuiiiiiii e XXXil
5. Bug Reporting GUIEIINESuuniiiiiiie e XXXl
5.1 1dentifying BUGSccevvneiiiiiiee ettt XXXl
5.2. WHEt t0 REDPOIT ...ttt e XXXIV
5.3. Where t0 REPOIT BUGScevveiiiiiiii et XXXV
O N0 1o = TSP UP PP PPPPPTR PPN 1
L GEtING SEAEAveneeeei et 3
I 10 =] = (o EO ST SOP PP UPPPTTRUPPPIN 3
1.2. Architectural FUNDamMENtalSccouvuiiiiiiiee e 3
1.3. Creating @ Dal@haseoceevuiiiiii e 4
1.4, ACCESSING 8 DaADESEccvvneiiiii e 5
2. The SQL LBNGUBGEeevueeeeiiiieeeee ettt et e e e e 7
2.1 INEFOQUCTION ..ttt et e et e e 7
2.2, CONCEPLS ..eveeiet ettt ettt ettt 7
2.3. Creating aNew Talleoovunii e 7
2.4. Populating @ Table With ROWSccoiiiiiiiiiiieii e 8
25, QUEYING A TaADIE ...eiii e e 9
2.6. J0iNS BEWEEN TabIES ..ooviiiiiii e 10
2.7. AQOregate FUNCLIONScuuuneiiiii ettt e e e e 12
2.8 UPELES ...t 14
2.9, DEBLIONSeeiieieeeeie e 14
3. AGVANCED FEAIUMNESc.vei ettt ettt et e e s 16
130 B [L oo (8 1o o EO PP TOP PP 16
B2, VIBINS ettt 16
3.3 FOrEIgN KEBYS ..ot 16
B4 THANSACHIONS ...eeiti et ettt ettt ettt e e e e e e et e eene 17
3.5, WINAOW FUNCHIONSuiiiiii et 19
3.6, INNEITEANCE ...t e 21
7. CONCIUSION ..ttt et e e et eeena e 23
[1. The SQL LBNQUAJE ... eeeitieeeeite ettt ettt et e et e et e e e e et eeenaa s 24
4. SQL SYNEBX +evteeeetiee ettt e ettt e et e et et et e et e et e e e e e e e e aean 31
A1, LeXiCal SHUCKUMEcevveeieii ettt eaeas 31
4.2, ValUE EXPIrESSIONS ... eeieiieeeeiti e ettt ettt e et e e e 39
4.3. CaliNg FUNCLIONS ...ttt 52
5. Data DEFINITION ...ceeviiiiii e et et e 55
5.1 TADIE BASICS vt 55
5.2. DEFAUIT VAIUBS ...t 56
5.3, CONSITAINTS ..ttt ettt et e e e e e e 57
5.4, SysStemM COIUMNS ...ttt 64
5.5. MOdifying TableScoiiiiieii e 65
5.6, PrIVIIEOES ... e 68
5.7. ROW SeCUrity POIICIES ...ccevuniiiiii e 69
5.8, SCREMAS ... 75
5.9, INNEITTANCE ... e e e 79
5.10. Table Partitioningccuuuiiiiiiieiiii e 82
511, FOrEIGN DB ... cieeei ettt 93
5.12. Other Datahase ODJECESccevuiiiiiiii et %!
5.13. DependenCy TraCKingooeeeuuuieieiiieeeeii e %!

PostgreSQL 10.13 Documentation

6. Data ManipUIAtioncouuiiiiiiiiii e e e e e e e e e e e e e ee 96
6.1, INSEMtING DAluuiiiii i 96
(S U1 o = (] oo DT - LN 97
(SR D= I i1 oo D - U 98
6.4. Returning Data From Modified ROWScooiviiiiiiii e, 98

2O N = 1= P 100
48 T @ = 4T 1 PP 100
7.2. Tahle EXPrESSIONSciviieiii e et e e e e e e e e e eaa s 100
7.3, SEIECE LISIS 1iiiiiiieiiiii ettt 114
7.4. CombiNiNG QUETESc.uuiiiiiieiiie e e e e e e e e e e e e aaaas 115
7.5. SOMING ROWS ...t e e e e e e e e e e ees 116
T76. LIM T and OFFSET ..oovniiiiiiiiieeiiie e e e et e eeeai e 117
T.7. VALUES LISES ittt e et e e s 117
7.8. W TH Queries (Common Table EXPreSSioNS)cc.uvevvnieiiiieeiiieeiiieeeieeeinns 118

S T DT = T Y/ o1 PP 124
8.1 NUMEIIC TYPES . tttiitiiee i ettt et et e e e e e e e e e e e e et e e et e e ean e eaes 125
8.2, MONEAY Ty DS ittt ittt 130
LI @ o= = Tot (= G Y/ o= PPN 130
8.4. BiNary Dafa TYPES c.uuuiiiieiii e et et e e e e e e e e e e e e e eeaens 132
8.5, DaAE/TIME TYPES civtuiiiieiii et et et e e e e e e e e et e et e et eeaanas 134
S = T To = g N Y/ o 144
8.7. ENUMEIAEd TYPES oovuiiiiieiii et ettt e e e e e e e e e e e e aans 145
8.8. GEOMELNIC TYPES ... civtneiiieiiii e et e et e e e e e e e e e e e e e e e et e et e e aaeeaens 146
8.9. NEtWOrK AdAreSS TYPES ..ovuueiiieiii i eeiiee et e e e e e e e e e e e e e e e aneees 149
8.10. Bit SIHNG TYPES .nniiveieii ettt et e e e e e e e e e eees 151
8.11. TeXt SEACH TYPES . oeen ittt e e 152
B.12. UUID TYPE - ieiitiieeeiit ettt ettt ettt e e et e e e et e e e eaanaeeees 154
ST Q1 R 1Y/ o= PP 155
ST N S @ N Y/ o=~ ST 157
S I N = Y P 163
8.16. COMPOSITE TYPES vvuteiitneeiieeei e eie e e e e et e e et e e et e e et e et e e et e e e aaeeeaneeeen 172
8.17. RANGE TYPES ..ttt 178
8.18. Object 1dentifier TYPES ..vuuiiiii e e e e 183
8.19. PO SN TYPE oot 185
8.20. PSEUO-TYPES ... citteiii i ei et e et e e e e e e e e e e e e e e et e et 185

9. FUNCLIONS @N0 OPEIAIOIS ... cvvueiiiieieiee e ee e e e e e e e e e e e e et e et e et e e e eeens 187
1< I oo [or= B @ o= = (] £ 187
9.2. Comparison FUNctions and OPEratorsvevvuneeiineeiiiieeiieeeie e e e eeens 187
9.3. Mathematical Functions and OPEratorscccuveevieeiiieeiieeeiiee e eeaeeeens 190
9.4. String FUNCtions and OPEratorsSccuueeriieiiieeiiiee e e e e e eeaneeeees 193
9.5. Binary String Functions and OPEratorscccuuvevieeiiieeiineeiieeeeieeeaneeeens 207
9.6. Bit String Functions and OPEratorsuvveeuuieeriieeiiieeeieeeneeeeeeaneeaens 209
A = 1 (= ¢ TN\ (o 11 o P 210
9.8. Data Type Formatting FUNCLIONSccoviiiiiiiiin e 225
9.9. Date/Time Functions and OPEratorsc..oveveueeeiieiiiieeiie e e e eeaeeeees 232
9.10. Enum SUpPOrt FUNCLIONSccuuiiiiieeiiecee e e e e e e 244
9.11. Geometric FUNCtions and OPEratorsSceevvuieeiiieeiieeiii e e e e e eaanaes 245
9.12. Network Address Functions and OPEratorseeevuvevuiieeiiieeiiiieeiieeeaneens 249
9.13. Text Search Functions and OPEratorscoovvvveiiieeiiiieeiieeeeieeeei e eieeeen 251
9.14. XML FUNCLIONSeiiiii ettt e et e e e e e e 256
9.15. JSON Functions and OPEratorscuueeeuuieiiiieeiieeeiieeeiee e e eee e e e eannas 269
9.16. Sequence Manipulation FUNCLIONScoovviiiiiiiieiiiieceee e 278
9.17. Conditional EXPreSSIONSuueviviiiiieiiieeeieee e ee e e e e s e e e e 280
9.18. Array FUNCtions and OPEratorsScc.ueeuueeiinierieeriiieeiee e eaieeeaneeeens 282
9.19. Range FUNctions and OPEratorscc.uveivieeiieeiii e e e e e e e eaen 286
9.20. Aggregate FUNCLIONScuuiiii e e e e 288
9.21. WINAOW FUNCLIONSuuieeiiiii e e e e 295
9.22. SUDQUENY EXPrESSIONS ...vuuciiiieeiieiiieeet e e et e e e e e eeat e e et e e st e e e e eaneenen 297

PostgreSQL 10.13 Documentation

9.23. Row and Array COMPAIiSONSevuuieiiieeiiieeeieesteesieeestneeatneeeteesanaaees 300

9.24. Set RetUrNing FUNCLIONSuiiii i e e e 302

9.25. System Information FUNCLIONSccovuiiiiiiiiiiiec e 305

9.26. System Administration FUNCLIONScouuiiiiiieiieeii e 321

9.27. Trigger FUNCHIONS .. .ouuiii et e e e e e e e et eeaaeees 337

9.28. Event Trigger FUNCLIONScouuiiiii e e e e 338

O Y oL o017/ = o] o PN 341
FO. 1. OVEIVIBIW Luueiiiii ettt e e et s e e et s e e e et a e e e et aeeeeatnaeaeees 341

J0.2. OPEIAIONS ittt ittt 342

10.3. FUNCLIONS ...ttt e et e e e et e e e e et e e e eetaaeeeee 346

O R 1 oI (o] - o = 349

10.5. UNI ON, CASE, and Related CONSIIUCESuuveviiiiieiiiiieeceiie e 350

10.6. SELECT OULPUL COIUMNSvvueeiiiieeeeiiie e e et e e e et e e 352

T o (== USSP 353
00 O 1 oo 0 1o ISP 353
2 1 o L= G Y/ o === 354

11.3. MUItiCOIUMN INAEXES .. .ceveiiieeiei e 356

11.4. Indexes and ORDER BYcicvuiiiiiiiiiiieiiiii ettt e s 357

11.5. Combining MUltiple INAEXESoviinieiieeie e 357

12.6. UNIQUE INAEXES ...vneeeeeei et e e e e e e e e e e e e 358

11.7. INAEXES ON EXPrESSIONS ...vuivvieeiiiieii e eie e e e e e e e e e e e e et e e eaneesanees 358

11.8. Partial INAEXES .. .cevvviiieiiiii e eaens 359
11.9. Operator Classes and Operator Familiesc.cooevviviiiiieiii e, 362
11.10. Indexes and CollationSoevvueiiieiiiiiii e 363
1211, INAEX-ONIY SCANS ...cvviiiiinieii e e e e e e e anas 364
11.12. Examining INdeX USAQgEuviuniiiiieiii e e e e e e e e 365

N T L = A= o 367
2 O 1 1 oo (0 1o SO SUPPTTRSPP 367
12.2. TablesS @and INAEXEScoevviiiiiiii e 371

12.3. Controlling TexXt SEarchccuviiiiiiiii e 373

12.4. AddItional FEAIUMESuuiiiiiii e 379

D25, PaISErS .. ettt ettt ettt ettt 384

12.6. DICHONAITES ..vuieeiii ettt e e et e et e e e e e e ra e 385

12.7. Configuration EXamMPIEcouiiiiiiiiii e 394

12.8. Testing and Debugging Text SEarchcooovviveiiiiiiii e, 396

12.9. GIN and GiST INAEX TYPES .vuuiiineiiieeiiieeiii e e e e e e e e e e e 400
2250 O T 1= o ST o) oo o 401
2 T R 1] = o) PP 404

13. ConCUrrenCy CONLIOlccee e e r e e e e e aaas 405
G35 I 1 11 oo [0 1o PP 405

13.2. Transaction ISOIAONccvuvnieiiiii e e 405

13.3. EXPlICIt LOCKING «.cvvvteiiieei e e e e e e e e e e e e eeen 411

13.4. Data Consistency Checks at the Application Levelcccccocoviviiiiinnn. 416

T O (V= PP 418

13.6. Locking and INAEXESvvvniei e 418

14, P OIMANCE TIPS coivniiiieii ettt e e e e e e e e e e e e e et e e et e et e e aa e eens 419
14.1. USING EXPLAIL N Looi e 419

14.2. Statistics Used by the Planner ... 430

14.3. Controlling the Planner with Explicit JO N ClauseScc.oeevvvieviinieennnnnns 434

14.4. Populating @ Databasecc.ueiinieiiiieeie e e e e e e 435

14.5. NON-DUrable SEttiNGScvvvniiiieeii e e e e e e 438

15, Parallel QUETY ...ouniiiiii e e 439
15.1. How Parallel QUEry WOrKScovviiiiii e 439

15.2. When Can Parallel Query Be USed?ocuvviiiiiiiiiiiiiiiecee e 440

15.3. Parallel PIanscocovuniiiiiiie et 441

15.4. Parallel SEfEtYooveeeiiieiiis e 442

RIS o V7= g AN 41T o T (= (o o SO 444
16. Installation from SOUrCE COUEuuiiiiiii e 450

PostgreSQL 10.13 Documentation

T S o g Y= £ o] o PP 450
16.2. REQUITEIMENES ..uuiii e e e e e e e e e e e e e e e et e e aaeeeanas 450
16.3. GELtNG ThE SOUICEciiiciii e e e e e 452
16.4. InStallation ProCeAUMEivieeiiiee e 452
16.5. Post-INstallation SEIUPc.ueiveicii e 465
16.6. Supported Platformsoiiiiiiiii e 466
16.7. Platform-specific NOESccvuiiii e e 467
17. Installation from Source Code 0N WINAOWSoveiiiiiiieiiiiiie e 475
17.1. Building with Visual C++ or the Microsoft Windows SDK 475
18. Server Setup and OPEratioNocvuueiiiierii e e e e e 480
18.1. The PostgreSQL USEr ACCOUNLcvuuiiieiiieeeieeeiee e e e et e e e e eaaeeaens 480
18.2. Creating a Datahase CIUSLEYoivvniiiiiiciie e 480
18.3. Starting the Database SErVErccouviiiiii e 482
18.4. Managing Kernel RESOUICEScovviiii i e e e e e e 485
18.5. Shutting DOWN the SEIVErcovuiiiiii e 494
18.6. Upgrading a POStgreSQL CIUSLErcccvueiiieiiiieeii e ee e e e 494
18.7. Preventing Server SPOOfiNgueierieiiiieii e e e e e 497
18.8. ENCryptioN OPtiONSccvuiiiiiieii e e e e e e e e eaas 497
18.9. Secure TCP/IP Connections with SSLccoviiiiiiiiiiieceeee e, 498
18.10. Secure TCP/IP Connections with SSH Tunnelsccovvvvvviiniiiiiinneeenn, 502
18.11. Registering Event Log on WINAOWSc..cveiiiieiiiieiii e eeeeaeees 503
19. Server ConfigUIAtioniiiiieii e e e e e 504
19.1. SEtting ParamMeterSivvi e e 504
19.2. Fil@ LOCAIIONS ...uueeeieie et ettt e et e et e e et a e e eeaaneeeees 507
19.3. Connections and AUtNENtICALTIONviiiiiiieiie e 508
19.4. Resource CoNSUMPLIONovuieiii e e e e e e e e e e e e e e et e e e eanas 513
19.5. WrIt€ ANEAH LOQ ..vviviiiii e 520
RS S = o) 1 o o 525
19.7. QUENY Planningccouniiiii i 530
19.8. Error Reporting and LOGGiNGcvuuvernieeiieeiieeiieeeiieeeieeeaeesinneeenneeennnas 535
19.9. RUN-TIME SEALISHICS ..oevevvieeeeii e e s 545
19.10. AUtOMALIC VACUUMINGivvneiieeiiii et e e e e e e e e e e e e et e e eteeeaneees 546
19.11. Client Connection DEfALISocvevuiieiiiiiii e 548
19.12. LOCK MaNagemeNtoviinieiiieeiieeieee e e e e e et e e e e e e e e st e e et eeaneens 556
19.13. Version and Platform Compatibilitycccoeeiiiiiiiiiiiiiiicin e, 557
e e o T P | o 559
19.15. Presat OPLiONS ...ccvuiiii i eiiiieeei e e e et e et e e e e e e e e e e e et e e et e e e eaans 560
19.16. CUStOMIZEA OPLIONSivviieieei e e e eaa s 561
19.17. DEVEIOPEr OPLIONSvuuiiiieiiiieiiii e e e e e e e e e e e e e e e eaeans 561
19.18. SN0t OPLIONS . .cvvueei e e e e e e e e e e e e e e e e e e e aaaaes 564
20. Client AUtNENLICALIONuueieiiis e e e e e 566
20.1. The pg_hba. conf Fileccooiiiiiii e, 566
20.2. USEr NAIME MBS ..ottt et 573
20.3. Authentication MethOSviiiiiiiiiii e 574
20.4. Authentication Problemsviiiiiiiiieiiie e 583
21, DAtahase ROIESciveiiiee e 585
21.1. Datahase ROIESeiiiiiiee et 585
21.2. ROIE ALIDULES ... e e eees 586
21.3. ROIE MEMDBErSNIP . ovecii e e 587
21.4. Dropping ROIES 588
21.5. DEfAUIT ROIES ...t e e e e e e e 589
21.6. FUNCLION SECUMLY .uuuiiiiieii e e e e e e e e e e e e e e et e e aa e eens 590
22. Managing Databaseseiviiiiiie e 591
P T O Y= a1 T PP 591
22.2. Creating @ Databasecccuuieiiieiii e 591
22.3. Template Databasesoevvniiiiiiccie e 592
22.4. Database COonfigurationc..eeiuiiieiieeii e e e e e e e eaes 593
22.5. Destroying a DatabhaSecccvuiiiiiiiiiie e 593

Vi

PostgreSQL 10.13 Documentation

22.6. TADIESPACES .. .cvvveeii e 594

P T oo 2 1o T 597
PG T I o oz LIS o] oo o AP 597

23.2. Coll@tion SUPPOITcveieeiee e e e e e e e e e et e et e e aaeeeens 599

23.3. CharaCter Set SUPPOIciii e e e e e e e e e e aes 604

24. Routine Database MaintenanCe TasKSuveeiiiiiieeriiiiiee e et e e 611
24.1. ROULINE VACUUMING ..uuiiitieii e e eee e et e e e e e e e e et s e s e e et e e et e e eaneeenns 611

24.2. ROULINE REINAEXING ©..cvvueiiiieiii e e e e e e e e e e e e e eaens 619

24.3. Log File MaNteNanCeuueeeueiiii e e e e e e e e e e e eaes 619

25. BaCKUP N0 RESLOTEiieiieii et e e e e e e e e e eanas 621
25. 1. SOL DUIMIP .ottitiiieeeie ettt e e e e e et e s e e e e e e et e s e e e e e e e aeaaan e e eeaeaeannes 621

25.2. File System Level Backupc..oevviiiiiiiiiiiicce e 624

25.3. Continuous Archiving and Point-in-Time Recovery (PITR)cccvveenn.. 625

26. High Availability, Load Balancing, and Replicationcccoovevieiiiiieiiineiinnens 636
26.1. Comparison of Different SOIUtiONScccuiviiiiieiiii e 636

26.2. Log-Shipping Standby SErVErScccvuiiiiiieiii e 639

26.3. FOVEN ..o 648
26.4. Alternative Method for Log Shippingcccvveviiiieiiieeii e, 649

26.5. HOt StANADY ..vvvviiieeiiiiiiiiee e e e e e e e e e e a e e e aaaae 650

27. RecOVErY CONfIQUIAiONcouuiii i e e e e e e e e e e e e e e aae e 658
27.1. Archive RECOVENY SELINGS ...uovvvniiiie e e 658

27.2. Recovery Target SEtNGSu.evvvneeiiieiiii e e e e e e e e e e e e eaans 659

27.3. Standby Server SELNGS ...vuiiv e 660

28. Monitoring Datahase ACHIVITYccvuiiiiieii e e 662
28.1. Standard UnNiX TOOIS ..euvuuieeiiiiie it 662

28.2. The Statistics COHECIONuiiiiiii e 663

28.3. VIEeWING LOCKS .. .couiiiiiiiic e 693

28.4. Progress REPOMINGvvvnieiii e e e e e e e e e e e e s e e e e aaeees 694

28.5. DYNAMIC TIaCiNG ..vuueiiieiiiieeiiieeie e e e e e e e e e e e e e e e e s e e e e e aaeeanns 695

29. MOoNItoring DiSK USAQE .. .cvuuiiiiiiiii i et e e e e e e e 706
29.1. Determining DiSK USAQEuuiiviiiiiiieiii e e e e e e e et e e e 706

29.2. Disk FUIl FaIlUIccceeieiiii e e e e aaaaes 707

30. Reliahility and the Write-AhEad LOguvvvvieiiiicii e e 708
O = = T] 1 Y SSPPTRRN 708

30.2. Write-Ahead Logging (WAL) ...oouiiiiii e 710

30.3. ASynchronous COMMITuieiunieiiiieei e e e e e e e e e eaaeens 710

30.4. WAL Configurationccuueeiuuieiiieeiiee e eese e e ee e e e e e e st e e ean e eeees 711

30.5. WAL INEEIMEIS ..ttt e e et e e e e e et e e eees 714

G I oo o= I = 3= o] o= [o KOS 716
B . o o= 1o o USSR 716

G IS U 1= v] o1 Lo o P 717

G G I 0o 1T £ UPP 718

G I (== e o LS 718

315, ATChITECIUIE ...t 719

13 ST 1 o g (o oo [720

S o) YRR 720

31.8. Configuration SEINGSuocvunieiiieiiie e e e e e e e e 720

31.9. QUICK SEIUD ... eeeeeeeieii et e e e e e e e e 720

A B L= | (== o T 1= = 722
32.1. RUNNING the TESES ...iviciii e e e e e e e 722

K == B Y 1 1 o) o S 725

32.3. Variant Comparison FilEScoouiiiiiiiiii e 727

K I o == £ UUPST 728

32.5. Test Coverage EXaminaionc.uvveiuneeiiieiiie e e e e e e e eaaeeeeen 728

IV, Clent INEEIACES ...vuiiiie e a s 729
33, 1HBPG = C LIBrary ..ooveei i 734
33.1. Database Connection Control FUNCLIONSccccviiiiiiiiiieiii e, 734

33.2. ConNeCtion StatUS FUNCLIONSuuuieiiiiiieeeiii e e e 747

vii

PostgreSQL 10.13 Documentation

33.3. Command EXeCUtion FUNCLIONSooeviiuiieeiiiiieeeeiie e 752
33.4. Asynchronous Command ProCESSINGcuuvvirieiiieeiiieeeiieeeiieeeineeaieeaanens 767
33.5. Retrieving Query Results ROW-BY-ROWccccoieiiiiiiiiiiii e, 771
33.6. Canceling QUENES IN ProgresSuevvuneeiiiieeiieeeieeee e e ee et e e e e e aens 772
33.7. The Fast-Path Interfacecoovuiiiiiiiiii e 773
33.8. Asynchronous NOEIfiCatioNcc.uviiiiiiiii e, 774
33.9. Functions Associated with the COPY Commandccccvveevviiiineeeiiinnennns 774
33.10. CONLIOl FUNCHIONS .. vteeiiiii et e et e e e e et e e e et e e e eaan e eeene 778
33.11. Miscellaneous FUNCLIONSuuiiiiiiiiee e e 780
33.12. NOLICE PrOCESSING ©.uevvtueeeineeiieeei e eie e e e e et e e e e e e e e et e e et e e et e eaneeaens 783
33.13. EVENE SYSIOIM .ouuiiiiiii e e 784
33.14. Environment VariableSovviiiiiiiiiiii e 790
33.15. The Password FIleooeuuiiiiii e e e 792
33.16. The Connection Service Fileoviiiiiiiiiiii e 792
33.17. LDAP Lookup of Connection Parametersccoceuveviiieeiiieeiinieeieeeineens 793
3318, SSL SUPPOIT . .eeei ittt 793
33.19. Behavior in Threaded Programscoceuieiiiieeiin e cn e 797
33.20. Building [ibpg Programsccuiiiiii i 798
33.21. EXaMPIE PrOgramSciiiieiiiieeiii e e e e e e e e e e e e e e e e e e eaes 799
7/ I (o[-l @) o[ox P 810
172 50 I g1 1o [0 o ' o PP 810
34.2. Implementation FEAIUIESocvuuiiiii e e 810
34.3. ClENt INtEITACES . .oevvvi et eees 810
34.4. Server-Side FUNCLIONSuuiiiiiiii e e et e e e eees 814
34.5. EXAMPIE Programcouuiiiii e e e e e e e e e e e 815
35. ECPG - Embedded SQL iNC ..ouvuiiiiiii et 821
L T I =T o o= o | 821
35.2. Managing Database CONNECLIONSoeivuiiiiiieiiieeiie e e e e e e e e 821
35.3. Running SQL COMMANGSccvuuiiiiiieiiiie e e e e e e e eaens 824
35.4. UsSing HOSt VariableScovuiiiiici e 827
35.5. DYNAMIC SQL ..ouuiiiiiiii e e 840
35.6. POLYPES LIbrary ..o..uceeeiiii i 841
35.7. USING DESCIIPLOr ATEBScivvieeiieiiiie e e e e e e e e e e et e e e eaa e eaes 854
35.8. Error Handlingccvueiiiiiiii e e e e e 867
35.9. PreproCessor DITECHIVESu.iiii i e e e e e e e e e e 873
35.10. Processing Embedded SQL Programscc.uveevieiiiiieiiieeeiiieeiineeeieeeann 875
35.11. Library FUNCLIONScuuiiiiieii e e e 876
35.12. Large ObJECESivuciiiieiii et 877
35.13. CH+ APPHCALIONS ...cevveiii e e e 878
35.14. Embedded SQL ComMManScouuiiiiieiiiieeii e e e e e 882
35.15. Informix Compatibility MOdecoeeiiiiiiiii e, 904
LI S 101 1= 11 =P RTN 918
36. The INformation SChEMAuiiiiiii e 921
36.1. The SChEMA ... e 921
36.2. DAIA TYPES .eueeeeeii ettt ettt e et e e e e e 921
36.3.informati on_schema_catal og namecccoccceveiiiiiiieee e, 922
36.4.adm ni strable role _authorizationscccoeeiiiiiiiiiin e, 922
36.5. applicabl @ rol €S .o 922
36.6. At 11T DUL ES oot 923
36.7. Char @Ct I _SEL S it e 926
36.8. check_constraint_routine_usageccoocceeveviiieiiiieciin e, 927
36.9. CheCK_CONSErai NES .oiiiiiiii e 927
36.10. COI 1 @t T ONS 1oviieiiiii e 928
36.11.col l ati on_character_set _applicabilityccccooriiiiniinninannn. 928
36.12. COl UM_dOMBI N_USAQE ..eievniiiiiieiiiee e e e e e e e e e ea e 928
36.13. COl UNM_OPL i ONS ooviiiiii e e e 929
36.14. COl UMM_Pri Vil €0ES ooiiiiiiii e 929
36.15. COl UNM_UAL _USAQE .uiiiiiieiii i e e e e et e e e e 930

viii

PostgreSQL 10.13 Documentation

36.16. COl UNMMIS Lot e et e e e 931
36.17.constrai Nt _COl UNM_USAQE ...uuiiivniiiiiieiiie e eei e e e e e eaaee s 935
36.18. constrai nt_tabl @ USAgec.cceuviiiiiiiiiii e 936
36.19. data_type priVvil €0€sS .o 936
36.20. dOMBI N_CONSE T A NE'S 1ouiiiiiiiiii e e e 937
36.21. dOMBI N_UAL _USAQE .iiiviiiiii e e e e e e e e e e e 937
1 o220 s (o] 11 U o K-S PSPPI 938
36.23. €l EIMENE L Y PES i 941
36.24. enabl €d_r 0l €S ..o 943
36.25. forei gn_data_ wrapper_Opti ONScoocviiiiiiiiiiii e 943
36.26. fOrei gn_dat @ W apPPer'S .oiiiiiiiiii e 944
36.27.forei gn_Server_OpPti ONS ..oiiiiiiiiiiiii e 944
36.28. f OF €I gN_SBI VI S 1otiiiiiieiii e e e et e e e e e e e e et e et e e ees 944
36.20.foreign_tabl e Options ...ccooiiiiiiiiii i 945
36.30. forei gn_tabl €S ..o 945
36.3L. KEY_COl UM _USAQE ..iiiviiiiii i e e e e et e e e e et e et eeaaee e 946
36.32. PAI AIMBL B S ittt 947
36.33. referential _constrainNtsccoooiiiiiiiiii i 949
36.34. 10l €_COl UM _grant's ..cocouiiiiiiii e 950
36.35. 10l € routinNe_grants ...cooiiiiiiiiie e 950
36.36.r0l e _table grantsoocooiiiiiiiii 951
36.37. 10l €_UAL _grant'S ..oiiiiiiiiiii e e 952
36.38. 10l €_USAQE _grant S ..iiiiiiiiiii e 952
36.39. roUt i NE_Pri Vil BOES coiiii i 953
36.40. T OUL T MBS oiiiiiiiieeeii et e e e et e e et e e e eaa s 953
36.41. SCREMAL @ ooivvviii i 958
36.42. SEUUEBINCES ouiiiiiniiiiie et e e e e e e e e e e e e e e e e e e 959
36.43. SOl T AL UM @S ivniii i 960
36.44.sql _inmplenmentation_ info ..o 961
36.45. SOl | @NQUAGES ..ucivniiiiii e 961
36.46. SOl _PACKAGES ovviiii i 962
36.47. SOl PAIt S ciiiiiiii i 962
36.48. SOl ST ZI N weriiiiiiii e 963
36.49.sql _Si Zi NG _Profil es i 963
36.50.tabl @ CONStrai NES ..o e 963
36.5L. tabl € Pri Vil 0ES . 964
36.52. 1 ADI €S euiiiiii 965
36.53. T FANST OF ITB ..o e 966
36.54. triggered _update Col UMMS ...ocoiiiiiiiiii e 966
TSIt ST o e [0 =] = 967
36.56. Ut _Pri Vil €0ES oo 968
36.57. USAQE_Pri Vil BOES .o 969
36.58. user _defined tYPeS .o 970
36.59. user _mappi NG_OPLi ONS ..iiiiii e 971
36.60. USEI IMBPPI NUS wuuiiitieiiieeiii e i e e e e e e e e e e e e e e e st e e e eanaeeeen 972
36.61. Vi EW _COl UMMN_USAQE .ivvniiiiiciiii e e e e e e e e 972
36.62. Vi EBW I OUL i NE_USAQE t.vueieiieiii et eeeeee e e e e e e e e e e e e e eeen 973
36.63. Vi eW tabl € _USAQE .iovvviiiii e 973
B0.04. Vi BWS oouiiieiiiiii e et e et 974
AV = A= . (0o = 0 1411 Vo PPN 975
7. EXIENAING SQL ...eeviieiiii e 980
37.1. How Extensibility WOrksSc.ooiiiiiiiiiiii e 980
37.2. The PostgreSQL TYPE SYSIEM ...vuviiiiiciie e e e 980
37.3. User-defined FUNCLIONSccuuiiiiiii e 982
37.4. Query Language (SQL) FUNCLIONScccvuiiiiiieiii e e e e e 982
37.5. FUNction OVerloadingooeeeuiiiiiiiiiie e 997
37.6. Function Volatility Categoriesuuveiiiieiiiieiiiieee et eeie e e e e 997
37.7. Procedural Language FUNCLIONSc..eviiieiiieei e ee e e e 999

PostgreSQL 10.13 Documentation

37.8. INternal FUNCLIONSuuiiiiiiii e 999
37.9. C-Language FUNCLIONSoivuniiiiie e e e e e 999
37.10. User-defined AQQregaesocvvuiiiiii e e 1020
37.11. USer-defined TYPES ..u.ivun it e e e e 1027
37.12. User-defined OPEratorsccvuuieiiiieeiiieeiiieeei e e e e e e e e e e e ennes 1031
37.13. Operator Optimization INfOrmMationccceceuiieiiiieiiii e, 1031
37.14. Interfacing EXtensSions TO INAEXEScvvvnieiiiiiii e 1035
37.15. Packaging Related Objects into an EXteNsioncccoeevvieviiieeiineennnn. 1047
37.16. Extension Building INfrastruCturecocooveeiiiiiiiiecie e, 1054
G T I o o = N 1058
38.1. Overview of Trigger BEhaviorcccceviviiiiiiiiii e, 1058
38.2. Visibility of Data ChangeSvvevuiiiiiieiii e e e 1060
38.3. Writing Trigger FUNCLIONS IN Coviiiiiiiicci e 1061
38.4. A Complete Trigger EXamplecoovuneiiiiiiiii e 1064
L T Vo A N T o [~ £ 1067
39.1. Overview of Event Trigger BEhaViorcoocvvieiiiiiiiiecie e, 1067
39.2. Event Trigger FIring MalriXcccuuieiieeiiiieiii e e 1068
39.3. Writing Event Trigger FUNCtionsSin Ccooooiiiiii i 1073
39.4. A Complete Event Trigger EXamplecooviviiiiiiiiii e, 1074
39.5. A Table Rewrite Event Trigger EXampleooeviiiiiiiiiiieciiiieceeeiiees 1075
40. The RUIE SYSLEIM .. .eeiiieeeee et e e et eeeeaa e eeeees 1077
40.1. ThE QUENY TIEE .uuniiiiieii e ettt e e e e e e e et e e e e aaeees 1077
40.2. Views and the RUIE SYSEMcovniiiii e 1079
40.3. MAeriaiZed VIBWS ... it e e 1085
40.4. Rules on | NSERT, UPDATE, and DELETEcccviiiiviiiinieiiiieeceii, 1088
40.5. RUIES aNd PrIVIIEES .. .covneii e 1098
40.6. Rules and Command SEALUSc.uuieiiiiiiieeiiiiieeecen e e 1100
40.7. RUIES VErSUS TIIQOEN'S c.vueiiieeiiiieiiiieeeee e e e e eae e et eeeeteeete e et e eaaeeaanaaes 1100
41, Procedural LanQUABOESuevuunieiieeiiiieeiie e e eeesteeeae e st e et e e st e estnaeeaaeaanaens 1103
41.1. Installing Procedural LangUagESccuevviieiiieiiiieciineee e ee e e 1103
42. PL/pgSQL - SQL Procedural LangUagecccuuvviinieiiieeiiii e e eee e e e 1106
A I @Y= VPSPPSR 1106
42.2. Structure of PL/PGSQLivveieiie e 1107
42.3. DECIArAHONS ...t 1109
O e d o (=== 0] 1 1114
42.5. BASIC SEALEIMENESuiiieiiiieeieii ettt et e e e e e e e eaeens 1114
42.6. CONLTOl SITUCLUMNES ...t e e e e e eeaanns 1121
A O 1 o = T PP UP TP 1135
42.8. Errors ant MESSAgESvuuevvreiiieiiiiee e e ee e e e e e e e e e et e et e e e e aanaes 1140
42.9. Trigger PrOCEAUIESuiiiiieii e e e e 1142
42.10. PL/pgSQL Under the HoOdccouiiiiiiiiiiici e, 1151
42.11. Tips for Developing in PL/PGSQLuovvvniiiiiciieece e, 1154
42.12. Porting from Oracle PL/SQLccovuiiiiiieiiieeee e 1157
43. PL/Tcl - Tcl Procedural LanQUagEcceuueiiiieiiiieeiii e e e e e e e eaaee e 1167
T I @Y= VPSPPSR 1167
43.2. PL/Tcl Functions and Argumentsccuuveviieeiineeiiiieeiieeeieeeei e eeaeeeens 1167
43.3. Data Values in PLITCl ..oooeeiiic e 1169
43.4. Globa Datain PLITCl ..ouuuiiiiiii e 1169
43.5. Database AcCeSS From PL/TCl ...uvviiiiiiiiii e 1170
43.6. Trigger Procedures in PLITCl ..o 1172
43.7. Event Trigger Procedures in PLITCl ...uoovviiiiiiice e 1174
43.8. Error Handling in PL/TCl ...ccvniiiii e 1174
43.9. Explicit Subtransactions in PL/TClcooviiiiiiiiie e 1175
43.10. PL/Tcl CONfigUIationcceuuieiiiieeieeeeie e e e e e e e e e e e e e e e e eenen 1176
43.11. Tcl Procedure NEMESviiiiiiieeiiii e e et e e e e 1176
44, PL/Perl - Perl Procedural Languageoevvueeiiieeii e eeieeee e e e e e e e e 1178
44.1. PL/Perl Functions and ArguMENESccuuieiiiieeiiieeeiieeeee e e eaineeaieens 1178
44.2. Data Values in PLIPErl ..o 1182

PostgreSQL 10.13 Documentation

A4.3. BUIE-IN FUNCHIONS ...coeviiecc e 1182

44.4. Globa Values in PLIPENooiiiiiiccei e 1186

44.5. Trusted and Untrusted PL/Per|oviiiiiiiiiiiiiiiieee e 1187

Y T o I = 4 I I T o L= 1188
A4.7. PLIPerl EVENt TIIQOEIS . ivvveiiiieiiii e e e e e e e e et e e e et e e e eens 1190
44.8. PL/Perl Under the HOOooviiiiiiiiiii e 1190

45. PL/Python - Python Procedural Languagec.oovevvieiiieiiiieciieeeeeee e 1192
45.1. Python 2 vS. PYthOn 3 ... 1192

45.2. PL/PYythOn FUNCHIONScvviiiici e 1193

A5.3. DAA VAIUBSuiiiiiii et 1194

45.4, SNaNG Dalal .. .ccvuiiiiieiiii e 1199

45.5. Anonymous Code BIOCKSovvuiieiiiieii e e 1199

45.6. Trigger FUNCHIONScivviiii e e e e aaa s 1200

A5.7. DAADASE ACCESSvunieieiiii e et e et e e e et e e et e e e eaaan 1200

45.8. EXplicit SUDLraNSaCioNSooivuiieiiiee e e 1204

45.9. Utility FUNCHIONSuiiiiiciii e e e e e 1206
45.10. Environment VariableScooivuiiiiiiiiiii e 1207

46. Server Programming INtErfaceooouviiiiiii e 1208
46.1. INterface FUNCLIONScovviieeiii et e et e e e ea e eees 1208

46.2. Interface SUPPOrt FUNCLIONScvvveiii e e e e 1242

46.3. Memory Managementc.vvuviuieiiiiiie e 1250

46.4. Visibility of Data Changesccuuviiiiiiiiiiiiii e 1260

4B.5. EXAMPIES ..oeviiei et 1260

47. Background WOTKEr PrOCESSEScccuuiiiieiiiietiiee e et e e e e e et e et e e e aanas 1264
48. LogiCal DECOUING ...vuuiiiieiiiieii e e et e e e e e e e e e e et e e et e e et e e aaaees 1267
48.1. Logical Decoding EXampPleScouviiiiiiiiiiicii e 1267

48.2. Logical Decoding CONCEPLSuuevvueeiieeiiieiiieeei e e e e e e e e e eaaeees 1269

48.3. Streaming Replication Protocol Interfacecccoveviiiiiiiiiiiiiiiineceeeenn, 1271

48.4. Logical Decoding SQL INtErfaceccuuveiiiiiiiiiieii e 1271
48.5. System Catalogs Related to Logical Decodingcoocvvveevveiiieiinnennnnn. 1271

48.6. Logical Decoding OUtpUt PIUGINSccvuiiiieiieeii e eei e e 1271

48.7. Logical Decoding OULPUL WIHLEISucvvieiiiiiciie e 1275

48.8. Synchronous Replication Support for Logical Decodingccocevvneennnn. 1275

49. Replication Progress TraCkingoevuuieiiiieiiiieeie e e e e e e e e e s e saneens 1276
VL REFEIBNCE ... ettt et ettt e e e e e 1277
S @ I o 410170 1282
A B RT ittt 1286
ALTER AGGREGATE ...ttt ettt e et e eeeaanns 1287
ALTER COLLATION .ttt e e e e e et e e e es 1289
ALTER CONVERSIONoiiiiiiiiiiieeiiii ettt e et e e 1291
ALTER DATABASE ..o 1292
ALTER DEFAULT PRIVILEGESccoiiiiiiiiii e 1295
ALTER DOMAIN L. e et e e 1298
ALTER EVENT TRIGGERcccuuiiiiiiiiiieeiii e 1301
ALTER EXTENSION ...uuiiiiiiiieiiiii ettt eeneas 1302
ALTER FOREIGN DATA WRAPPERcccuiiiiiiiiiieiiiin e 1305
ALTER FOREIGN TABLE ...cootiiiiiii e 1307
ALTER FUNCTION L.uiiiiiii ettt e e e e 1312
ALTER GROUP ..ottt e e et e eeenens 1316
ALTER INDEX ..ottt e et e et e e e e 1318
ALTER LANGUAGE ...ttt 1320
ALTER LARGE OBUJECT ...ouuiiiiiiiiieiiiinie et e et e et e et e e et e e e ean e 1321
ALTER MATERIALIZED VIEWccooiiiiiiiiiie et 1322
ALTER OPERATOR ..ottt e e eeeea e e eees 1324
ALTER OPERATOR CLASS ...ttt ettt e e 1326
ALTER OPERATOR FAMILY oottt 1327
ALTER POLICY oiiiiiiiii ettt e e 1331
ALTER PUBLICATION ..ottt 1333

Xi

PostgreSQL 10.13 Documentation

ALTER ROLE ..ot 1335
ALTER RULE ... 1339
ALTER SCHEMA ..o 1340
ALTER SEQUENCE ..o 1341
ALTER SERVERcoiiiii e 1344
ALTER STATISTICS ... 1346
ALTER SUBSCRIPTIONcoiiiiiiiiiiiiiie e 1347
ALTER SYSTEM ..o 1349
ALTER TABLE ..o 1351
ALTER TABLESPACE ... 1365
ALTER TEXT SEARCH CONFIGURATIONoiiviiiiiiiiiiineineii e, 1367
ALTER TEXT SEARCH DICTIONARY ..ot 1369
ALTER TEXT SEARCH PARSERcociiiiiiiiii e, 1371
ALTER TEXT SEARCH TEMPLATE ...t 1372
ALTER TRIGGER ..o 1373
ALTER TYPE ..o 1375
ALTER USER ..o 1378
ALTER USER MAPPING ..ot 1379
ALTER VIEW .o 1380
ANALYZE ..o 1382
BEGIN ..o 1385
CHECKPOINT .t 1387
L O SE . 1388
CLUSTER ..o 1389
COMMENT Lo 1391
COMMIT e 1395
COMMIT PREPAREDcooviiiiiiiiiic e 1396
GO Y 1397
CREATE ACCESS METHODccuiiiiiiiiiiiciii e 1407
CREATE AGGREGATE ...t 1408
CREATE CAST o 1415
CREATE COLLATION L..iiiiiiiiiiiiii e 1419
CREATE CONVERSION ..ottt 1421
CREATE DATABASE ..o 1423
CREATE DOMAIN ..ot 1426
CREATE EVENT TRIGGERooiviiiiiiii e 1429
CREATE EXTENSIONooiiiiiiii e 1431
CREATE FOREIGN DATA WRAPPERccoooiii 1433
CREATE FOREIGN TABLE ..o 1435
CREATE FUNCTION ..ottt 1439
CREATE GROUP ..ottt 1447
CREATE INDEX ...t 1448
CREATE LANGUAGE ... 1454
CREATE MATERIALIZED VIEW ... 1457
CREATE OPERATOR ...ttt 1459
CREATE OPERATOR CLASS ...t 1462
CREATE OPERATOR FAMILY .o 1465
CREATE POLICY ..ot 1466
CREATE PUBLICATION ...ttt 1472
CREATE ROLE ...ooiiiii e 1474
CREATE RULE ..o 1479
CREATE SCHEMA ..o 1482
CREATE SEQUENCEciiiiiiiiiii e 1485
CREATE SERVER ...t 1489
CREATE STATISTICS ...t 1491
CREATE SUBSCRIPTIONouiiiiiiiii e 1493
CREATE TABLE ..o 1496
CREATE TABLE AS ... 1514

Xii

PostgreSQL 10.13 Documentation

CREATE TABLESPACEoiiiiii e 1517
CREATE TEXT SEARCH CONFIGURATIONcooiiiiiiiiiiiiie e, 1519
CREATE TEXT SEARCH DICTIONARYooiiiiiiiiiiiiiie e 1520
CREATE TEXT SEARCH PARSER ...t 1522
CREATE TEXT SEARCH TEMPLATE ..., 1524
CREATE TRANSFORM ..ottt 1525
CREATE TRIGGERociiiiiiiii e 1527
CREATE TYPE ..o 1534
CREATE USER ...coiiiiii e 1543
CREATE USER MAPPING ..ot 1544
CREATE VIEW Lo 1546
DEALLOCATE ..o 1551
DECLARE ..o 1552
DELETE . o 1555
DISCARD ..ot 1558
DO e 1559
DROP ACCESS METHODcoiiiiiiiiiiiiieiici e 1561
DROP AGGREGATE ...t 1562
DROP CAST oo 1564
DROP COLLATION .ottt 1565
DROP CONVERSIONouiiiiiiiiiiiiiiii e 1566
DROP DATABASE ..o 1567
DROP DOMAIN .ot 1568
DROP EVENT TRIGGERcciiviiiiiiii e 1569
DROP EXTENSION ...couiiiiiiiiic e 1570
DROP FOREIGN DATA WRAPPERccociiiiiii e, 1571
DROP FOREIGN TABLEooiiiii e 1572
DROP FUNCTION ..ottt 1573
DROP GROUP ...ttt 1575
DROP INDEX ..ottt 1576
DROP LANGUAGE ... oot 1578
DROP MATERIALIZED VIEW ... 1579
DROP OPERATOR ...ttt 1580
DROP OPERATOR CLASS ..o 1582
DROP OPERATOR FAMILY oo 1584
DROP OWNEDoiiiiiiiiiiiiii e 1586
DROP POLICY ..ttt 1587
DROP PUBLICATION ..ottt 1588
DROP ROLE ..ot 1589
DROP RULE ..ot 1590
DROP SCHEMA ... 1591
DROP SEQUENCEcoiiiiiiiii e 1592
DROP SERVER ...t 1593
DROP STATISTICS ... 1594
DROP SUBSCRIPTION ..ottt 1595
DROP TABLE ... 1597
DROP TABLESPACE ..o 1598
DROP TEXT SEARCH CONFIGURATIONooiviiiiiiiiiiiiiiic e 1599
DROP TEXT SEARCH DICTIONARY ...couiiiiiiiiiiie 1600
DROP TEXT SEARCH PARSER ..ot 1601
DROP TEXT SEARCH TEMPLATE ..., 1602
DROP TRANSFORM ...ttt 1603
DROP TRIGGERouiiiiiiiiiii e 1604
DROP TYPE ..o 1605
DROP USER ..ottt 1606
DROP USER MAPPINGouiiiiiiii e 1607
DROP VIEW .o 1608
END o 1609

Xiii

PostgreSQL 10.13 Documentation

) O U N I PP 1610
EXPLAIN Lo e 1611
FET CH e 1616
GRAIN T et 1620
IMPORT FOREIGN SCHEMA ...t 1627
IN S E R T ettt et e 1629
1S I PP 1636
LOADD it 1638
L O K ittt et e e aaae 1639
MOV E oottt aaans 1642
N[O 1 1 PP 1644
PREPAREottt 1647
PREPARE TRANSACTION ...ttt e et e et e e 1650
REASSIGN OWNEDuiiiiiiiiieiiiiie ettt et e et eeenenns 1652
REFRESH MATERIALIZED VIEW ...c.ouiiiiiiiien e 1653
REINDEX ... ittt e e e e e e e e et e e e e e 1655
RELEASE SAVEPOINT ..ottt e s 1658
RESE T .ttt 1659
REVOKE ..ottt e e 1660
@ I I ¥ L 1 TSP 1664
ROLLBACK PREPAREDcuiiiiiiiiiiiiiiie ettt e e e eeenns 1665
ROLLBACK TO SAVEPOINT ...ttt e e 1666
SAVEPOINT Lottt e e e e e e e e e aa s 1668
SECURITY LABEL ..ot 1670
SE L T it 1673
SELECT INTO ittt et e et e e et e e e ennns 1693
SE T e e 1695
SET CONSTRAINTS ..ottt e e e e e eeaes 1698
S I (O PP 1699
SET SESSION AUTHORIZATION ...uuiiiiiiiiieeeiii e 1701
SET TRANSACTION ..ttt et e et e eeeni e eaes 1703
SHOW e 1706
START TRANSACTION ..oouiiiiiiiiieee e e s 1708
TRUNCATE ..ottt e e e e e e e e ara s 1709
UNLISTEN L.t e et e e et e e e ena s 1711
L N I PSP 1712
VACUUM L. e ettt e et e e et e e e eat e aeens 1717
VALUES ..o e e e e et e aan 1720
I1. PostgreSQL Client APPlICAIONSuuiiiiieeiii e e e e e 1723
CIUSLEIAD ..o e 1724
(o= 1= 0| o 1PN 1727
(0= (S T PP 1730
01 0] 0o | o S 1734
(01 0] 11 P 1737
1< 0: oo PP PRPRPR 1740
PG _DESEDACKUD ... 1743
0701070 o TN 1750
o100) T 1762
o700 L0 o TP 1765
PO AUMPAIL ..o 1777
[T TS (== |V N 1783
[T T = o= AV L=V 1785
[oTo T (= o1/ oo o= N 1789
1o (== (0] (PP PPRPPPIPRN 1793
01 o | RN 1802
=T 070 1= | o TP 1840
(2= e U 1H 0 o o PSP 1843
[11. PostgreSQL Server APPlICaLiONScvuuiiiiiieeii e e e e e eeaaes 1847

Xiv

PostgreSQL 10.13 Documentation

TNTEAD e e 1848
PY_arChiVECIEANUD i 1852
[oTo T w0 a1 101 [=1 - NN 1854
oo N | S 1855
Lo T = = A1 | 1860
o To T (=111 o P 1863
10 T (=S)Y 1866
o To T === A (142 Vo 1867
o100 oo =" [TP 1871
o102z Lo L1 4o o 1878
105 0 === PPN 1880
POSIMIBSEE ...ttt 1887
RV I 1 1= 0= PSP 1888
50. Overview of PoStgreSQL INtENElScovuiviiiiiiecc e e e 1894
50.1. The Path Of @ QUETNYiiiniiiici e e 1894
50.2. How Connections are Establishedccooovviiiiiiiiiiiiiicc e 1894
50.3. ThE Parser StAgE ...uuivvneiiii e et e e e e e e e eens 1895
50.4. The PostgreSQL RUIE SYStEMcuvuiiiiiiiiieeeiiie e 1896
50.5. Planner/OptiMiZErccuuiiiiiieii e e e aaa s 1896
S O = o U (o TP 1898
Y ISV 1< 0 (IO - [0 o 1899
oY I @Y= V= 1 SRR 1899
51,2, PO _A0GI €A & it 1900
LY G T o T o - 1o PP 1903
LY I o To = 11 £ 0] o PP 1903
LY I o To = 101 0] S o o PP 1904
B5L.6. pg_at trdef oo 1905
BL7.pg_attribut @ oo 1905
B5L.8. PO _AUL NI d oo 1908
51.9. pg_aut h_mMBNDErS .. 1909
D100, PO CaAS T ittt 1910
BLAL PO Cl @SS it 1911
LY I 2 o To T o2 o1 I - Y o 1 o] N 1915
Loy I RS o To T X o] 1 11 A - Y I o | PN 1916
Loy I S o To T X o] 0 A VZ=Y G =Y I o PN 1918
51.15. pg_dat @DaSe ..ccvuiiiiiiiii 1919
51.16. pg_db rol e SettinNg .coociiiiiiiiii e 1921
51.17. pg_defaul t _acl ..o 1921
Lo I S 0 o To o =Y 11 o (o RPN 1922
Lo I K T o To e (=YY of g I o) A 0 o [P 1923
LY 2O o To T = 0 16 o PP 1924
Loy W2 O o To TR =A V=1 o | A A o Lo [1924
51.22. PG _EXE ENST ON civiniiiiiiii et e e e e 1925
51.23. pg_foreign_data W apper ...cccccooeiiiiiiiiieeii e e 1926
51.24. PG _fOr €I N _SEI VeI ittt e 1926
51.25. pg foreign tabl @ .o 1927
Y 2 T o To T T o 1= G 1927
B5L.27. PO i NNEI T 1S i e 1930
oy W2 S I o To T VI S] Y2 TP 1930
LY 2 I o To TR - Y [1V = Vo = PN 1931
51.30. pg_l argeobj Ct ... 1932
51.31. pg_l argeobject_netadataccoeeeiviiiiiiiiiiiii e 1933
51,32, PO _NAIMBSPACE ouiiiiitiie e 1933
51.33. PO _OPCl @SS wuniiiiiiiiii i 1934
5134, PO _OPEI AL OF ouieiiiiiiiie e 1934
51.35. PG _OPf ami [Y oo 1935
51.36. pg_partitioned tabl eccooiiiiiiiiii 1936
51.37. pg _Pltenpl at @ oo 1937

XV

PostgreSQL 10.13 Documentation

51.38. PO POl i CY crrtiiiiiie e 1938
LY IRC 1 o To T o] (o 1o R PP 1938
51.40. pg_Publ i Cati ON oo 1942
51.41. pg_publicati on_rel . 1943
LY I o To T - U 1[0 =T PP 1943
51.43.pg_replicati on_Ori gi N .o 1944
Y IV o To T =N I O = N 1944
51.45. pg_secl abel ... 1945
Y LG oo T =To [UT=] o [o] =P PRSPPI 1946
51.47. pg_ShAepend ..o 1946
51.48. pg_ShAeSCri PtiON i 1947
51.49. pg_shsecl abel ... 1948
51.50. PO ST AT ST C civrieiiiiiiii i 1948
5151 PG St ati STiC_ Xt i 1950
51.52. PG _SUDBSCIi PLI ON covniiiii e 1951
51.53. pg_SUbSCription_rel . 1952
51.54. pg tabl ESPACE ..civiiiii e 1952
5155, PG transSt OF M. 1953
Y I T o To T O I [1= N 1953
BL.57. PG tS _CONT I G ciriiiiiiiii e 1955
51.58. pg tS _CONFi g IMBP ooiiiiiii e 1956
51.59. PO 1S i Cl orriiiiiiii e 1956
5160, POl S PaI ST ittt 1957
5161 PG tS tEMPl At @ corvriii i 1957
LY 2 o o T VA o 1 PP 1958
51.63. PG _USEI IMAPPI NQ tovniiiiiieiiiie e e e e e e e e e e e e et e e eaeeaanees 1964
51.64. SYSIEM VIBWS ...t eeieii ettt e e et e e e et e e e era e eees 1965
51.65. pg_avail abl €_ext enNSi ONS ...cccciiiiiiiiiiii e 1966
51.66. pg_avai |l abl e_ext ensi on_Versi onsc.ccccceeeeviiieiiineennneennn, 1966
Y YA o To T o2 o 1 1 o PN 1967
LY LGS A oo T o1 U1 g o] g T PRSPPI 1967
51.69. PG fil € SEttiNGS ciiiiiiiii i 1968
L MO o To T o | o 1 U1 o R PP 1968
51.71. pg_hba file rul @S . 1969
Y 7 o To T T 4 Lo 123 €= 1 N 1969
BL73. PO | OCKS oot 1970
oY 0 o To T .- VA = PN 1973
B5L75. PG _POI I Cl 8BS it 1973
51.76. pg_prepared_Stat EMBNEScooiiiiiiiiiiiic e 1974
51.77. pg_prepar €d_XaCl S ..ociiiiiiiiiiiiiii e 1975
51.78. pg_publication_tabl scccooiiiiiiiiii 1975
51.79.pg_replication_origin_statuscccooeeiiiiiiiiiiiin i, 1976
51.80. pg_replicati on_SIotS .cooiiiiiiiii i 1976
LY I o To o == TN 1978
Y IS v o To T G V1 =TT 1979
51.83. pg_SeCl @bel S .ooniiiiii 1979
5184, PO _SEOUEBNCES ouiiiiiiiie e 1980
YIS T o To TR =) A A [PN 1980
51.86. P _SHAUOWuiiiiiei e 1983
DL 87, PO ST AL S ittt 1983
51.88. PO 1 @bl €S irriiiii i 1986
51.89. pg_timezone _abbrevs ... 1986
51.90. PG _ti MBZONE NAIMES ..ivuiiiiieiiii e e e e e e e e e e e e e e e eanes 1987
LY e O o To R U= = PP 1987
Y22 o To IRV EST=1 N 1Y o] o L o 1T 1988
Y e o To T4 1= 1. SN 1988
52. Frontend/Backend ProtOCOIvveiiiuiiiiiiii i 1989
521, OVEIVIBIW ...ttt e et e ettt e ettt e e e et e e e et s e e e et n e e e et aeeeesenaeaeees 1989

XVi

PostgreSQL 10.13 Documentation

52.2. MESSAE FIOW ...vviiiiiiii e 1990
52.3. SASL AULNENTICAIONiiiiviieieei e e e 2001
52.4. Streaming Replication ProtoColccccevieiiiieiiiieiiiieeee e eeee e 2002
52.5. Logical Streaming Replication Protocolccoooeviiiiiiiiiniiecee, 2009
52.6. MESSAgE Dala TYPBS ..vuiviiiiiieiie et 2010
52.7. MESSA0E FOIMMELS . .vuiviiiie et 2010
52.8. Error and Notice Message FieldSc.ooeviiiiiiiiiiii e 2027
52.9. Logical Replication Message FOrMAELSccevuveiinieiiiieeiiieeiiiieeiieeeaneens 2029
52.10. Summary of Changes since Protocol 2.0ccoveviiiiiiiiiiiiiiecieeeies 2033
53. PostgreSQL Coding CONVENLIONScc.uuiiiiiieiiieiiieeiie e e e e e et e e e e e eaanees 2034
LG T I o 4 0= 1] o P 2034
53.2. Reporting Errors Within the Servercooovvviiiii i 2034
53.3. Error Message Style GUIEcc.vviviiiiiii e 2037
53.4. Miscellaneous Coding CONVENLIONSccvvuiiiiieiiiiciineeee e e eaaes 2041
54, Native Language SUPPOITuuiiiieiiie e e eiee e e e s e e s e e s e e e e st e e et e esanaees 2043
54.1. FOr the TranSalorveiieiiieeiiii et e e 2043
54.2. FOr the Programimercociuuiiiii e e e e e e 2045
55. Writing A Procedural Language Handlercoovviiieiiiiiin e, 2048
56. Writing A Foreign Data WIapPErcoouiiiiiiiii e e e e e e 2051
56.1. Foreign Data Wrapper FUNCHIONSccovviiiiiiiiii e e 2051
56.2. Foreign Data Wrapper Callback ROULINESoevviiiiiiiiciiiecce e, 2051
56.3. Foreign Data Wrapper Helper FUNCLionSccooveviiiiiiin e 2063
56.4. Foreign Data Wrapper Query Planningcccocevveiiiiieineciin e 2064
56.5. Row Locking in Foreign Data WIrapperSoevvveeveiieeiieeiiieeeieeeaieeeaenns 2066
57. Writing A Table Sampling Methodccoooiiiiiiiii e 2068
57.1. Sampling Method Support FUNCLIONScccuveiiieiiiiece e, 2068
58. Writing A Custom SCan ProvViderocouiiiiiiiiiii e 2071
58.1. Creating Custom Scan Pathscccccvviiiiiiiiii e 2071
58.2. Creating Custom SCan PlanSoviiiiiiiiiiciie e e 2072
58.3. EXECULING CUSLOM SCANSuivviiiiiiieiieeciee e e e e e e e e e et e e e e eees 2073
59. GENELIC QUETY OPLIMIZEN ..ovuiiiii i e e e e e e e e e e eaaaeees 2075
59.1. Query Handling as a Complex Optimization Problemc..cceeeeenn. 2075
59.2. GENELiC AlQOMItMSive i 2075
59.3. Genetic Query Optimization (GEQO) in PostgreSQLcccevvvvvvvievinnnnn. 2076
59.4. FUrther REAAINGevviiiii e e 2077
60. Index Access Method Interface Definitioncooeiiiiiiiiiiiiii e, 2079
60.1. Basic APl Structure for INAeXeScccuvviiiiiiiieeii e 2079
60.2. Index Access Method FUNCLIONSooovvveiiiiiiicc e, 2081
60.3. INAEX SCANNING ...evvneieiieeiiee e e e e e e e e e e et e e e eeaen 2086
60.4. Index Locking Considerationsovevuiieiiieeiiieecii e e e eae e 2087
60.5. Index Uniqueness ChECKSocvuuiiiiiiii e 2088
60.6. Index Cost EStimation FUNCHIONSuuieiiiiiieiiiiiie e 2090
B1. GENENIC WAL RECOMS ... ieeiiieeiiiii ettt e e e et e e e e e e 2093
B2. GIST INAEXES ... ittt et eeeaaan s 2095
7228 W 1 oo (8o [o o RSP 2095
62.2. BUilt-iN Operator ClasseScvuuiiiiii e 2095
62.3. EXENSIDIILY ooeeeeeeii e 2096
62.4. IMPIEMENTBEIONvuiiii e e e e e e e e e et eeaaeees 2104
B2.5. EXBMPIES ..eeeiii ettt 2105
B3, SP-GIST INUEXES ... et e e e e e e e s 2106
L2C 300 1 0o (8o [o o SRR 2106
63.2. BUilt-in Operator ClasseSccvuuiiiiiieeii e 2106
63.3. EXENSIDIILY ooeeeenieeei e 2106
63.4. IMPIEMENTBEION .. .evuiii i e e e e e e e e eaaeees 2114
B35, EXBMPIES ..t 2115
B4. GIN TNAEXES ... e e e e e et e e e e e 2116
o7 I 1 oo (8o 1o o SRR 2116
64.2. BUilt-in Operator ClasseScvuuiiiiiieeii e 2116

XVii

PostgreSQL 10.13 Documentation

64.3. EXENSIDIILY ooeeeeieeei e 2116

64.4. IMPIEMENTBEIONvuiiii e e e e e e e e e e e e e e e eaaeees 2119

64.5. GIN TipS and THICKS ..uuuiiii i e e e e e e e eeas 2120

7 N I I 1] = o) PP 2121

B4.7. EXBMPIES ..ttt 2121

B5. BRIN INUEXES ...ttt e e e e e 2122
L0 g1 oo (8o 1o o ST 2122
65.2. BUilt-in Operator ClasseScvuviiiiii e e e 2123

65.3. EXENSIDIITY ooeeeenieeii e 2124

66. Databhase PhySICal SIOragecvvvniiiii e e e 2127
66.1. Database FIle LayOutcccouuieiiiiiiii e e e 2127

B6.2. TOAST ettt ettt ettt et e e et e et e e et e e et a et aae 2129

66.3. Free SPace Mapcvuiiiiiie e 2132

66.4. VISIDIlIY MaD ...oieeiieiei e 2132

66.5. The INitidization FOrKcooeiiiiiiiiiii e 2132

66.6. Datahase Page LayOulcocuuiiiiiieiiieci e e 2133

67. BKI Backend INtErfacecocuuuiiiiiii i 2136
67.1. BKI File FOMMAELuuiiiiiiiiiee i 2136

67.2. BKI COMMENGScovviiiieiiiiieeee e e s 2136
67.3. Structure of the Bootstrap BKI Filecooiiiiiiiiiiie e, 2137

B7.4. EXBMPIE .. e 2138

68. How the Planner USES SEatiStICSvvvuneiiiiiie i 2139
68.1. Row EStimation EXamMPIEScuviiiiieiiiiiiiee e 2139

68.2. Multivariate Statistics EXamplesc.ooevviiiiiiiiiiii e 2144

68.3. Planner Statistics and SECUNLYcc.veviiieiiiiieii e 2146

RV L TN o) = o [=S 2147
A. POSIOreSOQL Error COUESuuiiiieiiiiei e ee e e e e e e e e e e e e e e et e e eaaaeees 2154
B. Dat€/Time SUPPOITiiiieii et e e e e e e e e e e e e e e et e e e e et e e et e eaanaees 2162
B.1. Date/Time Input INterpretationeevviieeiiieii e 2162

B.2. Handling of Invalid or Ambiguous TimeStampscccocvvveiiiieveieeeenennn, 2163

B.3. Date/Time K&y WOrAScovviiiiiieii e e e e 2164

B.4. Date/Time Configuration Fil€Scoovuiiiiiiicii e, 2165

B.5. HIiStory Of UNItScoiiiiiiiiiiii i e e 2166

C. SOL KEY WOIAS ... cevuciiiieiie et e e e e e e e e e e e e et e e e eanees 2168
D. SQL CONfOIMMANCEcetiiie e e e e e e e e e et e eaeeanns 2190
D.1. SUPPOIEd FEAUINESccvvuiiii e e e e e e e e e e 2191

D.2. UNSUPPOrted FEAIUIESuuiiiieeii e eeie e e e e e e e eanas 2206

D.3. XML Limits and Conformance to SQL/XMLccooevviiiiiiiiiiiieiiiieeiiees 2219

E. REEASE NOES ...oevviieiiii e e e e et e e et e e eeraaeaaes 2223
E.L ReEaSE 10.13 ... 2223

E.2. REEASE 10.12 ... 2226

E.3. REIEASE 10.11 ..ot 2229

B4 REIE8SE 10.10 ...ccoiiiiiiiii et 2234

E5. REEESE 10.9 ... 2237

E.B. REIEASE 10.8 ... 2239

E.7. REEESE 10.7 ..ot 2242

E.8. REIEASE 10.6 .. .ceeiiiiiiiiii e 2247

E.O. REIEASE 10.5 ...t 2252

E.10. REIEASE 10.4 ...t 2256

E.1L RS2 10.3 ...t 2261

E.12. REEASE 10.2 ...ttt 2262

E.13. REEASE 10.1 ...iiiiieiiiii et 2267

E. 14 REEASE 10 ..iiiiiiiiiiiii ettt et 2270

E.15. Prior REEASES ...uiiiiiii ittt 2291

F. Additional Supplied MOAUIESccuuiiiiiiii e 2292
F.L adminpackcovneiiicii e e 2293

F.2. @MCNECK .. 2294

F.3. @UEN_AEIAY ..o 2296

XViii

PostgreSQL 10.13 Documentation

O 0| (o T = o) 1 o N 2297
FLB. BIOOM L. 2299
FLB. DB GIN oo 2302
A o 1 (==Y o [2302
F.8. ChKPASS ...v it 2304
R I o) (=4 PP 2305
FLL0. CUDE .. e 2307
FL L2, dBHINK Lo 2312
Nt 22 o [R | PP 2342
I o o A 6/ PPN 2342
F.14. €arthdiStanCevvveeiii e 2344
L LS 11 = o PP 2346
F.16. fUZZYSIIMALCH «.covecci e 2348
I A 0 o = PP 2350
S T 17 o o 2356
L T 1 - - YA 2357
0 1= o O SPPR 2360
2 T o ST SOPPPTRRPPIN 2363
L | == PP 2365
(SIS I 070 (= 1 41 o)< vt P 2371
F.24. passWOrdChECKciiiiiii e 2378
F.25. pg bUFfEICacE . .cove e 2378
FL26. POCIYPLO ettt 2380
F.27. PY_freeSpaCceMa . .c.u e e 2390
FL28. PO_PIEWEAII ..ot 2391
F.29. POrOWIOCKS ... iiiceii et e e e e e e ee 2392
F.30. pO_stal StalemMENTS 2393
oo (0o TN 2398
2 oo [1 (0 [0 2402
F.33. PO_VISIDIHITY oo 2406
F.34. POSIOrES FOW ..ovvniiiiii e 2408
TSI o PP 2413
[TS oo o | 2416
L A o ST 2424
F.38. SSIINTO ittt 2426
F.39. taDIEFUNC ...t 2428
O O (o: o PRSPPI 2437
N (== o =0 o] oo [2438
F.A2. 1SN SYSEEIM TOWS L.t e e e e e en 2439
F.A3. tSM_SYSIEM TIME .ovniii e e e e 2439
FLA4. UNBCCENT ... e et e e e e e ees 2440
TN 0 1T 01\ o PN 2442
L 41 1] PP 2443
G. Additional Supplied Programsccuuiiiiiiieiii e e 2448
G.1. Client APPlICALIONSccvuciii e eaaes 2448
G.2. Server ApPlICALIONScvviiiii e 2454
L T (= g = I (0= o £ 2459
H.L CHeNt INtErTACES . ..oiiiiii e 2459
H.2. AdMINIStration TOOIScuuuieiiiiiiieiiiiis e 2459
H.3. Procedural LanQUAagESuueeeuniiiiiieiiie e e e e e e e e 2459
[I g (= =T PP 2460
I. The Source Code REPOSITONYccuuiiiiiiiii e e e e e e e e e e e e e e aae e 2461
I.1. Getting The SOUrCe VIa Gitccvvuiiiiiiiii e e e 2461
I B o o109 01 - 1o PP 2462
J. L DOCBOOK ...ttt 2462
J2. TOOl SEES vttt 2462
J.3. Building The Documentationcoeeviiiiiiiiiiiie e 2466
J.4. Documentation AULNOIINGcovuiiiiii e 2467

XiX

PostgreSQL 10.13 Documentation

J5. SEYIE GUITE ...evveeiiii e 2468

NN 0011/ 0 PP 2470

(23] o] oo r="o] /0P 2476
g0 1= PP 2478

XX

List of Figures

59.1. Structured Diagram of a Genetic Algorithm

XXi

List of Tables

4.1. BaCkslash ESCAPE SEOUENCESciieriieeieiieeeeeti e ettt e ettt e et et e ettt e e e b e e enea s 33
4.2. Operator Precedence (highest tO TOWESE)couuuuiiiiiiiiiiii e 39
I DT r= R Y o= T PSPPI 124
8.2, INUMENIC TYPIES ..ttt ettt ettt et e e et e et e et et e e e e aba s 125
8.3, MONELAIY TIPS ..ottt ettt ettt et e e e 130
8.4, CAIACLES TYPES ..ottt ettt ettt ettt e e et et e e e 131
8.5. SpeCial CharaCler TYPESuuu ittt ettt ettt e e et e r e e e e ennans 132
8.6. BINAIY Daa TYPESvueeiiiti ettt ettt ettt e et et e e e e eaaas 132
8.7. byt ea Literal ESCAPEd OCLELSuuiiiiiiiieeiiii ettt e e e e 133
8.8. byt ea Output ESCAPEd OCLELSciieeiieiiiii ettt enees 134
8.9. DAE/TIME TYPES ..ttt e ettt et e e et ettt e e e et e e e eaa s 134
8.10. DB INPUL ..ottt ettt et e e e 136
8. L1, THME INPUL .ttt ettt e ettt e et e e et e e et e e e e et e e e e eaa s 137
8.12. TiME ZONE INPUL ...ttt ettt ettt ettt ettt et e e et e e e b e e era s 137
8.13. Special Date/TIME INPUEScoeviieieiiieee et e s 138
8.14. Date/TIime OULPUL SEYIESot 139
8.15. Date Order CONVENTIONSu.eieerteeeiii et eeti et e e et e e et e e e e e e eana e eeneas 139
8.16. 1SO 8601 Interval Unit ADDreviationSc..uuiiiiiiiiiiiii e 142
8.L7. INEIVEl INPUL ...t ettt e et e e 142
8.18. Interval Output Style EXaMPIEScouuiiiiiiieeee e 143
8.19. BOOIEAN DaLA TYPE ... eeeeei ettt ettt ettt ettt ettt e e e e 144
8.20. GEOMELNIC TS .. ettt e ettt ettt ettt e e ettt e ettt e ettt e e et et e e e eeaaaeeees 146
8.21. NEtWOrK AQArESS TYPES ... eeeeiiieeeetie ettt ettt e e et e e e e e e 149
8.22. ci dr Type INPut EXAMPIEScciiiiiiiii e 149
8.23. JSON primitive types and corresponding POstgreSQL tYPESccvvuveviriinieiiiiiieeeeiinee, 158
8.24. ODJeCt IdeNtifier TYPES ...t 184
8.25. PSEUTO-TYPES ...ttt ettt et 185
9.1. COMPATSON OPEIAIOIS ...e.vueeeiti ettt e et ettt e et et et e et r e e e et e e e e et e e e eaea s 187
9.2. COMPATISON PraEdiCALESuuueiiiie ettt et e e e e e e e 188
9.3. COomMPAriSON FUNCLIONS ...ttt et e 190
9.4. MathematiCal OPEIALOrSceeueieieeii ettt ettt e e e e e b 190
9.5. MathematiCal FUNCHIONSccuuiiiiiii et e e e 191
9.6. RANAOM FUNCLIONSceeitieieiie ettt ettt et e et e e 193
9.7. TrigONOMELNIC FUNCLIONSeeeiit ettt ettt et e e e neens 193
9.8. SQL String FUNCLiONS 8Nd OPEIELOISu.eiiiiiieeeeiii ettt e et e et e e e e e e e e eens 194
9.9. Other StNG FUNCLIONScouuiiiiiii et et e e e eanans 195
9.10. BUIt-IN CONVEISIONScevtieiiiii ettt ettt ettt et e et e e enai e e ennens 202
9.11. SQL Binary String FUNCtions and OPEratorscccuuueeeirinieeieiieeeeeiie e e eeeies 208
9.12. Other Binary String FUNCLIONSuuuiiiiiiiieiii et 208
9.13. Bit SING OPEIEIOISvvueeeetie ettt ettt ettt e et e ettt e e et e e e eaa s 210
9.14. Regular EXpression MatCh OPEraOrScuuuueieeuieiiiii it e e e e e eeeees 213
9.15. Regular EXPression ATOIMSuu ittt e et e e et e e e eab e e eeeta e eeenns 217
9.16. Regular EXpression QUENTITIENSuuuiieiii et 217
9.17. Regular EXpression CONSIIAINTSeiiirieeiiii et e et 218
9.18. Regular Expression Character-entry ESCapESccvvvunieiiiiiieeiiiie e 219
9.19. Regular Expression Class-shorthand ESCaPESc.uuviiiiiiiieiiiiieeeci e 220
9.20. Regular Expression Constraint ESCAPESuuiiiiiiiieiiiii e 221
9.21. Regular Expression Back REFEIENCESccuuuiiiiiiiicie e 221
9.22. ARE Embedded-0ption LEErSuiiiiiiieiei e 222
9.23. FOrMatting FUNCLIONSccuuuiiiiiii ettt et e et e e e e e ena e eeees 225
9.24. Template Patterns for Date/Time FOrmattingcc.uuveeiiiiiiiiiiiiiieeecie e 226
9.25. Template Pattern Modifiers for Date/Time FOrmattingcccuvvveviiiinneieiiinneeenennnn. 228
9.26. Template Patterns for NUMeric FOrmattingc..uoveiiiiiiiiiiiiiiieeeii e 229
9.27. Template Pattern Modifiers for Numeric FOrmattingccoeuvviveiiiinieiiiiiieeeeiineees 230
9.28. 1 0_Char EXAMPIESuuiiiiiiii e 231

XXii

PostgreSQL 10.13 Documentation

9.29.
9.30.
9.31.
9.32.
9.33.
9.34.
9.35.
9.36.
9.37.
9.38.
9.39.
9.40.
9.41.
9.42.
9.43.
9.44.
9.45.
9.46.
9.47.
9.48.
9.49.
9.50.
9.51.
9.52.
9.53.
9.54.
9.55.
9.56.
9.57.
9.58.
9.59.
9.60.
9.61.
9.62.
9.63.
9.64.
9.65.
9.66.
9.67.
9.68.
9.69.
9.70.
9.71.
9.72.
9.73.
9.74.
9.75.
9.76.
9.77.
9.78.
9.79.
9.80.
9.81.
9.82.
9.83.
9.84.
9.85.
9.86.

D (A 1SN @] o= = (0] £ 232
DA€/ TIME FUNCHIONS ..ot e et e e e et e eeeara s 233
AT TINE ZONE VATANES ..ueeiiiiiieeiiii et e e e e et e e et s e e eetenaeeeeninaeeees 241
ENumM SUPPOIt FUNCLIONSiiiecii e e e e e e e e e aaas 244
(€101 0 L= (o @] 1= - (0] =P 245
GEOMELTIC FUNCLIONSeivvieeiieie ettt e e e e et e e e et e e e e aa e e e enanns 246
Geometric Type Conversion FUNCLIONSccoouuiiiiiieii e e 247
(o I o L= 0 To I o Lo Y @ o= = 0] £ 249
Cidr and i Net FUNCHONSuuiiiiiiiiiee e e e e e e eaeens 250
MACAAAT FUNCLIONSiiiiti et e e et e e et e e e et e e e eate s e e e eatn s aeeenes 251
MBACAAAr 8 FUNCLIONS .. .ceevtieiiiii e e et e et eeeere e e e eees 251
B = (o A O 0= = 0] £ T 251
TEXE SEACH FUNCHIONS ...ttt e e e et e e et e e e aae s 252
Text Search Debugging FUNCHIONScovviiiiii e e e e e 255
j SON aNd | SOND OPEIAIOrScvvuieiii e eee e e e e e e e e e e e e e ea e e eanees 270
Additional | SOND OPEIELOrSccvvieiiii i e 270
JSON Creation FUNCLIONScivuitiei ittt e e e e et e e e et e e e eaen e eeenes 272
JSON Processing FUNCLIONSuuiiiiici e e e e e e e e eaaes 273
= [01= g Tor Y 0 1 L 278
F N = YO o= = (0] £ PP 283
F N 4 = YA U o1 o N 284
RANGE OB OIS ..ttt ettt e e 286
RANGE FUNCHIONSuiiii e e e e e e e e e et e ean e eees 287
General-Purpose Aggregate FUNCHIONScouvuiiiiiiciii e e e e 288
Aggregate FUNCLiONS fOr SEAiStICSvvvviiiieiiiccie e e e 291
Ordered-Set Aggregate FUNCHIONSoiuuieiiii e e e e e e e e e 292
Hypothetical-Set Aggregate FUNCLIONScooviiiiiiiiiii e e 294
GroUPING OPEIAtIONSvvuueiieeeiie e e e e e e et e e e e e e e s e e et s e et e ean e eateeeanaaranaes 294
General-Purpose WIindow FUNCLIONSccouuiiiiicii e 295
Series Generating FUNCHIONSccuuiiiiiciie e e e e e e e aens 302
Subscript Generating FUNCLIONScouuiiiiiiiiii e e e e e e e e e eaes 304
Session INFOrmMation FUNCLIONSuuieiiiiiice e 305
Access Privilege Inquiry FUNCHIONSuiiiiiiiii e e 308
Schema Visibility Inquiry FUNCLIONSccuuiiiiiiiiie e 311
System Catalog INnformation FUNCLIONSccuuiiiiiiiii e e e 312
INAEX COlUMN PrOPEiES .. ovviiiii e e e e e e e e e e ees 315
F g0 g = (0] o 1= g 1] == 315
Index Access Method Properti€Scouueiiiiciiii e e 315
Object Information and Addressing FUNCLIONSccuiveiiieiiiieiieee e e, 316
Comment INformation FUNCHIONSoiiiiiieiii e 317
Transaction IDS and SNaPSOLScevuiiiiiciii e e e e e e e e e 318
SNAPSHOt COMPONENESuuiiii i e et e e e e e e e et e e et e e st e e e e e et e eetnaeesnaees 318
Committed transaction INfOrMELIONooeiiiiiii e 319
Control Dat@ FUNCHIONSuvieieii e e et eeeaa e eeees 319
pg_control _checkpoi nt ColuUMNSccoiiiiiiiiiiiii e 320
pg_control _Syst emMCOIUMNSccuuiiiiiieiiie e e e e e e aans 320
pg_control _init COolUMNSccccouuieiiiiiii e ae 320
pg_control _recovery COlUMNSccooiiiiiiiii e e e 321
Configuration Settings FUNCLIONSooviiiiiii e 321
Server Signaling FUNCLIONSouuiii e e e e e 322
Backup Control FUNCLIONSiiiiiiiii e e e e e e e 323
Recovery Information FUNCHIONSccuuiiiiiiiiii e e e e ea e 325
Recovery Control FUNCHIONScciuiiiiiece e e e e e e e 326
Snapshot Synchronization FUNCLIONSccouuiiiiiiiiii e 327
Replication SQL FUNCLIONSccuuiiii i e e e e e e e e e 327
Database Object Size FUNCLIONSiiiiiiciii e e e 331
Database Object Location FUNCLIONScocuiiiiiieiiiiccie e e e e e e e e 332
Collation Management FUNCLIONSccvvuiiiiiieiie e e e e e e e e 333

XXiii

PostgreSQL 10.13 Documentation

9.87. Index MaintenancCe FUNCHIONSooiiiiiieiiiii et eees 333
9.88. GeneriC File ACCESS FUNCLIONSccuviiiiiiiie et e e e e e e s 334
9.89. AdVISOry LOCK FUNCHIONSuuiiieiii e e e e e e e e e e e e e st e e e e e e e eeen 335
9.90. Table ReWNIte INFOMMELIONccvevt i e e e et e eeeetenaeeees 340
12.1. Default Parser's TOKEN TYPES c.uuuiuueiiiieiie e e e e e e e e e e e e e e e e et e e aa e aanns 384
13.1. Transaction ISOlation LEVEISc.uuuiiiiiiiieeiii et et e e e e e e e 406
13.2. Conflicting LOCK MOESuuiiiiiiiii e e e e e e e 413
13.3. Conflicting ROW-IEVEl LOCKSciviiiiiii e 414
18.1. System V IPC PalramEtarsSvuiieiieiiie ettt eas 485
18.2. SSL SerVEr FIlE USAQE «.uvuiiiiiiieiiiii ettt ettt e et eeeaa s 500
19.1. MesSsage SEVErity LEVEIS ...ouiii i 539
19.2. ShOrt OptioN KEY ...oveeiiiiici e e e e e e e e e e 564
201, DEFAUIT ROIES ...ttt e et e et a e e e et e e e eataaeeaees 589
23.1. PoStgreSQL Charalter SELScuuuiiiiieiii e e e e e e e e e e e et e e e e eeees 605
23.2. Client/Server Character Set CONVEISIONSc.uuuieiiiiieeeeiiineeeeiise e et eeeiin e eeainns 608
26.1. High Availability, Load Balancing, and Replication Feature Matrixccooeevvnnennnnn. 638
28.1. DYNAMIC StAISHCS VIBWS . oovniiiceii et e e e et e e e e e s e e e e eeees 664
28.2. Collected SEAISHCS VIBWSveeeeieieiiii ettt e et e et e et e e e ena s 665
283.pg_Stat _aCti Vity VIBW oo e e e 666
28.4. Wait_eVENE DESCIHPLION . .uuiii i e e e e e e e e e e e e e ees 670
285.pg_stat _replicati ON VIBW ..o 679
28.6. pg_stat_Wal reCei VEI VIiBW ...iiiiiiciiii i 682
28.7.pg_stat _SUDSCription VIieW ...cocoeiiiiiiiiie e 683
28.8. PO St At _SSI ViBW coouiiiiiii e 684
28.9. pg_stat _arChi VEI VIBW ..o e 684
28.10. pg_Stat _bgWrit €5 VIieW .oouiiiiiiii e e e e 685
28.11. pg_stat_dat abase VIieWc.ooiiiiiiiiii e 686
28.12. pg_stat _database_confliCts VIEWcccoeeiiiiiiiiiiiiii e, 687
28.13. pg_stat_all _tabl @S VIeW ..o 687
28.14. pg_stat _all i NdeXES VIBW ... e 689
28.15.pg_statio_all _tabl €S VIEW ..o 689
28.16. pg_statio_all 1 NAdeXES VIBW ..cccuiiiiiiiiiie e 690
28.17.pg_stati o _all _SeqUENCES VIBW ...ccccuuiiiiii i 690
28.18. pg_stat_user _fUuNCti ONS VIBWcocovviiiiiiicii e 691
28.19. Additional StatistiCS FUNCHIONSvuuiiiiiiieiiei et e e 691
28.20. Per-Backend Statistics FUNCHIONSuiiiiiiiieicii e e e 693
28.21. pg_stat _progress _VAaCUUMVIBWcc.uviiiieiiiieeiiieeeii e e e e e e e e e eaens 694
28.22. VACUUM PRhESES ... ittt e e e e e et e e e et e e eenanns 695
28.23. BUIlt-iN DTTaCe PrODES .. .cceviieeeii et 696
28.24. Defined Types Used in Probe Parametersoceviviiiiiiciii e 703
33.1. SSL MOOE DESCIIPLIONSievieiiieeei e e e e e e e e e e e e e e e e e e et e e et e e eanaees 796
33.2. Libpg/Client SSL FilE@ USAQE ... cvvuiiiiieiiie e et e e et e et e e e aae e 796
34.1. SQL-oriented Large ObjECt FUNCLIONScovviiiiiieii e e e e e e 814
35.1. Mapping Between PostgreSQL Data Typesand C Variable Typesccocevvvvvvvevinnnnnn. 829
35.2. Valid Input Formats for PGTYPESdat € from ascccoccceveviiiiiiiiicin e, 845
35.3. Vdid Input Formats for PGTYPESdat € fnt_asCccooevviviiiiiiiiiieceecece e, 847
35.4. Valid Input Formats for rdef mtdat €cociviiiiiiii i, 848
35.5. Valid Input Formats for PGTYPESt i mest anp_from asccccoevevvieeviinieiineennnnn, 849
36.1.i nformati on_schema_catal og_ name Columns............ccoooeviieiiineiinnccieeeenn, 922
36.2. admi ni strabl e _rol e_authori zati ons Columns.............ccoeevviiiiiiiccinneennnn. 922
36.3. applicabl e rol €s ColumMNSooiiiiiiiiiii e 922
36.4. At ri DUt €S COIUMNS ..euuiiiiiii e eeeees 923
36.5. charact er _Set'sS COlUMNSiiiiiiiiii e e e r e e e e e aaas 926
36.6. check _constraint_routine_usage Columns..........ccceeviiiiiieiiiieiiineciieeennnn, 927
36.7. check_constrai Nt'S ColUMNScooiuiiiiiii e e aens 927
36.8. COl 1 @t i ONS COIUMNSuuiiiiiiiiee e e e e eeees 928
36.9.col l ation_character_set _applicability Coumns.............c..coevernnnnn. 928
36.10. col uim_domai N_usSage COlUMNSoeiiiieiiicce e e e e e 929

XXiV

PostgreSQL 10.13 Documentation

36.11. col UMM_opt i ONS COIUMNS .. .cvuuiiiii i e e e e e e e eaen
36.12. col um_pri vil €ges ColUMNScciiiiiiiiiiiec e e
36.13. col umMm_udt _uSage COlUMNScuuuiiii e e e e e aens
36.14. COl UMMS COIUMNSeeitiieeeii ettt et e et e e et e e et s e e e aaa e e eenens
36.15. constrai nt _col unm_usage ColuMNScoevviiiiiiiieiiiiecii e e e
36.16. constrai nt _tabl e _usage ColumNSccoeeviiiiiiiiieiii e e
36.17.data_type privileges CoumMNS........ccooeiiiiiiiiiiiiii e
36.18. domai n_constrai Nts ColUMNScooiiiiiiiiii e
36.19. domai N_udt _USaQge COIUMNScuuuiiii e e e e e aens
36.20. dOMBI NS COIUMINSeeiiiieieii e et e et e e et e e e et neeeaaan e e eeeeens
36.21. el erment _t yPeS COIUMNSciviiiie e e e e e eees
36.22. enabl €d_r 0l €S COIUMNSuuiiiii e e
36.23. forei gn_data _wrapper_opti ons ColumNScccveviiiiiiiiieiiineiiine e,
36.24.foreign_data_wappers ColUMNSccoocouiiiiiiiiiiii e
36.25. forei gn_server_opti ons ColUMNScccouuieiiiiiiiiiieiii e e
36.26. forei gn_servers COlUMNSc.iiiiiiiiiie e e e e
36.27.foreign_table options ColuUMNScc.ccuiiiiiiiii e
36.28. forei gn_tabl €S ColUMNScouuiiiiiiiiii e
36.29. key_col umm_usage COlUMNSoeiiiieiiii e e e e e aens
36.30. par anBt €S COIUMNSceuuiiii e e e e e e e e e e e e e eaens
36.3Lreferential _constraints ColUmMNS.........cccooceiiiiiiieiiiieiii e
36.32.rol e_col um_grants ColUMNSoeeiiiiiiiiiiii e
36.33.r0l e _routine_grants ColUMNScccouuiiiiiieiiiiiiii e e
36.34.rol e _table grants ColUMNSc.coeiiiiiiiiiiiiii e
36.35.r0l e_udt _grants COlUMNSc.uoiiiiiiiiiii e e e e
36.36.rol e_usage _grants ColUMNSc.uoeiiiiiiiiiieiii e e e e
36.37.routine_privileges ColUmMNScooeiuiiiiiiiiiii e
36.38. T OUL i NES COIUMNS ...eeviiieiiiii et e et e et e et e e e et e e e et e e e eaan e eeeeens
36.39. SCheMBLt @ COIUMNSuuiiiiiiiie et e e e e e e e e e eaa e e eenees
36.40. SEQUENCES COIUMNSuuiiii e e e e e e e e e e e e e e eanas
36.41. sql _features COlUMNSc.uiiiiiiiiii e e
36.42. sql _inplementation_info ColumMNS.........cccooeiiiiiiiieiii e
36.43. sql _| anguages COIUMNSieiiiieii e e e e e eaes
36.44. sql _packages COlUMNSoiiiiiiiiii e e e
36.45. SOl _Parts COIUMNScoiiiiiii e e e e e e e eaaas
36.46. SOl _Si Zi NG COIUMNSciiiicii e e e e e e e e e aens
36.47.sql _si zing profiles ColumNScc.ccuoiiiiiiiiiiiiiii e
36.48.tabl e _constrai Nts COlUMNScccuiiiiiiiiiiii e
36.49.tabl e privileges ColUMNSccocouieiiiiiiiii e
36.50. t @bl €S COIUMNScieiiiiii e e eeaaens
36.51. t ranST Or MB COIUMMNSuiiiiiiie e et e et e eeeaa e e eeees
36.52. triggered_update_col ums ColUMNSccoeiviiiiiiieiiii e
36.53. t 11 GOEI'S COIUMNS .. .evuniiii i e et e e e e e e e e e e e et e e et e e et e e aneeaanes
36.54. udt _pri Vil eges COolUMNSccouuiiiiiiiiii e e e e e e e e
36.55. usage _pri Vil eges ColUMNSoeiiieiiiiiiie e
36.56. user _defined _types ColUMNSoeeiiiiiiiiiciii e
36.57. user _mappi Ng_0opti oNs COlUMNSccoviiiiiiiiiii e
36.58. user _mBpPi NQS COIUMNSuuieiiieci e e e e e e e e eees
36.59. vi ew_col umm_usage ColUMNScccueiiiiiiiiie e e e e e
36.60. vi ew _routine_usage COlUMNSoeviiiiiiiii e
36.61. vi ew t abl e _usage ColUmNScoouiiiiiiiiiiii e
36.62. Vi WS COIUMIMS ...uueiiiiii ettt e e e et e e et e e e e et e e e eaan e e eenenns
37.1. Equivalent C Types for Built-in SQL TYPEScvvvniiiiiiiiiieee e

A S (= TS 1 - (= o [P
Y T o b s T - 1o == P

37.4. GIST Two-Dimensional “R-treg” StrategieSoeivuieiiiiieiiieeiiiiecin e e e
37.5. SP-GiST POINt SIAEgIES ..vuieviieiiiieeie e e e e e e e e e e e e e e e e e s aaeeeaneens

37.6. GIN AITAY SHTAEgIES ...vuuiiiiieii i eeie e e e et e e e e e e e e e e e et e et e e st e e et s e eaneaanaees

XXV

PostgreSQL 10.13 Documentation

37.7. BRIN MinNMaX SIralEOIES .. cevuueiiieiiiieiieeeie et e et e e e e e e e e e e e e e e et e e et eeanas 1038
37.8. B-tree SUPPOIt FUNCHIONSouuiii e e e e e e e e e e e aaaas 1038
37.9. Hash SUPPOrt FUNCHIONSccuuiiiiicii e e e e e e e e eaaas 1038
37.10. GiST SUPPOIt FUNCLIONSiiviciii e e e e e e e e e e e e e e e et eean e eaen 1039
37.11. SP-GiST SUPPOIt FUNCHIONS ... cevuiiiiieiieee e e e e e e e e e e e e aaaas 1039
37.12. GIN SUPPOIt FUNCLIONSiitciiiiee e e e e e e et e e et e e e e eens 1039
37.13. BRIN SUPPOIt FUNCLIONS ... cuuiiiiiiiii e e ee e e e e e e e e e et e e et e e e eeaens 1040
39.1. Event Trigger Support by Command Tagccevveiiiiieiiieeiie e e e e 1068
42.1. Available DIiagnoSstiCS ItEMSiiviiiiie e e e e e e 1120
42.2. Error DIiagnoStiCS ITBIMS . ..uuiiii i e e e e et e e aas 1133
240. Policies Applied by Command TYPE ...c.uueiiiiiiiiiieie e e e e 1469
241, AULOMALIC VariahDlES ... 1756
242. PYENCH FUNCLIONSiiiicii e e e e e e e e e e e e aens 1757
511 SYStEM CalAlOgS ... vvvueiiieiiiie e ee et et e e e e e e e e e e e e et e e e e e et e e e e e aaaaa 1899
51.2. pg_aggregat @ COlUMNScouuiiiiiieiii e e e e e e e e e e e et eeaneens 1901
Loy G T o o TR =1 4 1] 1070 TP 1903
51.4. pg_anmDP COIUMNS ... e e e e e e e et e e e eaas 1903
51.5. pg_anpPr OC COlUMNScuuuiiiiieiiii e e et e e e e e e e e e e e e e st e e e e e ean e eaen 1904
51.6. pg_attrdef COolUMNSco.iiiiiiii e e e 1905
51.7.pg_attribut @ ColUMNScocouiiiiii i e 1906
51.8. pg_aut hi d COlUMNScciiiiiiiie e e e e e e e e e 1908
51.9. pg_aut h_menbers ColUMNScciiiiiiiiii e e e e 1909
51.10. Pg_CASt COIUMNS ...ttt e e e e e st e e e e e e eaens 1910
51.11. PG _Cl @SS COlUMNS .. .cevuiii e e e e e e e e e e e e e e aaas 1911
51.12. pg_col 1 ati on COlUMNScouuiiiiiiii e e 1915
51.13. pg_constrai Nt COUMNSuiiiiiiiiie e e e e e eens 1916
51.14. pg_CONVETr Si ON COIUMNSccviiiiiiieei e e e e e e e e e e e e e e aens 1918
51.15. pg_dat abase COolUMNSco.uiiiiiiiiiii e e e 1919
51.16. pg _db _role_setting ColUmMNSccoceuiiiiiiiiiii i e 1921
51.17. pg_defaul t _acl ColUMNScciiiiiiiiii i e 1921
51.18. pg_depend COlUMNSccuiiiiiieiiie e e e e e e e e e eaes 1922
51.19. pg_descCri ption COlUMNSccouuuiiiiiiii e e e e e e eeas 1923
51.20. PG_ENUMECOIUMINSuiiiteiie e e e e e e e e e e e e e e e et e e st e et eeaaeeeens 1924
51.21. pg_event _trigger COolUMNSccooiiiiiiiiiei e e e e e 1924
51.22. pg_ext ensi 0N COIUMNScoouiiiiiiiii e e e e e 1925
51.23. pg_foreign_data wapper ColUmMNScccooeuiiiiiiiiiiiiieiii e e 1926
51.24. pg_forei gn_server COolUMNSccooiiiiiiiiiiieiii e e e 1927
51.25. pg _foreign_tabl @ ColUumMNSc.coouiiiiiiiiiii e 1927
51.26. Pg_i NAEX COIUMNS .. .cuuuiiieiii e e e e e e e e e e e e et e et e e aan e eeas 1928
51.27. pg_ i NhEritS COlUMNSc.uiiiiiiii e e e e e e e e e e een 1930
51.28. pg_ i Nit _Privs COUMNSciiiiiiieei e e e e e aeas 1931
51.29. pg_l anguage COlUMNScouuuiiiiieiii e e e e e e e e e e e e e e aneaees 1931
51.30. pg_| ar geobj €Ct COlUMNScoouuiiiiiiiii e e e e 1933
51.31. pg_l argeobj ect _netadat a ColumNScocovuiiiiiiiiiiiiiiie e 1933
51.32. pg_NanmESPaCe COIUMNScouuiiiiieiii e e e e e e e 1933
51.33. PG_0PCI @SS COIUMNSciiiiciiii i e e e e e e e e eaes 1934
51.34. pg_oper at Or COlUMNSciiiiiiieeiiie et e e e e e e e e e e e et e e e eaneenes 1935
51.35. pg_opfam |y COlUMNSociiiiiiiieei e e e e e e e e een 1936
51.36. pg_partitioned tabl @ ColUMNSccooiiiiiiiiiii e 1936
51.37. pg_pltenpl at @ ColUMNSiiiiiiii e 1937
51.38. Pg_POI i CY COIUMNSouiiiiiiiiii e e e e e e e e e aes 1938
LY G T o To N o] e T2 @] ¥4 T 0 =P 1939
51.40. pg_publicati on COolUMNScccuiiiiiiiiii e e eeas 1943
51.41. pg_publication_rel ColumnS.......cccociiiiiiii i 1943
51.42. Pg_range COlUMNSuuiiiiiiiiiie et e e e e e e e e e e e et e e et e st e et e e eaneeeeas 1943
51.43.pg_replication_originColumnscccocouiiiiiiiiiiiiiiii e 1944
51.44. PG reWr it € COIUMNSuiiiiicii e e e e e e e e eaa e eees 1944
51.45. pg_secl abel ColUMNScouuiiiiiiiii e e 1945

XXVi

PostgreSQL 10.13 Documentation

51.46. pg_SEQUENCE COIUMNScuuiiiiiieiii e e e e e e e e e e e e e e e e e et e e et e e e e aneeees 1946
51.47. pg_shdepend ColUMNSco.uiiiiiiiiiiii e e e e een 1946
51.48. pg_shdescri pti on ColUMNSccouuiiiiiiiiii e e 1948
51.49. pg_shsecl abel Columnscc.oiiiiiiiiii e 1948
51.50. pg_stati StiC COUMNScouuiiiiiii e e 1949
51.51. pg_statistic_ext ColUMNSccoeiiiiiiiiiiiii e e 1950
51.52. pg_subscri pti on COlUMNSoiiiiiiiiii e e 1951
51.53. pg_subscription_rel ColumNSc.cccoeiiiiiiiiiiiiiii e 1952
51.54. pg_tabl espace COlUMNSccouiiiiiiieii e e 1953
51.55. pg_transf or MCOIUMNScoouiiiiiii e 1953
51.56. pg_tri gger COIUMNScouuiiiii e e e e e e e e e e e eees 1954
51.57. pg ts _confi g COlUMNSccouuiiiiiiii e e 1955
51.58. pg_ts_confi g _mBp COlUMNSociiiiiiiiiiii e e e e 1956
51.59. pg t'S_di Ct COIUMNSiiiiiiiii e e e e e e e e e 1956
51.60. pg_ts_parser COIUMNScoiiiiiiiii e e e e e e 1957
51.61. pg ts tenpl at @ ColUMNSccccuiiiiiiiiii e e 1957
51.62. PG _tYPE COIUMNS ...uuiiiiciii e e e et e e e e e e aens 1958
YIS V] o Tox- A =To [o] YA ©C0 o == N 1964
51.64. pg_user _mappi NG COIUMNSoiiiiiiiii e e e 1964
5165, SYSEIM VIBWS .. ittt e ettt e e et s e e e et r e e e eatnneeeeatnneaeees 1965
51.66. pg_avai | abl e_ext ensi ons ColUMNSccoovviiiiiiiiiiiiicci e 1966
51.67. pg_avai | abl e_ext ensi on_versi ons ColumnSccooeevvieeiiiieiiineeenneennn, 1966
51.68. pg_CONFi g COIUMNSuiiiiiiii e e e e e 1967
51.69. PG _CUISOI'S COIUMNS ..uuiiiiiciii e e e e e e e e e e e et eeaa e eees 1967
51.70. pg _fil e _settings ColUMNScccocouiiiiiiiiiiiee e e e e 1968
Loy 4 o To o [o 10 o @] 1 40 F= PP 1969
51.72. pg_hba file rul es ColumnScccccouiiiiiiiiiiii e 1969
51.73. Pg_1 NAEXES COIUMNSiiiiiiiiii e e e e e e e e e e e e eaes 1970
51.74. PG | OCKS COIUMNS .. .couiiiiiiiii e e e e e e e e e e et e et e e aa e eeas 1970
51.75. pg_MBAt Vi WS COUMNSoutiiiiiiiii e e e e e e e e e e e e e e et e e e e anaeeeen 1973
51.76. Pg_POI i Ci €S COlUMNSccvuiiiiieiii e e e e e e e e e e e e e e e eeen 1974
51.77. pg_prepared_stat ement's ColUMNScccouieiiiiiiiiiiiiii e 1974
51.78. pg_prepared _Xact s COlUMNSc.ooiiiiiiiiiiieiii e e e e 1975
51.79. pg_publication_tabl es Columnscc.cciiiiiiiiiiii i 1976
51.80.pg_replication_origin_status ColUmNS.........cccoeeviiiiiiiiieiiiieiiineeieeeenn, 1976
51.81.pg replication_slots ColUMNSc.ooviiiiiiiiiieiie e 1976
51.82. PG I 0l €S COlUMNS .. .cuuuiiii i e e e e e e e e e et e e et e et e e aa e eeas 1978
51.83. PG T Ul €S COlUMNS .. .oevniiiieiii e e e e e e e e e e e et e e et e e aa e eeas 1979
51.84. pg_secl abel s COlUMNSc.oiiiiiiiii e 1979
51.85. pg_Sequences COIUMNScc.iiiiiiiiiii e e e e e aens 1980
51.86. pg_SettiNGS COIUMNScouiiiiiiiii e e e e e e e e e e e e e een 1981
51.87. pg_Shadow COlUMNSccuuiiiiicii e 1983
51.88. PG St At'S COIUMNS .. .couuiiiiiiii e e e e e e e e e et e et e e aa e eeas 1984
51.89. pg_tabl €5 COlUMNSccouiiiiiiiii e e 1986
51.90. pg_ti mezone_abbrevs ColUMNSco.oiiiiiiiiiii i 1986
51.91. pg_timezone _Nanmes COlUMNSccuiiiiiiiiiii e e e e 1987
51.92. PG _USEI COIUMNSuiiiiciii et e e e e e e e e e e st e e et e e e e aens 1987
51.93. pg_user _nmappi NGS COlUMNSoiiii e e e e 1988
51.94. PG Vi €WS COIUMNScuvuiiiiiiiie e e e et e e e e e e e e e et e e et e e e et e e saneeeeas 1988
62.1. BUilt-iN GIST OPErator ClaSSESuuiiiuneeiiieiiiiie e eee e e e e e e e et e e e e et e aaanaaes 2095
63.1. BUilt-in SP-GIST OpErator ClaSSESuiiuueiiieeiiieeeiiee e e esie e e e see e e e s eeanaes 2106
64.1. BUilt-iN GIN OPErator ClaSSEScuuiiiiiieiiieiiiie et e e e e e e e e e e e e e et eeaneens 2116
65.1. Built-in BRIN Operator ClaSSeSciuuuiiiiiieiiiieiiiieeiii e e e e e s e s e e e e et esaneeens 2123
65.2. Procedure and Support Numbers for Minmax Operator ClassesSooevvvvevinieeinnnnnn. 2125
65.3. Procedure and Support Numbers for Inclusion Operator Classescc.ceevvvevvinennnnn. 2125
66.1. CONENES OF PCDATA ...ttt ittt e e e et e e e ea e e e et e e e et s e eeaeens 2127
L e === I Yo | PP 2133
66.3. PageHeaderData LayOULc.uiiiiiiiiiiiii e e e e e e e e e e e e e eanes 2133

XXVii

PostgreSQL 10.13 Documentation

66.4. HeapTupleHeaderData LayOULcoeeuniiiiieiii e e e e e e e e e e e 2134
A.L POSIOreSQL Error COUESuuiiiiieiiii e et ee et e e e e e e e e e e e e e e e e e eaes 2154
230 Vo0 11 I = 0 1= <SP SPPN 2164
B.2. Day Of the Week NAMEScciiiiiii e e e 2164
B.3. Date/Time Field MOGIfIErS ...ccouuiiiiiiii e 2164
C.L. SOL KEBY WOIASieiiiii et e e et e e e e e e e et e e et e e et e e et e e et e eeanaes 2168
F.1 adm NPacK FUNCHIONS ..o e e e e e e e e e een 2293
F.2. Deprecated adm Npack FUNCHIONSccoviiiiiiciie e e e e 2293
F.3. Cube External REPreSentationsSccuuieiiiiiiii e ee e e e e e e e e e e e e e aens 2307
[0 oL @ o= = o] ¢ TP 2307
F.5. CUDE FUNCLIONS ... ittt et e e et e e et e e e e et n e e e eatnneaeees 2309
F.6. Cube-based Earthdistance FUNCLIONSccuuuiiiiiiiiieeii et 2344
F.7. Point-based EarthdiStance OPEraforsccuuiviinieiie e e e e e e e e e e eaens 2345
[T TSY o T @ o= = o) £ P 2351
F.O. NSt Or @ FUNCHONS ..oiiiicceie e e 2352
FA0. intarray FUNCHONScouuiiiiici e e e e e e e e e e et e eeaneeees 2358
L I oL = L = | VA @ o= = o) = 2358
L Y T B T = W Y/ o= PP 2360
T Y o I ¥ o LRI 2362
L I O YT @ o= (o) £ PP 2366
F.AS. T 11868 FUNCHONS ..ot e et e e 2367
F.16. pg_buffercache Columns.........ccoooiiiiiiiiiiii e 2379
F.17. Supported Algorithms fOr Crypt () oeeeeeeiieii e e 2381
F.18. Iteration Counts fOr CrYPL () covrieiiiiiiiie e e s 2382
F.19. Hash AlQOrithm SPEEASiveiii e e 2382
F.20. Summary of Functionality with and without OpenSSLcccoovvviiiiiiinccie e, 2388
F.21. pgr oW 0cks OUPUL COIUMNSccvuiiiii e e e e e aens 2392
F.22. pg _stat_statenments COolUMNSccooiviiiiiiiiiiie e e 2394
F.23. pgstatt upl @ OUtPUt COIUMNSc.uuiiiiieiii e e e e e e e e eaas 2399
F.24. pgst at t upl e_appr ox Output ColUMNSccuuiiiiiiiiiiieiie e e e 2402
F.25. PGt FgMEUNCHONS .. couuiiiicci e e e e e e e e e e e e e e eanees 2403
F.26. PO_t I OMOPEIEIOISvuiiiie et aaas 2404
F.27. seg External REPreSentationsScccuuiiiiiiiiiii e e e e e 2414
F.28. Examples of Valid SEQ INPULo.uuiiiiiiii e e e e 2414
F.29. SO GiST OPEIAIONS . .evueiiieiiteeeii ettt et e e et e e e et e e et e e st e e et e et e e e e eatneesnneaenns 2415
(GO~ oo = | I 10 Tox o) 2423
F.31. t abl €f UNC FUNCHONSccuiiiiiiii e e 2428
F.32. CONNECE DY Palrameterscoouiiiiiiii e e e 2435
F.33. FUNCtioNS fOr UUID GENEIAON ... ccevvviieeiiiiieeeiii e et s e e et eeeeii e e eeai e e eeriaeeees 2442
F.34. Functions Returning UUID CONSLANESccuueiiiieiiiiieiiieeiiieeeeeeaiee et e e e eanaeeaes 2443
TSI U 0 1 g PP 2444
F.36. xpat h_t abl @ ParameterScccuiiiiiiiiiii e 2445
H.1. Externally Maintained Client INterfacescc.oveiiiiiiiiiiiii e 2459
H.2. Externally Maintained Procedural LangUagescoevuuieiiieiiiiieiieec e e 2460

XXVili

List of Examples

8.1. USING the CharaCter TYPES ... eiieiii ittt ettt e et e e et e e e et eeeees 132
8.2. USING the DOOI €8N TYPE ... 144
8.3. USING the Bit SIHNG TYPES ... eeeiiieieii ettt et et e e e eaeens 151
9.1. XSLT Stylesheet for Converting SQL/XML Output to HTMLoveiiiiiiiiiiiieeeceiin, 269
10.1. Factorial Operator TYPe RESOIULIONc.uuiiiiiiiieeiiii et 343
10.2. String Concatenation Operator Type RESOIULIONveeeiiiiiiiiiiieeiiii e 344
10.3. Absolute-Vaue and Negation Operator Type ReSOIULIONcccuvuveiiiiinieiiiiieeeeiinn, 344
10.4. Array Inclusion Operator Type RESOIULIONveiiiiiieiiiiieeiiii e 345
10.5. Custom Operator 0N @ DOmMaiN TYPEueiiiiiieiiiiii e 345
10.6. Rounding Function Argument Type ReSOIULIONcoeiviviiiiiiiiiiieeciie e 347
10.7. Variadic FUNCtioN RESOIULIONcviiieieiiiii e e 348
10.8. Substring FUNCtion Type RESOIULIONiiiiiiiiiiiiie e 348
10.9. char act er Storage TYPE CONVEISIONcceeuuneiiiiieeieiieeeeeti e eeetis e e eeti e e eeriaeeees 350
10.10. Type Resolution with Underspecified Typesin @ Unionoeeeevviveieiiiieeiiiinnenes 351
10.11. Type Resolution in @ SImMple UNionooooiiiiiiii e 351
10.12. Type Resolution in @ Transposed UNIONcoouuuuiiiiiiiieiiiii e e 351
10.13. Type Resolution in @ Nested UNiONcc.uuuieiiiiiieiiiiiieeeeei e 351
11.1. Setting up a Partial Index to Exclude Common ValUEScc.ovviiiiiiiiiiiiiiieeiiiieees 359
11.2. Setting up a Partial Index to Exclude Uninteresting Valuescocoeviviiiiiineeiinnnnnn. 360
11.3. Setting up a Partial Unique INAEXcoouuiiiiiiiieiii e 361
11.4. Do Not Use Partial Indexes as a Substitute for Partitioningccccveveeviiinneeiennnnn. 362
20.1. Example pg_hba. coNnf ENtriES ... 571
20.2. An Example pg_i dent . conf Fileoooiiiiiii 574
33.1. libpg EXample Program Lu oottt 799
33.2. libpg EXample Program 2ooiiiiieieii et 802
33.3. libpg Example Program 3ou. e 805
34.1. Large Objects with libpg Example Programooceeuiiieieiiiieeiieeeeei e 815
35.1. Example SQLDA PrOQraMcieiieeeeiie ettt e et e e et e e 864
35.2. ECPG Program Accessing Large ODJECESuuuiiiiiiiieiieii et 877
41.1. Manua Installation of PLIPENTcoiiiiiiii e 1104
42.1. Quoting Vaues [N DYNamiC QUETTESccuuuuieiiiiieeiiii et e eeeni e 1118
42.2. Exceptions With UPDATE/I NSERTiiiiiiiiieiiiii ettt 1132
42.3. A PL/PgSQL Trigger PrOCEOUIEiieiiieee ettt 1144
42.4. A PL/pgSQL Trigger Procedure FOr AUitingcouuuieiiiiiieiiiiieceii e 1145
42.5. A PL/pgSQL View Trigger Procedure FOr AUAItiNgcuuveeieiiinieiiiineeieieeeeeiinnn, 1146
42.6. A PL/pgSQL Trigger Procedure For Maintaining A Summary Tablecccevvnneee. 1147
42.7. Auditing with Transition Tablescooeiiiiiii e 1149
42.8. A PL/pgSQL Event Trigger PrOCEAUIEcccuuuiieiiiiiieieiie e 1151
42.9. Porting a Simple Function from PL/SQL t0 PL/PGSQLuviiiiiiiieiiiiiieeciieeeeeiee 1157
42.10. Porting a Function that Creates Another Function from PL/SQL to PL/pgSQL 1158
42.11. Porting a Procedure With String Manipulation and OUT Parameters from PL/SQL to

[I 0TSO U UUT PP 1160
42.12. Porting a Procedure from PL/SQL to PL/PGSQLuiiiiiiiiiiiiiie e 1161
F.1. Create a Foreign Table for POSIgreSQL CSV LOGS ... civvvvneiiiiiieeeeiiieeeeiieeeeeiineees 2347

XXiX

Preface

This book is the official documentation of PostgreSQL. It has been written by the PostgreSQL
developersand other volunteersin parallel to the devel opment of the PostgreSQL software. It describes
all the functionality that the current version of PostgreSQL officially supports.

To makethelarge amount of information about PostgreSQL manageabl e, thisbook has been organized
in several parts. Each part istargeted at adifferent class of users, or at usersin different stages of their
PostgreSQL experience:

e Part | isaninformal introduction for new users.

 Part 1l documentsthe SQL query language environment, including datatypes and functions, aswell
as user-level performance tuning. Every PostgreSQL user should read this.

 Part 111 describestheinstallation and administration of the server. Everyone who runs a PostgreSQL
server, beit for private use or for others, should read this part.

 Part IV describes the programming interfaces for PostgreSQL client programs.

» Part V contains information for advanced users about the extensibility capabilities of the server.
Topics include user-defined data types and functions.

» Part VI contains reference information about SQL commands, client and server programs. This part
supports the other parts with structured information sorted by command or program.

» Part VII contains assorted information that might be of use to PostgreSQL developers.

1. What is PostgreSQL?

PostgreSQL is an object-relational database management system (ORDBMS) based on POSTGRES,
Version 4.2, developed at the University of California at Berkeley Computer Science Department.
POSTGRES pioneered many concepts that only became available in some commercial database
systems much later.

PostgreSQL is an open-source descendant of this original Berkeley code. It supports a large part of
the SQL standard and offers many modern features:

» complex queries

« foreign keys

* triggers

 updatable views

* transactional integrity

» multiversion concurrency control

Also, PostgreSQL can be extended by the user in many ways, for example by adding new

o datatypes

* functions

* operators
 aggregate functions
* index methods
 procedural languages

And because of the liberal license, PostgreSQL can be used, modified, and distributed by anyone free
of charge for any purpose, beit private, commercial, or academic.

2. A Brief History of PostgreSQL

L hitp://dio.cs.berkel ey.edu/postgres.htm

XXX

http://db.cs.berkeley.edu/postgres.html
http://db.cs.berkeley.edu/postgres.html
http://db.cs.berkeley.edu/postgres.html

Preface

The object-relational database management system now known as PostgreSQL is derived from the
POSTGRES package written at the University of California at Berkeley. With over two decades
of development behind it, PostgreSQL is now the most advanced open-source database available
anywhere.

2.1. The Berkeley POSTGRES Project

The POSTGRES project, led by Professor Michael Stonebraker, was sponsored by the Defense
Advanced Research Projects Agency (DARPA), the Army Research Office (ARO), the National
Science Foundation (NSF), and ESL, Inc. The implementation of POSTGRES began in 1986. The
initial concepts for the system were presented in [ston86], and the definition of the initial data model
appeared in [rowe87]. The design of the rule system at that time was described in [ston87a]. The
rational e and architecture of the storage manager were detailed in [ston87b].

POSTGRES has undergone several major releases since then. The first “demoware” system became
operational in 1987 and was shown at the 1988 ACM-SIGMOD Conference. Version 1, described in
[ston90a], was released to afew external usersin June 1989. In response to a critique of thefirst rule
system ([ston89]), the rule system was redesigned ([ston90b]), and Version 2 was released in June
1990 with the new rule system. Version 3 appeared in 1991 and added support for multiple storage
managers, an improved query executor, and a rewritten rule system. For the most part, subsegquent
releases until Postgres95 (see bel ow) focused on portability and reliability.

POST GRES has been used to implement many different research and production applications. These
include: afinancial data analysis system, a jet engine performance monitoring package, an asteroid
tracking database, a medical information database, and severa geographic information systems.
POSTGRES has also been used as an educational tool at severa universities. Finally, Illustra
Information Technologies (later merged into Informix?, which is now owned by IBM3) picked up
the code and commercialized it. In late 1992, POSTGRES became the primary data manager for the
Sequoia 2000 scientific computing project®,

The size of the external user community nearly doubled during 1993. It became increasingly obvious
that maintenance of the prototype code and support was taking up large amounts of time that should
have been devoted to database research. In an effort to reduce this support burden, the Berkeley
POSTGRES project officially ended with Version 4.2.

2.2. Postgres95

In 1994, Andrew Y u and Jolly Chen added an SQL language interpreter to POSTGRES. Under anew
name, Postgres95 was subsequently released to the web to find its own way in the world as an open-
source descendant of the original POSTGRES Berkeley code.

Postgres95 code was completely ANSI C and trimmed in size by 25%. Many internal changes
improved performance and maintainability. Postgres95 release 1.0.x ran about 30-50% faster on the
Wisconsin Benchmark compared to POSTGRES, Version 4.2. Apart from bug fixes, the following
were the major enhancements:

* The query language PostQUEL was replaced with SQL (implemented in the server). (Interface
library libpg was named after PostQUEL .) Subqueries were not supported until PostgreSQL (see
below), but they could be imitated in Postgres95 with user-defined SQL functions. Aggregate
functions were re-implemented. Support for the GROUP BY query clause was a so added.

* A new program (psqgl) was provided for interactive SQL queries, which used GNU Readline. This
largely superseded the old monitor program.

* A new front-end library, | i bpgt cl , supported Tcl-based clients. A sample shell, pgt cl sh,
provided new Tcl commands to interface Tcl programs with the Postgres95 server.

2 http:/Awww.informix.com/
3 http://www.ibm.com/
4 http://meteora.ucsd.edu/s2k/s2k_home.html

XXXIi

http://www.informix.com/
http://www.ibm.com/
http://meteora.ucsd.edu/s2k/s2k_home.html
http://www.informix.com/
http://www.ibm.com/
http://meteora.ucsd.edu/s2k/s2k_home.html

Preface

» The large-object interface was overhauled. The inversion large objects were the only mechanism
for storing large objects. (The inversion file system was removed.)

» Theinstance-level rule system was removed. Rules were still available as rewrite rules.

» A short tutorial introducing regular SQL features as well as those of Postgres95 was distributed
with the source code

* GNU make (instead of BSD make) was used for the build. Also, Postgres95 could be compiled with
an unpatched GCC (data alignment of doubles was fixed).

2.3. PostgreSQL

By 1996, it became clear that the name “ Postgres95” would not stand the test of time. We chose anew
name, PostgreSQL, to reflect the relationship between the original POSTGRES and the more recent
versions with SQL capability. At the same time, we set the version numbering to start at 6.0, putting
the numbers back into the sequence originally begun by the Berkeley POSTGRES project.

Many people continue to refer to PostgreSQL as “Postgres’ (now rarely in all capital letters) because
of tradition or because it is easier to pronounce. This usage is widely accepted as a nickname or alias.

The emphasis during development of Postgresd5 was on identifying and understanding existing
problems in the server code. With PostgreSQL, the emphasis has shifted to augmenting features and
capabilities, although work continuesin all areas.

Details about what has happened in PostgreSQL since then can be found in Appendix E.

3. Conventions

Thefollowing conventionsare used in the synopsis of acommand: brackets([and]) indicate optional
parts. (In the synopsis of a Tcl command, question marks (?) are used instead, as is usual in Tcl.)
Braces({ and}) and vertical lines(|) indicate that you must choose one dternative. Dots(. . .) mean
that the preceding element can be repeated.

Where it enhances the clarity, SQL commands are preceded by the prompt =>, and shell commands
are preceded by the prompt $. Normally, prompts are not shown, though.

An administrator is generally a person who is in charge of installing and running the server. A user
could be anyone who is using, or wants to use, any part of the PostgreSQL system. These terms
should not be interpreted too narrowly; this book does not have fixed presumptions about system
administration procedures.

4. Further Information

Besides the documentation, that is, this book, there are other resources about PostgreSQL :
Wiki

The PostgreSQL wiki® contains the project's FAQ® (Frequently Asked Questions) list, TODO’
list, and detailed information about many more topics.

Web Site

The PostgreSQL web site® carries details on the | atest release and other information to make your
work or play with PostgreSQL more productive.

5 https://wiki.postgresql.org

5 https://wiki.postgresql.org/wiki/Frequently Asked Questions
7 https://wiki.postgresgl.org/wiki/Todo

8 https://www.postgresgl.org

XXXii

https://wiki.postgresql.org
https://wiki.postgresql.org/wiki/Frequently_Asked_Questions
https://wiki.postgresql.org/wiki/Todo
https://www.postgresql.org
https://wiki.postgresql.org
https://wiki.postgresql.org/wiki/Frequently_Asked_Questions
https://wiki.postgresql.org/wiki/Todo
https://www.postgresql.org

Preface

Mailing Lists

The mailing lists are a good place to have your questions answered, to share experiences with
other users, and to contact the developers. Consult the PostgreSQL web site for details.

Y ourself!

PostgreSQL is an open-source project. As such, it depends on the user community for ongoing
support. As you begin to use PostgreSQL, you will rely on others for help, either through the
documentation or through the mailing lists. Consider contributing your knowledge back. Read
the mailing lists and answer questions. If you learn something which is not in the documentation,
write it up and contribute it. If you add features to the code, contribute them.

5. Bug Reporting Guidelines

When you find abug in PostgreSQL we want to hear about it. Y our bug reports play an important part
in making PostgreSQL more reliable because even the utmost care cannot guarantee that every part
of PostgreSQL will work on every platform under every circumstance.

The following suggestions are intended to assist you in forming bug reports that can be handled in an
effective fashion. No oneis required to follow them but doing so tends to be to everyone's advantage.

We cannot promiseto fix every bug right away. If the bug is obvious, critical, or affectsalot of users,
chances are good that someone will 1ook into it. It could also happen that we tell you to update to
a newer version to see if the bug happens there. Or we might decide that the bug cannot be fixed
before some major rewrite we might be planning isdone. Or perhapsit issimply too hard and there are
more important things on the agenda. If you need help immediately, consider obtaining a commercial
support contract.

5.1. Identifying Bugs

Before you report a bug, please read and re-read the documentation to verify that you can realy do
whatever it isyou are trying. If it is not clear from the documentation whether you can do something
or not, please report that too; it is a bug in the documentation. If it turns out that a program does
something different from what the documentation says, that is a bug. That might include, but is not
limited to, the following circumstances:

» A program terminates with afatal signal or an operating system error message that would point to
a problem in the program. (A counterexample might be a “disk full” message, since you have to
fix that yourself.)

» A program produces the wrong output for any given input.
» A program refuses to accept valid input (as defined in the documentation).

A program acceptsinvalid input without a notice or error message. But keep in mind that your idea
of invalid input might be our idea of an extension or compatibility with traditional practice.

» PostgreSQL failsto compile, build, or install according to the instructions on supported platforms.
Here “program” refers to any executable, not only the backend process.

Being slow or resource-hogging is not necessarily a bug. Read the documentation or ask on one of
the mailing lists for help in tuning your applications. Failing to comply to the SQL standard is not
necessarily a bug either, unless compliance for the specific feature is explicitly claimed.

Before you continue, check on the TODO list and in the FAQ to see if your bug is aready known.
If you cannot decode the information on the TODO list, report your problem. The least we cando is
make the TODO list clearer.

XXXl

Preface

5.2. What to Report

The most important thing to remember about bug reporting is to state all the facts and only facts. Do
not speculate what you think went wrong, what “it seemed to do”, or which part of the program has a
fault. If you are not familiar with the implementation you would probably guess wrong and not help
us a bit. And even if you are, educated explanations are a great supplement to but no substitute for
facts. If we are going to fix the bug we still have to see it happen for ourselves first. Reporting the
bare facts is relatively straightforward (you can probably copy and paste them from the screen) but
all too often important details are left out because someone thought it does not matter or the report
would be understood anyway.

The following items should be contained in every bug report:

» Theexact sequence of stepsfrom program start-up necessary to reproduce the problem. This should
be self-contained; it is not enough to send in a bare SELECT statement without the preceding
CREATE TABLE and | NSERT statements, if the output should depend on the data in the tables.
We do not have the time to reverse-engineer your database schema, and if we are supposed to make
up our own data we would probably miss the problem.

The best format for atest case for SQL-related problems is afile that can be run through the psgl
frontend that shows the problem. (Be sure to not have anything inyour ~/ . psql r ¢ start-up file))
An easy way to createthisfileisto use pg_dump to dump out the table declarations and data needed
to set the scene, then add the problem query. You are encouraged to minimize the size of your
example, but thisis not absolutely necessary. If the bug is reproducible, we will find it either way.

If your application uses some other client interface, such as PHP, then please try to isolate the
offending queries. We will probably not set up aweb server to reproduce your problem. In any case
remember to provide the exact input files; do not guess that the problem happens for “large files’
or “midsize databases’, etc. since thisinformation istoo inexact to be of use.

» Theoutput you got. Please do not say that it “didn't work” or “crashed”. If thereisan error message,
show it, even if you do not understand it. If the program terminates with an operating system error,
say which. If nothing at all happens, say so. Even if the result of your test case is a program crash
or otherwise obvious it might not happen on our platform. The easiest thing is to copy the output
from the terminal, if possible.

Note

If you are reporting an error message, please obtain the most verbose form of the message.
Inpsql, say \ set VERBOSI TY ver bose beforehand. If you are extracting the message
from the server log, set the run-time parameter log_error_verbosity to ver bose so that all
details are logged.

Note

In case of fatal errors, the error message reported by the client might not contain al the
information available. Please also look at the log output of the database server. If you do
not keep your server'slog output, this would be a good time to start doing so.

» The output you expected is very important to state. If you just write “This command gives me that
output.” or “Thisis not what | expected.”, we might run it ourselves, scan the output, and think it
looks OK and is exactly what we expected. We should not have to spend the time to decode the
exact semantics behind your commands. Especialy refrain from merely saying that “This is not
what SQL says/Oracle does.” Digging out the correct behavior from SQL is not a fun undertaking,

XXXIV

Preface

nor do we al know how all the other relational databases out there behave. (If your problem is a
program crash, you can obviously omit thisitem.)

» Any command line options and other start-up options, including any relevant environment variables
or configuration files that you changed from the default. Again, please provide exact information.
If you are using a prepackaged distribution that starts the database server at boot time, you should
try to find out how that is done.

» Anything you did at al differently from the installation instructions.

» ThePostgreSQL version. Y ou canrunthecommand SELECT ver si on() ; tofindouttheversion
of the server you are connected to. Most executable programs also support a- - ver si on option;
at least postgres --version and psql --version should work. If the function or the
options do not exist then your version is more than old enough to warrant an upgrade. If you run a
prepackaged version, such as RPMs, say so, including any subversion the package might have. If
you are talking about a Git snapshot, mention that, including the commit hash.

If your version is older than 10.13 we will almost certainly tell you to upgrade. There are many bug
fixes and improvementsin each new release, so it is quite possible that a bug you have encountered
in an older release of PostgreSQL has already been fixed. We can only provide limited support
for sites using older releases of PostgreSQL ; if you require more than we can provide, consider
acquiring a commercial support contract.

 Platform information. This includes the kernel name and version, C library, processor, memory
information, and so on. In most cases it is sufficient to report the vendor and version, but do not
assume everyone knows what exactly “Debian” contains or that everyone runs on x86_64. If you
have installation problems then information about the toolchain on your machine (compiler, make,
and so on) is also necessary.

Do not be afraid if your bug report becomes rather lengthy. That is afact of life. It is better to report
everything the first time than us having to squeeze the facts out of you. On the other hand, if your
input files are huge, it isfair to ask first whether somebody isinterested in looking into it. Hereis an
article” that outlines some more ti ps on reporting bugs.

Do not spend all your time to figure out which changes in the input make the problem go away. This
will probably not help solving it. If it turns out that the bug cannot be fixed right away, you will still
have timeto find and share your work-around. Also, once again, do not waste your time guessing why
the bug exists. We will find that out soon enough.

When writing a bug report, please avoid confusing terminology. The software package in total is
called “PostgreSQL ", sometimes“ Postgres” for short. If you are specifically talking about the backend
process, mention that, do not just say “PostgreSQL crashes’. A crash of a single backend process
is quite different from crash of the parent “postgres’ process; please don't say “the server crashed”
when you mean asingle backend process went down, nor vice versa. Also, client programs such asthe
interactive frontend “psgl” are completely separate from the backend. Please try to be specific about
whether the problem is on the client or server side.

5.3. Where to Report Bugs

In general, send bug reports to the bug report mailing list at
<pgsql - bugs@i st s. post gresqgl . or g>. You are requested to use a descriptive subject for
your email message, perhaps parts of the error message.

Another method is to fill in the bug report web-form available at the project's web site™®. Entering
a bug report this way causes it to be mailed to the <pgsql - bugs@i st s. post gresql . or g>
mailing list.

9 http://www.chiark.greenend.org.uk/~sgtatham/bugs.htm
10 https:/iwww. postgresal.org/

XXXV

http://www.chiark.greenend.org.uk/~sgtatham/bugs.html
https://www.postgresql.org/
http://www.chiark.greenend.org.uk/~sgtatham/bugs.html
https://www.postgresql.org/

Preface

If your bug report has security implications and you'd prefer that it not become immediately visible
in public archives, don't send it to pgsql - bugs. Security issues can be reported privately to
<security@ostgresql.org>.

Do not send bug reports to any of the wuser maling lists, such as
<pgsql -sqgl @i sts. postgresql.org> or
<pgsql -general @i sts. postgresqgl . org>. These mailing lists are for answering user
questions, and their subscribers normally do not wish to receive bug reports. More importantly, they
are unlikely to fix them.

Also, pleasse do not send reports to the developers mailing list
<pgsql - hackers@i sts. post gresql . or g>. Thislist is for discussing the development of
PostgreSQL , and it would be nice if we could keep the bug reports separate. We might choose to take
up adiscussion about your bug report on pgsql - hacker s, if the problem needs more review.

If you have a problem with the documentation, the best place to report it is the documentation
mailing list <pgsql - docs@ i st s. post gresqgl . or g>. Please be specific about what part of
the documentation you are unhappy with.

If your bug is a portability problem on a non-supported platform, send mail to
<pgsql - hackers@i sts. postgresqgl .org>, so we (and you) can work on porting
PostgreSQL to your platform.

Note

Due to the unfortunate amount of spam going around, all of the above lists will be moderated
unless you are subscribed. That means there will be some delay before the email is delivered.
If you wish to subscribe to the lists, please visit https:/lists.postgresql.org/ for instructions.

XXXVi

https://lists.postgresql.org/

Part I. Tutorial

Welcome to the PostgreSQL Tutorial. The following few chapters are intended to give a simple introduction to
PostgreSQL, relational database concepts, and the SQL |anguage to those who are new to any one of these aspects.
We only assume some general knowledge about how to use computers. No particular Unix or programming
experienceisrequired. Thispart is mainly intended to give you some hands-on experience with important aspects
of the PostgreSQL system. It makes no attempt to be a complete or thorough treatment of the topicsit covers.

After you have worked through this tutorial you might want to move on to reading Part Il to gain a more formal
knowledge of the SQL language, or Part 1V for information about devel oping applications for PostgreSQL . Those
who set up and manage their own server should also read Part 1.

Table of Contents

L. GEIING SEAMEAeeieeie ettt ettt 3
0 T 1 = = = 1o o [P 3
1.2. Architectural FUNDamENtalSc.oiviiniii i 3
1.3. Creating @ Datahasecccuuuiiiiii e 4
1.4, ACCESSING 8 DAIANESE ..ottt 5
2. The SQL LBNGUBGE ...ccevn ittt e et et e et e e e eae s 7
b2 I 1 11 (0o (U (o 1 o I PP 7
A O 04 /= o = PP PT PP 7
2.3. Creating @aNew Table ...o.uuiiii e 7
2.4. Populating @ Table With ROWScoouuiiiiiii e 8
25, QUENYING A TADIE ... 9
2.6. J0INS BEIWEEN TaADIES ...uiviiiie i 10
2.7. AQOregate FUNCLIONSccuuuieiiiii ettt ettt e e et eeeaaa s 12
2.8 UPUELES ...ttt 14
2.9, DEIBHIONSviieiee et e aaaaas 14
I Y0 (V7= o= s (1 = 16
G I 111 (oo (U o 1 o [PPSR 16
I VAT = YRS USPRPRP 16
3.3 FOrEIgN KBYS ..ttt 16
I I =01 o o 1 17
3.5, WINAOW FUNCLIONScviiviiiiii e ans 19
I ST 101015 g1 7= ot PSP 21
G I o o Tox 11 Lo o T 23

Chapter 1. Getting Started

1.1. Installation

Before you can use PostgreSQL you need to install it, of course. It is possible that PostgreSQL is
already installed at your site, either because it was included in your operating system distribution
or because the system administrator already installed it. If that is the case, you should obtain
information from the operating system documentation or your system administrator about how to
access PostgreSQL.

If you are not sure whether PostgreSQL is already available or whether you can use it for your
experimentation then you can install it yourself. Doing so is not hard and it can be a good exercise.
PostgreSQL can be installed by any unprivileged user; no superuser (root) accessis required.

If you are installing PostgreSQL yourself, then refer to Chapter 16 for instructions on installation,
and return to this guide when the installation is complete. Be sure to follow closely the section about
setting up the appropriate environment variabl es.

If your site administrator has not set things up in the default way, you might have some more work to
do. For example, if the database server machine is aremote machine, you will need to set the PGHOST
environment variable to the name of the database server machine. The environment variable PGPORT
might also have to be set. The bottom line is this: if you try to start an application program and it
complains that it cannot connect to the database, you should consult your site administrator or, if
that is you, the documentation to make sure that your environment is properly set up. If you did not
understand the preceding paragraph then read the next section.

1.2. Architectural Fundamentals

Before we proceed, you should understand the basic PostgreSQL system architecture. Understanding
how the parts of PostgreSQL interact will make this chapter somewhat clearer.

In database jargon, PostgreSQL uses a client/server model. A PostgreSQL session consists of the
following cooperating processes (programs):

A server process, which manages the database files, accepts connections to the database from client
applications, and performs database actions on behalf of the clients. The database server program
iscaled post gres.

e The user's client (frontend) application that wants to perform database operations. Client
applications can be very diverse in nature: a client could be a text-oriented tool, a graphical
application, aweb server that accesses the database to display web pages, or a specialized database
maintenance tool. Some client applications are supplied with the PostgreSQL distribution; most are
developed by users.

Asistypical of client/server applications, the client and the server can be on different hosts. In that
case they communicate over a TCP/IP network connection. Y ou should keep this in mind, because
the filesthat can be accessed on a client machine might not be accessible (or might only be accessible
using adifferent file name) on the database server machine.

The PostgreSQL server can handle multiple concurrent connections from clients. To achieve this
it starts (“forks”) a new process for each connection. From that point on, the client and the new
server process communicate without intervention by theoriginal post gr es process. Thus, the master
server process is always running, waiting for client connections, whereas client and associated server
processes come and go. (All of thisis of course invisible to the user. We only mention it here for
completeness.)

Getting Started

1.3. Creating a Database

Thefirst test to see whether you can access the database server isto try to create adatabase. A running
PostgreSQL server can manage many databases. Typically, aseparate databaseisused for each project
or for each user.

Possibly, your site administrator has already created a database for your use. In that case you can omit
this step and skip ahead to the next section.

To create a new database, in this example named mydb, you use the following command:
$ createdb nydb

If this produces no response then this step was successful and you can skip over the remainder of
this section.

If you see a message similar to:
creat edb: command not found

then PostgreSQL was not installed properly. Either it was not installed at al or your shell's search path
was not set to includeit. Try calling the command with an absolute path instead:

$ /usr/local/pgsqgl/bin/createdb nmydb

The path at your site might be different. Contact your site administrator or check the installation
instructions to correct the situation.

Another response could be this:

createdb: could not connect to database postgres: could not connect
to server: No such file or directory

Is the server running locally and accepting

connections on Unix domain socket "/tnp/.s.PGSQ.5432"?

This means that the server was not started, or it was not started where cr eat edb expected it. Again,
check the installation instructions or consult the administrator.

Another response could be this:

createdb: could not connect to database postgres: FATAL: role
"j oe" does not exi st

where your own login name is mentioned. This will happen if the administrator has not created a
PostgreSQL user account for you. (PostgreSQL user accounts are distinct from operating system user
accounts.) If you are the administrator, see Chapter 21 for help creating accounts. You will need to
become the operating system user under which PostgreSQL was installed (usualy post gr es) to
create the first user account. It could also be that you were assigned a PostgreSQL user name that is
different from your operating system user name; in that case you need to use the - U switch or set the
PGUSER environment variable to specify your PostgreSQL user name.

If you have a user account but it does not have the privileges required to create a database, you will
see the following:

creat edb: database creation failed: ERROR pernission denied to
creat e dat abase

Not every user has authorization to create new databases. If PostgreSQL refuses to create databases
for you then the site administrator needs to grant you permission to create databases. Consult your

Getting Started

site administrator if this occurs. If you installed PostgreSQL yourself then you should log in for the
purposes of thistutorial under the user account that you started the server as. !

You can aso create databases with other names. PostgreSQL allows you to create any number of
databases at a given site. Database names must have an aphabetic first character and are limited to
63 bytes in length. A convenient choice is to create a database with the same name as your current
user name. Many tools assume that database name as the default, so it can save you some typing. To
create that database, smply type:

$ createdb

If you do not want to use your database anymore you can removeit. For example, if you are the owner
(creator) of the database ny db, you can destroy it using the following command:

$ dropdb mydb

(For this command, the database name does not default to the user account name. Y ou always need to
specify it.) Thisaction physically removesall files associated with the database and cannot be undone,
so this should only be done with a great deal of forethought.

More about cr eat edb and dr opdb can be found in createdb and dropdb respectively.

1.4. Accessing a Database

Once you have created a database, you can accessit by:

* Running the PostgreSQL interactive terminal program, called psgl, which alows you to
interactively enter, edit, and execute SQL commands.

» Using an existing graphical frontend tool like pgAdmin or an office suite with ODBC or JDBC
support to create and manipulate a database. These possibilities are not covered in this tutorial.

» Writing a custom application, using one of the severa available language bindings. These
possibilities are discussed further in Part V.

Y ou probably want to start up psql to try the examples in this tutorial. It can be activated for the
ny db database by typing the command:

$ psql nydb

If you do not supply the database name then it will default to your user account name. Y ou aready
discovered this schemein the previous section using cr eat edb.

Inpsql , youwill be greeted with the following message:

psql (10.13)
Type "hel p" for help.

mydb=>
Thelast line could also be:
nydb=#

That would mean you are a database superuser, which is most likely the case if you installed the
PostgreSQL instance yourself. Being a superuser means that you are not subject to access controls.
For the purposes of thistutorial that is not important.

1 As an explanation for why this works: PostgreSQL user names are separate from operating system user accounts. When you connect to a
database, you can choose what PostgreSQL user name to connect as; if you don't, it will default to the same name as your current operating
system account. Asit happens, there will always be a PostgreSQL user account that has the same name as the operating system user that started
the server, and it also happens that that user always has permission to create databases. Instead of logging in as that user you can also specify
the - U option everywhere to select a PostgreSQL user name to connect as.

Getting Started

If you encounter problems starting psql then go back to the previous section. The diagnostics of
creat edb and psql aresimilar, and if the former worked the latter should work as well.

Thelast line printed out by psql isthe prompt, and it indicatesthat psql islistening to you and that
you can type SQL queries into awork space maintained by psql . Try out these commands:

nmydb=> SELECT version();
version

Post greSQ. 10.13 on x86_64-pc-1inux-gnu, conpiled by gcc (Debian
4.9.2-10) 4.9.2, 64-bit

(1 row)

nmydb=> SELECT current_date;
dat e

2016- 01- 07
(1 row)

nmydb=> SELECT 2 + 2;
?col um?

(1 row)

Thepsqgl program hasanumber of internal commands that are not SQL commands. They begin with
the backslash character, “\ ”. For example, you can get help on the syntax of various PostgreSQL SQL
commands by typing:

nydb=> \ h
To get out of psql , type:
nydb=> \q

and psql will quit and return you to your command shell. (For more internal commands, type\ ? at
the psql prompt.) The full capabilities of psql are documented in psql. In this tutorial we will not
use these features explicitly, but you can use them yourself when it is helpful.

Chapter 2. The SQL Language

2.1. Introduction

This chapter provides an overview of how to use SQL to perform simple operations. This tutorial is
only intended to give you an introduction and is in no way a complete tutorial on SQL. Numerous
books have been written on SQL, including [melt93] and [date97]. Y ou should be aware that some
PostgreSQL language features are extensions to the standard.

In the examples that follow, we assume that you have created a database named mydb, as described
in the previous chapter, and have been able to start psql.

Examples in this manual can also be found in the PostgreSQL source distribution in the directory
src/tutorial/.(Binary distributions of PostgreSQL might not compile these files.) To use those
files, first change to that directory and run make:

$cd/src/tutorial
$ make

This creates the scripts and compiles the C files containing user-defined functions and types. Then,
to start the tutorial, do the following:

$cd..../tutorial
$ psql -s nydb

nydb=> \i basi cs. sql

The\ i command readsin commandsfrom the specified file. psql 's- s option putsyouin single step
mode which pauses before sending each statement to the server. The commands used in this section
areinthefilebasi cs. sql .

2.2. Concepts

2.3.

PostgreSQL isarelational database management system (RDBMS). That meansit is a system for
managing data stored in relations. Relation is essentially a mathematical term for table. The notion
of storing data in tables is so commonplace today that it might seem inherently obvious, but there
are a number of other ways of organizing databases. Files and directories on Unix-like operating
systems form an example of a hierarchical database. A more modern development is the object-
oriented database.

Each table is a named collection of rows. Each row of a given table has the same set of named
columns, and each column is of a specific datatype. Whereas columns have afixed order in each row,
it isimportant to remember that SQL does not guarantee the order of the rows within the table in any
way (although they can be explicitly sorted for display).

Tables are grouped into databases, and a collection of databases managed by a single PostgreSQL
server instance constitutes a database cluster.

Creating a New Table

Y ou can create a new table by specifying the table name, along with all column names and their types:

CREATE TABLE weat her (
city var char (80),
tenmp_lo int, -- low tenperature

The SQL Language

t enmp_hi int, -- high tenperature
prcp real, -- precipitation
dat e date

)

You can enter this into psql with the line breaks. psql will recognize that the command is not
terminated until the semicolon.

White space (i.e., spaces, tabs, and newlines) can be used freely in SQL commands. That means
you can type the command aligned differently than above, or even all on one line. Two dashes (“- -
") introduce comments. Whatever follows them is ignored up to the end of the line. SQL is case
insensitive about key words and identifiers, except when identifiers are double-quoted to preserve the
case (not done above).

var char (80) specifies a data type that can store arbitrary character strings up to 80 characters
inlength. i nt isthe normal integer type. r eal isatype for storing single precision floating-point
numbers. dat e should be self-explanatory. (Y es, the column of typedat e isalso named dat e. This
might be convenient or confusing — you choose.)

PostgreSQL supports the standard SQL typesi nt, snal I i nt, real, doubl e precision,
char (N),varchar(N),date, tinme,tinestanp, andi nt erval, aswell as other types of
genera utility and arich set of geometric types. PostgreSQL can be customized with an arbitrary
number of user-defined data types. Consequently, type names are not key words in the syntax, except
where required to support special casesin the SQL standard.

The second example will store cities and their associated geographical location:

CREATE TABLE cities (
nane var char (80),
| ocation poi nt

)
Thepoi nt typeisan example of a PostgreSQL -specific data type.

Finally, it should be mentioned that if you don't need atable any longer or want to recreateit differently
you can remove it using the following command:

DROP TABLE t abl enane;

2.4. Populating a Table With Rows

The | NSERT statement is used to populate a table with rows:

| NSERT | NTO weat her VALUES (' San Francisco', 46, 50, 0.25,
'1994-11-27");

Notethat all datatypes use rather obviousinput formats. Constantsthat are not simple numeric values
usually must be surrounded by single quotes ('), asin the example. The dat e typeisactualy quite
flexiblein what it accepts, but for this tutorial we will stick to the unambiguous format shown here.
Thepoi nt type requires a coordinate pair as input, as shown here:

I NSERT I NTO cities VALUES (' San Francisco', '(-194.0, 53.0)');

The syntax used so far requiresyou to remember the order of the columns. An alternative syntax allows
you to list the columns explicitly:

| NSERT | NTO weat her (city, tenp_lo, tenp_hi, prcp, date)
VALUES (' San Francisco', 43, 57, 0.0, '1994-11-29");

The SQL Language

You can list the columns in a different order if you wish or even omit some columns, e.g., if the
precipitation is unknown;

| NSERT | NTO weat her (date, city, tenp_hi, tenp_|lo)
VALUES (' 1994-11-29', 'Hayward', 54, 37);

Many developers consider explicitly listing the columns better style than relying on the order
implicitly.

Please enter al the commands shown above so you have some data to work with in the following
sections.

You could also have used COPY to load large amounts of data from flat-text files. Thisis usually
faster because the COPY command is optimized for this application while allowing lessflexibility than
| NSERT. An example would be:

COPY weat her FROM '/ hone/ user/ weat her.txt';

where the file name for the source file must be available on the machine running the backend process,
not the client, since the backend process reads the file directly. Y ou can read more about the COPY
command in COPY.

2.5. Querying a Table

To retrieve datafrom atable, thetableis queried. An SQL SELECT statement is used to do this. The
statement is divided into a select list (the part that lists the columns to be returned), a table list (the
part that lists the tables from which to retrieve the data), and an optional qualification (the part that
specifies any restrictions). For example, to retrieve all the rows of tableweat her , type:

SELECT * FROM weat her;
Here* isashorthand for “all columns’. * So the same result would be had with:

SELECT city, tenp_lo, tenmp_hi, prcp, date FROM weat her;

The output should be:

city | temp_lo | tenp_hi | prcp | dat e
--------------- T T T L e
San Franci sco | 46 | 50 | 0.25 | 1994-11-27
San Franci sco | 43 | 57 | 0 | 1994-11-29
Haywar d | 37 | 54 | | 1994-11-29
(3 rows)

Y ou can write expressions, not just simple column references, in the select list. For example, you can
do:

SELECT city, (tenp_hi+tenp lo)/2 AS tenp_avg, date FROM weat her;

This should give:

city | tenmp_avg | date
_______________ e
San Franci sco | 48 | 1994-11- 27
San Franci sco | 50 | 1994-11-29
Haywar d | 45 | 1994-11-29
(3 rows)

L \While SELECT * isuseful for off-the-cuff queries, it is widely considered bad style in production code, since adding a column to the table
would change the results.

The SQL Language

Notice how the AS clause is used to relabel the output column. (The AS clauseis optional.)

A query can be “qualified” by adding a WHERE clause that specifies which rows are wanted. The
WHERE clause contains a Boolean (truth value) expression, and only rows for which the Boolean
expression is true are returned. The usual Boolean operators (AND, OR, and NOT) are allowed in the
qualification. For example, the following retrieves the weather of San Francisco on rainy days:

SELECT * FROM weat her
WHERE city = ' San Franci sco' AND prcp > 0.0;

Result:

city | temp_lo | tenp_hi | prcp | dat e
--------------- T LT T T gy
San Franci sco | 46 | 50 | 0.25 | 1994-11-27
(1 row

Y ou can request that the results of a query be returned in sorted order:

SELECT * FROM weat her
ORDER BY city;

city | temp_lo | tenp_hi | prcp | dat e
--------------- T T T T L I
Haywar d | 37 | 54 | | 1994-11-29
San Franci sco | 43 | 57 | 0 | 1994-11-29
San Franci sco | 46 | 50 | 0.25 | 1994-11-27

In this example, the sort order isn't fully specified, and so you might get the San Francisco rowsin
either order. But you'd always get the results shown above if you do:

SELECT * FROM weat her
ORDER BY city, tenp_lo;

Y ou can request that duplicate rows be removed from the result of a query:

SELECT DI STINCT city
FROM weat her ;

Haywar d
San Franci sco
(2 rows)

Here again, theresult row ordering might vary. Y ou can ensure consistent results by using DI STI NCT
and ORDER BY together: 2

SELECT DI STINCT city
FROM weat her
ORDER BY city;

2.6. Joins Between Tables

Thus far, our queries have only accessed one table at a time. Queries can access multiple tables at
once, or access the same table in such away that multiple rows of the table are being processed at the

2 |n some database systems, including older versions of PostgreSQL, the implementation of DI STI NCT automatically orders the rows and
so ORDER BY is unnecessary. But this is not required by the SQL standard, and current PostgreSQL does not guarantee that DI STI NCT
causes the rows to be ordered.

10

The SQL Language

sametime. A query that accesses multiple rows of the same or different tables at onetimeiscalled a
join query. As an example, say you wish to list al the weather records together with the location of
the associated city. To do that, we need to compare the ci t y column of each row of the weat her
table with the nanme column of all rowsintheci t i es table, and select the pairs of rows where these
values match.

Note

Thisisonly aconceptual model. Thejoinisusually performed in amore efficient manner than
actually comparing each possible pair of rows, but thisisinvisible to the user.

This would be accomplished by the following query:

SELECT *
FROM weat her, cities
WHERE city = nane;

city | temp_lo | tenp_hi | prcp | dat e | nane
| location
--------------- T T T L L g
oo - S
San Franci sco | 46 | 50 | 0.25 | 1994-11-27 | San
Francisco | (-194, 53)
San Franci sco | 43 | 57 | 0 | 1994-11-29 | San
Francisco | (-194, 53)
(2 rows)

Observe two things about the result set:

» Thereis no result row for the city of Hayward. This is because there is no matching entry in the
ci ti es table for Hayward, so the join ignores the unmatched rows in the weat her table. We
will see shortly how this can be fixed.

» There are two columns containing the city name. Thisis correct because the lists of columns from
theweat her andci ti es tables are concatenated. In practice this is undesirable, though, so you
will probably want to list the output columns explicitly rather than using * :

SELECT city, tenp_lo, temp_hi, prcp, date, |ocation
FROM weat her, cities
VWHERE city = nane;

Exercise: Attempt to determine the semantics of this query when the WHERE clause is omitted.

Since the columns all had different names, the parser automatically found which table they belong
to. If there were duplicate column names in the two tables you'd need to qualify the column names
to show which one you meant, asin:

SELECT weather.city, weather.tenp_l o, weather.tenp_hi,
weat her. prcp, weather.date, cities.location
FROM weat her, cities
WHERE cities. name = weather.city;

It iswidely considered good style to qualify all column namesin ajoin query, so that the query won't
fail if aduplicate column nameis later added to one of the tables.

Join queries of the kind seen thus far can aso be written in this alternative form:

SELECT *
FROM weat her INNER JO N cities ON (weather.city = cities. nanme);

11

The SQL Language

This syntax is not as commonly used as the one above, but we show it here to help you understand
the following topics.

Now we will figure out how we can get the Hayward records back in. What we want the query to do

isto scan theweat her table and for each row to find the matching ci t i es row(s). If no matching
row is found we want some “empty values’ to be substituted for the ci t i es table's columns. This
kind of query is called an outer join. (The joins we have seen so far are inner joins.) The command
looks like this:

SELECT *
FROM weat her LEFT QUTER JO N cities ON (weather.city
cities.nane);

city | tenp_lo | tenmp_hi | prcp | dat e | nane
| location
--------------- T T T gy
Fom e e e e o e oo - S
Haywar d | 37 | 54 | | 1994-11-29 |
|
San Francisco | 46 | 50 | 0.25 | 1994-11-27 | San
Franci sco | (-194,53)
San Francisco | 43 | 57 | 0 | 1994-11-29 | San
Franci sco | (-194,53)
(3 rows)

This query is called aleft outer join because the table mentioned on the left of the join operator will
have each of its rows in the output at least once, whereas the table on the right will only have those
rows output that match some row of the left table. When outputting aleft-table row for which thereis
no right-table match, empty (null) values are substituted for the right-table columns.

Exercises Thereare aso right outer joins and full outer joins. Try to find out what those do.

We can aso join atable against itself. Thisis caled a self join. As an example, suppose we wish
to find all the weather records that are in the temperature range of other weather records. So we
need to comparethet enp_| o andt enp_hi columns of each weat her row tothet enp_| o and
t emp_hi columns of all other weat her rows. We can do this with the following query:

SELECT WL.city, WiL.tenp_lo AS |l ow, WL.tenp_hi AS hi gh,
W.city, W2.tenp_lo AS low, W2.tenp_hi AS high
FROM weat her WL, weat her W2
WHERE WL.tenp_lo < W2.tenp_lo
AND WL. tenmp_hi > W2.tenp_hi;

city | low | high | city | low | high
--------------- T T I, gy
San Francisco | 43 | 57 | San Francisco | 46 | 50
Haywar d | 37 | 54 | San Francisco | 46 | 50
(2 rows)

Here we have relabel ed the weather table as WL and W2 to be able to distinguish the left and right side
of thejoin. You can also use these kinds of aliasesin other queriesto save some typing, e.g.:

SELECT *
FROM weat her w, cities ¢
VWHERE w. city = c. naneg;

Y ou will encounter this style of abbreviating quite frequently.

2.7. Aggregate Functions

12

The SQL Language

Like most other relational database products, PostgreSQL supports aggregate functions. An aggregate
function computes a single result from multiple input rows. For example, there are aggregates to
compute the count , sum avg (average), max (maximum) and ni n (minimum) over a set of rows.

As an example, we can find the highest low-temperature reading anywhere with:

SELECT nmax(tenp_l o) FROM weat her;

If we wanted to know what city (or cities) that reading occurred in, we might try:
SELECT city FROM weat her WHERE tenp_| o = max(tenp_l 0); VRONG

but this will not work since the aggregate max cannot be used in the WHERE clause. (This restriction
exists because the WHERE clause determines which rowswill be included in the aggregate cal cul ation;
so obviously it hasto be eval uated before aggregate functions are computed.) However, asis often the
case the query can be restated to accomplish the desired result, here by using a subquery:

SELECT city FROM weat her
WHERE tenp | o = (SELECT max(tenp_l o) FROM weat her);

San Franci sco

(1 row

This is OK because the subquery is an independent computation that computes its own aggregate
separately from what is happening in the outer query.

Aggregates are also very useful in combination with GROUP BY clauses. For example, we can get
the maximum low temperature observed in each city with:

SELECT city, max(tenp_l o)
FROM weat her
GROUP BY city;

city | max
_______________ [I,
Haywar d | 37
San Francisco | 46
(2 rows)

which givesusone output row per city. Each aggregate result iscomputed over thetable rows matching
that city. We can filter these grouped rows using HAVI NG

SELECT city, max(tenp_l o)
FROM weat her
GROUP BY city
HAVI NG max(tenp_|l o) < 40;

city | max
_________ .
Hayward | 37
(1 row

which gives us the same results for only the cities that have all t enp_| o values below 40. Finally,
if we only care about cities whose names begin with “S”, we might do:

13

The SQL Language

SELECT city, max(tenp_| o)
FROM weat her
VWHERE city LIKE ' S% --
GROUP BY city
HAVI NG max(tenp_l o) < 40;

The LI KE operator does pattern matching and is explained in Section 9.7.

It is important to understand the interaction between aggregates and SQL's WHERE and HAVI NG
clauses. The fundamental difference between WHERE and HAVI NG is this: WHERE selects input
rows before groups and aggregates are computed (thus, it controls which rows go into the aggregate
computation), whereas HAVI NG sel ects group rows after groups and aggregates are computed. Thus,
the WHERE clause must not contain aggregate functions; it makes no sense to try to use an aggregate
to determine which rows will be inputs to the aggregates. On the other hand, the HAVI NG clause
always contains aggregate functions. (Strictly speaking, you are allowed to write a HAVI NG clause
that doesn't use aggregates, but it's seldom useful. The same condition could be used more efficiently
at the WHERE stage.)

In the previous example, we can apply the city name restriction in WHERE, sinceit needs no aggregate.
This is more efficient than adding the restriction to HAVI NG, because we avoid doing the grouping
and aggregate calculations for al rows that fail the WHERE check.

2.8. Updates

You can update existing rows using the UPDATE command. Suppose you discover the temperature
readings are all off by 2 degrees after November 28. Y ou can correct the data as follows:

UPDATE weat her
SET tenmp_hi = tenp_hi - 2, tenp_lo =tenp_lo - 2
VWHERE date > '1994-11-28';

Look at the new state of the data:

SELECT * FROM weat her;

city | tenp_lo | tenmp_hi | prcp | dat e
--------------- T T T gy
San Francisco | 46 | 50 | 0.25 | 1994-11-27
San Francisco | 41 | 55 | 0 | 1994-11-29
Haywar d | 35 | 52 | | 1994-11-29
(3 rows)

2.9. Deletions

Rows can be removed from atable using the DEL ETE command. Suppose you are ho longer interested
in the weather of Hayward. Then you can do the following to delete those rows from the table:

DELETE FROM weat her WHERE city = 'Hayward';
All weather records belonging to Hayward are removed.

SELECT * FROM weat her;

city | tenp_lo | tenmp_hi | prcp | dat e
--------------- T T T gy
San Francisco | 46 | 50 | 0.25 | 1994-11-27
San Francisco | 41 | 55 | 0 | 1994-11-29
(2 rows)

14

The SQL Language

One should be wary of statements of the form
DELETE FROM t abl enane;

Without a qualification, DELETE will remove all rows from the given table, leaving it empty. The
system will not request confirmation before doing this!

15

Chapter 3. Advanced Features

3.1. Introduction

In the previous chapter we have covered the basics of using SQL to store and access your data in
PostgreSQL . We will now discuss some more advanced features of SQL that simplify management
and prevent loss or corruption of your data. Finally, we will look at some PostgreSQL extensions.

This chapter will on occasion refer to examples found in Chapter 2 to change or improve them, so
it will be useful to have read that chapter. Some examples from this chapter can also be found in
advanced. sql inthetutoria directory. Thisfile also contains some sample datato load, which is
not repeated here. (Refer to Section 2.1 for how to use thefile.)

3.2. Views

Refer back to the queriesin Section 2.6. Suppose the combined listing of weather records and city
location is of particular interest to your application, but you do not want to type the query each time
you need it. Y ou can create a view over the query, which gives aname to the query that you can refer
to like an ordinary table:

CREATE VI EW nyvi ew AS
SELECT city, tenp_lo, tenp_hi, prcp, date, |ocation
FROM weat her, cities
WHERE city = nane;

SELECT * FROM nyvi ew,

Making liberal use of views is a key aspect of good SQL database design. Views allow you to
encapsul ate the details of the structure of your tables, which might change asyour application evolves,
behind consistent interfaces.

Views can be used in almost any place areal table can be used. Building views upon other views is
not uncommon.

3.3. Foreign Keys

Recall theweat her andci ti es tablesfrom Chapter 2. Consider the following problem: Y ou want
to make sure that no one can insert rows in the weat her table that do not have a matching entry
intheci ti es table. Thisis called maintaining the referential integrity of your data. In simplistic
database systems this would be implemented (if at al) by first looking at theci t i es table to check
if amatching record exists, and then inserting or rejecting the new weat her records. This approach
has a number of problems and is very inconvenient, so PostgreSQL can do this for you.

The new declaration of the tables would look like this:
CREATE TABLE cities (
city varchar (80) primary key,

| ocation point

)

CREATE TABLE weat her (

city varchar (80) references cities(city),
tenmp_lo int,

t enp_hi int,

prcp real,

16

Advanced Features

dat e dat e

)
Now try inserting an invalid record:
| NSERT | NTO weat her VALUES (' Berkel ey', 45, 53, 0.0, '1994-11-28");

ERROR: insert or update on table "weather" viol ates foreign key
constraint "weather city fkey"
DETAIL: Key (city)=(Berkeley) is not present in table "cities".

Thebehavior of foreign keys can befinely tuned to your application. Wewill not go beyond thissimple
example in this tutorial, but just refer you to Chapter 5 for more information. Making correct use of
foreign keys will definitely improve the quality of your database applications, so you are strongly
encouraged to learn about them.

3.4. Transactions

Transactions are afundamental concept of all database systems. The essential point of atransactionis
that it bundles multiple steps into a single, al-or-nothing operation. The intermediate states between
the steps are not visible to other concurrent transactions, and if some failure occurs that prevents the
transaction from completing, then none of the steps affect the database at al.

For example, consider abank database that contains balancesfor various customer accounts, aswell as
total deposit balancesfor branches. Suppose that we want to record apayment of $100.00 from Alice's
account to Bob's account. Simplifying outrageously, the SQL commands for this might ook like:

UPDATE accounts SET bal ance = bal ance - 100. 00

VWHERE nanme = 'Alice';
UPDATE branches SET bal ance = bal ance - 100. 00

WHERE nane = (SELECT branch_name FROM accounts WHERE nane
"Alice');
UPDATE accounts SET bal ance = bal ance + 100. 00

VWHERE nanme = ' Bob';
UPDATE branches SET bal ance = bal ance + 100. 00

WHERE nane = (SELECT branch_nanme FROM accounts WHERE nane
' Bob') ;

The details of these commands are not important here; the important point is that there are several
separate updates involved to accomplish this rather simple operation. Our bank's officers will want to
be assured that either all these updates happen, or none of them happen. It would certainly not do for
asystem failure to result in Bob receiving $100.00 that was not debited from Alice. Nor would Alice
long remain a happy customer if she was debited without Bob being credited. We need a guarantee
that if something goes wrong partway through the operation, none of the steps executed so far will
take effect. Grouping the updates into a transaction gives usthis guarantee. A transactionissaid to be
atomic: from the point of view of other transactions, it either happens completely or not at all.

We also want a guarantee that once a transaction is completed and acknowledged by the database
system, it has indeed been permanently recorded and won't be lost even if a crash ensues shortly
thereafter. For example, if we are recording acash withdrawal by Bob, we do not want any chance that
the debit to his account will disappear in acrash just after he walks out the bank door. A transactional
database guarantees that all the updates made by a transaction are logged in permanent storage (i.e.,
on disk) before the transaction is reported complete.

Another important property of transactional databases is closely related to the notion of atomic
updates: when multiple transactions are running concurrently, each one should not be able to see the
incomplete changes made by others. For example, if one transaction is busy totalling all the branch
balances, it would not do for it to include the debit from Alice's branch but not the credit to Bob's
branch, nor vice versa. So transactions must be all-or-nothing not only in terms of their permanent

17

Advanced Features

effect on the database, but also in terms of their visibility as they happen. The updates made so far by
an open transaction are invisible to other transactions until the transaction completes, whereupon all
the updates become visible simultaneously.

In PostgreSQL, a transaction is set up by surrounding the SQL commands of the transaction with
BEGQ Nand COMM T commands. So our banking transaction would actually look like:

BEG N;

UPDATE accounts SET bal ance = bal ance - 100. 00
VWHERE nane = 'Alice';

-- etc etc

COW T,

If, partway through the transaction, we decide we do not want to commit (perhapswe just noticed that
Alice's balance went negative), we can issue the command ROLLBACK instead of COMM T, and all
our updates so far will be canceled.

PostgreSQL actually treats every SQL statement as being executed within atransaction. If you do not
issue a BEG N command, then each individual statement has an implicit BEG N and (if successful)
COWM T wrapped around it. A group of statements surrounded by BEG Nand COVM T is sometimes
called atransaction block.

Note

Some client libraries issue BEG N and COMM T commands automatically, so that you might
get the effect of transaction blocks without asking. Check the documentation for the interface
you are using.

It's possible to control the statements in a transaction in a more granular fashion through the use of
savepoints. Savepoints allow you to selectively discard parts of the transaction, while committing the
rest. After defining a savepoint with SAVEPQO NT, you can if needed roll back to the savepoint with
ROLLBACK TO. All the transaction's database changes between defining the savepoint and rolling
back to it are discarded, but changes earlier than the savepoint are kept.

After rolling back to a savepoint, it continues to be defined, so you can roll back to it several times.
Conversely, if you are sure you won't need to roll back to a particular savepoint again, it can be
released, so the system can free some resources. Keep in mind that either releasing or rolling back to
a savepoint will automatically release all savepoints that were defined after it.

All this is happening within the transaction block, so none of it is visible to other database sessions.
When and if you commit the transaction block, the committed actions become visible asaunit to other
sessions, while the rolled-back actions never become visible at all.

Remembering the bank database, suppose we debit $100.00 from Alice's account, and credit Bob's
account, only to find later that we should have credited Wally's account. We could do it using
savepoints like this:

BEG N,

UPDATE accounts SET bal ance
VWHERE nane = 'Alice';

SAVEPQO NT ny_savepoi nt;

UPDATE accounts SET bal ance
VWHERE nane = ' Bob';

-- oops ... forget that and use Wally's account

ROLLBACK TO ny_savepoi nt;

UPDATE accounts SET bal ance = bal ance + 100. 00
WHERE nane = 'Vally';

bal ance - 100. 00

bal ance + 100. 00

18

Advanced Features

COW T;

Thisexample s, of course, oversimplified, but there's alot of control possible in a transaction block
through the use of savepoints. Moreover, ROLLBACK TO s the only way to regain control of a
transaction block that was put in aborted state by the system due to an error, short of rolling it back
completely and starting again.

3.5. Window Functions

A window function performs a calculation across a set of table rows that are somehow related to the
current row. Thisis comparable to the type of calculation that can be done with an aggregate function.
However, window functions do not cause rows to become grouped into a single output row like non-
window aggregate calls would. Instead, the rows retain their separate identities. Behind the scenes,
the window function is able to access more than just the current row of the query result.

Here is an example that shows how to compare each employee's salary with the average salary in his
or her department:

SELECT depnane, enpno, salary, avg(salary) OVER (PARTI TI ON BY
depnanme) FROM enpsal ary;

depnanme | enpno | salary | avg
----------- TR
devel op | 11 | 5200 | 5020. 0000000000000000
devel op | 7| 4200 | 5020. 0000000000000000
devel op | 9 | 4500 | 5020. 0000000000000000
devel op | 8 | 6000 | 5020. 0000000000000000
devel op | 10 | 5200 | 5020. 0000000000000000
personnel | 5 3500 | 3700. 0000000000000000
personnel | 2 3900 | 3700. 0000000000000000
sal es | 3 4800 | 4866.6666666666666667
sal es | 1] 5000 | 4866.6666666666666667
sal es | 4 | 4800 | 4866.6666666666666667
(10 rows)

Thefirst three output columns come directly from the table enpsal ar y, and there is one output row
for each row in the table. The fourth column represents an average taken across all the table rows
that have the same depnane value as the current row. (This actually is the same function as the
non-window avg aggregate, but the OVER clause causes it to be treated as a window function and
computed across the window frame.)

A window function call aways contains an OVER clause directly following the window function's
name and argument(s). This is what syntactically distinguishes it from a normal function or non-
window aggregate. The OVER clause determines exactly how the rows of the query are split up for
processing by the window function. The PARTI Tl ON BY clause within OVER divides the rows into
groups, or partitions, that share the same values of the PARTI TI ON BY expression(s). For each row,
the window function is computed across the rows that fall into the same partition as the current row.

Y ou can aso control the order in which rows are processed by window functions using ORDER BY
within OVER. (The window ORDER BY does not even have to match the order in which the rows are
output.) Hereis an example:

SELECT depnane, enpno, salary,
rank() OVER (PARTI TI ON BY depnane ORDER BY sal ary DESC)
FROM enpsal ary;

depnanme | enpno | salary | rank

devel op | 8 | 6000 | 1

19

Advanced Features

devel op | 10 | 5200 | 2
devel op | 11 | 5200 | 2
devel op | 9 | 4500 | 4
devel op | 7 | 4200 | 5
per sonnel | 2| 3900 | 1
per sonnel | 5] 3500 | 2
sal es | 1| 5000 | 1
sal es | 4 | 4800 | 2
sal es | 3| 4800 | 2
(10 rows)

As shown here, the r ank function produces a numerical rank for each distinct ORDER BY valuein
the current row's partition, using the order defined by the ORDER BY clause. r ank needs no explicit
parameter, because its behavior is entirely determined by the OVER clause.

The rows considered by a window function are those of the “virtual table” produced by the query's
FROMclause asfiltered by its WHERE, GROUP BY, and HAVI NG clauses if any. For example, arow
removed because it does not meet the WHERE condition is not seen by any window function. A query
can contain multiple window functions that slice up the data in different ways using different OVER
clauses, but they all act on the same collection of rows defined by this virtual table.

We already saw that ORDER BY can be omitted if the ordering of rows is not important. It is also
possible to omit PARTI TI ON BY, in which case there is asingle partition containing al rows.

There is another important concept associated with window functions: for each row, there is a set of
rows within its partition called its window frame. Some window functions act only on the rows of the
window frame, rather than of the whole partition. By default, if ORDER BY is supplied then the frame
consists of all rowsfrom the start of the partition up through the current row, plus any following rows
that are equal to the current row according to the ORDER BY clause. When ORDER BY is omitted the
default frame consists of all rows in the partition. * Here is an example using sum

SELECT sal ary, sun{salary) OVER () FROM enpsal ary;

salary | sum

________ S,
5200 | 47100
5000 | 47100
3500 | 47100
4800 | 47100
3900 | 47100
4200 | 47100
4500 | 47100
4800 | 47100
6000 | 47100
5200 | 47100

(10 rows)

Above, sincethereisno ORDER BY inthe OVER clause, thewindow frameisthe same asthe partition,
which for lack of PARTI TI ON BY is the whole table; in other words each sum is taken over the
whole table and so we get the same result for each output row. But if we add an ORDER BY clause,
we get very different results:

SELECT sal ary, sun{salary) OVER (ORDER BY sal ary) FROM enpsal ary;

salary | sum
________ .
3500 | 3500
3900 | 7400

! There are options to define the window frame in other ways, but this tutorial does not cover them. See Section 4.2.8 for details.

20

Advanced Features

4200 | 11600
4500 | 16100
4800 | 25700
4800 | 25700
5000 | 30700
5200 | 41100
5200 | 41100
6000 | 47100
(10 rows)

Herethe sumistaken fromthefirst (lowest) salary up through the current one, including any duplicates
of the current one (notice the results for the duplicated salaries).

Window functions are permitted only in the SELECT list and the ORDER BY clause of the query.
They are forbidden elsewhere, such asin GROUP BY, HAVI NG and WHERE clauses. Thisis because
they logically execute after the processing of those clauses. Also, window functions execute after
non-window aggregate functions. This means it is valid to include an aggregate function call in the
arguments of awindow function, but not vice versa.

If there is a need to filter or group rows after the window calculations are performed, you can use a
sub-select. For example:

SELECT depnane, enpno, salary, enroll_date
FROM

(SELECT depnane, enpno, salary, enroll _date,

rank() OVER (PARTI TI ON BY depnane ORDER BY sal ary DESC,
enpno) AS pos
FROM enpsal ary

) AS ss

WHERE pos < 3;

The above query only shows the rows from the inner query having r ank lessthan 3.

When a query involves multiple window functions, it is possible to write out each one with a separate
OVER clause, but this is duplicative and error-prone if the same windowing behavior is wanted for
severa functions. Instead, each windowing behavior can be named in a W NDOWclause and then
referenced in OVER. For example:

SELECT sun{sal ary) OVER w, avg(salary) OVER w
FROM enpsal ary
W NDOW w AS (PARTI TI ON BY depnanme ORDER BY sal ary DESC);

More details about window functions can be found in Section 4.2.8, Section 9.21, Section 7.2.5, and
the SELECT reference page.

3.6. Inheritance

Inheritance is a concept from object-oriented databases. It opens up interesting new possibilities of
database design.

Let's create two tables: A tableci ti es and atable capi t al s. Naturaly, capitals are also cities,
S0 you want some way to show the capitals implicitly when you list all cities. If you're realy clever
you might invent some scheme like this;

CREATE TABLE capitals (

nane text,

popul ati on real,

el evation int, -- (in ft)
state char (2)

21

Advanced Features

)

CREATE TABLE non_capitals (

name t ext,
popul ati on real,
el evation int -- (in ft)

);

CREATE VIEWcities AS
SELECT nane, popul ation, el evation FROM capitals
UNI ON
SELECT nane, popul ation, el evation FROM non_capitals;

This works OK as far as querying goes, but it gets ugly when you need to update severa rows, for
onething.

A better solution isthis:

CREATE TABLE cities (

nane t ext,
popul ati on real,
el evation int -- (in ft)

)

CREATE TABLE capitals (
state char (2)
) INHERI TS (cities);

In this case, arow of capi t al s inherits all columns (name, popul ati on, and el evati on)
from its parent, ci ti es. The type of the column nane ist ext, a native PostgreSQL type for
variable length character strings. State capitals have an extra column, st at e, that shows their state.
In PostgreSQL, a table can inherit from zero or more other tables.

For example, the following query finds the names of al cities, including state capitals, that are located
at an elevation over 500 feet:

SELECT nane, el evation
FROM ci ti es
VWHERE el evati on > 500;

which returns;

nane | elevation
___________ .
Las Vegas | 2174
Mari posa | 1953
Madi son | 845
(3 rows)

On the other hand, the following query finds all the cities that are not state capitals and are situated
at an elevation over 500 feet:

SELECT nane, el evation
FROM ONLY cities
VWHERE el evati on > 500;

name | elevation
___________ o,
Las Vegas | 2174
Mari posa | 1953

22

Advanced Features

(2 rows)

Herethe ONLY beforeci t i es indicatesthat the query should berun over only theci t i es table, and
not tables below ci t i es in the inheritance hierarchy. Many of the commands that we have aready
discussed — SELECT, UPDATE, and DELETE — support this ONLY notation.

Note

Although inheritance is frequently useful, it has not been integrated with unique constraints or
foreign keys, which limits its usefulness. See Section 5.9 for more detail.

3.7. Conclusion

PostgreSQL has many features not touched upon in thistutorial introduction, which has been oriented
toward newer users of SQL. These features are discussed in more detail in the remainder of this book.

If you feel you need more introductory material, please visit the PostgreSQL web site? for links to
more resources.

2 https://www.postgresgl.org

23

https://www.postgresql.org
https://www.postgresql.org

Part Il. The SQL Language

This part describes the use of the SQL language in PostgreSQL . We start with describing the general syntax of
SQL, then explain how to create the structures to hold data, how to popul ate the database, and how to query it. The
middle part lists the available data types and functions for use in SQL commands. The rest treats several aspects
that are important for tuning a database for optimal performance.

Theinformation in this part is arranged so that a novice user can follow it start to end to gain afull understanding
of the topics without having to refer forward too many times. The chapters are intended to be self-contained, so
that advanced users can read the chapters individually asthey choose. The information in this part is presented in
a narrative fashion in topical units. Readers looking for a complete description of a particular command should
see Part V1.

Readers of this part should know how to connect to a PostgreSQL database and issue SQL commands. Readers
that are unfamiliar with these issues are encouraged to read Part | first. SQL commands aretypically entered using
the PostgreSQL interactive terminal psgl, but other programs that have similar functionality can be used as well.

Table of Contents

A, SQL SYNEBX +.tueeeeeti ettt ettt e e et e e ettt ettt et e e e et e et e e e e e e e e eabn e eene 31
A1, LeXiCal SIUCTUME ...ttt ettt e e 31
4.1.1. Identifiers and Ky WOIASuieiiiiiieiiiiiieceei et 31
.02, CONSLANESeeree ettt ettt 33
40,3, OPEIELOISeieeeeei ettt ettt et 37
4.1.4. SPECial CharaCler'S ... oceeeei ettt et 37
.05, COMMENES ...eetiieiti ettt ettt e e et e e e e e e e eaa s 38
4.1.6. OPErator PrECEOBNCEcceiti ettt ettt e e e eeees 38

4.2, VAlUE EXPIESSIONSceiitieetiiti ettt e ettt e ettt e et e ettt e e et e et eab e e eennaaaaees 39
4.2.1. ColUMN REFEIEINCEScovviieiiii e 40
4.2.2. POSItiONal PalraMELErSuiiiiiiiieieii et 40
4.2.3. SUDSCIIPES ettt ettt e 41
424, Field SEIECHON ...t 41
4.2.5. OPErator INVOCAHONScevuueiiitiieieiii ettt e e e eenees 42
4.2.6. FUNCHON CallS .. .ceiiiiiiiiii e 42
4.2.7. AQOregate EXPIESSIONScccuuuieiiitiieeiiti e ee ettt e et e ettt eeeeti e e eeaiaeeees 42
4.2.8. Window FUNCLION CallSuiiiiiiiieiiiie e 44
4.2.9. TYPR CaASLS ..cvtiiiieeet et 46
4.2.10. Collation EXPreESSIONSocieueeeieiiieee ettt 47
4.2.11. SCAlAr SUDQUENTESeeeeieieei ettt 47
4.2.12. Array CONSIIUCLOISccvuiieieieie ettt et e e e e 48
4.2.13. ROW CONSITUCTONS ...eeuiieieiei et ettt e e e 49
4.2.14. Expression Evaluation RUIEScoouviiiiiiiii e 51

4.3, CalliNg FUNCLIONS ...ttt e e e 52
4.3.1. Using Positional NOEHIONccceuuuieiiiiiieeiii et 52
4.3.2. Using Named NOLAIONuuiiiiiiiiiieiiii e e e 53
4.3.3. USINg MiXed NOLALIONuuiiiiiiiieiiiii e 53

5. Dat@ DEFINITION ..ottt et e aaas 55
5.1 TADIE BASICS ..ttt ettt 55
5.2, DEFAUIT VAIUBS ...t 56
5.3, CONSITAINTS ..ttt ettt e et e et e e e e e 57
5.3.1. Check CONSIIAINTScevuueiiiiiiee ettt e e e e et e e eeri e e e 57
5.3.2. NO-NUIT CONSIFAINES ...ceveieieiie et 59
5.3.3. UNIQUE CONSITAINESeevtieieiiie ettt 60
534, PrIMAIY KEYS ...ttt 61
5.3.5. FOrEIgN KEBYS ...t 61
5.3.6. EXCIUSION CONSITAINTScevvieiiiiiieeiei ettt et e e e 64

5.4, SYySteM COIUMNS ...ttt e et e e e et e e eat e eees 64
5.5. MOAIfyiNg TabIES ...t 65
55.1. AddiNg @ COIUMNoouuiiiiiii e 66
5.5.2. ReMOVING @ COIUMN ...coouiiiiiiii ettt 66
5.5.3. AddiNg @ CONSIFAINTccevvuiiiiiiiee e 66
5.5.4. RemMOVING @ CONSIIAINTccevuiieiiiiieee ittt 67
5.5.5. Changing a Column's Default Valueccovvviiieiiiiiiieiiii e 67
5.5.6. Changing a Column'S Data TYPEc.uuuieiiiiiiieiiiii e 67
55.7. Renaming @ COIUMINcoouiiiiiiiii e 68
55.8. RENaMINg @ TaDI€ceeviiiiiii e 68

5.6, PrIVIIEOES ...t 68
5.7. ROW SeCUrity POIICIESuuiiiiii e 69
5.8, SCREMAS ... 75
5.8.1. Creating @ SCNEMAccouuiieiiiii e 75
5.8.2. The PUBIIC SChemMacoooviiii e 76
5.8.3. The Schema Search Pathooooiiiiiiiii e 76
5.8.4. Schemas and PrivilEgESooiiiiiiiiiii e 77
5.8.5. The System Catalog SChEMa.cccvvuiiiiiiiieeie e 78

25

The SQL Language

5.8.6. USAQE PalerNSviiiiii et 78
5.8.7. POrabIlITYuieiiiiiiee i 78

L [10T g1 = (ot TSRS 79
N O = P 82

5.10. Table Partitioningoceuuiiiiieiiiie e e e e e e e e e e aaas 82
B5.10. 1. OVEIVIEIW .ottt ettt e e ettt e e e et e e e e et neeeeebe s e eaeatnneeaees 82
5.10.2. Declarative Partitioningccocuuiiiiiiiiiiicii e e 83
5.10.3. Implementation Using INeritanCeccooevieeiiiiiii e 87
5.10.4. Partitioning and Constraint EXCIUSIONcooeviiiiiiiiiiiec e, 91
5.10.5. Declarative Partitioning Best PractiCescccoveviiviiiiiiiiiecciie e 93

LI o (= o | B I - L 93
5.12. Other Datahase ODJECESivvniiii i e e e e e 94
5.13. DePENdENCY TraCKiNgcvuueiinieiiieeie e e e e e e e e e e e e e e e e et e e eaeeeenas 94
SR BT = 1Y =T o 10 = 1 o 96
Lo 1= g To [- v PPN 96
(SR U] oo = (] oo D - LN 97
(SRCI D= I (] oo - v U 98
6.4. Returning Data From Modified ROWScoiiiiiiiiiiiii e 98
2O 0 = 1= N 100
T L OVEIVIBIW L.ttt et e e ettt et e i r e e e et e e e e et n e e e et e e eaaanns 100
7.2, TaDIE EXPIrESSIONScvviieiiie et e e e e e e e e e e e e et e e et e et e e e e eaans 100
7.2.1. TRE FROMCIBLISE .. .eevvieeeeii ettt 100
7.2.2. TREVWHERE ClalSE ...ccvviieiiiiiieeeeeie ettt 108
7.2.3. The GROUP BY and HAVI NG ClaUSESoevvvvieeeiiiiieeeeiiiieeeeiia e e e 109
7.2.4. GROUPI NG SETS, CUBE, and ROLLUPcoiiiiiiiiiiiii e 111
7.2.5. Window FUNCEION ProCESSINGccvuiiiieiiiiecii e e e e e e 113

SRS = < ox B I £ PR 114
7.3. 1. SEECE-LiSt ItOMS coevviieiieii e 114
7.3.2. COlUMN LADEIS ..oeviieiiii et 114
7.3.3. DESTINCT it e e e et eeeaanns 115

7.4. CombBINING QUEES .. .cuuieiii i e et e e e e e e e e e e e et e et e e aaa e eeas 115
7.5, SOMING ROWS ...t e e e e e e e e e eaens 116
T76. LIM T N OFFSET ..oviiiiiiiiieeei et et e e e e e et e e eees 117
TV A/ O S R I £ PSP 117
7.8. W TH Queries (Common Table EXPreSSions)cvevuueeeuiieeiiieiiieeeiiesiineesneenenns 118
7.8.1L SELECT INW TH .ot 118
7.8.2. Data-Modifying Statements in W THocoiiiiii i, 122

S T D= = T Y/ 0 P 124
300 O N[0 0= o Y = 125
e I R 1 011 o = Y/ o1 PPN 126
8.1.2. Arbitrary Precision NUMDBErSc.oooiiiiiiiiii e 126
8.1.3. Floating-POINt TYPES ..ovviiiiiieeii e e e e e 128

8. LA SEIA TYPES ittt 129

e I o g1 = 1Y o< T PPN 130
G I O == ot (= G Y/ o= P 130
8.4. BINAry Dala TYPES ..uuciiiieii ettt et e e e e e e e e e e et e eaen 132
8.4.1. byt €a HEX FOIMauiiiiiiiii i e 133
8.4.2. byt ea ESCape FOrMALccvvuiiiiiieii e 133

LR = (=l T2 1T Y/ o= P 134
8.5.1. Date/TimeE INPULevvneiiii e e e e e e e e e eaneees 136
8.5.2. DAE/TIME OULPULueieiiieeeeiiie et et e e et e e et e e e eat e e e eaan e eeeenns 139
8.5.3. TIME ZONES ...ttt e et aaens 140
8.5.4. Interval INPULcovtiiii e e 141
8.5.5. INterval OULPULceveiiii e e e e e e e e e eeen 143

S = T To = Y/ o= P 144
A 1000 = =0 I Y/ o= 145
8.7.1. Declaration of Enumerated TYPESccuuiviiiiiii e 145
A @ (o[41 o PN 145

26

The SQL Language

B.7.3. TYPE SAFELY eeeveieeieii ettt 146
8.7.4. Implementation DELalSc..veiiiiiiii e 146
R CTc o0 0= (o Y o1 146
B.8.L. POINES ...uiiiiii ettt 147
882, LINES ittt 147
8.8.3. LiNE SEgMENLS ... cevuiiiii i e 147
8.8, BOXES ...ttt ettt ettt 147
B.8.5. PalNS ...t 148
8.8.6. POIYQONS .. .oviiii e 148
B.8.7. CICIES ittt 148
8.9. NEtWOIK AdOreSS TYPES .evuiiiiieiiiiee et e e e e e e e e e e e e e e e e eaaas 149
S I R T 1= PP 149
S o3 i | PP 149
e e A I 1= VA o3 o | PP 150
8.9.4, MBCAUAN iitiiiiiii et 150
8.9.5. MACAUAN 8 .ouiiiiiiii e 150
8.10. Bit SIHNG TYPES . iittiiiie et e e e e e e e e e e e e e e e an s 151
8.11. TeXt SEArCh TYPES v it e 152
00 0 O A= VT o3 A o TP 152
S I 2 A=Y o [6T 153
ST 2 U1 1 T I/ o USRS 154
ST Q1 I 1Y/ o= PP 155
8.13.1. Creating XML ValUESoiiiiiieiiiiii e 155
8.13.2. Encoding Handlingoovuiiiiiiiiii e 156
8.13.3. AcCeSSING XML ValUEScvvniiiii e 156
ST N S O N Y/ o=~ P 157
8.14.1. JSON Input and OULPUE SYNEAXueeveeiiiieiiiieeie e e e e e e 158
8.14.2. Designing JSON documents effectivelyooevvveiiiiiiiiiiiii e, 159
8.14.3.] sonb Containment and EXIStENCEccvvviiiiiiiiiii e 159
8.14.4. | SOND INUEXING ..uvviiiiiee e e e 161
8L, AT A S ettt ittt 163
8.15.1. Declaration Of Array TYPES ...cuvuiiiiieiiieeeie e e e e e e e e e eanees 163
8.15.2. Array ValUB INPULcovviiii e 164
8.15.3. ACCESSING ATTAYS .vueeuteeiieeeiiie et e ettt e et e e e e e st e e e ae e e e e st e e st e eanaeenes 165
8.15.4. MOAITYING ATTAYS ...uieiieii ettt e e e e e e e e e ees 167
8.15.5. SEarChiNG IN ATTAYS «.ouu it e e e eens 170
8.15.6. Array Input and OULPUL SYNEAXceevneeeinieiiiieeiieeineee e e e e e eeens 171
8.16. COMPOSITE TYPES ..vvuiiineeii ettt ettt e et e et e et e et e e et e e et e e et e eanaeeateesanaeetnaes 172
8.16.1. Declaration of COmMPOSItE TYPES ...cvvvniiiiieiei e e e e e e e 172
8.16.2. Constructing Composite ValUEScceuviiiiiiiiiiieiiii e e 173
8.16.3. AccessiNg COMPOSIEE TYPES ...vvvueiiiieiiieiiie e e e e e e et e e e e e aanas 174
8.16.4. Modifying COmMPOSItE TYPEScvvvieiiiieiiiiieeiee e e e e e e 174
8.16.5. Using Composite TYPesS iN QUENESccuuuieiineeiiiieeiiieeee e e e e e 175
8.16.6. Composite Type Input and Output SYNtaxcceeevveeeiieeiieeiiieeiineennn. 177
8.7, RANGE TYPES .ottt ittt 178
8.17.1. BUIIt-IN RANGE TYPES ..uiitiiii et e e e e e e aens 178
8.17.2. EXAMPIES ... et 178
8.17.3. Inclusive and EXCIUSIVE BOUNGSvieiiiiiieiiiiiieecie e 179
8.17.4. Infinite (Unbounded) RaNGESocvvviiiiiiiii e 179
8.17.5. Range INPUL/OULPULcovniiieeii e e e e e e e e eens 179
8.17.6. CoNSIrUCtiNg RANGESuviiiiieiie e e e e e e e 180
8.17.7. DISCrete RANGE TYPES .. vvvieiii it et e et e e e e e e e e e et e e e eanns 181
8.17.8. Defining New RaNGE TYPEScvvviiiii e e e e 181
8.17.9. INAEXING ...vniii i e 182
8.17.10. ConstraintS 0N RANGESu.ivvnieiiieiie e e e e e e e e et e eaeeees 182
8.18. ObjeCt 1AENtifIEr TYPES c.vuiiii e e e aaaas 183
T T oo [£ o 1 1Y 1= 2P 185
ST s =0 (o 0l I o1 185

27

The SQL Language

LI 0 g Tex [0 g 5= 0 1o @ o= = o TP 187
1o I oo Tor= I @ o= = (o) £ S 187
9.2. Comparison FUNCtions and OPEratOrSeeeuueeiinieiiieeeiiee e e e e e eiee e e eaneenes 187
9.3. Mathematical FuNnctions and OPEratorSueveiieiiiieeiii e e e e ea e 190
9.4. String FUNCioNS and OPEIAtOrScvvuieiiiieeiieeeieeeie e e e e e e e e e eaneens 193

1S T o o 11 PRSP PTR PPN 205
9.5. Binary String FUNctions and OPEratorsSccuuveeruieiiineeiiieeeiiee e eeiieraineesnnens 207
9.6. Bit String FUNCtions and OPEratorsuuveiuiieiiiieeiiieeee e e e e e e e e e 209
A = (= 1 T\ (11 o P 210
S O I PP 211
9.7.2. SIM LAR TORegular EXPreSSIONScvvuuieiiiieeieeiiiieeeiieesineesineeaneens 212
9.7.3. POSIX ReguIar EXPreSSIONSuuuiiiueiiiieiiiieeiieeeiiesieeeaeeeaieesaneesens 212
9.8. Data Type Formatting FUNCLIONSccovuiiiii i e e e 225
9.9. Date/Time FUNCtions and OPEratorSc.uveiuuieeiiieiiiiee e e ee e e e e e e eees 232
9.9.1. EXTRACT, dat € _Part ..ciiiiiiiiiiiiiii e e e e 237
0.9.2. At @ LT UNC .iiiiiii e e 241
9.9.3. AT TIME ZONE ...ttt ettt e et e 241
9.9.4, CUITENt DA/ TIME ...cvvnieiiiii et e et e e e 242
9.9.5. Delaying EXECULIONiiviieiiie e e e e e e e e e e e e e e e eees 243
9.10. ENUM SUPPOIt FUNCLIONScvticiiieciecc e e e e e e e e e e e aans 244
9.11. Geometric FUNCtioNS and OPEratOrScvvuneiiiieiieeeiiee e e e e e ee e e aneeeens 245
9.12. Network Address Functions and OPEratorscc.uveevuieiiiieeiieeeiieeeneeeieeaenns 249
9.13. Text Search FUNCioNS anNd OPEratOrSueevvuieiiieiiii e eeeiee e e e e e eaees 251
.14, XML FUNCLIONS ... eiieiiieee ettt e e et e e et e e e e et e e e e et e 256
9.14.1. Producing XML CONENEccuiiiiieiieeiii e e ee e e e e e e eaen 257
9.14.2. XML PrediCatesuuueeiiiiieeeii ettt e et e e e e 261
9.14.3. ProcessiNg XML ...uuuiiiiiiiiiiii et 262
9.14.4. Mapping TableSto XMLccvuuiiiiiiiii e e 266
9.15. JSON FUNCLiONS aNd OPEraiOrScvvvueiiieeeiieeeiee e e eaee e et e e e e et se e et e eeaeeeens 269
9.16. Sequence Manipulation FUNCLIONSooviiiiiiiiiii e 278
9.17. Conditional EXPreSSIONSuuviiuuiiiieiiiee e e e e e e e e e e e e e eaens 280
O.17. 1. CASE ...t 280
N A O O I S P 282
0 2 U I PP 282
9.17.4. GREATEST and LEAST ..ottt 282
9.18. Array FUNCtioNS and OPEIralOrScccuuieiiuieiiiieeiiie e e e e e e e e et e e e eeenes 282
9.19. Range FUNCLioNSs and OPEratorSceuueiiiieeiiieeiieeeeeeae e et e e e e st e e et eeaneens 286
9.20. AQQregate FUNCLIONSccue i e e e e e e e e eaes 288
9.21. WINAOW FUNCHIONS .. .vuieiiiii ettt et e et e e e et e e e eatnneeeees 295
9.22. SUDQUENY EXPrESSIONS . .cvuueiiiiiiiiieeiieee et e e e e e e et e e e e et e e et e e st e eanaeeanaas 297
S T S S T PP 297
0.22.2. I N ettt 297
9.22.3. NOT | N Lot e et e e et 298
9.22.4. ANY/ISOMEuiiiiiiiiieeeee ettt et e e et s e et e e e e e eaaen 298
0.22.5. ALL ottt 299
9.22.6. SINGIE-TOW COMPANISON ...vvuieteeeieeeieesiee e e e e e eat e e et e e et e e eeaneenes 299
9.23. Row and Array COMPAISONSceuueeiiieeiieeeiiieeeieeeteestse et esaneeetreeanaeennnns 300
0,23, L. I N ettt 300
9.23.2. NOT | N Lot e e e e e 300
SRS A NN 7AST0 1Y Sl - - 1Y) PP 300
9.23.4. ALL (BITAY) +eevtnieeiiiiiee et e e ettt e e ettt e e et e e et e e ettt a e e e et e e e eai e aae 301
9.23.5. Row Constructor COMPAariSONceeeuueerinieriiieriiieesiiee e esieeeaneeannnes 301
9.23.6. Composite Type COMPAiSONcevueeiiieeiiieeiieeeiiee e e e e e eaneeaenns 302
9.24. Set RetUrNiNg FUNCHIONSc.uuiiiieci e e e e eens 302
9.25. System Information FUNCLIONScocuuiiiiiieiii e 305
9.26. System Administration FUNCHIONSccuuiiiiiieiiii e e e e 321
9.26.1. Configuration SettingS FUNCLIONSccviviiiieiiieecie e, 321
9.26.2. Server SIgnaling FUNCLIONSoovuiiiiiiicce e e e 322

28

The SQL Language

9.26.3. Backup Control FUNCLIONSieiiiieiiicci e 322
9.26.4. Recovery Control FUNCLIONSocovveiiiiiiiii e 325
9.26.5. Snapshot Synchronization FUNCLIONSc.oveviieiiiieiieee e, 326
9.26.6. RePlication FUNCLIONScvuuieiiiiei e ee e e e e e e e e e eees 327
9.26.7. Database Object Management FUNCIONScc.ooevvieiiinieiii e, 330
9.26.8. Index Maintenance FUNCLIONSoveviuiiieieiin e e e eeeenns 333
9.26.9. Generic File ACCESS FUNCHIONSiiiiiiiieiiiii e 334
9.26.10. Advisory LOCK FUNCLIONSccuuiiiieeii e e 335

S I o o = Gl U o (o) P 337
9.28. Event Trigger FUNCLIONSco.uiiiiii i e e e e e ea e 338
9.28.1. Capturing Changes at Command Endccocoiiiiiiiiiiiniiinicieeeees 338
9.28.2. Processing Objects Dropped by a DDL Commandccocevvvviiinnennnnnns 338
9.28.3. Handling a Table ReWrite EVENtccoviiiieiiii e, 340

O Y/ oL @0 517/ = T o P 341
FO. L. OVEIVIBIW ©uueieiiiie ettt e e ettt e e e et e e e e et e e e e ett e e e eett e e e aetaaeeeees 341
B0.2, O AIONS ittt ettt ettt e 342
L0 R g o] 0 LSRR 346
O R NI (o] = o =S 349
10.5. UNI ON, CASE, and Related CONSITUCESuvieviiiiieiiiiie e 350
10.6. SELECT OUPUL COIUMNSuuieiiiieee ittt e e e et e e et e e eeninneeees 352
T o (== PSP 353
0 O oo (0 1o PSSP 353
2 1 o L= G Y/ o === P 354
11.3. MUItICOIUMN INAEXESeeeveiiee ettt eeeaeen 356
11.4. Indexes and ORDER BY ...cicuuiiiiiiiiiiiiiiiin et e e e et e e 357
11.5. Combining MUItiple INAEXESciiiieeii e 357
12.6. UNIQUE INAEXESuieiieii et e e e e e e e e e e e e e e e eaens 358
11.7. INAEXES ON EXPrESSIONSuiviiieiiieeei e e e e e e e e e e e e e et e et e e e e aens 358
11.8. Partial INOEXES .. eeevviieieeii et e et e e e e e e aaens 359
11.9. Operator Classes and Operator Famili€Soovvviiieiiiieiiiiiiie e, 362
11.10. Indexes and COl@tiONSuieiiiiiiiee e 363
12,11, INAEX-ONIY SCANS ...cvuiiiiiieii e e e e e e e e e e e e et e et e e e e aens 364
11.12. EXamining INAeX USAQEuucvvunieiiiiiii e e e e e e e e e e e e e 365
12, FUIL TEXE SEAICH .o 367
2 O 1 oo (0 1o USSP 367
12.1.1. What 1S @ DOCUMENE? ..euueiiiii e et e e 368
12.1.2. Basic Text MatChingooeviiiiiiii e 368
12.1.3. CONfiQUIBLIONS .. .vuuiiiieeii e e e e e e e e e e e e e e e e e e eeans 370

12.2. TahleS @A INOEXES .. .vvvveieeeiii ettt e e 371
12.2.1. Searching @ Table ...couvnii e 371
12.2.2. Creating INAEXES ... cvvueiii it e e e e e e e aes 372

12.3. Controlling TeXt SEarChccoovniiii e 373
12.3.1. ParSiNg DOCUMENESuiiiiieiii e e e e e e e e e e e e e e e e eens 373
12.3.2. ParSiNG QUETTES .. .cvuiiiiiciii ettt e e e e e e e e e e e ees 374
12.3.3. Ranking Search RESUILSiiiiiiiii e 375
12.3.4. Highlighting RESUILSccvviiiiiicei e 377

12,4, AdAItioNal FEAIUMESvuiieeeii et e e 379
12.4.1. Manipulating DOCUMENESuiiiiiieiieeii e e e e e e e e e e 379
12.4.2. Manipulating QUENIESccuueiiiieei e e e e s 379
12.4.3. Triggers for Automatic Updatesceevuieiiiieiiiieiiii e eeaeeeae 382
12.4.4. Gathering Document StatiStiCS ...ovuvvvneiiieiii e e 383

T o T PP 384
N T B T Lo g = =P 385
12.6.1. SOP WOIAS .. ccvnciiiieii et e e e e e e e et e e et e e aanaees 386
12.6.2. SIMPIE DICHIONAIY .vuuiiiiieeii e e e e e e aaees 387
12.6.3. SYNONYM DICHIONANYuuiiiiieeiiieiiie e e e e e e e e e e eaaas 388
12.6.4. TheSaUrus DiCtONANYcccuuieiiiiiiii e e e e e 390
12.6.5. ISPEI DICHONAIY ...cvvniiiiiieiie e e e e e e e 392

29

The SQL Language

12.6.6. SNOWDaEll DICHIONAIYcvvveiiiieei e e e aens 394

12.7. Configuration EXaMPIEcouuniii e 394
12.8. Testing and Debugging Text Searchccocoviiiiiiiiii e, 396
12.8.1. Configuration TESLNGcvvueiiiieiiii e e e e e e e e e e eanas 396
12.8.2. ParSer TESHNG .ovvvvvvveineieeeieeeieiiies s e e e eeeeeateis s e e e e e eeaaaatn e e e eeeeeeannennnns 398
12.8.3. DICioNary TESHMNGvueevneiiiieiiie e e et e e e e e e e e e e e e e e e e e e aens 399

12.9. GIN and GiST INAEX TYPES ..vuiiiiieiiiieii e e e e e e e eaens 400
2250 O T 1= o [T o) oo o 401
2 T T 1] = o) PP 404
13. ConCUIrENCY CONLION ...uuiit it e e e e e e e e et e et e e et e e et eeaneeaaeeees 405
30 O 1 oo (0 1o USRS 405
13.2. TransaCtion I1SOIAHONccuvuieiiii e e e 405
13.2.1. Read Committed ISOlation LEVE!uovviiiiiiiiiiiiiiiecce e 406
13.2.2. Repeatable Read 1S0lation LEVElccovviiiiiiiiiicic e, 408
13.2.3. Serializable [S0lation LEVE!oovevuiiiiiiiis e 408

I CTC I (o[T I o Vo PN 411
13.3.1. TaDIETEVE LOCKS ... cveiiiieiieii et 411
13.3.2. ROW-IEVE LOCKSciieeiieiiis ettt 413
13.3.3. Pagelevel LOCKSccvviiiiici e 414
13.3.4. DEAAIOCKS ... eieeeeiieiei ettt e e e e e e e e et e e e e e anaaa 414
13.3.5. AQVISONY LOCKS ...uuiiiiiiii e e e e e e e e e e eeens 415

13.4. Data Consistency Checks at the Application Levelcocooviiiiiiiiiiiiiieeceee, 416
13.4.1. Enforcing Consistency With Serializable Transactionsc.cc.uueeeen. 416
13.4.2. Enforcing Consistency With Explicit Blocking Lockscccoeeevvnnnn. 417

ST 0 Y= S 418
13.6. LOcKiNg and INAEXESu.iveniiii e e e e e e e 418
I (o0 7= 10T T = 419
14.2. USING EXPLAIL N Looiiiiiiiii oot e e s e e e e e e e et e e e e e e aaeennnnes 419
I (o Y Y I AV 27 T o 419
14.2.2. EXPLAI N ANALYZEcoviiiiiiiee e e e e e 425
I O = £ 429

14.2. Statistics Used by the Plannercooiiiiiiii e 430
14.2.1. SINgle-Column StaiStiCS . .ovvueeiiiiiii e e 430
I A = 00 (= S - S (oSSR 431

14.3. Controlling the Planner with Explicit JO N ClaUSEScccuveiviieiiiieeiiiicciieeeiees 434
14.4. Populating @ Databaseoevuniiiiieiie e 435
14.4.1. Disable AULOCOMIMILvuuiiiiiii e e e e e e eaenns 435
14.4.2. USE COPY ooiiiiiieeeieieette e et e e et e st e e e e e e et e e e e e e e e e aaaa e neaeeaaeeannees 436
14.4.3. REMOVE INAEXES ...cevvvieeeiii ettt 436
14.4.4. Remove Foreign Key CONSITaiNtScccuuviiiieiiieiiiieeiineeineeeieeeaneeeens 436
14.4.5. Increase mai Nt enance_WOr K _IMBM.......cciieiiiieiiiine e, 436
14.4.6. Increase MAX_Wal _Si Z€ ..iiiiiiiiii 437
14.4.7. Disable WAL Archival and Streaming Replicationc.c.ccovveinnnn. 437
14.4.8. RuN ANALYZE AFtErWardScovvvuvuiiiiiieeeeeeiiiiiiin s e e e eeseesiiinseaeeeeannns 437
14.4.9. Some Notes AbBOUL PG AUMP ...evvniiiicii e 437

14.5. NON-DUrable SEtlNGSvuveeiiiiieiiie e e e e e e e aaa s 438
15, Parallel QUENY ...uueieeeiieietiie ettt e e e e e et e e e e e e et et e e e e e e et e et aaaaeaaaaaes 439
15.1. How Parallel QUENY WOTKSuiiiiiiiii i 439
15.2. When Can Parallel Query Be USed?covvviiiiiiieiiiiiiiiee e e e 440
15.3. Parallel PLanScocvueiiiiii e e 441
15.3.1. Parallel SCaNSccvvviiiiieeeeeeieee et e e e 441
15.3.2. Parallel JOINSccvvvviiieieiiiieiie e e e 441
15.3.3. Parallel AQOregationoovuuiiiiiiiii e 442
15.3.4. Parallel Plan TIPS ..ucuuiiiiii et e e e e e e aens 442

15.4. Parallel SafEYoiieeieeeeiiiiie e 442
15.4.1. Parallel Labeling for Functions and Aggregatesooovvvvevvveiiinieeinennnnn. 443

30

Chapter 4. SQL Syntax

This chapter describes the syntax of SQL. It forms the foundation for understanding the following
chapters which will go into detail about how SQL commands are applied to define and modify data.

We aso advise users who are already familiar with SQL to read this chapter carefully because it
contains several rules and concepts that are implemented inconsistently among SQL databases or that
are specific to PostgreSQL.

4.1. Lexical Structure

4.1.1.

SQL input consists of a sequence of commands. A command is composed of a sequence of tokens,
terminated by asemicolon (“;”). Theend of theinput stream al so terminates acommand. Which tokens
are valid depends on the syntax of the particular command.

A token can beakey word, anidentifier, aquoted identifier, aliteral (or constant), or aspecial character
symbol. Tokens are normally separated by whitespace (space, tab, newline), but need not be if there
isno ambiguity (which is generally only the case if aspecia character is adjacent to some other token

type).
For example, the following is (syntactically) valid SQL input:

SELECT * FROM MY_TABLE;
UPDATE MY_TABLE SET A = 5;
| NSERT | NTO MY_TABLE VALUES (3, 'hi there');

This is a sequence of three commands, one per line (although this is not required; more than one
command can be on aline, and commands can usefully be split across lines).

Additionally, comments can occur in SQL input. They are not tokens, they are effectively equivalent
to whitespace.

The SQL syntax is not very consistent regarding what tokens identify commands and which are
operands or parameters. Thefirst few tokensare generally the command name, so in the above example
wewould usually speak of a“ SELECT”, an“UPDATE”, and an“INSERT” command. But for instance
the UPDATE command alwaysrequires a SET token to appear in a certain position, and this particul ar
variation of | NSERT also requires a VALUES in order to be complete. The precise syntax rules for
each command are described in Part V1.

Identifiers and Key Words

Tokens such as SELECT, UPDATE, or VALUES in the example above are examples of key words,
that is, words that have a fixed meaning in the SQL language. The tokens MY_TABLE and A are
examples of identifiers. They identify names of tables, columns, or other database objects, depending
on the command they are used in. Therefore they are sometimes simply called “names’. Key words
and identifiers have the same lexical structure, meaning that one cannot know whether a token is an
identifier or a key word without knowing the language. A complete list of key words can be found
in Appendix C.

SQL identifiers and key words must begin with a letter (a-z, but also letters with diacritical marks
and non-L atin letters) or an underscore (_). Subsequent charactersin an identifier or key word can be
letters, underscores, digits(0-9), or dollar signs($). Notethat dollar signsare not allowed inidentifiers
according to the letter of the SQL standard, so their use might render applications less portable. The
SQL standard will not define a key word that contains digits or starts or ends with an underscore, so
identifiers of this form are safe against possible conflict with future extensions of the standard.

The system uses no more than NAMEDATAL EN-1 bytes of an identifier; longer names can be written
in commands, but they will be truncated. By default, NAMEDATALEN is 64 so the maximum identifier

31

SQL Syntax

lengthis63 bytes. If thislimitisproblematic, it can beraised by changing the NAMEDATAL EN constant
insrc/include/ pg _config_nmanual . h.

Key words and unquoted identifiers are case insensitive. Therefore:

UPDATE MY_TABLE SET A = 5;
can equivalently be written as:
uPDaTE ny_TabLE SeT a = 5;

A convention often used is to write key wordsin upper case and names in lower case, e.g.:
UPDATE ny_table SET a = 5;

There is a second kind of identifier: the delimited identifier or quoted identifier. It is formed by
enclosing an arbitrary sequence of characters in double-quotes ("). A delimited identifier is aways
an identifier, never a key word. So " sel ect " could be used to refer to a column or table named
“select”, whereas an unquoted sel ect would be taken as a key word and would therefore provoke
a parse error when used where a table or column name is expected. The example can be written with
guoted identifierslike this:

UPDATE "ny_table" SET "a" = 5;

Quoted identifiers can contain any character, except the character with code zero. (To include adouble
guote, write two double quotes.) This allows constructing table or column names that would otherwise
not be possible, such as ones containing spaces or ampersands. The length limitation still applies.

A variant of quoted identifiers allows including escaped Unicode characters identified by their code
points. Thisvariant startswith U& (upper or lower case U followed by ampersand) immediately before
the opening double quote, without any spaces in between, for example U&" f 00" . (Note that this
creates an ambiguity with the operator &. Use spaces around the operator to avoid this problem.) Inside
the quotes, Unicode characters can be specified in escaped form by writing a backslash followed by
the four-digit hexadecimal code point number or aternatively a backslash followed by a plus sign
followed by a six-digit hexadecimal code point number. For example, the identifier " dat a" could
be written as

U&" d\ 0061t \ +000061"
The following less trivial example writes the Russian word “slon” (elephant) in Cyrillic letters:
U&"\ 0441\ 043B\ 043E\ 043D"

If adifferent escape character than backslash is desired, it can be specified using the UESCAPE clause
after the string, for example:

U&"d! 0061t ! +000061" UESCAPE ' !

The escape character can be any single character other than ahexadecimal digit, the plussign, asingle
guote, a double quote, or a whitespace character. Note that the escape character is written in single
guotes, not double quotes.

To include the escape character in the identifier literally, write it twice.

The Unicode escape syntax works only when the server encoding is UTF8. When other server
encodings are used, only code pointsin the ASCII range (up to\ 007F) can be specified. Both the 4-
digit and the 6-digit form can be used to specify UTF-16 surrogate pairs to compose characters with
code points larger than U+FFFF, although the availability of the 6-digit form technically makes this
unnecessary. (Surrogate pairs are not stored directly, but combined into asingle code point that isthen
encoded in UTF-8.)

32

SQL Syntax

Quoting anidentifier also makesit case-sensitive, whereas unquoted names are alwaysfolded to lower
case. For example, theidentifiers FOO, f 0o, and" f 00" are considered the same by PostgreSQL, but
"Foo" and" FOO' aredifferent from these three and each other. (The folding of unquoted namesto
lower case in PostgreSQL is incompatible with the SQL standard, which says that unquoted names
should be folded to upper case. Thus, f 0o should be equivalent to " FOO' not " f 00" according to
the standard. If you want to write portable applications you are advised to always quote a particular
name or never quoteit.)

4.1.2. Constants

There are three kinds of implicitly-typed constants in PostgreSQL: strings, bit strings, and numbers.
Constants can also be specified with explicit types, which can enable more accurate representation and
more efficient handling by the system. These alternatives are discussed in the following subsections.

4.1.2.1. String Constants

A string constant in SQL is an arbitrary sequence of characters bounded by single quotes ('), for
example' This is a string'.Toinclude asingle-quote character within a string constant,
write two adjacent single quotes, e.g.,' Di anne' ' s hor se' . Note that thisis not the same as a
double-quote character (").

Two string constants that are only separated by whitespace with at |east one newline are concatenated
and effectively treated as if the string had been written as one constant. For example:

SELECT ' f o0’
"bar';

is equivalent to:

SELECT ' f oobar';

but:

SELECT ' f o0’ "bar';

isnot valid syntax. (This dlightly bizarre behavior is specified by SQL; PostgreSQL is following the
standard.)

4.1.2.2. String Constants with C-style Escapes

PostgreSQL also accepts “escape” string constants, which are an extension to the SQL standard.
An escape string constant is specified by writing the letter E (upper or lower case) just before the
opening single quote, e.g., E' f 0o’ . (When continuing an escape string constant across lines, write
E only before the first opening quote.) Within an escape string, a backslash character (\) begins a
C-like backslash escape sequence, in which the combination of backslash and following character(s)
represent a special byte value, as shownin Table 4.1.

Table 4.1. Backslash Escape Sequences

Backslash Escape Sequence Interpretation

\b backspace

\ f form feed

\n newline

\r carriage return

\ t tab
\o,\00,\000(0=0-7) octal byte value
\xh,\'xhh (h=0-9,A-F) hexadecimal byte value

33

SQL Syntax

Backslash Escape Sequence I nter pretation
\uxxxx, | UXxxxxxxx (x =0-9,A-F) 16 or 32-bit hexadecimal Unicode character value

Any other character following a backslash is taken literally. Thus, to include a backslash character,
write two backslashes (\ \). Also, a single quote can be included in an escape string by writing\ ',
in addition to the normal way of ' ' .

It is your responsibility that the byte sequences you create, especially when using the octal or
hexadecimal escapes, compose valid charactersin the server character set encoding. When the server
encoding is UTF-8, then the Unicode escapes or the alternative Unicode escape syntax, explained in
Section 4.1.2.3, should be used instead. (The aternative would be doing the UTF-8 encoding by hand
and writing out the bytes, which would be very cumbersome.)

The Unicode escape syntax works fully only when the server encoding is UTF8. When other server
encodings are used, only code points in the ASCII range (up to \ u0O07F) can be specified. Both the
4-digit and the 8-digit form can be used to specify UTF-16 surrogate pairs to compose characters
with code points larger than U+FFFF, although the availability of the 8-digit form technically makes
this unnecessary. (When surrogate pairs are used when the server encoding is UTF8, they are first
combined into a single code point that is then encoded in UTF-8.)

Caution

If the configuration parameter standard_conforming_strings is of f, then PostgreSQL
recoghizes backslash escapes in both regular and escape string constants. However, as of
PostgreSQL 9.1, the default is on, meaning that backslash escapes are recognized only
in escape string constants. This behavior is more standards-compliant, but might break
applications which rely on the historical behavior, where backslash escapes were always
recoghized. As a workaround, you can set this parameter to of f, but it is better to migrate
away from using backslash escapes. If you need to use abackslash escapeto represent aspecial
character, write the string constant with an E.

In addition to standard_conform ng_strings, the configuration parameters
escape_string warning and backslash_quote govern treatment of backslashes in string
constants.

The character with the code zero cannot be in a string constant.

4.1.2.3. String Constants with Unicode Escapes

PostgreSQL also supports another type of escape syntax for strings that allows specifying arbitrary
Unicode characters by code point. A Unicode escape string constant starts with U& (upper or lower
case letter U followed by ampersand) immediately before the opening quote, without any spaces in
between, for example U&' f 00" . (Note that this creates an ambiguity with the operator & Use spaces
around the operator to avoid this problem.) Inside the quotes, Unicode characters can be specified
in escaped form by writing a backslash followed by the four-digit hexadecimal code point number
or alternatively a backslash followed by a plus sign followed by a six-digit hexadecimal code point
number. For example, the string' dat a' could be written as

U&' d\ 0061t \ +000061'
Thefollowing less trivial example writes the Russian word “slon” (elephant) in Cyrillic letters:
U&' \ 0441\ 043B\ 043E\ 043D

If adifferent escape character than backslash is desired, it can be specified using the UESCAPE clause
after the string, for example:

U&' d! 0061t ! +000061" UESCAPE ' !

34

SQL Syntax

The escape character can be any single character other than ahexadecimal digit, the plussign, asingle
guote, a double quote, or awhitespace character.

The Unicode escape syntax works only when the server encoding is UTF8. When other server
encodings are used, only code points in the ASCII range (up to \ 007F) can be specified. Both the
4-digit and the 6-digit form can be used to specify UTF-16 surrogate pairs to compose characters
with code points larger than U+FFFF, although the availability of the 6-digit form technically makes
this unnecessary. (When surrogate pairs are used when the server encoding is UTF8, they are first
combined into a single code point that is then encoded in UTF-8.)

Also, the Unicode escape syntax for string constants only works when the configuration parameter
standard_conforming_stringsisturned on. Thisis because otherwise this syntax could confuse clients
that parse the SQL statements to the point that it could lead to SQL injections and similar security
issues. If the parameter is set to off, this syntax will be rejected with an error message.

To include the escape character in the string literally, writeit twice.

4.1.2.4. Dollar-quoted String Constants

While the standard syntax for specifying string constants is usually convenient, it can be difficult to
understand when the desired string contains many single quotes or backslashes, since each of those
must be doubled. To allow more readable queries in such situations, PostgreSQL provides another
way, called “dollar quoting”, to write string constants. A dollar-quoted string constant consists of a
dollar sign ($), an optional “tag” of zero or more characters, another dollar sign, an arbitrary sequence
of characters that makes up the string content, adollar sign, the same tag that began this dollar quote,
and adollar sign. For example, here are two different waysto specify the string “ Dianne's horse” using
dollar quoting:

$$Di anne' s horse$$
$SonmeTag$Di anne' s hor se$SoneTag$

Notice that inside the dollar-quoted string, single quotes can be used without needing to be escaped.
Indeed, no charactersinside adollar-quoted string are ever escaped: the string content isalwayswritten
literally. Backslashes are not special, and neither are dollar signs, unless they are part of a sequence
matching the opening tag.

It is possible to nest dollar-quoted string constants by choosing different tags at each nesting level.
Thisis most commonly used in writing function definitions. For example:

$f uncti on$
BEG N
RETURN ($1 ~ g[\t\r\n\v\\]q);
END;
$f uncti on$

Here, the sequence g[\ t\ r\ n\ vi \] g represents a dollar-quoted literal string [\ t\r\n\v
\'\], which will be recognized when the function body is executed by PostgreSQL. But since the
sequence does not match the outer dollar quoting delimiter $f unct i on$, it is just some more
characters within the constant so far as the outer string is concerned.

Thetag, if any, of adollar-quoted string follows the same rules as an unquoted identifier, except that it
cannot contain adollar sign. Tags are case sensitive, so $t ag$St ri ng cont ent $t ag$ iscorrect,
but STAGSSt ri ng cont ent $t ag$ isnot.

A dollar-quoted string that follows a keyword or identifier must be separated from it by whitespace;
otherwise the dollar quoting delimiter would be taken as part of the preceding identifier.

Dollar quoting is not part of the SQL standard, but it is often a more convenient way to write
complicated string literals than the standard-compliant single quote syntax. It is particularly useful
when representing string constants inside other constants, as is often needed in procedural function

35

SQL Syntax

definitions. With single-quote syntax, each backslash in the above example would have to be written
asfour backsl ashes, which would be reduced to two backslashesin parsing the original string constant,
and then to one when the inner string constant is re-parsed during function execution.

4.1.2.5. Bit-string Constants

Bit-string constants look like regular string constants with a B (upper or lower case) immediately
before the opening quote (no intervening whitespace), e.qg., B 1001' . The only characters alowed
within bit-string constants are 0 and 1.

Alternatively, bit-string constants can be specified in hexadecimal notation, using a leading X (upper
or lower case), e.qg., X' 1FF' . Thisnotationisequivalent to abit-string constant with four binary digits
for each hexadecimal digit.

Both forms of bit-string constant can be continued across lines in the same way as regular string
constants. Dollar quoting cannot be used in a hit-string constant.

4.1.2.6. Numeric Constants
Numeric constants are accepted in these general forms:

digits
digits.[digits][e[+-]digits]
[digits].digits[e[+-]digits]
digitse[+-]digits

wheredi gi t s isoneor moredecimal digits(0through 9). Atleast onedigit must be beforeor after the
decimal point, if oneisused. At least one digit must follow the exponent marker (e), if oneis present.
There cannot be any spaces or other characters embedded in the constant. Note that any leading plus
or minus sign is not actually considered part of the constant; it is an operator applied to the constant.

These are some examples of valid numeric constants:

42

35

4,

.001

5e2
1.925e-3

A numeric constant that contains neither adecimal point nor an exponent isinitially presumed to be
typei nt eger if itsvaluefitsintypei nt eger (32 bits); otherwiseitispresumedto betypebi gi nt
if its value fitsin type bi gi nt (64 bits); otherwise it is taken to be type nuner i c. Constants that
contain decimal points and/or exponents are always initially presumed to be type nuner i c.

The initially assigned data type of a numeric constant is just a starting point for the type resolution
algorithms. In most cases the constant will be automatically coerced to the most appropriate type
depending on context. When necessary, you can force a numeric value to be interpreted as a specific
data type by casting it. For example, you can force a numeric value to be treated as type r eal
(f 1 oat 4) by writing:

REAL '1.23" -- string style
1.23:: REAL -- PostgreSQ (historical) style

These are actually just specia cases of the general casting notations discussed next.

4.1.2.7. Constants of Other Types

A constant of an arbitrary type can be entered using any one of the following notations:

type 'string'

36

SQL Syntax

4.1.3.

4.1.4.

"string' ::type
CAST ("string' AS type)

The string constant'stext is passed to theinput conversion routine for thetype calledt ype. Theresult
is aconstant of the indicated type. The explicit type cast can be omitted if there is no ambiguity asto
the type the constant must be (for example, when it is assigned directly to a table column), in which
caseit is automatically coerced.

The string constant can be written using either regular SQL notation or dollar-quoting.
It is also possible to specify atype coercion using a function-like syntax:

typenane ('string')

but not al type names can be used in this way; see Section 4.2.9 for details.

The: :, CAST(), and function-call syntaxes can also be used to specify run-time type conversions
of arbitrary expressions, as discussed in Section 4.2.9. To avoid syntactic ambiguity, the t ype
"string' syntax canonly beusedto specify thetype of asimpleliteral constant. Another restriction
onthet ype ' string' syntaxisthatitdoesnotwork for array types; use: : or CAST() to specify
the type of an array constant.

The CAST() syntax conformsto SQL. Thetype 'string' syntax is a generdization of the
standard: SQL specifiesthis syntax only for afew data types, but PostgreSQL allowsit for al types.
The syntax with : : ishistorical PostgreSQL usage, asis the function-call syntax.

Operators

An operator name is a sequence of up to NAMEDATALEN-1 (63 by default) characters from the
following list:

+-F<>=~1 @#B & | ?
There are afew restrictions on operator names, however:

e -- and/* cannot appear anywhere in an operator name, since they will be taken as the start of
acomment.

» A multiple-character operator name cannot end in + or -, unless the name also contains at least
one of these characters:

~1@#%"& | ?

For example, @ isan alowed operator name, but * - is not. This restriction allows PostgreSQL to
parse SQL-compliant queries without requiring spaces between tokens.

When working with non-SQL -standard operator names, you will usualy need to separate adjacent
operatorswith spacesto avoid ambiguity. For example, if you have defined aleft unary operator named
@ you cannot write X* @; you must write X* @Y to ensure that PostgreSQL reads it as two operator
names not one.

Special Characters

Some characters that are not alphanumeric have a special meaning that is different from being an
operator. Details on the usage can be found at the location where the respective syntax element
is described. This section only exists to advise the existence and summarize the purposes of these
characters.

* A dollar sign ($) followed by digits is used to represent a positional parameter in the body of
a function definition or a prepared statement. In other contexts the dollar sign can be part of an
identifier or a dollar-quoted string constant.

37

SQL Syntax

4.1.5.

4.1.6.

 Parentheses (()) have their usual meaning to group expressions and enforce precedence. In some
cases parentheses are required as part of the fixed syntax of a particular SQL command.

» Brackets ([]) are used to select the elements of an array. See Section 8.15 for more information
on arrays.

» Commas (,) are used in some syntactical constructs to separate the elements of alist.

» The semicolon (;) terminates an SQL command. It cannot appear anywhere within a command,
except within a string constant or quoted identifier.

e Thecolon (:) is used to select “slices” from arrays. (See Section 8.15.) In certain SQL dialects
(such as Embedded SQL), the colon is used to prefix variable names.

» Theasterisk (*) isused in some contexts to denote all the fields of atable row or composite value.
It also has a special meaning when used as the argument of an aggregate function, namely that the
aggregate does not require any explicit parameter.

* Theperiod (.) isused in numeric constants, and to separate schema, table, and column names.

Comments

A comment is a sequence of characters beginning with double dashes and extending to the end of
theline, eg.:

-- This is a standard SQ. conment
Alternatively, C-style block comments can be used:

/* multiline coment
* wWith nesting: /* nested bl ock comment */
*/

where the comment begins with / * and extends to the matching occurrence of */ . These block
comments nest, as specified in the SQL standard but unlike C, so that one can comment out larger
blocks of code that might contain existing block comments.

A comment isremoved from theinput stream before further syntax analysisand is effectively replaced
by whitespace.

Operator Precedence

Table 4.2 shows the precedence and associativity of the operators in PostgreSQL. Most operators
have the same precedence and are left-associative. The precedence and associativity of the operators
is hard-wired into the parser.

Y ou will sometimes need to add parentheses when using combinations of binary and unary operators.
For instance:

SELECT 5! - 6;
will be parsed as:
SELECT 5 ! (- 6);

because the parser has no idea— until it istoo late — that ! is defined as a postfix operator, not an
infix one. To get the desired behavior in this case, you must write:

SELECT (5 !) - 6;

Thisisthe price one pays for extensibility.

38

SQL Syntax

Table 4.2. Operator Precedence (highest to lowest)

Operator/Element Associativity Description
left table/column name separator
left PostgreSQL -style typecast
[1] left array element selection
+ - right unary plus, unary minus
A left exponentiation
*| % left multiplication, division, modulo
+ - left addition, subtraction
(any other operator) left al other native and user-defined
operators
BETWEEN IN LIKE I|LIKE range containment, set
SI'M LAR membership, string matching
<>=<=>=<> comparison operators
I S1 SNULL NOTNULL IS TRUE, IS FALSE, IS
NULL, S DI STI NCT FROM
etc
NOT right logical negation
AND left logical conjunction
oR left logical digunction

Note that the operator precedence rules al so apply to user-defined operators that have the same names
asthe built-in operators mentioned above. For example, if you definea” +" operator for some custom
datatypeit will have the same precedence as the built-in “+" operator, no matter what yours does.

When a schema-qualified operator name is used in the OPERATOR syntax, as for examplein:
SELECT 3 OPERATOR(pg_catal og. +) 4;

the OPERATOR construct is taken to have the default precedence shown in Table 4.2 for “any other
operator”. Thisis true no matter which specific operator appears inside OPERATOR() .

Note

PostgreSQL versionsbefore 9.5 used dightly different operator precedencerules. In particular,
<= >= and <> used to be treated as generic operators; | S tests used to have higher
priority; and NOT BETWEEN and related constructs acted inconsistently, being taken in some
cases as having the precedence of NOT rather than BETWEEN. These rules were changed
for better compliance with the SQL standard and to reduce confusion from inconsistent
treatment of logically equivalent constructs. In most cases, these changes will result in no
behavioral change, or perhapsin “no such operator” failures which can be resolved by adding
parentheses. However there are corner cases in which a query might change behavior without
any parsing error being reported. If you are concerned about whether these changes have
silently broken something, you can test your application with the configuration parameter
operator_precedence warning turned on to see if any warnings are logged.

4.2. Value Expressions

Vaueexpressionsare used in avariety of contexts, such asin thetarget list of the SELECT command,
asnew column valuesin| NSERT or UPDATE, or in search conditionsin anumber of commands. The

39

SQL Syntax

4.2.1.

4.2.2.

result of a value expression is sometimes called a scalar, to distinguish it from the result of atable
expression (which isatable). Value expressions are therefore also called scalar expressions (or even
simply expressions). The expression syntax allowsthe cal cul ation of values from primitive partsusing
arithmetic, logical, set, and other operations.

A value expression is one of the following:
* A constant or literal value

e A column reference

A positional parameter reference, in the body of afunction definition or prepared statement

A subscripted expression

» A field selection expression
» An operator invocation

* A function call

» An aggregate expression

+ A window function call

* A typecast

» A collation expression

A scalar subquery

* An array constructor

* A row constructor

» Another value expression in parentheses (used to group subexpressions and override precedence)

In addition to this list, there are a number of constructs that can be classified as an expression but do
not follow any general syntax rules. These generally have the semantics of afunction or operator and
are explained in the appropriate location in Chapter 9. An exampleisthel S NULL clause.

We have already discussed constants in Section 4.1.2. The following sections discuss the remaining
options.

Column References

A column can be referenced in the form:
correl ati on. col umnane

corr el at i on isthe name of atable (possibly qualified with a schemaname), or an aliasfor atable
defined by means of a FROMclause. The correlation name and separating dot can be omitted if the
column name is unique across all the tables being used in the current query. (See also Chapter 7.)

Positional Parameters

A positional parameter reference is used to indicate a value that is supplied externally to an SQL
statement. Parameters are used in SQL function definitions and in prepared queries. Some client
libraries also support specifying data values separately from the SQL command string, in which case
parameters are used to refer to the out-of-line data values. The form of a parameter referenceis:

$nunber

40

SQL Syntax

4.2.3.

4.2.4.

For example, consider the definition of afunction, dept , as:

CREATE FUNCTI ON dept (t ext) RETURNS dept
AS $$ SELECT * FROM dept WHERE name = $1 $$
LANGUAGE SQL;

Here the $1 references the value of the first function argument whenever the function is invoked.

Subscripts

If an expression yields a value of an array type, then a specific element of the array value can be
extracted by writing

expressi on[subscri pt]
or multiple adjacent elements (an “array dice”) can be extracted by writing
expression[| ower _subscri pt: upper_subscri pt]

(Here, the brackets[] are meant to appear literally.) Each subscri pt isitself an expression,
which must yield an integer value.

In general the array expr essi on must be parenthesized, but the parentheses can be omitted when
the expression to be subscripted is just a column reference or positional parameter. Also, multiple
subscripts can be concatenated when the original array is multidimensional. For example:

nyt abl e. arraycol um| 4]

nyt abl e. two_d_col umm[17] [34]
$1[10: 42]

(arrayfunction(a, b))[42]

The parentheses in the last example are required. See Section 8.15 for more about arrays.

Field Selection

If an expression yields a value of a composite type (row type), then a specific field of the row can
be extracted by writing

expression. fiel dname

In general therow expr essi on must be parenthesized, but the parentheses can be omitted when the
expression to be selected from is just atable reference or positional parameter. For example:

nyt abl e. nycol um
$1. sonecol um
(rowfunction(a,b)).col 3

(Thus, a qualified column reference is actually just a specia case of the field selection syntax.) An
important special caseis extracting afield from atable column that is of a composite type:

(compositecol).sonefield
(mmyt abl e. composi tecol). sonefield

The parentheses are required here to show that conposi t ecol isacolumn name not atable name,
or that myt abl e isatable name not a schemaname in the second case.

Y ou can ask for all fields of acomposite value by writing . *:
(conpositecol).*

This notation behaves differently depending on context; see Section 8.16.5 for details.

41

SQL Syntax

4.2.5.

4.2.6.

4.2.7.

Operator Invocations

There are three possible syntaxes for an operator invocation:

expr essi on oper at or expr essi on (binary infix operator)
oper at or expr essi on (unary prefix operator)
expr essi on oper at or (unary postfix operator)

wheretheoper at or token followsthe syntax rules of Section 4.1.3, or isone of the key words AND,
OR, and NOT, or isa qualified operator name in the form:

OPERATOR(schenm. oper at or nane)

Which particular operators exist and whether they are unary or binary depends on what operators have
been defined by the system or the user. Chapter 9 describes the built-in operators.

Function Calls

The syntax for a function call is the name of a function (possibly qualified with a schema name),
followed by its argument list enclosed in parentheses:

function_nane ([expression [, expression ...]])

For example, the following computes the square root of 2:

sqrt(2)

Thelist of built-in functionsisin Chapter 9. Other functions can be added by the user.

When issuing queriesin adatabase where some users mistrust other users, observe security precautions
from Section 10.3 when writing function calls.

The arguments can optionally have names attached. See Section 4.3 for details.

Note

A function that takes a single argument of composite type can optionally be called using
field-selection syntax, and conversely field selection can be written in functional style. That
is, the notations col (t abl e) andt abl e. col are interchangeable. This behavior is not
SQL-standard but is provided in PostgreSQL because it allows use of functions to emulate
“computed fields’. For more information see Section 8.16.5.

Aggregate Expressions

An aggregate expression represents the application of an aggregate function across the rows selected
by aquery. An aggregate function reduces multiple inputsto a single output value, such asthe sum or
average of theinputs. The syntax of an aggregate expression is one of the following:

aggregate _nane (expression [, ...] [order_by clause]) [FILTER
(WHERE filter _clause)]

aggregate _nane (ALL expression [, ...] [order_by clause])

[FILTER (WHERE filter_clause)]

aggregate_nane (DI STINCT expression [, ...] [order_by clause])

[FILTER (WHERE filter_clause)]
aggregate nane (*) [FILTER (WHERE filter _clause)]
aggregate nane ([expression|[, ...]]) WTHN GROUP
(order_by clause) [FILTER (WHERE filter_clause)]

42

SQL Syntax

whereaggr egat e_nane isapreviously defined aggregate (possibly qualified with aschemaname)
and expr essi on is any value expression that does not itself contain an aggregate expression or
a window function call. The optional order _by cl ause andfilter_cl ause are described
below.

The first form of aggregate expression invokes the aggregate once for each input row. The second
form is the same as the first, since ALL is the default. The third form invokes the aggregate once for
each distinct value of the expression (or distinct set of values, for multiple expressions) found in the
input rows. The fourth form invokes the aggregate once for each input row; since no particular input
valueis specified, it is generaly only useful for the count (*) aggregate function. The last formiis
used with ordered-set aggregate functions, which are described below.

Most aggregate functions ignore null inputs, so that rows in which one or more of the expression(s)
yield null are discarded. This can be assumed to be true, unless otherwise specified, for al built-in

aggregates.

For example, count (*) yields the total number of input rows; count (f 1) yields the number of
input rowsinwhichf 1 isnon-null, sincecount ignoresnulls; andcount (di sti nct f1) yields
the number of distinct non-null valuesof f 1.

Ordinarily, the input rows are fed to the aggregate function in an unspecified order. In many cases
this does not matter; for example, mi n produces the same result no matter what order it receives the
inputs in. However, some aggregate functions (such as array_agg and st ri ng_agg) produce
results that depend on the ordering of the input rows. When using such an aggregate, the optional
order by cl ause can be used to specify the desired ordering. The or der _by_cl ause has
the same syntax as for a query-level ORDER BY clause, as described in Section 7.5, except that its
expressionsare awaysjust expressions and cannot be output-column names or numbers. For example:

SELECT array_agg(a ORDER BY b DESC) FROMt abl e;

When dealing with multiple-argument aggregate functions, note that the ORDER BY clause goes after
all the aggregate arguments. For example, write this:

SELECT string _agg(a, ',' ORDER BY a) FROMtabl e;
not this:
SELECT string agg(a ORDER BY a, ',') FROMtable; -- incorrect

The latter is syntactically valid, but it represents a call of a single-argument aggregate function with
two ORDER BY keys (the second one being rather useless since it's a constant).

If DI STI NCT isspecifiedinadditiontoanor der _by_cl ause, thenall the ORDER BY expressions
must match regular arguments of the aggregate; that is, you cannot sort on an expression that is not
included in the DI STI NCT list.

Note

The ability to specify both DI STI NCT and ORDER BY in an aggregate function is a
PostgreSQL extension.

Placing ORDER BY within the aggregate's regular argument list, as described so far, is used
when ordering the input rows for general-purpose and statistical aggregates, for which ordering is
optional. There is a subclass of aggregate functions called ordered-set aggregates for which an
order by cl ause isrequired, usually because the aggregate's computation is only sensible in
terms of a specific ordering of itsinput rows. Typical examples of ordered-set aggregatesinclude rank
and percentile calculations. For an ordered-set aggregate, the or der _by _cl ause iswritten inside
WTH N GROUP (...), asshown inthefina syntax aternative above. The expressions in the
order by _cl ause are evaluated once per input row just like regular aggregate arguments, sorted

43

SQL Syntax

4.2.8.

aspertheor der by cl ause'srequirements, and fed to the aggregate function asinput arguments.
(Thisis unlike the case for anon-W THI N GROUP or der _by_cl ause, which is not treated as
argument(s) to the aggregate function.) The argument expressions preceding W THI N GROUP, if
any, are caled direct arguments to distinguish them from the aggregated arguments listed in the
order by cl ause. Unlikeregular aggregate arguments, direct arguments are evaluated only once
per aggregate call, not once per input row. This means that they can contain variables only if those
variables are grouped by GROUP BY; thisrestriction is the same as if the direct arguments were not
inside an aggregate expression at all. Direct arguments are typically used for things like percentile
fractions, which only make sense as a single value per aggregation calculation. The direct argument
list can be empty; in this case, writejust () not (*) . (PostgreSQL will actually accept either spelling,
but only the first way conforms to the SQL standard.)

An example of an ordered-set aggregate call is:

SELECT percentile_cont(0.5) WTH N GROUP (ORDER BY incone) FROM
househol ds;
percentil e_cont

which obtains the 50th percentile, or median, value of thei nconme columnfromtablehousehol ds.
Here, 0. 5 isadirect argument; it would make no sensefor the percentile fraction to beavauevarying
across rows.

If FI LTER s specified, then only the input rows for which thef i | t er _cl ause evaluates to true
are fed to the aggregate function; other rows are discarded. For example:

SELECT

count (*) AS unfiltered,

count (*) FILTER (WHERE i < 5) AS filtered
FROM generate_series(1,10) AS s(i);
unfiltered | filtered

(1 row

The predefined aggregate functions are described in Section 9.20. Other aggregate functions can be
added by the user.

An aggregate expression can only appear in the result list or HAVI NGclause of a SELECT command.
It isforbidden in other clauses, such as WHERE, because those clauses are logically evaluated before
the results of aggregates are formed.

When an aggregate expression appears in a subquery (see Section 4.2.11 and Section 9.22),
the aggregate is normally evaluated over the rows of the subquery. But an exception occurs if
the aggregate's arguments (and fi | t er _cl ause if any) contain only outer-level variables: the
aggregate then belongs to the nearest such outer level, and is evaluated over the rows of that query.
The aggregate expression as awhole is then an outer reference for the subquery it appearsin, and acts
as a constant over any one evaluation of that subquery. The restriction about appearing only in the
result list or HAVI NG clause applies with respect to the query level that the aggregate belongs to.

Window Function Calls

A window function call represents the application of an aggregate-like function over some portion of
the rows selected by a query. Unlike non-window aggregate calls, thisis not tied to grouping of the
selected rows into a single output row — each row remains separate in the query output. However the
window function has access to all the rows that would be part of the current row's group according
to the grouping specification (PARTI TI ON BY list) of the window function call. The syntax of a
window function call is one of the following:

44

SQL Syntax

function_nane ([expression [, expression ...]]) [FILTER
(WHERE filter_clause)] OVER wi ndow_nane
function_nane ([expression [, expression ...]]) [FILTER

(WHERE filter_clause)] OVER (wi ndow definition)
function_nane (*) [FILTER (WHERE filter_cl ause)]
OVER wi ndow_nane
function_nane (*) [FILTER (WHERE filter_clause)] OVER
(wi ndow definition)

wherewi ndow_def i ni ti on hasthe syntax

[existing_w ndow nane]

[PARTITION BY expression [, ...]]
[ORDER BY expression [ASC | DESC | USING operator] [NULLS
{ FIRST | LAST} 1 [, -.-11

[frame_cl ause]
and the optional f r ame_cl ause can be one of

{ RANGE | ROAN5 } franme_start
{ RANGE | ROA5 } BETWEEN frane_start AND frane_end

wherefranme_start andfranme_end can be one of

UNBOUNDED PRECEDI NG
val ue PRECEDI NG
CURRENT ROW

val ue FOLLOW NG
UNBOUNDED FOLLOW NG

Here, expr essi on represents any value expression that does not itself contain window function
cals.

wi ndow_narre isareferenceto anamed window specification defined in the query's W NDOWcl ause.
Alternatively, afull Wi ndow_def i ni ti on can be given within parentheses, using the same syntax
asfor defining anamed window inthe W NDOWCclause; seethe SEL ECT reference pagefor details. It's
worth pointing out that OVER wnarre is not exactly equivalent to OVER (wname .. .);thelatter
implies copying and modifying the window definition, and will be rejected if the referenced window
specification includes a frame clause.

The PARTI TI ON BY clause groups the rows of the query into partitions, which are processed
separately by the window function. PARTI TI ON BY works similarly to a query-level GROUP BY
clause, except that its expressions are always just expressions and cannot be output-column names or
numbers. Without PARTI Tl ON BY, al rows produced by the query are treated as a single partition.
The ORDER BY clause determines the order in which the rows of a partition are processed by the
window function. It works similarly to a query-level ORDER BY clause, but likewise cannot use
output-column names or numbers. Without ORDER BY, rows are processed in an unspecified order.

Thef rame_cl ause specifiesthe set of rows constituting the window frame, which isasubset of the
current partition, for those window functions that act on the frame instead of the whole partition. The
frame can be specified in either RANGE or ROAS mode; in either case, it runsfromthef r ane_st art
tothef rame_end. If f rane_end isomitted, it defaults to CURRENT ROW

Afranme_start of UNBOUNDED PRECEDI NG means that the frame starts with the first row of
the partition, and similarly af r anme_end of UNBOUNDED FOLLOW NG means that the frame ends
with the last row of the partition.

In RANGE mode, af r ane_st art of CURRENT ROWmeans the frame starts with the current row's
first peer row (arow that ORDER BY considers equivalent to the current row), whileaf r anme_end
of CURRENT ROWmeans the frame ends with the last equivalent ORDER BY peer. In ROAS mode,
CURRENT ROWSsimply means the current row.

45

SQL Syntax

4.2.9.

Theval ue PRECEDI NGandval ue FOLLOW NGcases are currently only allowed in ROAS mode.
They indicate that the frame starts or endsthe specified number of rows before or after the current row.
val ue must be an integer expression not containing any variables, aggregate functions, or window
functions. The value must not be null or negative; but it can be zero, which just selectsthe current row.

The default framing option is RANGE UNBOUNDED PRECEDI NG, which is the same as RANGE
BETWEEN UNBOUNDED PRECEDI NG AND CURRENT ROW With ORDER BY, thissetsthe frame
to be all rows from the partition start up through the current row's last ORDER BY peer. Without
ORDER BY, all rows of the partition are included in the window frame, since all rows become peers
of the current row.

Restrictions are that f rane_st art cannot be UNBOUNDED FOLLOW NG, f r ane_end cannot
be UNBOUNDED PRECEDI NG, and the f r ane_end choice cannot appear earlier in the above list
thanthef rame_st art choice— for example RANGE BETWEEN CURRENT ROW AND val ue
PRECEDI NGis not allowed.

If FI LTER s specified, then only the input rows for which thefi | t er _cl ause evaluatesto true
are fed to the window function; other rows are discarded. Only window functions that are aggregates
accept aFl LTER clause.

The built-in window functions are described in Table 9.57. Other window functions can be added by
the user. Also, any built-in or user-defined general-purpose or statistical aggregate can be used as a
window function. (Ordered-set and hypothetical-set aggregates cannot presently be used as window
functions.)

Thesyntaxesusing * are used for calling parameter-less aggregate functions as window functions, for
examplecount (*) OVER (PARTI TI ON BY x ORDER BY y) . Theasterisk (*) iscustomarily
not used for window-specific functions. Window-specific functions do not allow DI STI NCT or
ORDER BY to be used within the function argument list.

Window function calls are permitted only in the SELECT list and the ORDER BY clause of the query.

Moreinformation about window functions can befound in Section 3.5, Section 9.21, and Section 7.2.5.

Type Casts

A type cast specifies a conversion from one data type to another. PostgreSQL accepts two equivalent
syntaxes for type casts:

CAST (expression AS type)
expression: :type

The CAST syntax conforms to SQL ; the syntax with : : ishistorical PostgreSQL usage.

When acast is applied to avalue expression of aknown type, it represents arun-time type conversion.
The cast will succeed only if a suitable type conversion operation has been defined. Notice that this
is subtly different from the use of casts with constants, as shown in Section 4.1.2.7. A cast applied
to an unadorned string literal represents the initial assignment of a type to a literal constant value,
and so it will succeed for any type (if the contents of the string literal are acceptable input syntax for
the data type).

An explicit type cast can usually be omitted if there is no ambiguity as to the type that a value
expression must produce (for example, when it is assigned to a table column); the system will
automatically apply atype cast in such cases. However, automatic casting is only done for casts that
aremarked “ OK to apply implicitly” in the system catalogs. Other casts must be invoked with explicit
casting syntax. This restriction is intended to prevent surprising conversions from being applied
silently.

It isalso possible to specify atype cast using afunction-like syntax:

46

SQL Syntax

typenane (expression)

However, this only works for types whose names are also valid as function names. For example,
doubl e precision cannot be used this way, but the equivalent f| oat 8 can. Also, the
namesi nterval, time, andti nest anp can only be used in this fashion if they are double-
guoted, because of syntactic conflicts. Therefore, the use of the function-like cast syntax leads to
inconsistencies and should probably be avoided.

Note

The function-like syntax is in fact just a function call. When one of the two standard cast
syntaxes is used to do a run-time conversion, it will internally invoke a registered function
to perform the conversion. By convention, these conversion functions have the same name as
their output type, and thusthe“function-like syntax” isnothing morethan adirect invocation of
theunderlying conversion function. Obviously, thisisnot something that aportable application
should rely on. For further details see CREATE CAST.

4.2.10. Collation Expressions

The COLLATE clause overrides the collation of an expression. It is appended to the expression it
appliesto:

expr COLLATE coll ation

wherecol | at i on isapossibly schema-qualified identifier. The COLLATE clause bindstighter than
operators, parentheses can be used when necessary.

If no collation is explicitly specified, the database system either derives a collation from the columns
involved inthe expression, or it defaultsto the default collation of the databaseif no columnisinvolved
in the expression.

The two common uses of the COLLATE clause are overriding the sort order in an ORDER BY clause,
for example:

SELECT a, b, ¢ FROMtbl WHERE ... ORDER BY a COLLATE "C';
and overriding the collation of afunction or operator call that haslocal e-sensitive results, for example:
SELECT * FROM tbl WHERE a > 'foo' COLLATE "C';

Note that in the latter case the COLLATE clause is attached to an input argument of the operator we
wishto affect. It doesn't matter which argument of the operator or function call the COLLATE clauseis
attached to, because the collation that is applied by the operator or function is derived by considering
all arguments, and an explicit COLLATE clause will override the collations of all other arguments.
(Attaching non-matching COLLATE clauses to more than one argument, however, is an error. For
more details see Section 23.2.) Thus, this gives the same result as the previous example:

SELECT * FROM tbhl WHERE a COLLATE "C' > 'foo0';
But thisisan error:
SELECT * FROM tbl WHERE (a > 'foo') COLLATE "C';

because it attempts to apply a collation to the result of the > operator, which is of the non-collatable
datatypebool ean.

4.2.11. Scalar Subqueries

47

SQL Syntax

A scalar subquery isan ordinary SELECT query in parentheses that returns exactly one row with one
column. (See Chapter 7 for information about writing queries.) The SELECT query is executed and
the single returned value is used in the surrounding value expression. It is an error to use a query that
returns more than one row or more than one column as a scalar subquery. (But if, during a particular
execution, the subquery returns no rows, there is no error; the scalar result is taken to be null.) The
subquery can refer to variables from the surrounding query, which will act as constants during any
one evaluation of the subquery. See also Section 9.22 for other expressions involving subqueries.

For example, the following finds the largest city population in each state:

SELECT nane, (SELECT max(pop) FROM cities WHERE cities.state =
st at es. nane)
FROM st at es;

4.2.12. Array Constructors

Anarray constructor isan expression that buildsan array value using valuesfor itsmember el ements. A
simple array constructor consists of the key word ARRAY, aleft square bracket [, alist of expressions
(separated by commas) for the array element values, and finally aright square bracket | . For example:

SELECT ARRAY[1, 2, 3+4];
array

By default, the array element type is the common type of the member expressions, determined using
the samerulesasfor UNI ONor CASE constructs (see Section 10.5). Y ou can overridethisby explicitly
casting the array constructor to the desired type, for example:

SELECT ARRAY[1,2,22.7]::integer[];
array

This has the same effect as casting each expression to the array element type individually. For more
on casting, see Section 4.2.9.

Multidimensional array values can be built by nesting array constructors. In theinner constructors, the
key word ARRAY can be omitted. For example, these produce the same result:

SELECT ARRAY[ARRAY[1, 2], ARRAY[3,4]];
array
{{1,2},{3,4}}
(1 row

SELECT ARRAY[[1,2],[3,4]1];
array

{{1,2},{3,4}}

(1 row

Since multidimensional arrays must be rectangular, inner constructors at the same level must produce
sub-arrays of identical dimensions. Any cast applied to the outer ARRAY constructor propagates
automatically to al the inner constructors.

Multidimensional array constructor elements can be anything yielding an array of the proper kind, not
only asub-ARRAY construct. For example:

48

SQL Syntax

CREATE TABLE arr(f1 int[], f2 int[]);
I NSERT | NTO arr VALUES (ARRAY[[1,2],[3,4]], ARRAY[[5,6],[7,8]1);

SELECT ARRAY[f1, f2, '{{9,10},{11,12}}'::int[]] FROM arr;
array

{{{1,2},{3,4}},{{5,6},{7,8}},{{9, 10}, {11, 12} }}

(1 row

Y ou can construct an empty array, but since it's impossible to have an array with no type, you must
explicitly cast your empty array to the desired type. For example:

SELECT ARRAY[]::integer[];
array

{}
(1 row

Itisalso possibleto construct an array from theresults of asubquery. Inthisform, thearray constructor
is written with the key word ARRAY followed by a parenthesized (not bracketed) subquery. For
example:

SELECT ARRAY(SELECT oi d FROM pg_proc WHERE pronanme LIKE 'bytea%);
array

{2011, 1954, 1948, 1952, 1951, 1244, 1950, 2005, 1949, 1953, 2006, 31, 2412, 2413}
(1 row)

SELECT ARRAY(SELECT ARRAY[i, i*2] FROM generate_series(1,5) AS
a(i));

{{1,2},{2,4},{3,6},{4,8}, {5, 10}}
(1 row)

The subquery must return a single column. If the subquery's output column is of a non-array type,
the resulting one-dimensional array will have an element for each row in the subquery result, with an
element type matching that of the subquery's output column. If the subquery's output column is of an
array type, the result will be an array of the same type but one higher dimension; in this case all the
subquery rows must yield arrays of identical dimensionality, else the result would not be rectangular.

The subscripts of an array value built with ARRAY aways begin with one. For more information about
arrays, see Section 8.15.

4.2.13. Row Constructors

A row constructor isan expression that buildsarow value (also called acomposite value) using values
for its member fields. A row constructor consists of the key word ROW a left parenthesis, zero or
more expressions (separated by commas) for the row field values, and finally aright parenthesis. For
example:

SELECT RON1,2.5,'"this is a test');
The key word ROWis optional when there is more than one expression in the list.

A row constructor can include the syntax r owval ue. *, which will be expanded to a list of the
elements of the row value, just as occurswhen the . * syntax isused at the top level of a SELECT list
(see Section 8.16.5). For example, if tablet hascolumnsf 1 and f 2, these are the same:

49

SQL Syntax

SELECT ROWNt.*, 42) FROM t;
SELECT ROWNt.f1, t.f2, 42) FROMt;

Note

Before PostgreSQL 8.2, the . * syntax was not expanded in row constructors, so that writing
ROWNt.*, 42) created atwo-field row whose first field was another row value. The new
behavior is usualy more useful. If you need the old behavior of nested row values, write the
inner row value without . *, for instance RON(t, 42).

By default, the value created by a ROWexpression is of an anonymous record type. If necessary, it can
be cast to a named composite type — either the row type of atable, or acomposite type created with
CREATE TYPE AS. An explicit cast might be needed to avoid ambiguity. For example:

CREATE TABLE nytable(fl1 int, f2 float, f3 text);

CREATE FUNCTI ON get f 1(nyt abl e) RETURNS int AS ' SELECT $1.f1'
LANGUAGE SQL;

-- No cast needed since only one getfl() exists
SELECT getf1(ROWN1,2.5,'this is a test'));
getfl

CREATE TYPE nmyrowtype AS (fl1 int, f2 text, f3 numeric);

CREATE FUNCTI ON getf1(nyrowtype) RETURNS int AS ' SELECT $1.f1'
LANGUACGE SQL;

-- Now we need a cast to indicate which function to call:
SELECT getf1(RON1,2.5,'this is a test'));
ERROR: function getfl(record) is not unique

SELECT getf1(RON1,2.5,'this is a test')::nytable);
getfl

SELECT getf1(CAST(ROW11,'this is a test',2.5) AS nyrowtype));
getfl

11
(1 row)

Row constructors can be used to build composite valuesto be stored in acomposite-type table column,
or to be passed to a function that accepts a composite parameter. Also, it is possible to compare two
row valuesor test arow with | S NULL or I S NOT NULL, for example:

SELECT RON1,2.5,'this is a test') = RON1, 3, 'not the sane');
SELECT RONtable.*) IS NULL FROMtable; -- detect all-null rows

For more detail see Section 9.23. Row constructors can also be used in connection with subqueries,
as discussed in Section 9.22.

50

SQL Syntax

4.2.14. Expression Evaluation Rules

The order of evaluation of subexpressions is not defined. In particular, the inputs of an operator or
function are not necessarily evaluated |eft-to-right or in any other fixed order.

Furthermore, if the result of an expression can be determined by evaluating only some parts of it, then
other subexpressions might not be evaluated at all. For instance, if one wrote:

SELECT true OR sonefunc();
then sonef unc() would (probably) not be called at all. The same would be the case if one wrote;
SELECT sonefunc() OR true;

Note that thisis not the same as the left-to-right “ short-circuiting” of Boolean operators that is found
in some programming languages.

As a consequence, it is unwise to use functions with side effects as part of complex expressions. It is
particularly dangerousto rely on side effects or eval uation order in WHERE and HAVI NGclauses, since
those clauses are extensively reprocessed as part of devel oping an execution plan. Boolean expressions
(ANDYOR/NOT combinations) in those clauses can be reorganized in any manner allowed by the laws
of Boolean algebra.

When it is essential to force evaluation order, a CASE construct (see Section 9.17) can be used. For
example, thisis an untrustworthy way of trying to avoid division by zero in a WHERE clause:

SELECT ... WHERE x > 0 AND y/x > 1.5;
But thisis safe:
SELECT ... WHERE CASE WHEN x > O THEN y/x > 1.5 ELSE fal se END;

A CASE construct used in this fashion will defeat optimization attempts, so it should only be done
when necessary. (In this particular example, it would be better to sidestep the problem by writing y
> 1. 5%x instead.)

CASE is not a cure-all for such issues, however. One limitation of the technique illustrated above is
that it does not prevent early evaluation of constant subexpressions. As described in Section 37.6,
functions and operators marked | MMUTABLE can be evaluated when the query is planned rather than
when it is executed. Thus for example

SELECT CASE WHEN x > 0 THEN x ELSE 1/0 END FROMt ab;

is likely to result in a division-by-zero failure due to the planner trying to simplify the constant
subexpression, evenif every row inthetablehasx > 0 so that the EL SE arm would never be entered
at runtime.

While that particular example might seem silly, related cases that don't obviously involve constants
can occur in queries executed within functions, since the values of function arguments and local
variables can beinserted into queries as constants for planning purposes. Within PL/pgSQL functions,
for example, using an | F-THEN-EL SE statement to protect a risky computation is much safer than
just nesting it in a CASE expression.

Another limitation of the same kind is that a CASE cannot prevent evaluation of an aggregate
expression contained within it, because aggregate expressions are computed before other expressions
in a SELECT list or HAVI NG clause are considered. For example, the following query can cause a
division-by-zero error despite seemingly having protected against it:

SELECT CASE WHEN mi n(enpl oyees) > 0

51

SQL Syntax

THEN avg(expenses / enpl oyees)
END
FROM depart ments;

Them n() andavg() aggregates are computed concurrently over all the input rows, so if any row
has enpl oyees equal to zero, the division-by-zero error will occur before there is any opportunity
to test the result of mi n() . Instead, use a WHERE or FI LTER clause to prevent problematic input
rows from reaching an aggregate function in the first place.

4.3. Calling Functions

4.3.1.

PostgreSQL allowsfunctionsthat have named parametersto be called using either positional or named
notation. Named notation is especially useful for functions that have a large number of parameters,
since it makes the associations between parameters and actual arguments more explicit and reliable.
In positional notation, a function call is written with its argument values in the same order as they
are defined in the function declaration. In named notation, the arguments are matched to the function
parameters by name and can be written in any order. For each notation, also consider the effect of
function argument types, documented in Section 10.3.

In either notation, parameters that have default values given in the function declaration need not be
written in the call at all. But thisis particularly useful in named notation, since any combination of
parameters can be omitted; while in positional notation parameters can only be omitted from right
to left.

PostgreSQL al so supports mixed notation, which combines positional and named notation. Inthiscase,
positional parameters are written first and named parameters appear after them.

The following examples will illustrate the usage of al three notations, using the following function
definition:

CREATE FUNCTI ON concat | ower _or _upper(a text, b text, uppercase
bool ean DEFAULT f al se)
RETURNS t ext
AS
$$
SELECT CASE
WHEN $3 THEN UPPER($1 || ' ' || $2)
ELSE LONER(S$1 || " " || $2)
END;
$$
LANGUAGE SQL | MMUTABLE STRI CT;

Functionconcat _| ower _or _upper hastwo mandatory parameters, a and b. Additionally there
is one optional parameter upper case which defaults to f al se. The a and b inputs will be
concatenated, and forced to either upper or lower case depending on the upper case parameter.
The remaining details of this function definition are not important here (see Chapter 37 for more
information).

Using Positional Notation

Positional notation is the traditional mechanism for passing arguments to functions in PostgreSQL .
Anexampleis:

SELECT concat | ower _or_upper('Hello', "Wrld', true);
concat _| ower _or _upper

HELLO WORLD
(1 row

52

SQL Syntax

4.3.2.

4.3.3.

All argumentsare specified in order. Theresult isupper casesinceupper case isspecifiedast r ue.
Another exampleis:

SELECT concat | ower _or_upper (' Hello', '"Wrld);
concat _| ower _or _upper

hell o worl d

(1 row)

Here, the upper case parameter is omitted, so it receives its default value of f al se, resulting in
lower case output. In positional notation, arguments can be omitted from right to left so long as they
have defaults.

Using Named Notation

In named notation, each argument's name is specified using => to separate it from the argument
expression. For example:

SELECT concat | ower_or_upper(a => "Hello', b => "Wrld);
concat _| ower _or _upper

hell o world

(1 row

Again, the argument upper case was omitted so it is set to f al se implicitly. One advantage of
using named notation is that the arguments may be specified in any order, for example:

SELECT concat _| ower _or _upper(a => 'Hello', b => "Wrld', uppercase
=> true);
concat _| ower _or _upper

HELLO WORLD
(1 row)

SELECT concat | ower _or_upper(a => '"Hell o', uppercase => true, b =>
"World');
concat _| ower _or _upper

HELLO WORLD
(1 row)

An older syntax based on ":=" is supported for backward compatibility:

SELECT concat | ower _or_upper(a := "Hello', uppercase := true, b :=
"World');
concat _| ower _or _upper

HELLO WORLD
(1 row)

Using Mixed Notation

The mixed notation combines positional and named notation. However, as already mentioned, named
arguments cannot precede positional arguments. For example:

SELECT concat | ower _or_upper('Hello', 'World', uppercase => true);
concat _| ower _or _upper

HELLO WORLD

53

SQL Syntax

(1 row

In the above query, the arguments a and b are specified positionally, whileupper case is specified
by name. In thisexample, that adds little except documentation. With amore complex function having
numerous parametersthat have default val ues, named or mixed notation can save agreat deal of writing
and reduce chances for error.

Note

Named and mixed call notations currently cannot be used when calling an aggregate function
(but they do work when an aggregate function is used as a window function).

Chapter 5. Data Definition

This chapter covers how one creates the database structures that will hold one's data. In a relational
database, the raw datais stored in tables, so the majority of this chapter is devoted to explaining how
tables are created and modified and what features are available to control what data is stored in the
tables. Subsequently, we discuss how tables can be organized into schemas, and how privileges can
be assigned to tables. Finally, we will briefly look at other features that affect the data storage, such
asinheritance, table partitioning, views, functions, and triggers.

5.1. Table Basics

A tablein arelationa database is much like a table on paper: It consists of rows and columns. The
number and order of the columnsisfixed, and each column hasaname. The number of rowsisvariable
— it reflects how much data is stored at a given moment. SQL does not make any guarantees about
the order of the rows in atable. When atable is read, the rows will appear in an unspecified order,
unless sorting is explicitly requested. Thisis covered in Chapter 7. Furthermore, SQL does not assign
unique identifiersto rows, so it is possible to have several completely identical rows in atable. This
is a consequence of the mathematical model that underlies SQL but is usually not desirable. Later in
this chapter we will see how to deal with thisissue.

Each column has adatatype. The datatype constrainsthe set of possible valuesthat can be assigned to
acolumn and assigns semanticsto the data stored in the column so that it can be used for computations.
For instance, a column declared to be of a numerical type will not accept arbitrary text strings, and
the data stored in such a column can be used for mathematical computations. By contrast, a column
declared to be of a character string type will accept almost any kind of data but it does not lend itself
to mathematical calculations, although other operations such as string concatenation are available.

PostgreSQL includes a sizable set of built-in data types that fit many applications. Users can also
define their own data types. Most built-in data types have obvious names and semantics, so we defer
adetailed explanation to Chapter 8. Some of the frequently used datatypes arei nt eger for whole
numbers, nuneri ¢ for possibly fractional numbers, t ext for character strings, dat e for dates,
ti me for time-of-day values, and t i mest anp for values containing both date and time.

To create atable, you use the aptly named CREATE TABLE command. In this command you specify
at least a name for the new table, the names of the columns and the data type of each column. For
example:

CREATE TABLE ny first _table (
first_colum text,
second_col um i nt eger

)

This creates a table named ny_first _tabl e with two columns. The first column is named
first_col um and has adatatype of t ext ; the second column has the name second_col um
and the type i nt eger. The table and column names follow the identifier syntax explained in
Section 4.1.1. The type names are usually also identifiers, but there are some exceptions. Note that the
column list is comma-separated and surrounded by parentheses.

Of course, the previous example was heavily contrived. Normally, you would give names to your
tables and columns that convey what kind of datathey store. So let'slook at amore realistic example:

CREATE TABLE products (
product _no i nteger,
name text,
price nunmeric

)

(Thenurer i ¢ type can store fractional components, as would be typical of monetary amounts.)

55

Data Definition

Tip

When you create many interrelated tables it is wise to choose a consistent naming pattern for
the tables and columns. For instance, there is a choice of using singular or plural nouns for
table names, both of which are favored by some theorist or other.

There is a limit on how many columns a table can contain. Depending on the column types, it is
between 250 and 1600. However, defining a table with anywhere near this many columns is highly
unusual and often a questionable design.

If you no longer need atable, you can remove it using the DROP TABLE command. For example:

DROP TABLE ny first _table;
DROP TABLE products;

Attempting to drop atable that does not exist isan error. Nevertheless, itiscommonin SQL script files
to unconditionally try to drop each table before creating it, ignoring any error messages, so that the
script workswhether or not the table exists. (If you like, you can usethe DROP TABLE | F EXI STS
variant to avoid the error messages, but thisis not standard SQL.)

If you need to modify atable that already exists, see Section 5.5 later in this chapter.

With the tools discussed so far you can create fully functional tables. The remainder of this chapter is
concerned with adding featuresto the tabl e definition to ensure dataintegrity, security, or convenience.
If you are eager to fill your tables with data now you can skip ahead to Chapter 6 and read the rest
of this chapter later.

5.2. Default Values

A column can be assigned a default value. When a new row is created and no values are specified
for some of the columns, those columns will be filled with their respective default values. A data
manipulation command can also request explicitly that a column be set to its default value, without
having to know what that valueis. (Details about data manipulation commands are in Chapter 6.)

If no default value is declared explicitly, the default valueis the null value. This usually makes sense
because a null value can be considered to represent unknown data.

In atable definition, default values are listed after the column data type. For example:

CREATE TABLE products (
product _no i nteger,
name text,
price numeri c DEFAULT 9. 99

)

The default value can be an expression, which will be evaluated whenever the default valueisinserted
(not when the tableis created). A common exampleisfor at i mest anp column to have adefault of
CURRENT _TI MESTAMP, so that it gets set to the time of row insertion. Another common exampleis
generating a“serial number” for each row. In PostgreSQL thisistypically done by something like:

CREATE TABLE products (
product _no i nteger DEFAULT nextval (' products_product_no_seq'),

)

wherethenext val () function supplies successive valuesfrom asequence object (see Section 9.16).
This arrangement is sufficiently common that there's a specia shorthand for it:

56

Data Definition

CREATE TABLE products (
product _no SERI AL,

)
The SERI AL shorthand is discussed further in Section 8.1.4.

5.3. Constraints

5.3.1.

Data types are a way to limit the kind of data that can be stored in a table. For many applications,
however, the constraint they provide istoo coarse. For example, a column containing a product price
should probably only accept positive values. But there is no standard data type that accepts only
positive numbers. Another issue isthat you might want to constrain column data with respect to other
columns or rows. For example, in atable containing product information, there should be only one
row for each product number.

To that end, SQL allows you to define constraints on columns and tables. Constraints give you as
much control over the data in your tables as you wish. If a user attempts to store data in a column
that would violate a constraint, an error israised. This applies even if the value came from the default
value definition.

Check Constraints

A check constraint is the most generic constraint type. It allows you to specify that the value in
a certain column must satisfy a Boolean (truth-value) expression. For instance, to require positive
product prices, you could use:

CREATE TABLE products (
product _no i nteger,
name text,
price nuneric CHECK (price > 0)

)

As you see, the constraint definition comes after the data type, just like default value definitions.
Default values and constraints can be listed in any order. A check constraint consists of the key word
CHECK followed by an expression in parentheses. The check constraint expression should involve the
column thus constrained, otherwise the constraint would not make too much sense.

Y ou can also give the constraint a separate name. This clarifies error messages and allows you to refer
to the constraint when you need to change it. The syntax is:

CREATE TABLE products (
product _no i nteger,
name text,
price nuneric CONSTRAINT positive_price CHECK (price > 0)

)

So, to specify anamed constraint, use the key word CONSTRAI NT followed by an identifier followed
by the constraint definition. (If you don't specify a constraint name in this way, the system chooses
aname for you.)

A check constraint can also refer to several columns. Say you store a regular price and a discounted
price, and you want to ensure that the discounted price is lower than the regular price:

CREATE TABLE products (
product _no i nteger,
name text,
price numeric CHECK (price > 0),

57

Data Definition

di scounted_price nunmeric CHECK (discounted_price > 0),
CHECK (price > discounted_price)

)

Thefirst two constraints should look familiar. The third one uses a new syntax. It is not attached to a
particular column, instead it appears as a separate item in the comma-separated column list. Column
definitions and these constraint definitions can be listed in mixed order.

We say that the first two constraints are column constraints, whereas the third one is atable constraint
becauseit iswritten separately from any one column definition. Column constraints can a so bewritten
astable constraints, whilethereverseis not necessarily possible, since acolumn constraint is supposed
to refer to only the column it is attached to. (PostgreSQL doesn't enforce that rule, but you should
follow it if you want your table definitions to work with other database systems.) The above example
could aso be written as:

CREATE TABLE products (
product _no i nteger,
name text,
price nuneric,
CHECK (price > 0),
di scounted_price numeric,
CHECK (di scounted _price > 0),
CHECK (price > discounted price)

)
or even.

CREATE TABLE products (
product _no i nteger,
name text,
price nuneric CHECK (price > 0),
di scounted_price numeric,
CHECK (di scounted_price > 0 AND price > discounted_price)

)
It's a matter of taste.
Names can be assigned to table constraintsin the same way as column constraints:

CREATE TABLE products (
product _no i nteger,
name text,
price nuneric,
CHECK (price > 0),
di scounted_price numeric,
CHECK (di scounted _price > 0),
CONSTRAI NT val i d_di scount CHECK (price > discounted price)

)

It should be noted that a check constraint is satisfied if the check expression evaluates to true or the
null value. Since most expressions will evaluate to the null value if any operand is null, they will not
prevent null values in the constrained columns. To ensure that a column does not contain null values,
the not-null constraint described in the next section can be used.

Note

PostgreSQL does not support CHECK constraints that reference table data other than the new
or updated row being checked. While a CHECK constraint that violates this rule may appear
to work in simple tests, it cannot guarantee that the database will not reach a state in which

58

Data Definition

the constraint condition isfalse (due to subsequent changes of the other row(s) involved). This
would cause a database dump and reload to fail. The reload could fail even when the complete
database state is consistent with the constraint, due to rows not being loaded in an order that
will satisfy the constraint. If possible, use UNI QUE, EXCLUDE, or FOREI GN KEY constraints
to express cross-row and cross-table restrictions.

If what you desire is a one-time check against other rows at row insertion, rather than a
continuously-maintained consistency guarantee, a custom trigger can be used to implement
that. (This approach avoids the dump/reload problem because pg_dump does not reinstall
triggersuntil after rel oading data, so that the check will not be enforced during adump/reload.)

Note

PostgreSQL assumes that CHECK constraints' conditions are immutable, that is, they will
alwaysgivethe sameresult for the sameinput row. Thisassumptioniswhat justifiesexamining
CHECK constraints only when rows are inserted or updated, and not at other times. (The
warnhing above about not referencing other table dataisreally aspecial case of thisrestriction.)

An example of acommon way to break this assumption isto reference a user-defined function
in a CHECK expression, and then change the behavior of that function. PostgreSQL does not
disallow that, but it will not notice if there are rows in the table that now violate the CHECK
constraint. That would cause a subsequent database dump and rel oad to fail. The recommended
way to handle such a change is to drop the constraint (using ALTER TABLE), adjust the
function definition, and re-add the constraint, thereby rechecking it against al table rows.

5.3.2. Not-Null Constraints

A not-null constraint simply specifiesthat acolumn must not assumethe null value. A syntax example:

CREATE TABLE products (
product _no i nteger NOT NULL,
name text NOT NULL,
price nuneric

)

A not-null constraint is always written as a column constraint. A not-null constraint is functionally
equivalent to creating a check constraint CHECK (col um_name 1S NOT NULL), but in
PostgreSQL creating an explicit not-null constraint is more efficient. The drawback is that you cannot
give explicit names to not-null constraints created this way.

Of course, a column can have more than one constraint. Just write the constraints one after another:

CREATE TABLE products (
product _no i nteger NOT NULL,
name text NOT NULL,
price nunmeric NOT NULL CHECK (price > 0)

);
The order doesn't matter. It does not necessarily determine in which order the constraints are checked.

The NOT NULL constraint has an inverse: the NULL constraint. This does not mean that the column
must be null, which would surely be useless. Instead, this simply selects the default behavior that the
column might be null. The NULL constraint is not present in the SQL standard and should not be used
in portable applications. (It was only added to PostgreSQL to be compatible with some other database
systems.) Some users, however, likeit because it makesit easy to toggle the constraint in ascript file.
For example, you could start with:

59

Data Definition

5.3.3.

CREATE TABLE products (
product _no integer NULL,
name text NULL,
price nunmeric NULL

)
and then insert the NOT key word where desired.

Tip

In most database designs the majority of columns should be marked not null.

Unique Constraints

Unique constraints ensure that the data contained in acolumn, or agroup of columns, is unique among
all therowsin thetable. The syntax is:

CREATE TABLE products (
product _no i nteger UN QUE,
name text,
price nuneric

)
when written as a column constraint, and:
CREATE TABLE products (
product _no i nteger,
nane text,
price nuneric,

UNI QUE (product_no)
);

when written as a table constraint.

To define a unique constraint for a group of columns, write it as a table constraint with the column
names separated by commas:

CREATE TABLE exanpl e (

a integer,
b integer,
c integer,

UNI QUE (a, c)
)

This specifiesthat the combination of valuesin theindicated columnsis unique acrossthe wholetable,
though any one of the columns need not be (and ordinarily isn't) unique.

Y ou can assign your own name for a unique constraint, in the usual way:

CREATE TABLE products (
product _no i nteger CONSTRAINT rust be different UN QUE
name text,
price nuneric

)

Adding a unique constraint will automatically create a unique B-tree index on the column or group of
columns listed in the constraint. A uniqueness restriction covering only some rows cannot be written
asaunique constraint, but it is possible to enforce such arestriction by creating a unique partial index.

60

Data Definition

5.3.4.

5.3.5.

In general, aunique constraint isviolated if thereis more than one row in the table where the val ues of
all of the columnsincluded in the constraint are equal. However, two null values are never considered
equal in this comparison. That means even in the presence of a unique constraint it is possible to
store duplicate rows that contain anull valuein at least one of the constrained columns. This behavior
conformsto the SQL standard, but we have heard that other SQL databases might not follow thisrule.
So be careful when devel oping applications that are intended to be portable.

Primary Keys

A primary key constraint indicates that a column, or group of columns, can be used as a unique
identifier for rows in the table. This requires that the values be both unique and not null. So, the
following two table definitions accept the same data:

CREATE TABLE products (
product _no i nteger UN QUE NOT NULL
name text,
price nuneric

)

CREATE TABLE products (
product _no i nteger PRI MARY KEY
name text,
price nuneric

)
Primary keys can span more than one column; the syntax is similar to unique constraints:

CREATE TABLE exampl e (

a integer,
b integer,
c integer,

PRI MARY KEY (a, c)
)

Adding a primary key will automatically create a unique B-tree index on the column or group of
columns listed in the primary key, and will force the column(s) to be marked NOT NULL.

A tablecan have at most one primary key. (There can be any number of unique and not-null constraints,
which are functionally almost the same thing, but only one can be identified as the primary key.)
Relational database theory dictatesthat every table must have aprimary key. Thisruleis not enforced
by PostgreSQL, but it is usually best to follow it.

Primary keys are useful both for documentation purposes and for client applications. For example, a
GUI application that allows modifying row values probably needs to know the primary key of atable
to be ableto identify rows uniquely. There are also various ways in which the database system makes
use of aprimary key if one has been declared; for example, the primary key defines the default target
column(s) for foreign keys referencing its table.

Foreign Keys

A foreign key constraint specifies that the valuesin a column (or agroup of columns) must match the
values appearing in somerow of another table. We say this maintainsthe referential integrity between
two related tables.

Say you have the product table that we have used several times already:

CREATE TABLE products (
product _no integer PRI MARY KEY,

61

Data Definition

name text,
price nunmeric

)

L et's also assume you have atable storing orders of those products. We want to ensure that the orders
table only contains orders of products that actually exist. So we define aforeign key constraint in the
orders table that references the products table:

CREATE TABLE orders (
order _id integer PRI MARY KEY,
product _no i nteger REFERENCES products (product_no),
qgquantity integer

)

Now it is impossible to create orders with non-NULL pr oduct _no entries that do not appear in
the products table.

We say that in this situation the orders table is the referencing table and the products table is the
referenced table. Similarly, there are referencing and referenced columns.

Y ou can also shorten the above command to:

CREATE TABLE orders (
order _id integer PRI MARY KEY,
product _no i nteger REFERENCES products,
qgquantity integer

)

because in absence of a column list the primary key of the referenced table is used as the referenced
column(s).

A foreign key can also constrain and reference agroup of columns. Asusual, it then needsto bewritten
in table constraint form. Here is a contrived syntax example:

CREATE TABLE t1 (

a integer PRI MARY KEY,

b integer,

c integer,

FOREI GN KEY (b, c¢) REFERENCES ot her _table (cl, c2)
)

Of course, the number and type of the constrained columns need to match the number and type of
the referenced columns.

Y ou can assign your own name for aforeign key constraint, in the usual way.

A table can have more than one foreign key constraint. This is used to implement many-to-many
relationships between tables. Say you have tables about products and orders, but now you want to
allow one order to contain possibly many products (which the structure above did not alow). You
could use thistable structure:

CREATE TABLE products (
product _no integer PRI MARY KEY,
name text,
price nuneric

)

CREATE TABLE orders (
order _id integer PRI MARY KEY,
shi ppi ng_addr ess text,

62

Data Definition

)

CREATE TABLE order _itenms (
product _no i nteger REFERENCES products,
order _id integer REFERENCES orders,
guantity integer,
PRI MARY KEY (product_no, order_id)

)

Notice that the primary key overlaps with the foreign keysin the last table.

We know that the foreign keys disallow creation of ordersthat do not relate to any products. But what
if aproduct is removed after an order is created that references it? SQL allows you to handle that as
well. Intuitively, we have afew options:

» Disallow deleting areferenced product
* Delete the orders aswell
» Something else?

To illustrate this, let's implement the following policy on the many-to-many relationship example
above: when someone wants to remove a product that is still referenced by an order (via
order _itens), wedisalow it. If someone removes an order, the order items are removed as well:

CREATE TABLE products (
product _no integer PRI MARY KEY,
name text,
price nuneric

)

CREATE TABLE orders (
order _id integer PRI MARY KEY,
shi ppi ng_addr ess text,

)

CREATE TABLE order_itens (
product _no i nteger REFERENCES products ON DELETE RESTRI CT,
order_id integer REFERENCES orders ON DELETE CASCADE,
qgquantity integer,
PRI MARY KEY (product_no, order _id)

)

Restricting and cascading del etes are the two most common options. RESTRI CT prevents deletion of
areferenced row. NO ACTI ON means that if any referencing rows still exist when the constraint is
checked, an error is raised; thisis the default behavior if you do not specify anything. (The essential
difference between these two choicesisthat NO ACTI ON allows the check to be deferred until later
in the transaction, whereas RESTRI CT does not.) CASCADE specifies that when areferenced row is
deleted, row(s) referencing it should be automatically deleted as well. There are two other options:
SET NULL and SET DEFAULT. These cause the referencing column(s) in the referencing row(s) to
be set to nulls or their default values, respectively, when the referenced row is deleted. Note that these
do not excuse you from observing any constraints. For example, if an action specifiesSET DEFAULT
but the default value would not satisfy the foreign key constraint, the operation will fail.

Analogousto ON DELETE thereisalso ON UPDATE which isinvoked when areferenced columnis
changed (updated). The possible actions are the same. In this case, CASCADE means that the updated
values of the referenced column(s) should be copied into the referencing row(s).

Normally, a referencing row need not satisfy the foreign key constraint if any of its referencing
columnsare null. If MVATCH FULL isadded to the foreign key declaration, areferencing row escapes

63

Data Definition

5.3.6.

satisfying the constraint only if all its referencing columns are null (so a mix of null and non-null
valuesisguaranteed to fail aMATCH FULL constraint). If you don't want referencing rowsto be able
to avoid satisfying the foreign key constraint, declare the referencing column(s) as NOT NULL.

A foreign key must reference columns that either are a primary key or form a unique constraint. This
meansthat the referenced columns alwayshave anindex (the one underlying the primary key or unique
constraint); so checks on whether a referencing row has a match will be efficient. Since a DELETE
of arow from the referenced table or an UPDATE of a referenced column will require a scan of the
referencing table for rows matching the old value, it is often a good idea to index the referencing
columns too. Because this is not always needed, and there are many choices available on how to
index, declaration of aforeign key constraint does not automatically create an index on thereferencing
columns.

More information about updating and deleting dataisin Chapter 6. Also see the description of foreign
key constraint syntax in the reference documentation for CREATE TABLE.

Exclusion Constraints

Exclusion constraintsensurethat if any two rowsare compared on the specified columnsor expressions
using the specified operators, at |east one of these operator comparisons will return false or null. The
syntax is.

CREATE TABLE circles (
c circle,
EXCLUDE USI NG gist (c WTH &&)

)
See also CREATE TABLE ... CONSTRAINT ... EXCLUDE for details.

Adding an exclusion constraint will automatically create anindex of the type specified in the constraint
declaration.

5.4. System Columns

Every table has severa system columns that are implicitly defined by the system. Therefore, these
names cannot be used as names of user-defined columns. (Notethat these restrictions are separate from
whether the nameisakey word or not; quoting anamewill not allow you to escape these restrictions.)
Y ou do not really need to be concerned about these columns; just know they exist.

oid

The object identifier (object ID) of arow. This column isonly present if the table was created
using W TH QO DS, or if the default_with_oids configuration variable was set at the time. This
column is of type oi d (same name as the column); see Section 8.18 for more information about
the type.

t abl eoi d

The OID of thetable containing thisrow. This columnis particularly handy for queriesthat select
frominheritance hierarchies (see Section 5.9), sincewithout it, it's difficult to tell which individual
table arow came from. The t abl eoi d can be joined against the oi d column of pg_cl ass
to obtain the table name.

xm n
Theidentity (transaction D) of theinserting transaction for thisrow version. (A row versionisan
individual state of arow; each update of arow createsanew row version for the samelogical row.)

cmn

Data Definition

The command identifier (starting at zero) within the inserting transaction.
Xmax

Theidentity (transaction D) of the deleting transaction, or zero for an undeleted row version. It
is possible for this column to be nonzero in avisible row version. That usually indicates that the
deleting transaction hasn't committed yet, or that an attempted del etion was rolled back.

cnax
The command identifier within the deleting transaction, or zero.
ctid

The physical location of the row version within its table. Note that although the cti d can be
used to locate the row version very quickly, arow'sct i d will change if it is updated or moved
by VACUUM FULL. Thereforect i d is useless as along-term row identifier. The OID, or even
better a user-defined serial number, should be used to identify logical rows.

OlDs are 32-bit quantities and are assigned from a single cluster-wide counter. In alarge or long-lived
database, it is possible for the counter to wrap around. Hence, it is bad practice to assume that OIDs
are unique, unless you take steps to ensure that this is the case. If you need to identify the rows in
atable, using a sequence generator is strongly recommended. However, OIDs can be used as well,
provided that afew additional precautions are taken:

* A unique constraint should be created on the OID column of each table for which the OID will be
used to identify rows. When such aunique constraint (or unique index) exists, the system takes care
not to generate an OID matching an already-existing row. (Of course, this is only possible if the
table contains fewer than 2% (4 billion) rows, and in practice the table size had better be much less
than that, or performance might suffer.)

 OIDs should never be assumed to be unique across tables; use the combination of t abl eoi d and
row OID if you need a database-wide identifier.

» Of course, the tables in question must be created W TH O DS. As of PostgreSQL 8.1, W THOUT
O DS isthe defaullt.

Transaction identifiers are also 32-hit quantities. In along-lived database it is possible for transaction
IDs to wrap around. This is not a fatal problem given appropriate maintenance procedures; see
Chapter 24 for details. It is unwise, however, to depend on the uniqueness of transaction IDs over the
long term (more than one billion transactions).

Command identifiers are also 32-hit quantities. This creates a hard limit of 2°2 (4 billion) SQL
commandswithin asingletransaction. In practice thislimit is not a problem — notethat the limitison
the number of SQL commands, not the number of rows processed. Also, only commandsthat actually
modify the database contents will consume a command identifier.

5.5. Modifying Tables

When you create atable and you realize that you made amistake, or the requirements of the application
change, you can drop the table and create it again. But thisis not a convenient option if the table is
already filled with data, or if thetableisreferenced by other database objects (for instance aforeign key
constraint). Therefore PostgreSQL provides afamily of commands to make modifications to existing
tables. Note that thisis conceptually distinct from altering the data contained in the table: herewe are
interested in altering the definition, or structure, of the table.

You can:

* Add columns
* Remove columns

65

Data Definition

5.5.1.

5.5.2.

5.5.3.

Add constraints

Remove constraints
Change default values
Change column data types
Rename columns

Rename tables

All these actions are performed using the ALTER TABLE command, whose reference page contains
details beyond those given here.

Adding a Column

To add a column, use acommand like:
ALTER TABLE products ADD COLUWN descri ption text;

The new column isinitialy filled with whatever default value is given (null if you don't specify a
DEFAULT clause).

Y ou can also define constraints on the column at the same time, using the usual syntax:

ALTER TABLE products ADD COLUMWN description text CHECK (description

<)
Infact al the optionsthat can be applied to acolumn descriptionin CREATE TABLE can be used here.
Keep in mind however that the default value must satisfy the given constraints, or the ADD will fail.
Alternatively, you can add constraints | ater (see below) after you'vefilled in the new column correctly.

Tip

Adding a column with a default requires updating each row of the table (to store the new
column value). However, if no default is specified, PostgreSQL is able to avoid the physical
update. So if you intend to fill the column with mostly nondefault values, it's best to add the
column with no default, insert the correct values using UPDATE, and then add any desired
default as described below.

Removing a Column

To remove a column, use acommand like:
ALTER TABLE products DROP COLUWN descri ption;

Whatever datawasin the column disappears. Table constraintsinvolving the column are dropped, too.
However, if the column is referenced by a foreign key constraint of another table, PostgreSQL will
not silently drop that constraint. Y ou can authorize dropping everything that depends on the column
by adding CASCADE:

ALTER TABLE products DROP COLUWN descri ption CASCADE;

See Section 5.13 for a description of the general mechanism behind this.

Adding a Constraint

To add a constraint, the table constraint syntax is used. For example:

ALTER TABLE products ADD CHECK (name <> '');
ALTER TABLE products ADD CONSTRAI NT sone_name UN QUE (product_no);

66

Data Definition

5.5.4.

5.5.5.

5.5.6.

ALTER TABLE products ADD FOREI GN KEY (product _group_id) REFERENCES
pr oduct _gr oups;

To add anot-null constraint, which cannot be written as a table constraint, use this syntax:
ALTER TABLE products ALTER COLUWN product_no SET NOT NULL;

The constraint will be checked immediately, so the table data must satisfy the constraint before it can
be added.

Removing a Constraint

To removeaconstraint you need to know itsname. If you gaveit anamethen that's easy. Otherwisethe
system assigned a generated name, which you need to find out. The psgl command\ d t abl enane
can be helpful here; other interfaces might also provide a way to inspect table details. Then the
command is:

ALTER TABLE products DROP CONSTRAI NT sone_nane;

(If you are dealing with a generated constraint name like $2, don't forget that you'll need to double-
quoteit to makeit avalid identifier.)

Aswith dropping acolumn, you need to add CASCADE if you want to drop a constraint that something
else depends on. An example is that a foreign key constraint depends on a unique or primary key
constraint on the referenced column(s).

Thisworks the same for all constraint types except not-null constraints. To drop anot null constraint
use:

ALTER TABLE products ALTER COLUWN product_no DROP NOT NULL;

(Recall that not-null constraints do not have names.)

Changing a Column's Default Value

To set anew default for a column, use acommand like:
ALTER TABLE products ALTER COLUW price SET DEFAULT 7.77;

Notethat thisdoesn't affect any existing rowsinthetable, it just changesthe default for futurel NSERT
commands.

To remove any default value, use:
ALTER TABLE products ALTER COLUWN price DROP DEFAULT,;

This is effectively the same as setting the default to null. As a consequence, it is not an error to drop
adefault where one hadn't been defined, because the default isimplicitly the null value.

Changing a Column's Data Type

To convert acolumn to a different data type, use acommand like:
ALTER TABLE products ALTER COLUWN price TYPE nuneric(10, 2);

This will succeed only if each existing entry in the column can be converted to the new type by an
implicit cast. If amore complex conversion is heeded, you can add a USI NG clause that specifies how
to compute the new values from the old.

PostgreSQL will attempt to convert the column's default value (if any) to the new type, as well as
any constraintsthat involve the column. But these conversions might fail, or might produce surprising

67

Data Definition

5.5.7.

5.5.8.

results. It's often best to drop any constraints on the column before altering its type, and then add back
suitably modified constraints afterwards.

Renaming a Column

To rename a column:

ALTER TABLE products RENAME COLUWN product _no TO product numnber;

Renaming a Table

Torename atable:

ALTER TABLE products RENAVE TO iterns;

5.6. Privileges

When an object is created, it is assigned an owner. The owner is normally the role that executed the
creation statement. For most kinds of objects, the initial state is that only the owner (or a superuser)
can do anything with the object. To allow other roles to use it, privileges must be granted.

There are different kinds of privileges: SELECT, | NSERT, UPDATE, DELETE, TRUNCATE,
REFERENCES, TRl GGER, CREATE, CONNECT, TEMPCRARY, EXECUTE, and USAGE. The
privileges applicable to a particular object vary depending on the object's type (table, function, etc).
For complete information on the different types of privileges supported by PostgreSQL, refer to the
GRANT reference page. The following sections and chapterswill also show you how those privileges
are used.

Theright to modify or destroy an object is always the privilege of the owner only.

An object can be assigned to a new owner with an ALTER command of the appropriate kind for the
object, eg. ALTER TABLE. Superusers can always do this; ordinary roles can only do it if they are
both the current owner of the object (or a member of the owning role) and a member of the new
owning role.

To assign privileges, the GRANT command is used. For example, if j oe is an existing role, and
account s isan existing table, the privilege to update the table can be granted with:

GRANT UPDATE ON accounts TO j oe;
Writing ALL in place of a specific privilege grants all privileges that are relevant for the object type.

The specia “role’ name PUBLI C can be used to grant a privilege to every role on the system. Also,
“group” roles can be set up to help manage privileges when there are many users of a database —
for details see Chapter 21.

To revoke a privilege, use the fittingly named REVOKE command:
REVOKE ALL ON accounts FROM PUBLI C,

The special privileges of the object owner (i.e., the right to do DROP, GRANT, REVOKE, €tc.) are
awaysimplicitin being the owner, and cannot be granted or revoked. But the object owner can choose
to revoke their own ordinary privileges, for example to make atable read-only for themselves as well
as others.

Ordinarily, only the object's owner (or a superuser) can grant or revoke privileges on an object.
However, it is possible to grant a privilege “with grant option”, which gives the recipient the right to
grantitinturnto others. If the grant option is subsequently revoked then all who received the privilege

68

Data Definition

from that recipient (directly or through a chain of grants) will lose the privilege. For details see the
GRANT and REV OKE reference pages.

5.7. Row Security Policies

In addition to the SQL-standard privilege system available through GRANT, tables can have row
security policies that restrict, on a per-user basis, which rows can be returned by normal queries or
inserted, updated, or deleted by data modification commands. Thisfeatureisalso known as Row-Level
Security. By default, tables do not have any policies, so that if a user has access privileges to atable
according tothe SQL privilege system, all rowswithinit areequally availablefor querying or updating.

When row security is enabled on a table (with ALTER TABLE ... ENABLE ROW LEVEL
SECURITY), al normal accessto the table for selecting rows or modifying rows must be allowed by
arow security policy. (However, the table's owner istypically not subject to row security policies.) If
no policy exists for the table, a default-deny policy is used, meaning that no rows are visible or can
be modified. Operations that apply to the whole table, such as TRUNCATE and REFERENCES, are
not subject to row security.

Row security policies can be specific to commands, or to roles, or to both. A policy can be specified
to apply to ALL commands, or to SELECT, | NSERT, UPDATE, or DELETE. Multiple roles can be
assigned to a given policy, and normal role membership and inheritance rules apply.

To specify which rows are visible or modifiable according to a policy, an expression is required that
returns a Boolean result. This expression will be evaluated for each row prior to any conditions or
functions coming from the user's query. (The only exceptionsto thisruleare | eakpr oof functions,
which are guaranteed to not leak information; the optimizer may choose to apply such functions ahead
of the row-security check.) Rowsfor which the expression doesnot returnt r ue will not be processed.
Separate expressions may be specified to provide independent control over the rowswhich are visible
and the rows which are allowed to be modified. Policy expressions are run as part of the query and
with the privileges of the user running the query, although security-definer functions can be used to
access data not available to the calling user.

Superusers and roles with the BYPASSRLS attribute always bypass the row security system when
accessing atable. Table ownersnormally bypass row security aswell, though atable owner can choose
to be subject to row security with ALTER TABLE ... FORCE ROW LEVEL SECURITY.

Enabling and disabling row security, as well as adding policies to atable, is aways the privilege of
the table owner only.

Policies are created using the CREATE POLICY command, atered using the ALTER POLICY
command, and dropped using the DROP POLICY command. To enable and disable row security for
agiven table, usethe ALTER TABLE command.

Each policy has aname and multiple policies can be defined for atable. As policies are table-specific,
each policy for atable must have a unique name. Different tables may have policies with the same
name.

When multiple policies apply to a given query, they are combined using either OR (for permissive
policies, which are the default) or using AND (for restrictive policies). Thisissimilar to therulethat a
given role has the privileges of al roles that they are amember of. Permissive vs. restrictive policies
are discussed further below.

Asasimple example, hereishow to create apolicy ontheaccount relation to allow only members
of the manager s role to access rows, and only rows of their accounts:

CREATE TABLE accounts (nanager text, conpany text, contact_ emil
text);

ALTER TABLE accounts ENABLE ROW LEVEL SECURITY,

69

Data Definition

CREATE POLI CY account _managers ON accounts TO managers
USI NG (manager = current_user);

The policy above implicitly providesaW TH CHECK clause identical to its USI NG clause, so that
the constraint applies both to rows selected by a command (so a manager cannot SELECT, UPDATE,
or DELETE existing rows belonging to a different manager) and to rows modified by a command (so
rows belonging to a different manager cannot be created vial NSERT or UPDATE).

If no roleis specified, or the special user name PUBLI Cis used, then the policy appliesto all users
on the system. To allow all users to access only their own row in auser s table, a simple policy
can be used:

CREATE PQOLI CY user _policy ON users
USI NG (user_nanme = current_user);

Thisworks similarly to the previous example.

To use adifferent policy for rows that are being added to the table compared to those rows that are
visible, multiple policies can be combined. This pair of policieswould allow all usersto view all rows
intheuser s table, but only modify their own:

CREATE PCLI CY user _sel _policy ON users
FOR SELECT
USI NG (true);

CREATE PCLI CY user _nod_policy ON users
USI NG (user_nanme = current_user);

In a SELECT command, these two policies are combined using OR, with the net effect being that all
rows can be selected. In other command types, only the second policy applies, so that the effects are
the same as before.

Row security can also be disabled with the ALTER TABLE command. Disabling row security does
not remove any policies that are defined on the table; they are simply ignored. Then all rows in the
table are visible and modifiable, subject to the standard SQL privileges system.

Below is a larger example of how this feature can be used in production environments. The table
passwd emulates a Unix password file:

-- Sinple passwd-file based exanpl e
CREATE TABLE passwd (

user _nane text UNI QUE NOT NULL,
pwhash t ext,
ui d int PR MARY KEY,
gid int NOT NULL,
real _nane text NOT NULL,
hone_phone t ext,
extra_info t ext,
hone _dir text NOT NULL,
shel | text NOT NULL
)
CREATE ROLE admin; -- Administrator
CREATE RCLE bob; -- Normal user
CREATE ROLE alice; -- Normal user

-- Popul ate the table
| NSERT | NTO passwd VALUES

("admn',"'xxx',0,0," Admn',"'111-222-3333"' ,null,'/root',"'/bin/
dash');

70

Data Definition

| NSERT | NTO passwd VALUES
("bob','xxx',1,1,"Bob',"' 123-456-7890', null,"'/hone/bob',"/bin/
zsh');
| NSERT | NTO passwd VALUES
("alice',"xxx"',2,1,"Alice','098-765-4321" ,null,'/hone/alice' "'/
bi n/ zsh');

-- Be sure to enable row | evel security on the table
ALTER TABLE passwd ENABLE ROW LEVEL SECURI TY;

-- Create policies
-- Adm nistrator can see all rows and add any rows
CREATE PCLI CY admin_all ON passwd TO admin USING (true) WTH CHECK
(true);
-- Nornmal users can view all rows
CREATE POLICY al | _view ON passwd FOR SELECT USI NG (true);
-- Normal users can update their own records, but
-- limt which shells a normal user is allowed to set
CREATE PCLI CY user _nmod ON passwd FOR UPDATE
USI NG (current _user = user_nane)
W TH CHECK (
current _user = user_nanme AND
shell IN ('/bin/bash',"/bin/sh','/bin/dash','/bin/zsh',"'/bin/
tcsh')

)

-- Allow admin all normal rights
GRANT SELECT, | NSERT, UPDATE, DELETE ON passwd TO admi n;
-- Users only get select access on public col ums
GRANT SELECT
(user_name, uid, gid, real_name, home_phone, extra_info,
hone_dir, shell)
ON passwd TO public;
-- Allow users to update certain col ums
GRANT UPDATE
(pwhash, real name, home_phone, extra_info, shell)
ON passwd TO public;

Aswith any security settings, it'simportant to test and ensure that the system is behaving as expected.
Using the example above, this demonstrates that the permission system is working properly.

-- admin can view all rows and fields
post gres=> set role admn;

SET
post gres=> t abl e passwd;
user_nane | pwhash | uid | gid | real _name | honme_phone
extra_info | home_dir | shel
----------- T T T I ppup R
o m e o - - o m e e e oo - T ——
adm n | xxx | 0 | 0| Admin | 111-222-3333
| /root | /bin/dash
bob | xxx | 1] 1| Bob | 123-456-7890
| /hone/ bob | /bin/zsh
alice | xxx | 2| 1| Aice | 098-765-4321
| /hone/alice | /bin/zsh
(3 rows)

-- Test what Alice is able to do

71

Data Definition

postgres=> set role alice;
SET
post gres=> t abl e passwd;
ERROR: permi ssion denied for relation passwd
post gres=> sel ect
user _nane, real _nane, home_phone, extra_i nfo, hone_dir, shel |l from

passwd;

user_nane | real _name | honme_phone | extra_info | hone_dir |

shel |
----------- Ty
.

adm n | Admin | 111-222-3333 | | /root

| /bin/dash

bob | Bob | 123-456-7890 | | /hone/ bob

| /bin/zsh

alice | Alice | 098-765-4321 | | /hone/alice
| /bin/zsh
(3 rows)
post gr es=> update passwd set user_nane = 'joe'

ERROR: permi ssion denied for relation passwd
-- Alice is allowed to change her own real nanme, but no others

post gr es=> update passwd set real _nane = 'Alice Doe';

UPDATE 1

post gres=> update passwd set real _nane = 'John Doe' where user_nane
= "admn';

UPDATE 0

post gr es=> update passwd set shell = '/bin/xx";

ERROR: new row vi ol ates WTH CHECK OPTION for "passwd”
post gres=> del ete from passwd;

ERROR: permi ssion denied for relation passwd

postgres=> insert into passwd (user_nane) values ('xxx');
ERROR: permi ssion denied for relation passwd

-- Alice can change her own password; RLS silently prevents
updati ng ot her rows

post gr es=> update passwd set pwhash = 'abc’;
UPDATE 1

All of the policies constructed thus far have been permissive policies, meaning that when multiple
policies are applied they are combined using the “OR” Boolean operator. While permissive policies
can be constructed to only allow access to rows in the intended cases, it can be simpler to combine
permissive policies with restrictive policies (which the records must pass and which are combined
using the “AND” Boolean operator). Building on the example above, we add a restrictive policy to
require the administrator to be connected over alocal Unix socket to accesstherecords of the passwd
table:

CREATE POLICY adm n_l ocal _only ON passwd AS RESTRI CTI VE TO admi n
USI NG (pg_catal og.inet_client_addr() IS NULL);

We can then see that an administrator connecting over a network will not see any records, due to the
restrictive policy:

=> SELECT current _user;
current _user

=> sel ect inet_client_addr();

72

Data Definition

i net _client_addr

127.0.0.1
(1 row

=> SELECT current _user;
current _user

=> TABLE passwd;
user_nane | pwhash | uid | gid | real _name | home_phone |
extra_info | home_dir | shell

=> UPDATE passwd set pwhash = NULL;
UPDATE 0

Referential integrity checks, such as unique or primary key constraints and foreign key references,
always bypass row security to ensure that data integrity is maintained. Care must be taken when
developing schemas and row level policies to avoid “covert channel” leaks of information through
such referential integrity checks.

In some contexts it isimportant to be sure that row security is not being applied. For example, when
taking a backup, it could be disastrous if row security silently caused some rows to be omitted from
the backup. In such a situation, you can set the row_security configuration parameter to of f . This
does not in itself bypass row security; what it does is throw an error if any query's results would get
filtered by a policy. The reason for the error can then be investigated and fixed.

Inthe examplesabove, the policy expressions consider only the current valuesin therow to be accessed
or updated. This is the simplest and best-performing case; when possible, it's best to design row
security applications to work thisway. If it is necessary to consult other rows or other tables to make
apolicy decision, that can be accomplished using sub-SELECTS, or functionsthat contain SELECTS,
in the policy expressions. Be aware however that such accesses can creste race conditions that could
allow information leakage if care is not taken. As an example, consider the following table design:

-- definition of privilege groups

CREATE TABLE groups (group_id int PRI MARY KEY,
group_nane text NOT NULL);

I NSERT | NTO groups VALUES

(1, "low),
(2, 'nmediun),
(5, "high);
GRANT ALL ON groups TO alice; -- alice is the adninistrator

GRANT SELECT ON groups TO public;

-- definition of users' privilege |levels
CREATE TABLE users (user_nane text PRI MARY KEY,
group_id int NOT NULL REFERENCES groups);

| NSERT | NTO users VALUES
("alice', 5),
(' bob', 2),
("mallory', 2);

73

Data Definition

GRANT ALL ON users TO alice;
GRANT SELECT ON users TO public;

-- table holding the information to be protected
CREATE TABLE information (info text,
group_id int NOT NULL REFERENCES groups);

I NSERT | NTO i nf or mati on VALUES
('barely secret', 1),
("slightly secret', 2),
("very secret', 5);

ALTER TABLE i nformati on ENABLE ROW LEVEL SECURI TY;

-- a row shoul d be visible to/updatable by users whose security
group_id is
-- greater than or equal to the row s group_id
CREATE PCLICY fp_s ONinformation FOR SELECT

USI NG (group_id <= (SELECT group_id FROM users WHERE user _nane
current _user));
CREATE POLI CY fp_u ON information FOR UPDATE

USI NG (group_id <= (SELECT group_id FROM users WHERE user _nane
current _user));

-- we rely only on RLS to protect the information table
GRANT ALL ON i nformation TO public;

Now suppose that al i ce wishes to change the “dlightly secret” information, but decides that
mal | ory should not be trusted with the new content of that row, so she does:

BEGQ N;

UPDATE users SET group_id =

UPDATE i nformati on SET info
= 2,

COW T,

1 WHERE user_nane = 'nallory';
= 'secret fromnmallory' WHERE group_id

That looks safe; thereisno window whereinmal | or y should be ableto seethe* secret from mallory”
string. However, there isarace condition here. If mal | or y is concurrently doing, say,

SELECT * FROM i nformati on WHERE group_id = 2 FOR UPDATE;

and her transactionisin READ COVM TTED mode, it ispossible for her to see “ secret from mallory”.
That happens if her transaction reaches the i nf or mat i on row just after al i ce's does. It blocks
waiting for al i ce's transaction to commit, then fetches the updated row contents thanks to the
FOR UPDATE clause. However, it does not fetch an updated row for the implicit SELECT from
user s, because that sub-SELECT did not have FOR UPDATE; instead the user s row isread with
the snapshot taken at the start of the query. Therefore, the policy expression tests the old value of
mal | or y'sprivilege level and allows her to see the updated row.

Thereare severa ways around this problem. Onesimpleanswer istouse SELECT ... FOR SHARE
in sub-SELECTs in row security policies. However, that requires granting UPDATE privilege on the
referenced table (here user s) to the affected users, which might be undesirable. (But another row
security policy could be applied to prevent them from actually exercising that privilege; or the sub-
SELECT could be embedded into asecurity definer function.) Also, heavy concurrent use of row share
lockson thereferenced table could pose aperformance problem, especialy if updates of it are frequent.
Another solution, practical if updates of the referenced table areinfrequent, isto take an exclusivelock
on the referenced table when updating it, so that no concurrent transactions could be examining old
row values. Or one could just wait for all concurrent transactions to end after committing an update
of the referenced table and before making changes that rely on the new security situation.

74

Data Definition

For additional details see CREATE POLICY and ALTER TABLE.

5.8. Schemas

5.8.1.

A PostgreSQL database cluster contains one or more named databases. Roles and a few other object
types are shared across the entire cluster. A client connection to the server can only access datain a
single database, the one specified in the connection regquest.

Note

Users of acluster do not necessarily have the privilege to access every databasein the cluster.
Sharing of role names means that there cannot be different roles named, say, j oe in two
databases in the same cluster; but the system can be configured to allow j oe access to only
some of the databases.

A database contains one or more named schemas, which in turn contain tables. Schemas also contain
other kinds of named objects, including data types, functions, and operators. The same object name
can be used in different schemas without conflict; for example, both schenmal and myschena can
containtablesnamed myt abl e. Unlike databases, schemasarenot rigidly separated: auser can access
objects in any of the schemas in the database they are connected to, if they have privileges to do so.

There are several reasons why one might want to use schemas:
e To alow many users to use one database without interfering with each other.
» To organize database objectsinto logical groups to make them more manageable.

 Third-party applications can be put into separate schemas so they do not collide with the names
of other objects.

Schemas are analogous to directories at the operating system level, except that schemas cannot be
nested.

Creating a Schema

To create a schema, use the CREATE SCHEMA command. Give the schema a name of your choice.
For example:

CREATE SCHEMA nyschens;

To create or access objects in a schema, write a qualified name consisting of the schema name and
table name separated by a dot:

schena. tabl e

This works anywhere a table name is expected, including the table modification commands and the
data access commands discussed in the following chapters. (For brevity we will speak of tables only,
but the same ideas apply to other kinds of named objects, such as types and functions.)

Actualy, the even more general syntax
dat abase. schena. t abl e

can be used too, but at present thisis just for pro forma compliance with the SQL standard. If you
write a database name, it must be the same as the database you are connected to.

So to create atable in the new schema, use:

CREATE TABLE nyschema. nytabl e (

75

Data Definition

5.8.2.

5.8.3.

)

To drop aschemaif it'sempty (all objectsin it have been dropped), use:
DROP SCHENMA nyschens;

To drop a schemaincluding al contained objects, use:

DROP SCHENMA nyschema CASCADE;

See Section 5.13 for a description of the general mechanism behind this,

Often you will want to create a schema owned by someone el se (since thisis one of the waysto restrict
the activities of your users to well-defined namespaces). The syntax for that is:

CREATE SCHEMA schema_nane AUTHORI ZATI ON user _nane;

You can even omit the schema name, in which case the schema name will be the same as the user
name. See Section 5.8.6 for how this can be useful.

Schema names beginning with pg_ are reserved for system purposes and cannot be created by users.

The Public Schema

In the previous sections we created tables without specifying any schema names. By default such
tables (and other objects) are automatically put into a schema named “public’. Every new database
contains such a schema. Thus, the following are equivalent:

CREATE TABLE products (...);
and:
CREATE TABLE public.products (...);

The Schema Search Path

Qualified names are tedious to write, and it's often best not to wire a particular schema name into
applications anyway. Therefore tables are often referred to by unqualified names, which consist of
just the table name. The system determines which table is meant by following a search path, whichis
alist of schemasto look in. The first matching table in the search path is taken to be the one wanted.
If thereis no match in the search path, an error isreported, even if matching table names exist in other
schemas in the database.

The ability to create like-named objects in different schemas complicates writing a query that
references precisely the same objects every time. It also opens up the potential for users to change
the behavior of other users' queries, maliciously or accidentally. Due to the prevalence of unqualified
names in queries and their use in PostgreSQL internals, adding a schema to sear ch_pat h
effectively trusts all users having CREATE privilege on that schema. When you run an ordinary query,
amalicious user able to create objects in a schema of your search path can take control and execute
arbitrary SQL functions as though you executed them.

The first schema named in the search path is called the current schema. Aside from being the first
schema searched, it is aso the schema in which new tables will be created if the CREATE TABLE
command does not specify a schema name.

To show the current search path, use the following command:

SHOW sear ch_pat h;

In the default setup this returns:

76

Data Definition

5.8.4.

search_pat h

"$user", public

The first element specifies that a schema with the same name as the current user is to be searched.
If no such schema exists, the entry is ignored. The second element refers to the public schema that
we have seen already.

The first schema in the search path that exists is the default location for creating new objects. That
is the reason that by default objects are created in the public schema. When objects are referenced
in any other context without schema qualification (table modification, data modification, or query
commands) the search path is traversed until a matching object is found. Therefore, in the default
configuration, any unqualified access again can only refer to the public schema.

To put our new schemain the path, we use:
SET search_path TO nyschens, publi c;

(We omit the $user here because we have no immediate need for it.) And then we can access the
table without schema qualification:

DROP TABLE mnyt abl e;

Also, since nyschena isthefirst element in the path, new objects would by default be created in it.
We could & so have written:

SET search_path TO nyschens;

Then we no longer have access to the public schema without explicit qualification. There is nothing
special about the public schema except that it exists by default. It can be dropped, too.

See also Section 9.25 for other ways to manipulate the schema search path.

The search path works in the same way for data type names, function names, and operator names as it
does for table names. Data type and function names can be qualified in exactly the same way astable
names. If you need to write a qualified operator name in an expression, there is a special provision:
you must write

OPERATOR(schenm. oper at or)

Thisis needed to avoid syntactic ambiguity. An exampleis:

SELECT 3 OPERATOR(pg_catal og. +) 4;

In practice one usually relies on the search path for operators, so as not to have to write anything so

ugly asthat.

Schemas and Privileges

By default, users cannot access any objects in schemas they do not own. To alow that, the owner of
the schema must grant the USAGE privilege on the schema. To allow users to make use of the objects
in the schema, additional privileges might need to be granted, as appropriate for the object.

A user can also be allowed to create objects in someone else's schema. To alow that, the CREATE
privilege on the schema needs to be granted. Note that by default, everyone has CREATE and USAGE
privileges on the schema publ i c. Thisallows all users that are able to connect to a given database
to create objectsin itspubl i ¢ schema. Some usage patterns call for revoking that privilege:

REVOKE CREATE ON SCHEMA public FROM PUBLI C,

(The first “public” is the schema, the second “public” means “every user”. In the first senseit isan
identifier, in the second sense it is a key word, hence the different capitalization; recall the guidelines
from Section 4.1.1.)

77

Data Definition

5.8.5.

5.8.6.

5.8.7.

The System Catalog Schema

In addition to public and user-created schemas, each database contains a pg_cat al og
schema, which contains the system tables and all the built-in data types, functions, and operators.
pg_cat al og is always effectively part of the search path. If it is not named explicitly in the path
thenitisimplicitly searched before searching the path’'s schemas. This ensuresthat built-in nameswill
always be findable. However, you can explicitly place pg_cat al og at the end of your search path
if you prefer to have user-defined names override built-in names.

Since system table namesbeginwithpg_, it isbest to avoid such namesto ensure that you won't suffer
aconflict if some future version defines a system table named the same asyour table. (With the default
search path, an unqualified reference to your table name would then be resolved as the system table
instead.) System tables will continue to follow the convention of having names beginning with pg_,
so that they will not conflict with unqualified user-table names so long as users avoid the pg__ prefix.

Usage Patterns

Schemas can be used to organize your data in many ways. A secure schema usage pattern prevents
untrusted users from changing the behavior of other users' queries. When a database does not use
a secure schema usage pattern, users wishing to securely query that database would take protective
action at the beginning of each session. Specificaly, they would begin each session by setting
sear ch_pat h to the empty string or otherwise removing non-superuser-writable schemas from
sear ch_pat h. There are afew usage patterns easily supported by the default configuration:

» Constrain ordinary usersto user-private schemas. To implement this, issue REVOKE CREATE ON
SCHEMA public FROM PUBLI C, and create a schema for each user with the same name as
that user. Recall that the default search path starts with $user , which resolves to the user name.
Therefore, if each user has a separate schema, they access their own schemas by default. After
adopting this pattern in a database where untrusted users had aready logged in, consider auditing
the public schemafor objects named like objectsin schemapg_cat al og. This pattern isasecure
schema usage pattern unless an untrusted user is the database owner or holds the CREATEROLE
privilege, in which case no secure schema usage pattern exists.

* Remove the public schema from the default search path, by modifying post gr esql . conf or
by issuing ALTER ROLE ALL SET search_path = "S$user". Everyone retains the
ability to create objects in the public schema, but only qualified names will choose those objects.
While qualified table references are fine, calls to functions in the public schema will be unsafe or
unreliable. If you create functions or extensions in the public schema, use the first pattern instead.
Otherwise, like the first pattern, this is secure unless an untrusted user is the database owner or
holds the CREATEROLE privilege.

» Keep the default. All users access the public schemaimplicitly. This simulates the situation where
schemas are not available at al, giving a smooth transition from the non-schema-aware world.
However, this is never a secure pattern. It is acceptable only when the database has a single user
or afew mutually-trusting users.

For any pattern, to install shared applications (tables to be used by everyone, additional functions
provided by third parties, etc.), put them into separate schemas. Remember to grant appropriate
privileges to alow the other users to access them. Users can then refer to these additional objects by
qualifying the names with a schema name, or they can put the additional schemas into their search
path, as they choose.

Portability

In the SQL standard, the notion of objects in the same schema being owned by different users does
not exist. Moreover, some implementations do not allow you to create schemas that have a different
name than their owner. In fact, the concepts of schema and user are nearly equivalent in a database

78

Data Definition

system that implements only the basi ¢ schema support specified in the standard. Therefore, many users
consider qualified namesto really consist of user _nane. t abl e_nane. Thisis how PostgreSQL
will effectively behave if you create a per-user schemafor every user.

Also, there is no concept of apubl i ¢ schemain the SQL standard. For maximum conformance to
the standard, you should not use the publ i ¢ schema.

Of course, some SQL database systems might not implement schemas at all, or provide namespace
support by allowing (possibly limited) cross-database access. If you need to work with those systems,
then maximum portability would be achieved by not using schemas at al.

5.9. Inheritance

PostgreSQL implements table inheritance, which can be a useful tool for database designers.
(SQL:1999 and later define atypeinheritance feature, which differsin many respectsfrom thefeatures
described here.)

Let's start with an example: suppose we aretrying to build adatamodel for cities. Each state has many
cities, but only one capital. We want to be able to quickly retrieve the capital city for any particular
state. This can be done by creating two tables, one for state capitals and one for cities that are not
capitals. However, what happens when we want to ask for data about acity, regardless of whether itis
acapital or not? The inheritance feature can help to resolve this problem. We definethecapi t al s
table so that it inheritsfromci ti es:

CREATE TABLE cities (

nane t ext,
popul ati on float,
el evation i nt -- in feet

)

CREATE TABLE capitals (
state char (2)
) INHERI TS (cities);

Inthis case, thecapi t al s tableinheritsall the columns of its parent table, ci t i es. State capitals
also have an extracolumn, st at e, that shows their state.

In PostgreSQL, a table can inherit from zero or more other tables, and a query can reference either
all rows of atable or all rows of atable plus all of its descendant tables. The latter behavior is the
default. For example, the following query finds the names of al cities, including state capitals, that
arelocated at an elevation over 500 feet:

SELECT nane, el evation
FROM ci ti es
VWHERE el evati on > 500;

Given the sample data from the PostgreSQL tutorial (see Section 2.1), this returns:

nane | elevation
___________ i,
Las Vegas | 2174
Mari posa | 1953
Madi son | 845

On the other hand, the following query finds all the cities that are not state capitals and are situated
at an elevation over 500 feet:

SELECT nane, el evation
FROM ONLY cities
VWHERE el evati on > 500;

79

Data Definition

nane | elevation
___________ .
Las Vegas | 2174
Mari posa | 1953

Here the ONLY keyword indicates that the query should apply only to ci t i es, and not any tables
below ci t i es in the inheritance hierarchy. Many of the commands that we have already discussed
— SELECT, UPDATE and DELETE — support the ONLY keyword.

You can also write the table name with a trailing * to explicitly specify that descendant tables are
included:

SELECT nane, el evation
FROM citi es*
VWHERE el evati on > 500;

Writing * is not necessary, since this behavior is always the default. However, this syntax is till
supported for compatibility with older releases where the default could be changed.

In some cases you might wish to know which table aparticular row originated from. Thereisasystem
column called t abl eoi d in each table which can tell you the originating table:

SELECT c.tableoid, c.name, c.elevation
FROM cities c
VWHERE c. el evati on > 500;

which returns;

tabl eoid | nane | elevation
__________ e,
139793 | Las Vegas | 2174
139793 | Mariposa | 1953
139798 | Madi son | 845

(If you try to reproduce this example, you will probably get different numeric OIDs.) By doing ajoin
with pg_cl ass you can see the actual table names:

SELECT p.rel nane, c.nane, c.elevation
FROM cities ¢, pg_class p
WHERE c. el evati on > 500 AND c.tabl eoid = p.oid;

which returns;

rel nanme | nane | elevation
__________ e,
cities | Las Vegas | 2174
cities | Mariposa | 1953
capitals | Madison | 845

Another way to get the same effect isto usether egcl ass aiastype, which will print the table OID
symbolicaly:

SELECT c.tabl eoid::regclass, c.nane, c.elevation
FROM cities ¢
WHERE c. el evati on > 500;

Inheritance does not automatically propagate data from | NSERT or COPY commands to other tables
in the inheritance hierarchy. In our example, the following | NSERT statement will fail:

I NSERT INTO cities (name, popul ation, elevation, state)
VALUES (' Al bany', NULL, NULL, 'NY');

80

Data Definition

We might hope that the data would somehow be routed to the capi t al s table, but this does not
happen: | NSERT alwaysinsertsinto exactly the table specified. In some casesit is possible to redirect
the insertion using a rule (see Chapter 40). However that does not help for the above case because
theci ti es table does not contain the column st at e, and so the command will be rejected before
the rule can be applied.

All check constraints and not-null constraints on a parent table are automatically inherited by its
children, unless explicitly specified otherwise with NO | NHERI T clauses. Other types of constraints
(unique, primary key, and foreign key constraints) are not inherited.

A table can inherit from more than one parent table, in which case it has the union of the columns
defined by the parent tables. Any columns declared in the child table's definition are added to these.
If the same column name appears in multiple parent tables, or in both a parent table and the child's
definition, then these columnsare“ merged” so that thereisonly one such columninthechild table. To
be merged, columns must have the same datatypes, elsean error israi sed. | nheritable check constraints
and not-null constraints are merged in asimilar fashion. Thus, for example, amerged column will be
marked not-null if any one of the column definitionsit camefrom ismarked not-null. Check constraints
are merged if they have the same name, and the merge will fail if their conditions are different.

Table inheritanceistypically established when the child tableis created, using thel NHERI TS clause
of the CREATE TABLE statement. Alternatively, a table which is already defined in a compatible
way can have anew parent relationship added, using thel NHERI T variant of ALTER TABLE. Todo
this the new child table must already include columns with the same names and types as the columns
of the parent. It must also include check constraints with the same names and check expressions as
those of the parent. Similarly an inheritance link can be removed from achild usingthe NO | NHERI T
variant of ALTER TABLE. Dynamically adding and removing inheritance links like this can be useful
when the inheritance relationship is being used for table partitioning (see Section 5.10).

One convenient way to create a compatible table that will later be made a new child is to use the
LI KE clausein CREATE TABLE. This creates anew table with the same columns asthe source table.
If there are any CHECK constraints defined on the source table, the | NCLUDI NG CONSTRAI NTS
option to LI KE should be specified, as the new child must have constraints matching the parent to
be considered compatible.

A parent table cannot be dropped while any of its children remain. Neither can columns or check
constraints of child tables be dropped or altered if they are inherited from any parent tables. If you
wish to remove a table and all of its descendants, one easy way is to drop the parent table with the
CASCADE option (see Section 5.13).

ALTER TABLE will propagate any changesin column datadefinitionsand check constraintsdown the
inheritance hierarchy. Again, dropping columns that are depended on by other tablesis only possible
when using the CASCADE option. ALTER TABLE follows the same rules for duplicate column
merging and rejection that apply during CREATE TABLE.

Inherited queries perform access permission checks on the parent table only. Thus, for example,
granting UPDATE permission on the ci ti es table implies permission to update rows in the
capi t al s tableaswell, whenthey areaccessedthroughci t i es. Thispreservesthe appearancethat
the datais (also) inthe parent table. But thecapi t al s table could not be updated directly without an
additional grant. Two exceptions to this rule are TRUNCATE and LOCK TABLE, where permissions
on the child tables are aways checked, whether they are processed directly or recursively via those
commands performed on the parent table.

In asimilar way, the parent table's row security policies (see Section 5.7) are applied to rows coming
from child tables during an inherited query. A child table's policies, if any, are applied only when it
is the table explicitly named in the query; and in that case, any policies attached to its parent(s) are
ignored.

Foreign tables (see Section 5.11) can also be part of inheritance hierarchies, either as parent or child
tables, just as regular tables can be. If aforeign table is part of an inheritance hierarchy then any
operations not supported by the foreign table are not supported on the whole hierarchy either.

81

Data Definition

5.9.1. Caveats

5.10

Notethat not all SQL commands are able to work on inheritance hierarchies. Commands that are used
for dataquerying, datamodification, or schemamaodification (e.g., SELECT, UPDATE, DELETE, most
variants of ALTER TABLE, but not | NSERT or ALTER TABLE ... RENAME) typically default
to including child tables and support the ONLY notation to exclude them. Commands that do database
maintenance and tuning (e.g., REI NDEX, VACUUM) typically only work onindividual, physical tables
and do not support recursing over inheritance hierarchies. The respective behavior of each individual
command is documented in its reference page (SQL Commands).

A seriouslimitation of theinheritance featureisthat indexes (including unique constraints) and foreign
key constraints only apply to single tables, not to their inheritance children. Thisis true on both the
referencing and referenced sides of aforeign key constraint. Thus, in the terms of the above example:

» If we declared ci ti es.nanme to be UNI QUE or a PRI MARY KEY, this would not stop the
capi t al s tablefrom having rows with names duplicating rowsinci t i es. And those duplicate
rowswould by default show upinqueriesfromci t i es. Infact, by default capi t al s would have
no unigue constraint at all, and so could contain multiple rows with the same name. Y ou could add
aunigque constraint to capi t al s, but thiswould not prevent duplication comparedtoci ti es.

» Similarly, if wewereto specify that ci t i es.name REFERENCES some other table, thisconstraint
would not automatically propagatetocapi t al s. Inthiscaseyou couldwork aroundit by manually
adding the same REFERENCES constraint to capi t al s.

» Specifying that another table's column REFERENCES ci ti es(nane) would alow the other
table to contain city names, but not capital names. Thereis no good workaround for this case.

Some functionality not implemented for inheritance hierarchies is implemented for declarative
partitioning. Considerable care is needed in deciding whether partitioning with legacy inheritance is
useful for your application.

Table Partitioning

PostgreSQL supports basic table partitioning. This section describes why and how to implement
partitioning as part of your database design.

5.10.1. Overview

Partitioning refersto splitting what islogically onelargetableinto smaller physical pieces. Partitioning
can provide several benefits:

* Query performance can be improved dramatically in certain situations, particularly when most of
the heavily accessed rows of thetable are in a single partition or a small number of partitions. The
partitioning substitutes for leading columns of indexes, reducing index size and making it more
likely that the heavily-used parts of the indexes fit in memory.

» When queries or updates access a large percentage of a single partition, performance can be
improved by taking advantage of sequential scan of that partition instead of using an index and
random access reads scattered across the whole table.

» Bulk loads and del etes can be accomplished by adding or removing partitions, if that requirement is
planned into the partitioning design. Doing ALTER TABLE DETACH PARTI Tl ON or dropping
an individual partition using DROP TABLE is far faster than a bulk operation. These commands
aso entirely avoid the VACUUMoverhead caused by abulk DELETE.

» Seldom-used data can be migrated to cheaper and slower storage media.

The benefitswill normally be worthwhile only when atable would otherwise be very large. The exact
point at which a table will benefit from partitioning depends on the application, although a rule of
thumb is that the size of the table should exceed the physical memory of the database server.

82

Data Definition

PostgreSQL offers built-in support for the following forms of partitioning:
Range Partitioning

Thetableispartitioned into “ranges’ defined by akey column or set of columns, with no overlap
between the ranges of values assigned to different partitions. For example, one might partition by
date ranges, or by ranges of identifiers for particular business objects.

List Partitioning
Thetableis partitioned by explicitly listing which key values appear in each partition.

If your application needs to use other forms of partitioning not listed above, alternative methods such
asinheritance and UNI ON ALL views can be used instead. Such methods offer flexibility but do not
have some of the performance benefits of built-in declarative partitioning.

5.10.2. Declarative Partitioning

PostgreSQL offers away to specify how to divide a table into pieces called partitions. The table that
isdivided is referred to as a partitioned table. The specification consists of the partitioning method
and alist of columns or expressions to be used as the partition key.

All rows inserted into a partitioned table will be routed to one of the partitions based on the value
of the partition key. Each partition has a subset of the data defined by its partition bounds. Currently
supported partitioning methods include range and list, where each partition is assigned arange of keys
and alist of keys, respectively.

Partitions may themselves be defined as partitioned tables, using what is called sub-partitioning.
Partitions may have their own indexes, constraints and default values, distinct from those of other
partitions. Indexesmust be created separately for each partition. See CREATE TABLE for moredetails
on creating partitioned tables and partitions.

It is not possible to turn aregular table into a partitioned table or vice versa. However, it is possible
to add aregular or partitioned table containing data as a partition of a partitioned table, or remove a
partition from a partitioned table turning it into a standalone table; see ALTER TABLE to learn more
about the ATTACH PARTI TI ONand DETACH PARTI TI ON sub-commands.

Individual partitionsare linked to the partitioned table with inheritance behind-the-scenes; however, it
isnot possibleto use some of theinheritance features discussed in the previous section with partitioned
tables and partitions. For example, apartition cannot have any parents other than the partitioned tableit
isapartition of, nor can aregular tableinherit from a partitioned table making the | atter its parent. That
means partitioned tables and partitions do not participate in inheritance with regular tables. Since a
partition hierarchy consisting of the partitioned table and its partitionsis still an inheritance hierarchy,
all the normal rules of inheritance apply as described in Section 5.9 with some exceptions, most
notably:

» Both CHECK and NOT NULL constraints of a partitioned table are always inherited by al its
partitions. CHECK constraints that are marked NO | NHERI T are not allowed to be created on
partitioned tables.

» Using ONLY to add or drop a constraint on only the partitioned table is supported when there are no
partitions. Once partitionsexist, using ONLY will result in an error as adding or dropping constraints
on only the partitioned table, when partitions exist, is not supported. Instead, constraints can be
added or dropped, when they are not present in the parent table, directly on the partitions. As a
partitioned table does not have any datadirectly, attemptsto use TRUNCATE ONLY on a partitioned
table will always return an error.

* Partitions cannot have columns that are not present in the parent. It is neither possible to specify
columns when creating partitions with CREATE TABLE nor is it possible to add columns to
partitions after-the-fact using ALTER TABLE. Tables may be added as a partition with ALTER
TABLE ... ATTACH PARTI TI ONonly if their columns exactly match the parent, including
any oi d column.

83

Data Definition

* You cannot drop the NOT NULL constraint on a partition's column if the constraint is present in
the parent table.

Partitions can also be foreign tables (see CREATE FOREIGN TABLE), although these have some

limitations that normal tables do not. For example, datainserted into the partitioned tableis not routed
to foreign table partitions.

5.10.2.1. Example

Suppose we are constructing a database for alarge ice cream company. The company measures peak
temperatures every day aswell asice cream salesin each region. Conceptually, we want atable like:

CREATE TABLE neasurement (

city id int not null,
| ogdat e date not null,
peakt enp int,

uni tsal es i nt

)

We know that most queries will access just the last week's, month's or quarter's data, since the main
use of thistable will be to prepare online reports for management. To reduce the amount of old data
that needs to be stored, we decide to only keep the most recent 3 yearsworth of data. At the beginning
of each month wewill remove the oldest month's data. In this situation we can use partitioning to help
us meet al of our different requirements for the measurements table.

To use declarative partitioning in this case, use the following steps:
1. Create measur enent table as a partitioned table by specifying the PARTI TI ON BY clause,
which includes the partitioning method (RANGE in this case) and the list of column(s) to use as

the partition key.

CREATE TABLE neasur enent (

city_id int not null,
| ogdat e date not null,
peakt enp int,

uni t sal es i nt

) PARTI TI ON BY RANGE (| ogdate);

You may decide to use multiple columns in the partition key for range partitioning, if desired.
Of course, this will often result in a larger number of partitions, each of which is individually
smaller. On the other hand, using fewer columns may lead to a coarser-grained partitioning criteria
with smaller number of partitions. A query accessing the partitioned table will have to scan fewer
partitions if the conditions involve some or all of these columns. For example, consider a table
range partitioned using columns| ast name and f i r st nane (in that order) asthe partition key.

2. Create partitions. Each partition's definition must specify the bounds that correspond to the
partitioning method and partition key of the parent. Note that specifying bounds such that the new
partition's values will overlap with those in one or more existing partitions will cause an error.
Inserting data into the parent table that does not map to one of the existing partitions will cause an
error; an appropriate partition must be added manually.

Partitions thus created are in every way normal PostgreSQL tables (or, possibly, foreign tables). It
is possible to specify atablespace and storage parameters for each partition separately.

It isnot necessary to create table constraints describing partition boundary condition for partitions.
Instead, partition constraints are generated implicitly from the partition bound specification
whenever there is need to refer to them.

CREATE TABLE neasurenent _y2006nD2 PARTI TI ON OF neasur enment
FOR VALUES FROM (' 2006-02-01") TO (' 2006-03-01");

84

Data Definition

CREATE TABLE neasurenment _y2006nmD3 PARTI TI ON OF neasur ement
FOR VALUES FROM (' 2006-03-01") TO (' 2006-04-01");

CREATE TABLE neasurenment _y2007mL1l PARTI TI ON OF neasur ement
FOR VALUES FROM (' 2007-11-01") TO ('2007-12-01");

CREATE TABLE neasurenment _y2007mi2 PARTI TI ON OF neasur ement
FOR VALUES FROM (' 2007-12-01') TO ('2008-01-01")
TABLESPACE f astt abl espace;

CREATE TABLE neasurenment _y2008nD1 PARTI TI ON OF neasur ement
FOR VALUES FROM (' 2008-01-01') TO ('2008-02-01")
WTH (parall el _workers = 4)
TABLESPACE f astt abl espace;

Toimplement sub-partitioning, specify the PARTI TI ON BY clausein thecommandsused to create
individual partitions, for example:

CREATE TABLE neasur enent _y2006n02 PARTI TI ON OF neasur enment
FOR VALUES FROM (' 2006-02-01') TO ('2006-03-01")
PARTI TI ON BY RANGE (peaktenp);

After creating partitions of measur ement _y2006n02, any datainserted into neasur enent
that is mapped to neasurenment y2006n02 (or data that is directly inserted into
nmeasur enent _y2006nm02, provided it satisfiesits partition constraint) will befurther redirected
to one of its partitions based on the peakt enp column. The partition key specified may overlap
with the parent's partition key, although care should be taken when specifying the bounds of a sub-
partition such that the set of data it accepts constitutes a subset of what the partition's own bounds
allows; the system does not try to check whether that's really the case.

3. Create an index on the key column(s), as well as any other indexes you might want for every
partition. (The key index is not strictly necessary, but in most scenariosit is helpful. If you intend
the key values to be unique then you should always create a unique or primary-key constraint for
each partition.)

CREATE | NDEX ON neasur enment _y2006n0D2 (| ogdate);
CREATE | NDEX ON neasur enent _y2006n0D3 (| ogdate);

CREATE | NDEX ON neasur enent _y2007nll (| ogdate);
CREATE | NDEX ON neasur enent _y2007nl2 (| ogdate);
CREATE | NDEX ON neasur enent _y2008n0D1 (| ogdate);
4. Ensure that the constraint_exclusion configuration parameter is not disabled in
post gresql . conf . Ifitis, querieswill not be optimized as desired.

In the above example we would be creating a new partition each month, so it might be wise to write
a script that generates the required DDL automatically.

5.10.2.2. Partition Maintenance

Normally the set of partitions established when initially defining the table are not intended to remain
static. It is common to want to remove old partitions of data and periodically add new partitions for
new data. One of the most important advantages of partitioning is precisely that it allowsthis otherwise
painful task to be executed nearly instantaneously by manipulating the partition structure, rather than
physically moving large amounts of data around.

The simplest option for removing old data is to drop the partition that is no longer necessary:

DROP TABLE neasurenment _y2006n02;

85

Data Definition

This can very quickly delete millions of records because it doesn't have to individually delete every
record. Note however that the above command requires taking an ACCESS EXCLUSI VE lock on
the parent table.

Another option that is often preferable is to remove the partition from the partitioned table but retain
accessto it asatableinits own right:

ALTER TABLE neasur enent DETACH PARTI TI ON nmeasur enent _y2006nD2;

This alows further operations to be performed on the data before it is dropped. For example, thisis
often auseful timeto back up the datausing COPY, pg_dump, or similar tools. It might also be auseful
time to aggregate data into smaller formats, perform other data manipulations, or run reports.

Similarly we can add a new partition to handle new data. We can create an empty partition in the
partitioned table just as the original partitions were created above:

CREATE TABLE neasurenment _y2008nD2 PARTI TI ON OF neasur ement
FOR VALUES FROM (' 2008-02-01') TO ('2008-03-01")
TABLESPACE f astt abl espace;

As an aternative, it is sometimes more convenient to create the new table outside the partition
structure, and make it a proper partition later. This alows the data to be loaded, checked, and
transformed prior to it appearing in the partitioned table:

CREATE TABLE neasur enent _y2008n02
(LI KE nmeasurement | NCLUDI NG DEFAULTS | NCLUDI NG CONSTRAI NTS)
TABLESPACE f astt abl espace;

ALTER TABLE neasur enent _y2008n0D2 ADD CONSTRAI NT y2008n0D2
CHECK (| ogdate >= DATE '2008-02-01' AND | ogdate < DATE
' 2008-03-01");

\ copy neasurenent _y2008n02 from ' measurenent y2008nD2'
-- possibly sonme other data preparation work

ALTER TABLE neasurenent ATTACH PARTI TI ON nmeasur enent _y2008nm02
FOR VALUES FROM (' 2008-02-01") TO ('2008-03-01");

Beforerunningthe ATTACH PARTI TI ONcommand, it isrecommended to create a CHECK constraint
on the table to be attached matching the desired partition constraint. That way, the system will be
able to skip the scan to validate the implicit partition constraint. Without the CHECK constraint, the
table will be scanned to validate the partition constraint while holding an ACCESS EXCLUSI VE
lock on the parent table. It may be desired to drop the redundant CHECK constraint after ATTACH
PARTI TI ONisfinished.

5.10.2.3. Limitations

The following limitations apply to partitioned tables:

» Thereisno facility availableto create the matching indexes on all partitions automatically. Indexes
must be added to each partition with separate commands. This also means that there is no way to
create a primary key, unique constraint, or exclusion constraint spanning al partitions; it is only
possible to constrain each leaf partition individually.

» Since primary keys are not supported on partitioned tables, foreign keys referencing partitioned
tables are not supported, nor are foreign key references from a partitioned table to some other table.

e Using the ON CONFLI CT clause with partitioned tables will cause an error, because unique or
exclusion constraints can only be created on individual partitions. Thereis no support for enforcing
uniqueness (or an exclusion constraint) across an entire partitioning hierarchy.

86

Data Definition

e An UPDATE that causes a row to move from one partition to another fails, because the new value
of the row failsto satisfy the implicit partition constraint of the original partition.

» Row triggers, if necessary, must be defined on individual partitions, not the partitioned table.

» Mixing temporary and permanent relations in the same partition tree is not allowed. Hence, if
the partitioned table is permanent, so must be its partitions and likewise if the partitioned table is
temporary. When using temporary relations, all members of the partition tree have to be from the
same session.

5.10.3. Implementation Using Inheritance

While the built-in declarative partitioning is suitable for most common use cases, there are some
circumstances where a more flexible approach may be useful. Partitioning can be implemented using
tableinheritance, which allowsfor several featureswhich are not supported by declarative partitioning,
such as:

* Partitioning enforces a rule that al partitions must have exactly the same set of columns as the
parent, but table inheritance allows children to have extra columns not present in the parent.

» Tableinheritance allows for multiple inheritance.

 Declarative partitioning only supports list and range partitioning, whereas table inheritance allows
data to be divided in a manner of the user's choosing. (Note, however, that if constraint exclusion
is unable to prune partitions effectively, query performance will be very poor.)

» Some operations require a stronger lock when using declarative partitioning than when using
table inheritance. For example, adding or removing a partition to or from a partitioned table
requires taking an ACCESS EXCLUSI VE lock on the parent table, whereas a SHARE UPDATE
EXCLUSI VE lock is enough in the case of regular inheritance.

5.10.3.1. Example

We use the non-partitioned measur enment table above. To implement partitioning using inheritance,
use the following steps:

1. Create the “master” table, from which all of the partitions will inherit. This table will contain no
data. Do not define any check constraints on thistable, unlessyou intend them to be applied equally
to all partitions. There is no point in defining any indexes or unique constraints on it, either. For
our example, the master tableisthe measur enent table asoriginaly defined.

2. Create several “child” tablesthat each inherit from the master table. Normally, these tableswill not
add any columns to the set inherited from the master. Just as with declarative partitioning, these
partitions are in every way normal PostgreSQL tables (or foreign tables).

CREATE TABLE neasur enent y2006n02 () | NHERI TS (neasurenent);
CREATE TABLE neasur enent y2006n03 () | NHERI TS (neasurenent);

CREATE TABLE neasur enent y2007nil () | NHERI TS (neasurenent);
CREATE TABLE neasur enent y2007nil2 () |NHERI TS (neasurenent);
CREATE TABLE neasur enent y2008n01 () | NHERI TS (neasurenent);

3. Add non-overlapping table constraints to the partition tables to define the allowed key values in
each partition.

Typical examples would be:

CHECK (x = 1)

CHECK (county IN ('Oxfordshire', 'Buckinghanmshire',
"Warwi ckshire'))

CHECK (outletID >= 100 AND outletlID < 200)

87

Data Definition

Ensure that the constraints guarantee that there is no overlap between the key values permitted in
different partitions. A common mistake is to set up range constraints like:

CHECK (outlet|D BETWEEN 100 AND 200)
CHECK (outl et D BETWEEN 200 AND 300)

Thisiswrong sinceit is not clear which partition the key value 200 belongsin.
It would be better to instead create partitions as follows:

CREATE TABLE measur enent _y2006n02 (

CHECK (| ogdate >= DATE ' 2006- 02- 01" AND | ogdate < DATE
' 2006- 03-01")
) INHERI TS (neasurenent);

CREATE TABLE measur enent _y2006n03 (

CHECK (| ogdate >= DATE ' 2006- 03- 01" AND | ogdate < DATE
' 2006- 04- 01")
) INHERI TS (neasurenent);

CREATE TABLE measur enent _y2007nill (
CHECK (| ogdate >= DATE ' 2007-11-01'" AND | ogdate < DATE
'2007-12-01")
) INHERI TS (neasurenent);

CREATE TABLE measur enent _y2007nil2 (

CHECK (| ogdate >= DATE ' 2007-12-01' AND | ogdate < DATE
' 2008-01-01")
) INHERI TS (neasurenent);

CREATE TABLE measur enent _y2008n01 (
CHECK (| ogdate >= DATE '2008-01-01' AND | ogdate < DATE
' 2008-02-01")
) INHERI TS (neasurenent);
. For each partition, create an index on the key column(s), as well as any other indexes you might
want.

CREATE | NDEX measur enent _y2006n02_| ogdat e ON neasuremnent _y2006n02
(l ogdate);

CREATE | NDEX measur enent _y2006n03_I| ogdat e ON neasurenent _y2006n0D3
(l ogdate);

CREATE | NDEX neasur enent _y2007nill | ogdat e ON neasuremnent y2007nll
(l ogdate);

CREATE | NDEX measur enent _y2007nl2_| ogdat e ON neasuremnent _y2007nl2
(l ogdate);

CREATE | NDEX measur enent _y2008n0D1 | ogdat e ON neasurenent _y2008nD1
(l ogdate);

. We want our application to be ableto say | NSERT | NTO neasur enent ... andhavethe

data be redirected into the appropriate partition table. We can arrange that by attaching a suitable

trigger function to the master table. If data will be added only to the latest partition, we can use

avery ssmple trigger function;

CREATE OR REPLACE FUNCTI ON neasurenent i nsert _trigger()
RETURNS TRI GGER AS $%
BEG N
| NSERT | NTO neasur enent _y2008n01 VALUES (NEW *);
RETURN NULL;

88

Data Definition

END;
$$
LANGUAGE pl pgsdl ;

After creating the function, we create a trigger which calls the trigger function:

CREATE TRI GGER i nsert _neasurenent _tri gger
BEFORE | NSERT ON measur enment
FOR EACH ROW EXECUTE PROCEDURE neasurenent insert_trigger();

We must redefine the trigger function each month so that it always points to the current partition.
The trigger definition does not need to be updated, however.

We might want to insert data and have the server automatically locate the partition into which the
row should be added. We could do this with a more complex trigger function, for example:

CREATE OR REPLACE FUNCTI ON nmeasurement _i nsert _trigger()
RETURNS TRI GGER AS $$
BEG N
IF (NEWI ogdate >= DATE ' 2006- 02- 01" AND
NEW | ogdat e < DATE ' 2006-03-01') THEN
| NSERT | NTO nmeasur enent _y2006nm02 VALUES (NEW *);
ELSIF (NEW | ogdat e >= DATE ' 2006- 03-01' AND
NEW | ogdat e < DATE ' 2006-04-01') THEN
| NSERT | NTO nmeasur enent _y2006nm03 VALUES (NEW *);

ELSIF (NEW | ogdat e >= DATE ' 2008-01-01' AND
NEW | ogdat e < DATE ' 2008-02-01') THEN
| NSERT | NTO nmeasur enent _y2008nmD1 VALUES (NEW *);
ELSE
RAI SE EXCEPTION 'Date out of range. Fix the
measurenent _insert_trigger() function!';
END | F;
RETURN NULL;
END;
$$
LANGUAGE pl pgsdl ;

Thetrigger definition isthe same as before. Note that each | F test must exactly match the CHECK
constraint for its partition.

While this function is more complex than the single-month case, it doesn't need to be updated as
often, since branches can be added in advance of being needed.

Note

In practice it might be best to check the newest partition first, if most inserts go into that
partition. For simplicity we have shown the trigger'stestsin the same order asin other parts
of thisexample.

A different approach to redirecting inserts into the appropriate partition table is to set up rules,
instead of atrigger, on the master table. For example:

CREATE RULE neasurenent _i nsert_y2006nmD2 AS
ON I NSERT TO nmeasur enent WHERE

(| ogdate >= DATE ' 2006-02-01'" AND | ogdate < DATE
' 2006- 03-01')

89

Data Definition

DO | NSTEAD
I NSERT | NTO neasur enment _y2006n02 VALUES (NEW *);

CREATE RULE neasurenent _insert_y2008nmD1 AS
ON I NSERT TO measur enment WHERE
(| ogdate >= DATE ' 2008-01-01'" AND | ogdate < DATE
' 2008- 02-01')
DO | NSTEAD
| NSERT | NTO nmeasur enent _y2008n01 VALUES (NEW *);

A rulehas significantly more overhead than atrigger, but the overhead is paid once per query rather
than once per row, so this method might be advantageous for bulk-insert situations. In most cases,
however, the trigger method will offer better performance.

Be aware that COPY ignores rules. If you want to use COPY to insert data, you'll need to copy into
the correct partition table rather than into the master. COPY does fire triggers, so you can use it
normally if you use the trigger approach.

Another disadvantage of the rule approach is that thereis no simple way to force an error if the set
of rules doesn't cover the insertion date; the data will silently go into the master table instead.

6. Ensure that the constraint_exclusion configuration parameter is not disabled in
post gresql . conf . If itis, querieswill not be optimized as desired.

Aswe can see, acomplex partitioning scheme could require asubstantial amount of DDL. Inthe above
example we would be creating a new partition each month, so it might be wise to write a script that
generates the required DDL automatically.

5.10.3.2. Partition Maintenance
To remove old data quickly, simply drop the partition that is no longer necessary:
DROP TABLE neasur enment _y2006n02;
To remove the partition from the partitioned table but retain accessto it asatableinits own right:
ALTER TABLE neasur enent _y2006nD2 NO | NHERI T neasur enent;

To add a new partition to handle new data, create an empty partition just as the original partitions
were created above:

CREATE TABLE measur enent _y2008n02 (

CHECK (| ogdate >= DATE ' 2008-02- 01" AND | ogdate < DATE
' 2008-03-01")
) INHERI TS (neasurenent);

Alternatively, one may want to create the new table outside the partition structure, and make it a
partition after the datais loaded, checked, and transformed.

CREATE TABLE neasur enent _y2008n0D2
(LI KE nmeasur enent | NCLUDI NG DEFAULTS | NCLUDI NG CONSTRAI NTS) ;

ALTER TABLE neasur enent _y2008nD2 ADD CONSTRAI NT y2008nmD2
CHECK (| ogdate >= DATE '2008-02-01' AND | ogdate < DATE

' 2008-03-01');

\ copy neasurenent _y2008n0D2 from ' measurenent y2008n0D2'

-- possibly sonme other data preparation work

ALTER TABLE neasur enent _y2008nD2 | NHERI T nmeasur enent ;

5.10.3.3. Caveats

The following caveats apply to partitioned tables implemented using inheritance:

90

Data Definition

e Thereis no automatic way to verify that all of the CHECK constraints are mutually exclusive. It is
safer to create code that generates partitions and creates and/or modifies associated objects than to
write each by hand.

e The schemes shown here assume that the partition key column(s) of a row never change, or at
least do not change enough to require it to move to another partition. An UPDATE that attempts
to do that will fail because of the CHECK constraints. If you need to handle such cases, you can
put suitable update triggers on the partition tables, but it makes management of the structure much
more complicated.

* If you are using manual VACUUMor ANAL YZE commands, don't forget that you need to run them
on each partition individually. A command like:

ANALYZE measur enment ;
will only process the master table.

* | NSERT statements with ON CONFLI CT clauses are unlikely to work as expected, as the ON
CONFLI CT action is only taken in case of unique violations on the specified target relation, not
its child relations.

 Triggers or rules will be needed to route rows to the desired partition, unless the application is
explicitly aware of the partitioning scheme. Triggers may be complicated to write, and will be much
slower than the tuple routing performed internally by declarative partitioning.

5.10.4. Partitioning and Constraint Exclusion

Constraint exclusion is a query optimization technique that improves performance for partitioned
tables defined in the fashion described above (both declaratively partitioned tables and those
implemented using inheritance). As an example:

SET constrai nt_exclusion = on;
SELECT count (*) FROM neasur enent WHERE | ogdat e >= DATE
' 2008-01-01';

Without constraint exclusion, the above query would scan each of the partitionsof themeasur enment

table. With constraint exclusion enabled, the planner will examine the constraints of each partition and
try to prove that the partition need not be scanned because it could not contain any rows meeting the
query's WHERE clause. When the planner can prove this, it excludes the partition from the query plan.

You can use the EXPLAIN command to show the difference between a plan with
const rai nt _excl usi on on and a plan with it off. A typical unoptimized plan for this type of
table setup is:

SET constrai nt_excl usi on = off;
EXPLAI N SELECT count (*) FROM neasur enent WHERE | ogdat e >= DATE
' 2008-01-01';

QUERY PLAN
Aggregate (cost=158.66..158.68 rows=1 wi dt h=0)
-> Append (cost=0.00..151.88 rows=2715 wi dt h=0)
-> Seq Scan on neasurenent (cost=0.00..30.38 rows=543
wi dt h=0)
Filter: (logdate >= '2008-01-01'::date)
-> Seq Scan on neasurenment _y2006nmD2 nmeasur enment
(cost=0.00. . 30. 38 rows=543 wi dt h=0)
Filter: (logdate >= '2008-01-01'::date)
-> Seq Scan on neasurenment _y2006nm03 neasur enment
(cost=0.00. . 30. 38 rows=543 wi dt h=0)

91

Data Definition

Filter: (logdate >= '2008-01-01'::date)

-> Seq Scan on neasurenent _y2007nml2 neasur enment
(cost=0.00. . 30. 38 rows=543 w dt h=0)
Filter: (logdate >= '2008-01-01'::date)
-> Seq Scan on neasurenent _y2008nmD1 neasur enment
(cost=0.00. . 30. 38 rows=543 w dt h=0)
Filter: (logdate >= '2008-01-01'::date)

Some or all of the partitions might use index scansinstead of full-table sequential scans, but the point
here is that there is no need to scan the older partitions at al to answer this query. When we enable
constraint exclusion, we get a significantly cheaper plan that will deliver the same answer:

SET constrai nt_excl usion = on;
EXPLAI N SELECT count (*) FROM nmeasur enent WHERE | ogdat e >= DATE
' 2008-01-01';
QUERY PLAN
Aggregate (cost=63.47..63.48 rows=1 wi dt h=0)
-> Append (cost=0.00..60.75 rows=1086 wi dt h=0)
-> Seq Scan on neasurenent (cost=0.00..30.38 rows=543
wi dt h=0)
Filter: (logdate >= '2008-01-01':: date)
-> Seq Scan on neasurenent _y2008nmD1 neasurenent
(cost=0.00.. 30. 38 rows=543 wi dt h=0)
Filter: (logdate >= '2008-01-01':: date)

Note that constraint exclusion is driven only by CHECK constraints, not by the presence of indexes.
Thereforeit isn't necessary to defineindexes on the key columns. Whether an index needsto be created
for agiven partition depends on whether you expect that queries that scan the partition will generally
scan a large part of the partition or just a small part. An index will be helpful in the latter case but
not the former.

The default (and recommended) setting of constraint_exclusionis actually neither on nor of f , but an
intermediate setting called par t i t i on, which causesthetechniqueto be applied only to queriesthat
are likely to be working on partitioned tables. The on setting causes the planner to examine CHECK
constraintsin all queries, even simple ones that are unlikely to benefit.

The following caveats apply to constraint exclusion, which is used by both inheritance and partitioned
tables:

» Congtraint exclusion only works when the query's WHERE clause contains constants (or externally
supplied parameters). For example, a comparison against a non-immutable function such as
CURRENT_TI MESTAMP cannot be optimized, since the planner cannot know which partition the
function value might fall into at run time.

» Keep the partitioning constraints simple, else the planner may not be able to prove that partitions
don't need to be visited. Use ssimple equality conditions for list partitioning, or simple range tests
for range partitioning, as illustrated in the preceding examples. A good rule of thumb is that
partitioning constraints should contain only comparisons of the partitioning column(s) to constants
using B-tree-indexable operators, which applies even to partitioned tables, because only B-tree-
indexable column(s) are alowed in the partition key. (Thisis not a problem when using declarative
partitioning, since the automatically generated constraints are simple enough to be understood by
the planner.)

 All constraints on al partitions of the master table are examined during constraint exclusion, so
large numbers of partitions are likely to increase query planning time considerably. Partitioning
using these techniques will work well with up to perhaps a hundred partitions; don't try to use many
thousands of partitions.

92

Data Definition

5.10.5. Declarative Partitioning Best Practices

5.11.

The choice of how to partition a table should be made carefully as the performance of query planning
and execution can be negatively affected by poor design.

One of the most critical design decisions will be the column or columns by which you partition your
data. Often the best choice will be to partition by the column or set of columns which most commonly
appear in WHERE clauses of queries being executed on the partitioned table. WHERE clause items that
match and are compatible with the partition key can be used to prune unneeded partitions. Removal of
unwanted datais also afactor to consider when planning your partitioning strategy. An entire partition
can be detached fairly quickly, so it may be beneficia to design the partition strategy in such away
that all datato be removed at once islocated in asingle partition.

Choosing the target number of partitionsthat the table should be divided into isalso acritical decision
to make. Not having enough partitions may mean that indexes remain too large and that data locality
remains poor which could result in low cache hit ratios. However, dividing the table into too many
partitions can also cause issues. Too many partitions can mean longer query planning times and higher
memory consumption during both query planning and execution. When choosing how to partition
your table, it's also important to consider what changes may occur in the future. For example, if you
choose to have one partition per customer and you currently have a small number of large customers,
consider the implications if in several years you instead find yourself with a large number of small
customers. In this case, it may be better to choose to partition by RANGE and choose a reasonable
number of partitions, each containing a fixed number of customers, rather than trying to partition
by LI ST and hoping that the number of customers does not increase beyond what it is practical to
partition the data by.

Sub-partitioning can be useful to further divide partitionsthat are expected to become larger than other
partitions, although excessive sub-partitioning can easily lead to large numbers of partitions and can
cause the same problems mentioned in the preceding paragraph.

It isalso important to consider the overhead of partitioning during query planning and execution. The
guery planner is generally able to handle partition hierarchies with up to a few hundred partitions.
Planning times become longer and memory consumption becomes higher as more partitions are
added. This is particularly true for the UPDATE and DELETE commands. Ancther reason to be
concerned about having a large number of partitions is that the server's memory consumption may
grow significantly over aperiod of time, especially if many sessionstouch large numbers of partitions.
That's because each partition requires its metadata to be loaded into the local memory of each session
that touchesit.

With data warehouse type workloads, it can make sense to use alarger number of partitions than with
an OLTP type workload. Generally, in data warehouses, query planning time is less of a concern as
the majority of processing time is spent during query execution. With either of these two types of
workload, it is important to make the right decisions early, as re-partitioning large quantities of data
can be painfully slow. Simulations of the intended workload are often beneficial for optimizing the
partitioning strategy. Never assumethat more partitions are better than fewer partitions and vice-versa.

Foreign Data

PostgreSQL implements portions of the SQL/MED specification, allowing you to access data that
resides outside PostgreSQL using regular SQL queries. Such datais referred to asforeign data. (Note
that this usage is not to be confused with foreign keys, which are a type of constraint within the
database.)

Foreign data is accessed with help from a foreign data wrapper. A foreign data wrapper is alibrary
that can communicate with an external data source, hiding the details of connecting to the data source
and obtaining datafrom it. There are some foreign datawrappersavailableascont r i b modules; see
Appendix F. Other kinds of foreign data wrappers might be found as third party products. If none of
the existing foreign data wrappers suit your needs, you can write your own; see Chapter 56.

93

Data Definition

5.12

5.13

To access foreign data, you need to create a foreign server object, which defines how to connect to
a particular external data source according to the set of options used by its supporting foreign data
wrapper. Then you need to create one or more foreign tables, which define the structure of the remote
data. A foreign table can be used in queries just like anormal table, but aforeign table has no storage
inthe PostgreSQL server. Whenever it isused, PostgreSQL asksthe foreign datawrapper to fetch data
from the external source, or transmit datato the external source in the case of update commands.

Accessing remote data may require authenticating to the external data source. This information can
be provided by a user mapping, which can provide additional data such as user names and passwords
based on the current PostgreSQL role.

For additional information, see CREATE FOREIGN DATA WRAPPER, CREATE SERVER,
CREATE USER MAPPING, CREATE FOREIGN TABLE, and IMPORT FOREIGN SCHEMA.

Other Database Objects

Tables are the central objectsin arelational database structure, because they hold your data. But they
are not the only objectsthat exist in adatabase. Many other kinds of objects can be created to makethe
use and management of the data more efficient or convenient. They are not discussed in this chapter,
but we give you alist here so that you are aware of what is possible:

* Views

» Functions and operators

» Datatypes and domains
 Triggers and rewrite rules

Detailed information on these topics appearsin Part V.

Dependency Tracking

When you create complex database structures involving many tables with foreign key constraints,
views, triggers, functions, etc. you implicitly create a net of dependencies between the objects. For
instance, atable with aforeign key constraint depends on the table it references.

To ensure the integrity of the entire database structure, PostgreSQL makes sure that you cannot drop
objects that other objects still depend on. For example, attempting to drop the products table we
considered in Section 5.3.5, with the orders table depending on it, would result in an error message
like this:

DROP TABLE products;

ERROR: cannot drop table products because ot her objects depend on
it

DETAIL: constraint orders_product_no_fkey on table orders depends
on tabl e products

HI NT: Use DROP ... CASCADE to drop the dependent objects too.

Theerror message containsauseful hint: if you do not want to bother deleting all the dependent objects
individually, you can run:

DROP TABLE products CASCADE;

and all the dependent objects will be removed, as will any objects that depend on them, recursively.
In this case, it doesn't remove the orders table, it only removes the foreign key constraint. It stops
there because nothing depends on the foreign key constraint. (If you want to check what DROP . . .
CASCADE will do, run DROP without CASCADE and read the DETAI L output.)

94

Data Definition

Almost all DROP commands in PostgreSQL support specifying CASCADE. Of course, the nature of
the possible dependencies varies with the type of the object. You can also write RESTRI CT instead
of CASCADE to get the default behavior, which is to prevent dropping objects that any other objects
depend on.

Note

According to the SQL standard, specifying either RESTRI CT or CASCADE is required in
a DROP command. No database system actually enforces that rule, but whether the default
behavior is RESTRI CT or CASCADE varies across systems.

If a DROP command lists multiple objects, CASCADE is only required when there are dependencies
outside the specified group. For example, when saying DROP TABLE t abl, t ab2 theexistence
of aforeign key referencingt abl fromt ab2 would not mean that CASCADE is needed to succeed.

For user-defined functions, PostgreSQL tracks dependencies associated with a function's externally-
visibleproperties, such asitsargument and result types, but not dependenciesthat could only be known
by examining the function body. As an example, consider this situation:

CREATE TYPE rai nbow AS ENUM ('red', 'orange', 'vyellow,
‘green', 'blue', 'purple');

CREATE TABLE ny_col ors (col or rai nbow, note text);

CREATE FUNCTI ON get _col or_note (rai nbow) RETURNS text AS
' SELECT note FROM ny_col ors WHERE col or = $1'
LANGUAGE SQ@.;

(See Section 37.4 for an explanation of SQL-language functions.) PostgreSQL will be aware that the
get _col or _not e functiondependsonther ai nbowtype: dropping thetypewould force dropping
the function, because its argument type would no longer be defined. But PostgreSQL will not consider
get _col or _not e todependontheny_col or s table, and sowill not drop thefunctionif thetable
isdropped. While there are disadvantages to this approach, there are also benefits. The functionis still
valid in some sense if the table is missing, though executing it would cause an error; creating a new
table of the same name would allow the function to work again.

95

Chapter 6. Data Manipulation

The previous chapter discussed how to create tables and other structures to hold your data. Now it is
time to fill the tables with data. This chapter covers how to insert, update, and delete table data. The
chapter after thiswill finally explain how to extract your long-lost data from the database.

6.1. Inserting Data

When atableiscreated, it contains no data. Thefirst thing to do before a database can be of much use
isto insert data. Data is conceptually inserted one row at atime. Of course you can aso insert more
than one row, but there is no way to insert less than one row. Even if you know only some column
values, a complete row must be created.

To create anew row, use the INSERT command. The command requires the table name and column
values. For example, consider the products table from Chapter 5:

CREATE TABLE products (
product _no i nteger,
name text,
price nuneric

)
An example command to insert arow would be:
I NSERT | NTO products VALUES (1, 'Cheese', 9.99);

The datavalues arelisted in the order in which the columns appear in the table, separated by commas.
Usually, the data values will be literals (constants), but scalar expressions are also allowed.

The above syntax has the drawback that you need to know the order of the columnsin the table. To
avoid thisyou can aso list the columns explicitly. For example, both of the following commands have
the same effect as the one above:

I NSERT | NTO products (product_no, nane, price) VALUES (1, ' Cheese',

9.99);
| NSERT | NTO products (nane, price, product_no) VALUES (' Cheese',
9.99, 1);

Many users consider it good practice to aways list the column names.

If you don't have valuesfor all the columns, you can omit some of them. In that case, the columns will
be filled with their default values. For example;

I NSERT | NTO products (product_no, nane) VALUES (1, 'Cheese');
| NSERT | NTO products VALUES (1, 'Cheese');

The second form is a PostgreSQL extension. It fills the columns from the left with as many values as
are given, and the rest will be defaulted.

For clarity, you can also request default values explicitly, for individual columns or for the entire row:

| NSERT | NTO products (product_no, name, price) VALUES (1, 'Cheese',
DEFAULT) ;

| NSERT | NTO products DEFAULT VALUES;

Y ou can insert multiple rows in a single command:

I NSERT | NTO products (product_no, nane, price) VALUES

96

Data Manipulation

(1, 'Cheese', 9.99),
(2, 'Bread', 1.99),
(3, "MIk', 2.99);

It isalso possible to insert the result of a query (which might be no rows, one row, or many rows):

I NSERT | NTO products (product_no, name, price)
SELECT product_no, name, price FROM new_products
WHERE r el ease_date = 'today';

This provides the full power of the SQL query mechanism (Chapter 7) for computing the rows to be
inserted.

Tip

When inserting a lot of data at the same time, consider using the COPY command. It is not
as flexible as the INSERT command, but is more efficient. Refer to Section 14.4 for more
information on improving bulk loading performance.

6.2. Updating Data

The modification of data that is already in the database is referred to as updating. Y ou can update
individual rows, all therowsin atable, or asubset of all rows. Each column can be updated separately;
the other columns are not affected.

To update existing rows, use the UPDATE command. This requires three pieces of information:

1. The name of the table and column to update
2. The new value of the column
3. Which row(s) to update

Recall from Chapter 5 that SQL does not, in general, provide aunique identifier for rows. Thereforeit
is not always possible to directly specify which row to update. Instead, you specify which conditions
arow must meet in order to be updated. Only if you have a primary key in the table (independent
of whether you declared it or not) can you reliably address individual rows by choosing a condition
that matches the primary key. Graphical database access toolsrely on thisfact to allow you to update
rows individually.

For example, this command updates all products that have a price of 5 to have a price of 10:
UPDATE products SET price = 10 WHERE price = 5;

This might cause zero, one, or many rows to be updated. It is not an error to attempt an update that
does not match any rows.

Let'slook at that command in detail. First is the key word UPDATE followed by the table name. As
usual, the table name can be schema-qualified, otherwise it is looked up in the path. Next is the key
word SET followed by the column name, an equal sign, and the new column value. The new column
value can be any scalar expression, not just a constant. For example, if you want to raise the price of
all products by 10% you could use:

UPDATE products SET price = price * 1.10;

Asyou see, the expression for the new value can refer to the existing value(s) in the row. We also left
out the WHERE clause. If it is omitted, it means that all rows in the table are updated. If it is present,
only those rows that match the WHERE condition are updated. Note that the equals sign in the SET
clauseisan assignment while the onein the WHERE clause isacomparison, but thisdoes not create any

97

Data Manipulation

ambiguity. Of course, the WHERE condition does not have to be an equality test. Many other operators
are available (see Chapter 9). But the expression needs to evaluate to a Boolean result.

Y ou can update more than one column in an UPDATE command by listing more than one assignment
in the SET clause. For example:

UPDATE nytable SET a =5, b =3, ¢ =1 WHERE a > 0;

6.3. Deleting Data

So far we have explained how to add datato tables and how to change data. What remainsisto discuss
how to remove data that is no longer needed. Just as adding data is only possible in whole rows, you
can only remove entire rows from atable. In the previous section we explained that SQL does not
provide a way to directly address individual rows. Therefore, removing rows can only be done by
specifying conditionsthat the rowsto be removed haveto match. If you haveaprimary key inthetable
then you can specify the exact row. But you can also remove groups of rows matching a condition,
or you can remove all rowsin the table at once.

Y ou use the DELETE command to remove rows, the syntax is very similar to the UPDATE command.
For instance, to remove al rows from the products table that have a price of 10, use:

DELETE FROM products WHERE price = 10;
If you simply write:
DELETE FROM product s;

then all rowsin the table will be deleted! Caveat programmer.

6.4. Returning Data From Modified Rows

Sometimes it is useful to obtain data from modified rows while they are being manipulated. The
| NSERT, UPDATE, and DELETE commands all have an optional RETURNI NG clause that supports
this. Use of RETURNI NG avoids performing an extra database query to collect the data, and is
especially valuable when it would otherwise be difficult to identify the modified rows reliably.

The allowed contents of a RETURNI NG clause are the same as a SELECT command's output list (see
Section 7.3). It can contain column names of the command's target table, or value expressions using
those columns. A common shorthand is RETURNI NG * , which selects all columns of the target table
in order.

Inan| NSERT, the dataavailable to RETURNI NGistherow asit wasinserted. Thisisnot so useful in
trivial inserts, since it would just repeat the data provided by the client. But it can be very handy when
relying on computed default values. For example, when using aser i al column to provide unique
identifiers, RETURNI NG can return the ID assigned to a new row:

CREATE TABLE users (firstnane text, |astnane text, id serial

primary key);

I NSERT | NTO users (firstname, |astnane) VALUES ('Joe', 'Cool"')
RETURNI NG i d;

The RETURNI NGclauseis also very useful with | NSERT ... SELECT.

Inan UPDATE, thedataavailableto RETURNI NGisthe new content of the modified row. For example:

UPDATE products SET price = price * 1.10
WHERE price <= 99.99
RETURNI NG nanme, price AS new price;

98

Data Manipulation

In a DELETE, the data available to RETURNI NGis the content of the deleted row. For example:

DELETE FROM products
WHERE obsol etion_date = 'today'
RETURNI NG *;

If there are triggers (Chapter 38) on the target table, the data available to RETURNI NGis the row as
modified by the triggers. Thus, inspecting columns computed by triggersis another common use-case
for RETURNI NG

99

Chapter 7. Queries

The previous chapters explained how to createtables, how tofill themwith data, and how to manipulate
that data. Now we finally discuss how to retrieve the data from the database.

7.1. Overview

The process of retrieving or the command to retrieve data from a database is called a query. In SQL
the SELECT command is used to specify queries. The general syntax of the SELECT command is

[WTH wit h_queries] SELECT select_list FROMtabl e_expression
[sort _specification]

The following sections describe the details of the select list, the table expression, and the sort
specification. W TH queries are treated last since they are an advanced feature.

A simple kind of query has the form:
SELECT * FROM t abl el;

Assuming that there is a table called t abl el, this command would retrieve al rows and all user-
defined columns from t abl el. (The method of retrieval depends on the client application. For
example, the psgl program will display an ASCII-art table on the screen, while client libraries will
offer functionsto extract individual valuesfrom the query result.) The select list specification * means
all columns that the table expression happens to provide. A select list can also select a subset of the
available columns or make calculations using the columns. For example, if t abl el has columns
named a, b, and ¢ (and perhaps others) you can make the following query:

SELECT a, b + ¢ FROM t abl el;
(assuming that b and ¢ are of anumerical datatype). See Section 7.3 for more details.

FROM tabl el is a simple kind of table expression: it reads just one table. In general, table
expressions can be complex constructs of base tables, joins, and subqueries. But you can also omit the
table expression entirely and use the SEL ECT command as a calculator:

SELECT 3 * 4,

Thisis more useful if the expressions in the select list return varying results. For example, you could
call afunction thisway:

SELECT random();

7.2. Table Expressions

7.2.1.

A table expression computes atable. The table expression contains a FROMclause that is optionally
followed by WHERE, GROUP BY, and HAVI NG clauses. Trivia table expressions simply refer to a
table on disk, a so-called base table, but more complex expressions can be used to modify or combine
base tables in various ways.

The optional WHERE, GROUP BY, and HAVI NG clauses in the table expression specify a pipeline
of successive transformations performed on the table derived in the FROM clause. All these
transformations produce a virtual table that provides the rows that are passed to the select list to
compute the output rows of the query.

The FROMClause

The FROM Clause derives a table from one or more other tables given in a comma-separated table
reference list.

100

Queries

FROM tabl e_reference [, table_reference [, ...]]

A table reference can be a table name (possibly schema-qualified), or a derived table such as a
subquery, a JO N construct, or complex combinations of these. If more than one table reference is
listed in the FROM clause, the tables are cross-joined (that is, the Cartesian product of their rows is
formed; see below). Theresult of the FROMIist isan intermediate virtual table that can then be subject
to transformations by the WHERE, GROUP BY, and HAVI NG clauses and is finally the result of the
overall table expression.

When a table reference names a table that is the parent of a table inheritance hierarchy, the table
reference produces rows of not only that table but al of its descendant tables, unless the key word
ONLY precedes the table name. However, the reference produces only the columns that appear in the
named table — any columns added in subtables are ignored.

Instead of writing ONLY before the table name, you can write * after the table name to explicitly
specify that descendant tables are included. There is no real reason to use this syntax any more,
because searching descendant tablesis now aways the default behavior. However, it is supported for
compatibility with older releases.

7.2.1.1. Joined Tables

A joined table is a table derived from two other (real or derived) tables according to the rules of the
particular join type. Inner, outer, and cross-joins are available. The general syntax of ajoined tableis

Tl join_type T2 [join_condition]

Joins of al types can be chained together, or nested: either or both T1 and T2 can be joined tables.
Parentheses can be used around JO N clauses to control thejoin order. In the absence of parentheses,
JO Nclauses nest | eft-to-right.

Join Types
Crossjoin
T1 CRCSS JON T2

For every possible combination of rows from T1 and T2 (i.e., a Cartesian product), the joined
table will contain a row consisting of all columnsin T1 followed by all columnsin T2. If the
tables have N and M rows respectively, the joined table will have N * M rows.

FROM T1 CROSS JO N T2 isequivalentto FROM T1 | NNER JO N T2 ON TRUE (see
below). Itisalso equivalent to FROM T1, T2.

Note

This latter equivalence does not hold exactly when more than two tables appear, because
JA N binds more tightly than comma. For example FROM T1 CROSS JO N T2
I NNER JO N T3 ON condi ti onisnotthesameasFROM T1, T2 I NNER JO N
T3 ON condition because the condi t i on can reference T1 in the first case but
not the second.

Qualified joins

T1 { [INNER] | { LEFT | RIGHT | FULL } [OQUTER] } JON T2

ON bool ean_expressi on

T1 { [INNER] | { LEFT | RIGHT | FULL } [OUTER] } JO N T2 USI NG

(join colum list)

Tl NATURAL { [INNER] | { LEFT | RIGHT | FULL } [OUTER] } JON T2

101

Queries

The words | NNER and OQUTER are optional in all forms. | NNER is the default; LEFT, Rl GHT,
and FULL imply an outer join.

Thejoin condition is specified in the ON or USI NG clause, or implicitly by the word NATURAL.
Thejoin condition determines which rows from the two source tables are considered to “match”,
as explained in detail below.

The possible types of qualified join are:
I NNER JO N

For each row R1 of T1, the joined table has a row for each row in T2 that satisfies the join
condition with R1.

LEFT QUTER JAO N

First, an inner join is performed. Then, for each row in T1 that does not satisfy the join
condition with any row in T2, ajoined row is added with null valuesin columns of T2. Thus,
the joined table always has at |east one row for each row in T1.

Rl GHT QUTER JAO N

First, an inner join is performed. Then, for each row in T2 that does not satisfy the join
condition with any row in T1, ajoined row is added with null valuesin columns of T1. This
isthe converse of aleft join: the result table will always have arow for each row in T2.

FULL OQUTER JAO N

First, an inner join is performed. Then, for each row in T1 that does not satisfy the join
condition with any row in T2, ajoined row is added with null valuesin columns of T2. Also,
for each row of T2 that does not satisfy the join condition with any row in T1, ajoined row
with null valuesin the columns of T1 is added.

The ON clause is the most general kind of join condition: it takes a Boolean value expression of
the same kind as is used in a WHERE clause. A pair of rows from T1 and T2 match if the ON
expression evaluates to true.

The US| NGclauseisashorthand that allows you to take advantage of the specific situation where
both sides of the join use the same name for the joining column(s). It takes a comma-separated
list of the shared column names and forms ajoin condition that includes an equality comparison
for each one. For example, joining T1 and T2 with USI NG (a, b) producesthejoin condition
ON Tl.a = T2.a AND Tl.b = T2.h.

Furthermore, the output of JO N USI NG suppresses redundant columns: thereis no need to print
both of the matched columns, since they must have equal values. While JO N ON produces all
columns from T1 followed by al columnsfrom T2, JO N USI NG produces one output column
for each of the listed column pairs (in the listed order), followed by any remaining columns from
T1, followed by any remaining columns from T2.

Finally, NATURAL isashorthand form of USI NG it formsaUSI NGlist consisting of all column
names that appear in both input tables. As with USI NG, these columns appear only once in the
output table. If there are no common column names, NATURAL JO N behaveslikeJO N . . .
ON TRUE, producing a cross-product join.

Note

USI NGisreasonably safefrom column changesin thejoined relationssince only thelisted
columns are combined. NATURAL is considerably more risky since any schema changes
to either relation that cause a new matching column name to be present will causethejoin
to combine that new column as well.

102

Queries

To put this together, assume we have tablest 1:

num | nane

then we get the following results for the various joins:

=> SELECT * FROMt1l CRCOSS JO N t2;
num | nane | num| val ue

T WWWNNNRP, R PP
<
<
<

5
~ 0 00T TUT9 9O

(9

=> SELECT * FROMt1l INNER JON t2 ONt1l.num= t2. num
num | nane | num| val ue

----- s
1] a | 1] xxx
3] ¢ | 31 yyy

(2 rows)

=> SELECT * FROMt1l INNER JO N t2 USING (nun;
num | nane | val ue

_____ e
1] a | xxx
3] c | yyy

(2 rows)

=> SELECT * FROM t1 NATURAL |INNER JO N t2;
num | nane | val ue

_____ e
1] a | xxx
3] c | yyy

(2 rows)

=> SELECT * FROMt1l LEFT JON1t2 ONt1l.num= t2. num
num | nane | num| val ue

103

Queries

(3 rows)

=> SELECT * FROMt1 LEFT JON t2 USI NG (num;
num | nanme | val ue

=> SELECT * FROMt1l RIGHT JON t2 ON t1. num = t2. num
num| name | num| val ue

----- B e L
1| a | 1| xxx
31 ¢ | 31 yyy

| | 5| zzz
(3 rows)

=> SELECT * FROMt1 FULL JON t2 ON t1. num = t2. num
num| name | num| val ue

----- B e L
1| a | 1| xxx
2] b | |
31 ¢ | 31 yyy

| | 5| zzz
(4 rows)

Thejoin condition specified with ON can also contain conditions that do not relate directly to the join.
This can prove useful for some queries but needs to be thought out carefully. For example:

=> SELECT * FROMt1 LEFT JON1t2 ONtl.num= t2.num AND t2.value =

XXX ;
num| nanme | num| val ue
----- TS SR
1| a | 1| xxx
2] b | |
3] ¢ | |
(3 rows)

Notice that placing the restriction in the WHERE clause produces a different result:

=> SELECT * FROMt1l LEFT JONt2 ONtl. num= t2. num WHERE t 2. val ue

= " Xxx';

num | nane | num| val ue

----- R e E LT ST
1] a | 1] xxx

(1 row)

This is because a restriction placed in the ON clause is processed before the join, while a restriction
placed in the WHERE clause is processed after the join. That does not matter with inner joins, but it
meatters alot with outer joins.

7.2.1.2. Table and Column Aliases

A temporary name can be given to tables and complex table references to be used for references to
the derived table in the rest of the query. Thisis called atable alias.

To create atable alias, write

FROM t abl e_reference AS ali as

104

Queries

or
FROM t abl e_reference ali as
The AS key word is optional noise. al i as can be any identifier.

A typical application of table aliasesis to assign short identifiers to long table names to keep the join
clauses readable. For example:

SELECT * FROM sone_very long_table name s JON
another fairly long nane a ON s.id = a.num

The alias becomes the new name of the table reference so far as the current query is concerned — it
is not allowed to refer to the table by the original name elsewhere in the query. Thus, thisisnot valid:

SELECT * FROM ny_table AS m WHERE ny_table.a > 5; -- wrong

Table aliases are mainly for notational convenience, but it is necessary to use them when joining a
tableto itself, e.g.:

SELECT * FROM peopl e AS nother JO N people AS child ON nother.id =
chi l d. mot her _i d;

Additionally, an adiasis reguired if the table reference is a subquery (see Section 7.2.1.3).

Parentheses are used to resolve ambiguities. In the following example, the first statement assigns the
alias b to the second instance of my_t abl e, but the second statement assigns the alias to the result
of thejoin:

SELECT * FROM ny_table AS a CROSS JON ny_table AS b ...
SELECT * FROM (ny_table AS a CROSS JON ny_table) AS b ...

Another form of table aliasing gives temporary names to the columns of the table, aswell asthetable
itself:

FROM t abl e_reference [AS] alias (columl [, colum2 [, ...]])

If fewer column aliases are specified than the actual table has columns, the remaining columns are not
renamed. This syntax is especially useful for self-joins or subqueries.

When an dlias is applied to the output of a JO N clause, the alias hides the original name(s) within
the JA N. For example:

SELECT a.* FROM ny_table AS a JO N your _table AS b ON ...
isvalid SQL, but:
SELECT a.* FROM (ny_table AS a JO N your _table AS b ON...) AS c

isnot valid; thetable aliasa isnot visible outside the dlias c.

7.2.1.3. Subqueries

Subqueries specifying a derived table must be enclosed in parentheses and must be assigned a table
aliasname (asin Section 7.2.1.2). For example:

FROM (SELECT * FROM tabl el) AS alias_nane

This example is equivalent to FROM t abl el AS al i as_name. More interesting cases, which
cannot be reduced to a plain join, arise when the subquery involves grouping or aggregation.

A subquery can also be a VALUES list:

105

Queries

FROM (VALUES (' anne', 'smith'), ('bob', '"jones'), ('joe', "blow))
AS nanes(first, |ast)

Again, atable aiasisrequired. Assigning alias names to the columns of the VALUES list is optional,
but is good practice. For more information see Section 7.7.

7.2.1.4. Table Functions

Table functions are functions that produce a set of rows, made up of either base data types (scalar
types) or composite data types (table rows). They are used like atable, view, or subquery in the FROM
clause of aquery. Columns returned by table functions can beincluded in SELECT, JA N, or WHERE
clauses in the same manner as columns of atable, view, or subquery.

Table functions may also be combined using the RONS FROM syntax, with the results returned in
parallel columns; the number of result rows in this case is that of the largest function result, with
smaller results padded with null values to match.

function_call [WTH ORDI NALITY] [[AS] table_alias [(columm_alias
[. ... DII

ROAS FROM function_call [, ...]) [WTH ORD NALI TY]

[[AS] table_ alias [(colum_alias [, ...])]11]

If theW TH ORDI NALI TY clauseis specified, an additional column of typebi gi nt will be added
to the function result columns. This column numbers the rows of the function result set, starting from
1. (Thisis ageneraization of the SQL-standard syntax for UNNEST ... W TH ORDI NALI TY.)
By default, the ordinal columniscalled or di nal i t y, but adifferent column name can be assigned
toit using an AS clause.

The special table function UNNEST may be called with any number of array parameters, and it returns
a corresponding number of columns, asif UNNEST (Section 9.18) had been called on each parameter
separately and combined using the ROAS FROMconstruct.

UNNEST(array_expression [, ...]) [WTH ORDI NALI TY]
[[AS] table_alias [(colum_alias [, ...])]11]

If not abl e_al i as isspecified, the function nameis used as the table name; in the case of a RONS
FROM) construct, the first function's name is used.

If column aliases are not supplied, then for afunction returning a base data type, the column nameis
also the same as the function name. For a function returning a composite type, the result columns get
the names of the individual attributes of the type.

Some examples:
CREATE TABLE foo (fooid int, foosubid int, foonane text);

CREATE FUNCTI ON getfoo(int) RETURNS SETOF foo AS $$
SELECT * FROM foo WHERE fooid = $1;
$$ LANGUAGE SQL;

SELECT * FROM getfoo(1) AS t1;

SELECT * FROM f oo
WHERE f oosubid IN (
SELECT foosubi d
FROM get f oo(foo.fooid) z
WHERE z.fooid = foo.fooid

);

106

Queries

CREATE VI EW vw_get f oo AS SELECT * FROM get f 0o(1);

SELECT * FROM vw_get f 00;

In some cases it is useful to define table functions that can return different column sets depending on
how they areinvoked. To support this, the table function can be declared as returning the pseudo-type
r ecor d. When such afunction isused in aquery, the expected row structure must be specified in the
query itself, so that the system can know how to parse and plan the query. This syntax looks like:

function_call [AS] alias (colum_definition [, 1)
function_call AS [alias] (colum_definition [, ...])
ROAMS FROM ... function_call AS (columm_definition [, 1)

[, ... 1)

When not using the RONS FROM) syntax, the col urm_defi ni ti on list replaces the column
aliaslist that could otherwise be attached to the FROMitem; the namesin the column definitions serve
as column aliases. When using the ROAS FROM) syntax, a col umm_def i ni ti on list can be
attached to each member function separately; or if there is only one member function and no W TH
ORDI NALI TY clause, acol utm_defi ni ti on list can be written in place of a column alias list
following ROAS FROM) .

Consider this example:

SELECT *
FROM dbl i nk(' dbnane=nydb', ' SELECT pronane, prosrc FROM

pg_proc')
AS t 1(pronanme name, prosrc text)
WHERE pronane LIKE 'bytea% ;

The dblink function (part of the dblink module) executes a remote query. It is declared to return
r ecor d since it might be used for any kind of query. The actual column set must be specified in the
calling query so that the parser knows, for example, what * should expand to.

7.2.1.5. LATERAL Subqueries

Subqueries appearing in FROM can be preceded by the key word LATERAL. This allows them
to reference columns provided by preceding FROM items. (Without LATERAL, each subquery is
evaluated independently and so cannot cross-reference any other FROMitem.)

Tablefunctions appearing in FROMcan also be preceded by the key word LATERAL, but for functions
the key word is optional; the function's arguments can contain references to columns provided by
preceding FROMitemsin any case.

A LATERAL item can appear at top level in the FROMIist, or withinaJO Ntree. In the latter case it
can also refer to any itemsthat are on the left-hand side of aJO Nthat it is on the right-hand side of.

When a FROMitem contains LATERAL cross-references, evaluation proceeds as follows: for each
row of the FROMitem providing the cross-referenced column(s), or set of rows of multiple FROM
items providing the columns, the LATERAL item is evaluated using that row or row set's values of
the columns. The resulting row(s) are joined as usual with the rows they were computed from. Thisis
repeated for each row or set of rows from the column source table(s).

A trivial example of LATERAL is

SELECT * FROM foo, LATERAL (SELECT * FROM bar WHERE bar.id =
foo. bar _id) ss;

Thisisnot especially useful since it has exactly the same result as the more conventional

SELECT * FROM foo, bar WHERE bar.id = foo.bar _id;

107

Queries

7.2.2.

LATERAL isprimarily useful when the cross-referenced columnis necessary for computing the row(s)
to be joined. A common application is providing an argument value for a set-returning function. For
example, supposing that verti ces(pol ygon) returns the set of vertices of a polygon, we could
identify close-together vertices of polygons stored in atable with:;

SELECT pl.id, p2.id, vl, v2
FROM pol ygons pl, pol ygons p2,
LATERAL vertices(pl.poly) vi,
LATERAL vertices(p2.poly) v2
WHERE (v1 <-> v2) < 10 AND pl.id !'= p2.id;

This query could also be written

SELECT pl.id, p2.id, vl, v2

FROM pol ygons pl CROSS JO N LATERAL vertices(pl.poly) vi,
pol ygons p2 CROSS JO N LATERAL vertices(p2.poly) v2

WHERE (v1 <-> v2) < 10 AND pl.id !'= p2.id;

or in severa other equivalent formulations. (As already mentioned, the LATERAL key word is
unnecessary in this example, but we use it for clarity.)

It is often particularly handy to LEFT JO N to a LATERAL subquery, so that source rows will
appear in the result even if the LATERAL subquery produces no rows for them. For example,
if get _product _names() returns the names of products made by a manufacturer, but some
manufacturers in our table currently produce no products, we could find out which ones those are
likethis:

SELECT m name

FROM manuf acturers m LEFT JO N LATERAL get product _nanes(m i d)
pnanme ON true

VWHERE pnanme |'S NULL;

The WHERE Clause

The syntax of the WHERE Clauseis
WHERE sear ch_condition

where sear ch_condi ti on isany value expression (see Section 4.2) that returns a value of type
bool ean.

After the processing of the FROM clause is done, each row of the derived virtual table is checked
against the search condition. If the result of the condition is true, the row is kept in the output table,
otherwise (i.e., if the result is false or null) it is discarded. The search condition typically references
at least one column of the table generated in the FROMclause; this is not required, but otherwise the
WHERE clause will be fairly useless.

Note

The join condition of an inner join can be written either in the WHERE clause or inthe JO N
clause. For example, these table expressions are equival ent:

FROMa, b WHERE a.id = b.id AND b.val > 5
and:

FROM a INNER JON b ON (a.id = b.id) WHERE b.val > 5

or perhaps even:

108

Queries

7.2.3.

FROM a NATURAL JO N b WHERE b.val > 5

Which one of these you use is mainly a matter of style. The JO N syntax in the FROMclause
is probably not as portable to other SQL database management systems, even though it isin
the SQL standard. For outer joins there is no choice: they must be done in the FROMclause.
The ON or USI NG clause of an outer join is not equivalent to a WHERE condition, because
it results in the addition of rows (for unmatched input rows) as well as the removal of rows
in the final result.

Here are some examples of WHERE clauses:

SELECT ... FROMfdt WHERE cl1 > 5
SELECT ... FROMfdt WHERE c1 IN (1, 2, 3)

SELECT ... FROM fdt WHERE c1 IN (SELECT c1 FROMt2)

SELECT ... FROMfdt WHERE c1 IN (SELECT ¢3 FROM t2 WHERE c2 =
fdt.cl + 10)

SELECT ... FROM fdt WHERE c1 BETWEEN (SELECT c¢3 FROM t2 WHERE c2 =
fdt.cl + 10) AND 100

SELECT ... FROM fdt WHERE EXI STS (SELECT c1 FROMt2 WHERE c2 >
fdt.cl)

f dt isthetable derived in the FROMclause. Rows that do not meet the search condition of the WHERE
clauseare eliminated from f dt . Notice the use of scalar subqueries asvalue expressions. Just like any
other query, the subgueries can employ complex table expressions. Notice also how f dt isreferenced
in the subqueries. Qualifying c1 asf dt. c1 isonly necessary if c1 is aso the name of a column
in the derived input table of the subquery. But qualifying the column name adds clarity even when
it is not needed. This example shows how the column naming scope of an outer query extends into
itsinner queries.

The GROUP BY and HAVI NG Clauses

After passing the WHERE filter, the derived input table might be subject to grouping, using the GROUP
BY clause, and elimination of group rows using the HAVI NG clause.

SELECT sel ect _|i st
FROM . ..
[WHERE . . .]
GROUP BY groupi ng_col um_r ef erence
[, grouping_columm_reference]...

The GROUP BY Clause is used to group together those rows in a table that have the same values
in all the columns listed. The order in which the columns are listed does not matter. The effect isto
combine each set of rows having common values into one group row that represents all rows in the
group. This is done to eliminate redundancy in the output and/or compute aggregates that apply to
these groups. For instance:

=> SELECT * FROM test1;

x|y
[S
al| 3
c| 2
b|] 5

109

Queries

al| 1
(4 rows)

=> SELECT x FROM test1l GROUP BY x;
X

a
b
c
(3 rows)

In the second query, we could not have written SELECT * FROM t est 1 GROUP BY x, because
there is no single value for the column y that could be associated with each group. The grouped-by
columns can be referenced in the select list since they have a single value in each group.

Ingenerd, if atableisgrouped, columnsthat are not listed in GROUP BY cannot be referenced except
in aggregate expressions. An example with aggregate expressionsiis:

=> SELECT x, sun{y) FROMtest1l GROUP BY x;
X | sum

(o
~ N O b

(3 rows

Here s umisan aggregate function that computesasinglevalue over theentiregroup. Moreinformation
about the available aggregate functions can be found in Section 9.20.

Tip

Grouping without aggregate expressions effectively calculates the set of distinct valuesin a
column. This can also be achieved using the DI STI NCT clause (see Section 7.3.3).

Here is another example: it calculates the total sales for each product (rather than the total sales of
al products):

SELECT product_id, p.name, (sun(s.units) * p.price) AS sales
FROM products p LEFT JO N sales s USI NG (product _id)
GROUP BY product _id, p.nane, p.price;

In this example, the columns pr oduct i d, p. nane, and p. pri ce must be in the GROUP BY
clause since they are referenced in the query select list (but see below). The column s. uni t s does
not have to be in the GROUP BY list sinceit is only used in an aggregate expression (sumf . . .)),
which represents the sales of a product. For each product, the query returns a summary row about all
sales of the product.

If the productstableis set up sothat, say, pr oduct _i d istheprimary key, then it would be enough to
group by pr oduct _i d inthe above example, since name and price would be functionally dependent
on the product ID, and so there would be no ambiguity about which name and price value to return
for each product 1D group.

In strict SQL, GROUP BY can only group by columns of the source table but PostgreSQL extends
thisto also allow GROUP BY to group by columns in the select list. Grouping by value expressions
instead of simple column namesis also allowed.

110

Queries

7.2.4.

If atable has been grouped using GROUP BY, but only certain groups are of interest, the HAVI NG
clause can be used, much like a WHERE clause, to eliminate groups from the result. The syntax is:

SELECT select_list FROM... [WHERE ...] GROUP BY ...
HAVI NG bool ean_expressi on

Expressionsinthe HAVI NGclause can refer both to grouped expressionsand to ungrouped expressions
(which necessarily involve an aggregate function).

Example:

=> SELECT x, sum(y) FROM test1l GROUP BY x HAVI NG sun({y) > 3;
X | sum

T
a | 4
b | 5
(2 rows)

=> SELECT x, sum(y) FROMtestl GROUP BY x HAVING x < 'c';
X | sum

T
a | 4
b | 5
(2 rows)

Again, amorerealistic example:

SELECT product_id, p.nanme, (sun(s.units) * (p.price - p.cost)) AS
profit
FROM products p LEFT JO N sal es s USI NG (product _id)
VWHERE s. date > CURRENT_DATE - | NTERVAL '4 weeks'
GROUP BY product _id, p.nane, p.price, p.cost
HAVI NG sum(p. price * s.units) > 5000;

In the example above, the WHERE clause is selecting rows by a column that is not grouped (the
expression is only true for sales during the last four weeks), while the HAVI NG clause restricts the
output to groupswith total gross salesover 5000. Notethat the aggregate expressionsdo not necessarily
need to be the samein all parts of the query.

If aquery contains aggregate function calls, but no GROUP BY clause, grouping still occurs: the result
is asingle group row (or perhaps no rows at all, if the single row is then eliminated by HAVI NG).
The sameistrueif it contains a HAVI NG clause, even without any aggregate function calls or GROUP
BY clause.

GROUPI NG SETS, CUBE, and ROLLUP

More complex grouping operations than those described above are possible using the concept of
grouping sets. The data selected by the FROM and WHERE clauses is grouped separately by each
specified grouping set, aggregates computed for each group just as for simple GROUP BY clauses,
and then the results returned. For example:

=> SELECT * FROM itens_sol d;
brand | size | sales

_______ e
Foo | L | 10
Foo | M | 20
Bar | M | 15
Bar | L | 5
(4 rows)

111

Queries

=> SELECT brand, size, sun{sales) FROMitens_sold GROUP BY GROUPI NG
SETS ((brand), (size), ());
brand | size | sum

_______ .
Foo | | 30
Bar | | 20

| L | 15

| M | 35

| | 50
(5 rows)

Each sublist of GROUPI NG SETS may specify zero or more columnsor expressions and isinterpreted
the same way as though it were directly in the GROUP BY clause. An empty grouping set means that
all rows are aggregated down to asingle group (which is output even if no input rows were present),
as described above for the case of aggregate functions with no GROUP BY clause.

References to the grouping columns or expressions are replaced by null values in result rows for
grouping setsin which those columns do not appear. To distinguish which grouping a particular output
row resulted from, see Table 9.56.

A shorthand notation is provided for specifying two common types of grouping set. A clause of the
form

ROLLUP (el, e2, e3, ...)

represents the given list of expressions and al prefixes of the list including the empty list; thus it is
equivalent to

GROUPI NG SETS (

(el, e2, e3, ...),
(el, e2),
(el),

()
)

Thisis commonly used for analysis over hierarchical data; e.g. total salary by department, division,
and company-wide total.

A clause of theform

CUBE (el, e2, ...)

represents the given list and all of its possible subsets (i.e. the power set). Thus
CUBE (a, b, c)

isequivalent to

GROUPI NG SETS (

(a b, c),
(a b),
(a, c),
(a),
(b, ¢),
(b),
(c)
()

112

Queries

7.2.5.

Theindividual elementsof a CUBE or ROLLUP clause may beeither individual expressions, or sublists
of elements in parentheses. In the latter case, the sublists are treated as single units for the purposes
of generating the individual grouping sets. For example:

CUBE ((a, b), (c, d))
is equivalent to

GROUPI NG SETS (
(a b, c, d),

(a b),
(c, d),
()
)
and

ROLLUP (&, (b, c), d)
isequivalent to

GROUPI NG SETS (

(a b, c, d),
(a b, c),
(a)
()

)

The CUBE and ROLLUP constructs can be used either directly in the GROUP BY clause, or nested
inside a GROUPI NG SETS clause. If one GROUPI NG SETS clause is nested inside another, the
effect isthe same asif all the elements of the inner clause had been written directly in the outer clause.

If multiple grouping items are specified in asingle GROUP BY clause, then the final list of grouping
setsis the cross product of the individual items. For example:

GROUP BY a, CUBE (b, c), GROUPING SETS ((d), (e))
isequivalent to

GROUP BY GROUPI NG SETS (
(a, b, ¢, d, (a, b, c, e),

(a, b, d), (a, b, e),
(a, ¢, d), (a, ¢, e),
(a, d), (a, e)

Note

Theconstruct (a, b) isnormally recognized in expressions as arow constructor. Within the
GROUP BY clause, this does not apply at thetop levels of expressions, and (a, b) isparsed
as alist of expressions as described above. If for some reason you need a row constructor in
agrouping expression, use RON a, b).

Window Function Processing

If the query contains any window functions (see Section 3.5, Section 9.21 and Section 4.2.8), these
functions are evaluated after any grouping, aggregation, and HAVI NGfiltering isperformed. That is, if

113

Queries

the query uses any aggregates, GROUP BY, or HAVI NG, then the rows seen by the window functions
are the group rows instead of the original table rows from FROMVWHERE.

When multiple window functions are used, all the window functions having syntactically equivalent
PARTI TI ON BY and ORDER BY clausesin their window definitions are guaranteed to be evaluated
in asingle pass over the data. Therefore they will see the same sort ordering, even if the ORDER BY
does not uniquely determine an ordering. However, no guarantees are made about the evaluation of
functions having different PARTI TI ON BY or ORDER BY specifications. (In such casesasort step is
typically required between the passes of window function evaluations, and the sort is not guaranteed
to preserve ordering of rows that its ORDER BY sees as equivalent.)

Currently, window functions always require presorted data, and so the query output will be ordered
according to one or another of the window functions' PARTI TI ON BY/ORDER BY clauses. It is not
recommended to rely on this, however. Use an explicit top-level ORDER BY clause if you want to be
sure the results are sorted in a particular way.

7.3. Select Lists

7.3.1.

7.3.2.

As shown in the previous section, the table expression in the SELECT command constructs an
intermediate virtual table by possibly combining tables, views, eliminating rows, grouping, etc. This
tableisfinally passed on to processing by the select list. The select list determines which columns of
the intermediate table are actually output.

Select-List Items

The simplest kind of select list is * which emits all columns that the table expression produces.
Otherwise, aselect list isacomma-separated list of value expressions (as defined in Section 4.2). For
instance, it could be alist of column names:

SELECT a, b, ¢ FROM ...

The columns names a, b, and ¢ are either the actual names of the columns of tables referenced in the
FROMclause, or the aliases given to them as explained in Section 7.2.1.2. The name space available
in the select list is the same as in the WHERE clause, unless grouping is used, in which case it is the
same asin the HAVI NGclause.

If more than one table has a column of the same name, the table name must also be given, asin:
SELECT tbll.a, thl2.a, tbll.b FROM...

When working with multipletables, it can a so be useful to ask for all the columns of a particular table:
SELECT tbl1.*, tbl2.a FROM ...

See Section 8.16.5 for more about thet abl e_nane. * notation.

If an arbitrary value expression is used in the select list, it conceptually adds a new virtual column to
the returned table. The value expression is evaluated once for each result row, with the row's values
substituted for any column references. But the expressions in the select list do not have to reference
any columnsin the table expression of the FROMclause; they can be constant arithmetic expressions,
for instance.

Column Labels

The entries in the select list can be assigned names for subsequent processing, such as for usein an
ORDER BY clause or for display by the client application. For example:

SELECT a AS value, b + ¢ AS sum FROM ...

114

Queries

7.3.3.

If no output column nameis specified using AS, the system assigns adefault column name. For simple
column references, this is the name of the referenced column. For function calls, thisis the name of
the function. For complex expressions, the system will generate a generic name.

The AS keyword is optional, but only if the new column name does not match any PostgreSQL
keyword (see Appendix C). To avoid an accidental match to a keyword, you can double-quote the
column name. For example, VALUE is a keyword, so this does not work:

SELECT a value, b + ¢ AS sum FROM . ..
but this does:
SELECT a "value", b + ¢ AS sum FROM . ..

For protection against possible future keyword additions, it is recommended that you always either
write AS or double-quote the output column name.

Note

The naming of output columns here is different from that done in the FROM clause (see
Section 7.2.1.2). It is possible to rename the same column twice, but the name assigned in the
select list is the one that will be passed on.

DI STI NCT

After the select list has been processed, the result table can optionally be subject to the elimination of
duplicate rows. The DI STI NCT key word iswritten directly after SELECT to specify this.

SELECT DI STI NCT sel ect i st

(Instead of DI STI NCT the key word ALL can be used to specify the default behavior of retaining
all rows.)

Obvioudly, two rows are considered distinct if they differ in at least one column value. Null values
are considered equal in this comparison.

Alternatively, an arbitrary expression can determine what rows are to be considered distinct:
SELECT DI STI NCT ON (expression [, expression ...]) select_list

Here expr essi on isan arbitrary value expression that is evaluated for al rows. A set of rows for
which al the expressions are equal are considered duplicates, and only the first row of the set is kept
in the output. Note that the “first row” of a set is unpredictable unless the query is sorted on enough
columns to guarantee a unique ordering of the rows arriving at the DI STI NCT filter. (DI STI NCT
ON processing occurs after ORDER BY sorting.)

The DI STI NCT ON clause is not part of the SQL standard and is sometimes considered bad style
because of the potentially indeterminate nature of its results. With judicious use of GROUP BY and
subqueriesin FROM this construct can be avoided, but it is often the most convenient aternative.

7.4. Combining Queries

Theresults of two queries can be combined using the set operations union, intersection, and difference.
The syntax is

queryl UNION [ALL] query?2
queryl | NTERSECT [ALL] query?2
queryl EXCEPT [ALL] query2

115

Queries

qgueryl and quer y2 are queries that can use any of the features discussed up to this point. Set
operations can also be nested and chained, for example

queryl UNI ON query2 UNI ON query3
which is executed as:
(queryl UNI ON query2) UNI ON query3

UNI ON effectively appends the result of quer y2 to the result of quer y1 (athough there is no
guarantee that this is the order in which the rows are actually returned). Furthermore, it eliminates
duplicate rows from its result, in the same way as DI STI NCT, unlessUNI ON ALL is used.

| NTERSECT returns al rows that are both in the result of quer y1 and in the result of query2.
Duplicate rows are eliminated unless | NTERSECT ALL isused.

EXCEPT returns al rows that are in the result of quer y1 but not in the result of quer y2. (This
is sometimes called the difference between two queries.) Again, duplicates are eliminated unless
EXCEPT ALL isused.

In order to calculate the union, intersection, or difference of two queries, the two queries must be
“union compatible”, which meansthat they return the same number of columns and the corresponding
columns have compatible data types, as described in Section 10.5.

7.5. Sorting Rows

After aquery has produced an output table (after the select list has been processed) it can optionally
be sorted. If sorting is not chosen, the rows will be returned in an unspecified order. The actual order
in that case will depend on the scan and join plan types and the order on disk, but it must not be relied
on. A particular output ordering can only be guaranteed if the sort step is explicitly chosen.

The ORDER BY clause specifies the sort order:

SELECT sel ect _|i st
FROM t abl e_expressi on
ORDER BY sort_expressionl [ASC | DESC] [NULLS { FIRST | LAST }]
[, sort_expression2 [ASC | DESC] [NULLS { FIRST |
LAST }] ...]

The sort expression(s) can be any expression that would be valid in the query's select list. An example
is:

SELECT a, b FROM tabl el ORDER BY a + b, c;

When more than one expression is specified, the later values are used to sort rows that are equal
according to the earlier values. Each expression can befollowed by an optional ASC or DESC keyword
to set the sort direction to ascending or descending. ASC order is the default. Ascending order puts
smaller valuesfirst, where“smaller” is defined in terms of the < operator. Similarly, descending order
is determined with the > operator. *

TheNULLS FI RST and NULLS LAST options can be used to determine whether nulls appear before
or after non-null values in the sort ordering. By default, null values sort asif larger than any non-null
value; that is, NULLS FI RST isthe default for DESC order, and NULLS LAST otherwise.

Notethat the ordering optionsare considered independently for each sort column. For example ORDER
BY x, y DESCmeans ORDER BY x ASC, y DESC, which isnot the same as ORDER BY
x DESC, y DESC.

L Actually, PostgreSQL uses the default B-tree operator class for the expression's data type to determine the sort ordering for ASC and DESC.
Conventionally, data types will be set up so that the < and > operators correspond to this sort ordering, but a user-defined data type's designer
could choose to do something different.

116

Queries

A sort_expressi on can aso be the column label or number of an output column, asin:

SELECT a + b AS sum ¢ FROM tabl el ORDER BY sum
SELECT a, max(b) FROM tabl el GROUP BY a ORDER BY 1;

both of which sort by the first output column. Note that an output column name has to stand alone,
that is, it cannot be used in an expression — for example, thisis not correct:

SELECT a + b AS sum c¢ FROM tabl el ORDER BY sum + c; - -
Wr ong

Thisrestriction is made to reduce ambiguity. Thereisstill ambiguity if an ORDER BY itemisasimple
name that could match either an output column name or a column from the table expression. The
output column is used in such cases. This would only cause confusion if you use AS to rename an
output column to match some other table column's name.

ORDER BY can be applied to the result of a UNI ON, | NTERSECT, or EXCEPT combination, but in
this caseit isonly permitted to sort by output column names or numbers, not by expressions.

7.6. LI M Tand OFFSET

LI M T and OFFSET allow you to retrieve just a portion of the rows that are generated by the rest
of the query:

SELECT sel ect _|i st
FROM t abl e_expressi on
[ORDER BY ...]
[LIMT { nunber | ALL }] [OFFSET number]

If alimit count is given, no more than that many rows will be returned (but possibly fewer, if the
query itself yields fewer rows). LI M T ALL isthe same asomittingtheLl M T clause, asisLIM T
with aNULL argument.

OFFSET says to skip that many rows before beginning to return rows. OFFSET 0 is the same as
omitting the OFFSET clause, asis OFFSET with aNULL argument.

If both OFFSET and LI M T appear, then OFFSET rows are skipped before starting to count the
LI M T rowsthat are returned.

Whenusing LI M T, it isimportant to use an ORDER BY clause that constrains the result rows into a
unique order. Otherwise you will get an unpredictable subset of the query'srows. Y ou might be asking
for the tenth through twentieth rows, but tenth through twentieth in what ordering? The ordering is
unknown, unless you specified ORDER BY.

The query optimizer takes LI M T into account when generating query plans, so you are very likely
to get different plans (yielding different row orders) depending on what you give for LI M T and
OFFSET. Thus, using different LI M T/OFFSET values to select different subsets of a query result
will give inconsistent results unless you enforce a predictable result ordering with ORDER BY. This
isnhot abug; it isan inherent consegquence of the fact that SQL does not promise to deliver the results
of aquery in any particular order unless ORDER BY is used to constrain the order.

The rows skipped by an OFFSET clause still have to be computed inside the server; therefore alarge
OFFSET might be inefficient.

7.7. VALUES Lists

VALUES provides away to generate a “ constant table” that can be used in a query without having to
actually create and populate atable on-disk. The syntax is

117

Queries

VALUES (expression [, ...]) [, ...]

Each parenthesized list of expressions generates arow in the table. The lists must al have the same
number of elements (i.e., the number of columns in the table), and corresponding entries in each
list must have compatible data types. The actual data type assigned to each column of the result is
determined using the same rules as for UNI ON (see Section 10.5).

Asan example:
VALUES (1, 'one'), (2, '"two'), (3, '"three');
will return atable of two columns and three rows. It's effectively equivalent to:

SELECT 1 AS columil, 'one' AS colum?2
UNI ON ALL

SELECT 2, 'two'

UNI ON ALL

SELECT 3, 'three';

By default, PostgreSQL assigns the names col unml, col urmz2, etc. to the columns of a VALUES
table. The column names are not specified by the SQL standard and different database systems do it
differently, so it's usually better to override the default names with atable aiaslist, like this:

=> SELECT * FROM (VALUES (1, 'one'), (2, '"tw'), (3, '"three')) AS't
(numletter);
num | letter

1]
2| two
3| three
(3 rows)
Syntactically, VALUES followed by expression listsis treated as equivalent to:
SELECT sel ect _|ist FROM tabl e_expression

and can appear anywhere a SELECT can. For example, you can useit as part of a UNI ON, or attach a
sort_specificati on(ORDER BY, LI M T, and/or OFFSET) to it. VALUES is most commonly
used as the data source in an | NSERT command, and next most commonly as a subquery.

For more information see VALUES.

7.8. W THQueries (Common Table
Expressions)

7.8.1.

W TH provides away to write auxiliary statements for usein alarger query. These statements, which
are often referred to as Common Table Expressions or CTEs, can be thought of as defining temporary
tables that exist just for one query. Each auxiliary statement in a W TH clause can be a SELECT,
| NSERT, UPDATE, or DELETE; and the W TH clause itself is attached to a primary statement that
can also be a SELECT, | NSERT, UPDATE, or DELETE.

SELECT in WTH

The basic value of SELECT in W TH is to break down complicated queries into simpler parts. An
exampleis:

W TH regi onal _sal es AS (
SELECT regi on, SUM anbunt) AS total sales

118

Queries

FROM or ders
GROUP BY region
), top_regions AS (
SELECT regi on
FROM r egi onal _sal es
WHERE total sales > (SELECT SUMtotal _sales)/10 FROM
regi onal _sal es)
)
SELECT r egi on,
pr oduct,
SUM quantity) AS product_units,
SUM amount) AS product _sal es
FROM or ders
VWHERE regi on I N (SELECT regi on FROM t op_r egi ons)
GROUP BY region, product;

which displays per-product sales totals in only the top sales regions. The W TH clause defines
two auxiliary statements named r egi onal _sal es and t op_r egi ons, where the output of
regi onal sal es isused intop_regi ons and the output of t op_r egi ons is used in the
primary SELECT query. This example could have been written without W TH, but we'd have needed
two levels of nested sub-SELECTS. It's abit easier to follow thisway.

The optional RECURSI VE modifier changes W TH from a mere syntactic convenience into a feature
that accomplishes things not otherwise possiblein standard SQL . Using RECURSI VE, aW TH query
canrefer toitsown output. A very simple exampleisthisquery to sum theintegersfrom 1 through 100:

W TH RECURSI VE t(n) AS (
VALUES (1)
UNI ON ALL
SELECT n+1 FROMt WHERE n < 100

)
SELECT sum(n) FROM t;

The general form of arecursive W TH query is always anon-recursive term, then UNI ON (or UNI ON
ALL), then arecursive term, where only the recursive term can contain areference to the query's own
output. Such a query is executed as follows:

Recursive Query Evaluation

1. Evaluate the non-recursive term. For UNI ON (but not UNI ON ALL), discard duplicate rows.
Include all remaining rowsin theresult of the recursive query, and also place them in atemporary
working table.

2. Solong asthe working tableis not empty, repeat these steps:

a Evaluate the recursive term, substituting the current contents of the working table for the
recursive self-reference. For UNI ON (but not UNI ON ALL), discard duplicate rows and
rows that duplicate any previous result row. Include al remaining rows in the result of the
recursive query, and also place them in atemporary intermediate table.

b. Replace the contents of the working table with the contents of the intermediate table, then
empty the intermediate table.

Note

Strictly speaking, this process is iteration not recursion, but RECURSI VE is the terminology
chosen by the SQL standards committee.

119

Queries

In the exampl e above, the working table has just a single row in each step, and it takes on the values
from 1 through 100 in successive steps. In the 100th step, there is no output because of the WHERE
clause, and so the query terminates.

Recursive queries are typically used to deal with hierarchical or tree-structured data. A useful example
is this query to find all the direct and indirect sub-parts of a product, given only a table that shows
immediate inclusions:

W TH RECURSI VE i ncl uded_parts(sub_part, part, quantity) AS (
SELECT sub_part, part, quantity FROM parts WHERE part =
' our _product'
UNI ON ALL
SELECT p.sub_part, p.part, p.quantity
FROM i ncl uded_parts pr, parts p
WHERE p. part = pr.sub_part
)
SELECT sub_part, SUMquantity) as total _quantity
FROM i ncl uded_parts
GROUP BY sub_part

When working with recursive queriesit isimportant to be sure that the recursive part of the query will
eventually return no tuples, or else the query will loop indefinitely. Sometimes, using UNI ONinstead
of UNI ON ALL can accomplish thisby discarding rowsthat duplicate previous output rows. However,
often a cycle does not involve output rows that are completely duplicate: it may be necessary to check
just one or a few fields to see if the same point has been reached before. The standard method for
handling such situations is to compute an array of the already-visited values. For example, consider
the following query that searchesatable gr aph using al i nk field:

W TH RECURSI VE search_graph(id, link, data, depth) AS (
SELECT g.id, g.link, g.data, 1
FROM gr aph g
UNI ON ALL
SELECT g.id, g.link, g.data, sg.depth + 1
FROM graph g, search_graph sg
WHERE g.id = sg.link
)
SELECT * FROM sear ch_graph;

This query will loop if thel i nk relationships contain cycles. Because we require a“ depth” output,
just changing UNI ON ALL to UNI ON'would not eliminate the looping. Instead we need to recognize
whether we have reached the same row again while following a particular path of links. We add two
columnspat h and cycl e to the loop-prone query:

W TH RECURSI VE search_graph(id, link, data, depth, path, cycle) AS
(
SELECT g.id, g.link, g.data, 1,
ARRAY[g. i d],
fal se
FROM graph g
UNI ON ALL
SELECT g.id, g.link, g.data, sg.depth + 1,
path || g.id,
g.id = ANY(path)
FROM graph g, search_graph sg
WHERE g.id = sg.link AND NOT cycle
)
SELECT * FROM search_graph;

Aside from preventing cycles, the array valueis often useful in itsown right as representing the “ path”
taken to reach any particular row.

120

Queries

In the general case where more than one field needs to be checked to recognize a cycle, use an array
of rows. For example, if we needed to compare fieldsf 1 and f 2:

W TH RECURSI VE search_graph(id, link, data, depth, path, cycle) AS
(
SELECT g.id, g.link, g.data, 1,
ARRAY[RONg.f1, g.f2)],
fal se
FROM graph ¢
UNI ON ALL
SELECT g.id, g.link, g.data, sg.depth + 1,
path || RONg.f1, g.f2),
RONg.f1, g.f2) = ANY(path)
FROM graph g, search_graph sg
WHERE g.id = sg.link AND NOT cycle
)
SELECT * FROM sear ch_gr aph;

Tip

Omit the RON() syntax in the common case where only one field needs to be checked to
recognize a cycle. This allows a simple array rather than a composite-type array to be used,
gaining efficiency.

Tip

Therecursive query evaluation algorithm producesitsoutput in breadth-first search order. You
can display the results in depth-first search order by making the outer query ORDER BY a
“path” column constructed in this way.

A helpful trick for testing queries when you are not certain if they might loop isto placeaLl M T in
the parent query. For example, this query would loop forever without the LI M T:

W TH RECURSI VE t (n) AS (
SELECT 1
UNI ON ALL
SELECT n+1 FROM t

)
SELECT n FROMt LIMT 100;

This works because PostgreSQL 's implementation evaluates only as many rows of a W TH query as
are actually fetched by the parent query. Using this trick in production is not recommended, because
other systems might work differently. Also, it usually won't work if you make the outer query sort the
recursive query's results or join them to some other table, because in such cases the outer query will
usually try to fetch all of the W TH query's output anyway.

A useful property of W TH queriesis that they are evaluated only once per execution of the parent
query, even if they are referred to more than once by the parent query or sibling W TH queries.
Thus, expensive calculations that are needed in multiple places can be placed within a W TH query
to avoid redundant work. Another possible application is to prevent unwanted multiple evaluations
of functions with side-effects. However, the other side of this coin is that the optimizer is less able
to push restrictions from the parent query down into a W TH query than an ordinary subquery. The
W TH query will generally be evaluated as written, without suppression of rows that the parent query
might discard afterwards. (But, as mentioned above, evaluation might stop early if the reference(s) to
the query demand only alimited number of rows.)

121

Queries

7.8.2.

The examples above only show W TH being used with SELECT, but it can be attached in the same
way to | NSERT, UPDATE, or DELETE. In each case it effectively provides temporary table(s) that
can be referred to in the main command.

Data-Modifying Statements in W TH

Y ou can use data-modifying statements (I NSERT, UPDATE, or DELETE) in W TH. Thisallows you
to perform severa different operations in the same query. An exampleis:

W TH noved_rows AS (
DELETE FROM product s
VWHERE
"date" >= '2010-10-01' AND
"date" < '2010-11-01'
RETURNI NG *
)
| NSERT | NTO products_I og
SELECT * FROM noved rows;

This query effectively moves rows from pr oduct s to products_| og. The DELETE in W TH
deletes the specified rows from pr oduct s, returning their contents by means of its RETURNI NG
clause; and then the primary query reads that output and insertsit into pr oduct s_| og.

A fine point of the above example is that the W TH clause is attached to the | NSERT, not the sub-
SELECT within the | NSERT. Thisis necessary because data-modifying statements are only allowed
in W TH clauses that are attached to the top-level statement. However, normal W TH visibility rules
apply, so it is possible to refer to the W TH statement's output from the sub-SELECT.

Data-modifying statements in W TH usually have RETURNI NG clauses (see Section 6.4), as shown
in the example above. It is the output of the RETURNI NG clause, not the target table of the data-
modifying statement, that forms the temporary table that can be referred to by the rest of the query.
If adata-modifying statement in W TH lacks a RETURNI NG clause, then it forms no temporary table
and cannot be referred to in the rest of the query. Such a statement will be executed nonetheless. A
not-particularly-useful exampleis:

WTHt AS (
DELETE FROM f 00

)
DELETE FROM bar ;

Thisexamplewould removeal rowsfromtablesf oo and bar . The number of affected rowsreported
to the client would only include rows removed from bar .

Recursive self-references in data-modifying statements are not allowed. In some cases it is possible
to work around this limitation by referring to the output of arecursive W TH, for example:

W TH RECURSI VE i ncl uded_parts(sub_part, part) AS (
SELECT sub_part, part FROM parts WHERE part = 'our_product’
UNI ON ALL
SELECT p. sub_part, p.part
FROM i ncl uded_parts pr, parts p
VWHERE p. part = pr.sub_part
)
DELETE FROM parts
WHERE part |IN (SELECT part FROM i ncl uded_parts);

This query would remove all direct and indirect subparts of a product.

Data-modifying statements in W TH are executed exactly once, and always to completion,
independently of whether the primary query readsall (or indeed any) of their output. Noticethat thisis

122

Queries

different from therulefor SELECT in W TH: as stated in the previous section, execution of aSELECT
iscarried only as far as the primary query demands its output.

The sub-statements in W TH are executed concurrently with each other and with the main query.
Therefore, when using data-modifying statementsin W TH, the order in which the specified updates
actually happen is unpredictable. All the statements are executed with the same snapshot (see
Chapter 13), so they cannot “se€” one another's effects on the target tables. This alleviates the effects
of the unpredictability of the actual order of row updates, and means that RETURNI NG data is the
only way to communicate changes between different W TH sub-statements and the main query. An
example of thisisthat in

WTH t AS (
UPDATE products SET price = price * 1.05
RETURNI NG *

)
SELECT * FROM products;

the outer SELECT would return the original prices before the action of the UPDATE, whilein

WTH t AS (
UPDATE products SET price = price * 1.05
RETURNI NG *

)
SELECT * FROM t;

the outer SELECT would return the updated data.

Trying to update the same row twice in a single statement is not supported. Only one of the
modificationstakes place, but it isnot easy (and sometimes not possible) to reliably predict which one.
This also applies to deleting a row that was already updated in the same statement: only the update
is performed. Therefore you should generally avoid trying to modify a single row twice in a single
statement. In particular avoid writing W TH sub-statementsthat coul d affect the same rows changed by
the main statement or a sibling sub-statement. The effects of such a statement will not be predictable.

At present, any table used as the target of a data-modifying statement in W TH must not have a
conditional rule, nor an ALSOrule, nor an | NSTEAD rule that expands to multiple statements.

123

Chapter 8. Data Types

PostgreSQL has a rich set of native data types available to users. Users can add new types to
PostgreSQL using the CREATE TY PE command.

Table 8.1 shows al the built-in general-purpose data types. Most of the alternative names listed in
the“Aliases’ column are the names used internally by PostgreSQL for historical reasons. In addition,
some internally used or deprecated types are available, but are not listed here.

Table8.1. Data Types

Name Aliases Description

bi gi nt int8 signed eight-byte integer

bi gseri al serial8 autoi ncrementing eight-byte
integer

bit [(n)] fixed-length bit string

bit varying [(n)]

varbit [(n)]

variable-length bit string

bool ean bool logical Boolean (true/false)
box rectangular box on aplane
byt ea binary data (“byte array”)

character [(n)]

char [(n)]

fixed-length character string

character varying|varchar [(n)] variable-length character string

[(n)]

cidr IPv4 or |Pv6 network address

circle circleon aplane

dat e calendar date (year, month, day)

doubl e precision float8 double precision floating-point
number (8 bytes)

i net IPv4 or |Pv6 host address

i nteger int,int4 signed four-byte integer

interval [fields] time span

[(p)]

j son textual JSON data

j sonb binary JSON data, decomposed

line infinite line on aplane

| seg line segment on a plane

macaddr MAC (Media Access Control)
address

macaddr 8 MAC (Media Access Control)
address (EUI-64 format)

noney currency amount

nuneric [(p, S)] decimal [(p, s)] exact numeric of selectable

precision

pat h geometric path on aplane

pg_l sn PostgreSQL Log Sequence
Number

poi nt geometric point on aplane

124

Data Types

Name Aliases Description

pol ygon closed geometric path on aplane

r eal float4 single precision floating-point
number (4 bytes)

smal | i nt int2 signed two-byte integer

smal | seri al serial 2 autoi ncrementing two-byte
integer

seri al serial4 autoi ncrementing four-byte
integer

t ext variable-length character string

time [(p)] [wthout
tinme zone]

time of day (no time zone)

time [(p)] with time
zone

tinmetz

time of day, including time zone

timestanp [(p) |
[without tine zone]

date and time (no time zone)

timestanp [(p)] with
tinme zone

ti nmestanptz

date and time, including time
zone

tsquery text search query

t svector text search document

t xi d_snapshot user-level transaction ID
snapshot

uui d universally unique identifier

xm XML data

Compatibility

varyi ng, bool ean, char, char act er

The following types (or spellings thereof) are specified by SQL: bi gi nt, bit, bit
varyi ng, charact er, varchar, date,
doubl e precision,integer,interval ,nuneric,decinal,real,snallint,
ti me (with or without time zone), t i nest anp (with or without time zone), xn .

Each datatype has an external representation determined by itsinput and output functions. Many of the
built-in types have obvious external formats. However, several types are either unique to PostgreSQL,
such as geometric paths, or have several possible formats, such asthe date and time types. Some of the
input and output functions are not invertible, i.e., the result of an output function might lose accuracy
when compared to the original input.

8.1. Numeric Types

Numeric types consist of two-, four-, and eight-byte integers, four- and eight-byte floating-point
numbers, and selectable-precision decimals. Table 8.2 lists the avail able types.

Table 8.2. Numeric Types

Name Storage Size Description Range

smal | i nt 2 bytes small-range integer -32768 to +32767

i nt eger 4 bytes typical choice for|-2147483648 to
integer +2147483647

125

Data Types

8.1.1.

8.1.2.

Name Storage Size Description Range
bi gi nt 8 bytes large-range integer -9223372036854 775308
to
+9223372036854775807
deci nal variable user-specified up to 131072 digits
precision, exact before the decima

point; up to 16383 digits
after the decimal point

nuneric variable user-specified up to 131072 digits
precision, exact before the decima
point; up to 16383 digits
after the decimal point

real 4 bytes variable-precision, 6 decimal digits
inexact precision

doubl e preci si on|8bytes variable-precision, 15 decima digits
inexact precision

smal | seri al 2 bytes small autoincrementing |1 to 32767
integer

seri al 4 bytes autoi ncrementing 1to0 2147483647
integer

bi gseri al 8 bytes large autoincrementing|1 to
integer 9223372036854775807

The syntax of constants for the numeric typesis described in Section 4.1.2. The numeric types have a
full set of corresponding arithmetic operators and functions. Refer to Chapter 9 for moreinformation.
The following sections describe the typesin detail.

Integer Types

The types smal | i nt, i nt eger, and bi gi nt store whole numbers, that is, humbers without
fractional components, of various ranges. Attempts to store values outside of the allowed range will
result in an error.

Thetypei nt eger isthecommon choice, asit offersthe best balance between range, storage size, and
performance. Thesmal | i nt typeisgenerally only used if disk spaceisat apremium. Thebi gi nt
type is designed to be used when the range of thei nt eger typeisinsufficient.

SQL only specifiestheinteger typesi nt eger (ori nt),smal | i nt,andbi gi nt . Thetype names
int2,int4,andi nt 8 are extensions, which are also used by some other SQL database systems.

Arbitrary Precision Numbers

Thetypenuner i ¢ canstorenumberswith avery large number of digits. Itisespecialy recommended
for storing monetary amounts and other quantities where exactness is required. Calculations with
nuneri c values yield exact results where possible, e.g. addition, subtraction, multiplication.
However, calculations on nuner i ¢ values are very slow compared to the integer types, or to the
floating-point types described in the next section.

We usethefollowing termsbelow: The precision of anuner i ¢ isthetotal count of significant digits
in the whole number, that is, the number of digits to both sides of the decimal point. The scale of a
nuner i ¢ isthe count of decimal digitsin the fractional part, to the right of the decimal point. So the
number 23.5141 hasaprecision of 6 and ascale of 4. Integers can be considered to have ascale of zero.

Both the maximum precision and the maximum scale of anuner i ¢ column can be configured. To
declare acolumn of type nuner i ¢ use the syntax:

126

Data Types

NUMERI C(pr eci si on, scal e)

The precision must be positive, the scale zero or positive. Alternatively:
NUMERI C(pr eci si on)

selects ascale of 0. Specifying:

NUMERI C

without any precision or scale creates a column in which numeric values of any precision and scale
can be stored, up to theimplementation limit on precision. A column of thiskind will not coerce input
values to any particular scale, whereas nuner i ¢ columns with a declared scale will coerce input
valuesto that scale. (The SQL standard requires adefault scale of 0, i.e., coercion to integer precision.
Wefind thisabit useless. If you're concerned about portability, always specify the precision and scale
explicitly.)

Note

The maximum allowed precision when explicitly specified in the type declaration is 1000;
NUMERI C without a specified precision is subject to the limits described in Table 8.2.

If the scale of a value to be stored is greater than the declared scale of the column, the system will
round the value to the specified number of fractional digits. Then, if the number of digitsto the left of
the decimal point exceeds the declared precision minus the declared scale, an error is raised.

Numeric values are physically stored without any extraleading or trailing zeroes. Thus, the declared
precision and scale of a column are maximums, not fixed allocations. (In this sense the numeri c
typeis more akinto var char (n) thanto char (n).) The actual storage requirement is two bytes
for each group of four decimal digits, plus three to eight bytes overhead.

In addition to ordinary numeric values, the nurrer i ¢ type allows the special value NaN, meaning
“not-a-number” . Any operation on NaN yields another NaN. When writing this value as a constant in
an SQL command, you must put quotes around it, for example UPDATE t abl e SET x = ' NaN .
On input, the string NaN is recognized in a case-insensitive manner.

Note

In most implementations of the “not-a-number” concept, NaN is not considered equal to any
other numeric value (including NaN). In order toallow nuner i ¢ valuesto be sorted and used
in tree-based indexes, PostgreSQL treats NaN values as equal, and greater than all non-NaN
values.

Thetypesdeci mal and nuneri ¢ are equivalent. Both types are part of the SQL standard.

When rounding values, the nuner i ¢ type roundsties away from zero, while (on most machines) the
real anddoubl e preci si on typesround tiesto the nearest even number. For example:

SELECT x,
round(x: : numeric) AS numround,
round(x: : doubl e precision) AS dbl_round
FROM generate_series(-3.5, 3.5, 1) as x;
X | numround | dbl _round

127

Data Types

8.1.3.

______ e,
-3.5 | -4 | -4
-2.5 | -3 | -2
-1.5 | -2 | -2
-0.5 | -1 | -0
0.5 | 1] 0
1.5 | 2| 2
2.5 | 3 2
3.5 | 4 | 4

(8 rows)

Floating-Point Types

The datatypesr eal and doubl e preci si on are inexact, variable-precision numeric types. In
practice, these types are usually implementations of |IEEE Standard 754 for Binary Floating-Point
Arithmetic (single and double precision, respectively), to the extent that the underlying processor,
operating system, and compiler support it.

Inexact means that some values cannot be converted exactly to the internal format and are stored as
approximations, so that storing and retrieving avalue might show slight discrepancies. Managing these
errors and how they propagate through calculations is the subject of an entire branch of mathematics
and computer science and will not be discussed here, except for the following points:

« If you require exact storage and calculations (such as for monetary amounts), use the nureri c
typeinstead.

 If you want to do complicated calculations with these types for anything important, especially
if you rely on certain behavior in boundary cases (infinity, underflow), you should evaluate the
implementation carefully.

» Comparing two floating-point values for equality might not always work as expected.

On most platforms, ther eal type hasarange of at least 1E-37 to 1E+37 with a precision of at |east
6 decimal digits. Thedoubl e pr eci si on typetypically hasarange of around 1E-307 to 1E+308
withaprecision of at least 15 digits. Valuesthat aretoo large or too small will cause an error. Rounding
might take place if the precision of an input humber is too high. Numbers too close to zero that are
not representable as distinct from zero will cause an underflow error.

Note

The extra float_digits setting controls the number of extra significant digits included when a
floating point value is converted to text for output. With the default value of 0, the output is
the same on every platform supported by PostgreSQL . Increasing it will produce output that
more accurately represents the stored value, but may be unportable.

In addition to ordinary numeric values, the floating-point types have several specia values:

Infinity
-Infinity
NaN

These represent the IEEE 754 specia values “infinity”, “negative infinity”, and “not-a-number”,
respectively. (On a machine whose floating-point arithmetic does not follow |EEE 754, these values
will probably not work as expected.) When writing these values as constants in an SQL command,
you must put quotes around them, for example UPDATE table SET x = '-Infinity'.On
input, these strings are recognized in a case-insensitive manner.

128

Data Types

8.1.4.

Note

IEEE754 specifies that NaN should not compare equal to any other floating-point value
(including NaN). In order to allow floating-point values to be sorted and used in tree-based
indexes, PostgreSQL treats NaN values as equal, and greater than all non-NaN values.

PostgreSQL al so supports the SQL -standard notationsf | oat andf | oat (p) for specifying inexact
numeric types. Here, p specifies the minimum acceptable precision in binary digits. PostgreSQL
acceptsf | oat (1) tof | oat (24) asselectingther eal type, whilef | oat (25) tofl oat (53)
select doubl e preci si on. Vauesof p outside the allowed range draw an error. f | oat with no
precision specified is taken to mean doubl e pr eci si on.

Note

The assumption that r eal and doubl e preci si on have exactly 24 and 53 bits in the
mantissa respectively is correct for IEEE-standard floating point implementations. On non-
|EEE platforms it might be off a little, but for simplicity the same ranges of p are used on
all platforms.

Serial Types

Note

This section describes a PostgreSQL -specific way to create an autoincrementing column.
Another way is to use the SQL-standard identity column feature, described at CREATE
TABLE.

Thedatatypessnal | seri al ,seri al andbi gseri al arenottruetypes, but merely anotational
convenience for creating unique identifier columns (similar to the AUTO_| NCREMENT property
supported by some other databases). In the current implementation, specifying:

CREATE TABLE t abl enane (
col nane SERI AL

)
is equivalent to specifying:

CREATE SEQUENCE t abl enanme_col name_seq AS i nteger;
CREATE TABLE t abl enane (
col name i nteger NOT NULL DEFAULT
next val ('t abl ename_col name_seq')
);
ALTER SEQUENCE t abl ename_col name_seq OANED BY t abl enamne. col nane;

Thus, we have created an integer column and arranged for its default values to be assigned from a
sequence generator. A NOT NULL constraint is applied to ensure that a null value cannot be inserted.
(In most cases you would also want to attach a UNI QUE or PRI MARY KEY constraint to prevent
duplicate values from being inserted by accident, but this is not automatic.) Lastly, the sequence is
marked as “owned by” the column, so that it will be dropped if the column or table is dropped.

Note

Becausesmal | seri al ,seri al andbi gseri al areimplemented using sequences, there
may be"holes" or gapsin the sequence of values which appearsin the column, even if no rows

129

Data Types

areever deleted. A valueallocated from the sequenceisstill "used up" evenif arow containing
that value is never successfully inserted into the table column. This may happen, for example,
if the inserting transaction rolls back. See next val () in Section 9.16 for details.

To insert the next value of the sequence into theseri al column, specify that theseri al column
should be assigned its default value. This can be done either by excluding the column from the list of
columnsin the | NSERT statement, or through the use of the DEFAULT key word.

The type names seri al and seri al 4 are equivalent; both create i nt eger columns. The type
names bi gseri al andseri al 8 work the same way, except that they create abi gi nt column.
bi gseri al should be used if you anticipate the use of more than 23t identifiers over the lifetime of
the table. Thetype namessnal | seri al andseri al 2 also work the same way, except that they
createasmal | i nt column.

The sequence created for aseri al column is automatically dropped when the owning column is
dropped. Y ou can drop the sequence without dropping the column, but this will force removal of the
column default expression.

8.2. Monetary Types

The noney type stores a currency amount with a fixed fractional precision; see Table 8.3. The
fractional precision is determined by the database's|c_monetary setting. The range shown in the table
assumes there are two fractional digits. Input is accepted in a variety of formats, including integer
and floating-point literals, as well astypical currency formatting, suchas' $1, 000. 00" . Output is
generaly in the latter form but depends on the locale.

Table8.3. Monetary Types

Name Storage Size Description Range

noney 8 bytes currency amount -92233720368547758.08
to
+92233720368547758.07

Since the output of this data type is locale-sensitive, it might not work to load noney data into a
database that has a different setting of | ¢_nonet ar y. To avoid problems, before restoring a dump
into a new database make sure | ¢_nonet ar y has the same or equivalent value as in the database
that was dumped.

Vadues of thenuneri c, i nt, and bi gi nt datatypes can be cast to roney. Conversion from the
real anddoubl e preci si on datatypes can be done by castingto nuner i c first, for example:

SELECT ' 12.34'::float8::numeric::noney;

However, thisis not recommended. Floating point numbers should not be used to handle money due
to the potential for rounding errors.

A noney value can be cast to nurrer i ¢ without loss of precision. Conversion to other types could
potentially lose precision, and must also be done in two stages:

SELECT ' 52093. 89' : : noney: : nuneric:: fl oat8;

Division of a noney value by an integer value is performed with truncation of the fractional part
towards zero. To get a rounded result, divide by a floating-point value, or cast the noney value to
nuner i ¢ before dividing and back to noney afterwards. (The latter is preferable to avoid risking
precision loss.) When a noney value is divided by ancther noney value, the result is doubl e
pr eci si on (i.e., apure number, not money); the currency units cancel each other out inthedivision.

8.3. Character Types

130

Data Types

Table 8.4. Character Types

Name Description

character varying(n),varchar(n) variable-length with limit
character(n),char(n) fixed-length, blank padded
t ext variable unlimited length

Table 8.4 shows the genera -purpose character types available in PostgreSQL .

SQL definestwo primary character types. char act er varyi ng(n) andchar act er (n) , where
n isapositive integer. Both of these types can store strings up to n characters (not bytes) inlength. An
attempt to store alonger string into a column of these types will result in an error, unless the excess
characters are all spaces, in which case the string will be truncated to the maximum length. (This
somewhat bizarre exception isrequired by the SQL standard.) If the string to be stored is shorter than
the declared length, values of type char act er will be space-padded; values of type char act er

varyi ng will simply store the shorter string.

If one explicitly casts avalue to char act er varyi ng(n) or character(n), then an over-
length value will be truncated to n characters without raising an error. (This too is required by the
SQL standard.)

The notations var char (n) and char(n) are aiases for character varying(n)
and character(n), respectively. character without length specifier is equivaent to
character(1).Ifcharacter varyi ngisusedwithout length specifier, thetypeacceptsstrings
of any size. The latter is a PostgreSQL extension.

In addition, PostgreSQL providesthet ext type, which storesstrings of any length. Although thetype
t ext isnotinthe SQL standard, severa other SQL database management systems have it as well.

Values of type char act er are physically padded with spaces to the specified width n, and are
stored and displayed that way. However, trailing spaces are treated as semantically insignificant and
disregarded when comparing two values of type char act er . In collations where whitespace is
significant, this behavior can produce unexpected results; for example SELECT 'a ' :: CHAR(2)

collate "C'" < E a\n'::CHAR(2) returnstrue, even though Clocale would consider a space
to be greater than a newline. Trailing spaces are removed when converting a char act er value to
one of the other string types. Note that trailing spaces are semantically significant in char act er

varyi ng andt ext values, and when using pattern matching, that isL1 KE and regular expressions.

The storage requirement for a short string (up to 126 bytes) is 1 byte plus the actua string, which
includesthe space padding inthecaseof char act er . Longer stringshave 4 bytesof overhead instead
of 1. Long strings are compressed by the system automatically, so the physical requirement on disk
might be less. Very long values are also stored in background tables so that they do not interfere with
rapid access to shorter column values. In any case, the longest possible character string that can be
stored isabout 1 GB. (The maximum valuethat will be allowed for n in the datatype declarationisless
than that. It wouldn't be useful to change this because with multibyte character encodings the number
of characters and bytes can be quite different. If you desire to store long strings with no specific upper
limit, use t ext or character varyi ng without a length specifier, rather than making up an
arbitrary length limit.)

Tip

There is no performance difference among these three types, apart from increased storage
space when using the blank-padded type, and a few extra CPU cycles to check the length
when storing into a length-constrained column. While char act er (n) has performance
advantages in some other database systems, there is no such advantage in PostgreSQL ; in fact
char act er (n) isusualy the slowest of the three because of its additional storage costs. In
most situationst ext or char act er varyi ng should be used instead.

131

Data Types

Refer to Section 4.1.2.1 for information about the syntax of string literals, and to Chapter 9 for
information about available operators and functions. The database character set determines the
character set used to store textual values; for more information on character set support, refer to
Section 23.3.

Example 8.1. Using the Character Types

CREATE TABLE testl (a character(4));
| NSERT | NTO test1 VALUES (' ok');

SELECT a, char_length(a) FROMtestl; --
a | char_length

______ Femmcc e e e -

ok | 2

CREATE TABLE test2 (b varchar(5));

| NSERT | NTO test2 VALUES ('ok');

| NSERT | NTO test2 VALUES (' good "),

| NSERT | NTO test2 VALUES ('too long');

ERROR: value too long for type character varying(5)

I NSERT | NTO test2 VALUES ('too long'::varchar(5)); -- explicit
truncation

SELECT b, char_I ength(b) FROM test2;

b | char_length
_______ Femmcc e e e -
ok | 2
good | 5
too | | 5

Thechar _| engt h function is discussed in Section 9.4.

There are two other fixed-length character types in PostgreSQL, shown in Table 8.5. The nane type
exists only for the storage of identifiers in the internal system catalogs and is not intended for use
by the general user. Itslength is currently defined as 64 bytes (63 usable characters plus terminator)
but should be referenced using the constant NAMEDATALEN in C source code. The length is set at
compiletime (and is therefore adjustable for specia uses); the default maximum length might change
inafuturerelease. Thetype" char " (notethe quotes) isdifferent fromchar (1) inthat it only uses
one byte of storage. It isinternally used in the system catalogs as a simplistic enumeration type.

Table 8.5. Special Character Types

Name Storage Size Description
"char" 1 byte single-byte internal type
nane 64 bytes internal type for object names

8.4. Binary Data Types

The byt ea datatype allows storage of binary strings; see Table 8.6.

Table 8.6. Binary Data Types

Name Storage Size Description
byt ea 1 or 4 bytesplusthe actual binary | variable-length binary string
string

A binary string is a sequence of octets (or bytes). Binary strings are distinguished from character
stringsin two ways. First, binary strings specifically allow storing octets of value zero and other “non-
printable” octets (usually, octets outside the decimal range 32 to 126). Character strings disallow zero

132

Data Types

8.4.1.

8.4.2.

octets, and also disallow any other octet values and sequences of octet valuesthat areinvalid according
to the database's selected character set encoding. Second, operations on binary strings process the
actual bytes, whereas the processing of character strings depends on locale settings. In short, binary
strings are appropriatefor storing datathat the programmer thinks of as“raw bytes’, whereas character
strings are appropriate for storing text.

Thebyt ea type supportstwo formats for input and output: “hex” format and PostgreSQL 's historical
“escape”’ format. Both of these are always accepted on input. The output format depends on the
configuration parameter bytea_output; the default is hex. (Note that the hex format was introduced in
PostgreSQL 9.0; earlier versions and some tools don't understand it.)

The SQL standard defines a different binary string type, called BLOB or Bl NARY LARGE OBJECT.
The input format is different from byt ea, but the provided functions and operators are mostly the
same.

byt ea Hex Format

The “hex” format encodes binary data as 2 hexadecimal digits per byte, most significant nibble first.
The entire string is preceded by the sequence\ x (to distinguish it from the escape format). In some
contexts, theinitial backslash may need to be escaped by doubling it (see Section 4.1.2.1). For input,
the hexadecimal digits can be either upper or lower case, and whitespace is permitted between digit
pairs (but not within adigit pair nor inthe starting \ x sequence). The hex format is compatible with a
wide range of external applications and protocols, and it tends to be faster to convert than the escape
format, so itsuseis preferred.

Example:

SELECT ' \ xDEADBEEF' ;

byt ea Escape Format

The“escape” format isthetraditional PostgreSQL format for thebyt ea type. It takesthe approach of
representing abinary string asasequence of ASCI| characters, while converting those bytesthat cannot
be represented as an ASCI| character into special escape sequences. If, from the point of view of the
application, representing bytes as characters makes sense, then this representation can be convenient.
But in practiceit is usually confusing because it fuzzes up the distinction between binary strings and
character strings, and also the particular escape mechanism that was chosen is somewhat unwieldy.
Therefore, this format should probably be avoided for most new applications.

When entering byt ea values in escape format, octets of certain values must be escaped, while all
octet val ues can be escaped. In general, to escape an octet, convert it into itsthree-digit octal value and
precede it by a backslash. Backslash itself (octet decimal value 92) can alternatively be represented
by double backslashes. Table 8.7 shows the characters that must be escaped, and givesthe alternative
escape sequences where applicable.

Table8.7. byt ea Literal Escaped Octets

Decimal Octet | Description Escaped Input|Example Hex
Value Representation Representation
0 zero octet "\ 000 SELECT \ x00
"\ 000" : : byt ea]
39 single quote "YUt oor'\047" |SELECT \ x27
""" byt ea;
92 backslash "\\' or'\134" |SELECT "\ [\ x5¢c
\ byt ea;
0 to 31 and 127 to|“non-printable” "\ xxx' (octal | SELECT \ x01
255 octets value) "\ 001" :: byt ea]

133

Data Types

The requirement to escape non-printable octets varies depending on local e settings. In some instances
you can get away with leaving them unescaped.

The reason that single quotes must be doubled, as shown in Table 8.7, isthat thisistrue for any string
literal in a SQL command. The generic string-literal parser consumes the outermost single quotes and
reduces any pair of single quotes to one data character. What the byt ea input function seesis just
one single quote, which it treats as a plain data character. However, the byt ea input function treats
backsl ashes as special, and the other behaviors shown in Table 8.7 are implemented by that function.

In some contexts, backslashes must be doubled compared to what is shown above, because the generic
string-literal parser will also reduce pairs of backslashes to one data character; see Section 4.1.2.1.

Byt ea octets are output in hex format by default. If you change bytea output to escape, “non-
printable” octets are converted to their equivalent three-digit octal value and preceded by one
backslash. Most “printable” octets are output by their standard representation in the client character
set, eg.:

SET bytea_out put = 'escape';

SELECT ' abc \ 153\ 154\ 155 \ 052\ 251\ 124" : : byt ea;
byt ea

abc klm *\ 251T

The octet with decimal value 92 (backslash) is doubled in the output. Details arein Table 8.8.

Table 8.8. byt ea Output Escaped Octets

Decimal Octet | Description Escaped Output|Example Output Result
Value Representation
92 backslash \\ SELECT \\
"\ 134" : : byt ea|
0 to 31 and 127 to|“non-printable” \ xxx (octal value) | SELECT \ 001
255 octets "\ 001" :: byt ea
32t0 126 “printable” octets |client character set| SELECT ~
representation "\176' : : byt ea]

Depending on the front end to PostgreSQL you use, you might have additional work to do in terms of
escaping and unescaping byt ea strings. For example, you might also have to escape line feeds and
carriage returns if your interface automatically trandates these.

8.5. Date/Time Types

PostgreSQL supports the full set of SQL date and time types, shown in Table 8.9. The operations
available on these datatypesare described in Section 9.9. Dates are counted according to the Gregorian
calendar, even in years before that calendar was introduced (see Section B.5 for more information).

Table 8.9. Date/Time Types

Name Storage Size |Description Low Value High Value |Resolution
ti mestanp |8bytes both date and|4713BC 294276 AD 1 microsecond
[(p)] time (no time
[wthout Zone)
time zone |
ti nestanp |8bytes both date and|4713BC 294276 AD 1 microsecond
[(p)] time, with time
zone

134

Data Types

Name Storage Size | Description Low Value High Value |Resolution
with tinme
zone
date 4 bytes date (notime of |4713 BC 5874897 AD |1day

day)
time 8 bytes time of day (no|00:00:00 24:00:00 1 microsecond
[(P] date)

[without
time zone |

tinme 12 bytes time of day (no|00:00:00+1459 |24:00:00-1459 |1 microsecond
[(p)] date), with time
with tine zone
zone
i nterval [|16 bytes timeinterval |-178000000 178000000 1 microsecond
fields] years years
[(p)]
Note

The SQL standard requires that writing just t i mest anp be equivalent to t i nest anp
wi t hout time zone, and PostgreSQL honorsthat behavior. t i mest anpt z isaccepted
asan abbreviationforti mestanp with tine zone;thisisaPostgreSQL extension.

time,timestanp,andi nt erval acceptanoptional precisionvaluep which specifiesthe number
of fractional digits retained in the seconds field. By default, there is no explicit bound on precision.
The allowed range of p isfrom 0 to 6.

Thei nt er val type has an additional option, which is to restrict the set of stored fields by writing
one of these phrases:

YEAR

MONTH

DAY

HOUR

M NUTE

SECOND

YEAR TO MONTH
DAY TO HOUR
DAY TO M NUTE
DAY TO SECOND
HOUR TO M NUTE
HOUR TO SECOND
M NUTE TO SECOND

Notethat if bothf i el ds and p arespecified, thef i el ds mustinclude SECOND, sincethe precision
applies only to the seconds.

Thetypetime with time zone isdefined by the SQL standard, but the definition exhibits
properties which lead to questionable usefulness. In most cases, a combination of dat e, ti e,
timestanp without tine zone,andtimestanp with tinme zone should provide a
complete range of date/time functionality required by any application.

The types absti me and rel ti ne are lower precision types which are used internaly. You are
discouraged from using these types in applications; these internal types might disappear in a future
release.

135

Data Types

8.5.1. Date/Time Input

Dateandtimeinput isaccepted in almost any reasonableformat, including | SO 8601, SQL -compatible,
traditional POSTGRES, and others. For some formats, ordering of day, month, and year in date
input is ambiguous and there is support for specifying the expected ordering of these fields. Set the
DateStyle parameter to MDY to select month-day-year interpretation, DMY to select day-month-year
interpretation, or YMD to select year-month-day interpretation.

PostgreSQL is more flexible in handling date/time input than the SQL standard requires. See
Appendix B for the exact parsing rules of date/time input and for the recognized text fieldsincluding
months, days of the week, and time zones.

Remember that any date or time literal input needs to be enclosed in single quotes, like text strings.
Refer to Section 4.1.2.7 for more information. SQL requires the following syntax

type [(p)] 'value'

where p is an optional precision specification giving the number of fractional digits in the seconds
field. Precision can be specified fort i me, ti mest anp, andi nt er val types, and can range from
0to 6. If no precision is specified in a constant specification, it defaults to the precision of the literal
value (but not more than 6 digits).

8.5.1.1. Dates

Table 8.10 shows some possible inputs for the dat e type.

Table 8.10. Date I nput

Example Description

1999-01-08 SO 8601; January 8 in any mode (recommended
format)

January 8, 1999 unambiguousin any dat est yl e input mode

1/8/1999 January 8 in MDY mode; August 1 in DMY mode

1/18/1999 January 18 in MDY mode; rejected in other modes

01/02/03 January 2, 2003 in MDY mode; February 1, 2003
in DMY mode; February 3, 2001 in YVMD mode

1999-Jan-08 January 8 in any mode

Jan-08-1999 January 8 in any mode

08-Jan-1999 January 8 in any mode

99-Jan-08 January 8 in YMD mode, else error

08-Jan-99 January 8, except error in YND mode

Jan-08-99 January 8, except error in YND mode

19990108 SO 8601; January 8, 1999 in any mode

990108 ISO 8601; January 8, 1999 in any mode

1999.008 year and day of year

J2451187 Julian date

January 8, 99 BC year 99 BC

8.5.1.2. Times

Thetime-of-day typesaretime [(p)] without tine zoneandtinme [(p)] with
tinme zone.tinme doneisequivalenttoti me wi thout tine zone.

136

Data Types

Vaidinput for these types consists of atime of day followed by an optional time zone. (See Table8.11
and Table8.12) If atimezoneisspecifiedintheinputfort i me wi t hout ti me zone,itisslently
ignored. You can also specify a date but it will be ignored, except when you use a time zone name
that involves a daylight-savings rule, such as Amer i ca/ New_Yor k. In this case specifying the date
isrequired in order to determine whether standard or daylight-savings time applies. The appropriate

time zone offset isrecorded intheti me with ti ne zone vaue.

Table8.11. Time Input

Example Description

04: 05: 06. 789 SO 8601

04: 05: 06 1SO 8601

04: 05 SO 8601

040506 1SO 8601

04: 05 AM same as 04:05; AM does not affect value
04: 05 PM same as 16:05; input hour must be <= 12
04: 05: 06. 789-8 SO 8601

04: 05: 06- 08: 00 1SO 8601

04: 05- 08: 00 SO 8601

040506- 08 1SO 8601

04: 05: 06 PST time zone specified by abbreviation
2003- 04-12 04: 05: 06 Aneri cal |time zone specified by full name
New_Yor k

Table8.12. Time Zone I nput

Example Description

PST Abbreviation (for Pacific Standard Time)
Areri ca/ New_Yor k Full time zone name

PST8PDT POSI X -style time zone specification
-8:00 ISO-8601 offset for PST

- 800 ISO-8601 offset for PST

-8 ISO-8601 offset for PST

zulu Military abbreviation for UTC

z Short form of zul u

Refer to Section 8.5.3 for more information on how to specify time zones.

8.5.1.3. Time Stamps

Valid input for the time stamp types consists of the concatenation of a date and a time, followed by
an optional time zone, followed by an optional AD or BC. (Alternatively, AD/BC can appear before the

time zone, but thisis not the preferred ordering.) Thus:

1999-01-08 04: 05: 06
and:

1999-01-08 04:05:06 -8:00

are valid values, which follow the | SO 8601 standard. In addition, the common format:

137

Data Types

January 8 04:05:06 1999 PST
is supported.

The SQL standard differentiatest i mestanp wi thout tinme zoneandtinestanp wth
ti me zone literasby the presenceof a“+” or “-” symbol and time zone offset after the time. Hence,
according to the standard,

TI MESTAMP ' 2004-10-19 10: 23: 54
isati nestanp wi thout tine zone,while
TI MESTAMP ' 2004- 10- 19 10: 23: 54+02'

isatinestanp with tinme zone. PostgreSQL never examines the content of aliteral string
before determining its type, and therefore will treat both of the above asti mest anp wi t hout
ti me zone. Toensurethat aliteral istreated asti mestanmp with tinme zone, giveitthe
correct explicit type:

TI MESTAMP WTH TI ME ZONE ' 2004-10-19 10: 23: 54+02'

In aliteral that has been determinedto bet i nest anp wi t hout tinme zone, PostgreSQL will
silently ignoreany time zoneindication. That is, theresulting valueis derived from the date/time fields
in the input value, and is not adjusted for time zone.

Fortimestanp with tinme zone, theinternaly stored value is dways in UTC (Universal
Coordinated Time, traditionally known as Greenwich Mean Time, GMT). An input value that has an
explicit time zone specified is converted to UTC using the appropriate offset for that time zone. If
no time zone is stated in the input string, then it is assumed to be in the time zone indicated by the
system's TimeZone parameter, and is converted to UTC using the offset for thet i mezone zone.

Whenatimestanp with tine zone vaueisoutput, it isaways converted from UTC to the
current t i mezone zone, and displayed as local time in that zone. To see the time in another time
zone, either changet i mezone or usethe AT TI ME ZONE construct (see Section 9.9.3).

Conversionshetweent i mest anp wi t hout time zoneandti mestanp with ti ne zone
normally assume that thet i mest anp wi t hout time zone value should be taken or given as
ti mezone loca time. A different time zone can be specified for the conversion using AT Tl MVE
ZONE.

8.5.1.4. Special Values

PostgreSQL supports several specia date/time input values for convenience, as shown in Table 8.13.
Thevaluesinfinity and -i nfinity are specialy represented inside the system and will be
displayed unchanged; but the othersare simply notational shorthandsthat will be converted to ordinary
date/time values when read. (In particular, now and related strings are converted to a specific time
value as soon as they are read.) All of these values need to be enclosed in single quotes when used
as constantsin SQL commands.

Table 8.13. Special Date/Time Inputs

Input String Valid Types Description

epoch dat e, ti nest anp 1970-01-01 00:00:00+00 (Unix
system time zero)

infinity dat e, ti nest anp later than all other time stamps

-infinity dat e, ti nest anp earlier than all other time stamps

now date,tine,tinestanp current transaction's start time

t oday dat e, ti nest anp midnight (00: 00) today

138

Data Types

8.5.2.

Input String Valid Types Description

t onor r ow dat e, ti nest anp midnight (00: 00) tomorrow
yest er day dat e, ti nest anp midnight (00: 00) yesterday
all balls time 00:00:00.00 UTC

The following SQL-compatible functions can also be used to obtain the current time value
for the corresponding data type: CURRENT _DATE, CURRENT _TI ME, CURRENT _TI MESTAMP,
LOCALTI ME, LOCALTI MESTAMP. The latter four accept an optional subsecond precision
specification. (See Section 9.9.4.) Note that these are SQL functions and are not recognized in data
input strings.

Date/Time Output

The output format of the date/time types can be set to one of the four styles 1SO 8601, SQL (Ingres),
traditional POSTGRES (Unix date format), or German. The default is the ISO format. (The SQL
standard requires the use of the 1SO 8601 format. The name of the“SQL" output format is a historical
accident.) Table 8.14 shows examples of each output style. The output of thedat e andt i e typesis
generaly only the date or time part in accordance with the given examples. However, the POSTGRES
style outputs date-only valuesin 1SO format.

Table 8.14. Date/Time Output Styles

Style Specification Description Example

| SO ISO 8601, SQL standard 1997-12-17
07:37: 16-08

SQL traditional style 12/ 17/ 1997
07:37:16.00 PST

Post gres origina style Wwed Dec 17 07:37:16
1997 PST

Ger man regional style 17.12. 1997
07:37:16.00 PST

Note

SO 8601 specifies the use of uppercase letter T to separate the date and time. PostgreSQL
accepts that format on input, but on output it uses a space rather than T, as shown above. This
isfor readability and for consistency with RFC 3339 as well as some other database systems.

In the SQL and POSTGRES styles, day appears before month if DMY field ordering has been
specified, otherwise month appears before day. (See Section 8.5.1 for how this setting also affects
interpretation of input values.) Table 8.15 shows examples.

Table 8.15. Date Order Conventions

dat est yl e Setting Input Ordering Example Output

SQL, Dw day/mont h/year 17/ 12/ 1997
15:37:16. 00 CET

SQ., MY nmont h/day/year 12/ 17/ 1997
07:37:16. 00 PST

Post gres, DMWY day/mont h/year Wed 17 Dec 07:37:16
1997 PST

139

Data Types

8.5.3.

The date/time style can be selected by the user using the SET dat est yl e command, the DateStyle
parameter in the post gresql . conf configuration file, or the PGDATESTYLE environment
variable on the server or client.

Theformatting functiont o_char (see Section 9.8) isalso available asamore flexible way to format
date/time output.

Time Zones

Time zones, and time-zone conventions, are influenced by political decisions, not just earth geometry.
Time zones around the world became somewhat standardized during the 1900s, but continue to be
prone to arbitrary changes, particularly with respect to daylight-savings rules. PostgreSQL uses the
widely-used IANA (Olson) time zone database for information about historical time zone rules. For
times in the future, the assumption is that the latest known rules for a given time zone will continue
to be observed indefinitely far into the future.

PostgreSQL endeavorsto be compatiblewith the SQL standard definitionsfor typical usage. However,
the SQL standard has an odd mix of date and time types and capabilities. Two obvious problems are:

« Although the dat e type cannot have an associated time zone, thet i e type can. Time zonesin
the real world have little meaning unless associated with a date as well as a time, since the offset
can vary through the year with daylight-saving time boundaries.

» Thedefault time zoneis specified as a constant numeric offset from UTC. It istherefore impossible
to adapt to daylight-saving time when doing date/time arithmetic across DST boundaries.

To address these difficulties, we recommend using date/time types that contain both date and time
when using time zones. We do not recommend using thetypetime with tinme zone (though
it is supported by PostgreSQL for legacy applications and for compliance with the SQL standard).
PostgreSQL assumes your local time zone for any type containing only date or time.

All timezone-aware dates and times are stored internally in UTC. They are converted to local timein
the zone specified by the TimeZone configuration parameter before being displayed to the client.

PostgreSQL allows you to specify time zones in three different forms:

A full time zone name, for example Aer i ca/ New_Yor k. The recognized time zone names are
listedinthepg_t i nmezone_names view (see Section 51.90). PostgreSQL uses the widely-used
IANA time zone data for this purpose, so the same time zone names are a so recognized by other
software.

A time zone abbreviation, for example PST. Such a specification merely defines a particul ar offset
from UTC, in contrast to full time zone names which can imply aset of daylight savings transition-
daterules aswell. The recognized abbreviationsarelisted inthe pg_t i mezone_abbr evs view
(see Section 51.89). You cannot set the configuration parameters TimeZone or log_timezone to a
time zone abbreviation, but you can use abbreviations in date/time input values and with the AT
TI ME ZONE operator.

 In addition to the timezone names and abbreviations, PostgreSQL will accept POSIX-style
time zone specifications of the form STDof f set or STDof f set DST, where STD is a zone
abbreviation, of f set is a numeric offset in hours west from UTC, and DST is an optional
daylight-savings zone abbreviation, assumed to stand for one hour ahead of the given offset. For
example, if ESTSEDT were not already a recognized zone name, it would be accepted and would
be functionally equivalent to United States East Coast time. In this syntax, a zone abbreviation can
be a string of letters, or an arbitrary string surrounded by angle brackets (<>). When a daylight-
savings zone abbreviation is present, it is assumed to be used according to the same daylight-
savings transition rules used in the IANA time zone database's posi xr ul es entry. In a standard
PostgreSQL installation, posi xr ul es is the same as US/ East er n, so that POSIX-style time
zone specifications follow USA daylight-savings rules. If needed, you can adjust this behavior by
replacing the posi xr ul es file.

140

Data Types

8.5.4.

In short, thisisthe difference between abbreviations and full names:. abbreviations represent aspecific
offset from UTC, whereas many of thefull namesimply alocal daylight-savingstimerule, and so have
two possible UTC offsets. Asan example, 2014- 06- 04 12: 00 Aneri ca/ New_Yor k represents
noon local timein New Y ork, which for this particular date was Eastern Daylight Time (UTC-4). So
2014- 06-04 12: 00 EDT specifies that same time instant. But 2014- 06- 04 12: 00 EST
specifies noon Eastern Standard Time (UTC-5), regardless of whether daylight savingswas nominally
in effect on that date.

To complicate matters, somejurisdictions have used the same timezone abbreviation to mean different
UTC offsets at different times; for example, in Moscow MBK has meant UTC+3 in some years and
UTC+4 in others. PostgreSQL interprets such abbreviations according to whatever they meant (or had
most recently meant) on the specified date; but, aswith the EST example above, thisis not necessarily
the same aslocal civil time on that date.

One should be wary that the POSI X -style time zone feature can |ead to silently accepting bogusinpuit,
sincethereisno check on the reasonabl eness of the zone abbreviations. For example, SET TI MEZONE
TO FOOBARO will work, leaving the system effectively using a rather peculiar abbreviation for
UTC. Another issue to keep in mind is that in POSIX time zone names, positive offsets are used for
locations west of Greenwich. Everywhere else, PostgreSQL follows the 1SO-8601 convention that
positive timezone offsets are east of Greenwich.

In all cases, timezone names and abbreviations are recognized case-insensitively. (This is a change
from PostgreSQL versions prior to 8.2, which were case-sensitive in some contexts but not others.)

Neither timezone names nor abbreviations are hard-wired into the server; they are obtained from
configuration files stored under . . . / share/ti nezone/ and.../share/ti nezonesets/
of the installation directory (see Section B.4).

The TimeZone configuration parameter can be set in the file post gr esql . conf, or in any of the
other standard ways described in Chapter 19. There are also some special waysto set it:

» The SQL command SET TI ME ZONE sets the time zone for the session. Thisis an aternative
spelling of SET TI MEZONE TOwith a more SQL -spec-compatible syntax.

e The PGTZ environment variable is used by libpg clientsto send aSET TI ME ZONE command
to the server upon connection.

Interval Input

i nt erval values can be written using the following verbose syntax:
[@ quantity unit [quantity unit...] [direction]

where quant ity is a number (possibly signed); unit is mi crosecond, m|lisecond,
second, m nut e, hour, day, week, nont h, year, decade, century, m || enni um or
abbreviations or plurals of these units; di r ect i on canbeago or empty. Theat sign (@ is optional
noise. The amounts of the different units are implicitly added with appropriate sign accounting.
ago negates al the fields. This syntax is also used for interval output, if IntervalStyle is set to
post gres_ver bose.

Quantities of days, hours, minutes, and seconds can be specified without explicit unit markings. For
example,' 1 12:59: 10" isreadthesameas' 1 day 12 hours 59 min 10 sec'.Also,
acombination of years and months can be specified with a dash; for example' 200- 10" isread the
sameas' 200 years 10 nont hs' . (Theseshorter formsarein fact the only ones allowed by the
SQL standard, and are used for output when | nt er val St yl e issettosql _st andard.)

Interval values can also be written as ISO 8601 time intervals, using either the “format with
designators’ of the standard's section 4.4.3.2 or the “ alternative format” of section 4.4.3.3. The format
with designators looks like this:

141

Data Types

P quantity unit [quantity unit ...] [T [quantity unit ...]]

The string must start with aP, and may includeaT that introduces the time-of-day units. The available
unit abbreviations are given in Table 8.16. Units may be omitted, and may be specified in any order,
but units smaller than a day must appear after T. In particular, the meaning of Mdepends on whether
it isbefore or after T.

Table 8.16. 1SO 8601 Interval Unit Abbreviations

Abbreviation Meaning

Years

Months (in the date part)
Weeks

Days

Hours

Minutes (in the time part)
Seconds

nlz[z[ols[=z]<

In the alternative format:
P [years-nonths-days] [T hours:nm nutes:seconds]

the string must begin with P, and a T separates the date and time parts of the interval. The values are
given as numbers similar to SO 8601 dates.

When writing an interval constant with a f i el ds specification, or when assigning a string to
an interval column that was defined with afi el ds specification, the interpretation of unmarked
guantitiesdependsonthef i el ds. For example!| NTERVAL ' 1' YEARisread as 1 year, whereas
| NTERVAL ' 1' means1second. Also, field values“totheright” of theleast significant field allowed
by the f i el ds specification are silently discarded. For example, writing | NTERVAL ' 1 day
2:03: 04' HOUR TO M NUTE resultsin dropping the seconds field, but not the day field.

According to the SQL standard all fields of an interval value must have the same sign, so a leading
negative sign appliesto all fields; for examplethe negativesignintheinterval literal ' - 1 2: 03: 04'
applies to both the days and hour/minute/second parts. PostgreSQL allows the fields to have different
signs, and traditionally treats each field in the textual representation as independently signed, so that
the hour/minute/second part is considered positive in this example. If | nt er val Styl e is set to
sql _st andar d then aleading sign is considered to apply to all fields (but only if no additional
signs appear). Otherwise the traditional PostgreSQL interpretation is used. To avoid ambiguity, it's
recommended to attach an explicit sign to each field if any field is negative.

In the verbose input format, and in some fields of the more compact input formats, field values can
havefractional parts; for example' 1. 5 week' or' 01: 02: 03. 45' . Suchinputisconverted tothe
appropriate number of months, days, and seconds for storage. When this would result in a fractional
number of months or days, the fraction is added to the lower-order fields using the conversion factors
1 month = 30 days and 1 day = 24 hours. For example, ' 1. 5 nont h* becomes 1 month and 15
days. Only seconds will ever be shown as fractional on output.

Table 8.17 shows some examples of valid i nt er val input.

Table8.17. Interval I nput

Example Description

1-2 SQL standard format: 1 year 2 months

3 4:05:06 SQL standard format: 3 days 4 hours 5 minutes 6
seconds

142

Data Types

8.5.5.

Example Description

1 year 2 months 3 days 4 hours 5 minutes 6| Traditional Postgres format: 1 year 2 months 3

seconds days 4 hours 5 minutes 6 seconds

P1Y2M3DT4H5M6S ISO 8601 “format with designators’: same
meaning as above

P0O001-02-03T04:05:06 SO 8601 “dternative format”: same meaning as
above

Internally i nt er val valuesarestored asmonths, days, and seconds. Thisisdone because the number
of daysin amonth varies, and aday can have 23 or 25 hoursif a daylight savings time adjustment is
involved. The months and daysfields are integers while the seconds field can store fractions. Because
intervals are usually created from constant strings or t i mest anp subtraction, this storage method
workswell in most cases, but can cause unexpected results:

SELECT EXTRACT(hours from'80 mnutes'::interval);
date_part

SELECT EXTRACT(days from'80 hours'::interval);
date_part

Functionsj usti fy _days andj ustify_hours are avalable for adjusting days and hours that
overflow their normal ranges.

Interval Output

The output format of the interval type can be set to one of the four styles sql _st andard,
post gres, postgres_verbose,ori so_8601, using thecommand SET i nt erval styl e.
The default isthe post gr es format. Table 8.18 shows examples of each output style.

The sql _st andar d style produces output that conforms to the SQL standard's specification for
interval literal strings, if theinterval value meetsthe standard's restrictions (either year-month only or
day-time only, with no mixing of positive and negative components). Otherwise the output |ooks like
a standard year-month literal string followed by a day-time litera string, with explicit signs added to
disambiguate mixed-sign intervals.

The output of the post gr es style matches the output of PostgreSQL releases prior to 8.4 when the
DateStyle parameter was set to | SO.

The output of the post gr es_ver bose style matches the output of PostgreSQL releases prior to
8.4 when the Dat eSt y| e parameter was set to non-1 SO output.

Theoutput of thei so_8601 style matchesthe “format with designators’ described in section 4.4.3.2
of the ISO 8601 standard.

Table 8.18. Interval Output Style Examples

Style Specification Year-Month Interval |Day-Timelnterval Mixed Interval
sql _standard 1-2 3 4:05:06 -1-2 +3-4:05:06
post gres 1 year 2 mons 3 days 04:05:06 -1year -2 mons +3 days
-04:05:06
post gres_verbose |@ 1 year 2 mons @ 3 days4 hours5mins| @ 1 year 2 mons-3days
6 secs 4 hours 5 mins 6 secs
ago

143

Data Types

Style Specification Year-Month Interval |Day-Timelnterval Mixed Interval
i so_8601 P1Y2M P3DT4H5M6S P-1Y-2M3DT-4H-5M-65

8.6. Boolean Type

PostgreSQL provides the standard SQL typebool ean; see Table 8.19. Thebool ean type can have
several states: “true”, “false”, and athird state, “unknown”, whichisrepresented by the SQL null value.

Table 8.19. Boolean Data Type

Name Storage Size Description

bool ean 1 byte state of true or false

Boolean constants can be represented in SQL queriesby the SQL key words TRUE, FAL SE, and NULL.
Thedatatypeinput function for typebool ean acceptsthese string representationsfor the“true” state:

true
yes
on

1

and these representations for the “false” state:

fal se
no

of f

0

Unique prefixes of these strings are also accepted, for examplet or n. Leading or trailing whitespace
isignored, and case does not matter.

The datatype output function for typebool ean alwaysemitseithert or f , asshownin Example 8.2.

Example 8.2. Using the bool ean Type

CREATE TABLE testl (a boolean, b text);

I NSERT | NTO testl VALUES (TRUE, 'sic est');
I NSERT | NTO testl1l VALUES (FALSE, 'non est');
SELECT * FROM test1;

a | b

t | sic est
f | non est

SELECT * FROM test1l WHERE a;
a | b

t | sic est

The key words TRUE and FALSE are the preferred (SQL-compliant) method for writing Boolean
constants in SQL queries. But you can also use the string representations by following the generic
string-literal constant syntax described in Section 4.1.2.7, for example' yes' : : bool ean.

Note that the parser automatically understands that TRUE and FALSE are of type bool ean, but this
isnot so for NULL because that can have any type. So in some contexts you might have to cast NULL
to bool ean explicitly, for example NULL: : bool ean. Conversely, the cast can be omitted from a

144

Data Types

string-literal Boolean value in contexts where the parser can deduce that the literal must be of type
bool ean.

8.7. Enumerated Types

8.7.1.

8.7.2.

Enumerated (enum) types are data types that comprise a static, ordered set of values. They are
equivalent to the enumtypes supported in a number of programming languages. An example of an
enum type might be the days of the week, or a set of status values for a piece of data.

Declaration of Enumerated Types

Enum types are created using the CREATE TY PE command, for example:
CREATE TYPE npod AS ENUM ('sad', 'ok', 'happy');
Once created, the enum type can be used in table and function definitions much like any other type:

CREATE TYPE npbod AS ENUM ('sad', 'ok', 'happy');
CREATE TABLE person (
name text,
current _nmood nood
)s
| NSERT | NTO person VALUES (' Moe', 'happy');
SELECT * FROM person WHERE current _nood = ' happy';
nane | current_nood

______ o,
Me | happy

(1 row

Ordering

The ordering of the values in an enum type is the order in which the values were listed when the
type was created. All standard comparison operators and related aggregate functions are supported
for enums. For example:

| NSERT | NTO person VALUES ('Larry', 'sad');

| NSERT | NTO person VALUES ('Curly', 'ok');

SELECT * FROM person WHERE current _nood > 'sad';
name | current_nood

SELECT * FROM person WHERE current _nmood > 'sad' ORDER BY
current _nood;
name | current_nood

Curly | ok
Moe | happy
(2 rows)

SELECT name

FROM per son

WHERE current_nood = (SELECT M N(current _npod) FROM person);
name

145

Data Types

8.7.3.

8.7.4.

(1 row
Type Safety

Each enumerated data type is separate and cannot be compared with other enumerated types. Seethis
example:

CREATE TYPE happi ness AS ENUM (' happy', 'very happy', 'ecstatic');
CREATE TABLE hol i days (

num weeks i nt eger

happi ness happi ness
);
I NSERT | NTO hol i days(nhum weeks, happi ness) VALUES (4, 'happy');
I NSERT | NTO hol i days(nhum weeks, happi ness) VALUES (6, 'very happy');
| NSERT | NTO hol i days(num weeks, happi ness) VALUES (8, 'ecstatic');
I NSERT | NTO hol i days(hum weeks, happi ness) VALUES (2, 'sad');
ERROR: invalid input value for enum happi ness: "sad"
SELECT person. nanme, holidays. num weeks FROM person, holidays

WHERE person. current _nood = hol i days. happi ness;

ERROR: operator does not exist: npod = happi ness

If you really need to do something like that, you can either write a custom operator or add explicit
casts to your query:

SELECT person. nane, holidays. num weeks FROM person, holidays
WHERE person. current _nood: :text = holidays. happi ness: :text;
name | num weeks

Implementation Details

Enum labels are case sensitive, so ' happy' isnotthesameas' HAPPY' . White space in the labels
is significant too.

Although enum types are primarily intended for static sets of values, there is support for adding new
values to an existing enum type, and for renaming values (see ALTER TY PE). Existing values cannot
be removed from an enum type, nor can the sort ordering of such values be changed, short of dropping
and re-creating the enum type.

An enum value occupies four bytes on disk. The length of an enum value's textual 1abel islimited by
the NAMEDATAL EN setting compiled into PostgreSQL ; in standard buildsthis means at most 63 bytes.

Thetrandations from internal enum valuesto textual 1abels are kept in the system catalog pg_enum
Querying this catalog directly can be useful.

8.8. Geometric Types

Geometric datatypes represent two-dimensional spatial objects. Table 8.20 shows the geometric types
available in PostgreSQL .

Table 8.20. Geometric Types

Name Storage Size Description Representation
poi nt 16 bytes Point on a plane x,y)
l'ine 32 bytes Infiniteline {A,B,C}

146

Data Types

8.8.1.

8.8.2.

8.8.3.

8.8.4.

Name Storage Size Description Representation
| seg 32 bytes Finite line segment ((x1,y1),(x2,y2))
box 32 bytes Rectangular box ((x1,y1),(x2,y2))
pat h 16+16n bytes Closed path (similar to|((x1,y1),...)
polygon)
pat h 16+16n bytes Open path [(x1,y1),..]
pol ygon 40+16n bytes Polygon (similar to|((x1,yl),...)
closed path)
circle 24 bytes Circle <(x,y),r> (center point

and radius)

A rich set of functions and operators is available to perform various geometric operations such as
scaling, translation, rotation, and determining intersections. They are explained in Section 9.11.

Points

Pointsarethefundamental two-dimensional building block for geometrictypes. Valuesof typepoi nt
are specified using either of the following syntaxes:

(x,vy)
X,y

where x and y are the respective coordinates,